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Abstract

The purpose of mean-variance hedging is to find a dynamic hedging strategy

minimizing the unconditional squared hedging error (where error equals the differ-

ence between the value of a self-financing portfolio and the value of a derivative

asset at maturity). In the thesis we focused on discrete-time models for which the

standard mean-variance theory (in the most general setting with locally square-

integrable price processes) is described in Černý and Kallsen (2007). We extended

this theory to situations where there is non-zero probability that a trade may not

be executed at any given time. The economic rationale for such a model is derived

from limit market orders. Compared to classical mean-variance hedging theory

the new problem contains an additional endogenous state variable. We identified

this state variable and derived full dynamic programming solution for the optimal

strategy.

Keywords: mean-variance hedging, stock liquidity, dynamic programming.



Abstrakt

Cieľom kvadratického zaistenia je nájsť dynamickú zaisťovaciu stratégiu, ktorá

minimalizuje nepodmienenú kvadratickú zaisťovaciu chybu (kde chyba je defino-

vaná ako rozdiel medzi hodnotou samofinancovaného portfólia a hodnotou finanč-

ného derivátu v čase expirácie). V tejto práci sme sa zamerali na diskrétne časové

modely, pre ktoré je teória kvadratického zaisťovania opísaná v článku Černého a

Kallsena (2007). Rozšírili sme túto teóriu o situácie, kde je nenulová pravdepodob-

nosť, že časť obchodu nebude nikdy zrealizovaná. Ekonomicky sa tento model dá

interpretovať ako zadanie limitného pokynu. V porovnaní s klasickou kvadratickou

zaisťovacou teóriou sa nový problém rozširuje o novú endogénnu stavovú premennú.

Indentifikovali sme túto premennú a odvodili sme optimálnu stratégiu.

Kľúčové slová: kvadratické zaistenie, likvidita akcie, dynamické programova-

nie.
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Chapter 1

Introduction

Derivative securities essential part of the modern financial markets in the last years.

Practical needs of investors led to formation of modern financial instruments such as

equity and currency options, swaps, forwards etc., which originally served as a tool

to transfer risk. The main contribution to the rapid development of the derivative

market was made by breaking result of Black and Scholes [BS73]. Well-known

model introduced by Black and Scholes makes some explicit assumptions, which

allow creating a portfolio which perfectly hedges an option (or any other derivative).

Then an arbitrage-free argument is used: ”If options are correctly priced in the

market, it should not be possible to make sure profits by creating portfolios of

long and short positions in options and their underlying stocks.” [BS73]. However,

assumptions of the model often do not hold in the real market. A price of an

asset usually does not follow a pure difussion process, but may jump in response

to surprise events which lead to inability to hedge a contingent claim perfectly -

the market is incomplete.

The problem of pricing and hedging contingent claims in incomplete markets

has led to the development of various valuation methodologies. A classical one is

the mean-variance hedging approach. It minimizes the expectation of the square

hedging error (square difference between the value of the self-financing portfolio and

the contingent claim at the maturity) among all self-financing strategies. This ap-

proach was introduced (in the martingale case) by Föllmer and Sonderman [FS86].

Subsequent extensions to the general semimartingale case were done in the mean-
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time. For more detailed overview of the literature we refer the reader to Černý and

Kallsen [eK07].

Our thesis extends the work of Černý and Kallsen [eK07], in which the stan-

dard mean-variance theory is described in the general setting with locally square-

integrable price processes. We work with a more specific discrete-time model de-

scribed in Černý and Kallsen [eK09] and broaden the standard mean-variance the-

ory to situations where there is non-zero probability that a trade may not be

executed at any given time. We indentify a new endogenous state variable, derive

full dynamic programming solution for the optimal strategy and perform a recur-

sive computation of unconditional expected squared hedging error in the modified

model which we compare to the results of the standard model.

The thesis is organized as follows. Chapter 2 briefly describes classical discrete-

time mean-variance hedging theory. In Chapter 3 we describe local and global risk

minimization for the extended model; these processes are closely related to each

other. We also introduce the full dynamic programming solution for the extended

model. Numerical implementation of presented theory in chapter 4 compares the

results of extended model with the standard model. Chapter 5 presents results

and conclusions of this thesis. Proofs and most of the derivations are defered to

appendix which is in the sixth chapter.
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Chapter 2

Mean-Variance Hedging in

discrete-time

In this chapter we present the notation and assumptions used in the following

sections and briefly introduce the general discrete time mean-variance theory. Pre-

sentation is based on the paper of Černý and Kallsen [eK09]. Discrete-time model

is a special case of the general setting with locally square-integrable price processes,

described in Černý and Kallsen [eK07]. The main emphasis of this chapter is put

on explanation of difference between locally and globally optimal hedging strat-

egy. We also underline why it is interesting and relevant to consider a local risk

minimization approach.

The mean-variance hedging approach minimizes the unconditional (time 0) ex-

pected squared hedging error at maturity of contingent claim

inf
ϑ
E((υ + ϑ • ST −H)2),

over all admissible trading strategies ϑ (number of stocks held in the portfolio) and

all admissible initial endowments υ. The random variable H denotes the payoff

of the contingent claim to be hedged, S represents a discounted price process of

the underlying asset and ϑ • ST represents gains from trading in the time interval

[0, T ]. The variables υ, S,H are expressed in terms of appropriate numeraire, most

comonly the risk-free bank account.
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2.1 Notation and Assumptions

Consider a time horizon T and the set of trading dates τ := {0, 1, ..., T}. We fix a

probability space (Ω, P,F), a filtration F = {Ft}t∈τ , FT = F and an FT -measurable

contingent claim H ∈ L2(P ). We introduce the following notation for conditional

expectations,

Et(X) : = E(X|Ft),

V art(X) : = Et(X
2)− (Et(X))2.

The discounted stock price process {St}t∈τ is adapted to F and we assume that

S is locally square-integrable, i.e. for ∆St+1 = St+1 − St we have

Et((∆St+1)2) <∞ for t < T .

Definition 1. We say that process S admits no arbitrage , if for all t ∈ τ\{0}
and all Ft−1-measurable portfolios ϑt we have that ϑt∆St ≥ 0 almost surely implies

ϑt∆St = 0 almost surely.

We assume, that S is arbitrage-free in the sense of above definition.

Proposition 8.4. in [eK09] claims that in a discrete-time model the definition

of admissibility of the strategy changes from the more involving general form into

the simpler one.

Definition 2. We say that (υ, ϑ) is an admissible endowment-strategy pair if and

only if υ is F0-measurable, ϑ = {ϑt}t∈τ\{0} is predictable, meaning that ϑt is Ft−1-

measurable, and

υ + ϑ • ST = υ +
T∑
t=1

ϑt∆St ∈ L2(P ).

The set of adimissible trading strategies with initial endowment υ is denoted Θ(υ).

We write Θ as a shortland for Θ(0).

As ϑt is number of units of stocks in portfolio at time t, it represents what is

commonly known as the option delta.
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2.2 Comparison of Locally and Globally Optimal

Strategy

The problem defined above can be solved by globally optimal strategy, which mini-

mizes the resulting square difference between values of hedging portfolio and payoff

of contingent claim at maturity. This strategy is path dependent. It means that if

we are in a particular trading date, we need to know the actual price of stock, time

remaining to maturity and the actual value of the hedging portfolio to compute an

optimal hedging strategy (optimal number of stock held in the portfolio up to the

next trading time). Actual value of the hedging portfolio is determined by previous

trading, so we need to know the history of our trading to make a right decision to

the future. This property can be sometimes unwelcome.

An example of path-independent strategy is a locally optimal strategy presented

by Föllmer and Schweizer [FS88], who suggested a way how to evaluate an option

in the incomplete market using a sequential regression. They also showed that

their pricing formula reduces to the Black-Scholes formula in the complete market

and the continuous-time hedging. In their theory the global optimization prob-

lem is separated into the one-period conditional optimization problems solved by

least-squares regression. Instead of minimizing the total squared hedging error at

maturity, one minimizes just a one-step ahead squared hedging error.

The whole trick of local hedging lies in the fact, that we pretend we can choose

an arbitrary value of hedging portfolio in each trading date. In other words, we

find the optimal hedging strategy as if we do not require hedging portfolio to be

self-financing. At time T − 1 we define

{VT−1, ξT} = arg min
υT−1,ϑT

ET−1((υT−1 + ϑT∆ST − VT )2),

VT := H.

After obtaining optimal value of the hedging portfolio at time T − 1, we move

one trading interval backwards and define

{VT−2, ξT−1} = arg min
υT−2,ϑT−1

ET−2((υT−2 + ϑT−1∆ST−1 − VT−1)2),

i.e. the trading date T − 2 we minimize expected squared difference between the
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value of the hedging portfolio and the optimal value of the hedging portfolio at

time T − 1.

Generally, we solve a set of one-period optimization problems

{Vt−1, ξt} = arg min
υt−1,ϑt

{Et((υt−1 + ϑt∆St − Vt)2) : υt−1, ϑt are Ft−1- measurable},

VT := H.

Note that to compute locally optimal strategy we need to know just the actual price

of stock and time remaining to maturity because the process Vt can be derived as

expected value under a special martingale measure from terminal payoffs.

”Since in practice no one uses path-dependent hedging coefficients, it is impor-

tant to ask how much a BlackScholes-like hedge would take away from the optimal

performance”, [Čer06]. If we measure the performance of locally and globally opti-

mal strategy by the unconditional squared hedging error, globally optimal strategy

will always outperform locally optimal strategy by construction. The interesting

point is that the locally optimal strategy performs just slightly worse than globally

optimal strategy. This is shown for example in [Čer06].

The only problem with locally optimal strategy is, that generally it does not

have to be admissible, whereas the globally optimal strategy is always admissible

as it is shown later. But according to [Hol09], under the assumptions of IID stock

returns, the found locally optimal hedging strategy is admissible.

2.3 Formulas for locally and globally optimal strat-

egy

For simplicity, the following brief explanation is made under the assumption that

stock returns are IID. At the end of the chapter we will introduce a theorem

which deals with well definition of all variables and admissibility of globally optimal

hedging strategy in the general case.

Locally optimal strategy is obtained from one-period minimization problem

{Vt−1, ξt} = arg min
υt−1,ϑt

Et((υt−1 + ϑt∆St − Vt)2).
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Using least squares we have

ξt =
Covt(Vt−1,∆St)

Vart−1(∆St)
,

Vt−1 = Et−1

(
1− λ̃t∆St
1−∆K̃t

Vt

)
,

where

λ̃t =
E(∆St)

E(∆S2
t )

,∆K̃t =
(Et−1(∆St))

2

Et−1(∆S2
t )

,

and (possibly signed) measure Q defined as

dQ

dP
=

T∏
t=1

1− λ̃t∆St
1−∆K̃t

is a martingale measure (shown in [eK09]). Let us denote the value of the self-

financing hedging portfolio at the time t as Gv,ϑ
t := υ + ϑ • St, Gv,ϑ

0 = υ. The

self-financing condition is then

G
v,ϕ(υ)
t+1 = G

v,ϕ(υ)
t + ϑt+1∆St+1.

In the global risk minimization approach, we are trying to minimize the time 0

expected squared hedging error at maturity:

min
ϑ
E0((Gv,ϑ

T − VT )2).

Let us denote the globally optimal strategy as ϕ(υ) = {ϕt(υ)}t∈τ , where

ϕ(υ) = arg min
ϑ
E0((Gv,ϑ

T − VT )2 + ψT ) .

Using law of iterated expectations, the definition of a self-financing strategy and

the optimality of ϕ, we obtain

min
υ,ϑ1..ϑT

E0((Gv,ϑ
T − VT )2) = min

υ,ϑ1..ϑT−1

E0(min
ϑT

ET−1((Gv,ϑ
T − VT )2))

= min
υ,ϑ1..ϑT−2

E0(min
ϑT−1

ET−2(min
ϑT

ET−1((Gv,ϑ
T − VT )2)))...

It turns out, that under the assumption of IID stock returns the global optimization

can be separated to the set of one-period problems

ϕt(υ) = arg min
ϑ
Et((G

v,ϕ(υ)
t−1 + ϑt∆St − Vt)2),

9
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so

ϕt(υ) =
Et−1((G

v,ϕ(υ)
t−1 − Vt)∆St)

Et−1(∆S2
t )

= ξt + λ̃t(Vt−1 −Gv,ϕ(υ)
t−1 ).

Non-IID case is solved by introducing a new probability measure P ∗, for more

details see [eK09].

2.4 Unconditional squared hedging error of lo-

cally and globally optimal strategy

Let us denote the squared hedging error process obtained by implementation of

globally optimal strategy as ε2
GS = {ε2

tGS}t∈τ and local hedging squared error pro-

cess as ε2
LS = {ε2

tLS}t∈τ , where

ε2
TGS = (G

v,,ϕ(υ)
T − VT )2, ε2

tGS = min
ϑt

Et(ε
2
t+1GS),

ε2
TLS = (Gv,ξ

T − VT )2, ε2
tLS = min

Gt,ϑt
Et(ε

2
t+1LS).

To obtain the unconditional hedging error of locally optimal strategy (ε2
0LS)

starting with capital υ, denote the value of portfolio in time t obtained by trading

according to locally optimal strategy as Gv,ξ
t := υ + ξ • St. Then using the self-

financing property Gv,ξ
t+1 = Gv,ξ

t + ξt+1∆St+1 and law of iterated expectations, we

have

ε2
T−1LS = ET−1((Gv,ξ

T − VT )2) = ET−1((Gv,ξ
T−1 − VT−1 + VT−1 + ξT∆ST − VT )2).

The locally optimal hedging error from the least square regression eT = VT−1 +

ξT∆ST − VT is orthogonal to the explanatory variables 1 and ∆ST . That is why

ET−1(eT ) = 0 and

ε2
T−1LS = (Gv,ξ

T−1 − VT−1)2 + ψT ,

where

ψt+1 = Et(e
2
t+1) = Vart(Vt+1)− (Covt(∆St+1, Vt+1))2

Vart(∆St+1)
.

After recursive application and using the law of iterated expectations, we obtain

10
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total hedging error in time t of strategy ξ which is denoted by ε2
tLS:

ε2
tLS = min

ϑt
Et(ε

2
t+1LS) = Et((G

v,ξ
t+1 − Vt+1)2 +

T∑
i=t+2

Et+1(ψi))

= (Gv,ξ
t − Vt)2 + ψt+1 + Et(

T∑
i=t+2

Et+1(ψi))

= (Gv,ξ
t − Vt)2 +

T∑
i=t+1

Et(Liψi),

ε2
0LS = E0((Gv,ξ

T − VT )2) = (υ − V0)2 +
T∑
t=1

E0(ψt).

The form for ε2
tGS can be derived by analogy:

ε2
T−1GS = Et((G

v,ϕ(υ)
T − VT )2) = Et((G

v,ϕ(υ)
T−1 + ϕT (υ)∆ST − VT )2)

= (1−∆K̃T )(G
v,ϕ(υ)
T−1 − VT−1)2 + ψT .

Denote

Lt = Et(Lt+1(1−∆K̃t+1)), LT = 1.

After recursive application we get total hedging error of strategy ϕ(υ) in time t

which is expressed by ε2
t :

ε2
tGS = min

ϑt
Et(ε

2
t+1GS) = Et(Lt+1(G

v,ϕ(υ)
t+1 − Vt+1)2 +

T∑
i=t+2

Et+1(Liψi))

= Lt(G
v,ϕ(υ)
t − Vt)2 + Et(Lt+1ψt+1) + Et(

T∑
i=t+2

Et+1(Liψi))

= Lt(G
v,ϕ(υ)
t − Vt)2 +

T∑
i=t+1

Et(Liψi).

Then total (time 0, unconditional) global hedging error is ε2
0GS :

ε2
0GS = E0((G

v,ϕ(υ)
T − VT )2) = L0(υ − V0)2 +

T∑
t=1

E0(Ltψt).

11
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2.5 Admissibility of globally optimal strategy and

well-definedness of processes

The following theorem treats the general case where S is a multidimensional pro-

cess. According to [eK09]

Theorem 3. Under the assumptions of section 1.1 the process L given by

LT = 1,

Lt−1 = Et−1(Lt(1− Et−1(Lt∆St)
>Et−1((Lt∆St∆S

>
t )−1∆St))),

is (0,1]-valued and the opportunity-neutral measure P*,

dP ∗

dP
:=

T∏
t=1

Lt
Et−1(Lt)

,

is well defined. The processes λ̃
∗
, V ∗ and ξ∗ given by

λ̃
∗
t = Et−1(Lt∆St)

>Et−1(Lt∆St∆S
>
t )−1

= EP ∗

t−1(∆St)
>EP ∗

t−1(∆St∆S
>
t )−1,

V ∗t−1 = EP ∗

t−1

(
1− λ̃∗t∆St
1−∆K̃∗t

V ∗t

)
, V ∗T = H,

∆K̃∗t = EP ∗

t−1(∆St)
>EP ∗

t−1(∆St∆S
>
t )−1EP ∗

t−1(∆St),

ξ∗ = EP ∗

t−1((V ∗t − V ∗t−1)∆St)
>EP ∗

t−1(∆St∆S
>
t )−1.

are well-defined. For a fixed admissible initial endowment υ ∈ U the strategy ϕ(υ)

given by

ϕt(υ) = ξ∗t + λ̃
∗
t (V

∗
t−1 −G

υ,ϕ(υ)
t−1 ),

is admissible and minimizes the expected squared hedging error among all adimissi-

ble strategies with initial endowment υ, while (V ∗0 , ϕ(V ∗0 )) is the optimal endowment

- strategy pair if the hedging error is minimized over the initial endowment as well.

For proof see [eK09].

12



Chapter 3

Global and Local Hedging in

Discrete-time Extended Model

The purpose of this chapter is to extend a discrete-time version of the mean-variance

theory described in work of Černý and Kallsen [eK09] to the case where there is a

non-zero probability that a trade may not be executed at any given time. Let us

call the original model ”standard model” and modified model ”extended model”.

We will introduce a new process {λt}t∈τ which represents a proportion of trade

which is executed at time t. Due to this process a new endogenous state variable

will appear.

As it turned out in the standard model, performance of locally optimal strategy

(in sense of chapter 2) measured by unconditional expected squared hedging error

is just slightly worse than performance of globally optimal strategy. Moreover, the

locally optimal strategy has the advantage of path independence, therefore we deal

with local risk minimization approach too.

The formula for globally optimal strategy in extended model is derived here,

locally optimal strategy is defined and it is proven that these strategies are well

defined. Our intuition says that admissibility of globally optimal strategy is a

natural consequence of proven admissibility in standard model, however rigorous

proof has to be done. Locally optimal strategy is not admissible in general.

We will recursively derive an unconditional expected squared hedging error of

globally and locally optimal hedging strategies. Comparison of these two errors is

performed by numerical implementation in chapter 4.

13
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Finally the link between extended and standard model considering λt as con-

stant is shown. Proofs and most derivations are deferred to appendix (chapter

6).

3.1 Introduction to the extended model

In the extension of the original model we will consider only one risky asset to

hedge the contingent claim. Notation remains the same as in the previous chapter.

Properties of a stock price process {St}t∈τ remain the same, but the definition of

admissible endowment-strategy pair is slightly changed.

In a discrete-time mean-variance extended theory we wish to minimize the un-

conditional (time 0) expected squared hedging error of contingent claim at maturity

min
{ϑt}t∈τ\{0}

E((GT −H)2).

To derive the expression for the terminal value of hedging portfolio GT , note that

in the standard model the following self-financing condition holds:

Gv,ϑ
t+1 = Gv,ϑ

t + ϑt+1∆St+1 ∀t ∈ τ ,

but in the extended model the above condition is not valid any more, since we

consider that there is a non-zero probability that a trade (or part of it) may not

be executed at any given time. Firstly one should realise, that at time t > 0 there

is already some amount of stocks in the hedging portfolio. Let us denote it by ϑ̃t

(ϑ̃0 = 0). To get into the situation in which the hedging portfolio contains ϑt+1

units of stock, one needs to buy (or sell) just ϑt+1 −ϑ̃t stocks.

Consider process λ = {λt}t∈τ adapted to F, which can take values over the

interval [0, 1]. It is obvious that this process is locally square integrable, i.e.

Et(λ
2
t+1) <∞ for t < T .

Random variable λt will represent a proportion of trade which is executed straight

after placing a market order at the time t− 1. Let us name this process liquidity

process.

When one places a market order to trade ϑt+1 − ϑ̃t units of a stock at the time

t, just (ϑt+1− ϑ̃t)λt+1 units are actually traded. This implies that at the time t+ 1

the hedging portfolio will contain ϑ̃t+1 = ϑ̃t + (ϑt+1 − ϑ̃t)λt+1 stocks.

14
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To summarize, in comparison with the standard model we introduced liquidity

process {λt}t∈τ and as a consequence new endogenous state variable ϑ̃t appears. It

denotes the number of stocks in hedging portfolio at the time t ∈ τ , where ϑ̃0 = 0.

Self-financing conditions for Gv,ϑ
t and ϑ̃

ϑ

t have the form:

ϑ̃
ϑ

t+1 = ϑ̃
ϑ

t (1− λt+1) + ϑt+1λt+1 for all t ∈ τ , (3.1)

Gv,ϑ
t+1 = Gv,ϑ

t + ϑ̃
ϑ

t+1∆St+1

= Gv,ϑ
t + ϑ̃

ϑ

t (1− λt+1)∆St+1 + ϑt+1λt+1∆St+1 ∀t ∈ τ (3.2)

A general formula for GT can be derived from 3.1 and 3.2:

Gv,ϑ
T = υ +

T∑
t=1

ϑ̃
ϑ

t ∆St

= υ +
T∑
t=1

ϑ̃
ϑ

t−1(1− λt)∆St +
T∑
t=1

ϑtλt∆St

= υ +
T−1∑
t=1

ϑ̃
ϑ

t (1− λt+1)∆St+1 +
T∑
t=1

ϑtλt∆St

= υ +
T−1∑
i=1

i∑
j=1

ϑjλj∆Sj+T−i

j+T−i∏
k=j+1

(1− λk) +
T∑
t=1

ϑtλt∆St.

Because of the new form of Gv,ϑ
T , we introduce a new definition of admissibility:

Definition 4. We say that (υ, ϑ) is an admissible endowment-strategy pair if and

only if υ is F0-measurable, ϑ = {ϑt}t∈τ\{0} is predictable, meaning that ϑt is Ft−1-

measurable, and

υ +
T−1∑
i=1

i∑
j=1

ϑjλj∆Sj+T−i

j+T−i∏
k=j+1

(1− λk) +
T∑
t=1

ϑtλt∆St ∈ L2(P ).

The set of admissible trading strategies with initial endowment υ is denoted Θ(υ).

We write Θ as a shorthand for Θ(0).

From now we take F0 trivial. Let us introduce the following substitutions for

the rest of this work:

15
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S̃t = λt∆St,

L̃t = (1− λt)∆St,
Ãt = Cov2(L̃t, S̃t)− Var(S̃t)Var(L̃t),

B̃t = E(L̃t)Cov(L̃t, S̃t)− E(S̃t)Var(L̃t),

C̃t = E(S̃t)Cov(L̃t, S̃t)− E(L̃t)Var(S̃t).

3.2 Global hedging

Let us now find the solution for the global risk minimization

min
{ϑt}t∈τ\{0}

E((Gv,ϑ
T − VT )2), VT = H,

with fixed initial wealth υ. Denote a globally optimal strategy ϕ(υ),

ϕ(υ) = arg min
{ϑt}t∈τ\{0}

E((G
υ,ϕ(υ)
T − VT )2).

To find the optimal strategy, we rewrite the general optimization problem into the

set of the one-period optimization problems using the law of iterated expectations:

min
ϑ1..ϑT

E0((G
υ,ϕ(υ)
T − VT )2) = min

ϑ1..ϑT−1

E0(min
ϑT

ET−1((G
υ,ϕ(υ)
T − VT )2))...

The optimal hedging strategy is thus obtained from a series of one-period problems,

where we denote conditional expected squared hedging error ε2
tGE by Jt:

Jt = min
ϑt

Et(Jt+1),

JT = (G
υ,ϕ(υ)
T − VT )2, VT := H.

How Jt+1 is affected by the choice of ϑt+1 is given by the self-financing condi-

tions

ϑ̃
ϕ(υ)

t+1 = ϑ̃
ϕ(υ)

t (1− λt+1) + ϑt+1λt+1,

G
υ,ϕ(υ)
t+1 = G

υ,ϕ(υ)
t + ϑ̃

ϕ(υ)

t (1− λt+1)∆St+1 + ϑt+1λt+1∆St+1.

It would be nice to find a general recursive form for Jt. In order to do this,

let us evaluate the expectation ET−1((Gv,ϑ
T − VT )2). First of all, we introduce the

following substitutions:

16
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ϑ = ϑT ,

G = G
υ,ϕ(υ)
T−1 ,

ϑ̃ = ϑ̃
ϕ(υ)

T−1.

ET−1(JT ) = ET−1((G+ ϑ̃L̃t + ϑS̃t − VT )2)

= ET−1(((G+ ϑ̃L̃t − VT )2 + 2ϑS̃t(G+ ϑ̃L̃t − VT ) + ϑ2S̃2
t ))

= ET−1((G+ ϑ̃L̃t − VT )2) + 2ϑET−1(S̃t(G+ ϑ̃L̃t − VT )) + ϑ2ET−1(S̃2
t ).

FOC for ϕT (υ) is:

2ET−1(S̃t(G+ ϑ̃L̃t − VT )) + 2ϕT (υ)ET−1(S̃2
t ) = 0,

so that

ϕT (υ) = −ET−1(S̃t(G+ ϑ̃L̃t − VT ))

ET−1(S̃2
t )

.

Substituting optimal ϕT (υ) into 3.2 yields

JT−1 = min
ϑT

ET−1(JT ) = ET−1((G+ ϑ̃L̃t − VT )2)− (ET−1(S̃t(G+ ϑ̃L̃t − VT )))2

ET−1(S̃2
t )

.

Now we should somehow rearrange the form of JT−1 so that the form of JT−2

will look similar to JT−1. It is not difficult to say that the form above will turn into

the expression which will contain elements as G
υ,ϕ(υ)
T−1 ,

(
G
υ,ϕ(υ)
T−1

)2

, ϑ̃
ϕ(υ)

T−1 ,
(
ϑ̃
ϕ(υ)

T−1

)2

,

ϑ̃
ϕ(υ)

T−1G
υ,ϕ(υ)
T−1 multiplied by some exogenous variables. The fact that self-financing

conditions for
(
G
υ,ϕ(υ)
t+1

)2

and ϑ̃
ϕ(υ)

t+1 are linear functions in all (endogenous) input

variables, leads to the conclusion that form of JT−2 will contain just the elements

G
υ,ϕ(υ)
T−2 ,

(
G
υ,ϕ(υ)
T−2

)2

, ϑ̃
ϕ(υ)

T−2 ,
(
ϑ̃
ϕ(υ)

T−2

)2

, ϑ̃
ϕ(υ)

T−2G
υ,ϕ(υ)
T−2 which enable us to believe that

such a general form exists. We can rewrite JT−1 into the form

JT−1 = min
ϑT

ET−1(JT ) =
[
G
υ,ϕ(υ)
T−1 ϑ̃

ϕ(υ)

T−1 1
]

αT−1 βT−1 γT−1

βT−1 δT−1 εT−1

γT−1 εT−1 ζT−1



G
υ,ϕ(υ)
T−1

ϑ̃
ϕ(υ)

T−1

1


= x>T−1QT−1xT−1.
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We can also rewrite JT = (GT − VT )2 as JT = x>TQTxT , where

QT =


1 0 −VT
0 0 0

−VT 0 V 2
T

 .
Note that QT is a symmetric positive-semidefinite matrix.

In abstract terms we are dealing with a specific Linear-quadratic control prob-

lem with one control and two endogenous state variables.

min
{ϑt}

J0 = E0(x>TQTxT ) s.t. xt+1 = At+1xt + bt+1ϑt+1,

where

At+1 =


1 (1− λt+1)∆St+1 0

0 (1− λt+1) 0

0 0 1

 , bt+1 =


λt+1∆St+1

λt+1

0

 ,

xυ,ϑt : =


Gυ,ϑ
t

ϑ̃
ϑ

t

1

 , ϑt+1 ∈ R.

At the time t matrices Qt+1, At+1, bt+1 contains random variables, whose reali-

sations are unknown.

In the linear-quadratic control literature it is customary to express the value

function in the form Ṽt = x>t Qtxt Qt ≥ 0 for all t. We would prefer Jt to have

the same form. It turns out, that it really has. We will state and prove it in the

following theorem.

Theorem 5. Under the assumptions of chapter 2 the sequence of matrices Qt given

by

QT =


1 0 −VT
0 0 0

−VT 0 V 2
T

 ,

Qt = Et(A
>
t+1Qt+1At+1)−

(Et(b
>
t+1Qt+1At))

>Et(b
>
t+1Qt+1At+1)

Et(b>t+1Qt+1bt+1)
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for Et(b
>
t+1Qt+1bt+1) > 0

and

Qt = Et(A
>
t+1Qt+1At+1)

for Et(b
>
t+1Qt+1bt+1) = 0 are well defined, symmetric and positive-semidefinite for

∀t ∈ τ . For a fixed admissible initial endowment υ the strategy ϕ(υ) given by

ϕt(υ) = −
Et(b

>
t+1Qt+1At+1)

Et(b>t+1Qt+1bt+1)
x
υ,ϕ(υ)
t if Et(b

>
t+1Qt+1bt+1) > 0,

and

ϕt(υ) = 0 if Et(b
>
t+1Qt+1bt+1) = 0,

is well defined and minimizes the unconditional squared hedging error among all

strategies with initial endowment υ. The unconditional squared hedging error of

this strategy has the form

J0 = x0Q0x0.

where x0 = (υ 0 1)>

For proof see appendix (6.1).

3.3 Local hedging

3.3.1 One-period risk minimization problem

In contrast with globally optimal strategy, the locally optimal strategy ξ could be

defined in various ways in the extended model. We will define it as follows and

we find out that the process Vt turns out to be a martingale process under risk-

neutral measure Q (as it is in standard model) which enable us to believe that our

definition is reasonable. problem.

{V0, ϑ̃
∗
0, ξ1} = arg min

υ,ϑ̃0,ϑ1

E((υ + ϑ̃
ϑ

0(1− λ1)∆S1 + ϑ1λ1∆S1 − V1)2)

= arg min
υ,ϑ̃0,ϑ1

E((υ + ϑ̃
ϑ

0 L̃1 + ϑ1S̃1 − V1)2).
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Standard least squares regression leads to

ξ1 =
Cov(V, L̃1)Cov(L̃1, S̃1)− Cov(Vt, S̃1)Var(L̃1)

Ã1

,

ϑ̃
∗
0 =

Cov(Vt, S̃1)Cov(L̃1, S̃1)− Cov(Vt, L̃1)Var(S̃1)

Ã1

,

V0 = E(V )− ϑ̃∗tE(L̃1)− ξt+1E(S̃1).

However, we provide an alternative and more useful expressions for ξ1, ϑ̃
∗
0 and

V0 using a Frisch-Waugh-Lovell theorem [DM92], for more details see appendix

(6.2.1).

V0 = E(qV1)

= E

((
1− (S̃1 − E(S̃1))B̃1 + ((L̃1 − E(L̃1))C̃1

Ã1

)
V1

)
,

ϑ̃
∗
0 = E

(
E(S̃1)L̃1 − E(L̃1S̃1)S̃1

E(L̃1)E(S̃1)− E2(S̃1L̃1)
(V1 − V0)

)
,

ξ1 =
E(S̃1(V1 − V0 − ϑ̃

∗
0L̃1))

E(S̃2
1)

.

Well definidness of all variables is shown in appendix (6.2.2).

Measure Q (possibly signed) defined by

dQ

dP
:= q,

is a martingale measure. To see this mathematically we observe

E

(
dQ

dP

)
= E (q) = 1,

EQ(∆S1) = E
(
q∆S̃1

)
= 0 .

The first result says that Q has total mass 1, the second one states that the

stock is priced correctly by Q.

Remark 6. If we set λ1 = 1, measure transformation q will turn into the standard

model change of measure

q(λ1=1) =
1− λ̃1∆St

1−∆K̃1E(∆S1)
.

20



Mean-Variance Hedging with Uncertain Trade Execution

It is not conincidence, that measure Q is a martingale measure. We prove this

in the following lemma.

Lemma 7. Let us have a minimization problem

min
βi

Et((β1 +
∑

βixi − y)2),

where y is a random variable and ~x = (x1...xk) = (1 x2...xk) is a vector of random

variables such that ~1 does not belong to the vector space spanned by the columns of

xi, i ∈ {2....k}. Let us denote a vector of optimal values β̂ = (β̂1....β̂k)
′. Then the

optimal value β̂1 has the form β̂1 = Et(F1y), where F1 is a random variable and it

satisfies Et(F1) = 1, E(F1xi) = 0 for all i ∈ {2....k}.

For proof see appendix (6.2.1).

3.3.2 Local risk minimization by sequential regression

Similarly as in the standard model, the local hedging approach leads to set of

one-period optimization problems

{Vt−1, ϑ̃
∗
t−1, ξt} = arg min

υt−1,ϑ̃t−1,ϑt

Et−1((υt−1 + ϑ̃t−1(1− λt)∆St + ϑtλt∆St − Vt)2)

= arg min
υt−1,ϑ̃t−1,ϑt

Et((υt−1 + ϑ̃t−1L̃t + ϑtS̃t − Vt)2), VT := H.

By standard least squared regression we obtain locally optimal strategy ξt,

variables Vt−1 and ϑ̃
∗
t−1:

Vt−1 = Et−1

((
1− (S̃t − Et−1(S̃t))B̃t + ((L̃t − Et−1(L̃t))C̃t

Ãt

)
Vt

)
=: EQ

t−1(Vt),

ξt =
Cov(V, L̃t)Cov(L̃t, S̃t)− Cov(Vt, S̃t)Var(L̃t)

Ãt
,

ϑ̃
∗
t−1 =

Cov(Vt, S̃t)Cov(L̃t, S̃t)− Cov(Vt], L̃t)Var(S̃t)

Ãt
.

or, expressing alternatively

ϑ̃
∗
t−1 = Et−1

(
Et−1(S̃t)L̃t − Et−1(L̃tS̃t)S̃t

Et−1(L̃t)E(S̃t)− (Et−1(S̃tL̃t))2
(Vt − Vt−1)

)
,

ξt =
Et−1(S̃t(Vt − Vt−1 − ϑ̃

∗
t−1L̃t))

Et−1(S̃2
t )

.
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dQ

dP
:=

T∏
t=1

(
1− (S̃t − Et−1(S̃t))B̃t + ((L̃t − Et−1(L̃t))C̃t

Ãt

)
.

In appendix (6.2.2) we cope with the problem arised when Ãt = 0 or Var(L̃t) = 0

and provide detailed derivation of these formulas.

3.3.3 Unconditional hedging error of the local hedging strat-

egy

Now we want to calculate uncoditional hedging error of the local hedging strategy.

To derive it, we use the self-financing conditions for the value of hedging portfolio

at time t obtained by trading according to locally optimal strategy:

Gυ,ξ
t = Gυ,ξ

t−1 + ϑ̃
υ,ξ

t−1L̃t + ξtλtS̃t,

and number of stocks held in such a portfolio at the time t:

ϑ̃
υ,ξ

t = ϑ̃t−1(1− λt) + ξtλt.

Rewriting them into the matrix form we obtain:

xυ,ξt+1 = At+1x
υ,ξ
t + bt+1ξt+1.

Theorem 8. Unconditional squared error of local hedging has the form

ε2
0LE = E((GT − VT )2) = x>0 P0x0 + 2c>0 x0 +

T∑
t=1

E(φt),

where

PT = QT , cT = ~0, x0 = (υ 0 1)>

Pt = Et(A
>
t+1Pt+1At+1),

ct = ξt+1Et(b
>
t+1Pt+1At+1) + Et(c

>
t+1At+1),

φt = ξ2
t+1Et(b

>
t+1Pt+1bt+1) + 2ξtEt(c

>
t+1bt+1).

For proof see appendix (6.2.3 chapter 6).
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3.4 Extended model in terms of standard model

Let us show, how can the extended global model be rewritten into the standard

global model, if we set λ = 1. For simplicity assume stock returns IID.

QT =


1 0 −VT
0 0 0

−VT 0 V 2
T

 ,
αT = 1, γT = −VT , ζT = V 2

T .

If λ = 1, matrices Qt, t < T have the following structure:

Qt =


αt 0 γt

0 0 0

γt 0 ζt

 ,

αt = Et(αt+1)− (Et(αt+1∆St+1))2

Et(αt+1∆S̃2
tt+1)

,

γt = Et(γt+1)−
Et(αt+1∆St+1)Et(γt+1∆St+1)

Et(αt+1∆S̃2
tt+1)

,

ζt = Et(ζt+1)−
(
Et(γt+1∆St+1)

)2

Et(αt+1∆S̃2
tt+1)

.

Then the elements of matrix Qt are assigned to the variables from standard model

as follows:

αt = Lt,

γt = −LtV ∗t = −αtV ∗t ,

ζt =
T∑

i=t+1

Et(Liψ
∗
i ) + LtV

∗2
t =

T∑
i=t+1

Et(Liψi) +
γ2
t

αt
.

For justification see appendix (6.3).

Remark 9. If we set λ predictable (meaning that λt is Ft−1 measurable), ϕ∗t+1(υ)

will be given as a function of ϕt+1(υ)λ=1 so that together with λt and ϑ̃t+1 it will

form the standard ϕt+1(υ)λ=1:
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ϑ̃
ϕ(υ)λ=1

t+1 = ϑ̃
ϕ(υ)λ=1

t (1− λt+1) + ϕ∗t+1(υ)λt+1,

ϕt+1(υ)λ=1 = ϑ̃t(1− λt+1) + ϕ∗t+1(υ) λt+1,

ϕ∗t+1(υ) =
ϕt+1(υ)λ=1

λt+1

+ ϑ̃t

(
1− 1

λt+1

)
.

That is why the form of Qt and error ε2tGE will remain the same, as if λt = 1.
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Chapter 4

Numerical Implementation of

Unconditional Expected Squared

Hedging Error

In the previous chapter we derived a general formula for the unconditional squared

hedging error in globally and locally optimal strategy for extended model. The

purpose of this chapter is to investigate empirically the performance of the hedging

strategies when the rehedge interval approaches zero and point out the qualitative

differences between the standard and the extended model unconditional squared

hedging errors. To enable numerical evaluation for different rehedging intervals

and trading environment, we will introduce a reasonable model of λ and adopt

a multinomial model of the stock price from [Čer03]. Part of MATLAB code

integrated in [Čer03] which provides a simulation of the multinomial model will

also be used.

The recursive scheme for computing squared error process ε2
t derived in chapter

2 is suitable for the simple computer implementation.

To summarize, the unconditional squared hedging error of the globally optimal

strategy in extended model has the form

ε2
0EG = E((G

υ,ϕ(υ)
T −H)2) = x

υ,ϕ(υ)>

0 Q0x
υ,ϕ(υ)
0 ,
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for the locally optimal strategy its form turns into

ε2
0EL = E((Gυ,ξ

T −H)2) = xυ,ξ
>

0 P0x
υ,ξ
0 + 2c>0 x

υ,ξ
0 +

T∑
t=1

E(φt).

If the liquidity process is a constant (λ = 1), the above formulas come into the

standard model form:

ε2
0SG = E((G

υ,ϕ(υ)
T −H)2) = L0(υ − V ∗0 )2 +

T∑
t=1

E(Ltψ
∗
t ),

for globally optimal strategy and

ε2
0SL = E((Gυ,ξ

T −H)2) = L0(υ − V0)2 +
T∑
t=1

E(ψt),

for locally optimal strategy. For further details see previous chapter and [eK09].

4.1 Model Specification

Numerical implementation has to be performed on the particular model of stock

price and liquidity process. The model should be realistic but simple enough due to

computational burden in order to investigate the limit performance of the hedging

strategies.

For simplicity we assume that stock price log returns process and liquidity are

independent, both IID. To keep the model realistic to some extent we selected the

following criteria to be satisfied:

1. Stock price process follows a geometric Brownian motion as ∆t→ 0.

2. In every trading time t, liquidity process λ takes values over the interval [0, 1].

3. The liquidity of the stock is not changed by the frequency of hedging.

For the stock price we adopt a multinomial model from [Čer03]. Modelled stock

price process follows a geometric Brownian motion as ∆t→ 0 :

ln
St

St−∆t

∼ N(µ∆t, σ2∆t).
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If we define a log return as a random variable R ∼ N(µ∆t, σ2∆t), for the stock

price at time t ∈ τ we obtain

St = St−∆te
R.

We will model a random variable R using discrete distribution which can take

n possible values with certain probabilities. Denote these values R1 . . . Rn and

probabilities assigned to them p1 . . . pn. In our model we allow seven values of

weekly log returns in one node (n = 7). The values will be spaced out regularly

so that the tree recombines and moreover, the tree contains a zero log return:

Ri −Ri−1 = h, 0 ∈ R1, . . . Rn.

0.06
0.04
0.02
0.00
-0.02
-0.04
-0.06

Figure 4.1 -Model of weekly log return

t=3

6105.81
t=2 5984.91

5866.40
5750.23 5750.23

t=1 5636.37 5636.37
5524.76 5524.76

5415.37 5415.37 5415.37
t=0 5308.13 5308.13 5308.13

5203.03 5203.03 5203.03
5100.00 5100.00 5100.00 5100.00

4999.01 4999.01 4999.01
4900.03 4900.03 4900.03
4803.00 4803.00 4803.00

4707.89 4707.89
4614.67 4614.67
4523.29 4523.29

4433.73
4345.93
4259.88

Figure 4.2 -Lattice of stock prices

The empirical distribution of stock returns is obtained from weekly returns of

FTSE 100 Index in the period 1984-2001.
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Figure 4.3 - Historgram of weekly returns1

For simplicity, it is assumed that the weekly returns are distributed indepen-

dently and the risk-free rate has been constant between 1984 and 2001. To produce

an appropriate histogram the log returns are divided into seven categories as can

be seen in the figure above. Length of one category is h = 2%. Mathematically

speaking

St ∈ {elnS0+kh; k ∈ Z,−3t ≤ k ≤ 3t}

As we change the length of rehedge interval ∆t, weekly log returns are calibrated

to give Brownian motion in the limit (as the rehedge interval approaches zero). It

is done as following:

dt =
∆t

week
,

Ri(dt) = µdt+ (Ri − µ)
√
dt,

where µ =
∑7

i=1 Ripi.

To model the liquidity process with required qualities, the following method is

used: we firstly construct an auxiliary homogenous Poisson process which is used as

a decision rule. At each trading (hedging) date the rule decides whether the stock

is traded to some extent or it is illiquid. If the stock is traded, λ is modeled by the

continuous uniform distribution over the interval [0, 1]. The following definitions

are taken from [Ros80].

1Figures 4.1, 4.2 and 4.3 taken from [Čer03]
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Definition 10. A counting process is a stochastic proces {N(t), t ≥ 0} that posesses

the following properties:

1. N(t) ≥ 0.

2. N(t) ∈ Z.

3. if s < t then N(s) ≤ N(t).

If s < t then N(t) − N(s) is the number of events occured during the interval

(s, t].

Definition 11. The counting process {N(t), t ≥ 0} is said to be Poisson process

having rate κ,κ ≥ 0, if that possesses the following properties:

1. N(0) = 0.

2. the process has independent increments.

3. the number of events in any interval of length t is Poisson distributed with

mean κt. That is, for all s, t ≥ 0

P (N(t+ s)−N(s) = k) =
e−κt(κt)k

k!
k = 0, 1, 2...

The Poisson process defined above is also known as homogenous Poisson process

as the parameter κ is time independent variable. It follows from the condition 3,

that a Poisson process has stationary increments and also that

E(N(t)) = κt.

The rate parameter κ is therefore an expected number of events that occur per unit

time. For the homogenous Poisson process, the inter-arrival times are exponentially

distributed with parameter κ.

Denote the length of rehedge interval as ∆t such that T is divisible by ∆t. Then

we define a new set of trading dates τ := {0,∆t, 2∆t..., T} and the liquidity process

λ as

λt = 〈
Xt for N(t)−N(t−∆t) ≥ 1

0 for N(t)−N(t−∆t) = 0
for all t ∈ τ\{0},
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where Xt ∼ U(0, 1) for all t ∈ τ\{0} and N(t) is the homogenous Poisson process

with a rate parameter κ.

Because we assume the liquidity process independent on the stock price pro-

cess, for the computational purposes only formulas for Et−∆t(λt) and Et−∆t(λ
2
t ) are

needed. To obtain them let us express

P (N(t)−N(t−∆t) = 0) = e−κ∆t for all t ∈ τ\{0},

P (N(t)−N(t−∆t) ≥ 1) = 1− e−κ∆t for all t ∈ τ\{0}.

Therefore

Et−∆t(λt) = Et−∆t(Xt)(1− e−κ∆t) + 0.e−κ∆t = 0.5(1− e−κ∆t),

Et−∆t(λ
2
t ) = Et−1(X2

t )(1− e−κ∆t) + 0.e−κ∆t =
(1− e−κt∆t)

3
.

Example 12. Let us set a time unit equal to 1 minute, time horizon T = 240,

κ = 1
60

, rehedge interval ∆t = 120. During every rehedge interval two events

should occur on average, which means that λt = Xt and non-zero volume of stock

will be traded every 120 minutes on average. When setting ∆t = 60, one event

should occur during the rehedge interval, therefore non-zero volume of stock will

be traded every 60 minutes in average. More importantly, when changing rehedge

interval to ∆t = 30, the event will occur approximately during every second rehedge

interval, therefore one out of two market orders will not be executed at a medium.

As a consequence, the non-zero volume of stock will be traded approximately every

60 minutes as before.

Having all the necessary variables defined let us present the results of numerical

implementation.

4.2 Numerical Implementation Results

The computation was performed on European call option under following condi-

tions:
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initial stock price S0 = 5100

strike price of the option K = 5355

time to maturity T = 6 weeks

1 week 5 trading days

1 trading date 8 trading hours

time unit 1 minute

Note that in the following tables and graphs a more natural variable ’inter-

arrival time’ I = 1
κ

was employed. We choose the length of rehedge interval ∆t so

that T is divisible by ∆t. basic results are shown in the following tables:

Unconditional Expected Squared Error of Global Hedging

Uncertained Trade Execution - ε20EG Standard

RI \IAT∗ 8hrs 2hrs 1hour 30min 15min 1min Model - ε20SG

8hrs 751.4153 412.345 400.9999 400.7919 400.7918 400.7918 243.5157

2hrs 667.3452 203.747 132.5488 109.1405 106.0155 105.9583 62.9527

1hour 660.5024 185.9942 104.584 67.71 55.634 53.9944 31.8871

30min 658.188 179.8346 95.3034 53.3037 34.3898 27.3759 16.0992

15min 657.5672 177.5631 92.0669 48.5308 27.0428 13.8415 8.1194

5min 657.5668 176.4105 90.4808 46.3856 23.9852 4.7266 2.7364

*RI - Rehedge Interval; IAT - Inter-Arrival Time=1/κ

Table 1 - Global hedging
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Unconditional Expected Squared Error of Local Hedging

Uncertained Trade Execution - ε20EL Standard

RI \IAT∗ 8hrs 2hrs 1hour 30min 15min 1min Model - ε20SL

8hrs 898.6733 502.7339 489.6076 489.3671 489.367 489.367 246.0946

2hrs 779.6777 241.1896 159.6307 132.8823 129.3139 129.2485 63.6246

1hour 767.8808 216.8516 123.6334 81.5332 67.7616 65.8923 32.2257

30min 763.2184 207.7403 110.9425 62.9887 41.4215 33.4279 16.2693

15min 761.482 204.0894 106.1775 56.4622 31.9557 16.9086 8.2046

5min 760.787 202.0603 103.6436 53.282 27.729 5.772 2.7649

*RI - Rehedge Interval; IAT - Inter-Arrival Time=1/κ

Table 2 - Local hedging

Table 1 and 2 indicate several interesting facts:

1. In the standard model the performance of local strategy is just a slightly worse

than performance of global strategy (this is no news, as the same result was

obtained in [Čer03]).

2. In the extended model the unconditional squared hedging error of local strat-

egy is significantly larger than in global strategy.

3. It seems that in the standard model the unconditional squared hedging error

goes to zero as the rehedge interval approaches zero.

4. In the extended model the unconditional squared hedging error goes to pos-

itive number as the rehedge interval approaches zero.

To justify these suggestions, we performed more detailed computations. Results

can be seen in the following graphs.
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Graph 4.1 - Standard model

Graph 4.1 demonstrates the empirical limit of the unconditional squared hedg-

ing error of standard model, as well as a very similar performance of local and

global strategy. Because of the computational burden the shortest evaluated re-

hedging interval was set to 5 minutes. The limit for rehedging interval approaching

zero was obtained by fitting the OLS line across the data.
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Graph 4.2 - IAT = 15min
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Graph 4.4 - IAT = 60min
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Graph 4.3 - IAT = 30min

0 20 40 60 80 100 120
170

180

190

200

210

220

230

240

250

Rehedge Interval (min)

ε2

Comparison Global and Local Hedging − Inter−Arrival time 120min

 

 
Local Hedging
Local Hedging−fit
Global Hedging
Global Hedging−fit
200.9036
175.7015

Graph 4.5 - IAT = 120min

Graphs 4.2-4.5 show the empirical limits of unconditional squared hedging error of

local and global strategy for different inter-arrival times. The limit for rehedging

interval approaching zero was obtained by fitting the OLS quadratic curve across

the data.

We can explain a positive empirical limit of unconditional square error by the

fact that a frequent hedging does not eliminate a low liquidity of the stock. There-

fore the trade is not executed in many hedging dates as the rehedge interval ap-

proaches zero.

Note that differences between the unconditional squared errors of global and

local strategy diminish as the inter-arrival time shortens and the ratio of the differ-

ence and the total squared error of global strategy remains approximately constant.

This evidence leads us to conclusion that a resulting difference is caused by the fact,

that relatively small local difference between the global and local strategy in ac-
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tual node is enlarged during ’no stock traded’ nodes. To compare, in the standard

model, the local difference is adjusted in every trading time.
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Global Hedging Errors Comparison

I = 120

I = 60

I = 30
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Graph 4.6 - Global hedging comparison

In the graph 4.6 we can see how the global unconditional squared hedging error

behaves for different inter-arrival times and standard model.

Remark 13. Interpretations of the numeric results presented in this chapter are

conditional on the model specification to some extent. We have to realize, that

liquidity process employed in our model is not realistic in some respects. Theory

assumes that the market order is either executed straight after placing or not ex-

ecuted at all. The chosen model respects this attribute. The problem arises when

we take closer look at the decision rule, since it is independent on when the event

during the rehedging interval occurs. It is asymmetric in the sense that for the

inter-arrival time longer than rehedging intervals, reducing the length of rehedging

interval leads almost surely to later execution of the hedging orders. This unwilling

attribute of our model could be eliminated by employing more sophisticated decision

rule.
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Chapter 5

Results and Conclusions

Mean-Variance hedging (MVH) theory was proposed by Černý and Kallsen (2007).

This thesis extends discrete-time models of MVH theory (Černý, Kallsen 2009)

with introducing stock liquidity process λt, taking into account the fact that there

is non-zero probability that trade may not be executed at any given time.

The main contribution of this work is derivation of the explicit form of optimal

hedging strategies for local and global hedging and proof that these strategies

are well defined. Our intuition says that admissibility of these strategies for local

hedging is a natural consequence of proven admissibility in standard model, however

rigorous proof has to be done. Derivation of recursive formulas for unconditional

mean squared hedging error for both local and global optimal hedging strategies

are also provided in this thesis.

In computational part we studied the local and global hedging strategies with

different inter-arrival times and rehedge-intervals. Numerical implementations led

to several findings. In standard model local and global hedging strategies provided

similar performance with zero mean squared hedging error as the rehedge-interval

approaches zero, which is in accordance with theory. Unconditional mean squared

errors of local hedging are significantly larger than those from global hedging in

extended model for different inter-arrival times and rehedge-intervals. Non-zero

empirical limit follows the intuition that even frequent hedging will not eliminate

a low liquidity of the stock.

The possible extensions of this work might be to expand this theory to mul-

tivariate case so that more stocks can be used for hedging. Another potential
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extention is to incorporate more realistic assumptions about stock liquidity pro-

cess, particularly the fact that liquidity evolved gradually over time and that it

might be correlated with stock returns.
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Chapter 6

Appendix

6.1 Global hedging

Proof of Theorem 5. Let us prove this theorem using mathematical induction:

1◦ : For t = T : JT = (GT − VT )2 = x>TQTxT ,

QT ≥ 0 (is positive semidefinite), QT is symmetric.

2◦ :

Jt = min
ϑt+1

Et(Jt+1) = min
ϑt+1

Et((At+1xt + btϑt+1)>Qt+1(At+1xt + btϑt+1))

= Et(xt
>A>t+1Qt+1At+1xt) + min

ϑt+1

(2ϑt+1Et(b
>
t Qt+1At+1xt) + ϑ2

t+1Et(b
>
t Qt+1bt)).

FOC for ϑ:

2Et(b
>
t Qt+1At+1xt) + 2ϕt+1(υ)Et(b

ᵀ
t+1Qt+1bt) = 0,

so that

ϕt+1(υ) = −
Et(b

ᵀ
t+1Qt+1Atxt)

Et(b
ᵀ
t+1Qt+1bt)

= −
Et(b

ᵀ
t+1Qt+1At)

Et(b
ᵀ
t+1Qt+1bt)

xt.

If Et(b
ᵀ
t+1Qt+1bt+1) > 0 then ϕt+1(υ) obtained from FOC is minimum and it is well

defined. From induction hypotesis we have Qt+1 ≥ 0, so Et(b
ᵀ
t+1Qt+1bt) is at least

non-negative and Qt+1 has an unique square root Q
1/2
t+1 such that (Q

1/2
t+1)2 = Qt+1.
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Then the following equation holds:

Et(b
ᵀ
t+1Qt+1bt) = 0

⇔ E((Q
1/2
t+1bt+1)ᵀ(Q

1/2
t+1bt+1)) = 0

⇔ (Q
1/2
t+1bt=1) = ~0

⇒ E(bᵀt+1Qt+1At+1xt) = E((Q
1/2
t+1bt+1)>Q

1/2
t+1At+1xt) = 0

⇒ ϕt+1(υ) is ambiguous.

If ϕt+1(υ) is ambiguous, we set it 0. For Et(b
ᵀ
t+1Qt+1bt) > 0 we can express Jt as

Jt = xt
>
(
Et(At+1Qt+1At+1)−

(Et(b
ᵀ
t+1Qt+1At+1))>Et(b

ᵀ
t+1Qt+1At+1)

Et(b
ᵀ
t+1Qt+1bt+1)

)
xt,

Qt = Et(At+1Qt+1At+1)−
(Et(b

ᵀ
t+1Qt+1At+1))>Et(b

ᵀ
t+1Qt+1At+1)

Et(b
ᵀ
t+1Qt+1bt+1)

.

For Et(b
ᵀ
t+1Qt+1bt+1) = 0:

Jt = xt
>Et(At+1Qt+1At+1)xt,

Qt = At+1Qt+1At+1

Note that Qt is symmetric in both cases. It remains to prove that if Qt+1 ≥ 0

then Qt ≥ 0. We will do it by proving that x>Qtx ≥ 0 for any x ∈ R3. If

Et(b
ᵀ
t+1Qt+1bt+1) = 0 then obviously Qt = Et(At+1Qt+1At+1) ≥ 0. To prove Qt ≥ 0

for Et(b
ᵀ
t+1Qt+1bt+1) > 0 , we introduce the auxiliary univariate least squares. Let

us have univariate least squares, dependent variable Y and explanatory variable

Z 6= ~0:

min
α∈Aᵀ

t+1

E
[
(αZ − Y )2

]
= min

α∈Aᵀ
t+1

α2E(Z2)− 2αE(ZY ) + E(Y 2).

FOC of this minimization problem:

2α̂E(Z2)− 2E(ZY ) = 0,

so that

α̂ =
E(ZY )

E(Z2)
.
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Minimal expected squared error can be expressed as

E
[
(α̂Z − Y )2

]
= α̂2E(Z2)− 2α̂E(ZY ) + E(Y 2)

= E(Y 2)− (E(ZY ))2

E(Z2)
≥ 0.

We can notice, that x>Qtx has a similar form

x>Qtx = Et(x
>Aᵀ

t+1Qt+1At+1x)−
(Et(b

ᵀ
t+1Qt+1At+1x))2

Et(b
ᵀ
t+1Qt+1bt+1)

.

Let us denote x>Aᵀ
t+1Qt+1At+1x as Y 2 and bᵀt+1Qt+1bt+1 as Z2. Because Qt+1 is a

positive-semidefinite symetric matrix, it has a unique square root and we can write

Y 2 = x>Aᵀ
t+1Qt+1At+1x = (Q

1/2
t+1At+1x)ᵀ(Q

1/2
t+1At+1x) = yᵀy,

Z2 = bᵀt+1Qt+1bt+1 = (Q
1/2
t+1b)

ᵀ(Q
1/2
t+1b) = zᵀz,

bᵀt+1Qt+1At+1x = (Q
1/2
t+1b)

ᵀ(Q
1/2
t+1At+1x) = zᵀy ≤ ‖z‖‖y‖,

= ZY =
√

(x>At+1Qt+1At+1x)(bᵀt+1Qt+1bt),

xᵀQtx = Et(x
ᵀAᵀ

t+1Qt+1At+1x)−
(Et(b

ᵀ
t+1Qt+1At+1x))2

Et(b
ᵀ
t+1Qt+1bt)

≥ Et(x
ᵀAᵀ

t+1Qt+1At+1x)−
(
Et
[√

(x>At+1Qt+1At+1x)(bᵀt+1Qt+1bt)
])2

Et(b
ᵀ
t+1Qt+1bt)

= E(Y 2)− (E(ZY ))2

E(Z2)
≥ 0.

�

For the purposes of computer implementation it is useful to express the elements

of matrixQt and ϕt+1(υ) terms of matrixQt+1 not in the matrix form. Let us denote

the elements of symetric matrix Qt by αt, βt...ς t and elements of matrix Qt+1 by
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α, β...ς, ∆St+1 by ∆S and λt+1 by λ. Then

αt = Et(α)− (Et((β + α∆S)λ))2

Et((δ + 2β∆S + α∆S2)λ2)
,

βt = Et(β + α∆S)− Et((β + α∆S)λ)Et((δ + 2β∆S + α∆S2)λ)

Et((δ + 2β∆S + α∆S2)λ2)
,

γt = Et(γ)− Et((β + α∆S)λ)Et((ε+ γ∆S)λ)

Et((δ + 2β∆S + α∆S2)λ2)
,

δt = Et(δ + 2β∆S + α∆S2)− (Et((δ + 2β∆S + α∆S2)λ))
2

Et((δ + 2β∆S + α∆S2)λ2)
,

εt = Et((ε+ γ∆S)λ)− Et((ε+ γ∆S)λ)Et((δ + 2β∆S + α∆S2)λ)

Et((δ + 2β∆S + α∆S2)λ2)
,

ζt = Et(ζ)− (Et((ε+ γ∆S)λ))2

Et((δ + 2β∆S + α∆S2)λ2)
,

ϕt+1(υ) = ϑ̃t−
GtEt((β + α∆S)λ) + Et((ε+ γ∆S)λ) + ϑ̃tEt((δ + 2β∆S + α∆S2)λ)

Et((δ + 2β∆S + α∆S2)λ2)
.

6.2 Local hedging

6.2.1 One-period risk minimization problem

Frisch-Waugh-Lovell theorem says, that when we have the model expressed as

follows

Y = X1β1 +X2β2 + ε,

and we are interesting in estimating β2, we can use two alternative methods:

1. Regress Y on X obtaining the OLS estimator β̂ = (β̂
>
1 , β̂

>
2 )> = (X>X)−1X>Y

using standard OLS.

2. Regress Y ∗on X∗2 and obtain as estimate β̃2 = (X∗>2 X∗2 )−1X∗>2 Y ∗

where Y ∗ = M1Y , X∗2 = M1X2 and M1 = I−X1(X>1 X1)−1X>1 is an orthogonal

projection matrix that projects any vector in Rn onto the orthogonal complement

of the linear space spanned by the columns of X1.

Let us denote e1 and e2 the residual vectors of the regressions (1) and (2). The

theorem says, that β̂2 = β̃2 and e1 = e2.
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In this section we just need to express β̂2, we do not mind residual vectors. For

this purpose we can modify the model and set Y ∗ = Y . In this modified model the

equation β̂2 = β̃2 still holds, but the equation e1 = e2 does not hold any more. We

can do this, because matrix is idempotent, i.e. M2
1 = M1.

We have the model:

{Vt−1, ϑ̃
∗
t−1, ξt} = arg min

υt−1,ϑ̃t−1,ϑt

Et−1((υt−1 + ϑ̃t−1L̃t + ϑtS̃t − Vt)2), VT := H.

To obtain Vt−1 we will proceed as following:

1. Make an auxiliary regression of the variable S̃t onto the explanatory variable

L̃t from which we will get SLt (the residual vector from this regression). Ana-

logically make an auxiliary regression of the variable ~1 onto the explanatory

variable L̃t from which we will get ~1Lt . Then we obtain

{Vt−1, ξt} = arg min
υt−1,ϑ̃t

Et−1((υt−11Lt + ϑtS
L
t − Vt)2).

2. Make an auxiliary regression of the variable ~1Lt onto the explanatory variable

SLt from which we will get ~1SLt (the residual vector from regression onto the

residual vector from first regression). We get

Vt−1 = arg min
υt−1

Et−1((υt−11SL − Vt)2).

3. Finally, we will obtain Vt−1 using regression of the Vt onto the variable ~1SL.

Let us perform these steps now:

λ̃t = arg min
ϑ̃t−1∈R

Et−1((S̃t − ϑ̃t−1L̃t)
2) =

E(S̃tL̃t)

E(L̃2
t )

,

κ̃t = arg min
ϑ̃t−1∈R

Et−1((1− ϑ̃t−1L̃t)
2) =

E(L̃t)

E(L̃2
t )
,

SLt = S̃t − λ̃tL̃t,
~1Lt = 1− κ̃tL̃t.

We obtain the optimization problem
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{Vt−1, ξt} = arg min
υt−1,ϑ̃t

Et−1((υt−11Lt + ϑtS
L
t − Vt)2).

We proceed:

ι̃t = arg min
ϑ̃t∈R

Et−1((1Lt − ϑtSLt )2) =
E(SLt 1Lt )

E((SLt )2)
,

~1SLt = 1Lt − ι̃tSLt ,

Vt−1 = arg min
υt−1∈R

Et−1((υt−11SLt − Vt)2)

=
Et−1(1SLt Vt)

Et−1((1SLt )2)
= Et−1

(
1SLt

Et−1((1SLt )2)
Vt

)
= Et−1

(
~1Lt − ι̃tSLt

Et−1((~1Lt )2)− ι̃tEt−1(SLt 1Lt )
Vt

)
.

More detailed:

1SL

E((1SL)2)
= 1− (S̃t − Et−1(S̃t))(Et−1(L̃t)Cov(L̃t, S̃t)− Et−1(S̃t)Var(L̃t))

Cov2(L̃1, S̃t)− Var(S̃t)Var(L̃t)

+
((L̃t − Et−1(L̃t))(Et−1(S̃t)Cov(L̃t, S̃t)− Et−1(L̃t)Var(S̃t))

Cov2(L̃t, S)− Var(S̃t)Var(L̃t)
.

We recover ϑ̃
∗
t−1 from regression

{ϑ̃∗t−1, ξt} = arg min
ϑ̃t−1,ϑt

Et−1((ϑ̃t−1L̃t + ϑtS̃t − (Vt − Vt−1))2).

We obtain ϑ̃
∗
t again by sequential regression. Firstly, we make an auxiliary regres-

sion of L̃t to S̃t and (Vt−Vt−1) to S̃t. After that we make the regression of residuals

(Vt − Vt−1)S on residuals LSt and obtain a coefficient ϑ̃
∗
t :

Wt = arg min
ϑt∈R

Et((L̃t − ϑtS̃t)2) =
Et−1(S̃tL̃t)

Et−1(S̃2
t )

,

Zt = arg min
ϑt∈R

Et(((Vt − Vt−1)− ϑtS̃t)2) =
Et−1(S̃t(Vt − Vt−1))

Et−1(S̃2
t )

,

LSt = L̃t −WtS̃t,

(Vt − Vt−1)S = (Vt − Vt−1)− ZtS̃t.
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ϑ̃
∗
t−1 = arg min

ϑ̃t−1∈R
(ϑ̃tL

S
t − (Vt − Vt−1)S)

=
Et−1(LSt (Vt − Vt−1)S)

Et−1((LSt )2)
= Et−1

(
LSt

Et−1((LSt )2)
(Vt − Vt−1)S

)
= Et−1

(
Et−1(S̃2

t )L̃t − Et−1(L̃tS̃t)S̃t

Et−1(L̃2
t )Et−1(S̃2

t )− (Et−1(S̃tL̃t))2
(Vt − Vt−1)

)
.

Finally we get ξt from an univariate regression,

ξt = arg min
ϑt

Et−1((ϑtS̃t − (Vt − Vt−1 − ϑ̃
∗
t−1L̃t))

2)

=
E(S̃t(V − Vt − ϑ̃

∗
t L̃t))

E(S̃2
t )

.

Proof of Lemma 7. The vector of the optimal values of the minimization problem

has the form

β̂ = (E(x>x))−1E(~xy) = E((E(x>x))−1~xy).

We can rewrite this form into:

β̂1 = E(F1y),
...

β̂k = E(Fky),

where Fi is a random variable. From this formulation we can see, that E(F11) is

an optimal value β̃1 of the minimization problem

min
βi

Et((β1 +
∑

βixi − 1)2).

It is obvious, that the above expression is minimal, when β̃1 = 1 a β̃2....β̃k = 0

(remember that we assume that ~1 does not belong to the vector space spanned by

columns of xi). Thus we get

E(F1) = E(F11) = β̃1 = 1,

E(F2) = E(F21) = β̃2 = 0,
...

E(Fk) = E(Fk1) = β̃k = 0.
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We can see that E(F1xi) is an optimal value β̄1 for the minimization problem

min
βi

Et((β1 +
∑

βixi − xi)2).

Now let us assume, that the random variables xi are linearly independent. Appar-

ently, optimal values minimizing above expression are β̄i = 1, β̄j = 0 for j 6= i,

therefore β̄1 = 0 and

E(F1xi) = β̄1 = 0 ∀i ∈ {2....k}.

If some random variables xl1 , xl2 ...xlS li 6= 1 are linearly dependent (remember that

we assume that they are not linearly dependent on ~1), then the space of solutions

is such that
s∑
j=1

βljxlj = xi. Other optimal values are zero which implies β1 = 0,

so that

E(F1xi) = β1 = 0 ∀i ∈ {2....k}.

�

6.2.2 Local risk minimization by sequential regression

To prove well-definedness of all variables from 3.3.2, we will firstly show how we

derived them from least squares regression:

{Vt−1, ϑ̃
∗
t−1, ξt} = arg min

υt−1,ϑ̃t−1,ϑt

Et−1((υt−1 + ϑ̃t−1L̃t + ϑtS̃t − Vt)2).

FOC for G, ϑ̃, ϑ:

2Et−1(Vt−1 + ϑ̃
∗
t−1L̃t + ξtS̃t − Ṽt) = 0,

2Et−1((Vt−1 + ϑ̃
∗
t−1L̃t + ξtS̃t − Vt)L̃t) = 0,

2Et−1((Vt−1 + ϑ̃
∗
t−1L̃t + ξtS̃t − Vt)S̃t) = 0.

Now we have to solve the system of three equations with three unknown parameters

Vt, ϑ̃
∗
t , ξt+1:

Vt−1 + ϑ̃
∗
t−1Et−1(L̃t) + ξtEt−1(S̃t)− Et−1(Vt) = 0, (6.1)

Vt−1Et−1(L̃t) + ϑ̃
∗
t−1Et−1(L̃2

t ) + ξtEt−1(S̃tL̃t)− Et−1(VtL̃t) = 0 (6.2)

Vt−1Et−1(S̃t) + ϑ̃
∗
t−1Et−1(L̃tS̃t) + ξtEt−1(S̃2

t )− Et−1(VtS̃t) = 0. (6.3)
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If we express Vt from () and substitute into the (6.2) and (6.3), we obtain:

ϑ̃
∗
t−1Var(L̃t) + ξtCov(L̃t, S̃t)− Cov(Vt, L̃t) = 0, (6.4)

ϑ̃
∗
t−1Cov(L̃t, S̃t) + ξtVar(S̃t)− Cov(Vt, S̃t) = 0. (6.5)

If Cov2(L̃t, S̃t)− Var(S̃t)Var(L̃t) > 0 then we have

ξt =
Cov(V, L̃t)Cov(L̃t, S̃t)− Cov(Vt, S̃t)Var(L̃t)

Cov2(L̃t, S̃t)− Var(S̃t)Var(L̃t)
,

ϑ̃
∗
t−1 =

Cov(Vt, S̃t)Cov(L̃1, S̃t)− Cov(Vt, L̃1)Var(S̃t)

Cov2(L̃1, S̃t)− Var(S̃t)Var(L̃t)
,

Vt−1 = E(Vt)− ϑ̃
∗
t−1E(L̃1)− ξtE(S̃t)

= Et−1

((
1− (S̃t − Et−1(S̃t))B̃t + ((L̃t − Et−1(L̃t))C̃t

Cov2(L̃1, S̃t)− Var(S̃t)Var(L̃t)

)
Vt

)
,

dQ

dP
: =

>∏
t=1

(
1− (S̃t − Et−1(S̃t))B̃t + ((L̃t − Et−1(L̃t))C̃t

Ãt

)
.

If Cov2(L̃1, S̃t)−Var(S̃t)Var(L̃t) = 0, it means, that processes L̃t and S̃t are linearly

depended, i.e. S̃t = c+ aL̃t where c and a are constants. Then

Var(S̃t) = a2Var(L̃t),

Cov(L̃t, S̃t) = aVar(L̃t),

Cov(Vt, S̃t) = aCov(Vt, L̃t).

The expressions (6.4) and (6.5) turn into

ϑ̃
∗
t−1Var(L̃t) + aξtVar(L̃t)− Cov(Vt, L̃t) = 0, (6.6)

aϑ̃
∗
t−1Var(L̃t) + a2ξtVar(L̃t)− aCov(Vt, L̃t) = 0. (6.7)

Equations (6.6) and (6.7) are dependent, so finally we obtain just one condition

ϑ̃
∗
t−1Var(L̃t) = Cov(Vt, L̃t)− aξtVar(L̃t).

Again, for Var(L̃t) > 0

ϑ̃
∗
t−1 =

Cov(Vt, L̃t)− aξtVar(L̃t)

Var(L̃t)
, ξt is ambiguous,

Vt−1 = E(Vt)− ϑ̃
∗
t−1E(L̃1)− ξtE(S̃t),

and for Var(L̃t) = 0⇒ Cov(Vt, L̃t) = 0. Consequently, both ϑ̃
∗
t−1, ξt are ambiguous

and Vt−1 = E(Vt)− ϑ̃
∗
t−1E(L̃1)− ξtE(S̃t) .
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6.2.3 Unconditional hedging error of the local hedging strat-

egy

Proof of Theorem 8. We will start with

ε2
TLE = (Gυ,ξ

T − VT )2 = xυ,ξTT PTx
υ,ξ
T + 2c>T x

υ,ξ
T , cT = ~0, PT = QT .

Using the self-financing condition

xυ,ξt+1 = At+1x
υ,ξ
t + bt+1ξt+1,

we express the hedging error in time T − 1:

ε2
T−1LE = ET−1

(
xυ,ξTT PTx

υ,ξ
T + 2c>T x

υ,ξ
T

)
= ET−1

(
(At+1x

υ,ξ
T−1 + bt+1ξT )>PT (At+1x

υ,ξ
T−1 + bt+1ξT ) + 2c>T (At+1x

υ,ξ
T−1 + bt+1ξT )

)
= ET−1(xυ,ξT−1

>Aᵀ
t+1PTAt+1x

υ,ξ
T−1 + 2(ξT b

ᵀ
t+1PTAt+1 + c>TAt+1)xυ,ξT−1

+ ξ2
T b

ᵀ
t+1PT bt+1 + 2ξT c

>
T bt+1)

= xυ,ξT−1
>PT−1x

υ,ξ
T−1 + 2c>T−1x

υ,ξ
T−1 + ET−1(φT−1). (6.8)

After recursive application of (6.8) one obtains

E((GT − VT )2) = x>0 P0x0 + c>0 x0 +
T∑
t=1

E(φt).

�

6.3 Extended model in terms of standard model

Let assign elements of matrix Qt to above variables:

αt = Lt,

γt = −LtVt = −αtVt ,

ζt =
T∑

i=t+1

Et(Liψi) + LtV
2
t =

T∑
i=t+1

Et(Liψi) +
γ2
t

αt
.

. Now we will justify that it fits:

αt = αt+1

(
1− (E(∆St+1))2

E(∆S2
t+1)

)
, αT = 1.
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which fits with

Lt = Et(Lt+1(1−∆K̃t+1)), LT = 1.

in standard model. In the case of IID stock returns αt = bT−t where b = (1 −
∆K̃t+1).

Using mathematical induction we show that γt = −αtVt :

1◦ γT = −1VT

2◦ γt+1 = −αt+1Vt+1 ⇒ γt = −αtVt :

In the case of IID stock returns we obtain

γt = Et(γt+1)−
Et(αt+1∆St+1)Et(γt+1∆St+1)

Et(αt+1∆S̃2
t+1)

= −bT−t−1Et(Vt+1) + bT−t−1Et(αt+1∆St+1)Et(Vt+1∆St+1)

Et(αt+1∆S2
t+1)

= Et

(
bT−t−1

(
1− αt+1Et(∆St+1)∆St+1

αt+1Et(∆S2
t+1)

)
Vt+1

)
= Et

(
bT−t

(
Et(∆S

2
t+1)− Et(∆St+1)∆St+1

Et(∆S2
t+1)− (E(∆St+1))2

)
Vt+1

)
= −αtVt.

We know that in the standard model ψt+1 in the case of IID stock returns has

the form

ψt+1 = Et(e
2
t+1) = Vart(Vt+1)− (Covt(∆St+1, Vt+1))2

Vart(∆St+1)

= Et(V
2
t+1)− bV 2

t −
(Et(Vt+1∆St+1))2

Et(∆S2
t+1)

.

Using mathematical induction we show that ζt =
∑T

i=t+1Et(Liψi) + LtV
2
t .

1◦ ζT = 0 + 1V 2
T
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2◦ ζt+1 =
∑T

i=t+1 Et(Liψi) + Lt+1V
2
t+1 ⇒ ζt =

∑T
i=t+1Et(Liψi) + LtV

2
t :

ζt = Et(ζt+1)−
(
Et(γt+1∆St+1)

)2

Et(αt+1∆S2
t+1)

=
T∑

i=t+2

bT−iEt(ψi) + bT−t−1

(
Et(V

2
t+1)− (Et(Vt+1∆St+1))2

Et(∆S2
t+1)

)

=
T∑

i=t+2

bT−iEt(ψi) + bT−t−1ψt+1 + bT−t−1bV 2
t

=
T∑

i=t+1

bT−iEt(ψi) + LtV
2
t
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[Hol09] Matúš Holos. Mean-variance hedging for exotic options. Master’s thesis,

Comenius University, 2009.
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