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Abstract

CEĽUCHOVÁ, Zuzana: Globally Optimal Gamma Hedging With Trans-
action Costs [Master thesis], Comenius University in Bratislava, Faculty of
Mathematics, Physics and Informatics, Department of Applied Mathematics
and Statistics; supervisor: Prof. Aleš Černý, Bratislava, 2009, 33 p.

In 1989 Follmer and Schweizer [4] constructed a simple scheme for the
computation of hedging strategies in an incomplete market, taking local risk
minimization into consideration. Since then several significant steps have
been taken in the development of global risk minimization theory. In 2007
Černý and Kallsen [2] provided derivation of the globally optimal hedging
strategy by sequential regressions. In this thesis we concentrate on their
results, applying their hedging strategy in a particular problem concerning
portfolio rebalancing. We leave the idea of simply hedging the contingent
claim. Instead, we add the element of changing the very structure of option
portfolio. We derive the optimal strategy for a quadratic utility investor.
Finally we present a numerical example based on historical data and evaluate
the obtained results.

Keywords: hedging, financial derivatives, risk minimization, optimal
investment strategy, gamma hedging



Abstrakt

CEĽUCHOVÁ, Zuzana: Globálne optimálne gama zaisťovanie s trans-
akčnými nákladmi [Diplomová práca], Univerzita Komenského, Bratislava,
Fakulta matematiky, fyziky a informatiky, Katedra aplikovanej matematiky
a štatistiky; vedúci diplomovej práce: prof. Ing. Aleš Černý, PhD., Bratislava,
2009, 33 s.

V roku 1989 skonštruovali Follmer a Schweizer [4] jednoduchú schému
na výpočet zaisťovacích stratégií na neúplnom trhu prostredníctvom lokál-
nej minimalizácie rizika. Odvtedy boli urobené výrazné pokroky vo vytváraní
teórie globálnej minimalizácie rizika. V roku 2007 Černý a Kallsen [2] ukázali
odvodenie globálne optimálnej zaisťovacej stratégie postupnosťou regresií.
V tejto práci sa zameriame na ich výsledky a aplikujeme ich stratégiu na
konkrétny problém týkajúci sa zmeny portfólia. Upustíme od myšlienky
jednoduchého zaisťovania. Namiesto toho pridáme prvok zmeny štruktúry
portfólia opcií. Odvodíme optimálnu stratégiu pre investora s kvadratickou
funkciou užitočnosti. Napokon predstavíme konkrétny príklad založený na
historických dátach a vyhodnotíme získané výsledky.

Kľúčové slová: zaisťovanie, finančné deriváty, minimalizácia rizika, op-
timálna investičná stratégia, gama zaisťovanie
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Introduction

Trading in the financial markets naturally involves certain intrinsic risk, since
the returns on the investment depend on stochastic processes which are im-
possible to predict exactly. As a result, many types of financial derivatives
have been introduced as an effective tool for easing the risk and hedging
the traders‘ portfolios. Finding the optimal hedging strategy is quite sim-
ple under the assumption of a complete market, where it is possible to find
a perfect replicating portfolio. In reality, this assumption is hardly fulfilled,
since the number of causes of uncertainty is greater than the number of as-
sets held by the trader. The standard Black-Scholes model represents a good
example helping us to understand the basic principles of option pricing and
hedging strategies. However, the assumption of continuous trading and de-
scribing the asset price dynamics by a pure diffusion process keep the model
far from reality. It is therefore essential that we look for a better approxi-
mation of the market dynamics allowing for price jumps and that we try to
understand the computation of hedging strategies in an environment where
perfect replication is not a matter of course.

A broad examination on this topic has been performed by Černý and
Kallsen [2]. They considered the minimization of the unconditional squared
hedging error E((v + ϑ • ST −H)2), where v represents an admissible initial
endowment, ϑ is an admissible trading strategy, S is a stock price and H

is a contingent claim to be hedged. In other words, they tried to minimize
the squared difference of the contingent claim and the total portfolio value at
maturity. This approach is quite reasonable, since it is the total hedging error
at maturity that really matters. They compared this so called dynamically
optimal trading strategy to the local risk minimization introduced by Follmer
and Schweizer in [4]. The purpose of this thesis is to apply their results to
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the solution of an intermediate option trading problem. In [2], the contingent
claim to be hedged is fixed - we consider one derivative and seek a replicating
portfolio. Instead of this approach, we now consider a whole portfolio con-
sisting of several different derivatives (call them options). Moreover, we allow
intermediate option trading, i.e. rebalancing the options portfolio through-
out the trading. The objective of such a trading is maximizing the investor’s
utility. We show that the utility function maximization is equivalent to a
special case of hedging error minimization, which gives us an opportunity to
take comfort in the results of Černý and Kallsen [2].

The thesis is organized as follows. Chapter 1 presents the derivation of
globally optimal trading strategy as introduced by Černý and Kallsen in [2].
We focus on their evaluation of the total hedging error. In Chapter 2 we in-
troduce intermediate option trading in detail and provide a transformation of
the original problem to a quadratic programming problem with constraints.
In Chapter 3 we discuss the Lévy processes as a useful tool for modeling the
stock price process. Specifically, we concentrate on normal inverse Gaussian
(NIG) process, which we use in numerical implementation of the problem.
We present NIG distribution and some of its properties. Chapter 4 comprises
a numerical implementation of the theory provided in previous chapters. We
examine a particular example based on historical data and perform a histor-
ical trading simulation.
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Chapter 1

Mean–Variance Hedging

1.1 Notation and Assumptions

Consider a probability space (Ω, P,F), time horizon T and a set of trading
dates T = {0, 1, . . . , T}. Let F = {Ft}t∈T be a filtration of the given proba-
bility space and H ∈ L2(P ) an Ft - measurable random variable representing
the contingent claim to be hedged. We set F0 trivial.

Let {St}t∈T be an F-adapted stock price process satisfying the condition:

Et((St+1 − St)2) = Et((∆St+1)2) <∞ for t < T.

Moreover, we assume that S satisfies the no arbitrage condition defined by

Definition 1.1.1. We say that process S admits no arbitrage, if for all
t ∈ T \{0} and for all Ft−1-measurable portfolios ϑt we have that ϑt∆St ≥ 0

implies ϑt∆St = 0 almost surely.
This requirement roughly means that the trader cannot achieve positive

gains unless he invests a positive amount in the beginning. A trading strategy
is described by a predictable process ϑ. This condition matches with the fact
that the trading strategy at time t only depends on the previous development,
not on what happens at t or later. If we denote the initial endowment v, then

the portfolio value at maturity is v + ϑ • ST := v +
T∑
t=1

ϑt∆St. We assume

that v is F0-measurable and

v + ϑ • ST ∈ L2(P ).
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1.2 Locally Optimal Hedging Strategy

In this section we examine the local risk minimization presented by Follmer
and Schweizer. Their approach is based on minimizing the one-step ex-
pected squared hedging error recursively. This means solving the problem
min
vt−1,ϑt

E(vt−1 +ϑt∆St−Vt)2 successively several times. An easy way to do so

is performing sequential least squares regressions. Define

VT := H,

{Vt−1, ξt} := arg min
vt−1,ϑt

Et−1((vt−1 + ϑt∆St − Vt)2).1

We see that the quantities Vt−1, ξt are the least squares coefficients from
the regression of Vt onto explanatory variables ∆St and constant. Following
the Frisch–Waugh–Lovell theorem we can equivalently perform an auxiliary
regression of the constant onto ∆St and then obtain Vt−1 from the regression
of Vt onto the residuals from the auxiliary regression. Hence we obtain

Vt−1 = Et−1

(
1− λ̃t∆St
1−∆K̃t

Vt

)
, (1.1)

with λ̃t,∆K̃t defined as follows:

λ̃t := arg min
ϑ1∈R

E((ϑ1∆S1 − 1)2) =
Et−1(∆St)

Et−1((∆St)2)
, (1.2)

∆K̃t := min
ϑ1∈R

E((ϑ1∆S1 − 1)2) =
(Et−1(∆St))

2

Et−1((∆St)2)
= 1− Et−1((1− λ̃t∆St)2).(1.3)

Equation (1.1) suggests that Vt−1 is a mean value of Vt under probability
measure Q defined by

dQ

dP
:=

1− λ̃t∆St
1−∆K̃t

.

Such a conclusion would square with the risk-neutral pricing under risk neu-
tral probability measure. To show that Q really is a risk neutral measure, we
need to show that its total mass equals 1 and that the stock price process is
a martingale under Q (i.e. E(∆St) = 0).

1minimize through the set of vt−1, ϑt being Ft-measurable.
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E

(
dQ

dP

)
= E

(
1− λ̃t∆St
1−∆K̃t

)
=
E(1− λ̃t∆St)
1− λ̃tE(∆St)

= 1,

EQ(∆St) = E

(
1− λ̃t∆St
1−∆K̃t

∆St

)
=
E(∆St)− λ̃tE((∆St)

2)

1−∆K̃t

= 0.

�

On defining the martingale measure Q

dQ

dP
:=

T∏
t=1

1− λ̃t∆St
1−∆K̃t

(1.4)

we can write
Vt−1 = EQ

t−1(Vt). (1.5)

The optimal trading strategy ξt is then easy to obtain from a univariate
regression of Vt − Vt−1 onto the explanatory variable ∆St,

ξt =
Covt−1(Vt,∆St)

V art−1(∆St)
=
Et−1((Vt − Vt−1)∆St)

Et−1((∆St)2)
. (1.6)

1.2.1 Evaluation of the hedging error

Following the locally optimal strategy derived in the previous section, one
may ask what is the total hedging error of such trading. Assume we start
with initial endowment v and hold ξt shares at time t − 1. We assume that
the portfolio is self-financing, i.e. no additional investment is provided during
the trading. Mathematically, we write Gv,ξ

t = Gv,ξ
t−1 + ξt∆St for all t ∈ T ,

where Gv,ξ
t denotes the portfolio value at time t, starting with initial capital

v and following the optimal strategy ξ. Set VT = H. We wish to find the
value of E((Gv,ξ

T − VT )2). We obtain

E((Gv,ξ
T − VT )2) = E(ET−1((Gv,ξ

T − VT )2))

= E(ET−1((Gv,ξ
T − VT−1 + VT−1 + ξt∆ST − VT )2)).

(1.7)

At this point we can take comfort in the fact that VT−1 and ξT are the
coefficients from the least squares regression of VT onto explanatory variables
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∆ST and 1. The residuals in a least squares regression are orthogonal to the
subspace generated by the explanatory variables. Hence the residuals are
orthogonal to the subspace generated by ∆ST and 1, which comprises their
orthogonality to 1. 2 If we introduce the following notation

et = Vt−1 + ξt∆St − Vt for all t ∈ {1, 2, . . . , T}, (1.8)

we can write ET−1(eT ) = 0. (1.7) can then be rewritten as

E((Gv,ξ
T − VT )2) = E((Gv,ξ

T−1 − VT1)
2 + ψT ), (1.9)

with ψt defined as follows:

ψt = Et−1(e2
t ) = V art−1(Vt)− ξtCovt−1(∆St, Vt). (1.10)

Applying these formulas recursively for t ∈ {T−1, T−2, . . . , 0} we observe

E((Gv,ξ
T − VT )2) = (v − V0)2 +

T∑
t=1

E(ψt). (1.11)

1.3 Globally Optimal Hedging Strategy

The previous sections show the way of computation of the unconditional
squared expected hedging error using the locally optimal strategy ξ. How-
ever, the question remains whether this really is the minimum attainable
expected squared hedging error value. Let us now examine the solution to
the global risk minimization

min
ϑ
E((GT − VT )2), VT = H. (1.12)

Note that the locally optimal strategy minimizes the hedging error with re-
spect to both v and ϑt. The self-financing property of the portfolio dictates
that its value at time t − 1 is precisely given by its initial value, the way
of trading and the performance of stock price process. There is no way one
could possibly influence the portfolio value Gv,ϑ

t−1 at time t− 1. The tool one
holds in their hands is the number of shares held. In an incomplete market

2Note that the orthogonality here is meant in terms of probability.
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one cannot count on the existence of a perfect replicating portfolio. The
real portfolio value might undershoot or overshoot the ideal case value Vt
significantly. The idea of inquiring about the optimal portfolio value at time
t− 1 is therefore seemingly useless. However, it provides an easy-to-compute
information which can be later used in the derivation of globally optimal
trading strategy.

We perform the minimization recursively again. Denote the optimal trad-
ing strategy by ϕ(v). We begin with the choice of optimal strategy in the
final period t = T . We minimize the expected squared hedging error

min
ϑT

ET−1((G
v,ϕ(v)
T−1 + ϑT∆ST − VT )2). (1.13)

Hence,
ϕT (v) = arg min

ϑT

ET−1((G
v,ϕ(v)
T−1 + ϑT∆ST − VT )2). (1.14)

Note that this represents a least squares regression similar to the local
risk minimization case. The difference lies in the dimension of the problem.
Local risk minimization represents a bivariate regression, whereas in this case
we only deal with a univariate regression of the amount VT − G

v,ϕ(v)
T−1 onto

the explanatory variable ∆ST . This is a result of the previously mentioned
fact that once we arrive at time T − 1, the value of Gv,ϕ(v)

T−1 is fixed and our
decision only lies on the optimal choice of ϕT (v). By standard least squares
we have

ϕT (v) =
ET−1((VT −Gv,ϕ(v)

T−1 )∆ST )

ET−1((∆ST )2)

=
ET−1((VT − VT−1 + VT−1 −Gv,ϕ(v)

T−1 )∆ST )

ET−1((∆ST )2)

=
ET−1((VT − V v,ϕ(v)

T−1 )∆ST )

ET−1((∆ST )2)
+ λ̃T (VT−1 −Gv,ϕ(v)

T−1 )

= ξT + λ̃T (VT−1 −Gv,ϕ(v)
T−1 ).

(1.15)

Let us now evaluate the hedging error of strategy ϕ(v):

G
v,ϕ(v)
T−1 + ϕT∆ST − VT = (G

v,ϕ(v)
T−1 − VT−1)(1− λ̃T∆ST ) + eT (1.16)

with eT defined in (1.8). We already know that eT is orthogonal to 1 and
∆ST , which implies

ET−1((1− λ̃T∆ST )eT ) = 0 (1.17)
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Equations (1.16) and (1.17) yield

ET−1((G
v,ϕ(v)
T−1 +ϕT∆ST − VT )2) = (1−∆K̃T )(G

v,ϕ(v)
T−1 − VT−1)2 +ψT , (1.18)

where ψT represents the one-step locally optimal squared hedging error de-
fined in (1.10).

Now we can check the minimization at time T − 1. Note that, if the
stock returns are i.i.d. random variables, the quantity LT−1 = 1 − ∆K̃T is
deterministic. Moreover, the value of ψT does not depend on ϑT−1. Hence
we have:

ϕT−1(v) = arg min
ϑT−1

ET−2(LT−1(G
v,ϕ(v)
T−2 + ϑT−1∆ST−1 − VT−1)2 + ψT )

= arg min
ϑT−1

LT−1ET−2((G
v,ϕ(v)
T−2 + ϑT−1∆ST−1 − VT−1)2)

= arg min
ϑT−1

ET−2((G
v,ϕ(v)
T−2 + ϑT−1∆ST−1 − VT−1)2).

We see that the minimization at time T − 1 is basically the same as in
the final period T . By analogy, we observe that the minimization has the
same form for all t ∈ T . Hence, the following statement follows:

ϕt(v) = ξt + λ̃t(Vt−1 −Gv,ϕ(v)
t−1 ) ∀t ∈ T (1.19)

If we define

Lt =
T∏

j=t+1

(1−∆K̃j), LT = 1, (1.20)

we obtain the desired formula for the total unconditional squared hedging
error of a dynamically optimal strategy:

E((G
v,ϕ(v)
T −VT )2) = L0(v−V0)2+

T∑
t=1

E(Ltψt) = L0(v−V0)2+ε2
0(H), (1.21)

with ε2
0(H) defined as

ε2
0(H) :=

T∑
t=1

E(Ltψt). (1.22)
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Remark 1.3.1. It follows from (1.19) that the dynamically optimal strategy
reflects the locally optimal strategy ξ, but takes the portfolio value misalign-
ment VT−1−Gv,ϕ(v)

T−1 into consideration and makes a corresponding adjustment
depending on the stock price performance and whether the portfolio value
overshoots or undershoots the desired value Vt−1. Note that in a bull market
the value of λ̃t is positive. If the portfolio value overshoots Vt−1, the dy-
namically optimal strategy performs a downward adjustment of ξt. Therefore
ϕt(v) < ξt. On the other hand, in a bear market, the value of λ̃t is negative.
Hence, the adjustment in the case of overshooting the desired portfolio value
is upwards and ϕt(v) > ξt. This is a perfectly reasonable behaviour - if the
market is expanding and the stock price is likely to increase and the desired
portfolio value is lower then the actual one, we reduce the number of shares
held.
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Chapter 2

Intermediate option trading

In this chapter we introduce the portfolio rebalancing problem. So far, we
have supressed the dependence of ϕ and the mean-value process Vt on the
contingent claim H. Now, by contrast, we shall show it off by introducing
the notation

ϕ(v,H), Vt(H)

for the dynamically optimal strategy in hedging the contingent claim H and
starting with initial capital v and for the locally optimal portfolio value de-
fined by (1.1).

Consider an investor with a portfolio consisting of several different deriva-
tive securities in a short position (call them options). Suppose that he is ra-
tional and up to time t := t0 he has been following the dynamically optimal
hedging strategy ϕ(v,H). At this point he considers changing the structure
of his portfolio. The question is: if he changed the proportions of individual
options in the portfolio, could he possibly increase his benefits from trading?
It is intuitively clear that following the optimal hedging strategy does not
mean maximum utility as a matter of course. It might happen that some
portfolios bring higher utility than others, despite the fact that the investor
follows the optimal strategy in all cases. At time t = 0, i.e. at the very
beginning of trading with the portfolio which we consider, the investor has
only little information about the future stock price performance. Throughout
the trading, the stock price changes and so do the market prices of options.
Hence it might easily happen that at time t > 0 the initial portfolio structure

14



is not the best choice and it makes sense for the investor to inquire whether
he should/should not rebalance his portfolio. As a criterion to compare the
benefits from trading, we shall use the quadratic utility function. In doing
so, we shall take transaction costs into consideration - we must not forget
that trading options is not a free business. The ask/bid spreads represent
an "obstacle" - it is essential that the investor examines thoroughly whether
the benefits are really worth the costs of trading.

2.1 Formulation of the problem

Mathematically, we formulate the problem as follows.
Suppose the investor considers rebalancing his portfolio at time t. For the

simplicity of notation, we shall only present a one–period decision making
and adopt the view of a new starting point, i.e. we use the 0 lower index for
quantities relating to time t and we think of T as the total time to maturity
beginning at t. Note that the 0 indexation does not refer to the very beginning
of trading, it only indicates that at the time of decision making, t is our
starting point. Let G0 denote the initial portfolio value at time t. Let ρ be
the row vector of current amounts of options in the investor‘s portfolio before
rebalancing. The investor considers selling η options, η being a row vector
with positive elements representing selling and negative elements representing
buying options. Furthermore, let H denote the column vector of payoffs of
the individual options and Ca and Cb the column vectors of corresponding
current ask and bid market prices of the options. We wish to maximize the
utility function

max
ϑ,η

U = −E0(((G̃T − (ρ+ η)H)− V ∗)2), (2.1)

where G̃T denotes the total portfolio value at maturity and V ∗ is the utility
function bliss point.

The portfolio value immediately after option trading equals the investor‘s
initial wealth reduced by the costs of trading, i.e.

G̃0 = G0 + η+Cb − η−Ca. (2.2)
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Note that we wish to maximize (2.1) with respect to two variables. We
wish to find the optimal change in portfolio structure η and optimal hedging
strategy ϑ. We perform the maximization in two steps. First, we fix η and
find the optimal strategy as a function of η, and then we find the optimal
η. One can easily see that for a fixed value of η, (2.1) is a specific case of
optimal hedging problem, starting with initial wealth G̃0 and hedging the
amount H̃ := (V ∗ + (ρ + η)H). We have tackled this issue in the previous
chapter and we already know that the solution is given by the dynamically
optimal trading strategy ϕ(G̃0, H̃) and the corresponding value of the utility
function can be expressed in terms of (1.21):

Û = −
(
L0

(
G̃0 − V0(H̃)

)2

+ ε2
0(H̃)

)
, (2.3)

where ε2
0 =

∑T
i=t Liψi with ψt defined in (1.10).

Equivalently, we can minimize the function

f(η) = L0

(
G̃0 − V0(H̃)

)2

+ ε2
0(H̃) (2.4)

Our goal is to minimize this value with respect to η. To do so, we need
to find the functional dependence of f(η) on η. This seems rather tricky at
first sight, since ϕ(G̃0, H̃) itself depends on η and it is therefore not so easy
to imagine what happens if η changes slightly. Let us examine the value of
f(η).

We know that V0(H̃) is the expected value of H̃ with Q defined in (1.4)
being the probability measure. Using the linearity of the expectation opera-
tor, we write

V0(H̃) = V0(V ∗ + (ρ+ η)H) = V ∗ + ρV0(H) + ηV0(H). (2.5)

Moreover, it is intuitively clear that

ε2
0(H̃) = ε2

0(V ∗ + (ρ+ η)H) = ε2
0((ρ+ η)H), (2.6)

since the constant amount V ∗ can be hedged perfectly.
Substituting (2.5) and (2.6) into (2.4) we obtain

f(η) = L0

(
G0 − V ∗ + (η+)Cb − (η−)Ca − ρV0(H)− ηV0(H)

)2

+ ε2
0((ρ+ η)H).

(2.7)
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In the next section we shall prove that the quantity ε2
0((ρ + η)H) can

be expressed in terms of individual options‘ hedging errors ε2
0(Hi) and this

decomposition makes the whole optimization easier.

2.1.1 Hedging error of portfolio of options

Lemma 2.1.1. Let Ĥ be the payoff of a portfolio consisting of n derivative
securities with the same expiration time and underlying asset, Ĥ = αH.
Then the value of hedging error ε2

0(Ĥ) equals

ε2
0(Ĥ) = αΣα>,

where Σ is an n× n matrix defined by:

Σii = ε2
0(Hi)

Σij =
ε2

0(Hi +Hj)− ε2
0(Hi −Hj)

4
.

Proof. We have

ε2
0 (H) = E0

[
(V0 (H) + ϕ (V0 (H) , H) • ST −H)2]

Since Ĥ = αH and from (1.5),(1.6) and (1.19) it follows that the functions
V0(H) and ϕ(x,H) are linear in H, we can rephrase the previous expression
as:

ε2
0(Ĥ) = E

( n∑
i=1

αiV0(Hi) +
n∑
i=1

αiϕ(V0(Hi), Hi) • ST −
n∑
i=1

αiHi

)2


= E

( n∑
i=1

αi(V0(Hi) + ϕ(V0(Hi), Hi) • ST −Hi)

)2


=
n∑
i=1

α2
i ε

2(Hi) + E

[∑
i 6=j

αiαj

(
V0(Hi) + ϕ(V0(Hi), Hi) • ST −Hi

)
(
V0(Hj) + ϕ(V0(Hj), Hj) • ST −Hj

)]
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An easy computation shows that

ε2
0(Hi +Hj) = ε2(Hi) + 2E

(
(V0(Hi) + ϕ(V0(Hi), Hi) • ST −Hi)

(V0(Hj) + ϕ(V0(Hj), Hj) • ST −Hj)
)

+ ε2
0(Hj),

ε2
0(Hi −Hj) = ε2

0(Hi)− 2E
(

(V0(Hi) + ϕ(V0(Hi), Hi) • ST −Hi)

(V0(Hj) + ϕ(V0(Hj), Hj) • ST −Hj)
)

+ ε2
0(Hj).

Hence,

ε2
0(Hi +Hj)− ε2

0(Hi −Hj) = 4E
(

(V0(Hi) + ϕ(V0(Hi), Hi) • ST −Hi)

(V0(Hj) + ϕ(V0(Hj), Hj) • ST −Hj)
)
.

It follows that

ε2
0(Ĥ) =

n∑
i=1

α2
i ε

2
0(Hi) +

∑
i 6=j

αiαj
ε2

0(Hi +Hj)− ε2
0(Hi −Hj)

2

= αΣα>

�

Using Lemma 2.1.1 we can rewrite (2.7) as follows:

f(η) = L0

(
G0 − V ∗ + (η+)Cb − (η−)Ca − ρV0(H)− ηV0(H)

)2

+ (ρ+ η)Σ(ρ+ η)>.
(2.8)

In order to bring ellegant and transparent solution, we can normalize the
problem to the case of unit initial wealth and unit local relative risk aversion1

by introducing α = ρ(γU(G0)/G0) and ζ = η(γU(G0)/G0) as the amounts of
options per unit of initial wealth and risk tolerance. Thus we obtain a "unit"
optimal strategy, allowing for an easy adjustment to the real values of actual
initial wealth and local risk aversion afterwards.

On dividing (2.8) by (G0/γU(G0))2 we obtain

f(η)

(G0/γU(G0))2
= L0

(
− 1 + (ζ+)Cb − (ζ−)Ca − αV0(H)− ζV0(H)

)2

+ (α + ζ)Σ(α + ζ)>.

(2.9)

1relative risk aversion measured by the Arrow-Pratt coefficient γU (x) = −xU ′′(x)
U ′(x)
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2.2 Transformation of the problem

The maximization of the objective function Û is equivalent to minimization of
the function f(η). This task very much resembles a quadratic programming
problem. The bar against a quick and efficient solution lies in the presence
of vectors ζ+ and ζ−. To tackle this, we shall perform a transformation of
the primary problem. We adopt the view of ζ+ and ζ− being two separate
variables. The original variable ζ can then be expressed as their difference:
ζ = ζ+ − ζ−. Rewriting the whole minimization problem in terms of these
two new variables gives us the following:

min
ζ+,ζ−

f(η)

(G0/γU(G0))2
= L0

(
ζ+Cb − ζ−Ca − (ζ+ − ζ−)V0(H)− αV0(H)− 1

)2

+ (α + ζ+ − ζ−)Σ(α + ζ+ − ζ−)>.

(2.10)

We can easily transform the original problem to a standard quadratic
programming problem with constraints by constructing a new variable

ζ̄ =
(
ζ+ ζ−

)
.

The price we have to pay is the expansion of the problem dimension from n

to 2n, but as a recompense we get the comfort of quadratic programming.
In order to rephrase the objective function, we introduce this notation:

ζ̄ =
(
ζ+ ζ−

)
ᾱ =

(
α α

)
Σ̄ =

(
Σ 0

0 −Σ

)
Σ̃ =

(
Σ −Σ

−Σ Σ

)

A =

(
Cb − V0(H)

−Ca − V0(H)

)
We get the following:

min
ζ̄
L0(ζ̄A− αV0(H)− 1)2 + αΣα> + 2ᾱΣ̄ζ̄

>
+ ζ̄Σ̃ζ̄

>
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min
ζ̄
L0

(
ζ̄(AA>)ζ̄

>−2(αV0(H)+1)·ζ̄A+(αV0(H)+1)2
)

+αΣα>+2ᾱΣ̄ζ̄
>

+ζ̄Σ̃ζ̄
>

Adding a constant has no impact on where the function takes the mini-
mum value. Hence, this problem is equivalent to the following one:

min
ζ̄
ζ̄(L0 · AA> + Σ̃)ζ̄

>
+ 2(ᾱΣ̄− L0(αV0(H) + 1)A>)ζ̄

>
. (2.11)

Hence we shall solve the quadratic programming problem

min
ζ̄

1

2
ζ̄Qζ̄> + cζ̄

>
, ζ̄ ≥ 0

with

Q = L0 · AA> + Σ̃, c = ᾱΣ̄− L0(αV0(H) + 1)A>. (2.12)
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Chapter 3

Modeling the Stock Price Process

It is essential for the traders to approximate the market behavior as good
as possible. Examining the stock price processes, we often observe that
they have spikes or jumps, which mean large sudden price changes. Models
based on Brownian motion do not capture this feature of the real market.
Moreover, the distributions of log returns resemble normal distribution on
the first sight, but they tend to have heavier tails and exhibit skewness. It is
therefore tangible to look for other distributions and corresponding processes
fitting the reality in a more accurate way. As an effective tool in this endeavor
we introduce a more general class of stochastic processes, the Lévy processes.
We focus specifically on normal-inverse gaussian process and present some of
its features.

3.1 Lévy processes

Definition 3.1.1. A càdlàg, adapted, real valued stochastic process L =

{Lt}0≤t≤T with L0 = 0 a.s. is called a Lévy process, if the following conditions
are satisfied:

• L has independent increments, i.e. Lt − Ls is independent of Fs for
any 0 ≤ s < t ≤ T .

• L has stationary increments, i.e. for any 0 ≤ s, t ≤ T the distribution
of Lt+s − Lt does not depend on t.
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• L is stochastically continuous, i.e. for every 0 ≤ t ≤ T and ε > 0:
lim
s→t

P (|Lt − Ls| > ε) = 0.

Lévy processes are very closely related to the so called infinitely divisible
probability distributions.

Definition 3.1.2. We say that the law of a random variable X is infinitely
divisible, if for all n ∈ N there exist n i.i.d. random variables {X(1/n)

i }i=1,2,...,n

such that

X =
n∑
i=1

X
(1/n)
i . (3.1)

Equivalently, the law of a random variable X is infinitely divisible, if for all
n ∈ N there exists a random variable X(1/n) such that

ϕX(z) = (ϕX(1/n)(z))n , (3.2)

where ϕX(z) denotes the characteristic function of X.

The relationship between Lévy processes and infinitely divisible distribu-
tions is realized in two important mathematical results, The Lévy-Khintchine
Formula and The Lévy-Itó Decomposition. The former states that for each
Lévy process an associated infinitely divisible distribution can be found. The
latter explains that, given a random variable X with an infinitely divisible
distribution, we can construct a Lévy process {Lt}t=1,2,...,n such that L1 has
the same distribution as X. For a deeper insight into this topic see Papa-
pantoleon [7].

3.2 Normal Inverse Gaussian Distribution

The normal inverse Gaussian distribution has become one of great interest
since its introduction by Barndorff-Nielsen in 1995. It was originally pre-
sented as a versatile model for modeling log returns of stock prices. We
begin with its definition and then present some of its favourable features,
which make it so attractive.

Definition 3.2.1. Let α, β ∈ R, σ > 0. Let Y and V be independent random
variables, Y ∼ N (0, 1) and V ≥ 0 is a continuous probability distribution
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Figure 3.1: Histogram of daily Google returns from Aug 19, 2004 to Apr 15,
2009 compared to fitted normal and NIG distribution

with probability density function g. We call the probability distribution of a
random variable X a normal mean-variance mixture, if X has the form

X = α + βV + σ
√
V Y. (3.3)

We call V a mixing probability distribution and g a mixing probability density.

A normal mean-variance mixture, where the mixing distribution is inverse
gaussian, is called normal inverse Gaussian distribution. Equivalently, we can
define it by the following definition:

Definition 3.2.2. A random variable X is said to be normal inverse Gaus-
sian, if it has a probability density function of the form

f(x;α, β, δ, µ) =
αδK1

(
α
√
δ2 + (x− µ)2

)
π
√
δ2 + (x− µ)2

eδγ+β(x−µ), (3.4)
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where γ =
√
α2 − β2 and K1 is the modified Bessel function of second kind

with index 1. Furthermore, 0 ≤ |β| < α, δ > 0 and |µ| <∞.

The NIG distribution is specified by four parameters α, β, δ and µ, whose
interpretations are following:

• α - describes the kurtosis of the density function - the higher the value
of α, the steeper the density function. This also influences the tails of
the distribution, as small values of α imply heavy tails and large values
of α imply light tails.

• β - skewness parameter; it indicates the symmetry of the density func-
tion. Positive values imply a density skew to the right, negative values
imply a density skew to the left. Distributions with β = 0 are symmet-
ric around the mean.

• δ - scale parameter

• µ - location parameter.

3.2.1 Properties of the NIG distribution

Barndorff-Nielsen derived the moment-generating function of NIG distribu-
tion in 1997. It has the form

MX(z) = E(ezX) = eµz+δ(γ−
√
α2−(β+z)2). (3.5)

By differentiating it we obtain the central moments of NIG distribution,

E(Xn) =
d(n)MX(z)

dzn

∣∣∣∣
z=0

Then, using the known identity

E((X − E(X))n) =
n∑
j=1

(
n

j

)
E(Xj)(E(X))n−j

we write the following expressions for the first four normalized moments:
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E(X) = µ+
βδ

γ
, σ2 =

α2δ

γ3
,

γ1 =
3β

α
√
δγ
, γ2 =

3α2(α2 + 4β2)

α2δγ
.

We see that the expressions for the first four moments are quite simple
and elegant.

Probably the most appealing property of the NIG distribution is that it is
closed under convolution. It is the only distribution in the class of generalized
hyperbolic distributions to have this property. If X ∼ NIG(α, β, δ1, µ1) and
Y ∼ NIG(α, β, δ2, µ2) are two independent random variables, then

X + Y ∼ NIG(α, β, δ1 + δ2, µ1 + µ2). (3.6)

This is a powerful tool for transforming the distributions of observed data.
Assuming that the stock price is driven by an exponential Lévy NIG process
(the increments of log returns are NIG-distributed), we can very easily change
the time scaling and adjust the probability density function. The next figure
illustrates the histogram of weekly log returns of Google stocks together
with an NIG probability density function produced by estimating the NIG
distribution of the daily returns and then transforming it to the distribution
of weekly returns.
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Figure 3.2: Histogram of weekly GOOG returns from Aug 19, 2004 to Apr
15, 2009 compared to NIG(α, β, 5δ, 5µ)
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Chapter 4

Numerical implementation

In this chapter we describe a numerical implementation of the solution to
the problem introduced in Chapter 2. We consider an investor who has
a portfolio consisting of 2 different types of options with the same underlying
stock and time to maturity, but with different strike prices ($390 and $420).
The underlying stock is GOOGLE, expiration date of the options is Dec 16,
2006. We start the trading on July 14, 2006, i.e. 22 weeks before maturity.1

The initial stock value is $403.5, i.e. one of the options is in the money and
the other is out the money. We change the portfolio structure every 4 weeks,
rehedging once a week in between.

4.1 Stock price

We shall model the stock price process by exponential normal inverse Gaus-
sian process. This means that the increments of log returns are NIG dis-
tributed (cf. Chapter 3). For the estimation of NIG parameters we use daily
historical prices of Google stock from the time period Aug 19, 2004 - July 13,
2006 (source: http://finance.yahoo.com). We divide the log returns into 667
bins (covering the interval (−1, 1)), construct the corresponding histogram
of log returns and calculate the empirical probabilities of individual bins.
Based on these data, we calculate the first four moments of log returns (each

1We have chosen older data in order to avoid possible abnormalities caused by recently
increased volatility of stock prices.
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Figure 4.1: GOOGLE stock price in the period July 14, 2006 - Dec 29, 2006

bin being represented by its middle value) and solve the following system of
equations:

µ+
βδ

γ
= E(X),

α2δ

γ3
= E(X − E(X))2,

3β

α
√
δγ

=
E(X − E(X))3

(E(X − E(X))2)3/2
,

3α2(α2 + 4β2)

α2δγ
=

E(X − E(X))4

(E(X − E(X))2)2
− 3,

γ =
√

(α2 − β2).

Thus we obtain the estimates of NIG parameters and the corresponding
density function. Since we have chosen to rehedge our portfolio every week,
we must re-scale the distribution to weekly log returns distribution. We do
so by fixing new parameters (α, β, δ̃, µ̃) = (α, β, 5δ, 5µ).

In our model we allow only discrete values of log returns, aggregating the
real log returns into several bins (25) of the same range. We wish to choose
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the bins in such a way that we do not loose too many data. It is therefore
important that we determine the lower and upper boundary of the interval
containing the most of the log returns. We set the cut-offs to 0.5% and 95.5%

quantiles, leaving 99% of the data in hand. To find the quantiles, we may use
numerical integration of the density function. First, we find the roots of the
equation f(x) = 10−9, neglecting the points with smaller values of density
function. Denote the roots by xlow, xhigh. Then we numerically integrate the
density function and then we approximate the integral of the NIG density
function using the trapezoidal rule. This employs the approximation∫ b

a

f(x)dx ≈ (b− a)
f(a) + f(b)

2
.

The algorithm for finding the proper boundaries is as follows:

int = 0;
q = 0.005; % quantile
while int < q

int = int + (nigpdf(low+dx,est)+nigpdf(low,est))*dx/2;
low = low + dx;

end
int = 0;
while int < q

int = int + (nigpdf(high,est)+nigpdf(high-dx,est))*dx/2;
high = high - dx;

end

Once we have determined the boundaries of the interval we shall work
with, we are ready to fix the bins. It is essential that we set their width
uniformly so that the decision tree recombines and the number of possible
states at time t does not grow exponentially (cf. [1] for a better image). Thus
we obtain the following probability distribution of log returns:

4.2 Globally Optimal Trading Strategy

The program then runs in two embedded loops. The main loop includes
the decision-making concerning the structure of portfolio. Every 4 weeks
we check the actual portfolio structure (adjusted to unit initial wealth and
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r -20.99% -19.47% -17.95% -16.43% -14.91% -13.38% -11.86%
P 0.0027 0.004 0.0058 0.0085 0.0122 0.0173 0.0241
r -10.34% -8.82% -7.30% -5.77% -4.25% -2.73% -1.21%
P 0.0329 0.0438 0.0563 0.0696 0.0821 0.0917 0.0963
r 0.31% 1.84% 3.36% 4.88% 6.40% 7.92% 9.45%
P 0.0948 0.0872 0.0749 0.0603 0.0457 0.0329 0.0227
r 10.97% 12.49% 14.01% 15.53%
P 0.015 0.0097 0.006 0.0037

Table 4.1: Approximation of the probability distribution of log returns

risk tolerance) and maximize the utility function described in Chapter 2(
i.e. we minimize

f(η)

(G0/γU(G0))2

)
. To do so, we need to find the risk-neutral

measure Q and calculate the Σ matrix consisting of individual hedging errors

of
Hi +Hj

4
,
Hi −Hj

4
. The errors are computed recursively in a tree using

(1.6), (1.8) and (1.10). The ask and bid prices of the options are taken from
the website http://www.poweropt.com. Then we calculate the optimal values
of η adjusted to the real value of our portfolio and our risk tolerance. We
take the trading costs into consideration by setting G̃0 = G0 + η+Cbid −
η−Cask. With the new structure of portfolio and new initial wealth G̃0,
we perform dynamically optimal hedging - this is the second, embedded
loop. We calculate the locally optimal hedging strategy (1.6) recursively in
a tree again and then, depending on the actual value of portfolio, calculate
the corresponding dynamically optimal hedge (1.19) and adjust the portfolio
value. The final portfolio value after 4 weeks of hedging is then set to be the
new initial value of portfolio in the next portfolio rebalancing.

The initial amounts of options at the very beginning of trading are set to
0 and we assume G0 = 100, V ∗ = 200, i.e. the investor started with initial
wealth 100, desired to reach final wealth 200 and had a zero option portfolio
in the beginning.
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4.3 Results

For a detailed investigation of the results of our historical simulation, see
Appendix A.1.

The historical simulation shows that rebalancing the portfolio throughout
hedging is not useless. It provides a tool for amending the errors which may
occur from pure hedging. Even if we follow the dynamically optimal strategy
derived in [2], unexpected market behavior might bring considerable losses.
This is a good opportunity to emphasise the importance of good estimation
of data distribution. It is necessary that we have a good image of common
behavior of the stock. In the case of unexpected long–term changes in stock
price movement the hedging tools might prove helpless. Consider a stock
with E(X) < 0. The dynamically optimal strategy (1.19) "assumes" that
the stock price is likely to decrease. Hence, it performs the corresponding ad-
justment of locally optimal strategy ξt. However, if the stock price increases
significantly, this adjustment brings more damage than use.

While testing different initial set-ups of our strategy, we noticed that the
problem is quite sensitive to the value of λ̃ parameter. Setting λ̃ = 0 instead
of the original value λ̃ = −3.106 brought much better results (the largest
deviation Gt − Vt throughout the whole hedging time was −8.84, the final
realized value GT−VT = −1.69 and the expected squared hedging error in the
last rebalancing period was E(GT − VT )2 = 1.48). Very similar results were
obtained by setting λ̃ = 1.1. This is an interesting observation. However,
one cannot draw conclusions from a single simulation. For a more robust
result, we would have to perform much more simulations and evaluate their
results.

We simultaneously performed a simulation of globally optimal hedging
without rebalancing, using the same data. The results are charted in Ap-
pendix A.2. During the first four periods the two strategies showed very
similar results, but the last 6 weeks of trading brought significant turbu-
lence in the hedging errors. This is a wonderful opportunity to observe that
rebalancing the portfolio might bring similar situations "back to normal",
whereas pure hedging strategy may experience problems in handling large
misalingments Vt − Gt. The following chart depicts the development of the
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value Gt − Vt for both strategies.
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Figure 4.2: Comparison of the performance of option rebalancing strategy
and globally optimal hedging strategy with no rebalancing
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Chapter 5

Conclusion

We have presented a solution to the problem of maximizing the utility func-
tion by means of rebalancing the option portfolio and optimally hedging the
portfolio at the same time. We have shown that for a portfolio of several op-
tions, the hedging error ε2

0(Hα) can be easily rewritten as a quadratic form
expression, thus allowing us to maximize the utility function with greater
ease. We have derived the formulation of the problem in the form of a
quadratic programming problem. In the end we have performed a single
historical simulation demonstrating our expectations. The results show that
following the strategy derived in this thesis may be very useful indeed, espe-
cially in the cases when sudden or unexpected stock price movements bring
large deviations from the desired portfolio value.
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Appendix A

Charts

A.1 Globally Optimal Hedging Strategy With
Intermediate Portfolio Rebalancing
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Time to maturity (in weeks): 22
Initial portfolio value (before trading): 100
Relative local risk aversion: 1
Stock price: 403.5

strike price ρ(initial) ζ ρ(optimal)
390 0 0.013832 1.3832
420 0 0.011186 1.1186

Portfolio Value after trading options: 199.9392
E(GT − VT )2 before trading options: 10000
E(GT − VT )2 after trading options: 2.5008

Hedging

t Gt ξt Vt ϕt G(t)− V (t)
0 199.9392 -0.00010938 200.0023 -0.00064379 -0.063105
1 199.9472 -8.1626e-005 200.0299 -0.00078136 -0.082627
2 199.9487 -9.3698e-005 200.0219 -0.00071332 -0.073167
3 199.9586 -8.4645e-005 200.0251 -0.00064745 -0.066458
4 199.9621 0 200.0225 -0.00051173 -0.060427
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Time to maturity (in weeks): 18
Initial portfolio value (before trading): 199.9621
Relative local risk aversion: 5270.9897
Stock price: 368.5

strike price ρ(initial) ζ ρ(optimal)
390 1.3832 12.4702 1.8562
420 1.1186 -22.6154 0.2607

Portfolio Value after trading options: 199.8883
E(GT − VT )2 before trading options: 2.1971
E(GT − VT )2 after trading options: 2.1055

Hedging

t Gt ξt Vt ϕt G(t)− V (t)
4 199.8883 -0.00017249 200.003 -0.0011312 -0.11464
5 199.8711 -0.00017448 200.0457 -0.0016344 -0.17458
6 199.8874 -9.2821e-005 200.0462 -0.0014203 -0.15875
7 199.8797 -6.8034e-005 200.0245 -0.0012787 -0.14478
8 199.8807 0 200.0181 -0.0011491 -0.13742
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Time to maturity (in weeks): 14
Initial portfolio value (before trading): 199.8807
Relative local risk aversion: 1675.5466
Stock price: 377.85

strike price ρ(initial) ζ ρ(optimal)
390 1.8562 2.1752 2.1157
420 0.2607 -4.6011 -0.28818

Portfolio Value after trading options: 199.7205
E(GT − VT )2 before trading options: 6.4463
E(GT − VT )2 after trading options: 6.3126

Hedging

t Gt ξt Vt ϕt G(t)− V (t)
8 199.7205 -0.0012189 200.0213 -0.0035883 -0.30078
9 199.6007 -0.0011054 200.3255 -0.0068146 -0.72475
10 199.6416 -0.00075335 200.2972 -0.0059178 -0.65559
11 199.6527 -0.00023218 200.2061 -0.004592 -0.55345
12 199.5673 0 200.0664 -0.0039315 -0.49908
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Time to maturity (in weeks): 10
Initial portfolio value (before trading): 199.5673
Relative local risk aversion: 461.1953
Stock price: 420.5

strike price ρ(initial) ζ ρ(optimal)
390 2.1157 -0.69901 1.8133
420 -0.28818 1.1999 0.23105

Portfolio Value after trading options: 199.7158
E(GT − VT )2 before trading options: 46.1346
E(GT − VT )2 after trading options: 45.0361

Hedging

t Gt ξt Vt ϕt G(t)− V (t)
12 199.7158 -0.023107 200.5004 -0.028334 -0.78453
13 199.5185 -0.0063053 206.063 -0.049907 -6.5444
14 197.7448 -0.0023399 201.7594 -0.029087 -4.0146
15 197.2791 -0.0017482 200.7071 -0.024587 -3.428
16 197.3627 0 200.5683 -0.021357 -3.2056
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Time to maturity (in weeks): 6
Initial portfolio value (before trading): 197.3627
Relative local risk aversion: 74.8348
Stock price: 471.8

strike price ρ(initial) ζ ρ(optimal)
390 1.8133 0.11331 2.1121
420 0.23105 -0.074262 0.035193

Portfolio Value after trading options: 211.5106
E(GT − VT )2 before trading options: 502.5987
E(GT − VT )2 after trading options: 321.8503

Hedging

t Gt ξt Vt ϕt G(t)− V (t)
16 211.5106 -0.42705 214.0041 -0.44268 -2.4935
17 210.734 -0.24936 294.1367 -0.77223 -83.4027
18 190.3664 -0.16972 258.3426 -0.59588 -67.9762
19 186.633 -0.30084 244.0421 -0.66075 -57.4091
20 202.6233 0 274.3847 -0.44989 -71.7614
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Time to maturity (in weeks): 2
Initial portfolio value (before trading): 202.6233
Relative local risk aversion: -77.2406
Stock price: 403.78

strike price ρ(initial) ζ ρ(optimal)
390 2.1121 0.69772 0.28178
420 0.035193 -0.27469 0.75577

Portfolio Value after trading options: 201.3271
E(GT − VT )2 before trading options: 310.2366
E(GT − VT )2 after trading options: 30.5198

Hedging

t Gt ξt Vt ϕt G(t)− V (t)
20 201.3271 -0.14224 201.7938 -0.14529 -0.4667
21 201.6014 -0.020768 239.9159 -0.27134 -38.3145
22 195.6012 0 215.4541 -0.12983 -19.8529
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A.2 Globally Optimal Hedging Strategy With-
out Rebalancing

ρ

1.3832
1.1186

Hedging

t Gt ξt Vt ϕt G(t)− V (t)
0 199.9392 -0.00010938 200.0023 -0.00064379 -0.063105
1 199.9472 -8.1626e-005 200.0299 -0.00078136 -0.082627
2 199.9487 -9.3698e-005 200.0219 -0.00071332 -0.073167
3 199.9586 -8.4645e-005 200.0251 -0.00064745 -0.066458
4 199.9621 -0.00015735 200.0027 -0.00049684 -0.040599
5 199.9545 -0.00015826 200.0421 -0.00089066 -0.087583
6 199.9634 -8.3092e-005 200.0423 -0.00074291 -0.078904
7 199.9594 -6.0306e-005 200.0222 -0.0005852 -0.062769
8 199.9599 -0.0010737 200.0183 -0.001534 -0.058434
9 199.9098 -0.0009601 200.2928 -0.0039776 -0.38305
10 199.9337 -0.00064069 200.2639 -0.0032417 -0.33018
11 199.9398 -0.00019041 200.1793 -0.002077 -0.23949
12 199.9011 -0.022119 200.4678 -0.025895 -0.56665
13 199.7217 -0.005801 205.9254 -0.047133 -6.2037
14 198.0461 -0.0020891 201.652 -0.026113 -3.6059
15 197.6279 -0.001532 200.6438 -0.021625 -3.0159
16 197.7014 -0.39254 212.1614 -0.48319 -14.4599
17 196.8447 -0.21529 290.1451 -0.80021 -93.3004
18 175.6668 -0.13911 253.0072 -0.62398 -77.3404
19 171.7545 -0.24547 238.2475 -0.66233 -66.493
20 187.7828 -0.47655 206.6326 -0.59982 -18.8498
21 188.9566 -0.097178 316.0836 -0.92856 -127.127
22 168.5223 0 258.3758 -0.58762 -89.8536
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