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Abstract

KVA��ÁKOVÁ, Katarína: Modeling dependence structure of the stock and bond mar-

ket [Master thesis], Comenius University, Bratislava, Faculty of Mathematics, Physics and

Informatics, Department of Applied Mathematics and Statistics; Supervisor: Mgr. Pavol

Jur£a, Bratislava, 2009, 55 pages

We investigate the dependence between stock and bond market. These two variables are

expected to be strongly interdependent, but not necessarily in linear fashion. Therefore,

correlation cannot capture this dependence properly. We use two other approaches, copula

and multivariate GARCH models. We apply them to modeling the returns of the growth

pension funds. From stock indices and discount rates we �nd the ones that have signi�-

cant in�uence on returns of these funds and cluster them into one variable for the stock

market and one variable for the bond market. The core of the thesis lies in investigating

the dependence between these two variables by copula and multivariate GARCH models.

Furthermore, we calculate Value at Risk implied by both models and compare them. Cop-

ula model produces better estimation of VaR.

Keywords: dependence, copula, MGARCH, VaR, pension funds

iv



Abstrakt

KVA��ÁKOVÁ, Katarína: Kopuly [Diplomová práca], Univerzita Komenského v Bratislave,

Fakulta matematiky, fyziky a informatiky, Katedra aplikovanej matematiky a ²tatistiky;

�kolite©: Mgr. Pavol Jur£a, Bratislava, 2009, 55 strán

V diplomovej práci skúmame závislos´ medzi trhom akcií a trhom dlhopisov. Je o£aká-

vate©né, ºe medzi trhmi existuje ur£itá súvislos´, no nie nutne v lineárnej forme. Preto

korelácia nemusí by´ schopná zachyti´ tento vz´ah správnym spôsobom. My pouºijeme dva

iné prístupy, kopula modely a mnohorozmerné GARCH modely. Modely aplikujeme na

modelovanie výnosov rastových fondov v penzijných spolo£nostiach. Z vybraných diskont-

ných sadzieb, akciových a swapových indexov vyberieme tie, ktoré majú signi�kantný vplyv

na výnosy rastových fondov a tie zlú£ime do jednej premennej pre trh akcií a jednej pre-

mennej pre trh dlhopisov. Jadro práce tvorí skúmanie ²truktúry závislosti týchto dvoch

premenných pomocou kopula modelov a mnohorozmerných GARCH modelov. Okrem toho

vypo£ítame VaR pre dané modely. Testy ukazujú, ºe kopula modely dávajú lep²ie odhady

VaR.

K©ú£ové slová: závislos´, kopula, mnohorozmerný GARCH, VaR, penzijné

fondy
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1 Introduction

Correlation is typically used as a natural and easily understandable measure of depen-

dence. It is one of the critical input of �nancial management. We desire assets not to

move with each other in order to protect our investment's portfolio. Stronger dependence

increases our loss, therefore we do not like to put our eggs in one basket. A limitation of

correlation is that it assumes the elliptical family of distributions that Normal or Student

distribution belong to. Unfortunately, many recent papers show that the �nancial returns

are not normally distributed. Furthermore, they tend to exhibit asymmetric dependence.1

There are two approaches how to handle these problems.

The �rst approach uses copula theory to model the joint distribution. A copula links

together marginal distributions to form a multivariate distribution. All the univariate

information is contained in the marginal distribution functions, while the dependence is

fully captured by the copula. Copula modeling allows the variables to have di�erent de-

pendence in di�erent quantiles. Loosely speaking, dependence during the crisis can be

stronger or weaker comparing to the boom. In contrast, the usual correlation coe�cient is

not su�cient to describe the dependence structure of copula unless the joint distribution

is elliptical.

Another approach to handle changing covariance is called multivariate GARCH models.

They are natural extension of the univariate GARCHmodels pioneered by Engle. The mod-

els are based on the modeling conditional covariance matrix by using the past information.

Their drawback is that they assume a joint normal distributions for the innovations.

We apply the models in portfolio management and risk evaluation. Our focus is on the

pension area. Since 2005 a new law has enabled to save money for pension in pension

funds. We look at the pension management companies in Slovakia and compute the risk

they face investing in the stock and bond markets. We investigate the dependency between

the stock and bond markets and compare the copula and multivariate GARCH approach.

Furthermore, we calculate Value at Risk, which both a pension company and a pension

saver are interested in. The pension company cannot go to the high risk because it has to

guarantee some level of return. If such level of return is not reached, the company will be

sanctioned by the National Bank of Slovakia. From the view of the pension saver, he is

interested in the risk that his money, his future pension, faces.
1cf. Longin and Solnik (1995) and Patton (2003).
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The remainder of the thesis is organized as follows. Chapter 2 introduces the reader to

the theoretical background for bivariate copula case. It presents mathematical and prob-

abilistic principles on which the empirical part is built and explains the process of copula

estimation. It discusses di�erent approaches for di�erent parts of the estimation. Chap-

ter 3 gives a brief overview of univariate and multivariate GARCH models. Chapter 4

introduces the concept of Value of Risk. Chapter 5 presents applications of copula models

comparing to multivariate GARCH models. It focuses on investments in pension funds

and investigate their risk by modeling dependence between the stock and bond markets.

Chapter 6 concludes.
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2 Copulas

A copula is a function that links together marginal distribution functions1 to form a joint

distribution. The study of copulas originates with Sklar (1959). After a long time of silence,

last ten years were very rich in using copulas in economics and �nance. For instance, see

the work of Patton (2003), Nelsen (1998) and Cherubini et al. (2004).

The focus of this section is to give the theoretical background for their modeling. First we

de�ne copulas and mention the most important theorem in copula theory. Then we discuss

di�erent copula families. Finally, we explain di�erent methods of copula estimation.

2.1 Basic de�nitions

We de�ne copulas as a certain class of functions with speci�c properties. We restrict the

attention to the bivariate case because that is the object of our empirical work. However,

the generalization to the multivariate case is straightforward.

De�nition 2.1 A two-dimensional copula is a function C : [0, 1]× [0, 1]→ [0, 1] with the

following properties:

1. For every u, v in [0, 1],

C(u, 0) = C(0, v) = 0

C(u, 1) = u and C(1, v) = v.

2. For every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

The de�nition presents simple and expected conditions. We can look at copula as a

joint distribution function with margins U , V that are uniform on [0, 1]. The value C(u, v)
is the probability that values of random variables U and V fall below their (100u)th quantile
and (100v)th quantile. The �rst property says that any of the random variables U , V is less

than zero quantile with a zero probability and the probability that the random variable U
1In the following text we shall also used the expression margins or marginals.
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is less than (100u)th quantile, while V can gain any value, is u and vice versa. The second

property says that the probability that U is between (100u1)th quantile and (100u2)th

quantile and V is between (100v1)th quantile and (100v2)th quantile has to be nonnegative.
The most important result of copula theory is the Sklar's theorem.

Theorem 2.1 (Sklar's theorem.) Let H be a joint distribution function with margins F

and G. Then there exists a copula C such that for all x,y in R,

H(x, y) = C(F (x), G(y)). (2.1)

If F and G are continuous, then C is unique. Conversely, if C is a copula and F and G are

distribution functions, then the function H de�ned by (2.1) is a joint distribution function

with margins F and G.

By Sklar's theorem, all distribution functions can be expressed by copulas. The proof is

based on the properties of copulas and distribution functions and can be found in [13].

Random variables can be de�ned not only by their distribution functions, but by their

densities as well. Denote the density of bivariate random variable by h(x, y) and copula

density by c(u, v) where

c(u, v) =
∂2C(u, v)
∂u∂v

.

We can derive the following expression

h(x, y) = c(F (x), G(y))f(x)g(y), (2.2)

where f(x), g(y) are marginal densities.

The expression (2.2) gives us another view of what a copula presents. By copula density

we are able to express joint density using the marginal densities. In estimating copulas we

issue from this relationship.

2.2 Copula families

There are number of parametric copula speci�cations. We look at them with respect to

their behavior in tails that we are interested in. Tail dependence is a measure for couples

of random variables that capture their behavior on tails. It is de�ned as

Left tail dependence λL = lim
v→0+

Pr(U < v|V < v) = lim
v→0+

Pr(V < v|U < v),

Right tail dependence λR = lim
v→1−

Pr(U > v|V > v) = lim
v→1−

Pr(V > v|U > v),

4



Copula family Distribution function

Normal copula CN (u, v; ρ) = Φρ(Φ−1(u),Φ−1(v))

Clayton copula CC(u, v;α) = max [(u−α + v−α − 1)−
1
α , 0]

Gumbel copula CG(u, v;α) = exp {−[(−ln u)α + (−ln v)α]
1
α }

Rotated Gumbel copula CR(u, v;α) = u+ v − 1 + CG(1− u, 1− v;α)

Table 2.1: Distribution functions of di�erent copulas

where Pr(X) means the probability of X. Let us remark that U, V are not the values of

random variables, but their quantiles. Therefore, Pr(U < v|V < v) = Pr(V < v|U < v)
and tail dependence is properly de�ned.

Tail dependence describes the limiting probability that one margin exceeds a certain thresh-

old given that the other margin has already exceeded that threshold. Loosely speaking, it

tells us if the extreme events tend to occur in the same time. We can easily derive formula

for copula left tail dependence

λL = lim
v→0

Pr(U < v ∧ V < v)
Pr(V < v)

= lim
v→0

C(v, v)
C(1, v)

= lim
v→0

C(v, v)
v

and right tail dependence

λ = lim
v→1

Pr(U > v ∧ V > v)
Pr(V > v)

= lim
v→1

C(1, 1)− C(v, 1)− C(1, v) + C(v, v)
1− C(1, v)

= lim
v→1

1− 2v + C(v, v)
1− v

.

Existing literature typically documents that extreme events are more correlated than or-

dinary ones. We will study this fact by focusing on four types of copulas. We use Normal,

Clayton, Gumbel and Rotated Gumbel copula. They are de�ned by formulas given in

Table 2.1. Note that Φ is a cumulative distribution function of standard normal distribu-

tion and Φρ is a cumulative distribution function of multivariate normal distribution with

correlation matrix ρ.

The considered copula families cover all di�erent behaviors in tails. Normal copula has

zero tail dependence for both tails. Its parameter ρ varies from −1 to 1 and it is equal

to correlation for normal distributed marginals. Gumbel copula represents an asymmetric

copula with non-zero upper tail dependence, i.e. extreme positive events occur together.

Its parameter α is from (1,∞). The higher α is the more dependence is between the

variables. To capture non-zero lower tail dependence we consider Clayton and Rotated

5



Gumbel copulas. The parameter α of Clayton copula lies in (−1,∞)\{0} and (1,∞) for

Rotated Gumbel copula. For both, the higher the parameter is the more dependence there

is between variables. We plot copula densities of the used copulas in Figure 2.1. We can

see high values in low quantiles for copulas where lower tail dependence is high and in

high quantiles for copulas where upper tail dependence is high. Besides parametric copula

Figure 2.1: Copula densities

families we establish one non-parametric copula.

De�nition 2.2 Let V = {xn, yn}Nn=1 be the sample data set. Then the empirical copula is

the following function

C

(
i

N
,
j

N

)
=

#{(x, y) ∈ V : x < xi, y < yj}
N

i, j ∈ N : 0 < i, j ≤ N,

where # means a number of (x, y) that ful�lls the given property, and empirical copula

6



density with precision k

c

(
i

k
,
j

k

)
= C

(
i

k
,
j

k

)
− C

(
i− 1
k

,
j

k

)
− C

(
i

k
,
j − 1
k

)
+ C

(
i− 1
k

,
j − 1
k

)

i, j ∈ N : 1 < i, j ≤ N.

They are analogous to the empirical cumulative distribution function and histogram which

we know by univariate random variables. This approach allows us to analyze dependence of

random variables without any previous assumptions. By inspection the graph of empirical

copula density we get the intuition which parametric copula family �ts the data best.

2.3 Process of copula modeling

There are several issues one needs to consider when estimating copulas. First, we seek for

the best estimation of joint density by a considered copula. Second, after estimating the

parameters of di�erent copulas, we look for the one that �ts the data best.

2.3.1 Estimating parameters of copula and marginals

In the �rst step, our goal is to determine the parameters of the copula that describes

the given density the best. Estimation is based on Maximum Likelihood Method. Maxi-

mum Likelihood Estimation is widely used and favored because of its feasibility and good

asymptotic properties. By estimating the parameters we issue from the relationship be-

tween density of copula and density of the given data (2.2).

Let {xn, yn}Nn=1 be the sample data matrix. Thus, the log likelihood function

l(θ) =
N∑
n=1

ln c(F (xn), G(yn); θ) +
N∑
n=1

ln f(xn; θ) +
N∑
n=1

ln g(yn; θ),

where θ is the set of all parameters of both the copula and the marginals. The maximum

likelihood estimator is obtained as

θ̂ = arg max
θ
l(θ)

The direct estimation of all parameters could be very computationally demanding. How-

ever, the representation of the log likelihood function allows us to split the copula esti-

mation in two steps. First identifying the marginals and second estimating the copula

7



parameter. There are two basic methods using this approach: Interference for Margins

(IFM), a fully parametric approach and Canonical Maximum Likelihood (CML), a semi-

parametric approach.

We analyze the details for each approach separately below.

IFM estimator

IFM is a fully parametric method. We need not only a copula to be parametric, but

marginal densities as well. It means, we have to assume that marginals issue from some

speci�c distribution family. Let θC represents the parameter of a copula and θX , resp. θY
represent the parameters of marginal distributions. Thus, the log likelihood function can

be re-expressed

l(θC , θX , θY ) =
N∑
n=1

ln c(F (xn; θX), G(yn; θY ); θC) +
N∑
n=1

ln f(xn; θX) +
N∑
n=1

ln g(yn; θY ).(2.3)

Now we could just maximize the function over all parameters, but the optimization over

more parameters is more computationally demanding. To avoid it, the log likelihood

function is split into parts where parameters are estimated separately. In the �rst step, we

estimate parameters of marginal densities (θX , θY ) maximizing the second part of (2.3)

θ̂X = arg max
θX

N∑
n=1

ln f(xn; θX) and θ̂Y = arg max
θY

N∑
n=1

ln f(yn; θY )

The second step uses the estimated parameters of marginal distributions to maximize the

log likelihood function and estimate the copula parameter

θ̂C = arg max
θC

N∑
n=1

ln c(F (xn; θ̂X), G(yn; θ̂Y ); θC).

Note that copula density depends not only the parameter θC , but on marginals parameters

θX and θY as well. By splitting the original log likelihood function into two parts, this

property is ignored because of less computationally demanding estimation. As consequence

the estimator (θ̂C , θ̂X , θ̂Y ) is not e�cient in general, but we regard it as a good trade o�

between di�culty of the approach and e�ciency of the estimator.

CML estimator

CML is a semi-parametric method with two steps. First, we estimate marginal distributions

8



using empirical cumulative distribution (a non-parametric step). Second, we use Canoni-

cal Maximum Likelihood to estimate joint density by copula (a parametric step). We put

estimated distribution functions from the �rst stage to maximum likelihood function which

we want to maximize over the parameter of the considered copula

θ̂C = arg max
θC

N∑
n=1

ln c(F̂ (xn), Ĝ(yn), θC),

where F̂ (x), Ĝ(y) are empirical distribution functions. Comparing the methods, CML and

IFM approaches di�er in the estimation of marginal distributions in the �rst step. The

second step is the same.

2.3.2 Copula selection

After estimating joint distribution with di�erent copulas we are mostly interested in the

copula which can estimate the joint distribution of data in the best way. We use several

criteria to select the model.

The �rst group of criteria is based on Maximum Likelihood function: Akaike information

criterion (AIC) and Bayes Information Criterion (BIC). They are closely connected to the

maximum likelihood method and it is very natural to consider them. We prefer the copula

with the minimal value of AIC or BIC. The criteria are de�ned by formulas

AIC = −2 lnL(θ̂) + 2q,

BIC = −2 lnL(θ̂) + q ln(N),

where θ̂ is the vector of estimators, q is number of estimated parameters and N is number

of observations in our dataset. It is important to notice, that in our case, when we consider

only one-dimension parameter copulas, both criteria AIC and BIC always select the same

copula. That is why we will consider just AIC in our empirical work.

The second group of criteria compares empirical joint distribution to parametric distribu-

tion of estimated copula. We use Kolmogorov-Smirnov and Anderson-Darling statistics

given by

KS = max
i
|Hm(xi, yi; θ̂)−He(xi, yi)|, (2.4)

AD = max
i

|Hm(xi, yi; θ̂)−He(xi, yi)|√
He(xi, yi)(1−He(xi, yi))

, (2.5)

whereHe is an empirical joint distribution andHm is a joint distribution estimated from the

model. Anderson-Darling statistics, compared to Kolmogorov-Smirnov statistics, takes the

9



di�erences |Hm(xi, yi; θ̂)−He(xi, yi)| into consideration with higher weights in the middle

of distribution than on the tails (denumerator in (2.5)). The best copula is a copula with

the minimal statistics.

2.3.3 Simulating the criteria

There is no theory which criterion is the best. When estimating copulas on data2 di�er-

ent criteria preferred di�erent copulas as the most appropriate. These results motivate us

to analyze the robustness of copula models using di�erent criteria. We use the following

approach for simulations.

Consider the formula for copula density (2.2). First, we choose the marginal distributions.

Second, we compute the corresponding values of copula density and calculate joint den-

sity. There is no uncertainty so far. We generate pairs of values from the calculating joint

density. We put the noise to data by adding the error term with distribution N(0, σ2).
Third we estimate the parameters for all copulas by the IFM method. We are interested

in probability, with which the criterion selects the generating copula.

In our simulations we use marginals from normal distributions. We consider all four cop-

ulas. We compute the joint density for each copula and generate 1000 data from it. Then

we add the error term with standard deviation 0.01 and �t all for copulas. We select the

best according all criteria and compare to the generating one. We repeat this technique

1000 times and get the probability of success for all three criteria. We report results in

Table 2.2.

Results from simulations �nd the AIC criterion the best. We decided to use this criterion

Criterion Probability

AIC/BIC 87%

Kolmogorov-Smirnov 72%

Anderson-Darling 68%

Table 2.2: Probability of selecting the generating copula

by choosing the best copula family in our empirical work. Furthermore, this criterion is in

coherence with the method how the parameters of copulas and marginals were estimated,

by Maximum Likelihood Method.

2More about data in Chapter 5
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3 Multivariate GARCH

The main feature of the GARCH framework is the modeling of second moments that are

connected to uncertainty. In this chapter we present functional forms of a general model

and its simpli�cation to more parsimonious models which we use in our empirical work.

We discuss their properties and estimation of parameters.

3.1 History and basic models

Studying �nancial time series came up with the problem that variance was not time invari-

ant. Traditional time series tools such as Autoregressive Moving Average (ARMA) models

have been extended to analogous models for the variance. Engle (1982) suggested that

the unobservable second moments could be modeled together with the �rst moments. The

second moment depends on the elements in the information set in autoregressive manners.

This model was called the Autoregressive Conditional Heteroscedasticity (ARCH) model.

Conditional implies a dependence on the past observations and autoregressive describes a

mechanism how past observations are incorporated into the present. Heteroscedasticity is

the other expression for time-varying variance.

Bollerslav (1986) generalized the Engle's model by adding past conditional variances in

the current conditional variance equation to get the famous Generalized ARCH (GARCH)

model.1 We present here the precise de�nition of the model.

De�nition 3.1 (Univariate GARCH.) Consider the univariate, serially uncorrelated,

zero mean process ut. The process ut is said to follow a generalized autoregressive condition-

ally heteroscedastic process of order p and q, GARCH(p, q), if the conditional distribution

of ut given its past Σt−1 := {ut−1, ut−2, . . .}, has zero mean and the conditional variance

is

σ2
t|t−1 : = V ar(ut|Σt−1) = E(u2

t |Σt−1)

= α0 + α1u
2
t−1 + . . .+ αqu

2
t−q + β1σ

2
t−1|t−2 + . . .+ βpσ

2
t−p|t−p−1,

that is, ut|Σt−1 ∼ (0, σ2
t |t− 1).

GARCH models are now widely adopted in applications. They become very popular due

to very intuitive idea behind the model. Furthermore, the models are tractable and easy
1GARCH, GARCH process and GARCH model mean the same
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to estimate. Many di�erent classes of models were derived from the basic GARCH model.

The main advantage of GARCH models is that they take into account the fat tail behavior

and volatility clustering, a tendency of small observation to be followed by other small

observations and vice versa. Both properties are very common in �nancial time series.

The extension for multivariate case followed shortly. Multivariate GARCH can capture

relationship between multiple series. It is obvious that an increase in the volatility in one

series may make the other series more volatile as well. The multivariate case is the direct

generalization of univariate case.

De�nition 3.2 (Multivariate GARCH.) Suppose that ut = (u1t, . . . , uNt) is a N�di-

mensional zero mean, serially uncorrelated process which can be represented as

ut = H
1/2
t|t−1εt,

where εt is a N -dimensional i.i.d white noise, εt ∼ i.i.d. (0, IN ), and Ht|t−1 is the condi-

tional covariance positive de�nite matrix of ut given the past information. They represent

a multivariate GARCH process, MGARCH(p,q), if

vech(Ht|t−1) = C0 +
q∑
j=1

ajvech(ut−ju′t−j) +
p∑
j=1

Gjvech(H ′t−j|t−j−1), (3.1)

where vech denotes the half-vectorization operator which stacks the columns of a square

matrix from the diagonal downwards in a vector, C0 is 1
2N(N + 1)-dimensional vector of

constants, Aj's and Gj's are
1
2N(N + 1)× 1

2N(N + 1) coe�cient matrices. The system of

equations (3.1) de�nes the parametrization that is called vec representation.

To illustrate in the bivariate (N = 2) case, MGARCH(1,1) vec model in matrix notation

is simply σ11,t|t−1

σ12,t|t−1

σ22,t|t−1

 =

 c10

c20

c30

+

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 u2

1,t−1

u1,t−1u2,t−1

u2
2,t−1



+

 g11 g12 g13

g21 g22 g23

g31 g32 g33


 σ11,t−1|t−2

σ12,t−1|t−2

σ22,t−1|t−2

 .

From the example it is obvious that even the simple model has a fair numbers of param-

eters which makes it di�cult to handle. The challenge for scientist is to avoid too many
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parameters to keep them feasible but on the other hand to maintain enough �exibility in

behavior of Ht.

The second problem is whether the model guarantees the positive semide�niteness of con-

ditional covariance matrix Ht in the time. We require Ht to be positive semide�nite for

all values of εt in the sample space. This restriction can be di�cult to check in the vec

representation. The problem was solved by Engle and Kroner (1995). They suggested a

new representation of MGARCH model, BEKK representation.2

De�nition 3.3 (BEKK representation.) MGARCH(p,q) model written as

Ht = C?
′

0 C
?
0 +

K∑
k=1

q∑
i=1

A?
′
ikεt−1ε

′
t−1A

?
ik +

K∑
k=1

p∑
i=1

G?
′
ikHt−1G

?
ik,

where C?0 is a upper triangular N × N matrix, A?ik's and G?ik's are N × N coe�cient

matrices, is called the BEKK representation.

This is a convenient representation for analysis de�niteness of the system. It is clear that

the BEKK representation guarantees the positive semide�niteness of Ht under very weak

conditions. Engle and Kroner discussed and proofed them for any MGARCH model given

by BEKK representation. For K = 1, positivity of H0 and regularity at least one of the C0

or G?i1 is su�cient. Furthermore, Engle and Kroner showed the relationship between vec

and BEKK representation. Positivity conditions for original vec representation was derived

by Gourieroux (1997) but they are not so intuitive and easy to impose in estimation.

The assumption of normality in residuals give rise to a likelihood function. Maximizing the

log likelihood function we get the parameters of models. We do not discuss the details of the

Maximum Likelihood Estimation for MGARCH models as we did in previous chapter about

copula estimation. Whereas we had to program estimation of copula parameters, many

softwares have already included estimation of MGARCH parameters based on Maximum

Likelihood Estimation.

3.2 Models

In our empirical work we use three models − basic Constant Conditional Correlation

(CCC) model and two special forms of bivariate GARCH(1,1) models, diagonal vec model

and diagonal BEKK model.

CCC model will be our benchmark. It captures the dependence structure only by univariate
2The acronym BEKK is the abbreviation of the names Baba, Engle, Kraft and Kroner.
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GARCH models. Conditional means that the variance of each series is modeled by GARCH

model and constant implies that the correlation is time invariant. Let hit is univariate

GARCH for each series i. Then CCC model is

Ht = DtRDt,

Dt = diag(
√

hit),

R = (ρij),

whereR is aN×N correlation matrix and is estimated as a simple unconditional correlation

matrix.

The second model is diagonal vec model. Matrices A and G from the vec representation are

assumed to be diagonal. Loosely speaking, each variance hiit depends only on its own past

squared error ε2i,t−1 and its own lag hii,t−1 and covariance hijt depends only on its own past

cross-product of errors εi,t−1εi,t−2 and its own lag hij,t−1. This seems an intuitively plausible

restriction because information about variances is usually hidden in squared residuals and

there is some ability of past squared residuals to forecast future variances. A similar

explanations can be made for covariances. As a revenue for the restriction the number of

parameters is reduced from 21 to 9 for the bivariate case. The matrix notation of bivariate

GARCH(1,1) vec model is equivalent to the system of equations

h11t = c1 + a11ε
2
1,t−1 + g11h11,t−1

h21t = c2 + a22ε1,t−1ε1,t−1 + g22h21,t−1

h22t = c3 + a33ε
2
2,t−1 + g33h22,t−1

The third model is a bivariate diagonal BEKK(1,1,1) model. It takes A?k and G?k in the

BEKK representation as diagonal matrices. The model is simpli�ed to the system

h11t = ω11 + a?211ε
2
1,t−1 + g?211h11,t−1

h21t = ω21 + a?11a
?
22ε1,t−1ε2,t−1 + g?11g

?
22h21,t−1

h22t = ω22 + a?222ε
2
2,t−1 + g?222h22,t−1

Comparing the structure of the model to the previous vec model we see the same linear

structure. However, there are some additional constraints on parameters. By adding the

restrictions

a22 =
√
a11a33, g22 =

√
g11g33 and a11, a33, g11, g33 ≥ 0

14



to the bivariate GARCH(1,1) vec model we get BEKK(1,1,1) model. The constraints

restrict the �exibility of the model as trade-o� for less parameters. We need to estimate

only 7 parameters in this model.

Note that while the �rst CCC model speci�es the conditional correlation in addition to

the variances, vec and BEKK model speci�es the conditional covariance in addition to the

variances.
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4 Value at Risk

Each investor is interested in the risk his portfolio faces. Currently, portfolio risk is mea-

sured in terms of its "value at risk". Consider a portfolio Z of two assets X and Y . Let x

be the return of X and y be the return of Y . Denote β the weight of X in the portfolio.

Thus, the return of the portfolio is z = βx + (1 − β)y. The Value at Risk for a given

con�dence level θ is the threshold below which the return falls with the probability θ.

Formally, we have

Pr(Z ≤ VaRz) = θ.

4.1 Calculating VaR for models

In the �rst group of models, without copula modeling, we assume the normality of the

residuals. The portfolio Z is a combination of two normal distributions. Thus, it itself

is normal. Let us use the notation from the MGARCH models that H is the covariance

matrix of X and Y . By matrix notation, the variance D(Z) of Z is

Z = ( β 1− β )

(
X

Y

)
−→ D(Z) =

(
β 1− β

)( H11 H12

H21 H22

)(
β

1− β

)
When we know the variance of the normal distributed portfolio, more exactly, its residuals

from MGARCH, we can express the Value at risk for a con�dence level θ = 0.05 as

VaRz = 1, 65
√
β2H11 + (1− β)2H22 + 2β(1− β)H12, (4.1)

where −1, 65 is the 5th quantile of the normalized normal distribution. By deriving we use

the symmetry of covariance matrix H12 = H21, i.e cov(X,Y ) = cov(Y,X). Let us remark

that the sign of VaR is positive because VaR is known as an amount of loss.

On the other hand, copula methods do not require normal distribution. By deriving the

formula for VaR we have to be more general. Using the expression (2.2) for the copula

density, the probability distribution of the portfolio return is given

Pr(Z ≤ z) = Pr(βX + (1− β)Y ≤ z) =
∫ ∞
−∞

{∫ 1
β
z− 1−β

β
y

−∞
c(F (x), G(y))f(x)dx

}
g(y)dy.

There is no close formula for calculating VaR for speci�c copulas. Monte Carlo simulations

are used to the calculations. Here we present the example of simulations.
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We choose the standardized normal distributions for marginals and the weights (β, 1−β) =
(0.5, 0.5) of the portfolio. Then we simulate values from the distribution functions of

di�erent copulas. We use the di�erent level of dependence which is measured by Spearman's

coe�cient.1 For each copula and each level of dependence, we simulated 1 000 000 scenarios.

Thus, VaR was the value below which 5% of simulations lied. In Figure 4.1 we compare VaR

for di�erent copulas with the increasing measure of dependence. The relationship among
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Figure 4.1: VaR for di�erent copula families

the VaRs for di�erent copula families coincides with the intuition. The loss is bigger for

copulas with non-zero lower tail dependence, Clayton and Rotated Gumbel copulas. The

dependence is stronger in lower quantiles what resumes in higher potential loss. On the

other hand, VaR for Gumbel copula is smaller because dependence is focused in the upper

quantiles what VaR does not capture.

4.2 Tests of VaR accuracy

We are interested if our VaR calculated from the models performs properly. We examine

the adequacy of calculated VaR by Kupiec's POF test and Christo�ersen's test.
1Spearman's coe�cient is a nonparametric measure of dependence, that takes into account only the

order of data. It is de�ned as

r = 1− 6
∑
d2
i

n3 − n,

where n is the number of pairs and di is the di�erence in the rank of the pair i. There is the direct

relationships between the copula parameter and Spearman's coe�cient for each copula family.
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De�ne a hit as

hitt = I(rt < −VaRt),

where rt is a return of a pension fund and I(.) is 1 when the expression in brackets is true

and 0 otherwise. If the return of a pension fund is below VaR, i.e. hitt = 1, we say that

VaR is violated. Kupiec's POF test is based on the idea that the ratio of the number of

violations to the number of observations should be around the con�dence level which VaR

is calculated on. Formally, it assumes that hitt are independent random variables from

binomial distribution with parameters (N, p), where N is a number of observations and p

is a con�dence level of VaR. Kupiec's test statistics takes the form

LRPOF = −2ln
pK(1− p)N−K

p̂K(1− p̂)N−K
,

where p̂ is the percentage of violations and K is a number of violations. Note that K

equals to the sum of hitt and p̂ is the ratio of the number of violations K to the number

of observations N . The statistics has the asymptotic χ2 distribution with one degree of

freedom.

Christo�ersen improved the Kupiec's test by considering the position of violations. While

Kupiec tests only unconditional values of hitt, Christo�ersen takes into an account that

violations should be unpredictable and independent. To Kupiec's POF statistics he adds

the statistics testing the independence of violations

LRCH = LRPOF + LRind,

where

LRind = 2
(
(1− p01)T00pT01

01 (1− p11)T10pT11
11 − (1− p)T00+T01pT10+T11

)
Statistics LRind indicates the independence of violations. A variable Tij is a number of

observations that hitt = j and hitt−1 = i. A variable pij is a probability that hitt = j and

hitt−1 = i and is calculated as

p01 =
T01

T00 + T01
, p11 =

T11

T10 + T11
and p =

T01 + T11

N
.

The statistics has the asymptotic χ2 distribution with two degrees of freedom. In both

test, we reject the zero hypothesis about the VaR accuracy if the statistics exceeds the

corresponding critical value, i.e if the p-value is below the given level (usually 0.05).
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5 Empirical work

Since January 2005 we have a new pension system in Slovakia. It is based on three pillars

now. The �rst pillar is the old but reformed pay-as-you-go system, the second is a new fully

funded pillar and is based on the principle of savings and the third one consists of various

forms voluntary pension and life insurances. The reform of the pension scheme in 2005

has brought a fundamental change � an option to save for a pension on a private pension

account in a Pension Funds Management Company (PFMC). If you enter the second pillar,

what is voluntary, a half of your obligatory contributions for old-age insurance is saved in

the PFMC of your choice. Each PFMC manages three di�erent types of funds, among

which you can choose according to your risk aversion. Our motivation is to model the

yield, particularly the risk PFMC faces in the individual PFMCs in Slovakia. We focus on

the most risky pension fund, the growth pension fund, where the most of the population

is. In Table 5.1 we name all PFMC operating in Slovakia with the names of their progress

funds.1

In this chapter we apply the theory from previous chapters to model the returns of

Pension Funds Management Company Progress fund Market share

AEGON d.s.s., a.s. Vital 10%

Allianz - Slovenská d.s.s., a.s. Progress 31%

AXA d.s.s., a.s. Rastový 28%

�SOB d.s.s., a.s. Prosperita 6%

ING d.s.s., a.s. Dynamika 11%

VÚB Generali d. s. s., a.s. Pro�t 15 %

Table 5.1: Progress funds in Slovakia

progressive pension funds. We estimate VaR for each model.

5.1 Data

The structure of the portfolio for the progress funds consists of two main components:

investing into stocks, which represents the riskier part of the portfolio, and investing into
1Shares on the market are from [12], as on 30th June 2008.
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bonds, which is the safer investment. The law allows to invest up to 80% of assets into

stocks. Reality in PFMCs is much more below 80% that re�ects prudence and carefulness

of PFMCs in the beginning of the system. Furthermore, safer investment is adequate in

the time of �nancial crisis which the world faces now.

We model the stock market by di�erent indices from Europe, the USA and Japan. We

do not work with the index prices because comparing the prices might be tricky. Instead,

we use returns that represent relative changes more suitable for comparison. Let Pt is the

price of the stock at time t, then the return rSt of the stock at time t is

rSt =
Pt
Pt−1

− 1.

The bond market we model by discount rates for zero-coupon bonds with di�erent time to

maturity for Slovak crown, American dollar and Euro. To have consistent data for model

we need to work with relative changes of bond prices. We show that using the di�erences

of discount rates is desirable. Let Rt be the discount rate at time t of the zero-coupon with

the maturity T (in years) and Bt the price of the bond. Thus, the return rBt of the bond is

rBt =
Bt
Bt−1

− 1 =

(
1

1+TRt

) 1
T(

1
1+TRt−1

) 1
T

− 1 =
(1 + TRt−1)

1
T

(1 + TRt)
1
T

− 1 ∼ 1 +Rt−1

1 +Rt
− 1

=
Rt−1 −Rt

1 +Rt
∼ Rt−1 −Rt,

where we neglect the higher-order terms in approximation.

Besides the discount rates, we use iTtraxx Europe indices to take the credit risk into

consideration. They are calculated from credit default swaps (CDS).2 We use iTraxx

Europe, that consists of CDSs on the most traded companies in Europe and iTraxx Europe

Senior that consists of CDSs on senior �nancial companies. ITraxx indices are a kind of

rates (not prices), therefore we also use di�erences for our models.3

The yield in pension fund is expressed by a pension unit (PU). The pension unit represents

the value of one slovak crown deposited by the establishment of the pension fund. Fees

for management of pension funds are not included in the pension unit. PFMC reduces the

number of pension units instead. Thus, the pension unit is the measure of net yields and

it re�ects the investment strategy without deformation by fees. Similarly to the stocks we
2CDS is a credit derivative, where the buyer pays a premium and, in return, he receives a money when

an underlying �nancial instrument defaults.
3List of all data with their symbols and de�nitions is in Table A.1 in Appendix A.
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work with the returns of the pension unit

rPUt =
Pt
Pt−1

− 1,

where Pt is the price of the pension unit at time t. We use daily data from the �rst working

day of January 2008 to the last working day of December 2008 for all time series. In total,

we have a sample of 249 observations for each series. Descriptive statistics for all data are

attached in Appendix A (see Tables A.2, A.3, A.4).

5.2 Basic method for VaR calculation

A simple approach of modeling VaR is based on historical simulations. We get VaR from

the information about empirical distribution of past values. We calculate VaR at 5%
con�dence level as 5% empirical quantile from the past data. The method is very simple

and that is why it is very popular. Its drawback is that it adapts to changes very slowly and

therefore it is very imprecise. In Figure 5.1 we see VaR calculated by this method for two

pension funds. We calculated VaR as 5% quantile from the last 100 values. We see how slow

it reacts in time of higher variance. There are many violations of VaR and furthermore,

they are not independent, but they cluster together. Both Kupiec's and Christo�ersen's

tests reject the hypothesis that the model performs properly. Christo�ersen's test that

takes independence into consideration rejects it more strongly. P-values for both tests are

given in Table 5.2. At 5% con�dence level VaR performs properly only for CSOB pension

fund and only according to Kupiec's test. These results give us a motivation for �nding a

better method for modeling VaR.
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Figure 5.1: VaR based on historical simulations
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PFMC AEGON ALLIANZ AXA CSOB ING VUB

Kupiec's test 0.0428 0.0058 0.0027 0.1292 0.0118 0.0118

Christo�ersen's test 0.0002 0.0097 0.0025 0.0008 0.0147 0.0048

Table 5.2: P-values from tests of VaR accuracy for historical simulations

5.3 VaR based on copula and MGARCH models

Our aim is to model the pension unit by a more sophisticated model. We do not use

the past pension unit values but we �nd the structure of the portfolio and model the

dependence between its two important parts, the stock and bond market.

In this section we demonstrate the whole process of estimation. Our goal is to model the

returns of the pension unit returns by returns from the stock and bond market. All steps we

perform are summed up in Figure 5.2. First, from a huge amount of stocks and indices we

Linear Regression
(Choice of the Series)

Principal Components
(Clustering)

Mutivariate
GARCH

Univariate
ARMA-GARCH

Mutivariate
GARCH

Calculation
of VaR

Copula
Estimation

VaR
Simulations

Figure 5.2: Estimation scheme

�nd the ones that have signi�cant in�uence on the pension unit. We choose the signi�cant

indices by simple linear regression on the pension unit. Second, we cluster all information

about stocks into one variable to reduce the number of dimensions. In this step we use

the technique of principal components which is based on projecting the multivariate space

into one dimension. Similarly, we cluster all signi�cant discount rates into one variable.

Third, we model the dependence between the market variable and the bond variable by

two di�erent approaches - copula models and MGARCH model. We compare MGARCH

based on time variant correlation to copula models that are able to capture heavy tails.

Fourth, we calculate VaR for both models.

Linear regression, principal components analysis and estimation of MGARCH we did in

Eviews and ARMA-GARCH models we estimated in Matlab. All copula estimations and

simulations we did by ourselves in Matlab.

In the following subsections we discuss the estimation process in details. We demonstrate
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the whole process for the progress fund of Allianz, the PFMC with the largest market

share. Individual steps of modeling for the funds of other companies we do not present

here. We summarize them in Section 5.4.

5.3.1 Linear regression

At the beginning we have a group of indices and discount rates which we may use in the

pension unit modeling. Month reports that PFMC has to publish give us a brief overview

about the geographical areas where PFMC invests. According to the report of Allianz, they

invest into stocks mostly from Western Europe and the USA, less from Central Europe and

Japan. The bonds are usually in Slovak currency or EUR with average duration slightly

over 1. By using linear regression we estimate the whole set of series with pension unit

as a dependent variable. Mathematically speaking, our linear regression model takes the

form

rPUt = c0 + cT rSt + dT rBt + εt, (5.1)

where the vector rSt represent the returns of di�erent stocks, the vector rBt returns of

di�erent bond or iTraxx indices, α is a constant, β, γ are coe�cient vectors and εt is a

disturbance term. Note that we can interpret the coe�cients as weights of the individual

indices and bonds in the pension fund portfolio.

In estimation process we gradually exclude the series that are insigni�cant at 5% con�dence

level. For Allianz, the chosen stocks and discount rates are given in Table 5.3. According

Series BUX CAC40 DAX NIKKEI ITRAXX EUR6MZ

Coe�cient 0.011 0.025 0.055 0.021 0.436 0.415

P-value 0.000 0.000 0.000 0.000 0.037 0.005

Table 5.3: Signi�cant variables from linear regression

to the linear regression, we choose CAC40 and DAX indices that represent the region of

Western Europe, BUX index from Central Europe and NIKKEI index that represents the

market of Japan. The bond market is signi�cantly in�uenced by 6 month EUR discount

rate and iTraxx index. The constant was not signi�cant.
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5.3.2 Principal components

In this stage of the modeling, our goal is to reduce the data to get a good one-dimensional

measure for stock markets and a good one dimensional measure for the bond market. One of

the most common techniques is Principal Components (PC) analysis. PC method is a linear

transformation of the variables. To reduce the dimension it uses the high covariance of the

variables as the redundant information. On the other hand, it captures the information

in data with high variance. Mathematically speaking, we �nd another base of the vector

space. The transformed variables, called principal components, have diagonal covariance

matrix. The principal component that belongs to the highest eigenvalue of transformation

market, called the �rst principal component, carries the most information. This vector

represents the information from the data in one dimension the best.

We use signi�cant stocks with estimated weights from the linear regression to get one

series representing the stock market. The weights adjust the proportion of variance that

in�uences the pension unit. In other words, if some stock has a lower weight on the pension

unit, we have to take it into consideration. The whole process can be show in the scheme

cT rSt −→ transformation −→ PCSt .

Similarly for signi�cant discount rates representing the bond market we get the vector

dT rBt −→ transformation −→ PCBt .

To sum up, from original huge number of variables we get two series, PCSt for the stock

market and PCBt for the bond variable. The model 5.1 from the beginning is simpli�ed

rPUt = c0 + cPCSt + dPCBt + εt, (5.2)

where the coe�cients c0, c, d are estimated by linear regression again and represents the

weights of stocks and bonds in the pension fund portfolio.

Note that from the eigenvalues of the transformation matrix we know how much infor-

mation is in the individual principal components. From the proportion of the eigenvalue

belonging to the �rst principal component we get how much information we keep. For

Allianz, the �rst principal component contains 72.73% information for the stock variable

and 68.15% for the bond variable.

5.3.3 Estimation of the margins

By using the PC analysis we have one time series for the stock market and one series for the

bond market. For copula modeling, we assume that inputs are from the same distribution
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and independent. In many papers was documented that there is some persistence in data

and that is why we need to �lter them. We use univariate ARMA-GARCH models.

ARMA-GARCH models consist from the ARMA part

yt = c+
∑

φiyt−i + ut +
∑

θjut−j , (5.3)

where yt is one of our variables (PCSt or PCBt ), c is a constant, φi, θj are coe�cients and

ut are innovations. The GARCH part captures heteroscedasticity in yt and innovations by

formula

σ2
t = α0 +

∑
αiu

2
t−i +

∑
βjσ

2
t−j ,

where σ2
t is a conditional variance of ut.

Estimation of ARMA-GARCH model consists of several steps. At �rst we test if we need

the ARMA-GARCH speci�cation or our series is just a white noise. We use Ljung-Box

test based on the autocorrelation plot. Its statistics is de�ned by

QLB = n(n− 2)
k∑
j=1

ρ2
j

n− j
,

where n is a number of observations, ρj is autocorrelation for the lag j and k is a number of

coe�cients to test autocorrelation. The statistics follows asymptotically the χ2 distribution

with k degrees of freedom.

By calculating the Ljung-Box Q-statistics we reject or accept the hypothesis whether a

group of autocorrelations equals zero, what is equivalent to white noise. Second, we �t the

best ARMA model to eliminate autocorrelation in the series. We choose the best model

according to the BIC criterion and by using Ljung-Box Q-statistics we check whether

there is still autocorrelation in residuals. If not, we look at the autocorrelation in squared

residuals which indicates the heteroscedasticity and necessity of GARCH model. Finally,

we �t the GARCH model to the residuals from the estimated ARMA model. After all

these steps we get ARMA-GARCH model for each series. Standardized residuals are used

for copula estimation and the estimated conditional variances by calculating the VaR. The

whole process of margins estimation is summarized in Figure 5.3. We document particular

steps for stock market variable. The Ljung-Box Q-statistics (see Table 5.4) does not reject

the zero hypothesis for all k at 5% con�dence level. The results are not convincing, the test

would do reject the zero hypothesis at 10% con�dence level. That encourages us to be a

little bit suspicious and check the performance of some ARMA models. However, there are
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Testing autocorrelation in series
Ljung-Box Q-statistics

ARMA model
AIC/BIC criterion

Checking no autocorrelation in residuals and
testing autocorrelation in squared residuals

Ljung-Box Q-statistics

GARCH model
AIC/BIC criterion

Checking no autocorrelation in squared residuals
Ljung-Box Q-statistics

Standardized residuals for Copula Estimation
Estimated variance for VaR simulations

Figure 5.3: Estimation of the margins

Up to k lags 1 2 3 5 10 20

P-value 0.668 0.163 0.414 0.095 0.073 0.051

Table 5.4: P-values from Ljung-Box Q-statistics test

no signi�cant regressors in ARMA models. We do not have signi�cant autocorrelation in

residuals but there is still a strong correlation in the squared residuals. Ljung-Box test for

the squared residuals has p-values under 0.0001 for all k. To eliminate heteroscedasticity

we estimate GARCH models. The AIC criterion chooses GARCH(1,1) without a constant.

The coe�cients of the best ARMA-GARCH model are summed up in Table 5.5. Finally,

Model α1 β1

Coe�cient 0.144 0.845

P-value 0.000 0.000

Table 5.5: Estimated GARCH(1,1) model for stock market

Ljung-Box test checks the autocorrelation in the residuals and squared residuals. The test

con�rms that there is no more autocorrelation. Furthermore, we check the normality of

residuals. Both tests verify that the model is well-speci�ed.
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The same technique is used on the series for bond market. The same GARCH(1,1) model

without a constant is the most appropriate and the coe�cients are given in Table 5.6.

The parameters of GARCH models determine the dynamics of the series. Looking at

estimated values for both series we see quite high values of the parameter β1. This fact

says about high persistence of the process, i.e. high persistence of the returns for both

stock and bond market.

Model α1 β1

Coe�cient 0.026 0.813

P-value 0.003 0.000

Table 5.6: Estimated GARCH(1,1) model for bond market

5.3.4 Estimation of the copula and VaR simulations

We already know the behavior of the both series for the stock market and for the bond

market. Now we proceed to the most important part of estimation. From ARMA-GARCH

model we estimated standardized residuals

sut =
ût
σ̂t
,

that have the standardized normal distribution for all times t. Therefore, we can model

the dependence of them by a copula, that assumes the same distribution over the time.

First, we estimate the parameters of each copula family which were mentioned in Chapter

2 - Normal, Clayton, Gumbel and Rotated Gumbel copula. According to the AIC criterion

we choose the copula for our model.

By using the mentioned technique, Rotated Gumbel copula with the parameter α = 1.4933
was estimated for Allianz.

After estimating the copula, VaR was simulated. We proceed backwards. We simulate the

pairs of quantiles (q1, q2) for the chosen copula with the estimated parameters from the

copula function

C(q1, q2) −→ (q1, q2)

Then, we �nd the values uBt , u
S
t that belongs to the generated quantiles from the normal

distribution N ∼ (0, σ̂2
t ). By using the ARMA models given by (5.3) for PCS and PCB

we get ˆPCSt and ˆPCBt . The estimated return for pension fund we get from the model (5.2)

r̂PUt = γ̂0 + γ̂ ˆPCSt + δ̂ ˆPCBt .
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For each time and for each pension fund we simulate 100 000 scenarios. VaR was the 5%
quantile of the simulation distribution. The estimated Var for Allianz is shown in Figure

B.2 in Appendix B.

5.3.5 MGARCH models

We compare the copula-based model to multivariate GARCH models. The �rst two steps,

choice of signi�cant variables and clustering them in two dimensions are the same as for

copula models. Then, we apply three bivariate MGARCH models described in Chapter 3.

We estimate all parameters by the maximum likelihood method and get the conditional

covariance matrix for each time. From estimated covariance matrix of the stock and bond

variable we calculate VaR according the formula (4.1). Note that by multivariate model we

did not model the mean of the series because in univariate models for all funds coe�cients

of ARMA model were insigni�cant (including a constant).

5.4 Results for all pension funds

The �rst step, identi�cation of the signi�cant indices and discount rates, corresponds with

our expectation. Particularly choice of indices for the stock market follows the month re-

ports of pension funds. Table 5.7 presents the signi�cant variables for individual markets.

The results re�ect the fact that PFMCs invest mainly on markets of Central Europe (Hun-

garian BUX, Czech PX, polish WIG) and Western Europe (German DAX, French CAC40,

British FTSE100) and American (DJIA) partly on Japan markets (NIKKEI). On the other

hand, the choice of signi�cant variables for the bond market gives us more amazing re-

sults. Very few discount rates are signi�cant. Although month reports indicate especially

investment into Slovak bonds, there are no signi�cant SKK discount rates. We see that

the information about the bond market is hidden especially in iTraxx indices. This fact is

not so surprising, when we realize that the discount rates did not move so much in 2008

and credit risk was a more important factor. In Figure B.1 in Appendix B we report the

percentage structure of each pension fund. Usually the portfolio consists of 10%− 15% of

stocks and 70%− 90% is explained by bond variables. The rest that is missed to 100% is

the information which we are not able to capture by our data.

By proceeding the principal components method we loose some information as a trade

o� for reducing the dimension to bivariate problem. In Table 5.8 we report the percentage

of information we keep by taking only the �rst component. Usually we keep 65% − 75%
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PFMC Stock market Bond market

AEGON BUX, DAX, DJIA, PX, NIKKEI ITRAXXSEN, EUR6MZ

ALLIANZ BUX, CAC40, DAX, NIKKEI ITRAXX, EUR6MZ

AXA BUX, CAC40, DAX, FTSE100, PX, NIKKEI ITRAXX, EUR6MZ

CSOB CAC40, DJIA, PX, NIKKEI ITRAXX

ING BUX, DAX, DJIA, PX, NIKKEI, WIG ITRAXX, USD1YZ

VUB CAC40, DAX, DJIA, PX, NIKKEI ITRAXX

Table 5.7: Structure of markets

PFMC AEGON ALLIANZ AXA CSOB ING VUB

Stock variable 70.75% 72.73% 74.47% 68.25% 64.82% 71.74%

Bond variable 67.01% 68.15% 67.93% 100% 66.22% 100%

Table 5.8: Information in the �rst principal component

of information that we consider as su�cient for our next modeling. Note that there is

only one signi�cant variable for CSOB and VUB for the bond market, so we keep the all

information about them.

Next step of modeling are models of dependence. We compare the results for copula mod-

els and multivariate GARCH models. Copula modeling con�rms the hypothesis about the

stronger relationship in left tails. In bad times the dependence between the bond and stock

market is higher. This hypothesis veri�es the results documented in Table 5.9. For �ve of

six pension funds AIC criterion chooses Rotated Gumbel copula as the most appropriate

copula. Note that Rotated Gumbel copula has non-zero left tail dependence. Furthermore,

we see a strong dependence between the bond and stock market for all pension funds. The

parameter α is pretty high. However, we are not able to compare it to well-known correla-

tion, because there is no direct relationship between α and correlation. It depends on the

distributions of margins that vary over time. By contrast multivariate GARCH models

assume multivariate normal distributions of innovations and they do not allow another

form of dependence. However, they enable correlation to vary over time. In Figure 5.4 the

correlation between bond and stock component part estimated by vec model for all pension

funds is shown. Comparing the graph to the returns of pension funds (see Figures B.2 and

B.3 in Appendix B) we see that the correlation is higher in less turbulent time and low
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PFMC AEGON ALLIANZ AXA CSOB ING VUB

Copula Rot. Gum. Rot. Gum. Rot. Gum. Rot. Gum. Rot. Gum. Normal

α 1.5536 1.4933 1.5993 1.6421 1.6548 0.6085
Note: Paramater α lies in (−1, 1) for Normal copula and (−1,∞)\{0} for Rotated Gumbel copula.

Table 5.9: Copula estimation

in time of high volatility. In other words, we observe that in the time of uncertainty the

dependence between the stock returns and bond returns is weaker. Otherwise, estimation
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Figure 5.4: Time-varying correlation estimated by vec model

of MGARCH models gives us expectable results (see Tables B.1,B.2, B.3 in Appendix B).

Both variances and covariances have high values of gs (for BEKK and vec model) or βs

(for CCC model) that says about high persistence of the series. The highest values are

estimated for BEKK model where the coe�cients are really close to one. On the other

hand the parameters as, resp. αs are pretty low. They re�ect a slow tendency of the

process to react on the new informations (innovations, disturbances). They are higher for

BEKK model but that result might be caused by the relationship for covariance, where the

coe�cient by the innovation term is equal to the product a11a22. To get this coe�cient

not to small we need a11 and a22 be higher. Signi�cant high coe�cient g22 for covariance
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equation from vec model documented, that there is also persistence in covariance.

The last and the most important part of our estimation is to determine Value at Risk.

VaR for all models are reported in Figures B.2 and B.3 in Appendix B. Looking at the

graphs we do not see big di�erences in estimating VaR. All models are able to capture

non-constant volatility. Comparing the individual models we see that in the end of the

year BEKK model is not able to adapt to lower volatility so fast. That is the consequence

of high persistence resulted from the really high b values. Visual inspection does not give

us more useful information for comparison of models. We accomplish the tests described

in Chapter 4. Both Kupiec's and Christo�ersen's tests give much more better results than

the method of historical simulations. In Table B.4 and B.5 we report the results for both

test. The results are quite satisfactory. The tests mostly verify the accuracy of models

for calculating VaR. However, there is a quite high number of violations for Allianz and

Axa for MGARCH models and that is why their statistics are not so optimistic. Another

interesting fact to note is the performance of copula models. They perform clearly better

results for calculating VaR comparing to MGARCH models. According to the results it

seems to be more relevant to model the dependency of markets by the appropriate structure

constant in time (by copula) than the time variant correlation (by MGARCH).
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6 Conclusion

In this master thesis di�erent bivariate models of bond and stock market were described

and applied to estimate VaR for pension funds.

Before applying the models we investigated the robustness of criteria for the choice of the

best copula. We compared criteria based on maximum likelihood to the criteria based on

empirical distributions. According to the results by our simulations, we concluded the AIC

criterion was the most appropriate.

In empirical section of this thesis, we proposed several models. The basic model based on

historical simulations did not give satisfactory results. Therefore, we decided not to model

the returns of pension funds by its past values, but by the returns on the stock and bond

market. We accomplished copula and MGARCH models. Results from copula estimation

veri�ed the hypothesis about stronger left tail dependence between the markets. For �ve

of six pension funds, the AIC criterion chose the Rotated Gumbel copula that has higher

correlation in low quantiles. It implies the higher dependence of stocks and bonds in times

of crisis.

Results of MGARCH models documented the high persistence in both covariance and

variance of the markets. However, they are quite conservative in VaR calculations. There

are many violations of VaR. The comparison of VaR based on copula and on multivariate

GARCH models shows that the copula model is often more accurate. This is true whether

the criterion is Kupiec's test or Christo�ersen's test.

We can conclude that both copula and MGARCH models give a good estimation of VaR,

much more better than the basic approach of historical simulations. Note that our esti-

mation would be more precise if we had details on asset allocation of each portfolio. Such

allocation is known by the funds managers and can e�ectively increase the performance of

the models suggested in the thesis.
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A Data

BUX stock index of large companies trading on the Budapest Stock Exchange

CAC40 stock index of the 40 most signi�cant values among the 100 highest market caps on the Paris Bourse

DAX stock index of the 30 major German companies trading on the Frankfurt Stock Exchange

DJESTOXX50 Dow Jones EURO STOXX 50, stock index of Eurozone stocks designed by STOXX Ltd

DJIA Dow Jones Industrial Average, stock index of 30 largest and most widely held public companies in the United States

FTSE100 stock index of the 100 most highly capitalized UK companies listed on the London Stock Exchange

NASDAQ stock index of the largest companies listed on the NASDAQ stock exchange

NIKKEI stock index of large companies on the Tokyo Stock Exchange

PX stock index of large companies trading on the Prague Stock Exchange

SAP500 stock index of 500 large cap common stocks actively traded in the United States

WIG stock index of large companies on the Warsaw Stock Exchange

EUR1YZ one year EUR discount rate

EUR2YZ two year EUR discount rate

EUR3MZ three month EUR discount rate

EUR6MZ six month EUR discount rate

EURTNZ overnight EUR discount rate

SKK1YZ one year SKK discount rate

SKK2YZ two year SKK discount rate

SKK3MZ three month SKK discount rate

SKK6MZ six month SKK discount rate

SKKTNZ overnight SKK discount rate

USD1YZ one year USD discount rate

USD2YZ two year USD discount rate

USD3MZ three month USD discount rate

USD6MZ six month USD discount rate

USDTNZ overnight USD discount rate

ITRAXX credit default swap index for the most traded companies in Europe

ITRAXXSEN credit default swap index for the senior �nancial companies in Europe

RF AEGON pension unit for the progress fund, AEGON d.s.s.

RF ALLIANZ pension unit for the progress fund, ALLIANZ - Slovenská d.s.s.

RF AXA pension unit for the progress fund, AXA d.s.s.

RF CSOB pension unit for the progress fund, �SOB d.s.s.

RF ING pension unit for the progress fund, ING d.s.s.

RF VUB pension unit for the progress fund, VÚB Generali d.s.s.

Table A.1: List of Symbols
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Stock BUX DAX DJIA CAC40 NASDAQ PX NIKKEI SAP500 FTSE100 DJESTO WIG

Minimum -0.1281 -0.0723 -0.0787 -0.0910 -0.1052 -0.1494 -0.1140 -0.0903 -0.1004 -0.0790 -0.1339

Mean -0.0024 -0.0018 -0.0013 -0.0018 -0.0017 -0.0025 -0.0017 -0.0015 -0.0011 -0.0019 -0.0015

Median -0.0020 -0.0015 -0.0006 -0.0000 -0.0016 -0.0019 0.0000 -0.0003 -0.0003 -0.0020 -0.0030

Maximum 0.1629 0.1141 0.1108 0.1447 0.1259 0.1173 0.1416 0.1154 0.1103 0.1253 0.1553

Std. Dev. 0.0324 0.0241 0.0238 0.0272 0.0267 0.0301 0.0289 0.0251 0.0265 0.0263 0.0457

Skewness 0.3587 0.7673 0.4505 0.6750 0.3186 -0.2651 -0.0182 0.1035 0.3761 0.6994 0.1953

Kurtosis 8.9944 8.6797 7.2016 8.1453 6.6951 8.3126 7.1511 7.9573 6.8183 7.1802 4.7644

Jarque-Bera 378.14 359.13 191.58 293.58 145.87 295.74 178.79 255.41 157.13 201.60 33.88

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observ. 249 249 249 249 249 249 249 249 249 249 249

Table A.2: Descriptive statistics for stocks

PFMC AEGON ALLIANZ AXA CSOB ING VUB

Minimum -0.0173 -0.0114 -0.0113 -0.0159 -0.0117 -0.0123

Mean -0.0004 -0.0002 -0.0002 -0.0003 -0.0002 -0.0003

Median -0.0002 0.0000 -0.0001 -0.0001 0.0000 -0.0001

Maximum 0.0230 0.0093 0.0094 0.0090 0.0079 0.0079

Std. Dev. 0.0044 0.0028 0.0029 0.0027 0.0027 0.0026

Skewness 0.0767 -0.2247 -0.2616 -1.1621 -0.6177 -0.3997

Kurtosis 9.4370 4.9469 5.0052 8.9107 5.9489 5.1210

Jarque-Bera 430.14 41.42 44.55 418.52 106.06 53.30

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 249 249 249 249 249 249

Table A.3: Descriptive statistics for pension units
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EUR1YZ EUR2YZ EUR3MZ EUR6MZ EURTNZ SKK1YZ SKK2YZ SKK3MZ SKK6MZ

Minimum -0.0068 -0.0037 -0.0056 -0.0105 -0.0090 -0.0082 -0.0020 -0.0053 -0.0057

Mean 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Median 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

Maximum 0.0022 0.0022 0.0033 0.0027 0.0087 0.0065 0.0021 0.0066 0.0062

Std. Dev. 0.0008 0.0008 0.0007 0.0009 0.0019 0.0016 0.0008 0.0014 0.0016

Skewness -2.6425 -0.5524 -1.4982 -7.2816 -0.0477 -0.4653 0.0065 0.0690 0.1211

Kurtosis 26.0735 5.7060 23.0943 94.3716 9.2356 7.1314 3.2672 6.8950 5.5811

Jarque-Bera 5813.31 88.63 4282.37 88818.83 403.50 186.07 0.74 157.60 69.73

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6900 0.0000 0.0000

Observations 249 249 249 249 249 249 249 249 249

SKKTNZ USD1YZ USD2YZ USD3MZ USD6MZ USDTNZ ITRAXX ITRAXXSEN

Minimum -0.0179 -0.0121 -0.0041 -0.0183 -0.0150 -0.0199 -0.0055 -0.0042

Mean 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0000 0.0000

Median 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 -0.0001 -0.0001

Maximum 0.0182 0.0122 0.0035 0.0092 0.0150 0.0381 0.0088 0.0032

Std. Dev. 0.0039 0.0018 0.0011 0.0024 0.0021 0.0044 0.0009 0.0007

Skewness -0.1419 -0.2533 -0.1530 -1.6838 -0.4994 2.5076 2.6536 -0.0717

Kurtosis 7.8774 30.5764 4.3866 19.2370 32.2951 29.3982 36.1635 10.5639

Jarque-Bera 247.65 7892.38 20.92 2852.94 8914.21 7490.94 11702.83 593.79

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 249 249 249 249 249 249 249 249

Table A.4: Descriptive statistics for discount rates and iTraxx indices
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B Models
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Figure B.1: Portfolio structure
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Figure B.2: VaR for pension funds(1)
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Figure B.3: VaR for pension funds(2)

40



PFMC AEGON ALLIANZ AXA CSOB ING VUB

α0stock 0.000 0.000 0.000 0.000 0.000 0.000

(0.105) (0.073) (0.089) (0.109) (0.119) (0.071)

α1stock 0.174 0.153 0.158 0.139 0.157 0.140

(0.001) (0.002) (0.002) (0.003) (0.005) (0.003)

β1stock 0.817 0.831 0.825 0.836 0.823 0.836

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

α0bond 0.000 0.000 0.000 0.000 0.000 0.000

(0.011) (0.189) (0.928) (0.144) (0.049) (0.130)

α1bond 0.131 0.012 0.005 0.012 0.012 0.012

(0.005) (0.000) (0.046) (0.000) (0.000) (0.000)

β1bond 0.833 0.930 0.915 0.930 0.933 0.930

0.005 (0.000) (0.046) (0.000) (0.000) (0.000)

ρ 0.527 0.438 0.457 0.487 0.482 0.497

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log lik. 2050.8 1984.5 1935.3 2001.8 1981.1 1963.4
Note: P-values are reported in brackets below the coe�cients' estimates.

Table B.1: CCC model
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PFMC AEGON ALLIANZ AXA CSOB ING VUB

ω11 0.002 0.002 0.003 0.002 0.002 0.002

(0.122) (0.048) (0.040) (0.056) (0.070) (0.029)

ω22 0.000 0.000 0.000 0.000 0.000 0.000

(0.606) (0.641) (0.741) (0.838) (0.752) (0.598)

ω12 0.000 0.000 0.000 0.000 0.000 0.000

(0.008) (0.247) (0.175) (0.154) (0.257) (0.323)

a11 0.429 0.350 0.362 0.317 0.348 0.317

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

a22 0.338 0.106 0.120 0.123 0.124 0.119

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

b11 0.921 0.945 0.942 0.954 0.944 0.954

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

b22 0.917 0.999 0.997 0.997 0.997 0.998

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log lik. 2052.6 1986.2 1938.7 2006.4 1983.5 1967.9
Note: P-values are reported in brackets below the coe�cients' estimates.

Table B.2: BEKK model
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PFMC AEGON ALLIANZ AXA CSOB ING VUB

c1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.1184) (0.0326) (0.0475) (0.1180) (0.0803) (0.0449)

a11 0.1622 0.1554 0.1616 0.1439 0.1622 0.1452

(0.0008) (0.0003) (0.0002) (0.0003) (0.0008) (0.0003)

g11 0.8272 0.8337 0.8279 0.8394 0.8272 0.8396

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

c2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

a22 0.1718 0.1201 0.1291 0.1263 0.1249 0.1254

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

g22 0.8494 0.9023 0.8980 0.8986 0.8981 0.8994

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

c3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0253) (0.0433) (0.0187) (0.0000) (0.0685) (0.0000)

a33 0.1116 0.0910 0.0893 0.0109 0.0931 0.0109

(0.0182) (0.0002) (0.0015) (0.0001) (0.0023) (0.0001)

g33 0.8202 0.9241 0.9256 0.9399 0.9112 0.9399

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Log lik. 2068.825 1996.810 2051.294 2012.493 1987.355 1971.920
Note: P-values are reported in brackets below the coe�cients' estimates.

Table B.3: VEC model
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PFMC AEGON ALLIANZ AXA CSOB ING VUB

Copula 0.6674 0.4719 0.8953 0.6674 0.3219 0.8738

BEKK 0.2089 0.0428 0.2089 0.4719 0.0428 0.1292

VEC 0.3219 0.0428 0.0761 0.6583 0.3219 0.2089

CCC 0.6674 0.0428 0.0428 0.6583 0.0761 0.4719

Table B.4: P-values from Kupiec's test

PFMC AEGON ALLIANZ AXA CSOB ING VUB

Copula 0.7233 0.4331 0.5384 0.1948 0.4808 0.9174

BEKK 0.4477 0.1220 0.4477 0.1235 0.1099 0.3023

VEC 0.4092 0.1220 0.1220 0.4220 0.6118 0.4477

CCC 0.5471 0.1220 0.1890 0.4220 0.1890 0.7679

Table B.5: P-values from Christo�ersen's test
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