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Bratislava 2010



UNIVERZITA KOMENSKÉHO V BRATISLAVE
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Abstract

KOPČA, Martin: Prediction of the Yield Curve Using a No-arbitrage Nelson-
Siegel Model [Master Thesis], Comenius University in Bratislava, Faculty of
Mathematics, Physics and Informatics, Department of Applied Mathematics
and Statistics; Supervisor: Mgr. Juraj Katriak, Bratislava, 2010, 52 pages.

We examine the in-sample fit and out-of sample forecasting performance
of a recently developed no-arbitrage version of the popular Nelson-Siegel term
structure model. We use the model and estimation procedure proposed in
Christensen et al. (2007). In contrast to Christensen et al. (2007), who use
data on U.S. Treasury security yields, our analysis is carried out on the data
on German government bond spot rates. We cannot report that no-arbitrage
restrictions imposed on the model result in gains in the in-sample fitting per-
formace. We do observe a minor improvement in out-of sample forecasting,
but even these improved predictions fail to outperform the random walk pre-
dictions.

Keywords: term structure, Nelson-Siegel model, no-arbitrage, prediction
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Abstrakt

KOPČA, Martin: Predikcia výnosovej krivky pomocou bezarbitrážneho Nelson-
Siegel modelu [Diplomová práca], Univerzita Komenského v Bratislave, Fakulta
matematiky, fyziky a informatiky, Katedra aplikovanej matematiky a štatistiky;
Vedúci diplomovej práce: Mgr. Juraj Katriak, Bratislava, 2010, 52 strán.

V práci vyhodnocujeme schopnosť nedávno navrhnutej bezarbitrážnej
verzie známeho Nelson-Siegel modelu odhadnúť výnosovú krivku pre danú
množinu spotových sadzieb ako aj jeho schopnosť správne predpovedať výnosové
krivky do budúcnosti. Použ́ıvame pritom model a postup pre jeho odhadnu-
tie navrhnutý v Christensen et al. (2007). Na rozdiel od Christensen et al.
(2007), kde odhadujú výnosové krivky pre americké vládne cenné papiere,
naša analýza je vypracovaná na údajoch o výnosoch nemeckých vládnych dl-
hopisov. Na základe našich výsledkov nemôžeme konštatovať, že by aplikácia
bezarbitrážnych obmedzeńı viedla k zlepšeniu schopnosti Nelson-Siegel mod-
elu odhanúť výnosovú krivku pre daný súbor dát. Na druhej strane pozoru-
jeme mierne zlepšenia v oblasti predpovedania budúcich výnosových kriviek.
Avšak ani tieto zdokonalené predpovede nedosahujú kvality predpoveńı vyko-
naných na základe procesu náhodnej prechádzky.

Kľúčové slová: časová štruktúra úrokových mier, Nelson-Siegel model, ar-
bitráž, predpoveď
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Chapter 1

Introduction

Yield curve modelling is an important topic of the financial mathematics
which is particularly relevant for bond traders, risk managers and monetary
authorities. Forecasting the future yield curves correctly is the ultimate
condition for substantial portfolio returns and responsible monetary policy.

Recently, after encouraging results of Diebold and Li (2006), a noticable
effort has been paid to yield curve forecasting. The findings of Diebold and
Li (2006) about superior forecasting performance of the Nelson-Siegel model,
Nelson and Siegel (1987), started a rally to improve this performance even
more. As the original Nelson-Siegel model does not explicitly account for
no-arbitrage principle by constructing the yield curve, considerable attention
has been paid to resolve this shortcomming.

We follow the procedure to construct and estimate a no-arbitrage ver-
sion of the Nelson-Siegel model proposed in Christensen et al. (2007). They
find a no-argitrage approximation of the original Nelson-Siegel model in the
family of affine arbitrage-free models described in Duffie and Kan (1996).
Estimation of the model is carried out by employing Kalman filter technique
in maximizing the likelihood function.

In this master thesis, we estimate the no-arbitrage Nelson-Siegel model
on the data on German government bond yields. To our best knowledge,
there is no paper that examines the forecasting performance of this model on
other than U.S. Treasury security yields. However minor innovation may our
choise of data appear, our findings are very different from those presented in
Diebold and Li (2006) and Coroneo et al. (2008). We find that although the
forecasting performance of the no-arbitrage Nelson-Siegel model has slightly
improved in comparison with the dynamic model described in Diebold and
Li (2006) there is no reason for satisfaction. For our data set, forecasts based
on the random walk predictions were still more successful than those of the
enhanced Nelson-Siegel model. We conclude that a further research is needed
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Introduction

and propose a path to resolve these disappointing results.
We proceed as follows. In the chapter 2 we provide a brief intoduction

to the terminology of bond markets and the problematic of yield curve mod-
elling. Chapter 3 introduces the well known Nelson-Siegel model as well as its
modification proposed in Diebold and Li (2006) that is used for forecasting
purposes. Chapter 4 provides a discussion about the no-arbitrage principle,
arbitrage on the yield curve and the no-arbitrage approach in yield curve
modelling. In chapter 5 we introduce the no-arbitrage version of the Nelson-
Siegel model as proposed in Christensen et al. (2007). Chapter 6 presents
our epmirical findings and concluding remarks are in chapter 7.

2



Chapter 2

Terminology

In this chapter we provide a brief introduction into the terminology of the
bond market, where the topics addressed in this master thesis belong. The
information provided in this chapter is mainly drawn from Melicherč́ık et al.
(2005) and Cairns (2004).

2.1 Bonds

A bond is a security where the buyer of the bond pays the issuer a price P
in return for a sequence of future payments. A zero-coupon bond (also called
discount bond) is a bond for which the holder of the bond receives the nominal
value (also called face value, par value or principal) of this bond at one time
in the future. The date at which this payment is due is called maturity date,
maturity or redemption date. A zero-coupon bond with maturity date T
years after its issuance is sometimes referred to as a T -bond.

A bond that pays regular interest payments (coupons) in addition to the
principal is called a coupon bond. Interest payments can have fixed or vari-
able value, depending on the specification in the terms of the bond. Variable
coupons can be linked to some index, e.g. LIBOR, EURIBOR or inflation.
Dates at which coupons are paid are called coupon dates. Coupons are typi-
cally paid semi-annually or annually.

Coupon bonds are sometimes used to create new zero-coupon bonds. In
that case, financial institutions separate coupons of the bond from its prin-
cipal. Then, coupon payments and principal can be traded separately. Zero-
coupon bonds that originated from coupon bonds by stripping the coupon
payments, are called STRIPS.

Bonds are used as a way of raising money. They can be issued by national
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Interest rates Terminology

governments, local governments or companies. Government bonds1 are bonds
issued by national governments. Government bonds are usually regarded as
credit risk free2, since central banks can print money and repay (inflate away)
the debt3. Corporate defaults are much more probable, therefore corporate
bonds are usually traded at a discount to goverment bonds. However, credit
risk among countries and companies differs substantially depending on a
variety of factors, among others on the economic conditions of the particular
debtor. In this thesis, we will only work with credit risk free bonds.

2.2 Interest rates

We denote P (t, T ) the present value of a zero-coupon bond at time t paying
out 1 unit4 at time T (in T − t years). The interest rate R(t, T ) that must
be used to discount the face value of a zero-coupon bond to get the present
value of this bond, i.e.

P (t, T ) = e−R(t,T )(T−t),

is called a spot rate5 (or zero-coupon rate).
Instantaneous risk-free rate (or short rate) rt is defined as the spot rate

of a zero-coupon bond with time to maturity infinitesimally small, i.e.

rt = lim
T→t

R(t, T ).

For a coupon bond with principal 1 and coupons paid annually at a rate
cj, j = 1, 2, ... T − t an interest rate y(t, T ) used to discount its future cash
flows

P (t, T ) =
T−t∑
j=1

cje
−y(t,T )j + e−y(t,T )(T−t)

is referred to as the gross redemption rate.

1In the UK bonds are called gilts, in the USA short term bonds are called bills, medium
term bonds are called notes and long term bonds are bonds.

2It means that there is no risk govenment could default on debt. Although these bonds
are often regarded as credit risk free there have been a few examples when governments
were unable to meet their obligations and defaulted on their debt.

3This, however, poses foreign exchange risk, which makes government bonds of some
countries truly risky investments.

4A price of a zero-coupon bond with face value 1 is also called a discount factor.
5Spot rates can be calculated also from coupon bonds. The method to extract spot

rates from coupon bonds is called bootstraping. For a comprehensive explanation of this
method see e.g. Berec (2010).
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Term structure of interest rates Terminology

Another type of interest rate that we need to understand before we pro-
ceed is the forward rate. Forward rate is related to a forward contract. This
is a contract to buy or sell an asset at a particular time in the future at the
price agreed on today. (We want to point out that signing such a contract
does not give us an option to buy/sell the asset in the future, instead it gives
us an obligation to do so.)

Consider a forward contract to buy a zero-coupon bond at time S with
maturity at time T , S < T . Setting the price Pt(S, T ) of this bond today,
at time t, is equivalent to setting the future spot rate R(S, T ) of this bond
at time S, t ≤ S < T , because P (S, T ) = e−R(S,T )(T−S). The spot rate
R(S, T ) which is contracted in advance, at time t, is called the forward rate
and we denote it ft(S, T ). As will be shown in chapter 4 the fair value
of the forward rate, that does not disadvantage any party involved in the
contract, is determined by spot rates implied by observed bond prices at time
t. Therefore, forward rates can be thought to reflect investors’ expectations
about future spot rates.

Instantaneous forward rate f(S) is the short rate contracted for S year
future,

f(S) = lim
T→t+S

ft(t+ S, T ) = lim
T→t+S

R(t+ S, T ) = rt+S.

2.3 Term structure of interest rates

Spot rates of different zero-coupon bonds may vary for various reasons, e.g.
financial position of their issuer, time to maturity of the bond. If we consider
zero-coupon bonds issued by the same debtor then the relationship between
the spot rates of these bonds and their time to maturity defines the term
structure of interest rates6. The relationship between discount factors and
their time to maturity is known as discount curve.

A cash flow of any fixed income security7 can be viewed as a stream of
zero-coupon bonds. This allows us to calculate the present value of such
security as the sum of the present values of zero-coupon bonds of the appro-
priate face value and maturity. Equivalently, if we know the term structure
of interest rates, we can price this security as the sum of its cash flows, each
discounted with the appropriate spot rate8.

6Some authors call term structure of interest rates also the relationship between coupon
bond’s gross redemption rate and its time to maturity. However, these do not have the
same properties as spot rates.

7Fixed income security is such that yields a regular return.
8Note, that using the gross redemption rate of coupon bonds would not be appropriate

to discount these cash flows.
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Interest rate models Terminology

Term structure of interest rates, especially if depicted as a continuous
curve, is often called the yield curve. Yield curves are usually derived from
prices of bonds that are observed at the market of government bonds of
some country. That means that we can observe only those spot rates for
which there exist appropriate bonds. Yields can be derived also from money
market instruments (short term deposits and loans) but both approaches
have in common that we cannot compute the whole continuous curve but
only particular points at this curve.

However, investors at financial markets work with an immense number of
assets that may mature or generate cash flow at different dates than the ones
for which we observe yields. To be able to correctly price these assets, they
need to know the spot rates at all possible maturities and therefore different
methods for constructing continuous yield curve have been proposed. Cairns
(2004) provides the following categorization of term sturcture models.

2.4 Interest rate models

One group of interest rate models forms the no-arbitrage approach. Models
from this group describe evolution of the short rate as a stochastic process
with time dependent parameters. These parameters are then calibrated so
that the bond prices implied by the no-arbitrage principal fit exactly the
prices of observed bonds at time of estimation. Among the most prominent
models from this class are Ho and Lee (1986) and Heath-Jarrow-Morton
framework, Heath et al. (1992). Drawback of this approach is that its time
dynamics properties may imply evolution of interest rates in the way which
is not empirically justified. However, since these models fit observed yields
accurately, they are widely used, especially for pricing short term derivatives.

Equilibrium and short rate models, on the other hand, are not designed
to fit the present curve precisely. These are parametric models that focus on
describing either the impact of the economy on the yield curve (equilibrium
models) or their goal is to capture the evolution of interest rates in time
(short rate models). Parameters of these models are usually estimated from
historic data since they are assumed to be constant. This, however, causes
them not to fit the curve so well, although asset prices under these models
also evolve in the arbitrage free way. The most famous models from this
class were proposed by Vaš́ıček (1977) and Cox, Ingersoll, Ross (henceforth
CIR), Cox et al. (1985). Both of these models describe evolution of the short
rate as a mean reverting, stochastic process. The process used by Vaš́ıček
is also known as Ornstein-Uhlenbeck process and the one used in CIR is
known as Bessel square root process. Unfortunately, these models are pri-
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Interest rate models Terminology

marily designed to predict instantaneous interest rate and show little success
in modelling whole term structure.

Besides these two main approaches, there is also a group of descriptive
models that try to identify the term structure of interest rates only by es-
timating parameters of some predetermined functional form for the yield
curve. Their sole aim is to provide a good fit to the observed yields and
they give us no information about the time dynamics of the yield curve.
For monetary authorities these models help to analyse monetary policy. For
bond traders, these models are used to identify overpriced or underpriced
bonds (so called cheap/dear analysis). Model proposed by McCulloch (1975)
uses cubic splines to fit the discount curve. Vaš́ıček and Fong (1982) con-
struct discout curve by using exponential splines. Very popular is the class
of models that make up a forward curve as a combination of exponentials
and polynomials. To this class of models belongs also the model proposed
by Nelson and Siegel which is the model of our interest in this thesis.

7



Chapter 3

Model of Nelson and Siegel

3.1 Original model

Charles Nelson and Andrew Siegel wanted to find a yield curve model that
would be simple but flexible enough to generate the range of shapes typically
observed at yield curves. Motivated by the expectation theory, which claims
that different maturities are perfect substitutes1 and the shape of the yield
curve reflects only expectations of future interest rates, in Nelson and Siegel
(1987) they proposed parsimonious, 4 parameter model. The model was
based on the assumption that instantaneous forward rate follows a second
order differential equation

f ′′(τ) + af ′(τ) + bf(τ) = 0. (3.1)

Solution2 to the equation 3.1 is

f(τ) = β1 + β2e
−λτ + β3λτe

−λτ . (3.2)

Spot rate of a zero-coupon bond maturing in τ years is the expected
yearly return of this bond, if held until maturity. If instantaneous forward
rate, f(s), is the expected short rate s years ahead then the required yield
of a bond maturing in T − t years must be equal to the average forward rate
during this time horizont3

1Perfect substitutes in the sense that investors should be indifferent between investing
in a T-year bond or in a S-year bond and in S years reinvest the money to (T-S)-year
bond.

2This is a solution with real, equal roots. Nelson and Siegel found that solution with
unequal roots produces model that appears to be overparametrized. That means that
nearly the same quality of fit could be achieved by different combination of parameters
and therefore, estimation of the model was troublesome.

3See e.g. Nawalkha et al. (2005) for derivation of this formula.
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Diebold and Li modification Model of Nelson and Siegel

R(t, T ) =
1

T − t

∫ T−t

0

f(s)ds.

Thus, integrating right hand side of the equation 3.2 from 0 to T − t gives
us the following expression for spot rates

R(t, T ) = β1 + (β2 + β3)

[
1− e−λ(T−t)

λ(T − t)

]
− β3e

−λ(T−t)

= b1 + b2

[
1− e−λ(T−t)

λ(T − t)

]
+ b3e

−λ(T−t).

This model soon became popular among market practitioners. Not only it
captures the most common shapes of the yield curves (monotonic, humped, S
shaped) but, unlike some sophisticated no-arbitrage models, this one is simple
and tractable. For a fixed value of parameter λ the remaining 3 parameters
can be estimated by Ordinary Least Squares (OLS) mathod. Diebol and Li
(2006) proposed a reasonable value4 of λ to be used for fitting the yield curve
hence it is possible to estimate the model simply by OLS.

3.2 Diebold and Li modification

Altough the model of Nelson and Siegel is successful in fitting the term
structure of interest rates at given date, it says nothing about evolution of the
yield curve in time. Diebold and Li examined the forecasting performance of
term structure models and they used Nelson-Siegel (NS) framework as their
starting point. In Diebold and Li (2006) they rearranged the terms of the
model (for computational reasons and better interpretation) and introduced
dynamic structure to the betas of the original NS model, resulting in the
following specification:

R(t, T ) = β1t + β2t

[
1− e−λ(T−t)

λ(T − t)

]
+ β3t

[
1− e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
. (3.3)

The betas are assumed to follow AR(1) process:

βi,t+h/t = ci + diβit + viε
i
t, i = 1, 2, 3,

4In Diebold and Li (2006) it is showed that if the time is measured in months, than
λ = 0.0609 produces a good fit to data of U.S. Treasury security yields and there is little
gain in model’s fitting performacne if optimal value of λ is calculated for every estimation
date.

9



Diebold and Li modification Model of Nelson and Siegel

where εit are normally distributed errors. Parameter λ is, for computational
reasons, set fixed.

Loadings of parameters β1t, β2t, β3t led Diebold and Li to interpret them
as latent (unobserved) factors: level, negative slope and curvature of the
yield curve. Level of the yield curve is defined as long term yield R(t,∞),
slope as R(t, t+10years)−R(t, t+3months) (or sometimes R(t,∞)−R(t, t))
and curvature as 2R(t, t+ 2years)− [R(t, t+ 3months) +R(t, t+ 10years)].
Factor loadings are depicted below.

Figure 3.1: Factor loadings of the Diebold-Li extension of the
Nelson-Siegel model.

We illustrate the justifiability of such an interpretation of beta factors on
the figure 3.2.

10



Diebold and Li modification Model of Nelson and Siegel

Figure 3.2: Values of the estimated factors of the Nelson-Siegel
model for the data set of the spot rates used in this thesis. Time hori-
zont is from April 1996 to February 2010. On the left picture, the blue line
is the time series of the level factor β1t, the green line is the time series of
30-year spot rate. Correlation coefficient between the changes in factor β1t

and the changes in the yield curve level is 0.9456. On the middle picture,
the blue line is the factor β2t, the green line depicts the difference between
3-month spot rate and 10-year spot rate. Correlation between the changes
in β2t and the changes in negative slope of the yield curve is 0.9075. The
time series of β3t (blue line) and 2y(2years) − [y(3months) + y(10years)]
(green line) with correlation of the changes in these factors of 0.8003 is on
the pictrue on the right.

The most important observation for our future analysis concerning the
factor loadings is that the short rate is the sum of the first two factors,
rt = β1t + β2t. This can be easily verified, because β1t has weight 1 in 3.3 for
all maturities, loading for β2t has limit 1 for T → t and weight of β3t is 0 for
T → t.

Model 3.3 retains very good in-sample-fit performance, as in the origi-
nal Nelson-Siegel model, and is also reported to beat the benchmarks such
as random walk and AR(1) in out of sample predictions5. Diebold and Li
dynamic version of the NS model quickly became popular both among asset
management firms and central banks. However, the cross sectional shape
of the curve is purely arbitrary. It has no connection to short rate dynam-
ics6 that would be needed to fit the present curve by using the no-arbitrage

5More details on forcasting performance and its comparison with different models can
be found in Diebold and Li (2006).

6Filipovič (1999) shows that there exists no short rate model within HJM framework
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Diebold and Li modification Model of Nelson and Siegel

principle. This is considered as the biggest shortcoming of this model, since
no-arbitrage appears to be reasonable assumption because bond markets are
very liquid. Moreover, derivative pricing relies essentially on the assumption
of absence of arbitrage.

with constant volatility that would generate a spot rate curve of the shapes NS model
does.
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Chapter 4

Arbitrage

The no-arbitrage principle is the key concept of asset pricing. Market with-
out arbitrage opportunities is such where individuals cannot gain higher than
risk free rate of return without undergoing any risk. Equivalently, the prob-
ability of earning higher than risk free rate of return must be 0 for zero net
investments.

4.1 Bond versus bank account

As an example of arbitrage, consider a riskless zero-coupon bond that pays
100 units in one year and a bank that will lend you or take a deposit from
you both for 10% p.a. interest rate. If the market price of the bond was 92,
one could easily make profit if she borrowed and sold (went short) the bond
and put 100/1.1 = 90.91 units on the bank account. The 92− 90.91 = 1.09
units is her immediate profit because after one year she will only have to pay
the bondholder 100 units that will be accumulated on her bank account since
90.91 · 1.1 = 100. Similarily, if the price of the bond was only 90, one could
borrow 90.91 from the bank and buy the bond. She will profit 0.91 because
in one year the face value of the loan will be repaid by the bond’s principal.

In a liquid bond market it would not be possible to find this bond priced
in the way that would allow arbitrge opportunities. Even if such situation
occured, it would disappear very quickly. The reason is that it would be
immediately exploited by first smart traders. In the case of the dear bond,
investors’ effort to short sell these bonds would increase their supply on the
market, thus pushing the price down. In the latter case, increased demand for
the bond would make the price rise. Eventually, the price of the bond in this
setting could not be different from 90.91. (Only presence of transaction costs
might cause a little deviation from this number, nevertheless after accounting

13



Fair value of forward rate Arbitrage

for these costs there would still not be room for making a riskless profit.)

4.2 Fair value of forward rate

We have already mentioned that forward rates are determined by observed
spot rates. At this point we clarify this assertion. Consider a riskless 1-year
zero-coupon bond with the spot rate 5% and a riskless 4-year zero-coupon
bond with the spot rate 6% at time t. The price of the 1-year bond with
nominal value 1 is Pt(1) = e−0.05 = 0.95 and the price of the 4-year bond is
Pt(4) = e−0.06·4 = 0.79.

The pricpiple of no-arbitrage implies a fair value of the forward rate ft(t+
1, t + 4). It is because we can make a 4-year investment in 2 ways. One is
to buy the 4-year bond which yields 6% yearly return or accumulated 27%
return (1/0.79 = 1.27 ) in 4 years. Another possibility is to invest in the
1-year bond and contract a 3-year spot rate one year ahead, i.e. ft(t +
1, t + 4). Accumulated return from this stretegy at time t + 4 is equal to
1/0.95 · ef1(t+1,t+4)·3 and from the no-arbitrage principlne, it must be equal
to 27%, which was the cumulative return from investing in the 4-year bond.
This implies that ft(t+ 1, t+ 4) = ln(1.27 · 0.95)/3 = 0.0626 or 6.26%.

How could we make a riskless profit if ft(t+ 1, t+ 4) had different value?
If the forward rate was higher than 6.26%, say 6.5%, it would mean that
investing in the one-year bond with spot rate 5% at time t and then investing
at the rate ft(t+ 1, t+ 4) for 3-years at time t+ 1 would yield higher profit
than investing in the 4-year bond at time t. Thus, to make a profit, we would
invest in the strategy with higher return and we would borrow and sell the
4-year bond, which has lower return. The sold 4-year bond creates cash flow
−1 at time t = 4 and +0.79 at time t = 0. To offset the 1 unit at time t = 4
we need to ensure cash inflow of the same amount at time t = 4. This can
be done by investing 1 · e−0.065·3 = 0.82 at the forward rate at time t = 1. To
ensure this 0.82 at time t = 1 we can invest 0.82 ·e−0.05 = 0.78 in the one-year
bond at time t = 0. Having done this, we have offset our future liabilities (1
unit at time t = 4) by investing 0.78 units at time t = 0. Subtracting this
amount from the 0.79 we have received for selling the 4-year bond results in
the immediate riskless profit 0.01 at time t = 0. In the case of forward rate
being lower than its fair value a riskless profit would be gained by buying
the 4-year bond and selling the one year-bond and borrowing money in the
forward contract.

It is important to understand that every two spot rates determine a value
of the approptriate forward rate in a way that prevents earning a riskless
profit by investing in these bonds and the forward contract. Hence, it is
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impossible to make an arbitrage profit by investing in a bond on the yield
curve and contracting a forward rate, regardless of the actual shape of the
term structure of interest rates.

4.3 Yield curve arbitrage

The expression ”arbitrage on the yield curve” refers to the situation when
there exists a bond whose spot rate does not lie on the market yield curve.
By market yield curve is meant, that we can borrow and lend resources for
the rates at this curve. Consider a situation on the picture bellow, where the
star is the spot rate of a particular riskless zero-coupon bonds and the line
represents the market yield curve.

Figure 4.1: Arbitrage on the yield curve.

We can see that the bond maturing in 2 years has the spot rate below
the market curve thus we can infer that this bond is overpriced. If the yields
on the curve are R(t, t + 1) = 5.15%, R(t, t + 2) = 5.20%, R(t, t + 3) =
5.22%, then the corresponding bond prices are P (1) = e−0.0515 = 0.9498,
P (2) = e−0.0520·2 = 0.9012, P (3) = e−0.0522·3 = 0.8550. The two-year bond
marked with star has spot rate R∗(t, t+ 2) = 5.08% and the price is P ∗(2) =
e−0,0508·2 = 0.9034. To make an arbitrage profit we would short the dear
bond P ∗(2). By doing so we would get 0.9034 units at time t and we would
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need to pay 1 unit at time t + 2. To offset this future payment, we can buy
the cheaper two-year bond for 0.9012 and our immediate profit would be
0.9034− 0.9012 = 0.0022.

4.4 Arbitrage-free models

Now we explain what is the feature of the no-arbitrage models that assigns
them their name. Consider the no-arbitrage model of Ho and Lee. The model
describes evolution of the short rate by the stochastic differential equation

drt = θtdt+ σdWt.

If the price of a credit risk free zero-coupon bond evolves in the way that
does not allow arbitrage opportunities, the holder of the bond should be
indifferent between investing her money in the bond or putting them on a
bank account because her wealth would rise at the same pace in both cases,
i.e. dP (t, T ) = P (t, T )rtdt. More precisely, since the evolution of the short
rate is not deterministic, we must account for the uncertainity factor, yielding
to the following diffusion process for the no-arbitrage evolution of the bond
price

dP (t, T ) = P (t, T )(rtdt+ σ(t, T )dW P
t ), (4.1)

where σ(t, T ) is volatility of this bonds price and W P
t is a standard (with

zero mean) Brownian motion (under real world measure P)1.
Model 4.1 is still very inaccurate. Since this model expects that bond

prices are influenced only by the short rate it implies that the spot rate cuvre
should be, on average, quite flat. This is, however, in the contradiction with
one stylized fact about yield curves, namely that their typical shape is upward
sloping. There would be no room for such a rise in long term yields if they
reflected only expectations of future yields, because future yield expecations
on long horizonts are rather stable (see e.g. Tunc et al. (2009)).

Thus, there must be also some other factors than the short rate that
determine yields of medium (between 1 and 10 years) and long (10 years and
more) maturities. At this point, theories about what the other determinants
are, differ. Liquidity preference theory says, that the longer the maturity is
the higher is the risk of undesirable price moves, therefore investors require
higher premiums over the short rate for long term investments2. Market

1A brief intoduction to the stochastic calculus and further refereces can be found in
Appendix A.

2Liquidity preference theory accounts also for credit risk premium for bonds with longer
maturities. However, here we consider credit risk free bond, hence with no credit risk.
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segmentation theory says that investors preferences between purchasing short
term or long term bonds differ with regard to the purpose of their investments
and that resulting yields implied by prices of bonds are only a matter of
demand and supply.

Whichever of the theories explaining the shape of term structure of inter-
est rates is correct, it is a matter of fact that longer yields that we observe
on the market are rarely equal to the short term rates. The difference be-
tween the yield of a bond maturing in τ years and the short rate is called the
risk premium. This is the extra profit over the riskless rate of return that
investors require to undertake a risk connected with the longer maturity of
a bond. After deviding this risk premium by volatility of the bond price, we
get the excess return required per unit of volatility, called the market price
of risk.

Again, if we expressed the evolution of the price of a riskless bond in
formal terms then we would need to use the actual yield of the bond in the
drift term instead of the riskless rate in the equation 4.1. When we denote
γ(t) = R(t,T )−rt

σ(t,T )
the market price of risk3 then we get

dP (t, T ) = P (t, T )(rtdt+ γ(t)σ(t, T )dt+ σ(t, T )dW P
t ). (4.2)

It is importat to understand what infomation gives us equation 4.2. We know
that price of a zero-coupon bond with maturity in T − t years is, at time T ,
equal exactly to its principal (say 1). Hence, if we know also how the price
evolved between the purchase of the bond at time t and its maturity at time
T we can infer, what the price at time t should be. In other words, if we take
the expected value of the bond price at time t it is

P (t, T ) = EP

[
exp

(
−
∫ T

t

rs + γ(s)σ(s, T )ds

)
|Ft
]
,

where Ft is a filtration (information set available at time t). This can be
compared with the market price we observe and if they are equal then the
functions rt and γ(t) were specified correctly4.

3Although it is not apparent from the formula the market price of risk does not depend
on the time to maturity. Comprehensive explanation of this feature of γ can be found in
Ševčovič, Stehĺıková and Mikula (2009)[p.133].

4The implication that if the modelled and observed prices do not match then there is an
arbitrage opportunity on the market, because our model is arbitrage-free, is not true. The
model only ensures that the future term structure of interest rates implied by the present
market data and model’s dynamics will be consistent with the short rate evolution. The
parameters of the Ho-Lee short rate model were estimated so that the modelled bond
prices and actual prises are equal. Bond price dynamics consistent with the short rate
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This is one possible way how to compute the term structure of interest
rates. The difficult part here is how to find the function γ. There has been
an extensive amount of literature written on this subject.

Alternative approach to find out what the expected prices of bonds are
uses some advanced mathematical theory about martingales and change of
measure. We provide a brief introduction into stochastic calculus in Ap-
pendix A and refer interested readers to Melicherč́ık et al. (2005) for an
introduction and to Baxter and Rennie (1996) for a thorough explanation of
the topic.

At this place we only state one important result, taken from Cairns (2004).

Theorem 4.4.1. Let a diffusion processes of the short rate r(t) and a zero-
coupon bond price P (t, T ) (with principal 1) at time t maturing at time T
follow stochastic differential equations

dr(t) = a(t)dt+ b(t)dW (t)P , (4.3)

dP (t, T ) = P (t, T )
[
R(t, T )dt+ σ(t, T )dW P (t)

]
, (4.4)

where a(t), b(t), R(t, T ), σ(t, T ) are foreseeable (potentionally stochastic)
functions. There exists a measure Q equivalent to P such that the fair price
of the zero-coupon bond defined by the above equations is

P (t, S) = EQ

[
exp

(
−
∫ S

t

r(u)du

)
|Ft
]
, (4.5)

where t < S < T ,

dr(t) = (a(t)− γ(t)b(t))dt+ b(t)dWQ(t), (4.6)

γ(t) = R(t,T )−r(t)
σ(t,T )

, WQ(t) is a standard Brownian motion under measure Q.

Let us clarify the meaning and importance of this theorem. First, equiv-
alency of measures Q and P is a mathematical term that refers to measures
that have the same set of sets with measure 0. Second, and more important,
expected value of a bond calculated under measure Q is the value that is
already adjusted for the risk premium. (For this reason, P measure is usu-
ally called real world measure and the measure Q is often referred to as risk
neutral or risk adjusted.) This means that equation 4.5 calculates the price
of every bond with maturity in S − t years at fixed time t. In other words,

model is such that after adjusting for the risk premium investors earn the same profit
form holding the bond as if they put their money on a bank account. This kind of price
dynamics is theoretically appealing but not allways empicrically justified.
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equation 4.5 recovers the shape of the yield curve5 at time t only by using
diffusion process for the short rate and the no-arbitrage principle for bond
price evolution. Moreover, the price of a bond under risk neutral measure
follows

dP (t, S) = P (t, S)
[
r(t)dt+ σ(t, S)dWQ(t)

]
, (4.7)

where r(t) evolves according to 4.6. This allows us to find the future no-
arbitrage price P (t + ∆t, S − ∆t) of a bond that costs P (t, S) at time t
and thus equations 4.6 and 4.7 ensure the no-arbitrage evolution of the yield
curve implied by 4.5 at time t.

Specification of an interest rate model under risk neutral measure Q can
be an advantage, since we do not need to specify a diffusion model for a risk
premium. We still need to come up with a model for the short rate and
this time the short rate model must be specified under the measure Q (i.e.
adjusted for risk premium). Although this is also not trivial, it shows up
to be often the more convenient way to specify an interest rate model than
modelling the risk premium.

To conclude, there is no difference whether we describe underlying short
rate model under real world measure and use the short rate plus the risk
premium as the drift for evolution of a bond price, or we define the short rate
model under risk adjusted measure and use the same short rate as the drift
term in the stochastic differential equation for a bond price. Both of these
approaches provide the same yield curve model that does not allow arbitrage
opportunities. First, cross sectional arbitrage opportunies, in the sense that
after adjusting for the risk premium there is no difference between yearly
return of a 30 year zero-coupon bond and yearly return of a 1 year bond.
Second, arbitrage opportunities in time, meaning that future yield curves
implied by our model also evolved according to the no-arbitrage principle.
This means that the risk adjusted price of a 10-year bond at time t+1 minus
the risk adjusted price of this bond at time t (i.e. now 11-year bond) must
earn the investor the same return as having her resources for one year on a
bank account (with deposit rate equal to the current short rate.)

5Recall that the shape of the yield curve implied by the market prices can be allways
referred to as arbitrage free.
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Chapter 5

No-arbitrage Nelson-Siegel
model

We are in a situation where we are quite satisfied with the performance of the
Nelson-Siegel model of the term stucture. However, we take with discomfort
the fact that it constructs the yield curve without regard to arbitrage free
evolution of bond prices. This means that the model was not derived from
a short rate model, thus the implied yield curve does not account for any
known short rate dynamics. The question is, whether there exists a no-
arbitrage term structure model that would imply factor loadings identical to
the ones of Nelson and Siegel. Filipovič answered this question and his answer
is ’not within HJM framework’. In Christensen et al. (2007) it is showed
under what diffusion process for parameters of the NS model would the no-
arbitrage derivation of the yield curve lead to Nelson-Siegel specification plus
one additional term.

For the model that they call Arbitrage Free Dynamic Nelson Siegel they
proposed the following1 system of stochastic differential equations for betas
under risk neutral measure Q:

dβ1t

dβ2t

dβ3t

 = −

0 0 0
0 λ −λ
0 0 λ

β1t

β2t

β3t

 dt+

σ1 0 0
0 σ2 0
0 0 σ3

dW 1,Q
t

dW 2,Q
t

dW 3,Q
t

 (5.1)

where W 1,Q
t , W 2,Q

t , W 3,Q
t are indepentant standard Brownian motions. Then,

using that short rate is an affine function of beta factors, namely rt = β1t +

1In fact, they allow the 3 Brownian motions to be correlated. However, we want to
examine the forecasting performance of the model, therefore we use indepentent Brownian
motions which are, as shown also in Christensen et al. (2007), more suitable for this
purpose.
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β2t, and that to evolve in the argitrage-free way, bond price must follow
dP (t, T ) = P (t, T )(rtdt + dWQ

t ) it can be derived (see Christensen et al.
(2007) or Appendix B in this thesis) that the resulting yield curve has the
following form

R(t, T ) = β1t + β2t

[
1− e−λ(T−t)

λ(T − t)

]
+ β3t

[
1− e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
− C(T − t)

T − t
,

where, if we denote τ = T − t,

C(τ)

τ
= σ2

1

τ 2

6
+ σ2

2

[
1

2λ2
− 1− e−λτ

λ3τ
+

1− e−2λτ

4λ3τ

]
+ σ2

3

[
1

2λ2
+
e−λτ

λ2
− τe−2λτ

4λ
− 3e−2λτ

4λ2
− 2(1− e−λτ )

λ3τ
+

5(1− e−2λτ )

8λ3τ

]
.

Dynamics of the beta coefficients specified under the risk neutral mea-
sure is sufficient to derive the cross sectional shape of a yield curve model
that assumes no-arbitrage evolution of bond prices. Under 5.1, the resulting
cross sectional specification of the spot curve is equal to the one of the NS
model minus the adjustment term C(τ)

τ
. The value of the adjustment term is

constant in time and depends on time to maturity, coefficient λ that governs
the mean reversion rate of β2t to β3t, and the volatility parameters σ1, σ2,
σ3.

To simulate the observed dynamics of the level, slope and curvature of
the yield curve we can specify diffusion process for betas under the real
world probability measure P. For reasons of siplicity and consistancy with
Christensen et al. (2007) and Tunc et al. (2009) we use AR(1) process

dβ1t

dβ2t

dβ3t

 = −

K1 0 0
0 K2 0
0 0 K3

θ1 − β1t

θ2 − β2t

θ3 − β3t

 dt+

σ1 0 0
0 σ2 0
0 0 σ3

dW 1,P
t

dW 2,P
t

dW 3,P
t

 ,(5.2)

where θ1, θ2, θ3 are the mean reversion values and K1, K2, K3 are the mean
reversion rates of the betas under the real world measure.

Under this specification Christensen et al. (2007) report that the fore-
casting performance of the no-arbitrage Nelson-Siegel model has improved in
comparison with the Diebold-Li dynamic version of the NS model.
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Chapter 6

Empirical analysis

6.1 Data

In our analysis we use the end of month Bloomberg spot rates of euro-
denominated fixed-rate bonds issued by the German government. The sample
dates from April 1996 to February 2010 and contains spot rates for the fol-
lowing maturities: 3, 6 months, 1, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25, and 30
years. Table 6.1 provides some descriptive statistics of our data set.

maturity mean st.dev. min max ρ(1) ρ(6) ρ(12)
3m 2.95 1.10 0.20 5.03 0.985 0.748 0.272
6m 3.01 1.08 0.41 5.12 0.984 0.739 0.292
1y 3.12 1.06 0.53 5.20 0.980 0.720 0.307
2y 3.32 0.96 0.94 5.24 0.971 0.693 0.350
3y 3.56 0.91 1.36 5.28 0.970 0.693 0.387
4y 3.78 0.87 1.81 5.32 0.968 0.693 0.412
5y 3.91 0.85 2.17 5.59 0.969 0.716 0.456
7y 4.22 0.84 2.71 6.19 0.972 0.774 0.550
8y 4.33 0.85 2.84 6.37 0.974 0.796 0.591
9y 4.38 0.85 2.86 6.51 0.974 0.804 0.597
10y 4.42 0.83 3.02 6.54 0.973 0.796 0.579
15y 4.75 0.78 3.44 6.91 0.976 0.830 0.650
20y 4.95 0.82 3.54 7.09 0.979 0.867 0.715
25y 5.02 0.85 3.61 7.20 0.981 0.876 0.746
30y 4.97 0.89 3.54 7.26 0.982 0.884 0.766

Table 6.1: Descriptive statisctics of the data set.
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6.2 Estimation method

Our aim is to estimate the values of the 10 parameters [K1, K2, K3, θ1, θ2,
θ3, σ1, σ2, σ3, λ], introduced in chapter 5, that produce the best fit of the
model to the data available at time of estimation.

Maximum likelihood estimation is a technique commonly used for this
purpose. Parameters estimated by maximizing the likelihood function are
such that no other parameter values would produce the observed data with
higher probability than the maximum likelihood estimates. However, since
the dimensionality of our problem is rather high, searching directly for the
global maximum of the loglikelihood function may produce unstable results,
which would reduce the trustworthiness of the conclusions based upon such
results.

Thus, following Christensen et al. (2007) and Tunc et al. (2009), we em-
ploy Kalman filter technique to improve the stability of our results. The
Kalman filter technique enables us to filter the observed spot rates from the
noise produced by imperfections in measurements (e.g. bid/ask spread, liq-
uidity problems) and to recover unobserved state variables (in our case the
betas) from the measurement equation (i.e. Nelson-Siegel yield curve specifi-
cation). Values of these state variables are also adjusted for noise that arises
from their stochastic character. More details on the Kalman filter estimation
procedure can be found in Appendix C.

We used Matlab R© by The MathWorksTM to solve all the optimization
problems.

6.3 Parameters

In this section we present some observations concerning the optimal values
of the 10 parameters of interest [K1, K2, K3, θ1, θ2, θ3, σ1, σ2, σ3, λ] as well
as their implications on the values of the factors beta. In the following we
will refer to the Nelson-Siegel model without the no-arbitrage structure as
NS model, and the model proposed in Christensen et al. (2007) will be called
NANS model.

Recall that the parameters Ki determine the mean reversion rate of the
beta factors and the parameters θi are the long term (mean reversion) values
of the beta factors. Parameter λ governs the decay of the Nelson-Siegel factor
loadings and in the NANS model it also enters in the adjustment term C(τ)

τ
.

Volatility parameters σi do not directly influence the shape of the NS model,
they only appear in the Kalman filter estimation of the true values of the
beta factors and thereby affect the estimated time dynamics of the betas.
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Parameters σi do, however, influence the cross sectional shape of the NANS
model through the adjustment term −C(τ)

τ
. For illustration of the impact of

this adjustment term on the shape of the yield curve at different maturities
see figure 6.1.

Figure 6.1: The yield adjustment term −C(τ)
τ

constructed using the op-
timal values of the parameters to fit the whole data set. The black line is
the sum of the green, the blue and the red line and represents the effect of
the adjustment term on the spot rates at different maturities. The green
line represents the contribution of the term containing volatility σ1 of the
level factor β1t on the value of the adjustment term. The blue line presents
the contribution of the terms with σ2 and the red line the contribution of σ3

terms on the adjustment term.

Table 6.2 contains the optimal values of the parameters used to fit the
whole data set. In the table 6.3, we provide descriptive statistics of the
optimal parameter values that were estimated each month from March 2003
until February 2010 to best fit the data set available at that time. To get a
better view on their evolution in time we plot also the time series of these
parameters for both NS and NANS model on the figures 6.2, 6.3, 6.4.

We can say that despite some variance in the optimal values of the ten
parametes there were no extreme deviations in the estimated values which
suggests that the estimation algorithm was chosen wisely and produced stable
results. Indeed, we have also performed an analysis of sensitivity of the
solution to the starting point leading to the same conclusion of very solid
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parameter NS NANS
K1 0.06741 0.02375
K2 0.14522 0.12811
K3 1.33391 1.61848
θ1 0.05853 0.06300
θ2 −0.03492 −0.03912
θ3 −0.01947 −0.01849
σ1 0.00503 0.00321
σ2 0.00846 0.00807
σ3 0.01958 0.01954
λ 0.52218 0.42104

Table 6.2: Optimal values of the parameters calculated to fit the
whole data set.

stability1.
We start with a discussion about similarities and differences in the evo-

lution of the parameters θi, depicted on the figure 6.3, extimated in the NS
and the NANS model. Correlation of the values calculated for each model
is apparent2. The difference in the levels of these parameters can be at-
tributed to the presence of the C(τ)

τ
term in the NANS model. Since the

adjustment term subtracts approximately 25 basis points from the value of
the 30-year spot rate the parameter θ1, which represents the mean reversion
value of the level factor, must be in the NANS model shifted upwards to
compensate for this adjustment. Similarily can be explained the shifts in
the values of θ2 and θ3 because they are defined as R(t,∞) − R(t, t) and
2R(t, t+ 2years)−R(t, t+ 3months) +R(t, t+ 10years), respectively.

On the figure 6.3 we can see the evolution of the parameters Ki that
govern the mean reversion rate of the factors βit. The values calculated for the
NS and the NANS model are again highly correlated3. This correlation can
be clearly attributed to the fact that the only difference between the models
is the presence of the adjustment term C(τ)

τ
. The reason for the lower absolute

values of the parameters K1 and K2 in the NANS model is less clear. One

1There were a minor stability issues when we allowed the parameters Ki to be negative.
However, after restricting Ki to be positive (which is necessary for srationary processes),
these issues disappeared.

2Correlation coefficient of the first differences are ρ(∆θNS1 ,∆θNANS1 ) = 0.98,
ρ(∆θNS2 ,∆θNANS2 ) = 0.99, ρ(∆θNS3 ,∆θNANS3 ) = 0.98.

3Correlation coefficient of the first differences are ρ(∆KNS
1 ,∆KNANS

1 ) = 0.95,
ρ(∆KNS

2 ,∆KNANS
2 ) = 0.99, ρ(∆KNS

3 ,∆KNANS
3 ) = 0.41.
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mean st.dev. min max
NS NANS NS NANS NS NANS NS NANS

K1 0.074 0.021 0.028 0.006 0.041 0.012 0.138 0.033
K2 0.135 0.116 0.045 0.041 0.058 0.051 0.192 0.165
K3 1.247 1.509 0.131 0.152 0.967 1.196 1.415 1.697
θ1 0.060 0.064 0.002 0.002 0.057 0.060 0.063 0.067
θ2 −0.031 −0.034 0.004 0.004 −0.035 −0.039 −0.024 −0.028
θ3 −0.021 −0.020 0.002 0.002 −0.024 −0.023 −0.018 −0.018
σ1 0.005 0.003 0.000 0.000 0.005 −0.003 0.005 −0.003
σ2 0.008 0.007 0.001 0.001 0.007 0.006 0.009 0.008
σ3 0.020 0.020 0.001 0.001 0.018 0.019 0.021 0.022
λ 0.537 0.449 0.011 0.015 0.519 0.418 0.551 0.468

Table 6.3: Descriptive statisctics of the estimated parameters.

possible explanation is that imposition of the no-arbitrage structure on the
Nelson-Siegel model improves the stability of the beta factors. This, however,
does not seem plausible if we look at the figure 6.5 where the dynamics of
the betas in both models suggests less persistent βNANS1 than would imply
the value of KNANS

1
4. Another explanation of the lower value of K1 in the

NANS model offers figure 6.4. The value of the parameter σ1 in the NANS
model is considerably lower than its value in the NS model. Besides lower
volatility od the beta factors in the NANS model this could be also attributed
to the presence of the σ1 in the adjustment term C(τ)

τ
. Higher values of σ1

cause higher reduction in the long term yields which is usually not desirable.
Hence, to avoid inappropriate deformation of the yield curve the value of the
σ1 is lower in the NANS model. By lowering σ1, the variance of the innovation
term in the state space equation for β1 is reduced. This reduction in variance
of innovations may not be desirable (recall figure 6.5), thus, the value of K1

is reduced to boost this variance (see B.22 in Appendix B). Similar reasoning
might be used to explain the differences in KNS

2 and KNANS
2 and in σNS2 and

σNANS2 . The curvature factor is less persistent in the NANS model. (Note

that the contribution of the σ3 to the value of the C(τ)
τ

is very modest, hence
there is no reason to suppress the value of σ3.)

The values of the parameter λ in the two models again exhibit high posi-
tive correlation (ρ(∆λNS,∆λNANS) = 0.76) and downward shift in the values
in the NANS model. Recall that λ governs the pace of decay of the Nelson-

4The averge value of KNS
1 = 0.074 implies half life of βNS1 about 4 years. The average

value of KNANS
1 = 0.021 implies half life of βNANS1 more than 14 years.
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Siegel loadings. Since the adjustment term −C(τ)
τ

in the NANS model has
stronger negative effect on the yields on the longer horizont the yield curve
produced by the NANS model must ”rise” more than the NS curve before
the adjustment term is added which can be achieved by lower values of λ.

The parameters [K1, K2, K3, θ1, θ2, θ3, σ1, σ2, σ3, λ] were estimated in
order to indentify the latent factors beta along with the optimal values of
AR(1) coefficients that would describe their time dynamics. On the figure
6.5 we can see the evolution of the beta factors estimated from fitting the
models to the whole data set. The correlation between the values for NS and
NANS model is visually apparent.

We can see that the level factor β1t in the NANS model evolves along
with the level factor in the NS model shifted approximately for 30 basis
points upwards. Interpretation of this relationship is straightforward. Since
the NANS model contains the adujsment term −C(τ)

τ
which subtracts cca 25

basis points from the 30-year yields, the higher value of β1t compensates for
this adjustment.

Figure 6.2: Time series of the parameters θ1, θ2, θ3. The blue lines
represents the NS and the green lines NANS estimates.
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Figure 6.3: Time series of the parameters K1, K2, K3. The blue lines
represent the values in the NS model and the green lines are the estimates
in the NANS model.

Figure 6.4: Time series of the parameters σ1, σ2, σ3, λ. Blue lines stand
for the NS estimates and green lines for the estimates in the NANS model.

The same relationship as between the level factors of the two models can
be observed between the slope factors. Again, since the negative slope of the
yield curve is defined as the short rate minus level, and the level factor of the
NANS model is upward shifted relative to the level of the NS model, the β2t

of the NANS model is generally only a shifted value of the β2t factor of the
NS model.

The highest variance between the factor values estimated in the NS and
NANS model can be seen in β3t. Very high correlation between the two
curvature factors is, however, still apparent.

An unpleasant observation about all the beta factors for both NS and
NANS model is that they do not appear to be stationary. Indeed, if we look
at augmented Dickey Fuller test statistics, preseted in the table 6.4, we cannot
rejcet the null hypothesis of unit root process at five percent signifficance level
for none of the betas. Recall that stationarity of the beta factors is necessary
condition for our AR(1) modelling framework to be justified.
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Parameters Empirical analysis

Figure 6.5: Evolution of the estimated beta factors in time.
The top blue lines are the estimate in the NS model, the green lines stand
for the estimate in the NANS model.
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NS NANS
β1 −2.66 −2.25
β2 −2.33 −2.39
β3 −2.63 −2.59

Table 6.4: Augmented Dickey Fuller test statictics for the estimated
time series of the beta factors . Critical value at the five pecrent signifficance
level is -2.80.

6.4 In-sample fit

As mentioned in the previous section the estimated values of the parameteres
beta were very similar for both models. This suggests that the models should
produce similar fit to the data. Also a comparison of the final values of the
loglikelihood functions, which was 13432 for the NS model and 13377 for the
NANS, refers to a similar in sample fit performance with a slight advantage
for the NS model. Another measure of the curve’s fit to the data gives us
the statistics Root Mean Squared Error (RMSE) which is defined as follows

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2, (6.1)

where yt denotes the actual spot rate and ŷt denotes its counterpart on the
modelled curve5. T is the number of dates for which we estimate the quality
of the fit. We state the values of RMSE for spot rates of all the maturities
in our data set in the table 6.4.

Also this measure of fit suggests that the NS model is better able to fit
the curves in our data set. Only for the maturities of 5, 20 and 30 years has
NANS model achieved better results.

Although the fitting preformance is generally very similar, there are sit-
uations where one of the models is better able to capture the shape of the
curve. On the figure 6.6 we present examples of the fit at 3 different dates.

5In our case we have either ŷt(τ)NS = β1t + β2t

[
1−e−λτ

λτ

]
+ β3t

[
1−e−λτ

λτ − e−λτ
]

or

ŷt(τ)NANS = β1t + β2t

[
1−e−λτ

λτ

]
+ β3t

[
1−e−λτ

λτ − e−λτ
]
− C(τ)

τ where τ denotes time to

maturity and C(τ)
τ is defined as ich chapter 5.

30



Forecasting performance Empirical analysis

maturity NS NANS
3m 8.50 10.05
6m 4.14 4.17
1y 8.40 8.85
2y 7.49 9.14
3y 5.56 6.76
4y 4.51 5.37
5y 3.28 2.80
7y 5.03 5.44
8y 5.89 6.31
9y 7.44 7.64
10y 10.13 10.55
15y 10.26 10.94
20y 10.10 9.04
25y 8.79 8.88
30y 10.3 9.48

Table 6.5: RMSE of the in-sample fit (in basis points).

6.5 Forecasting performance

In this section we examine the forecasting performance of both the NS and
the NANS model. As a measure of prediction quality we use the statistics
of Root Mean Squared Forecasting Error (RMSFE) which is constructed as
the ratio of RMSE produced by the forecast of some model to RMSE of the
forecast using the random walk (forecast of no change).

We execute the forecasting exercise as follows. We estimate the models
using data from April 1996 to March 2003 and perform predictions for one
month, six month and twelve month horizont. Then we estimate the models
using data from April 1996 to April 2003 and perform predictions. In every
step we add one additional month to our data set and make predictions.
Last one month predictions are made after models were estimated on the
data from April 1996 to January 2010. Last 6 month predictions use data
from April 1996 to August 2009 and last twelve month predictions use data
form April 1996 to February 2009. Then we calculate the RMSFE for all the
three prediction horizonts. Table 6.5 presents our results6.

6We have also tried to employ the rolling horizont forecasting approach, where the
parameters of the model would be estimated from a fixed number of dates before the
forecasting date. The additional volatility in estimated parameters has not helped to
improve the results.
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Forecasting performance Empirical analysis

Figure 6.6: Examples of the yield curve fit. The blue line represents the
NS curve, the green line is the curve fitted by the NANS model. Asterisks
are data on spot rates.
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matu- 1 month forecast 6 month forecast 12 month forecast
rity RW NS NANS RW NS NANS RW NS NANS
3m 20.98 1.08 1.08 89.31 1.03 1.03 147.17 1.02 1.01
6m 20.60 1.07 1.06 87.89 1.03 1.02 142.10 1.02 1.02
1y 22.10 1.13 1.14 87.92 1.01 1.01 135.78 1.02 1.02
2y 24.39 1.03 1.04 78.58 1.02 1.02 111.61 1.06 1.07
3y 22.67 1.04 1.04 72.04 1.01 1.01 98.87 1.06 1.06
4y 22.33 1.01 1.02 65.75 0.99 0.99 87.09 1.05 1.06
5y 21.77 1.02 1.01 61.31 1.02 1.01 79.80 1.09 1.09
7y 19.87 1.00 1.00 51.04 1.03 1.02 66.59 1.10 1.09
8y 19.14 1.00 0.99 48.92 1.04 1.03 63.72 1.11 1.09
9y 18.68 1.04 1.04 47.36 1.06 1.04 61.69 1.13 1.11
10y 18.45 1.06 1.06 45.28 1.07 1.06 57.96 1.16 1.14
15y 16.65 1.07 1.05 39.60 1.01 1.01 52.18 1.09 1.07
20y 15.68 1.19 1.16 37.63 1.03 1.03 52.46 1.07 1.06
25y 15.57 1.07 1.09 38.89 1.03 1.03 53.07 1.09 1.07
30y 16.27 1.28 1.23 41.86 1.09 1.06 56.34 1.14 1.09

Table 6.6: Forecsting performance. Columns marked RW contain RMSE
statistics of the random walk predictions on the one month, six month or
twelve month prediction horizont. Columns NS and NANS contain RMSFE
statistincs for the out-of-sample predictions on the particular time horizont.
In bold is marked the better result of the NS and the NANS.

Table 6.5 provides 2 things worth noting. One is that there is only minor
difference between the forecasting performance of the two models suggesting
a little dominance of the no-arbitrage version of the Nelson-Siegel model. The
second, more striking observation is, however, that the values in the table
6.5 are mainly higher than 1. This reflects the fact that the RMSE produced
by forecasting no change in interest rates is a more successful way of mak-
ing predictions than using either of the models. This is a truly surprising
result because Christensen et al. (2007) interpret their findings about better
forecasting performance of the NANS model with comparison to the NS as
success and they do not provide the comparison with random walk forecasts7.

7We have also examined, whether our conclusions regarding the forecastig performance
of the NS and the NANS model were affected by the situation during the financial crisis.
Random walk forecasts were more successful than the NS or the NANS forecasts also after
September 2008 but with less striking dominance.
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Chapter 7

Conclusions

In this master thesis we implemented a recently developed no-arbitrage ver-
sion of the well-known Nelson-Siegel term structure model on the data of
German government bond spot rates. Most of the literature examines quali-
ties of the model only on data on U.S. Treasury security yields and the results
are then often (from our viewpoint recklessly) adoped by institutions in other
countries.

The no-arbitrage model that we estimate belongs to the class of affine
arbitrage-free term structure models. Following Christensen et al. (2007) we
assume that the factors level, slope and curvature are first order autoregres-
sive processes. Our empirical results suggests that this assumption might be
inappropriate.

Our in-sample fit results are similar to those reported in Christensen
et al. (2007). We conclude that there was no improvement in the fitting
performance gained by imposing the no-arbitrage structure with uncorrelated
factors to the original Nelson-Siegel model.

Our interpretation of the out-of sample forecasting performance is, how-
ever, different. Although we find that the no-arbitrage version of the Nelson-
Siegel model produces slightly better forecasts than the dynamic version of
the original Nelson-Siegel model we cannot claim this success because these
forecasts are worse than random walk predictions. Christensen et al. (2007)
compares only the forecasting performance of the two Nelson-Siegel models
but omits to provide comparison with the random walk forecasts. Coro-
neo et al. (2008), paper from the European Central Bank, does offer such
a comparison (although with a different approach to build the no-arbitrage
Nelson-Siegel model) but provides only results estimated on the data sample
of U.S. Treasury security yields from 1970 to 2000, which are neither current
nor really relevant for the primary region of activity of this institution.

The failure of the no-arbitrage Nelson-Siegel to beat the random walk

34



Conclusions

in forecasting can be, in our view, attributed to incorrect specification of
the dynamics of the factors level, slope and curvature. Our results suggest
that these factors are unit root processes which cannot be captured by the
affine specification of the real world dynamics of betas as constructed in
Christensen et al. (2007). Our suggestion for further research would be to
find the diffusion process under the real world measure that would allow us
to model the betas as first order integrated processes. Then would be needed
to examine whether there exists the market price of risk which would allow
the change from the real world to the risk neutral measure under which the
dynamics of the betas is affine.
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Appendix A

Introduction to stochastic
calculus

At this place we provide1 a brief introduction to the terminology of stochastic
calculus. We begin with a few definitions from basic course in probability
and statistics.

Definition A.0.1. (sigma algebra) Let Ω 6= ∅. A subset F of a set Ω is
called a σ-algebra if it has the following properties
(i) ∅ ∈ F,
(ii) If A ∈ F then AC ∈ F,
(iii) If Ai ∈ F i = 1, 2, ... then

⋃∞
i=1Ai ∈ F.

If Ω is a given set, F is a σ-algebra of measurable sets on Ω and P is a
probability measure on Ω, then the tripple (Ω, F, P ) is called a probability
space.

Definition A.0.2. A random variable is an arbitrary function X : Ω → R
such that for every x ∈ R : {ω ∈ Ω : X(ω) < x} ∈ F.

Definition A.0.3. Stochastic process is a set of random variables X =
{Xt; 0 ≤ t < ∞} on a propability space (Ω, F, P ) with values is Rd. For
every t is ω → Xt(ω); ω ∈ Ω a random variable. If we fix ω ∈ Ω, we get a
function t→ Xt(ω); 0 ≤ t <∞ which is called a trajectory of X assigned to
ω.

Next we define a special type of stochastic process which plays a vital
part in stochastic calculus.

1Sources were Melicherč́ık et al. (2005), Janková (n.d.)
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Introduction to stochastic calculus

Definition A.0.4. A standard Brownian motion is a stochastic process with
the following properties:
(i) trajectories Wt(ω) are continuous with probability 1 and W0 = 0
(ii) a random variable Wt is normally distributed N(0, t)
(iii) Wt+s − Ws has distribution N(0, t). Moreover, increments of Wt are
independent, i.e. Wt1, Wt2 − Wt1,..., Wtk − Wtk−1 are independent for all
0 ≤ t1 < ... < tk.

By Brownian motion is in some literature meant the process Bt = µt +
σWt. Then, Wt as defined in A.0.4 is called a Wiener process. For our
purposes, however, we do not need to distinguish these two, thus we follow
the definition A.0.4 from Melicherč́ık et al. (2005).

Definition A.0.5. Let (Ω, F, P ) be a probability space, X : Ω→ R a random
variable for which E(|X|) <∞. Let H ⊂ F be a σ-algebra. Conditional mean
E(X|H) is a random variable with the following properties:
(i) E(X|H) is H-measurable
(ii)

∫
H
E(X|H)dP =

∫
H
XdP ∀ H ∈ H.

Definition A.0.6. Let {Nt}t≥0 be a growing system of σ-algebras on Ω (i.e.
Nt2 ⊃ Nt1 for t2 > t1). Stochastic process g(t, ω) : [0,∞) × Ω → R is
Nt-adapted if for every t ≥ 0 is a function ω → g(t, ω) Nt-measurable.

Nt-adaptation means that the value of a function g is not computed using
information that will be known to us only in the future.

Definition A.0.7. Let Wt(ω) be a Brownian motion on (Ω, F, P ). One-
dimensional Itô process is a stochastic process of the form

Xt = X0 +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dWx(ω)

or in differential form

dXt(ω) = u(t, ω)dt+ v(t, ω)dWt(ω),

where u(t, ω), v(t, ω) are FW
t -adapted. Function u is called a drift and func-

tion v is called a volatility.

Functions u(t, ω), v(t, ω) in the above definition must have also some
additional properties, but we do not state them here, because they have
rather technical character.

Definition A.0.8. Filtration on a probability space (Ω, F, P ) is called a
system of σ-algebras {Mt}t≥0, Mt ⊂ F such that 0 ≤ s < t⇒Ms ⊂Mt.
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Introduction to stochastic calculus

Filtration is a notion that stands for an information set available to us at
time t. The condition that filtration ”grows” as time proceeds means that
we do not forget any past information and every additional time step gives
us some new information.

Definition A.0.9. Let P , Q be probability measures on (Ω, F). P and Q
will be called equivalent if P (A) > 0⇔ Q(A) > 0.

Lemma A.0.1. Let Xt(ω) be an Itô’s process

dXt(ω) = u(t, ω)dt+ v(t, ω)dWt(ω).

Let g(t, x) ∈ C2([0,∞) × R). Then Yt(ω) = g(t,Xt(ω)) is also Itô’s process
and

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)v

2dt.
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Appendix B

Derivation of a no-arbitrage
Nelson-Siegel model

A thorough derivation of the no-arbitrage Nelson-Siegel model is described
in Christensen et al. (2007). Since it is rather complex, we provide here
only an outline of the derivation. Duffie and Kan (1996) prove that if the
instantenous risk-free rate is an affine function of state variables βt and the
diffusion process for these state variables under the risk neutral measure
Q is of a particular form1 then zero-coupon bond prices, derived from the
no-arbitrage principle, are exponential-affine functions of the state variables

P (t, T ) = EQ
t [exp(−

∫ T

t

rudu)] = exp(B(t, T )′βt + C(t, T )). (B.1)

The first equality in B.1 represents the no-arbitrage pricing approach and the
second equality, where B(t, T ) and C(t, T ) are the solutions to a particular
system of differential equations, is proved in Duffie and Kan (1996).

Since prices of zero-coupon bonds can be also computed as

P (t, T ) = exp(−R(t, T )(T − t))

we get that

R(t, T ) = − 1

T − t
logPt(T ) = −B(t, T )′βt

T − t
− C(t, T )

T − t
. (B.2)

1Affine arbitrage free class of term structure models.
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Derivation of a no-arbitrage Nelson-Siegel model

Hence, if we want to obtain a specification of the spot rates similar to
that of Nelson and Siegel, it must be the case that

− B1(t, T )

T − t
= 1, (B.3)

−B2(t, T )

T − t
=

1− e−λ(T−t)

λ(T − t)
, (B.4)

−B3(t, T )

T − t
=

1− e−λ(T−t)

λ(T − t)
− e−λ(T−t). (B.5)

Multiplaying equations B.3, B.4, B.5 by (t − T ) and differentiating with
respect to t we get

dB1(t, T )

dt
= 1, (B.6)

dB2(t, T )

dt
= e−λ(T−t) = 1 + λB2(t, T ), (B.7)

dB3(t, T )

dt
= λτe−λ(T−t) = −λB2(t, T ) + λB3(t, T ). (B.8)

Because of B.2, we need the functions Bi(t, T ) to satisfy final conditions
B1(T, T ) = B2(T, T ) = B3(T, T ) = 0.

Since we want the bond prices to evolve in an arbitrage free way a price
of a zero-coupon bond under risk neutral measure Q must follow

dP (t, T ) = P (t, T )[rtdt+ σPdW
Q]. (B.9)

In the Nelson-Siegel model, instantaneous risk-free rate is the sum of the
first two factors rt = β1t + β2t. If we can find a diffusion process for factors
β1t, β2t, β3t such that diffusion of P (t, T ) calculated from B.1 with B(t, T )
satisfying B.6, B.7, B.8 will coincide with B.9 then the spot rates given by
B.2 will have Nelson-Siegel factor loadings and the cross sectional shape and
dynamics of R(t, T ) will be consistent with the no-arbitrage principle.

We try to find the diffusion process for betas as first order vector autore-
gression process with independent innovations2.dβ1t

dβ2t

dβ3t

 = −

K11 K12 K13

K21 K22 K23

K31 K32 K33

β1t

β2t

β3t

 dt+

σ1 0 0
0 σ2 0
0 0 σ3

dW 1,Q
t

dW 2,Q
t

dW 3,Q
t

(B.10)

2We restrict the innovations to be independent only for simplicity
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Derivation of a no-arbitrage Nelson-Siegel model

This is a system that does belong to the group of diffusion processes described
in Duffie and Kan (1996) to produce affine arbitrage free models thus the
pricing equation B.1 holds. Differentiating B.1 and using B.10 as diffusion
for factors βit yields

dP (t, T ) = P (t, T )[dC + dB1β1t −B1K1·βtdt+
1

2
B2

1σ
2
1dt+

+ dB2β2t −B2K2·βtdt+
1

2
B2

2σ
2
2dt+

+ dB3β3t −B3K3·βtdt+
1

2
B2

3σ
2
3dt+

+ B1σ1dW
Q
1 +B2σ2dW

Q
2 +B3σ3dW

Q
3 ].

Arbitrage free evolution of bond prices implies also B.9. By inserting β1t+β2t

for rt in B.9 we can now match the coefficients in front of βitdt

dB1β1t −B1K11β1tdt−B2K21β1tdt−B3K31β1tdt = β1tdt (B.11)

dB2β2t −B1K12β2tdt−B2K22β2tdt−B3K32β2tdt = β2tdt (B.12)

dB3β3t −B1K13β3tdt−B2K23β3tdt−B3K33β3tdt = 0 (B.13)

dC +
1

2
B2

1σ
2
1dt+

1

2
B2

2σ
2
2dt+

1

2
B2

3σ
2
3dt = 0 (B.14)

Since we know that B1(t, T ), B2(t, T ), B3(t, T ) are not identical (B.3, B.4,
B.5) and we want them to follow B.6, B.7, B.8 we can identify the unique
values of Kij so that our conditions are satisied, namely

K11 = 0, K12 = 0, K13 = 0, K11 = 0, K22 = λ,K23 = −λ,K31 = 0, K32 = 0, K33 = λ.

Solving equation B.14 with final condition C(T, T ) = 0 gives us an expression
for the yield adjustment term C(t, T ). The value of this term does not evolve
over time, thus if we denote τ = T − t a time to maturity, we get

C(τ)

τ
= σ2

1

τ 2

6
+ σ2

2

[
1

2λ2
− 1− e−λτ

λ3τ
+

1− e−2λτ

4λ3τ

]
+ σ2

3

[
1

2λ2
+
e−λτ

λ2
− τe−2λτ

4λ
− 3e−2λτ

4λ2
− 2(1− e−λτ )

λ3τ
+

5(1− e−2λτ )

8λ3τ

]
.

The conclusion is that if the diffusion process for factors βit under risk
neutral measure Q is specified as

44



Derivation of a no-arbitrage Nelson-Siegel model

dβ1t

dβ2t

dβ3t

 = −

0 0 0
0 λ −λ
0 0 λ

β1t

β2t

β3t

 dt+

σ1 0 0
0 σ2 0
0 0 σ3

dW 1,Q
t

dW 2,Q
t

dW 3,Q
t

 (B.15)

then the term structure model derived by using no-arbitrage bond pricing
formula B.9 with rt = β1t +β2t recovers the factor loadings identical to those
of Nelson and Siegel and adds the adjustment term −C(τ)

τ
to the yield curve

to ensure cross sectional absence of arbitrage (with regard to the underlying
short rate model) as well as arbitrage free evolution of the yield curve in
time.

So far, we have only considerated the diffusion process of the Nelson-
Siegel factors under the risk neutral measure Q. This was sufficient to derive
the formula for spot rates through all maturities. However, to capture the
observed factor dynamics we need to specify also a diffusion process under
the real world probability P . Following Christensen et al. (2007) and Tunc
et al. (2009) we restrict our analysis to an affine specification of the real world
factor dynamics3 , which allows us to model the observed time series of betas
as an autoregresive process4.

More precisely, we assume the three state variables to be independant
and evolve as first-order univariate autoregressive processes.dβ1t

dβ2t

dβ3t

 =

K1 0 0
0 K2 0
0 0 K3

θ1 − β1t

θ2 − β2t

θ3 − β3t

 dt+

σ1 0 0
0 σ2 0
0 0 σ3

dW 1,P
t

dW 2,P
t

dW 3,P
t

(B.18)

By integrating B.18 and computing the expected value and variance of
βit for i = 1, 2, 3 we get

3Factor dynamics under the real world measure is tied with its equivalent under the
risk neutral measure linearily via a parameter of the market price of risk

dWQ = dWR + γtdt (B.16)

where γ denotes the risk premium parameter. Since we want the diffusion process for
betas to be affine functions of factors betas both in risk neutral and real world probability
measure the risk premium parameter must be also an affine function of the three beta
factors γ1t

γ2t

γ3t

 =

γ0
1

γ0
2

γ0
3

+

γ1
11 γ1

12 γ1
13

γ1
21 γ1

22 γ1
23

γ1
31 γ1

32 γ1
33

β1t

β2t

β3t

 . (B.17)

4Note, that it is correct to use AR(1) model for parameters beta only if these are
stationary.
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Derivation of a no-arbitrage Nelson-Siegel model

E(βiT |Ft) = (1− e−Ki(T−t))θi + e−Ki(T−t)βit, (B.19)

V ar(βiT |Ft) =

∫ T−t

0

σ2
i e
−2Ki·sds (B.20)

or after discretizing

βi,t+dt = (1− e−Kidt)θi + e−Kidtβit, (B.21)

V ar(βit) =
σ2
i

2Ki

(1− e−2Kidt). (B.22)
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Appendix C

Kalman Filter

Kalman filter is a technique used to filter a signal observed over time from
a measurement noise and inaccuracies of a measuring device that are always
a part of the observed values. The resulting value of the signal processed
by Kalman filter is usually closer to the true value of the signal and it is
computed as a weighted average of a figure calculated from previous obser-
vations and an actual measured value. Particular weights of contribution
of the predicted and the measured value to the estimate of the true value
depend on the accuracy of the measuring device and intensity of the mea-
surement noise. The more accurate device we have the bigger is the weight
by which actual measurents influence the filtered value. In the following, we
will use the notation as in Bishop and Welch (2006) which was our primary
source of information for writing this section.

Kalman filter is usually used to estimate a true value of a state variable
x ∈ Rn which is assumed to be driven by the following linear stochastic
difference equation

xk = Axk−1 +Buk−1 + wk−1. (C.1)

This equation is called a state equation because it defines the value of the
state variable x. The matrix A reflects the dependance of the current value
of x on its value in the previous time step. Variable u ∈ Rl is an optional
control variable and the matrix B tells us how the input u influences the
change in the value of the state variable x. Noise of this process is captured
by a random variable w which is assumed to be normally distributed with
zero mean and covariance matrix Q.

Typically, we cannot measure directly the values of the state variable
x. Instead, we measure a signal z ∈ Rm which is assumed to be a linear
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transformation of the state vector x,

zk = Hxk + vk. (C.2)

Our observation of z is subject to measurement errors caused by imperfec-
tions of the measurement technique. Random vector v captures this mea-
surement noise and is assumed to be normally distributed with zero mean,
covariance matrix R and independent of the process noise u.

We denote x̂−k the predicted value of the true value xk using the infor-
mation available at time k − 1. Value of xk−1 estimated by Kalman filter
so that we use all available information up to this time point (i.e. predicted
value x̂−k−1 and measured signal zk−1) will be denoted x̂k−1. Since we believe
that x is governed by the difference equation C.1, being at time k− 1 we can
predict future value of xk as

x̂−k = Ax̂k−1 +Buk−1. (C.3)

Measurement equation C.2 is then used to adjust the prediction of state
variable for error between the measured and the predicted signal, i.e.

x̂k = x̂−k +Kk(zk −Hx̂−k ) (C.4)

where Kk is the weighting matrix called Kalman gain. The value x̂−k is called
an a priori estimate (because we do not use all information available at time
k) of state variable xk and x̂k is called an a posteriori estimate (because we
account for observed signal) of xk. However, due to error terms in equations
C.1, C.2, neither x̂−k nor x̂k are granted to be equal to the true value of xk.
We denote P−k the covariance matrix of a priori error term (xk − x̂−k ), i.e.
P−k = E[(xk − x̂−k )(xk − x̂−k )T ] and Pk the covariance matrix of a posteriori
error term (xk − x̂k), i.e. Pk = E[(xk − x̂k)(xk − x̂k)

T ]. Racall that our

goal is to estimate the true value of xk, using all information available. This
is equivalent to minimizing the a posteriori error term covariance matrix.
Thus, the matrix Kk is set such that produces minimal Pk. Resulting optimal
algorithm to find the true value of xk is as follows.

set x0, P0, Q, R
. for k = 1 to k = T

x̂−k = Ax̂k−1 +Buk−1

P−k = APk−1A
T +Q

Kk = P−k H
T (HP−k H

T +R)−1

x̂k = x̂−k +Kk(zk −Hx̂−k )

Pk = (I −KkH)P−k

next k
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Algorithm

First we estimate the static Nelson-Siegel model for the whole data set (we
measure time in years, so we can use e.g. λ = 0.7173 as suggested in Diebold
and Li (2006)) and assign θi the mean value of βi throughout this time
horizont

θi = E(βit) for i = 1, 2, 3.

We can compute also V ar(βi) the variance of the state variables estimated
above and initial values of Ki from the AR(1) coefficients of the time series
of betas.

As described in Appendix C, to start the Kalman filter estimation, we
need to provide input values of Q, R and initialize state variables βit and
covariance matrix Pt. In our case, matrix Q is defined as in Appendix B

Q =
σ2
i

2Ki

(1− e−2Kidt)

and we assume the measurement errors to have standard deviation 0.1% as
in Tunc et al. (2009). Following Christensen et al. (2007) and Diebold et al.
(2006) we start the estimation of the state variables βi at their unconditional
mean

βi0 = θi for i = 1, 2, 3, (D.1)

and unconditional variance

P0 = V ar(βi) =
σ2

1

2Ki

for i = 1, 2, 3. (D.2)

Initial values of σi can be calculated from D.2.
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Now we can use the estimation procedure of Kalman filter described in
Appendix C. Matching the common Kalman filter notation with variables in
our model, we get the state vector xt = [β1t, β2t, β3t]

T , matrix

A =

e−K1dt 0 0
0 e−K2dt 0
0 0 e−K3dt

 ,

control vector u = [θ1, θ2, θ3],

B =

1− e−K1dt 0 0
0 1− e−K2dt 0
0 0 1− e−K3dt


and the matrix of linear transformation of state variables to measurements
is given by the Nelson-Siegel specification

H =

1 1−e−λτ1
λτ1

1−e−λτ1
λτ1

− e−λτ1
...

...
...

1 1−e−λτn
λτn

1−e−λτn
λτn

− e−λτn

 .

The vector of measurements zt is equal to the vector of spot rates that were
observed at date t (in the no-arbitrage model we must add the adjustment

term C(T−t)
T−t to the observed yields). We run the Kalman filter for the data

set we want to fit with our model.

After this procedure we maximize the loglikelihood function. This is
constructed under the assumption that the prediction errors ek = zk −Hx−k
are normally distributed with covariance matrix Ωk = (HP−k H

T +R). Using
this assumption yields the following loglikelihood function

L =
T∑
k=1

[
−n

2
ln(2π)− 1

2
det(Ωk)−

1

2
eTkΩ−1

k ek

]
where n is the number of yields estimated at one date and T the number of
dates for which we fit the curve.
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