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Abstract

TAKAC, Martin: Mathematical analysis of a class of path-dependent options[Master’s
thesis].

Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics,
Department of Applied Mathematics and Statistics.

Supervisor: Doc. RNDr. Daniel Sev¢ovi¢, CSc.

Bratislava, 2009

In our work we investigate Asian options. In the first part, we explore statistical
properties of a time integral of the geometric Brownian motion. We approximate
this integral by a lognormal distributed random variable. Then, using a suitable
copula function, we price the average strike Asian option. In second part, we fo-
cus on the early exercise boundary problem for American-style Asian options. We
generalize algorithm based on transformation methods to the case of an exponen-
tially weighted arithmetic averaged Asian option and to geometric averaged Asian
option.

Keywords: option pricing e American-style of Asian options e Asian options e
copula e appropriation formula e exponentially weighted average e numerical
valuation of the free boundarye early exercise boundary.

Abstrakt

TAKAC, Martin: Mathematical analysis of a class of path-dependent options[diplomova
praca].
Univerzita Komenského v Bratislave, Fakulta Matematiky, Fyziky a Informatiky, Ka-
tedra aplikovanej matematiky a Statistiky.
Diplomovy vedtci: Doc. RNDr. Daniel Sev¢ovi¢, CSc.
Bratislava, 2009

V nasej praci sa zaoberame Azijskymi opciami. V prvej ¢aste skimame $tati-
stické vlastnosti integralu eponencidlneho Brawnoho pohybu. Tento integral aprox-
imujeme log-normalym rozdelenim. Pouzitim vhodnej copula funkcie ocenime tzv.
,average strike“ Azijski opciu.

V druhej éasti sa zameriame na problém pred¢asného uplatnenia Azijskej opcie.
Zovseobecnime algoritmus, zalozeny na transformac¢nej metdde, na exponencidlne
vézené a geometricky vaZzené Azijské opcie.

Kriéové slova: ocetiovanie opcif e Azijské opcie s moznostou predéasného
uplatnenia e Azijské opcie e copula e aproximativna formula e exponencialne
vazeny priemer e numericky vypocet voInej hranice e hranica pred¢asného
uplatnenia.



Acknowledgement/Acknowledgment

I would like to express special thanks to my supervisor doc. RNDr. Daniel Sev¢ovié,

CSc. for all of the support and guidance he offered throughout the elaboration of
this thesis.

Declaration on Word of Honour

I declare on my honour that this work is based only on my own knowledge, refer-
ences and consultation with my supervisor(s).

Martin Takac



Contents

Contents
Introduction

1 Financial derivatives

1.1 OpLtions . . . . . v v it e e e e e e e e e e e e e
1.1.1 OptionS types . . .« v v v v v e e e e e e e e e e e
1.1.2 Barrier options . . . . . . . . . it e e e e e e e
1.1.3 Look-backoptions . .. .. ... ... ... ... ...

1.2 Asianoptions . . . . . . . . ..o e e e e e e e

European-style average rate Asian options

2.1 Ideaofderivation . . . . . . . . .. ...
2.1.1 Binarytree. . . . . . . . . .o e e

2.2 Calculationof momentsof Ay . . . . . . ... ... ... . ... ..
2.2.1 Arithmeticaverage . .. .. ... ... ...,
2.2.2 Weighted arithmetic averaged . . . . ... ... ... .....
2.2.3 Exponential weighted arithmetic averaged . . . . . ... ...

2.3 Parameter estimation . . . . . . . . . . ..t e et e e e

2.4 Monte Carlo simulation . ... .....................

2.5 Numericalresults . . . . . .. ... ... L

European style average strike Asian options

3.1 Modification average . . . . . . . . . . ...
3.1.1 Dimensionreduction . . ... .. ... ... ..........

3.2 Copula . . .. . e
3.2.1 Asian option pricing usingcopula . . . .. ... ... .. ...
3.2.2 Numericalresults . . . . .. ... ... ... ... .. .....

Transformation method for American-style of average strike Asian op-

tions

4.1 Partial differential equation for pricing the Asian option. . . . . . . .
4.1.1 American-style of Asiancalloptions . . . . ... ... .....
4.1.2 Fixed domain transformation . .. ... ... .........
4.1.3 Derivationof p(0) . . . . . ... o

4.2 Anumerical algorithm . . . . ... ... ... ... ... 0oL

ix

ix



Contents

4.2.1 Algorithm . . ... ... ... .. ... .. 49
4.2.2 Numericalresults . . . .. ... ... ... .. ... 50
4.2.2.1 Arithmetically averaged floating strike call option . . 50
4.2.2.2 Geometric averaged floating strike call option . . . . 55

4.2.2.3 Weighted arithmetic averaged floating strike call op-
tON . . . . . e e 55
423 Timescaling . .. ... .. .. ... ..., 56
4.2.4 Look-backoptions ... ........ ... ... ...... 61
4.2.4.1 American style of Look-back options . . . . ... .. 61
4.2.4.2 Derivationof p(0T) . . . ... ... oL 62
5 Conclusion 65
6 Résumé 67
7 Appendix 69
7.1 Sourcecodes . . . ... e e e e e e e 69
7.1.1 Monte-Carlo for average rate Asianoptions . . . . . . ... .. 69
7.1.2 Monte-Carlo for average strike Asian options . . . . . . . ... 69
7.1.3 Exponentially weighted average rate Asian option . . . . . . . 70
7.1.4 Transformationmethod . .. ... ... ............ 70
7.2 Martingale . . . . . . ... 74
List of Figures 75
List of Tables 77
Bibliography 79



Introduction

Financial derivatives are financial instruments that are linked to a specific financial
instrument or indicator or commodity, and which provide for market financial risk
in a form that can be traded or otherwise offset in the market. Financial derivatives
are used for a number of purposes including risk management, hedging, and specu-
lation. The value of the financial derivative derives from the price of the underlying
items (cf. Trewin [24]).

Historically first derivative security contracts were related to agricultural con-
tracts. In 1973, the first U.S. options exchange has been established (Chicago Board
Option Exchange). In last decades, there has been huge expansion in volume of
trated financial derivatives. Between the most traded derivatives belong interest
rates derivatives and options. Recently, we can observe increasing demand on ex-
otic options. Because of non-existence of explicit formula for pricing them, one can
use one from more methods. Some way how to calculate option’s price is based
on solve parabolic PDE another on binary trees. One of the disadvantages of these
methods is the time needed to obtain result (in case of binary trees algorithm, this
time can be more then thousand seconds (cf. Dai [4]) and therefore there arise
some approximate formulas.

The goal of this work is derive new approximate formula for case of exponen-
tially weighted Asian option. We also generalize numerical algorithm derived by
Sevcovic & Bokes [2] for American-style Asian options.

The thesis is organized as follows. In the first chapter, we focus on basic assump-
tions for option pricing methodology. We discuss the basic types of options. In the
second chapter we approximate time integral of geometric Brownian motion with
lognormal distributed random variable and derive approximate formula. In the first
part of third chapter, we introduce a new modification average, which ends up with
full parabolic PDE. After dimension reduction this PDE at time close to expiry, this
PDE has the same form as PDE for plain vanilla option. Notice, that this PDE is
more suitable for numerical algorithm. In second part we use copula to derive an
approximate formula for pricing average strike Asian options. In fourth chapter we
focus on transformation method for American-style of Asian options.






Chapter

Financial derivatives

The most we can know is in
terms of probabilities.

Richard Feynman

In the last decades, there was huge increase in trading financial derivatives se-
curities in financial market. Derivative security is security whose value depends
on the values of other more basic underlying variables, which may be the prices of
traded securities, prices of commodities or stock indices, foreign currency (cf. Kwok
[10]). Time evolution of stock prices of Microsoft corp. can be seen at in Figure
1.1.

There are three the most common derivatives: futures, options and swaps. For-
ward contract is an agreement between two parties to buy or sell an asset at certain
time in the future for a predetermined price. Forward is also called as futures, if it
is traded on exchanges. While in case of forward, buy or sell an asset have to be
executed, but in case of option, the holder has right (but not obligation) to buy or
sell an asset by a certain date for a predetermined price. Interest rate swap is an
agreement between two parties to exchange interest payments for a predetermined
period of time (see Kwok [10] page 351).

1.1 Options

Definition 1. Option is a right (but not obligation) to buy or sell an asset by a certain
date (called expiration date) for a predetermined price (called strike price or exercise
price). The expiration date we will mark as T and strike price as X. If option can
be exercised before expiration date, we say, that option has American property (or is
American-style option) otherwise it is European-style option.

Call option is an contract, which gives right to holder to buy an underlying asset
by a certain date for strike price.



4 CHAPTER 1. FINANCIAL DERIVATIVES

| \ 24

T | e
\f.l‘ f-,* \llﬂv\ f# | I

‘I\/\Jf\Wl \ N‘\N

Lll ‘I‘I f i
8a 8¢ L] i L3 4 4 I 10q a3 .3 4 L3 L3 L3 o3 l‘l/ u 23 13¢ 11
m m 2005 m m 2006 m ! m 2007 m : m 2008 m 4 s““)‘ 2009 m :
el \ . 810
e i

Figure 1.1: Time evolution of Microsoft corp. stock prices in 2005 — 2009 and it’s
trading volume. Source: www.google.com/finance.

Put option is an contract, which gives right to holder to sell an underlying asset
by a certain date for strike price.

Simple call and put options with no special features are commonly called plain
vanilla options. Other ones are called exotic options.

Payoff function for vanilla options If we hold an call option with strike price X

and at expiration time 7' is value of the underlying asset S7, then can occur only 2
possibilities:

1. X > 57,

2. X < Sp.

In first possibility the call option gives us to right to but that asset for X USD, but
we can buy it on the market for S7, which is less. So we do not use our right and
therefore our payoff will be 0 USD. But in second case, option gives us right to buy
underlying assets for lower price that in market, so we can use our right and buy
underlying asset for X USD and then sell it on market for S; USD. So our payoff will
be Sr — X USD. Putting both cases into one equation, our payoff is max{Sr— X, 0}.
In case of put option, the idea is similar and payoff is given by max{X — Sz, 0}.

Options trader can take different market positions, namely:

e buy call option (long call),

e sell call option (short call),
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e buy put option (long put),

e sell put option (short put).

Assume for a while, that we are a writer of European call option. Let X is a strike
price, S is a price of underlying asset, r is a risk less interest rate and expiration
date is T" years. Question is, for how much (V) we should sell that option. This
price is called option premium or option value.

If we assume, that underlying asset (for example stock) follows Geometric Brow-
nian motion
Sy = Spexp(ut + oWy),

(where W, is Wiener stochastic process)
and by assuming following conditions (cf. Kwok [10] page 33):
e no risk less arbitrage opportunities,
e trading takes place continuously in time,
e the risk less interest rate r is known and constant over time,

e there are no transaction costs in buying or selling the asset or the option and
no taxes,

e the asset pays no dividend,
e the assets are perfectly divisible,

e there are no penalties to short selling and the full use of proceeds is permitted,

then by constructing risk less portfolio from options, assets and bonds we get fol-
lowing partial differential equation (PDE)

oV o 0V 9V
o° _ s _ 1.1
= S — Sz 4TV =0 (1.1)

which holds for option value (for details see e.g. Kwok [10], Sevtovi¢ [20], Meli-
chercik[13]).

For initial condition holds:
V(S,0) = max{S — X, 0}. (1.2)

Solution of (1.1) with initial condition (1.2)is

V(S,7) = SN(dy) — Xe "™ N(dy), (1.3)

v 1 t2
N(x) = / e 2 dt

where 7 =T — t and

|
8
§
3



6 CHAPTER 1. FINANCIAL DERIVATIVES
is cumulative distribution function of normal random variable with 4 = 0 and o = 1,

s+ (r+2)r
dy = —=% 2 1.
1 e (1.4)

and

1 2
dy = dy — on/7 = —X (1.5)

1.1.1 Options’ types

There has been a lot of criteria, in which can be options divided. We only point out
to most commons.

Types according to underlying assets:

e options on stocks,

e options on stock indices,

e options on options,

e options on foreign currency,

e options on interest rates.

Another type of criteria is if the option can be exercised only at expiration date
or at only time before expiration date. Therefore we have following types:

e American options is an option which can be exercised at any time before
expiration date,

e European options can be exercised only at expiration date.

If payoff depends not only on price of assets at expiration date, but depends
also about value of underlying assets in the past, we say, that it is Path Dependent
option. The most popular Path Dependent options are:

e Barrier options,
e Look-back options,

e Asian options.
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1.1.2 Barrier options

Barrier options are considered as the simplest types of path-depend options. The
payoff depends not only on the final price of the underlying asset but also on
whether or not the underlying asset price has reached some barrier level B dur-
ing the life of the option (cf. Kwok [10] page 246). Barrier option introduced into
financial market around 1967 (cf. Sevtovi¢ [23]). Out barrier options are active
at the beginning. But when they reach prescribed barrier, they become null and
void. This barrier is so-called knocked-out barrier. Another type of barrier options
is so-called in options, which are void at the beginning and they become active if
the underlying asset price attain knock-in barrier.

Case of out barrier options: If the price of underlying asset reached barrier then
the holder of option gets some rabat R > 0. There are two possibilities: barrier
is reached up front (down-and-out option) or barrier is reached from bottom (up-
and-out option). In Figure 1.2 there is an example for down-and-out option. At the
beginning, the price of asset is above barrier. If the asset price touch the barrier
(blue line), then the option become nullified (at time ¢ = 0.48). In case of green
line, the option is valid until maturity.

Down-and-out option
40 T T T

351 B

30 B A

il /\/\/V‘N // \\V/f\w |
JN/ / \¥MMW//

Here option become nullified

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1.2: An example of exponential barrier function B(t) = 0.8Ee~T-%, £ = 20. In
the case of blue line, option become nullified, whereas in case of green line, option is active
until maturity.
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1.1.3 Look-back options

As it is mentioned above, Look-back options is path-depend options, which payoff
dependence on underlying asset price and on maximum (minimum) asset price in
case of floating maximum (minimum) Look-back option. Let us only remark (cf.
Sevéovi¢ [23]) that there is only these four types of Look-back options:

1. floating maximum strike put options with payoff V(S, M, T) = (M — S)™,
2. floating maximum rate call options with payoff V (S, M,T) = (M — X)*,
3. floating minimum strike call options with payoff V' (S, M,T) = (S —m)™",
4. floating minimum strike put options with payoff V (S, M, T) = (X —m)*,

where X is strike price, M = max;c) S; and m = minge ) S;. Notice that for
example of floating maximum strike call options, the payoff equals to zero, because
Vit € <O,T> . St S Mt.

1.2 Asian options

Asian options are financial derivatives which payoff depends not only on underlying
asset spot price but also on the average of these prices. These options are usually
on commodities such as oil, grain, etc. Big advantage of these options is protection
from speculation from big investors, which can change price of underlying asset at
time close to expiry. In other words, the payoff is less sensitive at expiration on
underlying spot value. In figure 1.3 is an example of development of S; and A;.
Payoff in case of Asian call option is > 0, but in case of European call option is
= 0. According to way how we compute average we distinguish this types of Asian
options:

1 t
e arithmetically averaged options, where A, = n / Se d€,
0

1 t
e weighted arithmetically averaged options, where A, = 7)d§ / a(t —
0
£)Se dé,

1 t
e geometric averaged options, where In A, = n / In S¢ d€.
0

An example of weighted function (in case of weighted arithmetically averaged op-
tions) is exponential weight function:

a(§) = exp(—Ag). (1.6

According to the way how the averaged asset price enters to the payoff diagram we
can distinguish this two types:
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1 9 1 1 1 1 1 1 1 1 1

Figure 1.3: Development of price of underlying asset and corresponding arithmetic aver-
age.

e average rate call (V(S5, A, T)) = max{0, A—X}), respectively put (V(S, A, T) =
max{0, X — A}),

e average strike call (V (S, A, T) = max{0, S—A}), respectively put (V' (S, A,T) =
max{0, A — S}).

In Figure 1.4 are two different development of prices of underlying asset (solid
lines) and corresponding different averages (dashed lines).

Notice, that in case of geometric averaged Asian options, there exists an explicit
solution for pricing this derivative (for further information see Kwok [10]).
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Figure 1.4: Example of development of prices of underlying asset (solid lines) and corre-
sponding different averages (dashed lines).
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European-style average rate Asian
options

We use the intuition that it is
easier to approximate a
probability distribution than it
is to approximate an arbitraty
nonlinear function or
transformation.

Simon Julier, Jeffrey Uhlmann
and Hugh Durrant-Whyte

In recent times, there is no explicit formula to calculate price of arithmetically
averaged Asian option (cf. Kwok [10]). The only possibility is to solve this prob-
lem using numerical methods or using some approximate solutions. Among basic
methods belongs:

e numerical methods - Monte Carlo simulation, solve PDE by method of finite
differences, etc.,

e analytical approach - is usually based on appropriation of distribution of
random variable Ay or g—; and then derivation of explicit formula for pricing
options,

e estimation of lower and upper bounds for option price.

For further information see e.g. Zhang [26].

In this chapter we derive first two moments of random variable A in case of
arithmetic averaging and in case of weighted arithmetic averaging. Using a method
of moments we estimate parameters of lognormal random variable and then we
derive explicit approximated formula for pricing Asian average rate options. Let us
remark, that in case of non weighted averaging is first two moments identical with
those derived by Posner & Milevsky [14].

11
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2.1 Idea of derivation

It is well known (see e.g. Melichercik [13], Dai [4]), that price of option can be
calculated as following:

V(S,A,0) =e TEg[(Ar — X)1], (2.1)
where (£)" = max{0, ¢} and @ is technical, risk less probability measure (it’s exis-
tence is guaranteed by Girsanov theorem) and Ay = T / S, dr.

0

Theorem 2 (Girsanov). Let W, be a Wiener process on the Wiener probability space
(Q,F, P). Let v,(w) be a measurable process adapted to the natural filtration of the

Wiener process F}¥ and
1T,
Ep |exp | = vidt )| < oo.
2 Jo

Then there exists a probability measure () on (), F), that

e () ~ P (probability measures () and P are equivalent),

dQ r I
o ) = exp (— | trawie) -3 [ <w>dt) ,
o Wi(w) =Wy(w) + f(f vs(w)ds is Brownian motion on (2, F, Q).
For dS on probability measure P holds
dS; = S;odW; + S;udt + %UQStdt.

According Melichercik [13] for risk less measure (), it can be derived, that process
Z; = e7"S; have to be a F}¥-martingale (see Appendix for details). Therefore this
process has to have zero drift. On risk less probability measurable () it holds for
process S; that:

~ 1
Sy = Sy exp (aWt +rt — 50215) , (2.2)

where 1, is Wiener process on (Q, F, Q).
Apply Ito’s lemma on S; it holds

dS; = Srdt + ScdW,. (2.3)

We will denote W, instead of W;, because till now, we will use only risk less proba-
bility measure Q.
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2.1.1 Binary tree

We assume, that price of underlying asset follows geometric Brownian motion
S(t+ dt) = S(t) - exp {(r - %O’Q) dt + ath] : (2.4)

where W, is Wiener process, r is risk less interest rate and o is volatility. Binary tree

methodology assumes that current price S can change on next period either up to

S - u (u > 1) with probability p or down to S - d (d < 0) with probability 1 — p. In
Figure 2.1 we can see two-step binary tree. Generally, for n-step binary tree, one

Suu

Sud

Figure 2.1: Example of two-step binary tree.

step takes time At = z Then for u, d and p hold (cf. [4]):

n
erAt_d
_ 2.5
p R (2.5)
u = VAL (2.6)
1
d = —. (2.7)
u

Notice that this binary tree describe evolution of asset price on risk less probability
measurable (). Our next goal is calculate V (S, A,0). To do so, we need to know
distribution of A; and then by use formula (2.1) we obtain desired result.

It is obvious, that S; has lognormal distribution, but unfortunately sum of log-
normal variables is not lognormal random variable. But if volatility of this sum is
small (< 0.4) we can approximate this sum by lognormal random variable.

2.2 Calculation of moments of Ay

To estimate coefficients of A we can use different methods. For example maximum
likelihood parameter estimation method or method of moments. We decide to use
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method of moments, because in our case we have no observation of data and we are
able to calculate exact moments of Ar. Considering lognormal distribution (which
has 2 parameters) of A; we have to compute two moments of this random variable.

Problem of computation it’s first two moments has been solved only for arith-
metically averaged options for example in papers by Posner & Milevsky [14, 16, 17],
but we derive them by another way and we also derive this moments for case of
exponentially weighted average Asian options. At first, we use discretization of
continuous process to n parts. Then pushing n — oo we get solution. This method
seems to be easier to calculate higher moments.

2.2.1 Arithmetic average
In this section we derive first two moments for case of arithmetic average.
Theorem 3. For E[Ar] holds

exp(rT) —1

E[AT] - S() TT

(2.8)

Proof: At first we use discretization of continuous process S; by discrete one and
pushing limits of discretize step to zero, we proof lemma.

Let &,7 = 1,...,n are identical independent alternative discrete random vari-
ables. This variable has value u with probability p and value d with probability 1 —p.
k

Let &, = 1. Then Sipa; = So H ¢;. If we denote

=0
erAt —d At
p=E=plu-d)+d=——r(u—d)+d=e",
then
E[A;] = lim E Ly = li ! nES
Ar] = lim B\ 2= ;SM = i g D ElSiad

=0

1 n 7

= [ E il
i 3k 1]

By using an independent property of &;:

B LN R R 3 S
:JE&HH;SOE)E[@]ZJLIQORH;SOH“:JL%TLH;SO“

R : 1 1—pntt
= li Sop' = li S
nl—>nc}on+1; oK nl—{glon{»l 0 1—p
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1 1 4 ern(ntl) 1
= lim So te — = Sy lim (_1 +6r%(n+1)> ntl

ngroon—i—l _1—’—67‘% n—o0 _1+€r7
1
~ e —14eT
= S (=1 4¢e7T) lim — @ g T %
o (—1+e )nLIIc}o —er%rT# (Un——

Comment: In Sevtovi¢ & Bokes [2] (Lemma 3.3) and Hansen & Jorgensen [8] (Sec-

tion 3.2) were studied first two moments of x; = %
T
Theorem 4. For E[A2] holds
2 _ 2 exp(f) —exp(a) exp(B) —1

where o = rT, f = 2(r + 10*)T.
Proof: Denote by v = E[¢?] = u(u+d) — 1, n = ;fl, ¢ = vn. Then

n i 2
Zs 1s,m E ZH@]

i=0 j=0

(n+1)2S,°E[A?%] =

~= Y3 qTe]]s| -

H@H#

1=0 k=0 j=0 = =0 k=0 7=0 =
= v <2Z/ﬂ_i—|—1>: v (22/ﬂ+1>
i=0 j=i+1 i=0 j=1
i=0 IT=p i=0 L=u L=p
1 — n+1 92 n+1 1 — n+1
=—7 A Y S
1—v 1—pn l—p 1-¢
After a straightforward calculations we obtain, that
11—yt -1
lim T Ziiesld) (2.10)
n—moon+1 1—v I}
2u 2
li —+1) = —= 2.11
n1—>oon—i—1<1—,u+ ) 047 ( )
1 2 n+1 2
im p o _2ew(e) (2.12)
n—oon+11—p o
1 1 — n+1 -1 2 T
im ¢ Zthea(rd o)T) (2.13)
n—oon+1 1—C (r+ao2)T

By summarizing above results, bring us to the result of this proof:

1 1 — VnJrl 2'u 2lun+1 1 — CnJrl
*E[AZ] = 1i 1) —
SRR = e () e o)
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2 [en(B) —expla) _ esp(B) — 1]

o f—a &)
Theorem 5. For E[SrAr] holds

(8) — exp(a)
0 — «

B[Sy Ar] = S22P , (2.14)

where a = rT, 8 =2(r + 1o?)T.
Proof: Similarly as before, we firstly discretize continuous process and again by

pushing limit of n — oo we finish the proof.

1
E[S-Ar] = 1i
[Srdr] = lim ———

E

St SoSiar
1=0

3

' 1 n i T . G2 n n i
- m e s (T10) 3 (s 1Te )| - e [ (TTa s )|
=0 =0 k=0 /| =0 \j=0 k=0
= Jim R Y (LT& ITen ) | = m 2o { Dy
=0 \j=1 k=1 i i=0
9 n i 2 1 n+1l, —n—1
— fim —20_ Z v _ lim S A
n—oo N + 1 P I n—oom + 1 1-— l/,u*1
I Sg prtt =t 2 rT et g 2exp(f) — exp(a)
= lim = = .
n—oon+1 pu—v 0 (r+s3)T 0 e

Let us remark, that this was not necessary for estimation of parameters of log-
normal variable, but we will use this result in further section in Copula.

2.2.2 Weighted arithmetic averaged

. . . . . . I
In previous section we discuss case of arithmetic averaging namely A; = i / Se d§.
0

In this section we discuss more general case, namely weighted arithmetic averaging
with weighted function «(¢). In option market, there exist options, which price
depends only on average for last k& days before expiration date.

Weighted arithmetic average can be written as

1 T
Ap = ———— — &)Se dE.
T fOTa(g)d£A CL(T g) 13 g

There are a lot of weighted functions, for example:

e exponential weighted function a(§) = exp(—A\¢),
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0, if¢>e

e averaging ¢ days before expiration a(§) = { | ifE<c”

Lemma 6 (The Ito isometry [15, 20]). Let V = V(S,T) be a class of functions
ft,w):(0,00) x Q2 =R
such that

o (t,w) — f(t,w) is B x F-measurable, where 3 denotes the Borel c-algebra on
(0, 00),

o f(t,w)is F, adapted,
o B[] f(t,w)%dl] < o,

then for all f € V(S,T) holds

< /5 e w)th)z _E [ /S o w)th} ,

where W, is Wiener process. Especially, let {S¢, & > 0} is stochastic process. Then

( / sgdwg) ] = [ lsn 2.15)
0 0

E[St] = Soe”.

E

E

Theorem 7. For E[S,] holds

Proof:

=0

=0 =

Lemma 8 ( First moment in case of weighted averaging). For E[A7| holds

S T
E[Ar] = - [ a(T — &)e"sde.
Ay foa@dg/O( £)eréde

Proof:

E[Aq]- /0 " a(e)ic = E { /O S 5>Sgd5} - /O " (T — OE[Sede =

T
_ / o(T — €)Sye™éd.
0

T
Comment: Function 17" — / a(T — €)e™d¢ is convolution of a(e) and exp(re).
0
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Lemma 9 (Second moment in case of weighted averaging). For E[AZ%] holds

([ otr-os.)

+E [ /0 : (a(T — €)Seo)? dg} .

< /0 (T - g)sgdg) 2] |

2

E[A2] = E IR l /0 " o(T - )5, /0 " (T — €)Seodil

Proof:
r’E[A%] = r°E

Using equation (2.3) we have

Sde — 95 ff"dwﬁ (2.16)
Then
2 2
r’E (/Ta(T—f)Sgdf) =E (/Ta(T—f)(dsg—SgadVVg))]
0 0

T T 27 T 2

) T —&)dSe — T — &)SeadW, =E T —&)dS
([ atr=cusi~ [ atr-g5e0 a)_ ([ atr-gas;)

—9E [/OT a(T — €)dS; /OT a(T — g)sgadwg} +E (/OT a(T — g)sgadwgﬂ .

Using Ito’s isometry we conclude

([ ar-eas.)

+E [ /O ' (a(T — €)Se0)? dg] .

2

_E _9E [ /0 " (T — )5, /0 (T - g)sgo—dwg}

2.2.3 Exponential weighted arithmetic averaged

In this chapter we derive both moments of A7 in case of exponentially weighted

function, where
1

! AT-¢)
Ar = TS d
’ fOTeXp(—Af)d§/0 ‘ ¢ dt

is exponentially weighted averaging with weighted function a(§) = exp(—A¢).

Lemma 10 (First moment in case of exponentially weighted averaging). For E[A]
holds

A\ erT _ e—)\T

= : 2.1
E[Ar)] S gy, (2.17)
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Proof: If we set a(§) = exp(—A¢) into Lemma 8, then

AT _ 1

E[A7] = L/T eI ge — g A€
r foT e—de ‘N+r 1 — e AT

)\ erT _ e—)\T
ONfr 1—e AT "
Comment: If we push limit A — 0 in (2.17) we obtain (2.8).

Lemma 11 (Second moment in case of exponentially weighted averaging). For
E[A2] holds

E[AQT] — o AT20 So exp(

2
k2 &

) —expla) _exp(f) — 1 )18

where & = (r + \)T, 3= 2(r + o® + T, k= L [ exp(—A€)de.

Proof: Let us mark v = E[¢?] = p(u+d) — 1, n =71, ( = on, w = exp(\ - At),

0= w?v, T = wy. Then

2
Tk (n 4 1)25,2E[A2] = 2R

Z S(]_lsi~At6_>\(T_iAt)
=0

ZZwlw’“jHO@H&] ~ Zzwm@

1=0 k=0 =0 k=0

ng Hgl]
j=0 =0
—Zuz 2 ( zn: wﬂ'mﬂ'iﬂ) :igi <2§7ﬂ+1>
i=0 j=1

Jj=i+1
— 2r—+1) = ‘ 1— 27"t ——
Z_OQ<7T1—7T +) ;Q <1—7TJr : 1—7‘(‘)
1 — n+1 92 n+1 1 — n+1
S T 1) —2f -
1—o 1l—m l—m 1-¢
After a straightforward calculations we conclude, that
1 1— n+1 -1 2()\+7"+la2)T -1 3
- A C S T
n—oom+1 1—p 20\ + 71+ 502)T IG;
1 2 2 2
li 1) = ———=—— 2.20
nLH;on+1<1—7T+ ) MN+nT & (2.20)
1 9t 2 (A+m)T 2 ~
lim - = _ _2ew(@) (2.21)
n—oon+11—m7 AN+7)T a
1 1-— CnJrl 1+ 6(7“+)\+02)T

li = . 2.22
nlon + 1 1-¢ (r+AX+03)T ( )
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Then

1 1 — Qn-i-l o' 7Tn—f—l 1 — Cn-{-l
20T 1.2 o—2 2
k2S5 2E[A2] = i 1) -2
‘ o BlAz] = lim o= { 1— o (1—7r+) -7 1-¢

f—a &)

Comment: Formula (2.9) is almost identical with (2.18). Only differences are that
instead of parameters «, § are &, (. It is obvious, that lim & = a and hm B =3.

A—0

_2 [exp@ —exp(d) _ exp(f) — 1

Lemma 12. For E[SrAr| holds

—_— Sg Q2+ 3s)T _ (rNT 5 93
[SrAr| = fOTe—/\ﬁdg A+r+s)T (2.23)

Proof: Let as mark w = exp(A\ - At), o = wv. Then

T n
E[SpAr] - / e d¢ = lim E [Sp)  Soe MHAralg; At]
0 i=0

n—oo N,

E|Sr) SowiSz'-At]
1=0

5 )

[ (ﬂfﬂ&)]

= hm
n—oo 1 + 1

= hm

il S Zw (H&H@)] JL‘EO o (sz - w)

§2e—AT n ( G2=AT | _ gntl —n-1
— lim 06 Iun § g — lim 06 ,un o 1%
n—oo m 4+ 1 —\ 1 n—oo m 4 1 1—op™t

2 T —AT T
— _ 2rTe=Arc T
nioe 1 =0 0¢ ¢ A+7r+s2)T

S2e ST el ot

62(r+%32)T . e(rJr)\)T

_ @2
= A+71+8)T

Comment: If we calculate lm% E[SrA7] in (2.23) we have (2.14).



2.3. PARAMETER ESTIMATION 21

2.3 Parameter estimation

In this section we use method of moments to estimate parameters of lognormal
distribution.

Let ¢ is random variable with lognormal distribution with parameters ¢, x, then
probability density function is

0, ifz <0
fo(z,0,x) = { 1 exp [_W] Cifes0 (2.24)
and cumulative distribution function is
0, ifzx <0
Fy(z,0,x) = { %+ %erf |:1n§<$\)/%¢] Cifr>0
For mean and variance it holds
E[y] = e#+3¢,

Var[y] = (€X2 — 1) 2Pt

For as much as we already know two moments of Ay, we can apply methods of
moments and estimate parameters ¢, x. It is well known, that

Var[y] )
(E[p)?)"

¢ = In(E[Y]) — %ln (1 +

X! = In <1+ (‘/&Zﬁl)

Since Var[y] = E[¢? — E[¢]?, then

o = W(BW]) ~ L ER?)+ (B = 2(Efw]) ~ g B, (2.25)
B[]
2 = )
T T EwRD)
After substitution F[¢)] and E[¢?] into (2.25) and (2.26) we have

]
o 21n< eXp(z) ) _ %m (5022 {exp(ﬁ) —exp(a) _ exp(f) — 1D ’

(2.26)

f—a f
§22 [exp(ﬁ)—exp(a) _ eXP(B)—l} 2 [eXp(B)—eXp(a) _ eXp(ﬁ)—l]
2 0« B—a B a [B—a Jé)

s2 (M)Q (M)z

If we denote k = e"p(a Land 9 = 2 [e"pwﬁ):‘;"p(a) - e"p(ﬁ } then

1
o = InSy+2Ink — 3 Ind, (2.27)
2 = Inf—2lnk, (2.28)



22 CHAPTER 2. EUROPEAN-STYLE AVERAGE RATE ASIAN OPTIONS

where
el —1
K =
T
0 - 2 [exp(2(r + 30°)T) —exp(rT)  exp(2(r+ 302)T) — 1
T 2(r + 302)T — T 2(r + 302)T

Finally we have all necessary parameters estimated and taking into account prob-
ability function of A7 (2.24) and formula for option pricing (2.1) we can derive
approximate formula

V(S,0) = e "Eq[(Ar — X)T]=e"" /Ooo(x — X)" fu(z, 0, x) dx

o [T 1 _M]
= ¢ /x (x X)xx\/%expl e dz. (2.29)

2.4 Monte Carlo simulation

Following the idea of binary tree, we can easily generate process S; and calculate
corresponding A,. For given parameters S, X, r, o, T we discretize continuous pro-
cess to 200 steps and generate 100,000 random paths of process S;. Source code in
MATLAB can be found in Appendix in section 7.1.1.

In Figure 2.2 are estimated densities from Monte Carlo simulation and density
of lognormal random variable with parameters derived in previous section. Param-
eters of processis S = 1,0 = 0.1,7 = 0.05,7 = 0.5. In this case, the lognormal fit is
satisfied. Estimation of first moment of A, is 1.0125979 and calculated from (2.8)
is 1.0126048. Estimation of second moment of A, is 1.0270843 and calculated
from (2.9) is 1.0270903. Kernel function for density estimation is following:

u?),

—~

normal - k(u) = = exp

Epanechnikov - k(u) = 2(1 — w?),if |u| < 1, else 0,

e box - k(u) = 1,if |z| < 1, else 0,

triangle - k(u) = 1 — |ul,if |u| < 1, else 0.

More about kernel density estimation can be found in Jeffrey [12].

But, if we choose higher volatility of process S;, ¢ = 0.5 and higher risk less
interest rate » = 0.15 and longer expiration date 7" = 2 then lognormal fit is not
more satisfied. See Figure 2.3. Estimation of first moment of A is 1.1643556
and calculated from (2.8) is 1.1661960. Estimation of second moment of Ay is
1.6313993 and calculated from (2.9) is 1.6394327. For this higher parameters, it
seems to be better to use more parameters distribution, e.g. Generalized extreme
value (GEV) distribution. If Figure 2.4, there are comparison of lognormal fit and
GEV fit. One can easily see, that this GEV fits data better.
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101

——norma

oL ——epanechnikov
— box

8t ——triangle
——lognormal fit
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Figure 2.2: Kernel density estimation of Ay for parameters S = 1,0 = 0.1,7 = 0.05,7 =
0.5 and lognormal fit calculated by (2.27) and (2.28).

1.4
—normal
——epanechnikov
—box
la2r ——triangle
= lognormal fit
1r Lognormal fit
0.8-
0.6r
0.4r
0.2r
0 1 1 4 |
0 1 2 3 4 5 6 7 8

Figure 2.3: Kernel density estimation of Ay for parameters S = 1,0 = 0.5,r = 0.15,7 =2
and lognormal fit calculated by (2.27) and (2.28).
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values data

Generalized extreme walug

Log-normal

Figure 2.4: Histogram of Ar for parameters S = 1,0 = 0.5,7 = 0.15,7 = 2, lognormal fit
(blue line) and Generalized extreme value fit (red line).

Generalized extreme value Let 7 is generalized extreme value distribution with
parameters y, o, &, then probability density function is given by formula

e 0,6) =~ [1+£(”“";“)Fexp{{ug(‘”;“)r}. (2.30)

Generalized extreme value joins 3 simpler distributions (Gumbel, Frechet, Weibull).
It’s big advantage is, that when we fit data with GEV, we let to data decide it's own
distribution. For further detail see e.g. Embrechts [6], Leadbetter [11].

2.5 Numerical results

In Table 2.1 we present numerical results from our lognormal approach and com-
parison with other known methods. In Figure 2.5 we plot for various interest rates
dependences of option price on A in case of exponentially weighted average. Let us
remark, that for A — oo this option change to plain vanilla option. One can easily
verify that

A—00

lim E[A2] = E[S2].

A—00
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Figure 2.5: A dependence of option price on A (solid line), corresponding vanilla plain
option (dashed line). Other parameters are S = 100, X = 100,7 = 1,0 = 0.4.
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Table 2.1: A comparison of different methods for pricing average rate Asian options. Pa-
rameters of process S; are Sy = 100,7 = 1. RS-PDE are values obtained by solve PDE
(Roger a Shi) T-LB and T-UB are lower and upper bounds Thompson (2000), AA is ana-
lytical approximations Zhang [26], LN is our approach by lognormal distribution and MC
is value obtained by Monte Carlo simulations.

o X r | RS-PDE T-LB T-UB AA || LN MC

0.05 95 0.05 7.157 71777  7.1779  7.1794 7.17802  7.14323
0.05 100 0.05 2,621 2.7162 2.7162  2.7279 2.72574  2.70776
0.05 105 0.05 0.439 0.3372 0.3374 0.3257 0.34352  0.33706
0.05 95 0.09 8.823  8.8088 8.8089  8.8091 8.80888  8.87211
0.05 100 0.09 4.185 4.3082 4.3084 4.3173 4.31292  4.31100
0.05 105 0.09 1.011 0.9583 0.9585 0.9561 0.96888  0.94235
0.05 95 0.15 ] 11.090 11.0941 11.0943 11.0941 || 11.09409 11.13954
0.05 100 0.15 6.777 6.7944  6.7946  6.7963 6.79500  6.78619
0.05 105 0.15 2.639 2.7444 27446  2.7559 2.75309  2.73807
0.10 90 0.05| 11.942 11.9511 11.9523 11.9666 || 11.95337 11.82228
0.10 100 0.05 3.624  3.6413 3.6416 3.6725 3.64798  3.64981
0.10 110 0.05 0.359 0.3311 0.3322  0.2855 0.32426  0.34403
0.10 90 0.09 || 13.382 13.3852 13.3862 13.3935 || 13.38630 13.43389
0.10 100 0.09 4.887 49151 49154 4.9597 4.92349  4.93918
0.10 110 0.09 0.659 0.6301 0.6310 0.5840 0.62376  0.65125
0.10 90 0.15| 15.398 15.3988 15.3995 15.4015 || 15.39906 15.48592
0.10 100 0.15 7.000 7.0277 7.0286  7.0707 7.03506  7.03506
0.10 110 0.15 1.430 1.4133 1.4143 1.3901 1.41130  1.35585
0.20 90 0.05| 12.589 12.5956 12.6008 12.7837 || 12.62990 12.51913
0.20 100 0.05 5.760 5.7627  5.7645  5.8330 5.78310  5.78487
0.20 110 0.05 1.996 19892 1.9927 1.8322 1.97131  2.00315
0.20 90 0.09 || 13.825 13.8312 13.8373 14.0072 | 13.86178 13.83059
0.20 100 0.09 6.773  6.7770  6.7787  6.8915 6.80379  6.83882
0.20 110 0.09 2,551 2.5455 2.5486 2.4269 2.53478  2.57984
0.20 90 0.15| 15.636 15.6416 15.6491 15.7898 || 15.66540 15.69377
0.20 100 0.15 8.402  8.4085 8.4105 8.5691 8.44099  8.40859
0.20 110 0.15 3.558 3.5547 3.5578  3.5098 3.55665  3.55116
0.30 90 0.05| 13.951 13.9524 13.9622 14.3521 || 14.03825 14.24634
0.30 100 0.05 7.944 79444 7.9506 8.0597 7.99270  7.90126
0.30 110 0.05 4.074 4.0701 4.0787 3.8171 4.05741  4.25846
0.30 90 0.09 || 14.981 14.9828 14.9930 15.3963 || 15.06715 15.17420
0.30 100 0.09 8.827  8.8276  8.8334 9.0147 8.88593  8.78137
0.30 110 0.09 4.698 4.6949 4.7027 4.5161 4.69528  4.73203
0.30 90 0.15| 16.510 16.5120 16.5239 16.9269 || 16.59091 16.47379
0.30 100 0.15| 10.208 10.2087 10.2142 10.4856 || 10.27829 10.17835
0.30 110 0.15 5.731 5.7282 5.7356  5.6688 5.74817  5.74239




Chapter 3

European style average strike Asian
options

In this chapter we discuss European average strike options. Payoff of these options
is for call in the form

V(S,A,T) =max{Sr — Ar,0},

for put options in the form
V(S, A, T) = I’IlaX{AT — ST, 0},

where Ar is geometric or arithmetic average. Let us remark, that European style
options can be exercised only at maturity. It is well know, that V' (.S, A, ) is a solution
of following PDE (cf. Kwok [20] section 6.1.1):

oV o? 0V ov

_+_Sz—+TS—+Af(Z,t — =1V =0 (3.1)

0A

S ov
ot 2 08? 08

with corresponding terminal condition. It is also well know, that in case of aver-
age strike options, one can transform (3.1) to achieve dimension reduction. By
introducing auxiliary function

1
W(z,t) = ZV(S’ A,t), where x = %,x €R,

we obtain following PDE:

2 2
ow + U—xza w +T:E8W + f(x,t) <W —xa—W) —rW =0 (3.2)

ot 2 ox? ox ox

which has lower dimension. Terminal condition is in the form W (z,7T") = max{z —
1,0} for call and W (z,T) = max{1 — z, 0} for put options.

27
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3.1 Modification average

Main goal of this section is introduce modification average. Classical arithmetic
average is in the form

1 t
-2 / S.dr (3.3)
0

and for % holds

1 I Sy
dA; = ;St — t_2/0 Sydr = (3.4)
A—l/tSd It (3.5)
L= . a7 T °t .
This expression does not contain d.S; term. But if we introduce new average
1 T—1 1 T—t
dAt - ?St -+ TdSt - TSt - TdSt = §tdSt, (36)

where & = Z-! then we obtain new PDE with nonzero terms 2., 2V -V Apply-

957> D
ing It0’s lemma onV = V(S, A, t) we conclude

0*V
0AIS

v . oy av 162V, 107V

(dA)? +

After substitute dS = pSdt + oSdW;, dA = &uSdt + &oSdW,, (dS)? = o2S%dt,
(dA)? = £20252dt, dAdS = €0°S%dt we obtain

%) 0
v = az (uSdt + o SdWy) + —V&(uSdt + o SdW;) 3.7

Y 17V 1 52y ey,
WV LY agayy 1OV 2 agn
o+ 5 g5 AL+ 26A25t e YT

gtO'QSth.

Following derivation of PDE by Seviéovit [20], for function V has to hold

AV — rVdt — A(dS — rSdt) = 0. (3.8)



3.1. MODIFICATION AVERAGE 29

Substituting (3.7) into (3.8) we have

oV oV
0 = %(uSdt + o SdW,) + aft(ﬂSdt + o SdW;)

% 102V 10%
+Edt -+ 5@0’252(% -+ 58—./42 2520'2526% +
—rVdt — A(dS — rSdt),
A%

)% oV )%
0*V

v 1V 1%
0ADS

0*V

2 Q2

- 27 5202 2 2@a2
+8tdt+28520 S dt+28A2§ta Sedt +
—rVdt — ApSdt — AcSdW, + ArSdt,

% oV 0?V 9
0 = %MSdt‘F a&uSdtJr 8./485&0 S*dt + ArSdt

‘|‘Edt + 5@0’ S dt + 58—.»42&0- S dt (39)

—rVdt — ApSdt + <8—V + a—v& — A) oSdW;.

gtO'ZSth

oS  0A

In this equation there is only one source of risk dWW;. To eliminate it, we have to

oy oV . .. .
choose A = 79 + ﬂft. Putting this into (3.9) we obtain

oV oV
0 = ZguSdi+ s7&puSdt+

VR Y

+ﬂ§tr5’dt—|— Edt—i— 5@0’ S dt + 58—./42 g S=dt
)%

2%
—rVdt — %uSdt — a&uSdt,

2
0 = <8V §t0252+6—vr5—7’)}) dt

0A0S oS
+ <ﬂ§tr5+ E + 5@0’ S°+ éa—AZQa S ) dt.
This equality has to hold for all (S, A,¢) € RT x Rt x (0,7) and therefore

1O*Y o ., 10°V , , ., O*V
V=35557 % Toaa%7 Yt 505

4
ot

£02S% + a—vrs + g—l}lgtrs + —. (3.10)

S
It is easy to verify, that for A; holds A, = Ay and A = Ar. Because both financial
derivatives have identical payoff at expiry, and taking non arbitrage principle into
account, we conclude, that V(S, A,0) = V(S,.4,0) and V(S, A, T) = V(S, A, T). Let
us remark, that V' (S;, Ay, t) # V(S;, Ay, t), but this holds

t
V(St, At, t) — V <St, ?At + &St, t) vt S <O, T> (3.11)
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. : : 2V 9%V 9%V
Comment: Even if (3.10) contains terms 33z, 52z, 5155

gularity. Singularity of parabolic PDE can be seen from

e 0l @)

where determinant of this operator is equals to zero.

it shows some type of sin-

3.1.1 Dimension reduction

Similarly as in classical averaging, we can achieve dimension reduction by intro-
ducing auxiliary function W(z, t) as follows

V(S, A, t) = AW(x,t), wherez = %

After straightforward calculations we obtain

o _ow LY _ oW
oS oz’ 052~ ox2’
LTV oW, v _ow
0S0A  Ox2 Aot ot
192% 81/\/ *V - PW
ﬂ Or T+ W, Aﬁ—Az or? v

After substitution those into (3.10) and divide both sides by .4 and some algebraic
calculations we obtain final PDE

1 2
8—W+T(:E—x§t)a—w+ o~ (xZ—ftx3+§fx4) 88;/2\)

ot 2
with terminal condition W(z,T) = (z — 1) for call and W(z,T) = (1 — z)™" for put
option. Let us recall, that }m% & = 0 and therefore (3.12) for ¢ — T has form

—r(l1-=§x)W=0 (3.12)

ow ow 1., ,0*°W

— — = — — = 0. 3.13

o P T g m W (3.13)
This equation is identical with PDE for plain vanilla European options. Indeed, for
t — T, S; has only small influence to A; and therefore we can take A; as constant
(analogy with X in plain vanilla). We only remark, that this PDE is better for
numerical scheme.

3.2 Copula

In this section we briefly explain what copulas are, some history and our application
on Asian option pricing. We also use some results from previous chapter.
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History According to [18] the notation of copula came from A. Sklar (1959),
when he explained relation between multidimensional probability function and its
lower dimensional marginal densities. At the beginning, copula was used in theory
of probabilistic metric spaces, but now, it plays also important role of mathematical
statistics and financial mathematic.

Concept of copula Assume, that we have some multidimensional random vari-
able & = (&1,&)T, where £ and &, are one dimensional random variables. It is easy
to see, that if we know joint cumulative density function of multidimensional ran-
dom variable ¢ (F¢(z1,22)), we also know marginal densities of random variables
& and &. According to Andél [1] Fg, (z) = Fe(x, 00) and Fg,(z) = F¢(oo,z). But on
the other hand, by knowing only marginal cumulative densities F;, and F,, we are
not able to construct F;. One of the reason is that from marginal densities we do
not know relations between random variables &; and &, (for example, covariance).

In statistics, a copula is used as general way of formulating multivariate cumu-
lative distribution from knowing some marginal distribution and some dependence
between them. There exist many families of copulas which differ in the detail of
the dependence they represent. Typical usage for copulas:

e choose an appropriate copula family,
e fit copulas parameters to match your data.

Theorem 13. Sklar’s Theorem

Let F € F(F\, F,,...,F,) be an n-dimensional distribution function with marginals
F\, F,, ..., F,. Then there exists a copula C (i.e. an n-dimensional function on (0, 1)™
with uniform marginals) such that

F(xy,29,...,2,) = C(Fi(21), Fy(22), ..., Fu(xy,)).

This theorem lets us construct multidimensional random variable by choosing
the copula family.

Gaussian copula There are a lot of copula families (e.g. Archimedean copulas,
Periodic copula, Gaussian copula). Let ®, is standard bivariate normal cumulative
distribution function with correlation p, then the Gaussian copula is

Cy(u,v) = ®,(d " (u), @ ' (v)), (3.14)

where u,v € (0,1) and ¢ is standard normal cumulative distribution function.
Gaussian copula density function is given by

ox (@ (u), @7 (v))

W) = G ) = @ )@ () (3-19)
where
1 1
exy,p(T,y) = m exp <—m($2 — 2zyp + 92)) (3.16)
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is joint density function of two-dimensional normal distributed random variable.
Comment: In case of two-dimensional normal distributed random variable ¢, it
holds

= dxddpr(‘b_l(x)a 27 (y)) = pxvpl.y).

fe(z,y)

On Figure 3.1 we can see 3D plot (left side) and contour plot (right side) of
function ¢y y,,(x,y) for different parameter p = 0;0.9; —0.9.

Figure 3.1: 3D plot (left) and contour (right) of function ¢, for different parameter p =
0;0.9; —0.9.
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3.2.1 Asian option pricing using copula
We already know, that price of average rate call option is given by
V(S, A, 0) = eirTEQ[(AT — ST>+]’ (317)

where () is risk less probability measure. From Chapter 2, we know exact dis-
tribution of random variable S;r. We also know approximate distribution of Ap
(lognormal distribution). But these two random variables (S; and Ar) is not in-
dependent. At top in Figure 3.2 we present Monte Carlo simulation (parameters:
So=1,r=0.4,0 = 0.6, T = 1) of this two random variables.

At bottom we present distribution of two-dimensional random variable ¢ =
(X,Y)T, which has independent components and have same marginal distributions
as random variable above.

If (X,Y)7T is two-dimensional normally distributed random variable with corre-
lation p. Let ux = F[X],0% = Var[X], uy = E[Y],0% = Var[Y]. Then (cf. Gao
[71) joint PDF of (X, eY) is for (z,y) € RT x RF

fz,y; ux,0x, by, 0y, p) = (3.18)

exp{f 2(1;2) {(m(zg);#x )272[)(111(?;” ) (m(;ﬁ;w )Jr(ln(ya);w )2} }

2mox oy \/17p2$y

I

otherwise 0.

So, let’s go back to our problem. Recall, that E[Sy] = Sye’”, Var[Sy] = S2(e”" T —
1)e*T and therefore (see section 2.3) coefficients yg, o5 are

(3.19)

s = In(E[Sy]) — %ln (1+ VaT[ST]) ’

E[St]?
Var[Sy]
= In1 . 3.20
7 \/“< +H ) (.20
For random variable A are coefficients 4, 04 (see section 2.3) following:

P (SO%) - %ln (Sgg lexp(ﬁ) —exp(a)  exp(B) — 1D |

o f—a &)

@ fB—a B

(exp(oc)—l)2 ’

where o = 7T, 3 =2(r + 302)T.
If we use density function (3.18), then the only one unknown parameter in

f(s,a;pus, 05, 104,04, p) is p. But p cannot be explicitly estimated, but we choose p
to fit know covariance F(Sy, Ar):

2 [exp(m—exp(a) _ eXP(ﬁ)—l}

o4 = In
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10

10

Figure 3.2: Simulation of two-dimensional random variable (S7, Ar)T (above). At bot-
tom, there is a distribution with independent components and the same marginal distribu-
tions.
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//safpsadsda—

where ( = E[Sr, Ar] = SQW (see Lemma 5). Usually minimum is equals
0.

p= min
pE( 1,1)

(3.21)

Finally, the price of Asian average strike Call and Put option can be approximated

Call = /OOO /Ooo(s —a)t f5(s,a) da ds = /OOO /Os(s —a)f(s,a) da ds, (3.22)
B 0o 00 B L _ 00 a B A
Put = /0 /0 (a—s)"fs(s,a) da ds /0 /o (s —a)fs(s,a)ds da, (3.23)

where fﬁ(sva’) = f(57a7M57057MA70A7ﬁ)‘

3.2.2 Numerical results

In Table 3.1 we show a comparison of our results obtained by (3.22), Hansen [8],
finite difference and Monte Carlo simulations for call option. In Table 3.2 we com-
pare that same method for Put options.

In Figure 3.3 we present dependence of p on different parameters. We only
remark, that p = p(9) is constant function, which gives sense, because correlation
should be independent from e.g. currency in which we compute.
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Table 3.1: A comparison of different method for calculates Average strike Asian call option
with parameter value Sy = 100. Jgrgensen is calculated using approximation formula
derived in Hansen [8]. Copula is calculated using (3.22).

r T o | Jergensen Finite difference | Copula MC
0.03 1/12 0.20 1.39 1.39 || 1.39153 1.391519
1712 0.30 2.06 2.06 || 2.05437 2.061377
1/12 0.40 2.72 2.72 || 2.71660 2.707180
4/12 0.20 2.91 2.91 || 2.90286 2.897178
4/12 0.30 4.23 4.23 || 4.21707 4.174144
4/12 0.40 5.56 5.55 || 5.52468 5.556474
7/12  0.20 3.95 3.95 || 3.93962 3.895464
7/12 0.30 5.70 5.69 || 5.66275 5.609880
7/12 0.40 7.45 7.42 || 7.37095 7.437844
0.05 1/12 0.20 1.45 1.43 || 1.43392 1.441781
1712 0.30 2.10 2.10 || 2.09590 2.107424
1/12 0.40 2.76 2.76 || 2.75734 2.736002
4/12 0.20 3.08 3.08 || 3.07467 3.119073
4/12 0.30 4.40 4.39 || 4.38120 4.364677
4/12 0.40 5.72 5.71 || 5.68345 5.686662
7/12 0.20 4.25 4.25 || 4.24205 4.250102
7/12  0.30 5.98 5.98 | 5.94757 6.013364
7/12 0.40 7.72 7.70 || 7.64326 7.775399
0.07 1/12 0.20 1.48 1.49 || 1.47710 1.467870
1/12 0.30 2.14 2.14 || 2.13784 2.140409
1/12 0.40 2.80 2.80 || 2.79846 2.775492
4/12 0.20 3.26 3.26 || 3.25228 3.219071
4/12 0.30 4.56 4.56 || 4.54900 4.578202
4/12 0.40 5.88 5.87 || 5.84473 5.952404
7/12  0.20 4.57 4.57 || 4.55718 4.631852
7/12 0.30 6.27 6.27 || 6.24030 6.231548
7/12 0.40 8.00 7.98 || 7.92107 8.018041
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Table 3.2: A comparison of different method for calculates Average strike Asian put option
with parameter value Sy = 100. Jgrgensen is calculated using approximation formula
derived in Hansen [8]. Copula is calculated using (3.23).

r T o || Jergensen Finite difference | Copula MC
0.03 1712 0.20 1.27 1.27 || 1.26663 1.270262
1/12 0.30 1.93 1.93 || 1.92948 1.906286
1/12 0.40 2.60 2.59 || 2.59171 2.613912
4/12 0.20 2.41 2.41 || 2.40452 2.412804
4/12 0.30 3.73 3.73 || 3.71873 3.753623
4/12 0.40 5.06 5.05 || 5.02644 5.036301
7/12 0.20 3.08 3.08 | 3.06971 3.113019
7/12 0.30 4.83 4.82 || 4.79283 4.807147
7/12 0.40 6.58 6.55 || 6.50104 6.598398
0.05 1/12 0.20 1.23 1.23 || 1.22587 1.209759
1/12 0.30 1.89 1.89 || 1.88786 1.910832
1/12 0.40 2.55 2.55 || 2.54929 2.560727
4/12 0.20 2.25 2.25 || 2.24595 2.267949
4/12 0.30 3.57 3.56 || 3.55248 3.592209
4/12 0.40 4.89 4.88 || 4.85473 4.833621
7/12  0.20 2.81 2.81 || 2.79779 2.853429
7/12 0.30 4.54 4.53 || 4.50331 4.559098
7/12 0.40 6.28 6.26 || 6.19900 6.196700
0.07 1712 0.20 1.19 1.19 || 1.18600 1.177103
1712 0.30 1.85 1.85 || 1.84674 1.846956
1/12 0.40 2.51 2.51 || 2.50736 2.506066
4/12 0.20 2.10 2.10 || 2.09463 2.143257
4/12 0.30 3.41 3.40 || 3.39136 3.397994
4/12 0.40 4.72 4.71 || 4.68708 4.690242
7/12  0.20 2.55 2.56 || 2.54302 2.537715
7/12 0.30 4.26 4.26 || 4.22614 4.271495
7/12 0.40 5.99 5.97 || 5.90691 6.029447
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Figure 3.3: Depends p on o, 7, T, S.



Chapter I

Transformation method for
American-style of average strike
Asian options

Finally, we make some remarks
on why linear systems are so
important. The answer is
simple: bacause we can solve
them!

Richard Feynman

In this Chapter we discuss a transformation methods applied to pricing Asian op-
tions. Let us recall, that American-style option is an option, which can be exercised
at any time ¢ € (0,7 before maturity. We focus our attention to problem of the
exercise boundary and the optimal stopping time.

5 Transformation methods applied in options pricing problem was developed by
Sevcovic et al. (cf. [21], [19], [22]).

4.1 Partial differential equation for pricing the
Asian option

It is well know (cf. Sev¢ovi¢[22], Kwok [10], Dai [5]), that PDE for pricing Asian
option is in the from

ov 2 0V ov
—+0—52—+(r—q)3—+Af(

S\ oV
a 27 a8 oS ) —rv =0 (4.1)

1) oA

39
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where S; A >0, t € (0,7) and

(-1 . . .
rt for arithmetic averaging,
—1
flz,t) = L, for exponentially weighted arithmetic averaging,
1 — exp(—At)
In(z) . .
T for geometric averaging.
(4.2)
For average rate Asian call option is a terminal payoff in the form
V(S, A, t) =max(S — A,0) (4.3)
and for Asian put option is terminal payoff in the form
V (S, A, t) =max(A—S,0). (4.4)
It is also well know (cf. Kwok [10], Dai [5]), that in our case we can achieve
dimension reduction introducing new state variable x = 1 and new function
1
Wiz, 1) = ZV(S’ A,t), where 7 =T —t.
After some computations, one get that
ov _ow A0V _ W
as oz’ 952 Ox?’
ov ow 0*V O*W
IR o A — 2
oA~ g 042 ~ " 9z
o _ oW
ot or

After putting these into (4.1) and after some calculations, we obtain following
PDR for function W (x, 7):

ow oW  a* ,O*W
re + [f(z, T —71) —r—i—q]x% ~ 5T 5 + (r— f(x, T —71))W =0, (4.5
where 7 € (0,7"), « > 0. Initial condition for (4.5) is

W(z,0) = “V(S,A,T) = ~(S — A = (z —1)*

A A

for call options case and W (z,0) = (1—x)*, for put options, where ({)* = max((, 0).

4.1.1 American-style of Asian call options

According to Kwok [10], the set
E={(S,A,t) € (0,00) x (0,00) x (0,T),V(S, A, t) =V (S, A, T)}
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is exercise region. For case of call options, there exist function S; = S;(A4,t), that
E ={(5,A,t) € (0,00) x (0,00) x (0,T7),S > Sp(A,t)}. We omit some technical
details here (for more details see e.g. Dai & Kwok [5]), we only conclude, that
the free boundary function S;(A,t) can be expressed as S;(A,t) = Ax,(t). Spatial
domain for (4.5) is

0<x<p(r),7e(0,T),
where p(7) = 2;(T—7). From C" continuity of V' (S, A, t) at (S;(A,t), A, t) it implies,

that

g—g(sf(A, 1), A1) =1 (4.6)

and from payoff diagram, we have
V(Sf<A7t>7A7t> = Sf(A7 t) — A, (4.7)

for A > 0and ¢ € (0,7). In terms of out new variable x, we ended by following
boundary conditions for function W (x, 7):

W(0,7) =0, Wz, 7)=2z—1, %—W(SCJ) =1, atz = p(7), (4.8)
xr

for 7 € (0,7") and the initial condition for W (x, 1) is
W(z,0) = max{z — 1,0}, Vz >0. (4.9)

Let us remark, that this is a free boundary problem, because our spatial domain
depends on boundary function p.

4.1.2 Fixed domain transformation

Following Sevéovit ([22, 2]) we introduce new variable ¢ and an auxiliary function
IT =TI(&, 7) defined as:

& = In (@) : (4.10)
¢, r) = Wie,r)— x%—f(x, 7). (4.11)
After straightforward calculations we obtain:
o LW 0PI 2611 S OPW ol poll oW OPW

o T o "o tag T am or 0 or  Towor
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If we differentiate (4.5) with respect to x and then multiply by x we have
o [oW ow  o* ,0*W
= r— |— T—7)— A
0 ol e + [f(x, 7) 'r’+q]:c8x 5T

(e f(e T = )W),
2

0= "o T o om Oz
O*W *W
+[f(2, T —7) — 1+ q] 2* 5 —azxzw
2 93
0" JO°W Of _ pN-ii4
5% 53 xaijL(r flz, T —7))x o (4.12)

Subtracting (4.12) from (4.5), we have

oW oW o LMW

0 = §+[f(x7T_T)_T+Q]x%_?x Or2 —|—(T—f(l’,T—T))W
W af oW oW
“rgr " 5% gr @I - rtdags

W, W

—[f(x, T —7) — 1+ q] 2* 52 +ox 52
o? JOPW  Of ow

—1—737 3 +x%W— (T—f(l’,T—T))SL’%,
ow OPW ow o? JOPW
0= W—xafax”(w—xa) 27 G
of ow ow
PW o?
2 —_— R— R— —_—
2o |- g
oll P ¢ o | Ol &% 010
e T — g | =2
0 57 + / f(pe™s, T)+1r—¢q 7| % 2o
a(€)
+ r+xg — f(x, T — 1) I1. (4.13)
Ox r=pe~¢&

N J/

b(Er)

The initial condition for the solution II(¢, 0) is

_ _17 £<1np(0)7
Taking into account equations (4.8) we conclude that we have to impose Dirichlet
boundary conditions for II({, 7) in the form

(0, 7) = —1, [I(c0, 7) = 0. (4.15)
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7) =0 atx = p(7). If we assume C?

Since 9¥(p(7),7) = 1 we obtain, that 2% (p(7),
= (0 we obtain for x — p(7)

continuity of I1(£, 7) up to the boundary ¢

2 II
@) = G2 0.7), L) @16

Xz

Ox

Then passing limit + — p(7) in (4.5) we obtain following algebraic constraint be-
tween p(7) and I1(, 7)

~r = )p(r) = FZEO) +7(plr) = D+ f(p(D). T =7) =
qp(1) — 1 — %(Z—?(O,T) + f(p(r), T—71) = 0. (4.17)

Notice, that this expression contains term %1 ¢ (0,7) and therefore this is not suitable
for numerical scheme, because the whole solutlon is sensitive of this term. Bokes
& Sevtovi¢ [2] suggested an equivalent form. They integrate equation (4.13) with
respect to £ € (0, 00) and taking into account boundary conditions for II({, 7) and
%?(oo 7) = 0 and using equality (4.17) they derived following differential equa-
tion:

2

0 = d%_ (lnp(T) + /OOO H(E,T)df) +qp(T) —q— % (4.18)
n / (e — fp(r)e 6T — T)II(E 7).

4.1.3 Derivation of p(0")

Limit of early exercise boundary at expiry for the continuous arithmetic average
type of an Asian option has been derived e.q. by Dai & Kwok [5] or Bokes &
Sevtovi¢ [2, 22]. Derivation has been deduced from the smoothness of the solution
of PDE. We derive the same result in another way.

Let us assume, that we are close to expiry at t = T — At, where 0 < At < 1,
current price of underlying asset is S;_; and current average is Ar_ ;. We already
know, that price at time 7" can be either S = S;_asu with probability p or Sy =
St_a«d with probability 1 —p. In some special cases we can also express Ay in terms
of Ar_a¢, St—as, u, p, d.

Case of arithmetic averaging Asian call options In this case, it holds, that

1 T 1 T—At T T o At 1 T
A = — = — — A - —
T T/o S.dr T (/o STd7'+/T_At STdT) - T At+T /T_At S.dr

T — At At
T Ap_ At+—ST A€,

~
~
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where ¢ is alternative random variable

_ oVAt : e
u=e with probability p
= : ' 4.1
§ { d = e VAt with probability 1 — p (4.19)
e(rfq)At _ efax/At

coVAL _ g—ov/AL
value at time 7" is < against current value. It means, that we exercise option for
values (S7_as, A7—a¢) for which holds

and p =

. We exercise option at time ¢t = T" — At only if expected

(Sr_ae — Ap_p))Te™™ = Eo(Sr — Ar)™,

(Sr—at — Ar_ar)Te™ = Eq (STAt§ 1 _TAtATAt — %STAt§)+ :

(Sr_at — Ap_a))Te™™ = Ego (Sr_aé — Ar_ag)™ L _TAt-
We can divide both sides by A;_A; and we have

(zp_ar — DFe® = Eg (wp_nl —1)" ! _TALL.

American property guarantees us, that x7_a; > 1 then

(treai— 1)e™ = Eg (erak —1) _TN,

(xr_at — 1)67"At = p(zr_au—1) r—at + (1 —p) (xp_ad —1) I _TAt.
After straightforward calculations we conclude that

o — ela—r)At (At + T(ert — 1)) (4.20)

At + T (et — 1)

Using L’ Hospital’s rule in Alim0 x7_a¢ and taking into account condition z > 1 we
t—
conclude that

1+rT
liL% p(7) = max {%, 1} ) 4.21)

Case of arithmetic averaging Asian put options Derivation in case of arithmetic
Asian put option is similar with case of call option. Difference is only in payoff
diagram. American property restricts us with x; < 1 and therefore
14T

} (4.22)

lii% p(7) = min {m,
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Case of exponentially arithmetic averaging Asian call options Let us introduce
auxiliary function ¥({) = fOC e d¢ = £(1 — exp(—A()). Then

1 T
Ap = —— / e M= dr,
0

v(T)
1 oA AT —At+At—7) ! AT—7)
- e T TS dr +/ e T STdT) ,
v(T) </0 T-At
1
~ m (eiAAt\II(T - At)AT_At + AtST_Atg) .

Similarly as in case of arithmetic averaging
(ST—At - AT—At)+erAt = EQ(ST - AT)+7

(Sr_ne — Ap_a))Te™™ = Eg <STAt§ <1 -

At ) V(T - Ay

— At -
W) um) ¢ A“t) '

Dividing both sides by A;_A; and using American property

i = a1 ) )

After straightforward calculations we conclude that

MAE AT ()AL | AT+ (Ar)At
a8 = T — AL g ATHO)

Tr_ar =€ (eXT — 1) (92t — 1) + AT AAL

(4.23)

Using 1" Hospital’s rule in Alim0 xr_a¢ and taking into account condition x > 1 we
t—

) A+7(1—e )
112% p(7) = max { T (=)’ 1e. (4.24)

conclude that

Case of exponentially arithmetic averaging Asian put options Similarly as be-
fore, American property restricts us with z; < 1 and therefore

_ (A +r(1—e )
lim p(7) :mm{A+q(1 _GAT),l}. (4.25)

Case of geometric averaging Asian call options Similarly as before we at first
write Ar in terms Ar_a¢, ST_As-

I 1T — At (T8 I
InAr = = InS;dr = = In S, dr + = In S;d
nArp T/o nS.dr TT—At/O nSTTJrT/TAtnSTT

T — At 1/t T — At At
= In Ap_a + T /TAt InS.dr ~ T In Ap_a + T In(S7_ai&).
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Therefore

At
AT = AT*At (1 + ? 1H(.I'TAt£>) .
Taking payoff into account, we obtain, that it has to hold

(ST—At - AT—At)+6TAt = EQ(ST - AT)+>

At

+
(Sr—at — AT—At)JrerAt = Eq (ST—At§ — Ap_a¢ <1 + T 1I1($T-At§))) .

Dividing both sides by Ar_A; and using American property (z > 1)

At
(zr_ar — D™ = Eq <$T—At€ - (1 + T hl@T—AtS))) ;
. Al Al

(@1 = De™ = ar sEq(€) — 1 2 Infer_ar) — 2rBq (n(©)),
A A
(orme — 1) = o e 0A Tt In(er_ar) — %EQ (In(€)) .
(xr—ne — 1)(1+7rAt) = xp_a(1+(r—qAL) —1— % In(zr_ar)
S B (n(©)) + o(ar?),
rAbar gt = S (e a) — 2 Eq (n(€)) + oAF),

T
Multiplying both sides by A and using Eq(In(§)) — 0, for At — 0

—1rT 4+ xr_paqT +In(xp_n;) = Eg (In(f)) + o(At),
—rT + xpqT + In(xy) = 0.

Finally we have, that for lim, ., p(7) holds
liIT(l] p(1) = max{z, 1}, (4.26)
where 7 is a solution of

xqT —rT +In(z) = 0. (4.27)

Case of geometric averaging Asian put options Similarly as before, American
property restricts us with z; < 1 and therefore

lirré p(7) =min{z,1}, (4.28)

where 7 is a solution of (4.27).
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4.2 A numerical algorithm

In this section, we use algorithm (derived by Bokes & Sevtovit¢ in [2, 22]) for nu-
merical calculating early exercise boundary. The original algorithm was derived for
arithmetically averaged floating strike. We generalize it for geometric and expo-
nentially weighted averaged floating strike options.

Algorithm is based on discretization. We restrict spatial domain to a finite inter-
val ¢ € (0, L), where it is sufficient to take L ~ 2. Let k£ > 0 is time discretization
step (k = %) and h = % > ( is spatial step. We denote II’ time discretization of
T(¢,7;) and p/ = p(7;), where 7; = jk. By I/ we denote full space-time approx-
imation of the value II(¢;, 7;). Then the Euler backward in time finite difference
approximation of (4.13) is

I — -t 0Tl o’ : oY o2 9%11
— _ = £ 7 _ -
0 k + % (2 + f(ple™s, T)) o W
+ r+x%— (z, T — ) IV,
Ox empi e

where ¢/ is approximation of ¢(7;), where ¢(7) = % +r — q. We have to apply
Dirichlet boundary conditions at £ = 0 and £ = L to function II7. Initial condition
for TI° we use TI° = TI7(£,0). Next we use operator splitting method to above
problem introducing an auxiliary intermediate step II"~2 which splits problem into:

e Convection part

|HER R § ) §
- + % =0, (4.29)

e Diffusive part

0 = (4.30)

o9 2 oe

IV — I3 o? . oI o2 01V
- (7+f(ﬂj€ gaT_T))

+ T+l‘%—f(l‘,T—T) IV,

x:p] e*f

Solution of equation (4.29) can be approximated by explicit solution to the trans-
port equation . .

oIl oIl

E + C(T)a—5 = 0,
for ¢ > 0 and 7 € (7;_;, 7;) with initial condition (¢, 7;_1) = II’"!(¢) and boundary
condition I1(0, 7) = —1. After some computations (for further details see e.g. Bokes
& Sevcovic [2]) we end up with following solution:

.1 j—1 . 1 L — . pj71 — —
- { -Y(v), ifr;=¢&+1n (r—qk>0, (4.31)

P
-1, otherwise.
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Applying central finite differences in order to approximate the derivative 88% we

obtain from equation (4.30)

r+xg— (, T —7)

I
ox !

0;%4_

z=pie i

§ ] j G211 iy

([ =& T — erl I, B Hz+1 — 21 + 114
<2 + f(ple ™, T —1) oF 5} =

Hence vector Il is a solution of a tridiagonal system of linear equations

Ty + BT + AT, = Hgiia (4.32)

i k k
) = e+ g (G PG T-T)).,
B = 14b&T—7)k— (o] +47),

o k k
) = o - Qh( i 6T ).

Boundary conditions for I7 are IT) = —1,1I/, = 0, for j = 1,2,...,m. Initial condi-
tion for I1° is given by equation (4.14). We only recall that
of

b, 1) = T+$%—f(l‘,T—T)

r=pe—¢

In order to determine the free boundary position we take equation (4.18) into
account and after applying Euler finite difference approximation we obtain

Inpy = lnp71—|—/000 Hjl(g)dg—/ooo IV (€)dé (4.33)

w0+ 5 =0t [ - s T ) wae).

Because we can not compute [ Il (£)d¢, we approximate it with trapezoid quadra-
ture method from discrete values. If we rewrite equations into the operator form:

3 = T(p),,), Alpl )P = T3, P = asdF(IV), (4.34)
where 7 (pf, 1) is a solution of transport equation given by (4.31), .A(p; 1) is a tridi-
agonal matrix given by (4.32) and In F(I17) is right side of equation (4.33). System
of equations (4.34) can be solved by means of successive iterations procedure. For
j > 1,weuse IV =111, o0 = p/~1. Then (p + 1)-th approximation of IIV and p’
is a solution of following system:

PPt = F(IPP), (4.35)
[-2rtl = T (phrtl), (4.36)
Alpl )T = -2t (4.37)
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Table 4.1: A comparison of different interpolation methods used in operator 7.

m | interp. method | ¢, | e, | e

200 linear 0.355520 | 0.008903 | 0.379569
spline 0.355506 | 0.008234 | 0.378894

cubic 0.167454 | 0.008234 | 0.378894

400 linear 0.151797 | 0.007341 | 0.190087
spline 0.151780 | 0.007878 | 0.188898

cubic 0.137178 | 0.007897 | 0.188898

800 linear 0.052020 | 0.006184 | 0.087705
spline 0.052014 | 0.007696 | 0.083035

cubic 0.049852 | 0.007702 | 0.083044

1600 linear 0.027937 | 0.004279 | 0.034823
spline 0.027936 | 0.005383 | 0.027244

cubic 0.010368 | 0.005394 | 0.027352

Let us note, that we use piecewise cubic Hermite interpolation to compute val-
ues II"!(n;) from discrete values 11! in operator 7. Comparison of numerical
accuracy for different interpolation methods can be see in Table 4.1. As a bench-
mark we choose piecewise cubic Hermite interpolation and m = 4000. Other
interpolation methods are following: linear - Linear interpolation; spline - Cu-
bic spline interpolation; cubic - Piecewise cubic Hermite interpolation. As a mea-
sure of error we use €, = ||p — Prenchmark||oo> €1, = [|11(+, 25) — Wpenchmark (- 25)|] c0
em, = ||T(+,49.5) — Mpenchmark (-, 49.5)||oo- It is obvious that Piecewise cubic Hermite

interpolation gives better results for smaller time discretization.

4.2.1 Algorithm

Input variables: ¢ > 0, L,r,0,n,m,T > 0, A > 0, pas = 500, toll = 1078

Initialization:
k=T/m
h=L/n
max{ }ig;, 1},
0 ={ max{z, 1},
Mr(1—e= AT
max{m
119 = -1, 6 < lnpO’
0, &>1Inp’
for j =1 tom:
IT) =T
py=p""

for p = 0 to Pyas:
p;+11: }—(H%)
03 =T()
A(p;-l—l)ﬂé-i-l - H;E

for arithmetic average,
for geometric average,
;, 1}, for exponentially weighted average,
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if (\p;H — p;| < toll)
break
endif
end
end,

where r is interest rates, ¢ dividend yields, T' expiration time, n number of spatial
grid points, m time step, L. = 1.4, )\ is parameter used in exponentially weighted
averaging and 7 is a solution of (4.27).

4.2.2 Numerical results

4.2.2.1 Arithmetically averaged floating strike call option

In Figure 4.1 we plot p(7) for different values of o = 0.1, 0.2, 0.3. Other parameters
are T = 50,0 = 0.2,q = 0.04. Let us notice, that for 0 — 0 the whole process is

25

T :
—0=01

Figure 4.1: A comparison of the free boundary position for various ¢ = 0.1,0.2,0.3.

not longer stochastic but deterministic. Option price at time t is S, = Sye" 9! and
its arithmetic average A; = %Soe(r%);’l. In case of ¢ > r, then S; < A;,Vt > 0 and
therefore corresponding option price have to be equals zero. In case of r = ¢, both
S; and A; are equals and therefore p(¢t) = 1. On the other hand, for case of r > ¢
then S, > A,,Vt > 0. We exercise option at time ¢* = arg max,co. ) e "7 (S, — 4;).
If we denote by V() = StS;OAt, then t* = arg maxe o1 Soe~ "7 e W(t). Taylor’s series

of d\I/(t is

o _ntl +1
—q)""t" >0, Vt>0
nzn+2n' ) ’ -

and therefore ¥ (t) is increasing function. As booth ¥(¢) and e are increasing and
product of two increasing functions is also increasing hence t* = 7. In case of
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arithmetically averaged Asian option, we obtain from (4.17), that for ¢ = 0 it holds
1+7r(T—-1)

T)=—"77+7—"7.
o) 1+q(T—-1)

In Figure 4.2 we plot position of free boundary for various ¢ = 0.1, 0.05, 0.03, 0.02,0.015, 0.01

and for o = 0 we use equation (4.38). We only remark, that for small values of o,
algorithm become unstable, which is obvious from Figure.

(4.38)

1.6

T
—0=0.100
—0=0.050
——0=0.030
—0=0.020| |
—0=0.015

0=0.010

1.5F

---0=0

1.4r,

Figure 4.2: A comparison of the free boundary position for various small ¢. For
o = 0 we use (4.38).

In Figure 4.3 we compare position of the free boundary position for various
parameter L which introduce upper bound for spatial approximation interval. In
this particular case (r = 0.06,q = 0.04,7 = 50,0 = 0.2) it would be sufficient to
choose L = 3.

In Figure 4.4 we compare the free boundary position for various interest rates
r =0.2,0.4,0.6. Other parameters are 7' = 50,0 = 0.2, ¢ = 0.04. In the same Figure
we also compare free boundary position computed by algorithm described above
(black line), results from Sevcovi¢ [2] (blue line) and result obtained from Dai &
Kwok [5] (red dots).

In Figure 4.5 above we plot number of iteration in loop p in algorithm to achieve
desired tolerance. At the middle chart we plot error and at the bottom we plot the
free boundary p(7). Parameters are 7' = 50,0 = 0.2, ¢ = 0.04, r = 0.06.

In Figure 4.6 we plot an example of development of a spot value of underlying
asset and corresponding arithmetic average (above). At bottom we plot a position

. S .
of early exercise boundary and z(t) = Zt We marked an exercise event.
t
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Figure 4.3: A comparison of the free boundary position for various L.

—Sevcovic
* Kwok
—Our

19r

1.8r

1.7

1.6r

p(T)

15

1.4§

13

1.2

11

Figure 4.4: A comparison position of the free boundary position for various r =
0.02,0.04, 0.06. We also compare our results with know other known methods.
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600
400}
200} %
\
0 ‘ ‘ ‘ E—
0 10 20 30 40 50
T
10~
10°%
107° ‘
0 10 20 30 40 50
T
2
a 15
1 !
0 10 20 30 40 50
T

Figure 4.5: A number of iteration in loop in algorithm to achieve desired toler-
ance (top), corresponding error (middle) and position of free boundary position
(bottom).
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2.5 ‘ :
Exercise —p(t)

point — x|

0 5 10 15 20 25 30 35 40 45 50

Figure 4.6: An example of development of asset price and corresponding arithmetic
average (top), a position of early exercise boundary (bottom).
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4.2.2.2 Geometric averaged floating strike call option

In Figure 4.7 we compare the free boundary position in case of arithmetic and
geometric average. Parameters are 7' = 50,0 = 0.2,q = 0.04,r = 0.06.

— Arithm. avg.
—— Geom. avg.l

T

Figure 4.7: A comparison of the free boundary position for arithmetic and geomet-
ric average.

4.2.2.3 Weighted arithmetic averaged floating strike call option

In Figure 4.8 we plot free boundary position for various A = 0.001,0.1,0.2,0.5, 1. In
Figure 4.9 we plot I1(¢, t) for various t = 0.25, 5, 25, 45.

1/ / ’/—ﬁ B
o \

[/
134\,“' /
|/ ——A=0.001 \
121, —=o01
I/ ——A=02
/
11f ——A=05
—\=10
1 \ \ \ , \ , \ 7 ,
0 5 10 15 20 25 30 35 40 45 50
T

Figure 4.8: A comparison of the free boundary position for exponential weighted
arithmetic averages for various A = 0.001,0.1,0.2,0.5, 1.
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t=0.25 t=35

-0.1r

—x=0001| |
—A=01
—a=02 | |

-0.2r

-0.31
—M\=0.5

i —a=10 |

-0.61

-0.7r

-0.81

-0.9

t=25 t =45

Figure 4.9: A comparison of solution I1(¢,¢) for variance A = 0.001,0.1,0.2,0.5,1
and t = 0.25, 5,25, 45.

It is easy to verify that Alim A} = S, and therefore it’s option price is equals zero.
—00

This is also reason to lim, ., py — 1. We can estimate rate of convergence of p, to
1 using experimental order of convergence. Assuming that ||px — poo||ococ = O(A™*)
Wwe can express o, like

In(Ag) —In(Ay)

. (4.39)
I(f[pr = poolloo) = (][22, = poollec)

Qo =
We show a, in Table 4.2.

4.2.3 Time scaling

In this section, we show, that position of the free boundary depends. We already
know, that pr = pr(7;7,¢,0,T) is a solution of (4.13) and (4.18). Now, we show,
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Table 4.2: Experimental order of convergence for p,.

o I N | e
0.001 | 0.888104 -
0.1 0.677320 | 0.058835
0.2 0.561828 | 0.269710
0.5 0.413783 | 0.333796
1.0 0.320136 | 0.370188
2.0 0.247010 | 0.374115
3.0 0.212705 | 0.368769
4.0 0.191862 | 0.358490
5.0 0.177658 | 0.344686
10.0 0.147227 | 0.271064
20.0 0.113350 | 0.377261
30.0 0.094150 | 0.457702

that in case of arithmetic average for p; = pi(7; 7, q, o, 1) holds

pT(T; r.q,0, T) =M (%a T?”, T(L \/TO', 1) .

Proof: p1 = p1(7;7,q, 0, 1) is solution of following system

0 — oM [p(F) p(F)et -1 f—cj—&—2 ol 5ol Py 1 I
or  |p(7) 1—7 2| 06 2 €2 1—7]
. _ ool 7)—1

0 = (JPl(T)—T’—?a—f(()’ )+p1§_)%

After substitution 7 = rT, § = ¢T, 5 = o+/T we obtain

_ 00 [A()  pFet -1
V= ot {Pl(%)

1
—|—{T7’—|— ~]H,
1—7

To?] 01l  To? 011
0¢ 2 02

Tr—Tq— -2
1—F T

Now, we can substitute 77 = 7 and using that g, (7) = gy (7/T)T and 24 = 21T we
conclude

ol ou(t/T)  pi(r/T)e ¢ -1 To?]1 01l To? 0%l
S e U - T+Tr—Tq— 2| & 229
. ar { pr(7/T) T—r T ST 50 T 2 o
1
+{T7’+T_TT}H,
B To? Nl p(t/T) —1
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1
After multiply both equations by T we end up with system of equations which are

identical with ones for pr. Argument that both equations have the same initial and
boundary conditions ends this proof.

With regards to previous argument, it is sufficient to study dependence of p(7')
on r,q,o and not on 7. In Figure 4.10 we plot dependence of p(7") and p(7) on r.
Other parameters are o = 0.2, ¢ = 0.04, 7 = 50. In Figure 4.11 we plot dependence

1 1 1 1 1 |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

p'(T)
LS
S o
T

1 1 1 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
r

g 25-

Q

=

S 2r g
[}

5 M
e 15- B!

1 1 1 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
r

Figure 4.10: Dependece of p(T') (top), p'(T") (middle) and max. ¢, p(7) (bottom)
on parameter r.

of p(T') and p(T") on q. Other parameters are r = 0.06,0 = 0.2,7 = 50. In Figure
4.12 we plot dependence of p(7') and p(T") on o. Other parameters are r = 0.06, g =
0.04, T = 50.

In order to find some relation between p(7') and r, ¢, o we generate 100 random
vectors (r,q,0) € (0.01,0.11) x (0.01,0.11) x (0.2,0.8) and for " = 50 we com-
pute corresponding p(7"). Using nonlinear regression we try to estimate p(7) =
f(B;7r,q,0) for various functions f. In Table 4.3 we show those functions with esti-

mated coefficients. As an error measure we use RSS = X(f(8;7;,4;,0;) — p;(T))>.
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Figure 4.11: Dependece of p(T') (top), p'(T') (middle) and max.¢ 1y p(7) (bottom)

on parameter q.
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p'(T)
R
S o
—

0 0.05

0.1

0.15

0.2 0.25

0.3

0.35

0.4

Figure 4.12: Dependece of p(T’) (top), p'(T') (middle) and max.¢( 1) p(7) (bottom)

on parameter o.

Table 4.3: An nonlinear estimation of p(7") = f(3;r, ¢, o) for various functions f.

f(B;r,q,0) ‘ B ‘ B2 ‘ s ‘ P H RSS
by + byt + bsq + bao 1.2642 | 1.2645 | -5.8190 | 1.3771 || 0.1663
2
1+—2 -1.0981 | 7.3976 - — | 0.5203
bir + baq X
2 3
1+ <"7) -1.5707 | 9.1502 | 0.6783 — |l 0.0262
bir + bagq ,
2 3
by + (‘77) -1.5651 | 9.1108 | 0.6727 | 0.9960 | 0.0262
b1T+b2bq
2 3
T (‘77) + 5, 1-0.1596 | 8.5215 | 0.7985 | 0.0913 | 0.0024
bir + bag q
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4.2.4 Look-back options

We have already discussed Look-back options in first chapter. We focus our atten-
tion on floating minimum strike call option, which payoffis V' (S, M, t) = (S;—m;)™,
where my = minTe<07t> St.

Notice, that m, can be calculated as

1 [ z
me= A" = (= [ srar)’
t 0

where p = —oc. Let us remark, that in case of maximum we have to choose p = cc.
In Figure 4.13 we plot development of S; and A? for various p = —1, —10, —100, —occ.
On other hand In Figure 4.14 we plot A? for p = 1, 10, 100, co.

Figure 4.13: Example of development of S; and corresponding A? for various p =
—1,-10, —100, —oo.

4.2.4.1 American style of Look-back options

According Sevéovi¢ [23] for differential dA? holds

dA?
A—pt = fp($7t)7
t

P _

S 1 . .
where z = =% and f,(z,t) = * . Because of this property, we can use algorithm

Af
from previous section. There is only one thing, which have to be derived for this
case. Namely p(0").
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Figure 4.14: Example of development of S; and corresponding A? for various p =
1,10, 100, cc.

4.2.4.2 Derivation of p(0")

We derive p(0") in the same way as in Asian option. In this case, it holds, that

w= (5 [Csm) = (s L[ suar)’
= | = T = | = T+ — T
g T 0 ! T 0 ! T T—-At !

T — At I z T — At At z
(P [ san) (B st ag)

T—At
We exercise option for values (Sr_a, A4 5,) for which holds

(Sr—ar — A _p)Te™ = Eq(Sr— AL)T,

1\ +
T — At At »
(Sr—ar — Af_p)Te™ = Eq <5TAt§ — ( (Af_a) + S:Z;Atfp> ) :

T T

We can divide both sides by A”._,, and we obtain

1\ +
T - At At P
(SL’T,At — 1)+€TAt — EQ (xTAtf — ( T —+ ?SL’?Atfp) ) .

American property guarantees us, that zr_A; > 1 then

T—At At v
(xr-ar— 1™ = Eq (xT—Atf N ( T + ?‘ﬂ%—mgp) ) .
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For small values At we obtain
At »
(xp—ae — 1)(1+7At) = zr_ae(14+(r—q)At) —Eg ( 1+ T—p(xT_Atg -1) .

After straightforward calculations we conclude that for z7_,; it has to hold

At A
st =T AL = = = ah aBo(E). (4.40)

Multiplying by %’ and pushing At — 0 we finally obtain the equation for z:
h + Tpxprq —Tpr — 1 =0. (4.41)

It is easy to verify, that if p — oo, this equation has following solution:

or = {

Recall, that we supposed, that + > 1 and therefore p(0") = 1. On the other hand, if
p — —o0, (4.41) has following solution:

, if r <gq,
, otherwise.

— I3

(4.42)

Lo ifr>gq,
= q
o { 1,  otherwise. (4.43)

In this case p(0") = max {C, 1}.
q






Chapter

Conclusion

In this master’s thesis we focus on path-depend options. We derive first two mo-
ments of time integral of geometric Brownian motion in case of exponentially
weighted averages. Using them, we derive appropriation formula for pricing float-
ing rate Asian options. We compare our results with other known methods and
results are very satisfactory. We also introduce new modificated average, which
give more stable PDE in case of European-style Asian options then standard PDE.
We derive correlation between geometric Brownian motion and it’s exponentially
averaged time integral. Then using appropriate copula function we derive another
approximation formula for pricing European-style.

Finally, we derive by another way a position of free boundary at time close to
expiry. We generalize algorithm for American-style Asian options for case of ex-
ponentially weighted Asian floating strike options. We examined sensitivity of the
position of free boundary on parameters r, ¢, 0.

65






Chapter

Résume

V praci $tudujeme Azijské opcie. St to opcie ktorych payoff zavisi nie len od ak-
tudlnej hodnoty podkladového aktiva aj od jeho historického vyvoja. V pripade
Azijskych opcii payoff zavisi od priemernej ceny. V pripad aritmetického a geomet-
rického priemeru je zndmych mnoho vysledkov. Preto sme sa zaoberali aj vazenym
priemerovanim, konkrétne exponencidlne vdzenym priemerovanim.

V prvej kapitole uvadzame stru¢ny tvod do problematiky a zakladné definicie
a prehlad vybranych op¢nych derivatov. Poznamenajme, Ze sa predpokladd, ze
podkladové aktivum sleduje geometricky Brownov pohyb.

V druhej kapitole odvodime aproximativny vzorec na vypocet ceny tzv. aver-
ate rate opcie. Aproximujeme integral vazeného aritmetického priemeru lognor-
malne rozdelenou ndhodnou premennou. Odvodime jeho prvé dva momenty a mo-
mentovou vetou odhadneme parametre danej lognormdalnej ndhodnej premenne;j.
V Tabulke 2.1 uvddzame porovnanie nami odvodeného vzorca s inymi zndmymi
vysledkami. V pripade exponencidlne vdZzeného priemerovania uvadzame zdvislost
ceny opcie od vahovacieho parametra A. Pre A — oo sa cena opcie blizi k cene
eurdpskej opcie.

V prvej casti tretej kapitoly odvadzame modifikované spriemerovanie, pre ktoré
prislusnd PDR je vhodnejsia pre numerickd schému a pre cas blizky k exspiracii
sa redukuje na PDR totozntu s PDR pre obycajnu Eurépsku opciu. V druhej casti,
pouzitim Gausovej copuly aproximujeme cenu averate strike opcie. Presnost nasho
aproximativneho vzorca opat porovndavame so znamymi vysledkami v Tabulkdch
3.1 and 3.2.

V $tvrtej kapitole sa venujeme problematike Azijskych opcif s Americkou vlast-
nostou. Pripomenime, Ze opcie s Americkou vlastnostou davajua drzitefovi opcie
pravo uplatnit’ opciu v 'ubovolny ¢as pred maturitou. Okrem samotnej ceny opcie
je dolezité vypocitat’ aj tzv. hranicu predcasného uplatnenia (t.j. pre kazdy cas urcit
cenu podkladového aktiva, pri ktorej ma byt opcia uplatnend). V tejto kapitole sa
venujeme algoritmu navrhnutého Sevéovitom [22, 2]. Uvedeny algoritmus sme
zovSeobecnili na pripad geometrického priemeru a exponencidlne vdZzeného. Za-
oberali sme sa aj analyzou citlivosti polohy voInej hranice na zaciatku zivota opcie
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od parametrov r, ¢, 0.



Chapter ;

Appendix

7.1 Source codes

7.1.1 Monte-Carlo for average rate Asian options

sigma=0.5; r=0.15; T=2; X=1; S=1; %Input parameters
n=200; m=100000; dt=T/n;

u = exp(sigma xsqrt(dt));

d = exp(—sigma xsqrt(dt));

p = (exp(rxdt)—d)/(u—d);

values =[];

for i = 1:m
tresh = (( rand(1,n) < p )+0)x(u—d)+d; temp=0;
for j=1:n
temp = (temp+1)xtresh(j);
end

temp = (temp + 1)/(n+1); values(i)= temp;
end
index = Sxvalues> X;
price = exp(—r«T)*1/m«sum( (Sxvalues—X).xindex);

7.1.2 Monte-Carlo for average strike Asian options

sigma=0.5; r=0.15; T=2; SO0=1; %Input parameters
n=200; m=100000; dt=T/n;
u = exp(sigma xsqrt(dt));
d = exp(—sigma xsqrt(dt));
p = (exp(rxdt)—d)/(u—d);
S=[1LA=I[1;
for j=1m
direction = (rand(n,1)<p)x*2—1;
S Path=[];
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S Path(1,1) = SO;

for i = 1:n
if (direction(i) == 1)
S Path(i+1,1) = S Path(i,1)x*u;
else

S Path(i+1,1) = S _Path(i,1)=d;
end
S(j) = S _Path(end,1);
A(j) = mean(S Path);
end

end

index = S>A;

CALL = exp(—r«T)* mean( index.x(S-A) );

7.1.3 Exponentially weighted average rate Asian option

function price = exponentiallyWeightedCall (...
S,X,r,sigma,lambda,T)

alpha = (r+lambda)=«T;

beta = 2x(r+1/2%« sigma”2+ lambda)xT;

k = 1/Tx ( exp(—lambdaxT) — 1 )/(—lambda);

ml = Sxlambda/(lambda+r) *x (exp(r*T) — ...
exp(—lambdaxT))/(1—exp(—lambdaxT));

m2 =exp(—2xlambdaxT)* (S/k)"~2 x2/alpha x
((exp(beta)—exp(alpha))/(beta—alpha) —...
(exp(beta)—1)/beta);

phi = 2xlog(ml)—1/2xlog (m2);

chi = sqrt(log(m2/ml1~™ 2));

F = @(x)lognpdf(x, phi, chi).x(x—X);

price = exp(—r«T)* quad(F,X,300);

7.1.4 Transformation method

asian_call.m

% INPUT PARAMETERS

% r — interest rate

% sigma — volatility of underlying asset

% q — divided yield

% T — expiration date

% L — space discretizgation parameter

% lambda — parameter lambda in case of exponentially
% weighted averaged option

% n,m — number of steps in space and time discretization
% p_max — maximum iterations in p—loop

% toll — prescribed tolerance for p—loop
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% type — type of option 1 = arithmetic, 2 = geometric
% 3 = exponentially weighted 4 = lookback option

% interpolation — type of interpolation
% look — parameter in lookback option

71

function [xi,tau,rhos] = asian_call(r,sigma,q,T,L,lambda,...

n,m,p max, toll ,type,...
interpolation ,look)

h=L/n; k=T/m;
xi = 0:h:L;
tau = 0:k:T;
rho=rho_zero (type,1,q,r,T,lambda,look);
PI = —(xi< log( rho ) )
rhos(1)=rho;
for i=1m

rho _old = rho;

PI old = PI;

for p=1:p max

rho p old=rho;

rho = operator_ F (type,PI,rho old,PI old,tau(i),k,...

sigma,q,r,xi,T,h,lambda,look);

PI POL = operator T(rho,rho old, PI old,xi,r,q,k,...

h,interpolation);

PI = operator A (type,PI POL,rho,tau(i),xi,r,h,k,...

sigma ,T,lambda, look);
if (norm(rho p old-rho)<toll)
break;
end
end
rhos(1+i,:)=rho;
end

operator_T.m

function x = operator_T(rho,rho old,PI old,xi,r,q,k,h,...

interpolation)
x=PI old*0-1;
pp = interpl(xi,PI old,interpolation, ’pp’);
ni = xi+log(rho old/rho)—(r—q)xk;
x(ni>0)=ppval (pp, ni(ni >0));

operator_ A.m

function x = operator A (type,PI POL,rho,tau,xi,r,h,k,...

sigma ,T,lambda, look)
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n=length (xi);
tmpl = —k/(2xh”2)xsigma ™ 2;

tmp2 = k/(2xh);
tmp3 = sigma ” 2/2xtmp2;
if (type==1)

tmp4 = tmp2x*(rhoxexp(—xi)—1)/(T—tau);
elseif (type==2)

tmp4 = tmp2*(log(rho)—xi)/(T—tau);
elseif (type==3)

tmp4 = tmp2xlambdax(rhoxexp(—xi) —1)/...

(1—exp(—lambdax(T—tau)));

else

tmp4 = tmp2x ((rhoxexp(—xi)).” look —1)/((T—tau)x*look);
end
alpha tmpl+tmp3+tmp4;
gamma = tmpl—tmp3—tmp4;
PI POL(1) = PI POL(1)+alpha(1);
if (type ==1)

d = 1+(r+1/(T-tau))xk—(alpha+gamma) ;
elseif (type==2)

d = 1+(r+(1+xi—-log(rho))/(T—tau))+*k—(alpha+gamma) ;
elseif (type==3)

d = 1+(r+lambda/(1—exp(—lambdax(T—tau))))*k—(alpha+gamma);
else

d = 1+(r+1/((T-tau)*look))*k—(alpha+gamma) ;
end
x=gallery(’tridiag’,alpha(2:end),d,gamma(1:end—1))\PI POL’;
X=X";

operator_F.m

function x = operator F(type,PI,rho old,PI old,t j ., k,...
sigma,q,r,xi,T,h,lambda, look)
DPI = PI old-PI;
if (type==1)
[1=(r—(rho_oldxexp(—xi)—1)/(T—t_j)).xPI;
elseif (type==2)
[1=(r—(log(rho _old) — xi )/(T—t_j)).xPI;
elseif (type==3)
[1=(r—lambdax(rho_oldxexp(—xi) —1)/...
(1—exp(—lambdax(T—t_j)))).xPI;
else
[1=(r—((rho_old*exp(—xi)). " look—-1)/((T—t_j)*look)).xPI;
end
tmp = log(rho old)+(sum( DPI )-DPI(1)/2—DPI(end)/2 )xh+...
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kx(q+sigma™2/2—q+xrho_old —...
(sum(I1)—-11(1)/2—11(end)/2)xh );
X = exp(tmp);

rho_zero.m

function x = rho_zero(type, call ,q,r,T,lambda, look)
if (type==1)
if (call==1)
x = max((r+1/T)/(q+1/T),1);
else
x = min((r+1/T)/(q+1/T),1);
end
end
if (type==2)
f = @(x)log (x)+q*T*x—r%T;
x = fzero(f,2);

if (call==1)
X = max(x,1);
else
X = min(x,1);
end
end
if (type==3)

x =( r+*(1—exp(—lambdaxT))+lambda) /...
(gx(1—exp(—lambdaxT))+lambda);

if (call==1)
X = max(x,1);
else
X = min(x,1);
end
end
if (type==4

f = @(x)x"look—1-Txlook «x(r—xx*q);
x = fzero(f,2);
if (call==1)
x =max( x ,1);
else
X = min( x ,1);
end
end
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7.2 Martingale

A filtration (on (2, F)) is a family M = {M}>, of o-algebras M, C F such that
0<s<t=M,CM,

(i.e. {M,} is increasing). An n-dimensional stochastic process { M },~, on (2, F,P)
is called martingale with respect to a filtration { M };>, with respect to P if

1. M, is M,;-measurable for all t,
2. E[|M;|] < oo for all ¢,
3. E[M M| = M, for all s > t.
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