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Abstrakt

TINAJOVÁ, Andrea: Matematický model hypotekárnej krízy[diplomová práca]. Uni-

verzita Komenského v Bratislave. Fakulta matematiky, fyziky a informatiky; Katedra

aplikovanej matematiky a ²tatistiky.

�kolite©: Mgr. Richard Kollár, PhD. Bratislava: FMFI UK, 2010.

po£et strán: 55.

V diplomovej práci zostavujeme model hypotekárnej krízy vyuºitím reak£no -

difúzneho systému rovníc a nelokálnej difúzie. Z dostupnej literatúry a £lánkov vy-

berieme hlavné £initele, ktoré mohli vies´ ku vzniku krízy. Z nich vytvárame systém

predpokladov, z ktorých odvodíme model správania sa investorov. Uvaºujeme trh

s dvomi aktívami - rizikovým a bezrizikovým. Odhadujeme výnos hypotekárnych

záloºných listov v rokoch 2005-2010 ako aj objem vytvorených hypoték. Numericky

aplikujeme model v programe Matlab 6.5. Model kalibrujeme tak, aby bol v súlade

s vývojom amerického hypotekárneho trhu v rokoch 2005-2009. Model uvaºovaný

v práci nebol publikovaný v ºiadnej literatúre, ako aj v²etky výsledky uvaºované v

na²ej práci sú vlastné.

K©ú£ové slová: reak£no - difúzny systém, nelokálna difúzia, hypotekárna kríza,

rozdelenie kapitálu, výnos hypotekárnych záloºných listov.
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Abstract

TINAJOVÁ, Andrea: Mathematical model of mortgage crisis[masters thesis]. Come-

nius University in Bratislava. Faculty of mathematics, physics and informatics; De-

partment of applied matematics and statistics.

Advisor: Mgr. Richard Kollár, PhD. Bratislava: FMFI UK, 2010.

pages: 56.

In this thesis we create reaction - di�usion model of mortgage crisis in the USA in

2008. We compiled system of assumptions describing mortgage market and investors

according to the literature. We estimate yield of mortgage backed securities based on

primary mortgage market. We make function describing amount of capital invested

in intervals with di�erent risk. We implement and solve this system in Matlab6.5.

We set the constants of model in accordance with the data on quantity of mortgages

during the period 2005 - 2010. The model presented in this work have not already

been published in any literature, as well as all results considered in our work are

custom.

Key words: reaction - di�usion system,nonlocal di�usion, mortgage crisis, capital

distribution, yield of mortgage backed securities
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Chapter 1

Introduction

Economic crisis occur quiet often on �nancial markets. However, forecasting them is

very di�cult. This work is dedicated to recent mortgage crisis that emerged in the

U.S. and grew up in global economic crisis.

At the beginning of this thesis we discuss very brie�y mortgage market mechanisms

and causes of the crisis. A key aspect is determination of fundamental assumptions

characterizing behavior of investors in the market. We model this behavior using re-

action - di�usion system of equations. Through input variables we describe trading,

changes on investor's account as well as total amount of new originated mortgages

with respect to our assumptions. Spread of information among investors is imple-

mented by tool of nonlocal di�usion. Purchasing of assets is being modeled by logistic

dynamics.

Furthermore, it is necessary to calibrate our model by choosing appropriate market

data and processing them into initial conditions. We represent investors by the biggest

US. funds and they risk pro�le by volatility of the share price. Furthermore we

calculate yield of Mortgage backed securities based on yield of underlying mortgages.

It is necessary to change our model to be solvable in MATLAB 6.5. Result of

this thesis should be operational model suitable for research on crisis re�ecting main

market mechanisms, investor's behavior as well as spread of information.
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Chapter 2

US Mortgage market

At the turn of the 20th century mortgage market in the U.S. was relatively liberal.

U.S. government bounded to create conditions in order to enable gaining a mortgage

for as many people as possible. Apart from the traditional prime mortgages there

were various kinds of mortgages such as sub - prime, non - prime mortgages, adjusted

rate - with payments linked to basic interest rates (Euribor..)and generally lowered

requirements for the mortgage applicants.[3]

There was a scoring of clients that was based on client's credit history and used for

rating of provided mortgages. Banks were supported by re�nancing mortgages with

securitization.[3] Securitization meant that various mortgages were collected into the

pools. These pools were transformed into mortgage backed securities (further MBS)

traded on the secondary mortgage market.[9] Rating of mortgage backed securities

was determined by the average rating of underlying mortgages. These MBS were

mostly issued by one of three US Federal Housing Agencies. Role of the government

sponsored agencies on the market was buying mortgages from commercial banks.[13]

Extension of MBS throughout the system (i.e. into all types of companies) enabled

insurance products - swaps. Less risky institutions could buy investment products

with lower rating, while this contract was insured by insurance company with su�-

ciently high rating.

In addition, there were introduced a new products on �nancial market - collateral

8
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debt obligations(CDO). This �nancial instrument allow the redistribution of pay-

ments from mortgages. Cash �ow from CDO's goes to tranche holders using the

cash �ows produced by the CDO's assets and depends mostly on credit quality of

the underlying portfolio. In the other words the possibility that investor will receive

the �rst payment from mortgage was assessed by a higher rating. On the other side,

to an investor receiving last payment was given this opportunity for less payment,

signed by lower rating.[13]

The entire system, however, had several shortcomings. Firstly was assumed that

house - price would increase, i.e. that the foreclosure is not unpro�table and therefore

investing in mortgages is "safe". However, through increased basic interest rate clients

collectively lost their ability to repay their mortgages. This led to decrease of house

prices and then to insolvency of many banks. [2]Another problem was poorly adjusted

scoring which caused spread of mortgage backed securities into portfolios of "secure"

funds. This led to an underestimation of the risk throughout the whole system. [1][4]



Chapter 3

Dynamical model of investing

3.1 Assumptions

In this section we are creating a model describing main causes, that could lead to

mortgage crisis.

These are our assumptions:

1. Existence of 2 kinds of assets on the market

There are only two assets to invest on the market - one with constant risk - free

lower yield and second one more risky with higher expected yield.

2. Incorrect information about yield on more risky asset.

Investment is valorized with di�erent return than investors expect by deciding

where to invest.

3. Each investor has risk pro�le - willingness to take a risk

There are many di�erent companies on the market, f.e. pension funds as well

as hedge funds. To di�er these investment companies we use parameter σ. This

risk - pro�le in�uent investors's behavior in the way that more risky investor

buys more from risky assets.

4. Investors can sell any MBS that they have at any time.

10



3.1. ASSUMPTIONS 11

5. Constrained budget of investor

Investors can not sell more then they actually have, in the other words, they

have constrained budget.

6. Logistic pursuing of assets

We use logistic equation for description of speed of purchasing risky assets by

investors. In case that risky asset is more pro�table then safe asset investors

purchase risky asset. Otherwise investors sell risky assets. We assume slow,

careful purchasing at the beginning. Then it becomes faster as the more risky

asset seems to be safe and �nally slow saturation of market by high proportion

of risky asset.

This equation was �rstly used by Verhulst. He derived this tool to describe the

self-limiting growth of population in biology. The equation seems following:

dx

dt
= rx

(
1− x

K

)
= rx− rx

2

K
(3.1)

Where r means growth rate, maximum size of population and x size of popula-

tion. This system has two stationary points: x = K; x = 0. Stationary point

x = K is stable, but the second stationary point x = 0 is unstable.

That means that system is spreading from the �rst stationary point x = 0

modeled by the �rst term +rx until the second stationary point x = K. Then

a member −r x2
K

causes self regulation, decrease.

7. In�uence between market members

Investors on the market a�ect their decision, they compete.

To model this behavior we use similar method, that is used to model di�usion in

Physics. Di�usion in physics describes density �uctuations. Special case is the

heat equation. With behalf of heat equation we can model transfer of heat in the

rod. Temperature of one point in the next time step depends on temperature

of two neighbors. We use this principle to model in�uence of investors on the

market. Investors are partially copying behavior of their competitors. Local
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di�usion would mean in�uence only two competitors with most similar risk

pro�le (one more risky and one less risky).

Non - local di�usion is slightly di�erent. Non local di�usion means that we

consider in�uence of whole market to each investor. This model seems to be

better approximation of the market. We would like to show, that companies

operating with bigger capital have bigger impact to others market players. On

the other side funds with more di�erent risk - pro�le have smaller e�ect.

We model this behavior by non - local di�usion, or di�usion with long range

e�ects.

8. Volume-dependence of yield of risky asset

We observe dependence on whole volume of mortgages on the market, apart

from payed or disappeared loans. There is a threshold by it's crossing more

risky asset became less pro�table then risk - free asset.

3.2 Variables and Parameters

• rs = rs(t) yield from the US Treasury bonds (risk - free investment)

• ru(t) = ru(t− δ(σ)) yield from the MBS (more risky investment)

• rur = rV real return dependent on volume of all assets on the market

• V (t) volume of capital of all investors invested in mortgage debt securities /

new - originated mortgage debt.

• σ [no units]is independent, measure of risk - pro�le of the investors σ ∈ (0, 1)

σ close to 0 means low risk funds

σ close to 1 means high risk funds

• κ = κ(k) this parameter in�uences di�usion

• t [years]

• K [dollars] capital of 1 investor
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• u [dollars] amount of money on investor's account

• a [no units]is fraction of capital in mortgage backed securities

• kapadj [no units]

• κab [no units] speed of investors' purchase

• kapdelay [no units] delay in amount of sold mortgages between the time of

investor's decision an the time of investment realization

• κ [year−1] strength of di�usion

• α [no units]

• Vadj = fraction of all market capital that we cover in our model

3.3 Mathematical description of the model

Let u be amount of money invested in assets with higher risk (i.e.MBS), k be amount

of all capital of 1 investor.

Then rate a = u
k
means share of unsafe investment.

1. Investor's account

Assumption (1) says that Investor can invest into two kinds of assets. Capital

in portfolio of each investor is divided between these two assets: safe or risky.

In each time step investor must make some decision how to change weights in

his portfolio between these two assets. Let us sign amount of capital of one

investor invested in MBS in time (t) as u(t). Change in amount of capital in

MBS is than 4u. Initial amount u(t) is valorized by yield ru in the next time

step. So that we can approximate amount of MBS in time step t+4t as:

u(t+4t) = (1 + ru4t)u(t) +4u (3.2)

The change 4u (decision of an investor)in�uences:
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• type of investor weighted by σ - positive, more risky you are, more capital

you invest into MBS

• di�erence between safe and unsafe interest rate (ru− rs) - positive, bigger

yield MBS, more capital you invest into MBS

• amount of money already invested in unsafe investment u(t)(1− u(t)
K(t)

)

Then the change 4u seems following:

4u = σ(ru − rs)4tu(t)
(
1− u(t)

K(t)

)
(3.3)

Now we get u in time t+4t

u(t+4t) = (1 + ru4t)u(t) + σ(ru − rs)4tu(t)
(
1− u(t)

K(t)

)
(3.4)

ut =
u(t+4t)− u(t)

4t
(3.5)

ut =
(1 + ru4t)u(t) + σ(ru − rs)4tu(t)(1− ( u(t)

K(t)
))− u(t)

4t
(3.6)

so we get di�erential equation for amount of MBS on investor's account:

ut = ruu(t) + σ(ru − rs)u(t)
(
1− u(t)

K(t)

)
(3.7)

2. Whole Capital

Kt = ruu(t) + rs(K(t)− u(t)) (3.8)

It seems advantageous to transform the equation for investment to equation for

the proportion of risky assets in portfolio.

a(t) =
u(t)

K(t)
(3.9)
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Using simple quotient rule

˙( u
K

)
= u̇K−uK̇

K2 = u̇
K
− u

K
K̇
K

Then

(
u̇

K

)
=
ruu

K
+
σ(ru − rs)(1− u

K
)u

K
− u

K

[ruu
K

+ rs

(
1− u

K

)]
(3.10)

Now we note

ȧ =
˙( u
K

)
ȧ = rua+ σ(ru − rs)(1− a)a− a[rua+ rs(1− a)]

ȧ = rua+ σ(ru − rs)(1− a)a− a[rua+ rs(1− a)]

ȧ = (ru − rsa(1− a) + σ(ru − rs)(1− a)a)

K̇ = rsK(t) + (ru − rs)aK(t)

3.3.1 E�ect of local di�usion

Local di�usion describes local e�ect among investors(assumption 6).

Di�usion equation seems like basic heat equation:

at = κaσσ (3.11)

We add this di�usion member into equation for proportion of risky asset.

We have constructed two equations, that we use to our model:

at = κaσσ + a(1− a)[(1 + σ)(rur − rs)] (3.12)

Kt = rsK + (rur − rs)aK (3.13)
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3.3.2 E�ect of non - local di�usion

As we said in assumption 6, local di�usion seems that it can describe only local

e�ects. Local e�ect in the sense of in�uence between investors with similar capital

and risk pro�le. We do not think that each investor has only short range e�ect. We

suppose that all the funds in�uent each others as well as e�ect on the other funds

depends on size of fund.

In non - local di�usion we observe in�uence of all investors σ′ on one investor σ

at(σ, t) = κ

∫
σ′
G(σ′ − σ,K(σ′))a(σ′, t)dσ′ − a(σ, t) + reaction (3.14)

in our model we get nonlocal di�usion as:

at(σ, t) = κ

[∫
σ′

β(σ)K(σ′)

eα|(σ−σ′|) a(σ′, t)dσ′ − κaba(σ, t)
]
+a(1−a)[(1+σ)(rur−rs)]+σ(rur−ruz)

(3.15)

3.3.3 Parametrization of equations

Finally we add constants to our model, to be able to investigate role and signi�cance

of single parts. Coe�cient κab describes importance of reaction part of equation,

coe�cient κ, α describes importance of di�usion part of equation. Rate ruz means

real yield from the investment. As we said in assumption 2. investor does not have a

correct information on return. That means that his decision is made after considering

return from available information, but his investment will be valorized with di�erent

yield.

at = κaσσ + κaba(1− a)[(1 + σ)(rur − rs)] + σ(rur − ruz) (3.16)
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3.3.4 Volume of all MBS in portfolios on the market

Assumption (7) says, that yield from MBS ru depends on amount of MBS. We de-

termine this amount that way, that we know change on investor`s account (4.2) As

we count all the mortgages outstanding, we count only positive change in portfolio.

Positive change appears, when the di�erence between two yields ru(τ, σ) − rs(τ) is

positive. Therefore we count maximum max(0, ru(τ, σ)− rs(τ)) instead.

4u = σ(ru − rs)4tu(t)
(
1− u(t)

K(t)

)
(3.17)

Let us sign a = u(τ,σ)
K(τ,σ)

. Then we get:

V =
∫∞
0

∫ t
0
σ(ru(τ, σ)− rs(τ))u(τ, σ)(1− u(τ,σ)

K(τ,σ)
)dτdσ

V =
∫∞
0

∫ t
0
σ(ru(τ, σ)− rs(τ))a(τ, σ)k(τ, σ)(1− a(τ, σ))dτdσ

For numerical purposes we will integrate the last equation after t:

Vt =
dV

dt
=

∫ ∞
0

σ[Max(0, ru(t, σ)− rs(t))a(t, σ)k(t, σ)(1− a(t, σ))]dσ (3.18)

Our local model now consists of following three equations:

3.16, 3.13 , 3.18

As well as non - local di�usion consists of these three equations:

3.15, 3.13 , 3.18

3.3.5 Initial conditions

At the beginning each investor has same proportion of capital like his risk pro�le.

So that initial condition for proportion is function: a = σ. An initial condition for

capital is approximated from the data.
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3.3.6 Boundary conditions

We need boundary conditions for least risky as well as most risky investor. For least

risky investor we choose Dirichlet condition 0 risk.

We try four types of boundary conditions for the most risky investor for local

di�usion - reaction system:

• a(σmax, t) = σmax

This Dirichlet condition means that risk of most risky investor stay unchanged

during the time.

• ∂a(σmax,t)
∂σmax

= 0

This Neumann condition means that two most risky investors has the same same

proportion of whole capital in risky asset as the second most risky investor

• ∂a(σmax,t)
∂σmax

= 1

This Neumann condition means, that the most risky investor has still more

capital in risky asset as the second most risky investor.

• a(σmax, t) = 1 This Dirichlet condition means, that risk of most risky investor

is still 1.



Chapter 4

Data characterization

4.1 Initial condition

4.1.1 Function describing amount of capital under di�erent

risk

In our model we are observing behavior of investors on the market. We represent

investors by US funds from US mutual funds market, because each fund is represented

by it's portfolio manager so that we can observe behavior of investors.

We consider in this work just the data for bond funds, since mortgage backed

securities seemed similar to US treasury bonds, because of government guarantee.[13]

We specify volatility for each fund in the time: 11/23/1998 - 1/1/2005. We use

this volatility as implicit risk - pro�le for each investor.

Up to www.ici.org the 20 largest mutual fund complexes cover 71%[? ] of the

market. We use weekly data for all these funds, because there can be some signi�cant

volatility also between single days during the week.

Up to Business week's Bond fund scoreboard 2005 [27] we choose 40 biggest bond

funds in the year 2004 (net asset value to December 31st, 2004). We calculated weekly

volatility from price per one share[27] as risk of each investor form the weekly data.

We multiply weekly volatility by factor
√
52 in order to get year volatility.

19



4.1. INITIAL CONDITION 20

We divide funds into 15 intervals up to their volatility. Then for numerical purposes

we made this curve smooth and spread it by arti�cial points until the value 1. So

that we got initial condition that can be seen on the picture.

Figure 4.1: Initial condition for capital. Function describing amount of capital under

di�erent risk approximated from data. "o" represents amount of capital of investors

with variance σ ∈ interval for each group represented by average variance of the

group, "+" is linear interpolation of "o" points.

4.1.2 Categorization of MBS based on status of payments of

underwritten mortgages

Investors were oriented by purchase of Mortgage backed securities especially at the

market prices of these funds as well as their historical performance. As an example,

promotional material of mortgage backed securities indicated brilliant performance

that was not possible.

Figure 4.2: Historical performance of Agency mortgage spread vs. mortgages pre-

sented by Lehman and Brothers in May 28, 2008, less then 4 months before bancrupcy
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[13]

This decision, as shown in our model was �awed because investors do not always

know what is behind those securities as well as past income does not yield the future.

l n Mortgage backed securities were created as an accumulation of mortgages from

primary market into the 'Pool'. Their yield is derived from proceeds by the primary

mortgage market less of costs from agencies. Our estimation was built on the work

of A. Greenspan [4] who considered the data provided mostly by FED. However, we

expand his approximation by the data on homes sold as and the data provided by

Mortgage backers association about delinquent payments. We approximate mortgage

security as bond with one year coupon.

We will split investment into MBS to four di�erent categories depending on their

status with respect to delinquency on payments of underwritten Mortgages as follow-

ing:

• delinquent payment (D)

• ongoing foreclosures (in process) (F)

• charge - o�s (CH)

• regular payments (RP)

There is brief de�nition of each category:

1. Delinquencies (D)

Delinquent loans and leases are those past due thirty days or more and still

accruing interest as well as those in nonaccrual status. [21]

2. Foreclosures (F)

The legal process by which an owner's right to a property is terminated, usually

due to default. Typically involves a forced sale of the property at public auction,

with the proceeds being applied to the mortgage debt. [22]
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3. Charge - o� (CH)

Charge - o� rates are the value of loans and leases removed from the books

and charged against loss reserves. Charge - o� rates are annualized, net of

recoveries.[24]

4. Regular payments (RP)

Payers pay their usual downpayments including yield. We determine amount

of debt outstanding that produce yield as mortgage debt outstanding reduced

by foreclosures, charge o�s and delinquencies. As yield we use average interest

rate for 30-year mortgage.

Data resources:

1. NS: houses sold during period [14]

2. NFS: houses for sale at the end of period [14]

3. ES: existing homes sold during period [16]

4. EFS: existing homes for sale at the end of period [16]

5. NP: New Single-Family Home Prices [17]

6. EP: Existing Home Prices [18]

7. AL: Amount of loans: National Delinquency Survey for quarters: Q4 06, Q4

07, Q1 08, Q2 09, Q4 09 [23]

8. FS: foreclosures started (F) [23]

9. FI: foreclosures inventory [23]

10. 30YMY [19]
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4.2 Dependence of yield of MBS on volume of new

originated mortgages

4.2.1 MBS's yield determination

For our model we try to determine real return on MBS p.a. It is said that return

that portfolio mangers were calculating with was overvalued and risk undervalued.

In regard of these facts, we try to determine a return of MBS directly from mort-

gage market data.

We consider in this work only residential - noncommercial mortgages (1-4 single

family house).

1. MBS Yield curve determination

We would like to determine average yield of mortgages p.a. during the crisis

2000 - 2008. Whereas Mortgage backed securities were derived from mortgages,

real return of them is directly linked with the yield from mortgages.

We calculate total yield as GAIN−LOSS
MDO

2. Total loss caused by foreclosed buildings

Di�erence between amount of debt, that became foreclosed, and gain from

foreclosure process is total loss, that must mortgage providers undergo.

LOSS = DF −GF

3. Total average debt in foreclosures

Multiplying DF = MDO ∗ F we get total amount of debt, that changed into

foreclosure during the year.

4. Total gain from the sale of foreclosures

Now we know amount of loans as well as proportion of foreclosures, so that by

multiplying we can get amount of money in foreclosure. Selling a foreclosure
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costs commission costs (6 %) and closing costs(1,5 %) , that we estimate after

http://www.forsalebyownercenter.com/tools/costofsalecomparisoncalculator.aspx.

We can approximate total loss as GF = (1− (0, 06 + 0, 015)) ∗ AF ∗HPI

5. Amount of foreclosures

We can see, that amount of loans and mortgage debt outstanding are correlated

with correlation 0,99 at the time of crisis. So we derived the rest of data for

AL from data on mortgage backed securities, applying the year change ratio.

We have also year data on amount of foreclosures started and inventories FS,

FI in percentage of all loans, it means that proportion of foreclosures from all

loans is F = (FS + FI)

From these data we can get total amount of loans in foreclosures: AF = AL∗F

6. House price index (HPI)is average price of sold house.

House price index in our model is average price of house that is "for sale" at

the beginning of period. We can calculate it as whole income received from sold

houses divided by whole amount of houses for sale and sold in period:

HPI = ((ES ∗ EP +NS ∗NP )/(NFS +NS + ES + EFS)

7. Total gain from regular mortgages

Firstly, we should calculate amount of regularly payed mortgage debt as total

debt less of delinquent payments MDO ∗ (1−F −D−CH). This debt is then

valorized by average mortgage rate for 30 years mortgage.

GAIN =MDO ∗ (1− F −D − CH) ∗ 30YMY

4.2.2 Volume of mortgage debt outstanding

We would like to determine amount of all loans existing before the crisis and those

that were sold during the crisis. We approximate volume of originated mortgages on

the market in following way: we take amount of mortgage debt outstanding (MDO)
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at the beginning of the period (year 2000) and then we add amount of originations

(new - originated loans)[15] every year. We get a curve in a the picture below.

Figure 4.3: Volume of mortgages on the market

Then sum of originated mortgages increased each year. That means that time -

dependence of mortgage debt is increasing function as well as time dependence of

yield of MBS. So that we combine these two functions and create volume dependence

of MBS yield.

4.2.3 Volume dependance of mortgage yield

Finally we match data on volume of mortgages p.a. with average yield p.a. for each

year during observed period 2000 - 2009. We get curve that can be seen on the picture

below.

Figure 4.4: Initial condition for yield of MBS. Curve represents dependence of yield

on volume of mortgages. Each point represent amount of new originated mortgage
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debt on the market and yield from mortgages p.a.

For our purposes is interesting period 2004 - 2009, as we estimated volatility to

the end of year 2004.
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Numerical Implementation

5.1 Integral of Volume

We use trapezoid rule for calculating integral determining volume of all mortgage

backed securities on the market.

5.2 Solving Equations

For solving our system of 3 equations we use Matlab function ode23t that is for this

type of problem most suitable. This solver solves equation y' = f(t,y) from time T0

to TFINAL with initial conditions Y0. As we have in the equation for proportion

also second derivation we must use discretization in σ in order to get equation of the

form y' = f(t,y)

5.3 MBS Yield

As a yield we use simple linear spline to be able to observe fundamental in�uence

of yield decay. We use parameters for breakpoints form real yield curve. We took

values for volume as well as yield for the years 2005-2009. Yield approximation can

be seen on the picture:

27
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Figure 5.1: Numerical approximation of yield curve

5.4 Discretization

We use discretization in space (of investors) and in time.

symmetric mesh

Hence x2 − x1 = x3 − x2 = h then

f ′′(x2) =
−f(x1) + 2(x2)− f(x3)

h2
(5.1)

non - symmetric mesh We use in our model non symmetric mesh characterized

by single data points.

If �rst derivation seem following:

f ′(y1) =
f(x2)− f(x1)

x2 − x1
f ′(y2) =

f(x3)− f(x2)
x3 − x2

(5.2)

then we get second derivation as:

f ′′(x|2) = −f(x1)
2

(x2 − x1)(x3 − x1)
−f(x3)

2

(x3 − x2)(x3 − x1)
+f(x2)

2

(x2 − x1)(x3 − x2)
(5.3)

Into this scheme we apply boundary conditions.

non - local di�usion

Matrix of nonlocal di�usion is to be found in the programme.
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Results

We observe time evolution of three variables:

• Evaluation in amount of MBS by investors represented by variable a

• Evaluation in amount of capital in each fund (by each investor) through log(K)

• Volume of all originated mortgages by variable V. We try to match this data

with volume of originated mortgages from section 4.2.2

6.1 Local di�usion results

We let the system with local di�usion develop for �ve years (2004-2009). We present

results for di�erent boundary conditions at the end of simulation for each time step.

We choose time step 0.01 year. It could be rate how often make investors changes in

portfolio. Most risky investor in our model has volatility σmax = 0.72 (it is arti�cial

point). We show in each case time evaluation of capital as well as proportion of risky

capital.

• a(σmax, t) = 0, t ∈ (0, 5),

This Dirichlet condition means that risk of most risky investor stay unchanged

during the time.

29
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Figure 6.1: Distribution of capital by Dirichlet condition a(σ, t) = 0

Figure 6.2: Proportion of risky asset by Dirichlet condition a(σ, t) = 0

Figure Nr. 6.1 shows that there is uniform change (increase)in amount of whole

capital by each investor.

Figure Nr. 6.2 shows that there is no change in proportion of risky assets of

investors, because initial condition itself is solution of the problem.

• ∂a(σmax,t)
∂t

= 0,σ = max(σ),t∈ (0, 5)

This Neumann condition means that two most risky investors has still same

proportion of capital in risky asset.

However change in proportion of risky asset is too small to be seen in our

picture. (We display only real investors - funds until risk - volatility σ=0.35)

But proportion of risky assets is increased more by more risky investors. Also

as Figure 6.3 shows, there is bigger increase of capital by more risky investors.
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Figure 6.3: Distribution of capital by Neumann condition ∂a(σ,t)
∂t

= 0

Figure 6.4: Fraction of risky asset by Neumann condition ∂a(σ,t)
∂t

=0

• ∂a(σmax,t)
∂t

= 1, t ∈ (0, 5)

This Neumann condition means, that the most risky investor has still more

capital in risky assets then the second most risky investor.

Figure 6.5: Distribution of capital by Dirichlet condition ∂a(σ,t)
∂t

= 1
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Figure 6.6: Proportion of risky asset by Neumann condition ∂a(σ,t)
∂t

= 1

We can see on the �gures 6.5 and 6.6 big increase of risk of more risky investors

as well as bigger change of risky asset by more risky investors.

• a(σmax, t) = 1, t ∈ (0, 5) This Dirichlet condition means, that risk of most risky

investor is still 1.

Figure 6.7: Distribution of capital by Dirichlet condition a(sigma,t) = 1

Figure 6.8: Proportion of risky asset by Neumann condition a(sigma,t) = 1
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Boundary condition in this case causes increase of risk as well as whole cap-

ital. This change is faster and more signi�cant then by the third boundary

(Neumann) condition, because most risky investors are �xed.

We can see change of proportion of risky asset in portfolio as well as changes of

whole capital of investors. Reaction part of equation 3.16 changes amount of capital of

the investors and the di�usion part redistributes capital among investors. Boundary

conditions in�uent redistribution of capital in the sense of direction of change on σ -

axes..

6.2 Nonlocal di�usion results

6.2.1 Exclusive delay in the yield information

Figure 6.9: Initial and �nal proportion of unsafe investment in portfolio of investors

At the beginning proportion of risky assets is increasing for all investors. Propor-

tion of risky assets of risky investors are increasing more then by less risky investors.In

the other words pursuing of investment is at the beginning of our simulation increas-

ing, then it stops. When the MBS yield reaches value Vcrit and the yield start

decreasing also investors sell out risky asset.

This model seems to be suitable for modeling pursuing assets by investors.



6.2. NONLOCAL DIFFUSION RESULTS 34

Figure 6.10: Initial and Final amount of capital by investors

In this graph we can observe capital redistribution among investors depending on

their risk - pro�le.

6.2.2 Inclusive delay in the yield information

First of all we calibrate model coe�cients in order to get historical amount of mort-

gages in considered period. We simulate only 5 years - 2004 - 2009 , when the crisis

should be seen in our model, represented by the fact that investors stop buying assets.

Final model of crisis

Using nonlocal di�usion we can match historical data on new-originated mortgages.

First of all we calibrate model coe�cients in order to get historical amount of

mortgages in considered period. We simulate only 5 years - 2004 - 2009 , when the

crisis have already started.
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Figure 6.11: Final Distribution of capital

We can see that investors operating with most capital loose more after crisis. On

the other side less risky investors increased amount of capital as well as risky investors

operating with less capital at the beginning.

Figure 6.12: Initial and �nal proportion of unsafe investment in portfolio of investors

? We can see that most of investors became more risky, only part of investors

operating with the largest amount of capital did not increase their risk. Investors

with lowest capital, more risky became very risky.

Figure 6.13: Volume of unsafe assets

Figure 6.13 shows that Investors at the beginning buy mortgages but then they

stopped (as the investment become unpro�table)
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6.2.3 Sensibility to chosen parameters

We observe how the �nal value of variables changes with parameters. For each pa-

rameter we make 10 observations for di�erent values of parameters.

Sensibility to V delay

Figure 6.14: Initial and Final Distribution of capital

Figure 6.15: Initial and �nal proportion of unsafe investment in portfolio of investors
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Figure 6.16: Volume of unsafe assets

By bigger delay in information investors purchase longer risky assets.

6.2.4 Sensibility to Volume of mortgages

Sensibility to Vadj

Figure 6.17: Initial and Final Distribution of capital

Figure 6.18: Initial and �nal proportion of unsafe investment in portfolio of investors
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Figure 6.19: Volume of unsafe assets

Vadj means how big part of capital we observe. This parameter helps to match

volume of originated mortgages in our model with market data.

6.2.5 E�ects of di�usion

Change of κ

Figure 6.20: Initial and Final Distribution of capital

Figure 6.21: Initial and �nal proportion of unsafe investment in portfolio of investors
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Figure 6.22: Volume of unsafe assets

We can see now, that nonlocal di�usion cause only redistribution of capital, be-

cause volume of all assets stayed unchanged in all cases. What di�ers is capital of

investors and proportion of risky assets.

6.2.6 Sensibility to yield curve

6.2.7 Change of Vcrit

Figure 6.23: Initial and Final Distribution of capital
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Figure 6.24: Initial and �nal proportion of unsafe investment in portfolio of investors

Figure 6.25: Volume of unsafe assets

We can see that by change of Vcrit capital is moving to more risky investors, also

proportion of risky assets by all investors is increasing.
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6.2.8 E�ects of reaction

6.2.9 Change of κab

Figure 6.26: Initial and Final Distribution of capital

As shown in Figure 6.26 increase in (κAB) causes movement of capital to more

risky investors.

Figure 6.27: Initial and �nal proportion of unsafe investment in portfolio of investors

Increase in (κAB) causes increase of risk for all investors.
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Figure 6.28: Volume of unsafe assets

We can see at Figure 6.28that increasing in�uence of reaction part of equation

(κAB) causes increase in purchasing assets while they are pro�table as well as increase

in selling assets by when they became unpro�table. It should be measure of "speed"

of purchasing assets.



Chapter 7

Summary and discussion

The aim of this work was to create a model of mortgage crisis using reaction - di�usion

system and nonlocal di�usion. We have successfully created model of market with two

kinds of assets (risky, risk - free). We estimated yield of mortgage backed securities.

This model can be useful for observing market mechanisms. We can see behavior

during the crisis, cooperation as well as competition among investors on the market

with respect to their size and risk pro�le. Model can be improved using more funds

data - for more fund categories, adding changeable risk - free yield and variable graphs

for capital.

43
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Chapter 8

Attachements

clear

format long

global S

global EXPL

global r_u

global r_s

global sigma

global N nlp

global MinKap

global V_crit

global V1

global V2

global V3

global r_loss

global alpha

global kapadj

global kappab

global kappa

global kapdelay

kapadj = 10�6; %% strength of di�usion

47
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alpha = 25; %% smaller, more nonlocal di�usion

kappa = 2*10�(-7); %% size

kappab = 10; %% speed of buying

%%parameters set up

r_u = 0.05;

r_s = 0.02;

r_loss= -0.02;

V_adj = 50; %% how big part of capital we cover %%

V1=20829000/V_adj;

V_crit =23555000/V_adj;

V2=25861000/V_adj;

V3=27479000/V_adj;

V_init = 1.515*10�7/V_adj;

kapdelay = 5.5*10�6/V_adj;

%% time parameters

T�nal = 5;

Tstep = 0.01;

Tspan = 0:Tstep:T�nal;

%% type of boundary condition

EXPL=3;

%% capital

MaxKap = log(V3); %% logarithmic value log $ (only for plotting size)

MinKap = 0.01; %% min capital (not logarithmic)

%% initialization

%% initialize mesh from data

N_init = 30;

%% wanted mesh

maxVAR = 0.1;

%% original variance (will be multiplied by sqrt(52)
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nodatapts = 15;

%% number of data points in funds

mesh_init = linspace(0,maxVAR,N_init);

[sigma, a0, c0] = variancia(mesh_init, nodatapts,MinKap);

%% initial condition N = length(sigma);

l0 = log(max(c0,MinKap));

u0=[a0 l0 V_init];

%% matrix for heatfun

S = difmatrixNL(sigma);

%% non - local di�usion

%solving equations

OPTIONS = odeset('RelTol',1e-4,'AbsTol',1e-6);

[t, u] = ode23t(′heatfunNL′, T span, u0, OPTIONS);

%% visualization

sigmanew=sigma(1:10)

�gure(8)

hold on

plot(sigma,u(end,1:N),'k');

plot(sigma,u(1,1:N),'b');

hold o�

%% Volume of mortgages

�gure(3)

hold on

title('Volume of mortgages');

plot(t,u(:,2*N+1),'r')

V = [1.515 1.792 2.083 2.355 2.586 2.748];

V = V*10�7/V_adj;

T = [0 1 2 3 4 5];

plot(T,V,'ro');

hold o�;
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�gure(4) hold on plot(u(1,1:N),u(1,N+1:2*N),'m');

plot(u(end,1:N),u(end,N+1:2*N));

hold o�

end

%%%%%%%%%%%%%

function [f] = heatfun(t,u);

global S

global EXPL

global r_u

global r_s

global MinKap

global sigma

global N

global kapadj

global kappa

global kappab

global kapdelay

r_uu = rulin(u(2*N+1)-kapdelay);

[bc, nlp] = boundariesNL(EXPL);

for k=1:N

v(k)=1/exp(u(N+k));

w(k)= exp(u(N+k));

end v(N+1) = 1/(MinKap*kapadj);

%% extension of v(:)

w(N+1) = MinKap*kapadj;

b = (S ′) \ v′;

B=diag(b);

V=diag(w);

Mwbc=B*S'*V-eye(N+1);

%% include BC
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M = Mwbc(1:N,1:N);

M(1:N,N) = Mwbc(1:N,N)+bc*Mwbc(1:N,N+1);

�(1:N) = kappa*M*u(1:N);

for i = 1:N;

%%%%%proportion

�(i) = �(i) + kappab*u(i)*(1-u(i))*(r_uu - r_s)*(1+sigma(i)) + nlp*Mwbc(i,N+1);

end;

for i = (N+1):(2*N) %%%%%log of capital

�(i) = r_s + (r_uu - r_s)*u(i-N);

end;

�(2*N+1)=volumefun(u);

%%%% volume of all MBS

f = �';

%%%%%%%%%%%%%%%%%%%

function vt=volumefun(u)

global r_u

global r_s

global sigma

global N

global kapdelay

r_uu = rulin(u(2*N+1)-kapdelay);

vt = 0;

for i = 1:N-1 aux1 = sigma(i)*max(0,(r_uu-r_s))*u(i)*(1-u(i))*exp(u(N+i));

aux2 = sigma(i+1)*max(0,(r_uu-r_s))*u(i+1)*(1-u(i+1))*exp(u(N+i+1));

vt = vt + (sigma(i+1)-sigma(i))*(aux1+aux2)/2;

end;

%%%%%%%%%%%%%%%%%%

function [sg,x,y] = variancia(mesh,nodatapts,MinKap);

global kapadj

mincapital = MinKap;
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pocINT=nodatapts;

p = 70; %% how many percent of capital do we cover

alpha(1) = (100-p)/p;

S=load('variance.txt');

maxvariancia=max(S(1,:));

%%%% for i = 0:pocINT

w(i+1) = i*(maxvariancia/pocINT);

end;

for i = 1:pocINT

ws(i) = (w(i)+w(i+1))/2;

end;

kapitalINT=zeros(pocINT,1);

for i=1:pocINT

for j=1:length(S)

if (S(1,j)>=w(i)) & (S(1,j)< w(i+1))

kapitalINT(i)=kapitalINT(i)+S(2,j);

end

end

end

n = pocINT;

for i = 0:n+3

db(i+1) = i*(maxvariancia/n);

end;

for i = 1:n+3 dbs(i) = (db(i)+db(i+1))/2;

end;

cp = mincapital*ones(1,n+3);

cp(1:n) = kapitalINT;

for i = 2:n+2;

cp(i) = cp(i) + alpha(1)*(0.25*cp(i-1)+0.5*cp(i)+0.25*cp(i+1));
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end;

cp = max(cp, mincapital);

%%% spread of data and set up of mesh

if mesh(end)> dbs(end)

x1 = [0 dbs mesh(end)];

y1 = [mincapital cp mincapital];

else

x1 = [0 dbs];

y1 = [mincapital cp];

end;

sg = mesh;

x = mesh;

y = interp1(x1,y1,x,'linear');

sg = sqrt(52)*sg;

x = sqrt(52)*x;

y = kapadj*y;

%%%%%%%%%%%%%%%%%%%%

function r = rulin(V);

global r_u

global

r_s global

V_crit

global V1

global V2

global V3

global r_loss

if V < V1

r = r_u;

else

if V < V_crit
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coef = (V-V1)/(V_crit-V1);

r = r_u*(1-coef)+r_s*coef;

else

if V < V2

coef = (V-V_crit)/(V2-V_crit);

r = r_s*(1-coef)+0*coef;

else

if V < V3

coef = (V-V2)/(V3-V2);

r = 0*(1-coef)+r_loss*coef;

else r = r_loss;

end;

end;

end;

end;

return

%%%%%%%%%%%%%%%%%%%%%%%

function[M]=difmatrixNL(sigma);

global alpha

%% with boundary conditions

N = length(sigma);

% %% arti�cial mesh points

sigma_p=2*sigma(end)-sigma(end-1);

sigma_pp=3*sigma(end)-2*sigma(end-1);

sigma_new=[sigma sigma_p sigma_pp];

M = zeros(N+1,N+1);

% %%non symmetrical mesh

for k=1:N+1

for i =1:N+1

M(k,i)=(sigma_new(k+1)-sigma_new(k))/exp(alpha*abs(sigma_new(i)-sigma_new(k)));
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end

end

return

%%%%%%%%%%%%%%%%%%%%%%%%

function[bc,nlp]=boundariesNL(EXPL)

global sigma

global N

switch (EXPL)

case 1 %%dirichlet u = 0

bc=0;

nlp=0;

case 2 %%neumann u' = 0

bc=1;

nlp=0;

case 3 %%neumann u' = 1

bc=1;

nlp=sigma(end)-sigma(end-1);

case 4 %% dirichlet u(end) = sigma(end)

bc=0;

nlp=sigma(end);

end
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