
COMENIUS UNIVERSITY IN BRATISLAVA
Faculty of Mathematics, Physics and Informatics

Maximum principle for infinite horizon discrete
time optimal control problems

2011
Bc. Jakub Beran



COMENIUS UNIVERSITY IN BRATISLAVA
Faculty of Mathematics, Physics and Informatics

565f98a3-b0c8-4833-8649-e975fc152545

Maximum principle for infinite horizon discrete
time optimal control problems

Master’s Thesis

Bc. Jakub Beran

Department of Applied Mathematics and Statistics
9.1.9 Applied Mathematics

Economic and Financial Mathematics

Supervisor:
Prof. RNDr. Pavel Brunovský, DrSc.

Bratislava 2011



UNIVERZITA KOMENSKÉHO V BRATISLAVE
Fakulta matematiky, fyziky a informatiky

565f98a3-b0c8-4833-8649-e975fc152545

Princíp maxima pre diskrétne úlohy
optimálneho riadenia na nekonečnom horizonte

Diplomová práca

Bc. Jakub Beran

Katedra aplikovanej matematiky a štatistiky
Študijný odbor: 9.1.9 Aplikovaná matematika

Študijný program: Ekonomická a finančná matematika

Vedúci DP:
Prof. RNDr. Pavel Brunovský, DrSc.

Bratislava 2011



Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Jakub Beran
Študijný program: ekonomická a finančná matematika (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: 9.1.9. aplikovaná matematika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický

Názov : Maximum principle for infinite horizon discrete time optimal control problems

Cieľ : To prove a necessary condition of optimality of maximum principle type for
infinite horizon discrete time optimal control problems by functional analysis
techniques

Vedúci : prof. RNDr. Pavel Brunovský, DrSc.

Dátum zadania: 19.01.2010

Dátum schválenia: 30.03.2011 prof. RNDr. Daniel Ševčovič, CSc.
garant študijného programu

študent vedúci práce

Dátum potvrdenia finálnej verzie práce, súhlas s jej odovzdaním (vrátane spôsobu
sprístupnenia)

vedúci práce



Acknowledgement

I am grateful to my supervisor Prof. RNDr. Pavel Brunovský, DrSc. for his guidance,
invaluable comments and his corrections of my writings.



Declaration

I declare on my honour that this thesis was written on my own, with the only help provided
by my supervisor and the referred-to literature.

. . . . . . . . . . . . . . . . . . . . . . . . . . .
Jakub Beran



Abstract

Author: Bc. Jakub Beran
Thesis Title: Maximum principle for infinite horizon discrete time optimal control prob-

lems
Institution: Comenius University in Bratislava
Faculty: Faculty of Mathematics, Physics and Informatics
Department: Department of Applied Mathematics and Statistics
Supervisor: Prof. RNDr. Pavel Brunovský, DrSc.
Date: April 2011

The aim of this thesis is to prove a necessary condition of optimality of maximum princi-
ple type for infinite horizon discrete time optimal control problems by functional analysis
techniques. At the beginning we study a problem with linear state equation. Thereafter we
extend the results to the problem with general state equation and at the end of our work we
consider a problem with constraints on the control variable.

Keywords: optimal control, infinite horizon, discrete time, dual space, functional analysis,
cone, adjoint equation, adjoint variable, Pontryagin’s maximum principle

Abstrakt

Autor: Bc. Jakub Beran
Názov práce: Princíp maxima pre diskrétne úlohy optimálneho riadenia na nekonečnom

horizonte
Škola: Univerzita Komenského v Bratislave
Fakulta: Fakulta matematiky, fyziky a informatiky
Katedra: Katedra aplikovanej matematiky a štatistiky
Vedúci DP: Prof. RNDr. Pavel Brunovský, DrSc.
Dátum: apríl 2011

Cieľom tejto práce je odvodiť nutné podmienky optimality pre diskrétnu úlohu optimálneho
riadenia na nekonečnom horizonte za použitia nástrojov funkcionálnej analýzy. V úvode
práce študujeme problém optimálneho riadenia s lineárnou stavovou rovnicou. Následne
rozšírime výsledky na problém so všeobecnou stavovou rovnicou a prácu ukončíme problé-
mom s ohraničeniami na riadiacu premennú.

Kľúčové slová: optimálne riadenie, nekonečný horizont, diskrétny čas, duálny priestor,
funkcionálna analýza, kužeľ, adjungovaná rovnica, adjungovaná premenná, Pontryaginov
princíp maxima
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Introduction

Even though the first optimal control problem was introduced in the seventeenth century,
the optimal control theory is considered to be invented in the late 1950s by Pontryagin and
his group [13]. Since then the use of optimal control tools has had an increasing tendency
and has become a standard optimization method. The reason is that the optimal control
problems are widespread in many fields, for example in economics (especially in the growth
theory and in the game theory) or in physics.
Consequently, the underlying theory has been generalized and extended in a variety of ways.
Nowadays there are basically two solution methods to the optimal control problems. The
first is the dynamic programming introduced by Bellman, which we are not concerned with
in this thesis. The second is known as the Pontryagin maximum principle.
Pontryagin maximum principle is a local necessary condition of optimality of variational
type. That is, the control is tested to optimality against its small admissible variations
satisfying the constraints. To this end, in the basic finite-horizon case the effect of such
variations to the response at the terminal time T of the problem is analyzed. Moreover,
necessary conditions express the fact that variations do not improve the cost function.
In this work we focus on the Pontryagin maximum principle from the infinite-horizon discrete-
time point of view. In the book of Pontryagin et al. [13] there is a short section dealing
with the infinite horizon problem. It is studied as a limit case of finite horizon problem for
T → ∞. Because of changing horizon the variations have to be transferred to a fixed time
independent of T . Because of the invertible dynamics of the continuous time problem this
is possible. Unfortunately, this approach cannot by applied to the discrete-time framework.
A systematic study of the discrete-time framework has been initiated by Boltyanskii [4].
However Boltyanskii’s results are mainly concerning the finite-horizon case. Interesting re-
sults regarding the infinite-horizon case can be found in [2], where the dynamics in the
form

x0 = x̄

xt = Ft(xt, ut) ∀t ∈ N0

is considered and Ft ∈ C1(Rn × Rm,Rn). Then the approach is the one of Pontryagin et al.
The problem is solved in three steps. At first, it is reduced to the finite case. The reduced
problem is solved and thereafter expanded to the infinite-horizon. In the last step one needs
to extend the finite solution by limit transition. If we denote (x̂t, ût) as the tested solution
at time t, it is necessary to derive yt from the following linearized system

yt+1 −DxtFt(x̂t, ût)yt −DutFt(x̂t, ût)vt = zt.

8



Introduction

Clearly, the solution could be written as follows

yt = DxtFt(x̂t, ût)
−1[yt+1 − zt −DutFt(x̂t, ût)vt],

but the operator
DxtF (x̂t, ût) (1)

has to be regular. Hence the major disadvantage of this approach is that one needs a matrix
of the linearized state equation with respect to the state variable to be regular.
Our goal is to avoid the necessity of the regularity condition. Therefore we use different
approach that is motivated by Blot and Hayek [3], where the infinite problem is solved
directly instead of the reduction to the finite case. In contrary to the previous papers, the
methods of functional analysis and the general theorem of Ioffe-Tihomirov [10] are employed,
in this one. It is supposed that the state and also the control variable is from the space of
all bounded sequences, i.e.

(x0, x1, . . . ) = x ∈ ln∞ = {{wt}t∈N0 : wt ∈ Rn ∀t ∈ N0 ∧ supt∈N0
|wt| <∞}

and (u0, u1, . . . ) = u ∈ lm∞. Under these assumptions the problem of maximization the cost
function with the state equation

J(x,u) =
∞∑
t=0

βtf(xt, ut) → max, f ∈ C1(Rn × Rm,R),

xt+1 = F (xt, ut) t ∈ N0, F ∈ C1(Rn × Rm,Rn),

x0 = x̄,

could be worked out directly using functional analysis. Nevertheless the condition of regu-
larity has to be replaced by the condition

supt∈N0
|DxtFt(x̂t, ût)| < 1. (2)

The original aim of this thesis was to establish the Pontryagin maximum principle with-
out restrictive conditions (1) or (2). To this end we attempted to employ an independent
approach based upon the closed range theorem.
To get an idea of the power of our approach we studied the problem without discount first.
As shown in [1] or [15] it is useful as a limit case from which interesting conclusions can be
drawn for β < 1 near 1. Then of course a suitable kind of decrease to zero of the terms
f(xt, ut) has to be assumed, in order to have the cost function J finite. For technical reasons
we have chosen the space l1, where

lk1 = {{wt}t∈N0 : wt ∈ Rk ∀t ∈ N0 ∧
∞∑
t=0

|wt| <∞},

mainly because its dual can be interpreted as l∞. Another motivation comes from [1] and
[15] where it is showed that the space l1 can be replaced by a shifted space of sequences
converging to (x∞, u∞) 6= (0, 0) for which f(x∞, u∞) 6= 0. It is known that such a point
is an equilibrium point of the problem (i.e (x∞, u∞) is a time independent solution of the
Pontryagin maximum principle).

9



Introduction

We consider our work as an initial optimal control problem solving method that could be
extended to a wider class of problems. For example we can study a cost function with a
discount rate. Subsequently, since l1 ⊂ l∞, we can extend the domain of the state and control
variable to the space l∞.
The work itself is organized as follows. The first chapter introduces the necessary theory
as definitions, notations and theorems that are used in the further chapter, especially those
from the functional analysis. The second chapter is then divided into three sections. In the
first, we explore the properties of the solution of the optimal control problem with linear
state equation and show that in this case there is no need to use regular matrices. We also
derive the adjoint equation and show that the adjoint variable is contained in the dual space.
The purpose of the second section is to study the problem with general state equation. In
the third part, we impose constraints on the control variable and derive the Pontryagin
maximum principle.

10



Chapter 1

Preliminaries

The aim of this chapter is to provide the reader with a basic introduction to all necessary
concepts, definitions and theorems used throughout the present thesis. The main part of the
thesis is focused on the work with infinite sequences and vectors, therefore the most impor-
tant purpose of this part is to give the insight to functional analysis and related branches
of mathematics. We run through metric spaces, Banach spaces and useful theorems. We
mention the important theorems connected with differentiability and explain the used no-
tation, as well. The examples are also a significant part of this chapter. In them we prove
all necessary properties of variables and functions, which we subsequently use in the further
chapter.

1.1 Functional Analysis

1.1.1 Metric Spaces

We begin with the notion of a metric space; that is, a set where a notion of distance (called
a metric) between elements of the set is defined.

Definition 1. Let X 6= ∅ be a set and d : X ×X → R be a real function such that for any
x, y, z ∈ X one has

1. d(x, y) ≥ 0

2. d(x, y) = 0⇔ x = y

3. d(x, y) = d(y, x)

4. d(x, y) ≤ d(x, z) + d(z, y)

The pair (X, d) is a metric space and a function d is called a metric.

The most common metric space is the Euclidean space. It’s metric, the Euclidean metric,
defines the distance between two points as the length of the straight line segment connecting
them. However, in this thesis, we use two other spaces, the lk1 and the lk∞, together with
their metrics.

11
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Example 1. Let lk1 be a set of all sequences {xt}∞t=0, xt ∈ Rk such that

∞∑
t=0

|xt| <∞,

where | · | is a norm in the space Rk, k ∈ N. Let us define

ρ(x,y) =
∞∑
t=0

|xt − yt| ∀x,y ∈ lk1 .

Note that all variables, which represent infinite dimensional vectors or sequences are written
in bold, whereas the other variables are written in regular font. To prove that (lk1 , ρ) is a
metric space, we have to show that the four conditions in the definition 1 are fulfilled. We
prove just the fourth condition, because the proof of the first three is trivial.

ρ(x,y) =
∞∑
t=0

|xt − yt| =
∞∑
t=0

|(xt − zt)− (zt − yt)| ≤
∞∑
t=0

[|xt − zt|+ |zt − yt|]

=
∞∑
t=0

|xt − zt|+
∞∑
t=0

|zt − yt| = ρ(x, z) + ρ(z,y).

Example 2. Let lk∞ be a set of all bounded sequences {xt}∞t=0, xt ∈ Rk, so

sup
t∈N0

|xt| <∞,

where | · | is a norm in the space Rk, k ∈ N. Let us define

ρ(x,y) = sup
k∈N0

|xt − yt| ∀x,y ∈ lk∞.

In this case (lk∞, ρ) is again a metric space. The proof of first three conditions is trivial, while
the proof of the fourth is analogous to the previous case.

Definition 2. Let (X, d) be a metric space. A Cauchy’s sequence is a sequence {xn}∞n=0,
xn ∈ X for all n ∈ N0, such that for every ε > 0 there is Nε such that d(xn, xm) < ε for all
n,m > Nε.

Definition 3. A metric space (X, d) is complete, if every Cauchy’s sequence in this space
converges.

Definition 4. A subset U of a metric space (X, d) is called closed, if whenever xn ∈ U and
xn → z, then z ∈ U .

12
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1.1.2 Banach Spaces

To define the Banach space the notions of the norm and the normed space are very important.
At first, we recall their’s definitions and then we show the connection between the normed
space and the metric space.

Definition 5. Let X 6= ∅ be a vector space and ‖ · ‖ : X ×X → R be a real function such
that for any x, y ∈ X one has

(a) ‖x‖ ≥ 0

(b) ‖x‖ = 0⇔ x = 0

(c) ‖λx‖ = |λ|‖x‖
(d) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

The function ‖ · ‖ is called a norm and the pair (X, ‖ · ‖) is called a normed vector space.

Proposition 1.1.1. Let (X, ‖ · ‖) be a normed vector space and define d(x, y) = ‖x, y‖ for
all x, y ∈ X. Then the corresponding space (X, d) is a metric space.

Proof. The only non-obvious verification is the fourth condition of the metric. By the prop-
erty (d) of the norm, we have

d(x, y) = ‖x− y‖ = ‖(x− z) + (z − y)‖ ≤ ‖x− z‖+ ‖z − y‖ = d(x, z) + d(z, y)

Finally we can introduce the notion of the Banach space.

Definition 6. Let (X, ‖ · ‖) be a normed vector space. If the corresponding metric space
(X, d) is complete we say (X, ‖ · ‖) is a Banach space (in further work, we will leave out the
symbol ‖ · ‖ in the notation of the Banach space).

Example 3. The spaces lk1 and lk∞ are normed vector spaces, if we introduce the norms

‖x‖ =
∞∑
t=0

|xt|, ∀x ∈ lk1 ,

‖x‖ = sup
t∈N0

|xt|, ∀x ∈ lk∞.

In addition to that, they are Banach spaces (the proof can be found in [9]).

13
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1.1.3 Operators

The core of functional analysis is formed by the study of Banach spaces and the linear
functionals acting upon these spaces. We generally call these linear functionals operators.
In this part we briefly summarize all necessary definitions and theorems associated with
operators.
Let X, Y be normed vector spaces and T : X → Y a map between them. There are three
common notations connected with this map

D(T ) = {x ∈ X : T (x) ∈ Y } (The Domain)

N (T ) = {x ∈ X : T (x) = 0} (The Null Space)
R(T ) = {y ∈ Y : ∃x ∈ X, T (x) = y} (The Range)

Definition 7. Let X, Y be normed vector spaces and T : X → Y a map between them. Let
x ∈ X. We call a map continuous in x, if

∀ε > 0 ∃δ > 0 : ‖x− z‖ < δ ⇒ ‖T (x)− T (z)‖ < ε

The map is continuous (on X), if it is continuous in all x ∈ X.

Definition 8. Let X, Y be normed vector spaces and T : X → Y be a map between them.
This map is called linear if one has

T (x+ y) = T (x) + T (y)

T (αx) = αT (x),

for all x, y ∈ X and α ∈ R. A linear map is often called a linear operator.

In further work, the notions of boundedness and closeness of an operator will be very im-
portant. We can also link these notions with the notion of continuity.

Definition 9. Let X, Y be normed vector spaces. A linear map T : X → Y is bounded if
there exists a constant M > 0 such that ‖T (x)‖ ≤M‖x‖ for all x ∈ X.

Definition 10. Let X, Y be normed vector spaces. A linear map T : X → Y is closed if for
every sequence {xn}n∈N in X converging to x ∈ X such that limn→∞ T (xn) = y ∈ Y one has
T (x) = y.

Proposition 1.1.2. Let X, Y be normed vector spaces and T be a linear mapping from X
to Y . This map is continuous, if and only if it is bounded.

Proof. The proof can be found in [9].

Proposition 1.1.3. Let X, Y be normed vector spaces and T be a linear mapping from X
to Y . If this map is continuous, then it is closed.

Proof. The proof can be found in [12].

Besides the norm of a vector, we can define the norm of an operator, as well.

14
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Definition 11. Let X, Y be normed vector spaces and T : X → Y be a map between them.
We define the norm of the map T as

‖T‖ = sup
‖x‖=1

‖Tx‖.

The linear space of all bounded linear operators from X to Y together with the norm ‖ · ‖,
is denoted by B(X, Y ).

Remark 1. We can prove that this is a norm. The proof of conditions (a)-(c) is trivial, hence
we prove just the last one.

‖T + S‖ = sup
‖x‖=1

‖(T + S)x‖ ≤ sup
‖x‖=1

‖Tx‖+ sup
‖x‖=1

‖Sx‖ = ‖T‖+ ‖S‖

Remark 2. Note that ‖T‖ is the smallest number M that satisfies the condition of bound-
edness in 9. So if ‖T‖ <∞, then the operator T is bounded.

In further chapter, we use mainly two kinds of operators and now we prove their boundedness.

Example 4. An operator σ : lk1 → lk1 , such that σ(x0, x1, . . . ) = (x1, x2, . . . ) is called a shift
operator and one has

‖σ‖ = sup
‖x‖=1

‖σx‖ = sup
‖x‖=1

‖σ(x0, x1, . . . )‖ = sup
‖x‖=1

‖(x1, x2, . . . )‖ = sup
‖x‖=1

{
∞∑
t=1

|xt|}

= sup
‖x‖=1

{
∞∑
t=0

|xi| − |x0|} ≤ sup
‖x‖=1

{
∞∑
t=0

|xi|} = sup
‖x‖=1

‖x‖ = 1 <∞.

Example 5. Similarly for a general linear operator N = (N0, N1, . . . ) on lk1 such that |Nt| ≤
M <∞ ∀ ∈ N0 one has

‖N‖ = sup
‖x‖=1

‖Nx‖ = sup
‖x‖=1

∞∑
t=0

|Ntxt| ≤ sup
‖x‖=1

∞∑
t=0

|Nt||xt|

≤ sup
‖x‖=1

∞∑
t=0

M |xt| = M sup
‖x‖=1

‖x‖ = M <∞. (1.1)

Definition 12. An operator T ∈ B(X, Y ) is called a linear isomorphism (or just isomor-
phism), if it is one to one, onto Y and T−1 ∈ B(X, Y ).

Proposition 1.1.4. Let T : X → Y be a linear map between vector spaces and C be a closed
complement of N (T ) in X. Then the map T : C → R(T ) is an isomorphism. Furthermore,
this map is also called a restriction of a map T to C and denoted by T |C.

15
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Proof. A map is injective, if and only if

N (T |C) = {0}.

Since C is an complement of N (T ) one has N (T ) ∩ C = {0} and hence

N (T |C) = N (T ) ∩ C = {0}.

On the other hand we have to show that our map is surjective, as well. This is equivalent
to the equation

R(T |C) = R(T ).

As the space X could be splitted into the null space of the map T and it’s complement one
has

R(T |C) = T (C) = T (C ⊕N (T )) = T (X) = R(T ).

Summing up, the operator T |C is an isomorphism.

1.1.4 Dual Spaces

To obtain an adjoint variable we need to "switch" from primal to dual space. As we are
working with Banach spaces we need to define the concept of the dual space on them. In
this section we also show that if we introduce a dual space on the space l1, then we get a
space of bounded sequences - l∞.

Definition 13. Let X be a normed vector space. The linear operator x∗ : X → R is called
a linear functional and we define x∗(x) =< x∗, x > and ‖x∗‖ = sup‖x‖=1 x

∗(x). The space of
all continuous linear functionals from X to R is called a dual space of X and is denoted by
X∗.

Proposition 1.1.5. (lk1)∗ = lk∞ in the sense that for every x∗ there is an unique {dt}∞t=0 =
d ∈ lk∞ such that

x∗(x) =
∞∑
t=0

dtxt ∀x ∈ lk1 .

Proof. We show a proof for k = 1. However, it is analogous to extend the proof for any finite
k. At first, we distinguish the two norms used in this proof. Let ‖ · ‖1 be a norm associated
with l1 and ‖ · ‖∞ be a norm associated with l∞. Let {et}∞t=0 be a basis in l1 (standard unit
vectors). Hence each x ∈ l1 can be rewritten as

x =
∞∑
t=0

atet.

Let x∗ ∈ l∗1 be given . We define dt = x∗(et) for all t ∈ N0. By ‖et‖1 = 1 we have

|dt| = |x∗(et)| ≤ ‖x∗‖‖et‖1 = ‖x∗‖.

If we define d = {dt}∞t=0, according to the proposition (1.1.2) we have

‖d‖∞ = sup
t∈N0

|dt| ≤ ‖x∗‖ <∞

16
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that is d ∈ l∞. Conversely we construct a linear functional on l1 with elements in l∞ if
d ∈ l∞ is given. Consider a linear functional h defined by

h(x) =
∞∑
t=0

dtxt ∀x ∈ l1.

Linearity of this functional is clear, we prove boundedness

|h(x)| ≤
∞∑
t=0

|dtxt| ≤ sup
t∈N0

|dt|
∞∑
t=0

|xt| = ‖d‖∞‖x‖1

and this implies
‖h‖ = sup

‖x‖=1

‖h(x)‖ ≤ ‖d‖∞ <∞.

It is clear that h(et) = dt. Hence h ∈ l∗1.

Definition 14. Let X, Y be Banach spaces and T ∈ B(X, Y ). We define the dual operator
(also called adjoint operator) T ∗ ∈ B(Y ∗, X∗) for y∗ ∈ Y ∗ by

T ∗(y∗)(x) = y∗(T (x)) ∀x ∈ X.

Proposition 1.1.6. Let X, Y be Banach spaces and T ∈ B(X, Y ). Then ‖T ∗‖ = ‖T‖.

Proof. The proof can be found in [9].

Definition 15. The Banach space X is called reflexive, if (X∗)∗ = X.

1.1.5 Quotient Spaces

The aim of this section is to introduce the First Isomorphism Theorem, which we use in our
work. Therefore we need to define the notion of the quotient space.

Definition 16. Let Y be a closed subspace of a vector space X. Then the coset x relative
to Y is any of the sets

x+ Y = {x+ y, y ∈ Y }
where x ∈ X. The space of all cosets is denoted by X/Y .

Remark 3. It is easy to check that the space X/Y together with the addition (v + w = v+w)
and the scalar multiplication (αv = αv) is linear space. Moreover, we obtain a normed vector
space, if we add a norm ‖x‖ = inf{‖x‖, x ∈ x} to our space X/Y .

Definition 17. Let X be a Banach space and Y be it’s closed subspace. The space X/Y
together with a norm ‖x‖ = inf{‖x‖, x ∈ x} is called a quotient space of X with respect to
Y .

Proposition 1.1.7. Let X be a Banach space and Y be it’s closed subspace. Then X/Y is
a Banach space.
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Proof. The proof can be found in [9].

Theorem 1.1.1. (The First Isomorphism Theorem) Let T : X → Y be a linear map
between vector spaces. Then

a) R(T ) is a subspace of Y
b) N (T ) is a subspace of X
c) V/N (T ) is isomorphic to R(T )

Proof. In fact, this theorem is a corollary of the First Isomorphism Theorem for groups and
it’s proof can be found in [11].

1.2 Differential Calculus
To obtain a maximum principle we need to differentiate our functions. When working with
one dimensional real functions it is enough to use a basic notion of differentiability. The
situation becomes much more complicated, if we use functions defined on a Banach spaces.
In this situation, the concept of Fréchet differentiability have to be put in. Therefore we
define the directional derivative, Gâteaux differentiability and subsequently the Fréchet dif-
ferentiability, too. All three kinds of differentiability are used in the example. Another very
important part of this section is the Implicit Function Theorem that is used in the further
chapter.

Definition 18. Let X, Y be Banach spaces, U ⊂ X open and J : U → Y . Let x ∈ U and
h ∈ X. The directional derivative of a function J(x) along a vector h is the function defined
by the limit

∂hJ(x) = lim
τ→0

1

τ
[J(x+ τh)− J(x)] (1.2)

if this limit exists.

Definition 19. Let X, Y be Banach spaces, U ⊂ X open, J : U → Y and x ∈ U . Let us
assume that there exists ∂hJ(x) for all h. If the map h → ∂hJ(x) is linear and bounded,
then the function J is Gâteaux differentiable in x. The Gâteaux differential is thus defined
by

dJ(x)h = ∂hJ(x).

Definition 20. Let X, Y be Banach spaces, U ⊂ X open, J : U → Y and x ∈ U . The map
J is Fréchet differentiable in x, if there exists a linear bounded operator DJ(x) such that

lim
|h|→0

1

|h|
[J(x+ h)− J(x)−DJ(x)h] = 0.

The following proposition plays a significant role in the proof of Fréchet differentiability of
the cost function.
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Lema 1.2.1. (Hadamard’s lema) Let X, Y be Banach spaces, f : U → Y be a Gâteaux
differentiable mapping. If x+ ϑh ∈ U for 0 ≤ ϑ ≤ 1 then one has

f(x+ h)− f(x) =

∫ 1

0

df(x+ ϑh)hdϑ =

[∫ 1

0

df(x+ ϑh)dϑ

]
h (1.3)

where the integral is in the sense of Riemann.

Proof. The proof can be found in [6].

Example 6. In this thesis we study the optimal control problem with a cost function J(x,u)
in a form

J(x,u) =
∞∑
t=0

f(xt, ut), (1.4)

where f ∈ C1(X × U,R), X ⊂ Rn and U ⊂ Rm open. We would like to show that J(x,u)
is of class C1 on ln+m

1 . In this example we show that the cost function is differentiable
(in Fréchet sense). At first we show the Gâteaux differentiability of the cost function and
consequently the Fréchet differentiability.

Gâteaux Differentiability: Let (x,u) be such that xt ∈ X and ut ∈ U . Since x ∈ ln1 and
u ∈ lm1 , each term of the sequences {xt}∞t=0 and {ut}∞t=0 has to be bounded (otherwise the
conditions

∑∞
t=0 |xt| < ∞ and

∑∞
t=0 |ut| < ∞ are not satisfied). Hence there are compact

sets X0 and U0 such that xt ∈ int X0, ut ∈ int U0. As a continuous function on a compact
set is bounded one has

|Dxf | < M, |Duf | < M on X0 × U0 (1.5)

and Dxf,Duf are uniformly continuous on X0 × U0, as well.
For the sake of simplicity let (x,u) = z and (xt, ut) = zt. At first we prove that for z ∈ ln+m

1

there exists ∂hJ(z) for all h ∈ ln+m
1 . Let h = (h0, h1, . . . ) where ht ∈ Rn+m for all t ∈ N0.

Then we have

∂hJ(z) = lim
τ→0

1

τ
[J(z + τh)− J(z)]

= lim
τ→0

1

τ

[
∞∑
t=0

f(zt + τht)−
∞∑
t=0

f(zt)

]

= lim
τ→0

∞∑
t=0

1

τ
[f(zt + τht)− f(zt)] .

To proceed we have to check that we are allowed to interchange the summation and limit.
Therefore we need to prove the absolute convergence of the terms in sum. For τ sufficiently
small one has (zt+ξτht) ∈ X0×U0 so using Hadamard’s lemma (see Lemma 1.2.1) we obtain
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∞∑
t=0

|f(zt + τht)− f(zt)| =
∞∑
t=0

|(zt + τht − zt)
∫ 1

0

Dzf(zt + ϑ(zt + τht − zt))dϑ|

≤
∞∑
t=0

|τht||
∫ 1

0

Dzf(zt + ϑτht)dϑ| ≤
∞∑
t=0

|τht||
∫ 1

0

2Mdϑ|

≤
∞∑
t=0

|τ ||ht|2M = 2M |τ |‖h‖ <∞.

Therefore

∂hJ(z) =
∞∑
t=0

lim
τ→0

1

τ
[f(zt + τht)− f(zt)]

=
∞∑
t=0

∂htf(zt) =
∞∑
t=0

Dzf(zt)ht. (1.6)

Since f ∈ C1, Dzf exists, so ∂hJ(z) exists.
Further we prove that the function h → ∂hJ(x,u) is linear and bounded. The directional
derivative is always homogenous, hence remains to prove additivity and boundedness.

∂h+gJ(z) =
∞∑
t=0

Dzf(zt)(ht + gt) =
∞∑
t=0

Dzf(zt)ht +
∞∑
t=0

Dzf(zt)gt

= ∂hJ(z) + ∂gJ(z).

Now we prove boundedness of ∂hJ(z) for all h ∈ ln+m
1 . By (1.5) we can denote |Dzf | ≤

|Dxf |+ |Duf | < 2M . Thus

‖∂hJ(z)‖ = ‖
∞∑
t=0

Dzf(zt)ht‖ ≤
∞∑
t=0

|Dzf(zt)||ht|

≤
∞∑
t=0

2M |ht| = 2M‖h‖ <∞.

Fréchet Differentiability: To prove Fréchet differentiability we employ the next proposition
(by [6]).

Proposition 1.2.1. Let X, Y be Banach spaces, U ⊂ X open, J : U → Y and x ∈ U . If J is
Gâteaux differentiable and the Gâteaux derivative is continuous on a neighborhood V of x,
then J is Fréchet differentiable at x.

According to 1.2.1 we have to prove the continuity of Gâteaux derivative. This means to
prove that for all z ∈ ln+m

1 and for all ε > 0 there exists δ > 0, such that if w ∈ ln+m
1 and

‖z−w‖ < δ then for all h ∈ ln+m
1

‖∂hJ(z)− ∂hJ(w)‖ ≤ ε‖h‖.
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By (1.6) this is equivalent to

‖
∞∑
t=0

Dzf(zt)ht −
∞∑
t=0

Dzf(wt)ht‖ = ‖
∞∑
t=0

[Dzf(zt)−Dzf(wt)]ht‖ ≤ ε‖h‖.

We know that Dzf is uniformly continuous on X0 × U0. Taking into account that

|zt − wt| ≤
∞∑
t=0

|zt − wt| = ‖z−w‖ < δ

then we have that for a given ε there exists a δ > 0 such that for all |zt − wt| < δ

|Dzf(zt)−Dzf(wt)| ≤ ε on X0 × U0.

Hence

‖
∞∑
t=0

[Dzf(zt)−Dzf(wt)]ht‖ ≤
∞∑
t=0

|Dzf(zt)−Dzf(wt)||ht|

≤
∞∑
t=0

ε|ht| = ε
∞∑
t=0

|ht| ≤ ε‖h‖.

Theorem 1.2.1. (The Implicit Function Theorem) Let X, Y , Z be Banach spaces,
U ⊂ X, V ⊂ Y open, Φ : U × V → Z be Cr, 0 < r ≤ ∞, (x0, y0) ∈ U × V , Φ(x0, y0) = 0.
Let us assume that DyΦ(x0, y0) has a continuous inverse operator. Then there exists a
neighbourhood U1×V1 ⊂ U×V of (x0, y0) and a function ϕ ∈ Cr(U1, V1) such that ϕ(x0) = y0

and Φ(x, y) = 0 for (x, y) ∈ U1 × V1 if and only if y = ϕ(x). Furthermore one has

Dϕ(x0) = −[DyΦ(x0, y0)]
−1DxΦ(x0, y0). (1.7)

Proof. The proof can be found in [6].

1.3 Cones
The notion of a cone is very important, when speaking about restrictions on the admissible
spaces of the state and of the control variable. Therefore in this section we define the cone
and also all theorems that we use in the following chapter.

Definition 21. Let X be a Banach space. The subspace K ⊂ X is called a cone if for all
x ∈ K one has αx ∈ K for all α ≥ 0.

Definition 22. The cone K is called convex if

∀x, x′ ∈ K, ∀α ∈ (0, 1) : αx+ (1− α)x′ ∈ K.

Definition 23. For a convex cone K the dual cone is defined as

K∗ = {x∗ ∈ X∗ : x∗(x) =< x∗, x > ≥ 0, ∀x ∈ K}.
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Remark 4. The dual cone K∗ is clearly convex and closed, regardless K is closed or not.

Definition 24. For a dual cone K∗ the normal cone (also called polar) is defined as

K◦ = {x∗ ∈ X∗ : x∗(x) =< x∗, x > ≤ 0, ∀x ∈ K} (= −K∗).

The following theorem is by [8].

Proposition 1.3.1. Suppose that K1 and K2 are two closed convex subsets of a Banach
space X and K1 ∩ int K2 6= ∅ where int K2 denotes the interior of the set K2. Then one has

(K1 ∩ K2)
◦ = K◦1 +K◦2.

Proposition 1.3.2. Let A : X → Y be a linear operator. Then

K = {x : Ax = 0, x ∈ X}

is a closed convex cone.

Proof. Let x, x′ ∈ X. Then Ax = Ax′ = 0 and for all α ∈ (0, 1) and β ≥ 0 one has

A(αx) + A((1− α)x′) = αAx+ (1− α)Ax′ = 0

A(βx) = βAx = 0

Hence K is a convex cone. Since the linear operator A maps K onto a closed set, the cone
K has to be closed.

1.4 Optimal Control Theory
The core of this work is based on the study of the infinite horizon optimal control problem.
In this section we would like to present the basic discrete time optimal control problem, it’s
adjoint equation, adjoin variable and maximum principle. All mentioned notions will be
subsequently used in the second chapter.

J(x, u) =
∞∑
t=0

f(xt, ut) → max, (1.8)

xt+1 = F (xt, ut) t ∈ N0, (1.9)
x0 = x̄,

ut ∈ Ut = {u : st(u) ≤ 0} t ∈ N0, (1.10)
lim
t→∞

xt ∈ C, (1.11)

where f ∈ C1(Rn×Rm,R), F ∈ C1(Rn×Rm,Rn) and st ∈ C1(Rm,Rmt) for all t ∈ N0. The
problem consists of the cost function (1.8), of the state equation (1.9) and we have some
restrictions on the state variable (1.11) and on the control variable (1.10), as well. This
basic problem helps us to demonstrate the necessary notions. In the following chapter we
use various modifications of this problem.
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Definition 25. Denote It(ut) as the set of all k ∈ {1, . . . ,mt} for which skt (ut) = 0 (to be
called an active constraints set). The optimal control problem fulfills the regularity condition
in u = (u0, u1, . . . ), if for all t ∈ N0 the vectors

dskt
dut

(ut), k ∈ It(ut) (1.12)

are linearly independent.

Theorem 1.4.1. Let (x̂, û) = (x̂0, x̂1, . . . ; û0, û1, . . . ) be optimal response/control pair for
our problem and let the regularity condition be fulfilled in û. Then there exists {ψt}∞t=1

(called adjoint variables), such that the following equations hold

ψt =

(
∂f

∂xt
(x̂t, ût)

)T
+

(
∂F

∂xt
(x̂t, ût)

)T
ψt+1 ∀t ∈ N0, (1.13)

where the equation (1.13) is called the adjoint equation.

Proof. The proof can be found in [7].

Theorem 1.4.2. Let the conditions of the theorem 1.4.1 be fulfilled. Furthermore, let the
function F be linear in u, the function f be concave in control variable and the sets Ut be
convex. Then there exists a sequence of adjoint variables {ψt}∞t=1 that solves the adjoint
equations (1.13) and

f(x̂t, ût) + F (x̂t, ût)
Tψt+1 = max

ut∈Ut

(f(x̂t, ut) + F (x̂t, ut)
Tψt+1) ∀t ∈ N0, (1.14)

where the equation (1.14) is called the maximum principle.

Proof. The proof can be found in [7].
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Chapter 2

Maximum Principle

This chapter is divided into three sections. In the first we derive the necessary conditions of
optimality for the optimal control problem with linear state equation. In the second we study
the optimal control problem with general state equation. Finally, the necessary conditions of
optimality for a constrained optimal control problem are derived at the end of this chapter.

2.1 Linear Problem
In this section our aim is to derive the necessary conditions of optimality for the following
optimal control problem. Find (x̂, û) among pairs (x,u) ∈ ln1 × lm1 satisfying the equations

xt+1 = Axt +But + d ∀t ∈ N0,

x0 = x̄,

which maximizes the function

J(x,u) =
∞∑
t=0

f(xt, ut), (2.1)

where f ∈ C1(X × U,R), X ⊂ Rn and U ⊂ Rm open, xt ∈ int X and ut ∈ int U for all
t ∈ N0. Let (x̂, û) be maximum. We call a pair (ξ,η) ∈ ln+m

1 admissible if for some ε0 > 0
and for all ε ∈ (0, ε0) we have

x̂0 + εξ0 = x̄

x̂t+1 + εξt+1 = A(x̂t + εξt) +B(ût + εηt) + d ∀t ∈ N0.

We can rewrite these equations as ξ0 = 0 and

x̂t+1 + εξt+1 = Ax̂t +Bût + d+ A(εξt) +B(εηt)

εξt+1 = A(εξt) +B(εηt)

ξt+1 = Aξt +Bηt ∀t ∈ N0.

We have already shown that J is Fréchet differentiable (see Example 6). Then J can not
increase along any admissible vector from the maximum. Therefore

∂(ξ,η)J(x̂, û) =
∂

∂ε
J(x̂ + εξ, û + εη)|ε=0 ≤ 0.
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If (ξ,η) is admissible, then also (−ξ,−η) is admissible and we have

∂(−ξ,−η)J(x̂, û) = −∂(ξ,η)J(x̂, û) ≤ 0.

Summing up if (x̂, û) is a maximum, then for every admissible vector (ξ,η) we have

∂

∂ε
J(x̂ + εξ, û + εη)|ε=0 =

∞∑
t=0

[Dxf(x̂t, ût)ξt +Duf(x̂t, ût)ηt] = 0.

In other words
DJ(x̂, û)(ξ,η) = 0 (2.2)

for all (ξ,η) ∈ ln+m
1 such that ξ0 = 0 and

(σ −A)ξ −Bη = 0, (2.3)

where A = (A,A, . . . ), B = (B,B, . . . ) and σ is defined as in the Example 4. Moreover,
since |A| < MA < ∞ and |B| < MB < ∞ (we can use the same argumentation as in the
Example 6) these operators are according to the examples 4 and 5 bounded.

2.1.1 Necessary Conditions of Optimality

For a further work we use the following modification of the closed range theorem (for a
complete theorem and proof see [14])

Proposition 2.1.1. Let X, Y be Banach spaces, T ∈ B(X, Y ) be a closed operator. Assume
that R(A∗) is closed. Then < v, x >= 0 for all x ∈ N (A) if and only if v ∈ R(A∗).

The equation ξ0 = 0 is represented by the operator (In×n, 0n×n). This operator is clearly
closed and it’s dual has a closed range, so it is sufficient to study the operator (σ−A,−B).
Hence we would like to use the proposition with X = ln+m

1 , Y = lm1 and T = (σ −A,−B)
to obtain the adjoint equation. Since in our case the operator (σ − A,−B) is linear and
bounded, it is continuous (Proposition 1.1.2) and thus it is closed (Proposition 1.1.3). It
remains to prove that the set

R((σ −A,−B)∗) = {(z,w) ∈ ln+m
∞ = (ln+m

1 )∗| ∃ψ ∈ ln∞ = (ln1 )∗ : (z,w) = (σ −A,−B)∗ψ}
(2.4)

is closed (according to the Proposition 1.1.5 we use the fact that lk∞ = (lk1)∗). This means to
prove (see Definition 4) that if

(z0,w0), (z1,w1), . . . ∈ R((σ −A,−B)∗) ∧ lim
k→∞

(zk,wk) = (z,w),

then also (z,w) ∈ R((σ − A,−B)∗). Let us denote the t-th component of (zk,wk) as
(zkt , w

k
t ). Then we can rewrite the equation in (2.4) as follows

zt = ψt−1 − A∗ψt ∀t ∈ N and z0 = −A∗ψ0,

wt = −B∗ψt ∀t ∈ N and w0 = −B∗ψ0, (2.5)
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where zt ∈ Rn and wt ∈ Rm for all t ∈ N0. In order to establish the existence of ψ that
fulfills the equations (2.5) along with (z,w) we construct a sequence {ψkl}∞l=0 that fulfills
the equations (2.5) along with {(zkl ,wkl)}∞l=0 and all terms ψkl

t have a limit, which we denote
ψt. We do this by a diagonalization procedure.
At first, let us define the map C : Rn → Rn+m as Cx = (A∗x,B∗x) ∀x ∈ Rn. According
to the First Isomorphism Theorem (see 1.1.1) there exists an isomorphism between R(C)
and Rn/N (C). To the quotient space Rn/N (C) there exists a linear space Q, such that
Q + N (C) = Rn (this space consists of the representants of all equivalence classes in our
quotient space) . Then

C̃ : Q→ R(C)

is this isomorphism. Note that if A∗ and B∗ are regular maps, then C ≡ C̃.
We know that for every (zk,wk) there exists ψk such that the equations (2.5) holds. We
know that C̃ is an isomorphism. Therefore for each (zkt , w

k
t ) there exists exactly one ψkt ∈ Q

that the desired equations are satisfied. Let C̃−1 be the map that fulfills

ψkt = −C̃−1(zkt − ψkt−1, w
k
t ) ∀k ∈ N0, t ∈ N, (2.6)

ψk0 = −C̃−1(zk0 , w
k
0) ∀k ∈ N0. (2.7)

Now we construct the subsequence {ψkl}∞l=0 of {ψk}∞k=0 that converges in each component
to ψ.
Since limk→∞(zk,wk) = (z,w), then {(zk,wk)}∞k=0 must converge in each component and
hence each of this component is bounded. Let L be such a constant that |wki |, |zki | ≤
|(zki , wki )| ≤ L ∀i, k ∈ N0. As C̃ is regular, C̃−1 is bounded. By (2.7) the sequence
{ψk0}∞k=0 is bounded and because ψk0 ∈ Rn ∀k, there exists such a subsequence {k0

l }∞l=0 of N0

that {ψk
0
l

0 }∞l=0 is convergent. Let ψ0 = liml→∞ ψ
k0

l
0 .

Since every subsequence of a convergent sequence is convergent, {zk0
l ,wk0

l }∞l=0 is also conver-
gent. As {ψk

0
l

0 }∞l=0 is convergent, the sequence {ψk
0
l

1 }∞l=0, where ψ
k0

l
1 = −(C̃)−1(z

k0
l

1 −ψ
k0

l
0 , w

k0
l

1 )

is bounded (|ψk
0
l

1 | = | − C̃−1(z
k0

l
1 − ψ

k0
l

0 , w
k0

l
1 )| ≤ |C̃−1|(2L+ |ψk

0
l

0 |)). Therefore we can choose
a sequence {k1

l }∞l=0 ⊂ {k0
l }∞l=0, such that the subsequence {ψk

1
l

1 }∞l=0 of {ψk
0
l

1 }∞l=0 is convergent.
Let ψ1 = liml→∞ ψ

k1
l

1 . As {k1
l }∞l=0 ⊂ {k0

l }∞l=0 also liml→∞ ψ
k1

l
0 = ψ0.

We can proceed in this way and by mathematical induction in n+ 1 st step we construct a
subsequence {knl }∞l=0 of {kn−1

l }∞l=0 such that the subsequence {ψk
n
l
n }∞l=0 of {ψk

n−1
l
n }∞l=0 is con-

vergent and ψn = liml→∞ ψ
kn

l
n (such a subsequence exists, because the sequence {ψk

n−1
l
n }∞l=0

is bounded (|ψk
n−1
l
n | = | − C̃−1(z

kn−1
l
n −ψk

n−1
l
n−1 , w

kn−1
l
n )| ≤ |C̃−1|(2L+ |ψk

n−1
l
n−1 |) and {ψk

n−1
l
n−1 }∞l=0 is

by the induction hypothesis convergent and thus bounded).
As {knl }∞l=0 ⊂ {kn−1

l }∞l=0 ⊂ · · · ⊂ {k0
l }∞l=0 also liml→∞ ψ

kn
l
i = ψi ∀i ≤ n.

But this is still not a subsequence convergent in all components. To get this, we have to
write our subsequences into an infinite array

ψ
k0
0

0 ψ
k0
1

0 ψ
k0
2

0 . . .

ψ
k1
0

1 ψ
k1
1

1 ψ
k1
2

1 . . .

ψ
k2
0

2 ψ
k2
1

2 ψ
k2
2

2 . . .
...

...
... . . .
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and take the entries, which lie on the diagonal, i.e. {kll}∞l=0. Clearly the sequence {kll}∞l=n is
a subsequence of {knl }∞l=0 and thus {ψk

l
l
n }∞l=0 converge to ψn (the first n terms in the sequence

are not important in the sense of convergence). Hence the sequence {ψkl
l}∞l=0 is convergent

termwise with limits ψt = liml→∞ ψ
kl

l
t for all t ∈ N0.

It remains to prove that ψ, we have just constructed, satisfies the equations (2.5) along with
(z,w) = limk→∞(zk,wk).
At first since −C̃−1(z

kl
l

0 , w
kl

l
0 ) = ψ

kl
l

0 ∀l ∈ N0, (C̃)−1 is regular (thus it represents a continuous
operator) and both sequences are convergent we have

(z0, w0) = lim
l→∞

(z
kl

l
0 , w

kl
l

0 ) = − lim
l→∞

C̃ψ
kl

l
0 = −C̃ lim

l→∞
ψ
kl

l
0 = −C̃ψ0.

For i ≥ 1 we have to prove that the equation

ψi = −C̃−1(zi − ψi−1, wi)

holds, if for every l ≥ 1 we have ψk
l
l
i = −C̃−1(z

kl
l
i − ψ

kl
l
i−1, w

kl
l
i ). The matrix C̃−1 = (Ã, B̃)−1

is regular (bounded and thus continuous) therefore we have

(zi, wi) = lim
l→∞

(z
kl

l
i , w

kl
l
i ) = lim

l→∞
(ψ

kl
l
i−1 − Ãψ

kl
l
i ,−B̃ψ

kl
l
i )

= ( lim
l→∞

ψ
kl

l
i−1 − Ã lim

l→∞
ψ
kl

l
i ,−B̃ lim

l→∞
ψ
kl

l
i )

= (ψi−1 − Ãψi,−B̃ψi).

According to the Proposition (2.1.1), for all (ξ,η) such that

(σ −A,−B)(ξ,η)T = (σ −A)ξ −Bη = 0,

DJ(x̂, û)(ξ,η) = 0 if and only if DJ(x̂, û) ∈ R((σ −A,−B)∗) i.e.1

∃ ψ ∈ ln∞ = (ln1 )∗ : DJ(x̂, û) = (σ −A,−B)∗ψ. (2.8)

This relation implies

Dxf(x̂t, ût) = ψt−1 − A∗ψt ∀t ∈ N, (2.9)
Duf(x̂t, ût) = −B∗ψt ∀t ∈ N0, (2.10)

where (2.9) is the adjoint equation of our problem (2.1). Moreover, if the function f is
concave in ut for a fixed xt, then the equation (2.10) is sufficient for a maximum principle
in the form

f(x̂t, ût) + (Ax̂t +Bût)
Tψt = max

ut∈Ut

(f(x̂t, ut) + (Ax̂t +But)
Tψt) ∀t ∈ N0.

1We can omit the equation ξ0 = 0 indeed. Since it is represented by the operator (In×n, 0n×m), the
relations should be properly written as follows. For all ((ξ0, η0), (ξ,η)) such that ξ0 = 0 and (σ −A)ξ −
Bη = 0 one has (0, 0)(ξ0, η0)T + DJ(x̂, û)(ξ,η) = DJ(x̂, û)(ξ,η) = 0, if and only if ((0, 0), DJ(x̂, û)) ∈
R(((In×n, 0n×m), (σ −A,−B))∗). So we should have

Dxf(x̂t, ût) = φt −A∗φt+1 ∀t ∈ N and Dxf(x̂0, û0) = −A∗φ1, 0 = I∗n×nφ0 = φ0,

Duf(x̂t, ût) = −B∗φt+1 ∀t ∈ N0 and 0 = 0∗n×nφ0.

However if we put ψt = φt+1 these equations implies (2.9) and (2.10).
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2.2 General Dynamics
In this part we study the generalized problem. This means among the pairs (x,u), x ∈ ln1 ,
u ∈ lm1 to find the extreme (maximum or minimum) of the function

J(x,u) =
∞∑
t=0

f(xt, ut), (2.11)

that satisfies the state and the initial equation

xt+1 = F (xt, ut) ∀t ∈ N0, (2.12)
x0 = x̄. (2.13)

As before f ∈ C1(X × U,R), X ⊂ Rn and U ⊂ Rm be open, xt ∈ int X and ut ∈ int U for
all t ∈ N0. In addition, we assume that F ∈ C1(X × U,R). Further we consider only the
case of maximum, but the reasoning for the minimum is analogous.

2.2.1 Necessary Conditions of Optimality

Let us assume that (x̂, û) is an optimal response/control pair and let us denote

DxF (x̂t, ût) = At ∀t ∈ N0,

DuF (x̂t, ût) = Bt ∀t ∈ N0,

(A0, A1, . . . ) = Ã,

(B0, B1, . . . ) = B̃.

The cost function cannot increase along any admissible perturbation curve starting at (x̂, û).
Hence if in any direction there exists an admissible perturbation curve, we can use this fact
to derive the necessary condition of optimality. We define these directions in the following
definition.

Definition 26. We call a pair (ξ,η) = (ξ0, ξ1, . . . ; η0, η1, . . . ) ∈ ln1 × lm1 admissible, if there
exist ε0 > 0 and differentiable curves

p(ε) = {pt(ε)}∞t=0, pt : [0, ε0)→ Rn ∀t ∈ N0,

q(ε) = {qt(ε)}∞t=0, qt : [0, ε0)→ Rm ∀t ∈ N0

such that the following conditions hold

i) p(0) = q(0) = 0 (i.e. the curves are starting from (x̂, û))

ii) p′(0) = ξ and q′(0) = η (i.e. the initial directions are given)

iii) for each ε ∈ [0, ε0) we have p0(ε) = 0 and

x̂t+1 + pt+1(ε) = F (x̂t + pt(ε), ût + qt(ε)) ∀t ∈ N0 (2.14)

(i.e. the initial condition (2.13) and the state equation (2.12) hold)
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iv) for each ε ∈ [0, ε0) we have (p(ε) + x̂) ∈ ln1 and (q(ε) + û) ∈ lm1 .

In the following proposition we show that if for a given vector (ξ,η) ∈ ln+m
1 we have ξ0 = 0

and

ξt+1 =
∂

∂ε
F (x̂t + εξt, ût + εηt)|ε=0

= DxF (x̂t, ût)ξt +DuF (x̂t, ût)ηt

= Atξt +Btηt ∀t ∈ N0 (2.15)

and some conditions are fulfilled, then this vector is admissible. For the sake of simplicity
we denote ι0 = (In×n, 0n×m).

Proposition 2.2.1. Let us assume that N (ι0, (σ−Ã,−B̃)) has a closed complement. Then
each vector (ξ,η) ∈ N (ι0, (σ − Ã,−B̃)) is admissible.

Proof. We prove the proposition by employing the implicit function theorem (see Theorem
1.2.1) with X, Y, Z and (x0, y0) defined below. Let us denote X = R, Y as the closed
complement of N (ι0, (σ − Ã,−B̃)) and Z = ln1 . Note that each (x,u) ∈ ln1 × lm1 can be
uniquely rewritten as

(x,u) = (ξ,η) + (v,w),

where (ξ,η) ∈ N (ι0, (σ− Ã,−B̃)) and (v,w) ∈ Y . To prove the proposition we fix (ξ,η) ∈
N (ι0, (σ− Ã,−B̃)) and construct the curves p and q, complying with the conditions of the
definition 26, in the form

p(ε) = εξ + v(ε), v : [0, ε0)→ Y,

q(ε) = εη + w(ε), w : [0, ε0)→ Y.

Let us further define the function (Φ0,Φ) : X × Y → Z as

Φ0(ε, (v,w)) = (εξ0 + v0 + x̂0)− x̄,
Φ(ε, (v,w)) = σ(εξ + v + x̂)− F(εξ + v + x̂, εη + w + û),

where σ is the shift operator and F = (F, F, . . . ). The optimal pair (x̂, û) fulfills the
constraints (2.13) and (2.12), hence

Φ0(0, (0,0)) = x̂0 − x̄ = 0,

Φ(0, (0,0)) = σx̂− F(x̂, û) = 0 (2.16)

and we set (x0, y0) = (0, (0,0)). Since F ∈ C1 it follows that the function (Φ0,Φ) ∈ C1

(in the Fréchet sense). According to (2.16) in order to use the implicit function theorem it
remains to show that the operator

D(v,w)(Φ0,Φ)(0, (0,0)) (2.17)

has a continuous inverse. Clearly D(v,w)Φ0(0, (0,0)) = (In×n, 0n×m)|Y and
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D(v,w)Φ(0, (0,0)) =

= (σ −DxF(x̂, û),−DuF(x̂, û))|Y
= (σ − (DxF (x̂0, û0), DxF (x̂1, û1), . . . ),−(DuF (x̂0, û0), DuF (x̂1, û1), . . . ))|Y
= (σ − (A0, A1, . . . ),−(B0, B1, . . . ))|Y = (σ − Ã,−B̃)|Y .

Hence
D(v,w)(Φ0,Φ)(0, (0,0)) = (ι0, (σ − Ã,−B̃))|Y .

By the Proposition 1.1.4, the restriction of a map to a closed complement of it’s null space is
an isomorphism. So D(v,w)(Φ0,Φ)(0, (0,0)) is an isomorphism and hence it has a continuous
inverse operator. The implicit function theorem yields that there exist a neighbourhood
X0 × Y0 ⊂ X × Y of (0, (0,0)) and a differentiable function ϕ : X0 → Y0, ϕ = (v,w) such
that

ϕ(ε) = (v(ε),w(ε)),

if and only if

ϕ(0) = (0,0), Φ0(ε, (v(ε),w(ε))) = 0 and Φ(ε, (v(ε),w(ε))) = 0.

These equations prove the properties i) and iii) of the definition 26. Since for all ε ∈ X0

(v(ε),w(ε)) ∈ Y0 ⊂ ln1 × lm1
we have that v(ε) ∈ ln1 and w(ε) ∈ lm1 . From the linearity of the space lk1 for k ∈ N it follows

p(ε) + x̂ = v(ε) + εξ + x̂ ∈ ln1 ,

q(ε) + û = w(ε) + εη + û ∈ lm1 ,

which is exactly the condition iv) in the definition 26. Now we show that also the condition ii)
is fulfilled. To this end we use the equation (1.7). We have already computed the directional
derivative D(v,w)(Φ0,Φ). Therefore we need to compute

DεΦ0(0, (0,0)) = ξ0 = 0,

DεΦ(0, (0,0)) = [
∂

∂ε
σ(εξ + v(ε) + x̂)

−DxF(εξ + v(ε) + x̂, εη + w(ε) + û)
∂

∂ε
(εξ + v(ε) + x̂)

−DuF(εξ + v(ε) + x̂, εη + w(ε) + û)
∂

∂ε
(εη + w(ε) + û)]|(ε,(v,w))=(0,(0,0))

= σξ − Ãξ − B̃η = 0,

because the vector (ξ,η) is in the null space of the map (ι0, (σ − Ã,−B̃)). Summing up,
one has

ϕ′(0, (0,0)) = −[D(v,w)(Φ0,Φ)(0, (0,0))]−1[Dε(Φ0,Φ)(0, (0,0))] = 0

and hence

v′(0) = 0 ⇒ p′(0) = ξ + v′(0) = ξ,

w′(0) = 0 ⇒ q′(0) = η + w′(0) = η.

This completes the proof.
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In each of the following examples we derive a condition under which the set N (ι0, (σ −
Ã,−B̃)) has a closed complement. Therefore in each example we define a closed set Y and
then we show that this set is a sought complement. To this end we prove that for a given
z ∈ ln1 the pair (v,w) ∈ Y such that

v0 = z0 (2.18)
vt+1 − Atvt −Btwt = zt+1 ∀t ∈ N0 (2.19)

is uniquely defined in the set Y and also that N (ι0, (σ − Ã,−B̃)) ∩ Y = 0 (so there exists
an isomorphism between Y and ln1 ).

Example 7. Let us denote

C(t, s) =
t−1∏
j=s

Aj and C(t, t) = In×n ∀t, s ∈ N0, t > s.

The closed set ln1 × {0} is a closed complement of N (ι0, (σ − Ã,−B̃)) if

∃M ∈ [1,∞) ∧ ∃λ < 1 : |C(t, s)| ≤Mλt−s ∀t, s ∈ N0, t ≥ s. (2.20)

The equations (2.19) and (2.18) turn in this case into

v0 = z0,

vt+1 − Atvt = zt+1 ∀t ∈ N0.

Now we prove that if z ∈ ln1 , then also v ∈ ln1 and it is uniquely defined. We have

v0 = z0

v1 = A0v0 + z1 = A0z0 + z1

v2 = A1v1 + z2 = A1A0z0 + A1z1 + z2

⇒

vt = At−1vt−1 + zt = · · · =
t−1∑
i=0

t−1∏
j=i

Ajzi + zt =
t∑
i=0

C(t, i)zi.

So the expression of v is unique for a given z ∈ ln1 and w = 0. Now we show that v ∈ ln1 .
We can bound the norm of the t-th term

|vt| = |
t∑
i=0

C(t, i)zi| ≤
t∑
i=0

|zi| · |C(t, i)| ≤M
t∑
i=0

|zi|λt−i

and compute the norm of v

‖v‖ =
∞∑
t=0

|vt| ≤
∞∑
t=0

M

t∑
i=0

|zi|λt−i = M

∞∑
i=0

|zi|
∞∑
t=i

λt−i

= M
∞∑
i=0

|zi|
∞∑
t=0

λt =
M

1− λ

∞∑
i=0

|zi| =
M

1− λ
‖z‖.

We know that ‖z‖ < ∞ (as z ∈ ln1 ) and also M/(1 − λ) < ∞ (as λ < 1 and M < ∞).
Hence ‖v‖ < ∞ and thus v ∈ ln1 . Furthermore, from the construction of v it is clear that
(v,0) ∈ N (ι0, (σ − Ã,−B̃)), if and only if v = 0.
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Remark 5. Note that the condition (2.20) is rather abstract and there are some simpler
conditions of which this one is a consequence. For example let

sup
t∈N0

|DxF (x̂t, ût)| = sup
t∈N0

|At| = λ < 1. (2.21)

Then we can put M = 1 and the general condition is fulfilled since

|C(t, s)| = |
t−1∏
j=s

Aj| ≤
t−1∏
j=s

|Aj| ≤ λt−s.

Note that for (2.20) to hold it is also sufficient that

sup
t∈(N0\K)

|At| = λ < 1 and sup
t∈K
|At| = κ <∞, (2.22)

where K ⊂ N0 is a set with k <∞ elements. Then one has

|C(t, s)| ≤
t−1∏
j=s

|Aj| ≤ κkλt−s−k =
κk

λk
λt−s.

Since k, κ <∞ and λ > 0 (if λ = 0 it is sufficient to put M = κk), M = (κ/λ)k <∞.
Now we mention even simpler condition on the matrices At that implies (2.20). Seeing that
x̂ ∈ ln1 and û ∈ lm1 one has limt→∞ x̂t = limt→∞ ût = 0. Let us denote A∞ = DxF (0, 0).
Since F ∈ C1 one has limt→∞At = A∞. Suppose

max{|λ| : λ ∈ sp(A∞)} = λ̄ < 1,

where sp(A∞) denotes the spectrum of the matrix A∞. So we have

|Ak∞| < Cµk

for some 0 < µ < 1 and C > 0. From the continuity of DxF for any ε > 0 there must exists
T ∈ N0 such that for every t > T we have

At = A∞ +Ht

and |Ht| < ε. Then for a sufficiently large s > T we have

C(t, s) =
t−1∏
j=s

Aj =
t−1∏
j=s

(A∞ +Hj) =
t−1∏
j=s

Hj +
t−1∑
i=s

(
i−1∏
j=s

Hj

)
A∞

(
t−1∏
j=i+1

Hj

)
+ · · ·+ At−s∞ .

Hence

|C(t, s)| = |
t−1∏
j=s

Aj| < C
t−s∑
j=0

(
t−s
j

)
µjCt−s−jεt−s−j = C(µ+ Cε)t−s.

So if we choose ε such that (µ+Cε) < 1 the condition (2.20) is fulfilled for all t ≥ s > T . The
remaining matrices (t < T ) can be replaced by the constant M similarly as in the previous
case.
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Example 8. At are regular for all t ∈ N0, supt∈N0
‖DxF (x̂t, ût)

−1‖ = supt∈N0
‖A−1

t ‖ = λ < 1

In this case we again define the complement of N (ι0, (σ−Ã,−B̃)) as the closed set ln1 ×{0}.
Hence the equations (2.19) and (2.18) turn into

v0 = z0,

vt+1 − Atvt = zt+1 ⇒ vt = A−1
t (vt+1 − zt+1). (2.23)

We show that for all z ∈ ln1 there is an unique solution in the form

vt = −
∞∑
i=t

i∏
j=t

A−1
j zi+1.

If we substitute v in this form into the equation mentioned above we obtain

A−1
t (vt+1 − zt+1) = −A−1

t

∞∑
i=t+1

i∏
j=t+1

A−1
j zi+1 − A−1

t zt+1

= −
∞∑

i=t+1

i∏
j=t

A−1
j zi+1 − A−1

t zt+1 = −
∞∑
i=t

i∏
j=t

A−1
j zi+1.

Since the left and the right side of the equation (2.23) are for this solution equal, this is
indeed a solution to this equation. Now we prove that this solution is in the defined set ln1 .

‖v‖ =
∞∑
t=0

|vt| =
∞∑
t=0

|
∞∑
i=t

i∏
j=t

A−1
j zi+1| ≤

∞∑
t=0

∞∑
i=t

|zi+1|λi−t+1 =
∞∑
i=0

|zi+1|
i∑
t=0

λi−t+1

=
∞∑
i=1

|zi|
i+1∑
t=1

λt ≤ λ− λi+2

1− λ

∞∑
i=0

|zi| <
λ

1− λ
‖z‖ <∞,

thus v ∈ ln1 . Furthermore, from the form of v it is clear that for a given z = 0 we have
v = 0. Therefore (ln1 × 0) ∩ N (ι0, (σ − Ã,−B̃)) = (0,0). Summing up, the set ln1 × 0 is a
closed complement of N (ι0, (σ − Ã,−B̃)).

Example 9. In the case m = n we can introduce similar condition on the matrices Bt. Let
Bt be regular for all t ∈ N0 and supt∈N0

|B−1
t | = MB < ∞. Then we can define the closed

complement of N (ι0, (σ − Ã,−B̃)) as {0} × ln1 . If we apply this fact to the equation (2.19)
we get

zt+1 = −Btwt.

This equation yields wt = −B−1
t zt+1 (so w is unique for a given z and v = 0) and one has

‖w‖ =
∞∑
t=0

|wt| ≤
∞∑
t=0

|B−1
t | · |zt+1| ≤MB‖z‖.

Hence w ∈ ln1 if z ∈ ln1 . Moreover, if z = 0, then w = 0.
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Now we are ready to derive the necessary conditions of optimality. If (ξ,η) is admissible,
then the optimality of (x̂, û) implies

∂

∂ε
J(x̂ + p(ε), û + q(ε))|ε=0 =

∞∑
t=0

[Dxf(xt, ut)p
′
t(ε) +Duf(xt, ut)q

′
t(ε)]|ε=0

=
∞∑
t=0

[Dxf(xt, ut)ξt +Duf(xt, ut)ηt] ≤ 0. (2.24)

We have derived that if (ξ,η) ∈ N (ι0, (σ− Ã,−B̃)) (and any of the condition stated in the
examples is fulfilled), then (ξ,η) is admissible and (2.24) holds. It is clear that in this case
also (−ξ,−η) ∈ N (ι0, (σ − Ã,−B̃)) and the necessary conditions hold, as well. Therefore

Dxf(xt, ut)(−ξt) +Duf(xt, ut)(−ηt) = −[Dxf(xt, ut)ξt +Duf(xt, ut)ηt] ≤ 0.

Summing up if (x̂, û) is an optimal pair and some conditions on Ã and B̃ are satisfied, then
for all (ξ,η) ∈ ln+m

1 that satisfies ξ0 = 0 and

ξt+1 = Atξt +Btηt, ∀t ∈ N0

one has
∞∑
t=0

[Dxf(xt, ut)ξt +Duf(xt, ut)ηt] = 0.

Note that according to the example 6 |At| < ∞ and |Bt| < ∞ for all t ∈ N0 and hence Ã
and B̃ are bounded (see Example 5). So we can use an analogous method to prove that
R((ι0, (σ − Ã,−B̃))∗) is closed as in the section 2.1.1. Thus we are allowed to employ the
Proposition 2.1.1 and one has

DJ(x̂, û)(ξ,η) = 0 ∀(ξ,η) ∈ N (ι0, (σ − Ã,−B̃)) ⇔ DJ(x̂, û) ∈ R((ι0, (σ − Ã,−B̃))∗).

Hence there exists ψ ∈ ln∞ such that

Dxft(x̂t, ût) = ψt−1 − A∗tψt ∀t ∈ N,
Duft(x̂t, ût) = −B∗tψt ∀t ∈ N0.

2.3 Restrictions on the Control Variable
In this section we extend our problem from the previous one. We do this by imposing
restrictions on the set of feasible control variables (this set is denoted by the letter U). So
our infinite horizon optimal control problem, which we study, can be rewritten as follows

J(x,u) =
∞∑
t=0

f(xt, ut)→ max,

xt+1 = F (xt, ut) ∀t ∈ N0,

x0 = x̄,

ut = Ut = {u ∈ U : st(u) ≤ 0} ∀t ∈ N0.
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As before f ∈ C1(X × U,R), X ⊂ Rn and U ⊂ Rm be open, xt ∈ int X, ut ∈ int U for all
t ∈ N0 and F ∈ C1(X × U,Rm). Moreover, the set Ut is a closed convex subset of U for all
t ∈ N0 and st ∈ C1(U,Rmt) for all t ∈ N0. As before, we consider only the case of maximum,
but the reasoning for minimum is analogous.

2.3.1 Necessary Conditions of Optimality

Because we study a different problem in comparison to the previous cases, we need to ad-
just the definition of an admissible pair. Afterwards, we derive the necessary conditions of
optimality.
Let (x̂t, ût) be an optimal control/response pair. Recall the Definition 25. Let in û the
regularity conditions be fulfilled and let us denote

s̃t(ût) = {skt (ût)}k∈It(ût) ∀t ∈ N0.

The definition of the set of all admissible directions concerning the set Ut is splitted in two
parts. At first we define the variation cone and then we show that for all vectors from this
cone there exists an admissible perturbation curve in the set Ut.

Definition 27. Let Ut ⊂ Rm be a set and ût ∈ Ut. The variation cone δUt(ût) of the set Ut
at ût is defined as

δUt(ût) = {η ∈ Rm : Dus̃t(ût)η ≤ 0}.

Proposition 2.3.1. δUt(ût) is a cone with vertex at zero. Moreover, if Ut is a closed convex
set, then δUt(ût) is a closed convex cone.

Proof. The proof is trivial and is omitted.

In the following proposition we prove that in each direction η ∈ δUt(ût) there exists an
admissible perturbation curve.

Proposition 2.3.2. For all η ∈ δUt(ût) there exists ε0 > 0 and a differentiable curve
p : [0, ε0)→ Ut such that p(0) = ût and p′(0) = η.

Proof. It is clear that if ût ∈ int Ut then It(ût) = ∅ and δUt(ût) = Rm. Hence in each
direction η there exists ε0 > 0 such that for all ε ∈ [0, ε0) we have (ût + εη) ∈ Ut. So
p(ε) = ût + εη satisfies the required conditions. Now let It(ût) 6= ∅. If Dus̃t(ût)η < 0 the
function p(ε) = ût + εη fulfills the conditions, because s̃t(p(0)) = s̃t(ût) = 0 and the function
s̃t is decreasing at ût

Dεs̃t(p(ε))|ε=0 = Dus̃t(ût)η < 0.

Therefore there exists ε0 such that

s̃t(p(ε)) ≤ 0 ∀ε ∈ [0, ε0).

It remains to find p and ε0 in the case, where the set

Ĩt(ût) = {k ∈ It(ût) : Dus
k
t (ût)η = 0}
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is nonempty and the vector η is tangent to the set

Ũt = {u ∈ Ut : s̄t(u) = 0}, where s̄t = {skt }k∈Ĩt(ût)
.

We do this employing the Implicit Function Theorem (see Theorem 1.2.1) with X = R, Y
as a closed complement to N (Dus̄t(ût)), Z = R|Ĩt(ût)| and the function Φ defined as

Φ(ε, u) = s̄t(ût + u+ εη)

and we find the function p in the form

p(ε) = ϕ(ε) + ηε+ ût, ϕ : [0, ε0)→ Y.

If one sets (x0, y0) = (0, 0) one has

Φ(0, 0) = s̄t(ût) = 0.

We are allowed to use the implicit function theorem, if the operator

DuΦ(0, 0)|Y = [Dus̄t(ût + u+ εη)|(0,0)]|Y = Dus̄t(ût)|Y

has a continuous inverse, which is according to Proposition 1.1.4 satisfied (the closeness is
fulfilled, since we can define Y as Dus̄t(ût) and each of the cases is finite). Hence there exists
a neighbourhood X0 × Y0 ⊂ X × Y of (0, 0) and a differentiable function ϕ : X0 → Y0 such
that

ϕ(ε) = u(ε),

if and only if
ϕ(0) = 0 and Φ(ε, u(ε)) = s̄t(ût + u(ε) + εη) = 0.

As a result p(ε) ∈ Ut for all ε ∈ [0, ε0), p is differentiable and p(0) = ût + ϕ(0) = ût. In
addition, as

DεΦ(0, 0) = [Dus̄t(ût + u+ εη)η|(0,0)] = Dus̄t(ût)η = 0

one has
p′(0) = ϕ′(0) + η = −[DuΦ(0, 0)|Y ]−1DεΦ(0, 0) + η = η,

what was to be proven.

The notation introduced in the previous chapter can be extended to our case. Let us denote

Lt = δUt(ût) ∀t ∈ N0,

L = ln1 × (lm1 ∩ (L0 × L1 × L2 × · · · )),
K = {(ξ,η) ∈ ln+m

1 : ξ0 = 0 ∧ σξ − Ãξ − B̃η = 0}.

Since the state equation holds as in the previous case, the necessary condition for admissi-
bility of the pair (ξ,η) is

(ξ,η) ∈ N (ι0, (σ − Ã,−B̃)) = K

and we have to assume that K has a closed complement. As the value of the admissible
perturbation must lie within the set Ut for all t ∈ N0, the admissible pair (ξ,η) must lie
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within the variation cone L. Therefore (ξ,η) is admissible, if (ξ,η) ∈ K∩L. Thus the cost
function cannot decrease along any admissible direction from the optimal pair (x̂, û)

DJ(x̂, û)(ξ,η) ≤ 0 ∀(ξ,η) ∈ K ∩ L ⇒ DJ(x̂, û) ∈ (K ∩ L)◦.

Since δUt(ût) is closed and convex for all t ∈ N0 (Proposition 2.3.1) L is clearly convex and
closed. In addition to that, K is a closed convex cone (see Propositions 1.3.2). Now we
would like to use the Proposition 1.3.1 to decompose the set (K ∩ L)◦. Hence we have to
check, if the condition K ∩ int L 6= ∅ is satisfied. In the following example we introduce a
condition on the matrices A and B, when this is fulfilled.

Example 10. At first let us show that [int (L0 × L1 × L2 × · · · )] 6= ∅. To this end let us
denote Dt = Dus̃t(ût) for all t ∈ N0 and |It(ût)| = m̃t. Since the regularity conditions are
fulfilled in ût, the matrix Dt is an m̃t × m matrix with rank m̃t and linearly independent
rows. We want to prove that

∀t ∈ N0 ∃ηt ∈ Rm : Dtηt < 0.

Consider the vector

DT
t v, where v = (v1, . . . , vm̃t) ∈ Rm̃t , vi < 0 ∀i = 1, . . . , m̃t.

Then the linear independence yields DtD
T
t v < 0 ∀t ∈ N0, hence [int (L0×L1×L2×· · · )] 6= ∅.

Now we show that the set lm1 ∩ int (L0 × L1 × L2 × · · · ) is nonempty. Consider a sequence
of positive numbers {εt}t∈N0 = ε ∈ l1 and let us define

δt =
εt
|ηt|
∀t ∈ N0.

Clearly δt > 0, so if ηt ∈ int Lt, then also δtηt ∈ int Lt and one has

‖δη‖ =
∞∑
t=0

|δtηt| =
∞∑
t=0

δt|ηt| =
∞∑
t=0

εt = ‖ε‖ <∞.

It remains to show that for some η ∈ [lm1 ∩ int (L0×L1×L2× · · · )] there exists ξ ∈ lm1 such
that (ξ,η) is a solution to the equations

ξ0 = 0,

ξt+1 = Atξt +Btηt ∀t ∈ N0.

This could be written as

ξ1 = A0ξ0 +B0η0 = B0η0,

ξ2 = A1ξ1 +B1η1 = A1B0η0 +B1η1,

ξ3 = A2ξ2 +B2η2 = A2A1B0η0 + A2B1η1 +B2η2,

⇒

ξt = · · · =
t−2∑
i=0

(
t−1∏
j=i+1

Aj

)
Biηi +Bt−1ηt−1 =

t−1∑
i=0

C(t, i+ 1)Biηi.
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where C(t, i+ 1) is defined as in the Example 7. Consider the operator Ã such that

∃M ∈ [1,∞) ∧ ∃λ < 1 : |C(t, s)| ≤Mλt−s ∀t, s ∈ N0, t ≥ s

(this is fulfilled for example if one has max{|λ| : λ ∈ sp(A∞)} = λ̄ < 1, see Remark 5). It
follows that

|ξt| = |
t−1∑
i=0

C(t, i+ 1)Biηi| ≤
t−1∑
i=0

|Bi||ηi| · |C(t, i+ 1)| ≤M ·MB

t−1∑
i=0

|ηi|λt−i−1,

where MB is defined as the smallest constant such that supt∈N0
|Bt| ≤ MB < ∞ (such

a constant exists according to the Example 6). Therefore if ξ fulfills the linearized state
equation we obtain

‖ξ‖ ≤M ·MB

∞∑
t=1

t−1∑
i=0

|ηi|λt−i−1 = M ·MB

∞∑
i=0

|ηi|
∞∑
t=0

λt =
M ·MB

1− λ
‖η‖ <∞.

Hence for all η ∈ [lm1 ∩ int (L0 × L1 × L2 × · · · )] there exists ξ ∈ ln1 such that the linearized
state equation is fulfilled and therefore K ∩ int L 6= ∅.

Finally, we can employ the Proposition 1.3.1 and we obtain

DJ(x̂, û) ∈ (K ∩ L)◦ = K◦ + L◦.

Hence there exist p ∈ K◦ and q ∈ L◦ such that

DJ(x̂, û) = p + q.

Now we rewrite the variable p using the following proposition.

Proposition 2.3.3. Let A : X → Y be a linear operator and let R(A∗) be closed. Then one
has

−K∗ = K◦ = R(A∗),

where the cone K is defined as in Proposition 1.3.2.

Proof. We would like to prove that η ∈ K◦, if and only if η ∈ R(A∗). Since

K = {x : Ax = 0, x ∈ X} = N (A),

this can be rewritten as

< η, x >≤ 0 ∀x ∈ N (A) ⇔ η ∈ R(A).

Let us consider x ∈ N (A). Then also (−x) ∈ N (A) (because Ax = A(−x) = 0) and hence

< η, x >≤ 0 ∀x ∈ N (A) ⇔ < η,−x >= − < η, x >≤ 0 ∀x ∈ N (A).

Summing up, we would like to prove that if R(A∗) is closed, then

< η, x >= 0 ∀x ∈ N (A) ⇔ η ∈ R(A),

what is exactly the claim in the Proposition 2.1.1.
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By this proposition we have p ∈ K◦ = R((ι0, (σ−Ã,−B̃))∗). Hence there exists φ ∈ (ln1 )∗ =
ln∞ (see Proposition 1.1.5) such that p = (ι0, (σ − Ã,−B̃))∗φ. Therefore

DJ(x̂, û) = (ι0, (σ − Ã,−B̃))∗φ+ q.

If we put σφ = ψ we can rewrite these equation with regard to the previous sections as

Dxf(x̂t, ût) = ψt−1 − A∗tψt ∀t ∈ N, (2.25)
Duf(x̂t, ût) = −B∗tψt + qt ∀t ∈ N0, (2.26)

where qt ∈ [δUt(ût)]
◦ for all t ∈ N0. In the following theorem we summarize the Pontryagin

maximum principle according to the assumptions in the Proposition 1.4.2.

Proposition 2.3.4. Let us suppose that Ut are convex, the function F is linear in ut for
a fixed xt (i.e. F (xt, ut) = F0(xt) + But) and the function f is concave in ut for a fixed xt
and for all t ∈ N0. Then the obtained equation (2.26) is sufficient for the existence of a
maximum and therefore one has

f(x̂t, ût) + F (x̂t, ût)
Tψt = max

ut∈Ut

(f(x̂t, ut) + F (x̂t, ut)
Tψt) ∀t ∈ N0.

The last equation is the so-called Pontryagin’s maximum principle.

39



Conclusion

In this thesis we focused on the discrete-time infinite-horizon optimal control problem. In the
first chapter we summarized the essential theory that was consequently used in the second
chapter. In the second chapter of this work we successively studied the problems with linear
state equation, with general state equation and with constraints.
For the problem with linear state equation we derived the adjoint equation and the necessary
conditions of the Pontryagin maximum principle. We managed to do this without any further
condition on the matrices of the linearized dynamics.
The adjoint equation was derived for the problem with general dynamics, as well. However
we did not succeed to get rid of the restrictive conditions on our matrices. Therefore we
introduced some sufficient conditions such that under any of them the deductions hold.
The derivations in the third section were combined with the notion of a cone and we obtained
the adjoint equation and the necessary conditions of the Pontryagin maximum principle
under a sufficient condition again.
In conclusion, the problem itself turned out to be much more difficult than anticipated. Even
in this case we were not able to dispose of the restrictive conditions, albeit we managed to
weaken them. Research is still under way. For this reason we did not include the perhaps
more widely studied discounted problems in this work.
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Resumé

V tejto práci sa zaoberáme možnosťou rozšírenia nutných podmienok optimality pre diskrétne
úlohy optimálneho riadenia na nekonečnom horizonte na úlohy s nie regulárnou maticou dy-
namickej linearizácie. Za týmto účelom používame nástroje funkcionálnej analýzy. Motivácia
pre tento prístup vychádza z článku [3], v ktorom bol podobný postup využitý. Výhodou
oproti klasickému prístupu, ako je použitý napríklad v [13], je fakt, že namiesto štúdia
konečnorozmerného príkladu a následného prechodu k jeho nekonečnorozmernej verzii, sa
priamo zaoberáme nekonečnorozmernou verziou príkladu. Z toho dôvodu predpokladáme,
že premenná riadenia u = (u0, u1, . . . ), ako aj stavová premenná x = (x0, x1, . . . ), patria
do priestoru lk1 , kde k označuje rozmer príslušnej premennej v jednotlivých časových vrstvách
a priestor lk1 je definovaný ako

lk1 = {{wt}t∈N0 : wt ∈ Rk ∀t ∈ N0 ∧
∞∑
t=0

|wt| <∞}.

Na začiatku práce skúmame nasledovný problém optimálneho riadenia

J(x,u) =
∞∑
t=0

f(xt, ut)→ max, (2.27)

xt+1 = Axt +But ∀t ∈ N0, (2.28)
x0 = x̄, (2.29)

kde f ∈ C1(X × U,R), X ⊂ Rn a U ⊂ Rm sú otvorené množiny, xt ∈ int X, ut ∈ int U
pre všetky t ∈ N0. Za predpokladu, že dvojica (x̂, û) je optimálna, odvodíme adjungovanú
premennú ako prvok priestoru ln∞, ako aj adjungovanú rovnicu v tvare

Dxft(x̂t, ût) = ψt−1 − A∗ψt ∀t ∈ N.

Navyše pri tomto postupe nepotrebujeme dodať žiadne dodatočné predpoklady na matice A
a B, teda ani predpoklad regularity.
V ďalšej časti práce skúmame zovšeobecnený problém optimálneho riadenia, v ktorom
nahradíme stavovú rovnicu (2.28) rovnicou

xt+1 = F (xt, ut) ∀t ∈ N0.

Ak má byť dvojica (x̂, û) optimálna, tak účelová funkcia musí klesať v každom smere,
v ktorom existuje perturbácia ležiaca v prípustnej množine a začínajúca v bode (x̂, û). Ak
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označíme

DxF (x̂t, ût) = At ∀t ∈ N0,

DuF (x̂t, ût) = Bt ∀t ∈ N0,

(A0, A1, . . . ) = Ã,

(B0, B1, . . . ) = B̃,

(In×n, 0n×m) = ι0,

a σ ako operátor posunu, tak podmienky, za ktorých existuje takýto smer sumarizuje nasle-
dujúca veta.

Veta 2.3.1. Predpokladajme, že jadro zobrazenia (ι0, (σ−Ã,−B̃)) má uzavretý komplement.
Potom v každom smere (ξ,η) ∈ N (ι0, (σ − Ã,−B̃)) existuje prípustná perturbácia.

Uzavretosť komplementu uvedeného v predchádzajúcej vete dokážeme v ľubovoľnom z nasle-
dujúcich prípadov.

• max{|λ| : λ ∈ sp(A∞)} < 1

• At regulárne a supt∈N0
|A−1

t | < 1

• m = n, Bt regulárne a supt∈N0
|B−1

t | <∞

Pomocou vety 2.3.1 potom vyjadríme nutné podmienky optimality

Dxft(x̂t, ût) = ψt−1 − A∗tψt ∀t ∈ N,
Duft(x̂t, ût) = −B∗tψt ∀t ∈ N0,

kde prvá rovnica opäť vyjadruje tzv. adjungovanú rovnicu.
V poslednej časti študujeme predošlý problém rozšírený o ohraničenia na stavovú premennú
v tvare

ut ∈ Ut = {u ∈ Rm : st(u) ≤ 0}, ∀t ∈ N0,

kde st ∈ C1(Rm,Rmt) pre všetky t ∈ N0. Navyše množina Ut je konvexná uzavretá podmnoži-
na množiny U . Rovnako ako v predošlom prípade môžeme použiť vetu 2.3.1 na identifikáciu
všetkých smerov, v ktorých existuje perturbačná krivka spĺňajúca stavovú rovnicu. Navyše
chceme, aby takáto perturbácia patrila aj do množiny Ut pre každé t. Ak pre každý čas
t ∈ N0 označíme

It(ût) = {k ∈ {1, . . . ,mt} : skt (ût) = 0},
s̃t(ût) = {skt (ût)}k∈It(ût),

δUt(ût) = {η ∈ Rm : Dus̃t(ût)η ≤ 0},
Lt = δUt(ût),

tak pre množinu všetkých kriviek, v ktorých existuje perturbácia spĺňajúca ohraničenia na ri-
adenie, platí

(ξ,η) ∈ L = ln1 × (lm1 ∩ (L0 × L1 × L2 × · · · )).
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Takže každý smer, v ktorom existuje prípustná perturbácia musí spĺňať

(ξ,η) ∈ L ∩K, (2.30)

kde K = N (ι0, (σ−Ã,−B̃)). Navyše v takomto smere účelová funkcia klesáDJ(x̂, û)(ξ,η) ≤
0. Tieto rovnice vieme prepísať v zmysle definície polárneho kužeľa ako

DJ(x̂, û)(ξ,η) ≤ 0 ∀(ξ,η) ∈ K ∩ L ⇒ DJ(x̂, û) ∈ (K ∩ L)◦.

Ak je splnená niektorá z postačujúcich podmienok (ako je uvedená v príklade 10), môžeme
posledný vzťah napísať v tvare

DJ(x̂, û) ∈ (K ∩ L)◦ = K◦ + L◦ = R((ι0, (σ − Ã,−B̃))∗) + L◦.

Tým pádom znova dostávame nutné podmienky optimality.

Dxf(x̂t, ût) = ψt−1 − A∗tψt ∀t ∈ N,
Duf(x̂t, ût) = −B∗tψt + qt ∀t ∈ N0,

kde qt ∈ [δUt(ût)]
◦ pre všetky t ∈ N0 a ψ ∈ (ln1 )∗ = ln∞.

43



Bibliography

[1] V. Balla: Viacrozmerné úlohy RBC-typu , Master’s thesis, 2010, Available at:
http://www.iam.fmph.uniba.sk/studium/efm/diplomovky/2010/balla/diplomovka.pdf

[2] J. Blot, H. Chebbi: Discrete Time Pontryagin Principles with Infinite Horizon, Jour-
nal of Mathematical Analysis and Applications, vol. 246, pp. 265-279, 2000.

[3] J. Blot, N. Hayek: Infinite Horizon Discrete Time Control Problems for Bounded Pro-
cesses, Advances in difference equations, vol. 2008, article ID 654267.

[4] V. G. Boltyanskii: Optimal Control of Discrete Systems, New York, NY: John Wi-
ley & Sons, 1978.

[5] J. M. Borwein, A. S. Lewis: Convex Analysis and Nonlinear Optimization: The-
ory and Examples, Springer-Verlag, 2000.

[6] P. Brunovský: Nelineárna analýza, Katedra aplikovanej matematiky a štatistiky,
FMFI UK, 2006.

[7] P. Brunovský, M. Halická, P. Jurča: Optimálne riadenie, Epos, 2009.

[8] R. S. Burachiky, V. Jeyakumar: A Simple Closure Condition for the Normal Cone In-
tersection Formula, Proc. Amer. Math. Soc., vol. 133 (6), pp. 1741-1748, 2004.

[9] P. Habala, P. Hájek, V. Zizler: Introduction to Banach Spaces I, Matfyzpress, 1996.

[10] A. D. Ioffe, V. M. Tihomirov: Theory of Extremal Problems, Studies in Mathemat-
ics and Its Applications, vol. 6, North-Holland, Amsterdam, The Netherlands, 1979.

[11] J. Korbaš: Lineárna algebra a geometria I, Vydavateľstvo Univerzity Komenského,
Bratislava, 2003, ISBN 80-223-1706-3.

[12] L. Lukšan: Úvod do funkcionální analýzy, Lecture Notes, 2002, Available at:
http://kubaz.cz/texty/LuksanUvodDoFunkcionalniAnalyzy.pdf.

[13] L. Pontryagin, V. Boltianski, R. Gramkrelidze, E. Mitchenko: The Mathematical The-
ory of Optimal Processes, New York: Interscience Publishers, 1962.

[14] K. Yosida: Functional Analysis, ed. Berlin, Heidelberg, New York : Springer, 1980.

[15] M Zákopčan: Matematické spracovanie lineárno-kvadratickej aprox-
imácie v RBC modeloch , PhD thesis, 2009, Available at:
http://www.iam.fmph.uniba.sk/studium/efm/phd/zakopcan/Zakopcan_diz.pdf

44


