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Abstract
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The aim of this thesis is to prove a necessary condition of optimality of maximum princi-
ple type for infinite horizon discrete time optimal control problems by functional analysis
techniques. At the beginning we study a problem with linear state equation. Thereafter we
extend the results to the problem with general state equation and at the end of our work we
consider a problem with constraints on the control variable.
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riadenia na nekone¢nom horizonte za pouzitia nastrojov funkcionalnej analyzy. V tvode
prace Studujeme problém optimélneho riadenia s linedrnou stavovou rovnicou. Nésledne
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Introduction

Even though the first optimal control problem was introduced in the seventeenth century,
the optimal control theory is considered to be invented in the late 1950s by Pontryagin and
his group [13]. Since then the use of optimal control tools has had an increasing tendency
and has become a standard optimization method. The reason is that the optimal control
problems are widespread in many fields, for example in economics (especially in the growth
theory and in the game theory) or in physics.

Consequently, the underlying theory has been generalized and extended in a variety of ways.
Nowadays there are basically two solution methods to the optimal control problems. The
first is the dynamic programming introduced by Bellman, which we are not concerned with
in this thesis. The second is known as the Pontryagin maximum principle.

Pontryagin maximum principle is a local necessary condition of optimality of variational
type. That is, the control is tested to optimality against its small admissible variations
satisfying the constraints. To this end, in the basic finite-horizon case the effect of such
variations to the response at the terminal time 7' of the problem is analyzed. Moreover,
necessary conditions express the fact that variations do not improve the cost function.

In this work we focus on the Pontryagin maximum principle from the infinite-horizon discrete-
time point of view. In the book of Pontryagin et al. [13| there is a short section dealing
with the infinite horizon problem. It is studied as a limit case of finite horizon problem for
T — oo. Because of changing horizon the variations have to be transferred to a fixed time
independent of T'. Because of the invertible dynamics of the continuous time problem this
is possible. Unfortunately, this approach cannot by applied to the discrete-time framework.
A systematic study of the discrete-time framework has been initiated by Boltyanskii [4].
However Boltyanskii’s results are mainly concerning the finite-horizon case. Interesting re-
sults regarding the infinite-horizon case can be found in [2]|, where the dynamics in the
form

o = T
Ty = Ft(xt,ut) VtENO

is considered and F; € C'(R" x R™ R™). Then the approach is the one of Pontryagin et al.
The problem is solved in three steps. At first, it is reduced to the finite case. The reduced
problem is solved and thereafter expanded to the infinite-horizon. In the last step one needs
to extend the finite solution by limit transition. If we denote (Zy, ;) as the tested solution
at time ¢, it is necessary to derive y; from the following linearized system

Yi+1 — Dxtﬂ(ft, ﬁt)yt - DutFt(ita at)vt = Z¢.

8



Introduction

Clearly, the solution could be written as follows
Y = DxtFt(i'taﬁt)_l[?Jtﬂ — % DutFt(i"t»ﬁt)Ut]a

but the operator
D, F(Zy, 1) (1)

has to be regular. Hence the major disadvantage of this approach is that one needs a matrix
of the linearized state equation with respect to the state variable to be regular.

Our goal is to avoid the necessity of the regularity condition. Therefore we use different
approach that is motivated by Blot and Hayek [3|, where the infinite problem is solved
directly instead of the reduction to the finite case. In contrary to the previous papers, the
methods of functional analysis and the general theorem of Ioffe-Tihomirov [10] are employed,
in this one. It is supposed that the state and also the control variable is from the space of
all bounded sequences, i.e.

(w0, 21,...) =x €l = {{wi}ren, : wy € R" VE € Ny A supey, |we] < oo}

and (ug,uy,...) =u € [2. Under these assumptions the problem of maximization the cost
function with the state equation

J(x,u) = Zﬁtf(xt,ut) — max, f€C'R"xR™R),
t=0

T = F(x,u) teNy, FeCHR"xR™R"),

o = .f',
could be worked out directly using functional analysis. Nevertheless the condition of regu-
larity has to be replaced by the condition

Supt€N0|DItFt(:%tuat>| <L (2)

The original aim of this thesis was to establish the Pontryagin maximum principle with-
out restrictive conditions (1) or (2). To this end we attempted to employ an independent
approach based upon the closed range theorem.

To get an idea of the power of our approach we studied the problem without discount first.
As shown in [1] or [15] it is useful as a limit case from which interesting conclusions can be
drawn for § < 1 near 1. Then of course a suitable kind of decrease to zero of the terms
f(zy, uy) has to be assumed, in order to have the cost function J finite. For technical reasons
we have chosen the space [;, where

I} = {{wi}ien, : we € R WE €Ny A Z [we] < oo},

t=0

mainly because its dual can be interpreted as l.. Another motivation comes from [1] and
[15] where it is showed that the space [; can be replaced by a shifted space of sequences
converging to (Zoo, Uso) 7# (0,0) for which f(Zuoo,us) # 0. It is known that such a point
is an equilibrium point of the problem (i.e (Zs,us) is a time independent solution of the
Pontryagin maximum principle).



Introduction

We consider our work as an initial optimal control problem solving method that could be
extended to a wider class of problems. For example we can study a cost function with a
discount rate. Subsequently, since l; C [, we can extend the domain of the state and control
variable to the space [.

The work itself is organized as follows. The first chapter introduces the necessary theory
as definitions, notations and theorems that are used in the further chapter, especially those
from the functional analysis. The second chapter is then divided into three sections. In the
first, we explore the properties of the solution of the optimal control problem with linear
state equation and show that in this case there is no need to use regular matrices. We also
derive the adjoint equation and show that the adjoint variable is contained in the dual space.
The purpose of the second section is to study the problem with general state equation. In
the third part, we impose constraints on the control variable and derive the Pontryagin
maximum principle.

10



Chapter 1

Preliminaries

The aim of this chapter is to provide the reader with a basic introduction to all necessary
concepts, definitions and theorems used throughout the present thesis. The main part of the
thesis is focused on the work with infinite sequences and vectors, therefore the most impor-
tant purpose of this part is to give the insight to functional analysis and related branches
of mathematics. We run through metric spaces, Banach spaces and useful theorems. We
mention the important theorems connected with differentiability and explain the used no-
tation, as well. The examples are also a significant part of this chapter. In them we prove
all necessary properties of variables and functions, which we subsequently use in the further
chapter.

1.1 Functional Analysis

1.1.1 Metric Spaces

We begin with the notion of a metric space; that is, a set where a notion of distance (called
a metric) between elements of the set is defined.

Definition 1. Let X # () be a set and d : X X X — R be a real function such that for any
x,1y,z € X one has

1. d(z,y) > 0
2. d(z,y) =0 x=y
- d(z,y) = d(y, x)
Cd(zyy) < d(z,z) +d(z,y)

-~ W

The pair (X, d) is a metric space and a function d is called a metric.

The most common metric space is the Euclidean space. It’s metric, the Euclidean metric,
defines the distance between two points as the length of the straight line segment connecting
them. However, in this thesis, we use two other spaces, the I¥ and the [* | together with
their metrics.

11



Functional Analysis Preliminaries

Ezample 1. Let I} be a set of all sequences {x;}22,, ¥; € R* such that

o0
Z 24| < o0,
=0

where | - | is a norm in the space R¥, k € N. Let us define

p(X7Y):Z|$t_yt| VX,yEllf.
t=0

Note that all variables, which represent infinite dimensional vectors or sequences are written
in bold, whereas the other variables are written in regular font. To prove that (I¥,p) is a
metric space, we have to show that the four conditions in the definition 1 are fulfilled. We
prove just the fourth condition, because the proof of the first three is trivial.

p(x,y) = Z [z — | = Z (e —2) = (2 — )| < ZU% — il + |20 — wil]
t=0 t=0 t=0
= Dz —al+ Y |z —ul = px.2) + p(z,y).
t=0 t=0

Ezample 2. Let I¥, be a set of all bounded sequences {z;}22,, r; € R¥, so

sup || < oo,
teNp

where | - | is a norm in the space R*, k € N. Let us define

p(X, y) = sup |xt - yt‘ VXay € ll;o
keNy

In this case (I* | p) is again a metric space. The proof of first three conditions is trivial, while
the proof of the fourth is analogous to the previous case.

Definition 2. Let (X,d) be a metric space. A Cauchy’s sequence is a sequence {x"}5° .
™ € X for all n € Ny, such that for every ¢ > 0 there is N. such that d(z",2™) < ¢ for all
n,m > N..

Definition 3. A metric space (X, d) is complete, if every Cauchy’s sequence in this space
converges.

Definition 4. A subset U of a metric space (X, d) is called closed, if whenever 2" € U and
" — z, then z € U.

12



Functional Analysis Preliminaries

1.1.2 Banach Spaces

To define the Banach space the notions of the norm and the normed space are very important.
At first, we recall their’s definitions and then we show the connection between the normed
space and the metric space.

Definition 5. Let X # () be a vector space and || - || : X x X — R be a real function such
that for any x,y € X one has

(a) flz[l =0

(b) [z =0 2=0

() [IAz]] = [Alll]

(d) flz+yll < llz]l + vl
The function || - || is called a norm and the pair (X, || - ||) is called a normed vector space.

Proposition 1.1.1. Let (X, || - ||) be a normed vector space and define d(z,y) = ||z, y|| for
all z,y € X. Then the corresponding space (X, d) is a metric space.

Proof. The only non-obvious verification is the fourth condition of the metric. By the prop-
erty (d) of the norm, we have

d(z,y) =z =yl = [z = 2) + (z =yl <z = 2| + ||z = yl| = d(=, 2) + d(2,9)

Finally we can introduce the notion of the Banach space.

Definition 6. Let (X, || - ||) be a normed vector space. If the corresponding metric space
(X, d) is complete we say (X, || - ||) is a Banach space (in further work, we will leave out the
symbol || - || in the notation of the Banach space).

Ezample 3. The spaces [¥ and [*  are normed vector spaces, if we introduce the norms

)

Il = 3 el Ve
t=0

x| = sup |z, Vx €L,
teNp

In addition to that, they are Banach spaces (the proof can be found in [9]).

13



Functional Analysis Preliminaries

1.1.3 Operators

The core of functional analysis is formed by the study of Banach spaces and the linear
functionals acting upon these spaces. We generally call these linear functionals operators.
In this part we briefly summarize all necessary definitions and theorems associated with
operators.

Let X,Y be normed vector spaces and T : X — Y a map between them. There are three
common notations connected with this map

DT) = {reX: T(x)eY} (The Domain)
N(T) = {zeX: T(x) =0} (The Null Space)
R(T) = {yeY: JxeX, T(x)=y} (The Range)

Definition 7. Let X, Y be normed vector spaces and T': X — Y a map between them. Let
r € X. We call a map continuous in x, if

Ve>030>0:|lz—z2||<d=|T(x)-T(2)|| <e
The map is continuous (on X), if it is continuous in all z € X.

Definition 8. Let X,Y be normed vector spaces and T': X — Y be a map between them.
This map is called linear if one has

T+y) = T(x)+T(y)
T(ax) = oT(z),

for all z,y € X and a € R. A linear map is often called a linear operator.

In further work, the notions of boundedness and closeness of an operator will be very im-
portant. We can also link these notions with the notion of continuity.

Definition 9. Let X,Y be normed vector spaces. A linear map T : X — Y is bounded if
there exists a constant M > 0 such that ||T'(x)| < M||z| for all z € X.

Definition 10. Let X,Y be normed vector spaces. A linear map T : X — Y is closed if for
every sequence {x, ey in X converging to x € X such that lim,, .., T'(x,) =y € Y one has

T(x)=y.

Proposition 1.1.2. Let X,Y be normed vector spaces and T be a linear mapping from X
toY. This map is continuous, if and only if it is bounded.

Proof. The proof can be found in [9]. O

Proposition 1.1.3. Let X,Y be normed vector spaces and T be a linear mapping from X
to Y. If this map is continuous, then it is closed.

Proof. The proof can be found in [12]. O

Besides the norm of a vector, we can define the norm of an operator, as well.

14



Functional Analysis Preliminaries

Definition 11. Let X,Y be normed vector spaces and T : X — Y be a map between them.
We define the norm of the map T as

T = sup [Tz

[lz]|=1

The linear space of all bounded linear operators from X to Y together with the norm || - ||,
is denoted by B(X,Y).

Remark 1. We can prove that this is a norm. The proof of conditions (a)-(c) is trivial, hence
we prove just the last one.

[T+ 5] = sup (T + S)z|| < sup [[Tz][ + sup ||[Sx|| = [T + [5]

flz[l=1 llz]l=1 [l]|=1

Remark 2. Note that || 7] is the smallest number M that satisfies the condition of bound-
edness in 9. So if ||T']| < oo, then the operator T is bounded.

In further chapter, we use mainly two kinds of operators and now we prove their boundedness.

Example 4. An operator o : I¥ — ¥ such that o (zg,21,...) = (21, 29,...) is called a shift
operator and one has

ol = sup [lox| = sup [|o(zg,21,...)[| = sup [[(z1,22,...)]| = sup O}
XI=4 =1

[[x[=1 [Ix[=1 [[x[=1

o0 o
= sup {3 foil = faol} < sup {3 fesl} = sup x| =1 < oc.
t=0 x[=1 44—

lIx[[=1 Ix||=1

Ezample 5. Similarly for a general linear operator N = (N, Ny,...) on ¥ such that |N;| <
M < o V € Ny one has

INIl = sup [Nx[| = sup Y [Noay| < sup > |Ni||]
[Ix[=1 Ixl=1"%=o Ixl=1"=o
< sup ZM|:Q| = M sup ||x|| =M < . (1.1)
=1 < Ixl=1

Definition 12. An operator 7' € B(X,Y) is called a linear isomorphism (or just isomor-
phism), if it is one to one, onto Y and 7! € B(X,Y).

Proposition 1.1.4. Let T : X — Y be a linear map between vector spaces and C be a closed
complement of N(T) in X. Then the map T : C — R(T) is an isomorphism. Furthermore,
this map is also called a restriction of a map T to C and denoted by T|c.

15



Functional Analysis Preliminaries

Proof. A map is injective, if and only if
N(Tlc) = {0}.
Since C' is an complement of A/ (T) one has N (T) N C = {0} and hence
N(T|c) =N(T)nC = {0}.

On the other hand we have to show that our map is surjective, as well. This is equivalent

to the equation
R(T|c) = R(T).

As the space X could be splitted into the null space of the map T and it’s complement one
has
R(T|c) =T(C) =T(CoN(T)) =T(X) =R(T).

Summing up, the operator T'|¢ is an isomorphism. O

1.1.4 Dual Spaces

To obtain an adjoint variable we need to "switch" from primal to dual space. As we are
working with Banach spaces we need to define the concept of the dual space on them. In
this section we also show that if we introduce a dual space on the space [, then we get a
space of bounded sequences - ..

Definition 13. Let X be a normed vector space. The linear operator z* : X — R is called
a linear functional and we define x*(z) =< 2", > and |[z*| = sup ;= z*(x). The space of
all continuous linear functionals from X to R is called a dual space of X and is denoted by
X*.

Proposition 1.1.5. (I})* =% in the sense that for every x* there is an unique {d;}32, =
d €% such that

x'(x) =Y dz, Vx €I,

t=0

Proof. We show a proof for k£ = 1. However, it is analogous to extend the proof for any finite
k. At first, we distinguish the two norms used in this proof. Let || - ||; be a norm associated
with [; and || - ||oc be a norm associated with l..,. Let {e;};2, be a basis in [; (standard unit
vectors). Hence each x € [; can be rewritten as

o
X = E ;€.
t=0

Let x* € [} be given . We define d; = x*(e;) for all ¢t € Ny. By |les||; = 1 we have
|de| = [x*(eo)| < [Ix"[lflexfls = [Ix7]-
If we define d = {d;}{2,, according to the proposition (1.1.2) we have

[dl[oc = sup |de| < [[x7]| < o0
teNp

16



Functional Analysis Preliminaries

that is d € [,. Conversely we construct a linear functional on [; with elements in [ if
d €l is given. Consider a linear functional h defined by

h(x) =Y d, Vx €l
t=0

Linearity of this functional is clear, we prove boundedness

o o
h(x)| < |dya| < sup |di| > ] = [|d] |14
=0 t€No =0

and this implies

17l = sup 1G] < [ldfoe < o0

It is clear that h(e;) = d;. Hence h € 3. O

Definition 14. Let X, Y be Banach spaces and T' € B(X,Y). We define the dual operator
(also called adjoint operator) T* € B(Y*, X*) for y* € Y* by

T"(y") (@) = y*(T(x)) Vo € X,
Proposition 1.1.6. Let X,Y be Banach spaces and T € B(X,Y). Then ||[T%| = ||T]|.
Proof. The proof can be found in [9]. O
Definition 15. The Banach space X is called reflexive, if (X*)* = X.

1.1.5 Quotient Spaces

The aim of this section is to introduce the First Isomorphism Theorem, which we use in our
work. Therefore we need to define the notion of the quotient space.

Definition 16. Let Y be a closed subspace of a vector space X. Then the coset T relative
to Y is any of the sets
r+Y ={z+yyeY}

where = € X. The space of all cosets is denoted by X/Y.

Remark 3. Tt is easy to check that the space X/Y together with the addition (v + w = 7+w)
and the scalar multiplication (v = @) is linear space. Moreover, we obtain a normed vector
space, if we add a norm ||Z|| = inf{||z||,z € T} to our space X/Y.

Definition 17. Let X be a Banach space and Y be it’s closed subspace. The space X/Y
together with a norm ||Z|| = inf{||z||, z € T} is called a quotient space of X with respect to
Y.

Proposition 1.1.7. Let X be a Banach space and Y be it’s closed subspace. Then X/Y is
a Banach space.

17



Differential Calculus Preliminaries

Proof. The proof can be found in [9]. O

Theorem 1.1.1. (The First Isomorphism Theorem) Let T : X — Y be a linear map
between vector spaces. Then

a) R(T) is a subspace of Y
b) N(T) is a subspace of X
c) VIN(T) is isomorphic to R(T)

Proof. In fact, this theorem is a corollary of the First Isomorphism Theorem for groups and
it’s proof can be found in [11]. O

1.2 Differential Calculus

To obtain a maximum principle we need to differentiate our functions. When working with
one dimensional real functions it is enough to use a basic notion of differentiability. The
situation becomes much more complicated, if we use functions defined on a Banach spaces.
In this situation, the concept of Fréchet differentiability have to be put in. Therefore we
define the directional derivative, Gateaux differentiability and subsequently the Fréchet dif-
ferentiability, too. All three kinds of differentiability are used in the example. Another very
important part of this section is the Implicit Function Theorem that is used in the further
chapter.

Definition 18. Let X, Y be Banach spaces, U C X open and J : U — Y. Let z € U and
h € X. The directional derivative of a function J(x) along a vector h is the function defined
by the limit

Ond () = lim ~[J(x + 7h) — J(x)] (1.2)

T—0 T
if this limit exists.

Definition 19. Let X,Y be Banach spaces, U C X open, J : U — Y and x € U. Let us
assume that there exists dyJ(x) for all h. If the map h — 0 J(x) is linear and bounded,
then the function J is Gdteaux differentiable in x. The Gateaux differential is thus defined
by

dJ(x)h = 0pJ(x).

Definition 20. Let X,Y be Banach spaces, U C X open, J: U — Y and x € U. The map
J is Fréchet differentiable in x, if there exists a linear bounded operator D.J(x) such that

.1 _
\ilzl|r—r>10 W[J(:E +h)— J(x) — DJ(x)h] = 0.

The following proposition plays a significant role in the proof of Fréchet differentiability of
the cost function.

18



Differential Calculus Preliminaries

Lema 1.2.1. (Hadamard’s lema) Let X,Y be Banach spaces, f : U — Y be a Giteaux
differentiable mapping. If v+ 9h € U for 0 <9 <1 then one has

Fle+h) — fz) = /1 df (x + Oh)hdi) — [/01 df(z + ﬁh)dﬁ] h (1.3)

0

where the integral is in the sense of Riemann.

Proof. The proof can be found in [6]. O

Ezample 6. In this thesis we study the optimal control problem with a cost function J(x,u)
in a form

J(x,u) = far,u), (1.4)

where f € CH(X x U,R), X C R"” and U C R™ open. We would like to show that J(x,u)
is of class C* on [™™. In this example we show that the cost function is differentiable
(in Fréchet sense). At first we show the Gateaux differentiability of the cost function and
consequently the Fréchet differentiability.

Gateaur Differentiability: Let (x,u) be such that z; € X and u; € U. Since x € [} and
u € [}", each term of the sequences {z;}?°, and {u;}$°, has to be bounded (otherwise the
conditions Y7 || < oo and > _,° |u/| < oo are not satisfied). Hence there are compact
sets Xy and Uy such that z; € int Xy, u; € int Uy. As a continuous function on a compact
set is bounded one has

1D, f| < M,|Duf| < M on Xgx U (1.5)

and D, f, D,f are uniformly continuous on Xy x Uy, as well.

For the sake of simplicity let (x,u) = z and (zy,u;) = 2. At first we prove that for z € I7"
there exists O, J(z) for all h € I}*™. Let h = (hg, hy,...) where hy € R™™™ for all ¢ € N,.
Then we have

Ond(z) = lim~[J(z+7h) — J(z)]

T—0 T
I >
= lim — tz;f(zt + Thy) — ;f(zt)
- 71_% % {f(zt + Tht> - f(Zt)] .

To proceed we have to check that we are allowed to interchange the summation and limit.
Therefore we need to prove the absolute convergence of the terms in sum. For 7 sufficiently
small one has (z;+&7h;) € Xy x Up so using Hadamard’s lemma (see Lemma 1.2.1) we obtain
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SO+ h) — f(2)] = Z|(zt+7ht—zt)/0 D. (o + 0(z1 + The — 2))d0)|
t=0 t=0

o] 1 oo 1

< Z|Tht||/ D, f(z + 97hy)d9| < Z|7ht||/ 2Md)|
t=0 0 t=0 0

< > |rllhf2M = 2M|7(|[h]| < co.

t=0

Therefore

OnI(z) = Sl =7+ rhe) - f(2)

= Y Onf(z) =Y Dof (2, (1.6)

Since f € C', D, f exists, so OpJ(z) exists.
Further we prove that the function h — 0y,J(x,u) is linear and bounded. The directional
derivative is always homogenous, hence remains to prove additivity and boundedness.

Onig(2) = D Duf(z)(hi+g) =) D-f(z)he+ > D.f(z)o

= uJ(2) + 0, (2).

Now we prove boundedness of d,J(z) for all h € I7"™. By (1.5) we can denote |D,f| <
|D.f| + |Duf| < 2M. Thus

lonJ @) = 11D Dof(z)hall <Y |D-f (20l

< Y 2M|h| =2M|h| < oo.

t=0

Fréchet Differentiability: To prove Fréchet differentiability we employ the next proposition
(by [6]).

Proposition 1.2.1. Let X, Y be Banach spaces, U C X open, J:U — Y andx € U. If J is
Gateauz differentiable and the Gdteaux derivative is continuous on a neighborhood V' of x,
then J is Fréchet differentiable at x.

According to 1.2.1 we have to prove the continuity of Gateaux derivative. This means to
prove that for all z € I} and for all € > 0 there exists § > 0, such that if w € [J™™ and
|z — w|| < § then for all h € I}™™

100 (2) = OnJ (W) || < e][h]].
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By (1.6) this is equivalent to

1D Daf(z)he =Y Dofwohdll = | Y [D-f(2) = Daf(wo)lhe]| < e[hll-

We know that D, f is uniformly continuous on Xy x Uy. Taking into account that

o
o= wl <3 |l =z = wl <
t=0

then we have that for a given ¢ there exists a 6 > 0 such that for all |z, — w| < 6

|D.f(z) — D.f(w)| <e on Xy x Up.

Hence

1> ID-f(z) = Dof(wi)lhell < Y 1D.f(2) — Do f (wr)|| el

< D el =e) |l <<lhl.
t=0 t=0

Theorem 1.2.1. (The Implicit Function Theorem) Let X, Y, Z be Banach spaces,
UCX,VCYopen, ®:UxV — ZbeC",0<r <00, (x9,%) €U XV, &(x,y0) = 0.
Let us assume that D,®(xo,y0) has a continuous inverse operator. Then there exists a
netghbourhood Uy x Vi C U XV of (xo,yo) and a function ¢ € C™(Uy, Vi) such that (o) = yo
and ®(z,y) =0 for (z,y) € Uy x Vi if and only if y = p(x). Furthermore one has

Do(9) = —[Dy®(20, y0)| " D ® (20, o). (1.7)

Proof. The proof can be found in [6]. O

1.3 Cones

The notion of a cone is very important, when speaking about restrictions on the admissible
spaces of the state and of the control variable. Therefore in this section we define the cone
and also all theorems that we use in the following chapter.

Definition 21. Let X be a Banach space. The subspace KL C X is called a cone if for all
x € I one has ax € I for all o > 0.

Definition 22. The cone K is called convez if
Ve, o' € K, Va e (0,1): az+ (1 —a)2’ € K.
Definition 23. For a convex cone K the dual cone is defined as

Kr={a"€ X" :2"(x) =<z",2>>0,Vr € L}
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Remark 4. The dual cone K* is clearly convex and closed, regardless K is closed or not.

Definition 24. For a dual cone K* the normal cone (also called polar) is defined as
Ke={z"e€ X" :2"(x) =<z",2 > <0,Vx € L} (=—-K).

The following theorem is by [8].

Proposition 1.3.1. Suppose that Ky and Ko are two closed convex subsets of a Banach
space X and Ky Nint Ky # () where int Ky denotes the interior of the set KCy. Then one has

(K1NKy)® = K7+ K5,
Proposition 1.3.2. Let A: X — Y be a linear operator. Then
K={z: Az =0,z € X}
15 a closed convex cone.
Proof. Let x,2" € X. Then Az = Az’ =0 and for all & € (0,1) and 5 > 0 one has

Alaz)+ A((1 — a)2’) = adz+ (1 —a)Az’ = 0
A(fz)=pAx = 0

Hence K is a convex cone. Since the linear operator A maps K onto a closed set, the cone
K has to be closed. O

1.4 Optimal Control Theory

The core of this work is based on the study of the infinite horizon optimal control problem.
In this section we would like to present the basic discrete time optimal control problem, it’s
adjoint equation, adjoin variable and maximum principle. All mentioned notions will be
subsequently used in the second chapter.

J(ZL‘,U) = Z f(xta ut) — 1nax, (18)
t=0
L1 — F T, Ut) t e No, (19)
Top = T,
u € Up=A{u:si(u) <0} teN, (1.10)
lma € C, (1.11)

where f € CY(R" x R™ R), F € C'(R" x R™,R") and s; € C'(R™,R™) for all t € Ny. The
problem consists of the cost function (1.8), of the state equation (1.9) and we have some
restrictions on the state variable (1.11) and on the control variable (1.10), as well. This
basic problem helps us to demonstrate the necessary notions. In the following chapter we
use various modifications of this problem.
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Definition 25. Denote I;(u;) as the set of all k € {1,...,m;} for which s¥(u;) = 0 (to be
called an active constraints set). The optimal control problem fulfills the reqularity condition
in u = (ug,uyq,...), if for all ¢ € Ny the vectors

9% (we), & € T(u) (1.12)
—_— u u .
du, ) (Ut

are linearly independent.

Theorem 1.4.1. Let (x,u) = (Zg,Z1,...; U, U1, ...) be optimal response/control pair for

our problem and let the regularity condition be fulfilled in . Then there exists {¢}52,
(called adjoint variables), such that the following equations hold

of  \' (oF _ _\"
Q/}t:(a—a'];(ﬂit,ut)> +<a—xt(.§€t,ut)) ’(/}tJrl \V/tENo, (113)

where the equation (1.13) is called the adjoint equation.
Proof. The proof can be found in [7]. O

Theorem 1.4.2. Let the conditions of the theorem 1.4.1 be fulfilled. Furthermore, let the
function F be linear in u, the function f be concave in control variable and the sets U; be
convex. Then there exists a sequence of adjoint variables {1:}52, that solves the adjoint
equations (1.18) and

f( &) + F(8, 0) = ingg(f(ita Ug) + F(&4,u) 1) VE € Ny, (1.14)

where the equation (1.14) is called the maximum principle.

Proof. The proof can be found in [7]. O

23



Chapter 2

Maximum Principle

This chapter is divided into three sections. In the first we derive the necessary conditions of
optimality for the optimal control problem with linear state equation. In the second we study
the optimal control problem with general state equation. Finally, the necessary conditions of
optimality for a constrained optimal control problem are derived at the end of this chapter.

2.1 Linear Problem
In this section our aim is to derive the necessary conditions of optimality for the following
optimal control problem. Find (x,0) among pairs (x,u) € [ x []* satisfying the equations
L1 = Al’t + BUt + d Vte No,
Tog = I,

which maximizes the function
J(x,u) =Y flw,u), (2.1)
t=0

where f € CY(X x U,R), X C R" and U C R™ open, x; € int X and u; € int U for all
t € Ny. Let (%X, 1) be maximum. We call a pair (&,m) € I admissible if for some gy > 0
and for all € € (0,¢¢) we have

Zi’o+€§0 = T
Li't+1 + 8£t+1 = A(i’t + 5&5) + B(ﬂt + 877t) +d Vte No.

We can rewrite these equations as £ = 0 and

ii't+1 -+ €£t+1 = Ai’t -+ B’ELt -+ d + A(Eft) -+ B(Ent)
g1 = A(e&) + Blen)
§&ep1 = A&+ By VE € N,

We have already shown that J is Fréchet differentiable (see Example 6). Then J can not
increase along any admissible vector from the maximum. Therefore

o a . .
e (X, 1) = %J(X+€€’u+5n)|s:0 <0.
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If (&,7m) is admissible, then also (—&, —n) is admissible and we have
O—g-mJ (X, 0) = =Og.mJ (X, 1) < 0.

Summing up if (X, 1) is a maximum, then for every admissible vector (§,m) we have

o0

o . . R S R
%ﬂx +e€, 0+ en)|emo = ;[Dxf(xt, Ut )&e + Dy f (24, Ug)me] = 0.
In other words
DJ(x,0)(&§mn) =0 (2:2)

for all (¢,m) € I77™ such that & = 0 and
(0~ A)E— By =0 (23)

where A = (A, A,...), B=(B,B,...) and o is defined as in the Example 4. Moreover,
since |A| < M4 < oo and |B| < Mp < oo (we can use the same argumentation as in the
Example 6) these operators are according to the examples 4 and 5 bounded.

2.1.1 Necessary Conditions of Optimality

For a further work we use the following modification of the closed range theorem (for a
complete theorem and proof see [14])

Proposition 2.1.1. Let X, Y be Banach spaces, T € B(X,Y') be a closed operator. Assume
that R(A*) is closed. Then < v,z >=0 for all x € N(A) if and only if v € R(A*).

The equation & = 0 is represented by the operator (I,xn,0nxn). This operator is clearly
closed and it’s dual has a closed range, so it is sufficient to study the operator (o — A, —B).
Hence we would like to use the proposition with X = "™ ¥V =" and T = (o — A, —B)
to obtain the adjoint equation. Since in our case the operator (o — A, —B) is linear and
bounded, it is continuous (Proposition 1.1.2) and thus it is closed (Proposition 1.1.3). It
remains to prove that the set

R((o = A, =B)") ={(z,w) e I = (1™")"| I € I, = (I{)" : (2, W) = (0 — A, —B)"}

(2.4)
is closed (according to the Proposition 1.1.5 we use the fact that (¥ = (I¥)*). This means to
prove (see Definition 4) that if

(z°,w°), (z",w'),... e R((e — A, —B)*) A lim (z",w") = (z,w),

k—o0

then also (z,w) € R((c — A,—B)*). Let us denote the ¢-th component of (z*, w") as

(2F,wF). Then we can rewrite the equation in (2.4) as follows

2z = Y =AY VEEN and  zg = —A%Yy,
we = B VteN and wo=—B, (2.5)
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where z; € R™ and w; € R™ for all ¢ € Ny. In order to establish the existence of 1 that
fulfills the equations (2.5) along with (z, w) we construct a sequence {t*}>°, that fulfills
the equations (2.5) along with {(z", w/)}2°, and all terms ¢ have a limit, which we denote
;. We do this by a diagonalization procedure.

At first, let us define the map C' : R — R""™ as Cx = (A*zx, B*z) Vo € R". According
to the First Isomorphism Theorem (see 1.1.1) there exists an isomorphism between R(C)
and R"/N(C). To the quotient space R"/N(C) there exists a linear space @, such that
Q + N(C) = R™ (this space consists of the representants of all equivalence classes in our
quotient space) . Then

C:Q— R(C)

is this isomorphism. Note that if A* and B* are regular maps, then C = C.

We know that for every (z*, w*) there exists 1" such that the equations (2.5) holds. We
know that C' is an isomorphism. Therefore for each (2F,wF) there exists exactly one ¥F € Q
that the desired equations are satisfied. Let C~* be the map that fulfills

wf = _éil(zf_wffhwf) VkENo,tEN,
Y = —C7HE wh) Vk € Ny.

Now we construct the subsequence {4"19°, of {1p*}2°, that converges in each component

to 1.

Since limy_o(z°, w¥) = (z,w), then {(z*, w¥)}?°, must converge in each component and

hence each of this component is bounded. Let L be such a constant that |w}],|z| <

|(zF,wk)| < L Vi, k € Ng. As C is regular, C~! is bounded. By (2.7) the sequence

{4k}, is bounded and because ¢ € R™ Vk, there exists such a subsequence {£?}%°, of Ny
0 0

that {wgl 172, is convergent. Let ¢y = lim;_, wfjl .

Since every subsequence of a convergent sequence is convergent, {z K wh}2 is also conver-

~ 0 0 0

gent. As {@DO }l o s Convergent the Sequence {@Z)ll 1720, where @/Jl = (C’)*l(zf’ - wlgl ,w]fl)

is bounded <|1/Jll |=1]— ( ¢0 ) )\ <|C7Y (2L + |1/10’ ). Therefore we can choose

a sequence {kj }7° 0 = {k:o}l 0, such that the subsequence {wl 12, of {1/)1 }7°, is convergent.

Let ¢; = lim;_o, ¢1 cAs {k}i2, € {ED}2, also limy o % = .
We can proceed in this way and by mathematical induction in n + 1 st step we construct a

subsequence {k7'}>, of {k/'"'}, such that the subsequence {wsf}foo of {1% }l =0 is con-

vergent and v, = lim;_, @bffn (such a subsequence exists, because the sequence {wn }z ady
is bounded (Jurl | =| = CH = ull wnl ) < 1O RL+ el ) and {ul) e s
by the induction hypothesis convergent and thus bounded).

As {kp}5e, (k100 © - C {k0}52, also limy_o 00 = ¢ Vi < n.

But this is still not a subsequence convergent in all components. To get this, we have to
write our subsequences into an infinite array

k§ K9 kS

v Yo
k k k
AN

kg i 3
Uy’ Wyt iy
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and take the entries, which lie on the diagonal, i.e. {k!}?°,. Clearly the sequence {k!}°  is

l
a subsequence of {k}'}°, and thus {wff }2°, converge to ¢, (the first n terms in the sequence
are not important in the sense of convergence). Hence the sequence {?,Z;kf}fio is convergent
l
termwise with limits ¢, = lim;_, o zﬁf " for all t € Nj.
[t remains to prove that 1, we have just constructed, satisfies the equations (2.5) along with
(z, W) = limy,_ (2", w").
~ l ) l ~
At first since —C—1 (2, we') = by VI € Ny, (€)1 is regular (thus it represents a continuous
operator) and both sequences are convergent we have

l ! ~ l ~ l ~
(20, wp) = lim (zgl,wgl) = — lim ngl = —C lim wgl = —C1y.
l—o0 l—o00 l—o0
For ¢ > 1 we have to prove that the equation
¥y = —C7 (2 — thim1, wy)

holds, if for every [ > 1 we have wfg = —C’_l(sz — wﬁl,wﬁ). The matrix C—' = (A, B)™!

is regular (bounded and thus continuous) therefore we have

lim (47, — Aplt, — Byl

ki KN
)_z

w.

(R

(zi,wi) = lhm (Z
= (tim gl — Atim 9l — B Jim ¢)

= (Yic1— 1211/)“ —Bl/)z)

According to the Proposition (2.1.1), for all (£, n) such that
(0 —A,-B)(&n) =(0—-A)¢-Bn=0,
DJ(%x,10)(€,m) =0 if and only if DJ(%,1) € R((6 — A, —B)*) i.e.!

Jy el =1} DJ*xu)=(c—A, —-B). (2.8)

This relation implies
D, f(2y,0) = o1 — A%y VEEN, (2.9)
Duf<§;t7’&t) - —B*¢t Vi € N07 (210)

where (2.9) is the adjoint equation of our problem (2.1). Moreover, if the function f is
concave in u, for a fixed z;, then the equation (2.10) is sufficient for a maximum principle
in the form

f(i't, ﬂt) + (Ajt + B'Ilt)Tth = ma}X(f(i't, Ut) + <Ait + But)Td)t) Vit S N().

ur €Ut

'We can omit the equation & = 0 indeed. Since it is represented by the operator (I,,xn,0nxm), the
relations should be properly written as follows. For all ((£,70), (€,7)) such that {, = 0 and (o0 — A)€ —
Bn = 0 one has (0,0)(&,m0)" + DJ(%X,8)(&,n) = DJ(%,4)(&,n) = 0, if and only if ((0,0), DJ(%, 1)) €
R(((Inxn;Onxm), (0 — A, —B))*). So we should have

Dwf(i‘t,ﬂt) = (;bt — A*¢t+1 vVt e N and le(jfo,ﬂo) = —A*¢1, 0= I’:;Xn(bo = qﬁo,
Duf(i‘t,dt) = _B*¢t+1 Vt € NO and 0= OZXngb().

However if we put 9¢ = ¢r41 these equations implies (2.9) and (2.10).
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2.2 General Dynamics

In this part we study the generalized problem. This means among the pairs (x,u), x € I},
u € [" to find the extreme (maximum or minimum) of the function

J(x,u) = fwr,u), (2.11)

that satisfies the state and the initial equation

Tl — F(mt,ut) VtGNO, (212)
0 = 7. (2.13)

As before f € CY(X x U,R), X C R" and U C R™ be open, z; € int X and u; € int U for
all t € Ny. In addition, we assume that F' € C'(X x U,R). Further we consider only the
case of maximum, but the reasoning for the minimum is analogous.

2.2.1 Necessary Conditions of Optimality

Let us assume that (X, 1) is an optimal response/control pair and let us denote

) - At Vt € N(),
) - Bt Vt c No,

(Ao,Al,...) = A,
)

= B.

The cost function cannot increase along any admissible perturbation curve starting at (x, @).
Hence if in any direction there exists an admissible perturbation curve, we can use this fact
to derive the necessary condition of optimality. We define these directions in the following
definition.

Definition 26. We call a pair (§,1) = (£0,&1,---370, M1, .- ) € I} X I7* admissible, if there
exist g > 0 and differentiable curves

p(g) = {pt<€)}z?207 bt - [0750) — R" Vi S N07
ale) = {a(e)}2e, @ :10,60) = R™ Vt € Ny

such that the following conditions hold
i) p(0) =q(0) =0 (i.e. the curves are starting from (x, 1))
it) p'(0) = & and q'(0) = m (i.e. the initial directions are given)
iii) for each € € [0,¢p) we have py(e) = 0 and
Tpp1 + per1(e) = F(2p + pe(e), U + qi(e)) YVt € Ny (2.14)

(i.e. the initial condition (2.13) and the state equation (2.12) hold)
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iv) for each e € [0,e0) we have (p(e) + %) € I} and (q(e) +u) € I}

In the following proposition we show that if for a given vector (¢,n) € 77" we have & = 0
and

g . .
§tr1 = gF(xt + &, Uy + eny)|=o
D, F (&, )& 4+ Dy F (&g, U )y

= Atft -+ BtT]t Vit c NO (215)

and some conditions are fulfilled, then this vector is admissible. For the sake of simplicity
we denote 1o = (Lysn, Onxm)-

Proposition 2.2.1. Let us assume that N(1o, (o — A, —B)) has a closed complement. Then
each vector (€,m) € N (1o, (0 — A, —B)) is admissible.

Proof. We prove the proposition by employing the implicit function theorem (see Theorem
1.2.1) with X,Y,Z and (zo,y) defined below. Let us denote X = R, Y as the closed
complement of N (i, (6 — A, —B)) and Z = I?. Note that each (x,u) € I? x I can be
uniquely rewritten as

(X7 11) = (E,’)’]) + (va)a

where (§,1) € N (1, (o — A,—B)) and (v,w) € Y. To prove the proposition we fix (£,1) €
N (i, (0 — A, —B)) and construct the curves p and q, complying with the conditions of the
definition 26, in the form

pe) = e€+v(e), v:[0,8) —Y,
qle) = en+w(e), w:[0,g)—Y.

Let us further define the function (®g,®): X XY — 7 as

Do(e, (v,w)) = (€€ +vo+T0) — T,
O(e,(v,w)) = o(e€+v+x)—F(E€+v+xen+w+),

where o is the shift operator and F = (F,F,...). The optimal pair (x,0) fulfills the
constraints (2.13) and (2.12), hence

0,(0,(0,0)) = &o—7 =0,
0(0,(0,0)) = ox— F(x,4)=0 (2.16)

and we set (zo,v0) = (0,(0,0)). Since F' € C* it follows that the function (®g,®) € C*
(in the Fréchet sense). According to (2.16) in order to use the implicit function theorem it
remains to show that the operator

D(vw)(®0, ®)(0, (0,0)) (2.17)

has a continuous inverse. Clearly Dy w)®o(0,(0,0)) = (Znxn, Onxm)|y and
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D(va)(b(O?( ,0)) =
— (0 — D,F(% 1), —D,F(%, 1)y
= (0= (D:F(Z0,10), Do F(21, 1), . .. ), =(DuF (2o, G0), DuF (21, 11), ... )|y
— (0= (Ag, A1, )s—(By, By, )y = (0 — A, —B)|y.

Hence
D(V7W)((I)0’ (I))(Oa (07 0)) = (L07 (0‘ - A> _B))‘Y

By the Proposition 1.1.4, the restriction of a map to a closed complement of it’s null space is
an isomorphism. So D(y w)(®o, ®)(0, (0,0)) is an isomorphism and hence it has a continuous
inverse operator. The implicit function theorem yields that there exist a neighbourhood
Xox Yy CX xY of (0,(0,0)) and a differentiable function ¢ : Xg — Yp, ¢ = (v, w) such
that

if and only if
®(0) = (0,0), o(e, (v(e), w(e))) =0 and D(e, (v(e), w(e))) = 0.
These equations prove the properties i) and ii) of the definition 26. Since for all € € X
(v(e),w(e)) € Yo C I} x I
we have that v(g) € I? and w(e) € I!*. From the linearity of the space (¥ for k € N it follows
ple)+x=v(e)+e€&+x € I,
qe)+u=w()+en+u € I,

which is exactly the condition v) in the definition 26. Now we show that also the condition i)
is fulfilled. To this end we use the equation (1.7). We have already computed the directional
derivative Dy w)(®o, ®). Therefore we need to compute

DECI)O(Ov (Oa 0)) = 50 = 07
D.9(0,(0,0)) = [%0(55 +v(e) +x)

0
— D, F(e€+v(e) +x,em+w(e) + ﬁ)&

0
— D, F(e&+v(e) +x,em+ w(e) + )

teg 2
~ot— At -Bn=0,

(e€+v(e) +x)

(em +w(e) + W)]|(c,(v.w)=(0,(0,0))

because the vector (£,m) is in the null space of the map (i, (6 — A, —B)) Summing up,
one has

©'(0,(0,0)) = —[Dv.w) (o, 2)(0, (0,0))]~[D:(®o, ©)(0, (0,0))] = 0

and hence

V/
w'(0) =
This completes the proof. O
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In each of the following examples we derive a condition under which the set N(1, (o7 —

A, —B)) has a closed complement. Therefore in each example we define a closed set Y and

then we show that this set is a sought complement. To this end we prove that for a given
z € [} the pair (v,w) € Y such that

Vo = 20 (218)

Uyl — Atvt — Btwt = Zt11 YVt € N(] (219)

is uniquely defined in the set Y and also that (i, (6 — A, —B))NY = 0 (so there exists
an isomorphism between Y and [7).

Ezxample 7. Let us denote

t—1

C(t,s) =[] A; and C(t,t) = Lixn Vt,s €Ny, t > 5.

j=s
The closed set I? x {0} is a closed complement of N (io, (6 — A, —B)) if
IM € [1,00) A X< 1: |C(t,8)] < MA™° Vt, s € Ny, t > s. (2.20)

The equations (2.19) and (2.18) turn in this case into
Vo = 20,
Vi1 — Aoy = 2 VE € No.

Now we prove that if z € [, then also v € [} and it is uniquely defined. We have

Vg = 2

v1 = Agvg + 21 = Agzo + 21

vy = Ay + 29 = A1 Agzo + A1z + 22

=

—

t—1 t—1

t
vy = Ay V1 + 2 = Ajzi+ 2 = Z C(t,1)z

I
o

3 j=t

So the expression of v is unique for a given z € [ and w = 0. Now we show that v € [7.
We can bound the norm of the ¢-th term

|Ut|_|20mzl|<2|zz m|<MZ|zz|w

=0

and compute the norm of v

00 00 t 00 00
M TEN WD NMEEI) NP
t=0 t=0 1=0 =0 t=i
oo oo M 00 M
— M; 2] ;)\t _ ﬂ; 2l = 7= lall.

We know that ||z|| < oo (as z € [}) and also M/(1 — A) < oo (as A < 1 and M < o).

Hence [|v|| < oo and thus v € [?. Furthermore, from the construction of v it is clear that
(v,0) € N(w, (6 — A, —B)), if and only if v = 0.
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General Dynamics Maximum Principle

Remark 5. Note that the condition (2.20) is rather abstract and there are some simpler
conditions of which this one is a consequence. For example let

sup | D, F (&, 1) = sup |A] = A < 1. (2.21)

teNg teNg

Then we can put M = 1 and the general condition is fulfilled since
t—1 t—1
) = ][ Al <[]l <A
j=s j=s

Note that for (2.20) to hold it is also sufficient that

sup |4 =A<1 and sup|A] =k < oo, (2.22)
te(No\K) teK

where K C Ny is a set with k£ < oo elements. Then one has

t—1
C(t,s)| < [ 1A < sbX—F =

j=s

k
R t—s
¥

Since k, k < oo and A > 0 (if A = 0 it is sufficient to put M = k*), M = (k/\)* < oco.

Now we mention even simpler condition on the matrices A; that implies (2.20). Seeing that
x € [} and @ € [" one has lim; .o &y = limy_ .o, 4; = 0. Let us denote A, = D,F(0,0).
Since F' € C! one has lim;_,o, A; = A,. Suppose

max{|A|: A € sp(A.)} =\ < 1,
where sp(As) denotes the spectrum of the matrix A,,. So we have
AL < Cu

for some 0 < u < 1 and C' > 0. From the continuity of D,F for any ¢ > 0 there must exists
T € Ny such that for every t > T" we have

At - Aoo + Ht
and |H;| < €. Then for a sufficiently large s > T" we have
t—1 t—1 t—1 t—1 [i-1 t—1
Ct.s)=[[4 =[] A+ H)=]]H+>_ (HH]) Aso ( 11 Hj> e AR
j=s j=s j=s i=s \Jj=s Jj=i+1
Hence

t—1 t—s
C(t,s) = [T Al < D ()W Ce = = C(u+ Ce)' .
j=s j=0

So if we choose € such that (u+Ce) < 1 the condition (2.20) is fulfilled for all t > s > T". The
remaining matrices (t < T') can be replaced by the constant M similarly as in the previous
case.
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General Dynamics Maximum Principle

Example 8. A are regular for all ¢ € Ny, sup,cy, || Dz F(xt )7 = supen, 147 =A< 1
In this case we again define the complement of N (1o, (6 — A, —B)) as the closed set I x {0}.
Hence the equations (2.19) and (2.18) turn into

Vo = <o,

Vi1 — AtUt =241 = Vg = At_l(vt+1 — Zt+1). (223)

We show that for all z € [} there is an unique solution in the form

=2 114" =

i=t j=t

If we substitute v in this form into the equation mentioned above we obtain

e ) [
-1 -1 -1 -1
At (Ut+1 - Zt+1) = —At E H Aj Zi+1l — At 241

i=t+1 j=t+1
0o i 0o %
-1 -1 -1
= - E HAj Zign — A 2 = — E HAj Zit1-
i=t+1 j=t i=t j=t

Since the left and the right side of the equation (2.23) are for this solution equal, this is
indeed a solution to this equation. Now we prove that this solution is in the defined set (7.

Ivil = Z o] = Z | Z HA zim] < ZZ |z [N = Z |zit1] Z)\if’f*l
i=0 t=0

t=0 i=t j=t t=0 1=t
i+1 H—Z 00

—szx S Zrzm

thus v € [7. Furthermore, from the form of v it is clear that for a given z = 0 we have
v = 0. Therefore (I} x 0) "N (1, (0 — A, —~B)) = (0,0). Summing up, the set If x 0 is a
closed complement of N (i, (00 — A, —B)).

Nzl < oo,

Ezxample 9. In the case m = n we can introduce similar condition on the matrices B;. Let
By be regular for all ¢ € Ny and sup,y, |B; '| = Mp < co. Then we can define the closed

complement of N (i, (00 — A, —B)) as {0} x I?. If we apply this fact to the equation (2.19)
we get
zep1 = —Bywy.

This equation yields wy = — B, 1zt+1 (so w is unique for a given z and v = 0) and one has

o0 o0
Iwl = lwl <D 1B - 20| < Mp|lz].
t=0 t=0

Hence w € [} it z € [7. Moreover, if z = 0, then w = 0.
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Now we are ready to derive the necessary conditions of optimality. If (£,m) is admissible,
then the optimality of (x, ) implies

0

5o (% 4+ p(e), 0+ a(e))e=o = D _[Def (wr, un)pi(€) + Duf (e, 1)y (2)]|e=o

o0

= ¥ Do f (e, ur)é + Duf (2, ug)me] < 0. (2.24)

t=0

We have derived that if (£, 1) € N(t, (6 — A, —B)) (and any of the condition stated in the
examples is fulfilled), then (§,n) is admissible and (2.24) holds. It is clear that in this case
also (—&,—n) € N(w, (0 — A,—B)) and the necessary conditions hold, as well. Therefore

Dy f(ze,ue)(—=&) + Duf (e, ue)(=ne) = —[Daof (24, u) & + Do f (24, ue)me] < 0.

Summing up if (X, ) is an optimal pair and some conditions on A and B are satisfied, then
for all (¢,n) € I77™ that satisfies £ = 0 and

§i1 = A + By, VEeEN,

one has

Z (Do f (e, )& + Do f (e, u)me] = 0.
=0

Note that according to the example 6 |4,] < oo and |By| < oo for all + € Ny and hence A
and B are bounded (see Example 5). So we can use an analogous method to prove that
R((t0, (6 — A, —B))*) is closed as in the section 2.1.1. Thus we are allowed to employ the
Proposition 2.1.1 and one has

DJ(%x,0)(&,m) =0 Y(§n) € N(w. (0 —A,~B)) & DJ(x,a) € R((o, (0 — A, ~B))").
Hence there exists ¢ € [7, such that

D, fi(#y,0y) = Yy — Ajtpy VL €N,
D, fi(24, 1) = — By vVt € Np.

2.3 Restrictions on the Control Variable

In this section we extend our problem from the previous one. We do this by imposing
restrictions on the set of feasible control variables (this set is denoted by the letter U). So
our infinite horizon optimal control problem, which we study, can be rewritten as follows

o0
J(x,u) = Zf Ty, Up) — MAX,
t=0

L1 = F(I’t, ut) Vit € N(),
Ty )

w = U ={uelU:s(u) <0} VteN,.

|
ISl
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Restrictions on the Control Variable Maximum Principle

As before f € CY(X x U,R), X C R"” and U C R™ be open, z; € int X, uy € int U for all
t € Ng and F € C'(X x U,R™). Moreover, the set U, is a closed convex subset of U for all
t € Ny and s; € CH(U,R™) for all t € Ny. As before, we consider only the case of maximum,
but the reasoning for minimum is analogous.

2.3.1 Necessary Conditions of Optimality

Because we study a different problem in comparison to the previous cases, we need to ad-
just the definition of an admissible pair. Afterwards, we derive the necessary conditions of
optimality.

Let (x¢, 1) be an optimal control/response pair. Recall the Definition 25. Let in G the
regularity conditions be fulfilled and let us denote

Su(te) = {sF () Yrer,(an) Yt € No.

The definition of the set of all admissible directions concerning the set Uy is splitted in two
parts. At first we define the variation cone and then we show that for all vectors from this
cone there exists an admissible perturbation curve in the set U;.

Definition 27. Let U; C R™ be a set and @; € U;. The variation cone U (1) of the set U,
at u; is defined as

Proposition 2.3.1. §U,(u;) is a cone with vertex at zero. Moreover, if U, is a closed convex
set, then 6Uy(uy) is a closed convez cone.

Proof. The proof is trivial and is omitted. O]

In the following proposition we prove that in each direction n € 6U;(4;) there exists an
admissible perturbation curve.

Proposition 2.3.2. For all n € 0Uy(u;) there exists g > 0 and a differentiable curve
p:[0,e0) — Uy such that p(0) = @, and p'(0) = n.

Proof. Tt is clear that if 4, € int Uy then [,(4;) = 0 and 0U(4;) = R™. Hence in each
direction 7 there exists g9 > 0 such that for all € € [0,e9) we have (4, + en) € U,. So
p(e) = Uy + en satisfies the required conditions. Now let I;(a;) # 0. If D, 5 (i)n < 0 the
function p(e) = 4, + en fulfills the conditions, because $;(p(0)) = 5:(4;) = 0 and the function
Sy is decreasing at i,

D:31(p(€))|e=o = Dusi(tr)n < 0.

Therefore there exists ¢y such that
Si(p(e)) <0 Ve €[0,g).
It remains to find p and gy in the case, where the set

Ii(t) = {k € I,(i1y) : DysF(i,)n = 0}
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Restrictions on the Control Variable Maximum Principle

is nonempty and the vector 7 is tangent to the set

Uy = {u € Uy : 5,(u) = 0}, where 5, = {sF},cr

’llt)'
We do this employing the Tmplicit Function Theorem (see Theorem 1.2.1) with X =R, Y
as a closed complement to N'(D,5,(1,)), Z = R'*@)l and the function ® defined as

D (e,u) = 5(Uy + u + en)
and we find the function p in the form
p(e) = (e) +ne + iy, ¢:[0,60) =Y.
If one sets (xg, yo) = (0,0) one has
®(0,0) = 54(uy) = 0.
We are allowed to use the implicit function theorem, if the operator
D,®(0,0)y = [Dusi(te +u+en)loolly = Duse(in)]y

has a continuous inverse, which is according to Proposition 1.1.4 satisfied (the closeness is
fulfilled, since we can define Y as D, 5,(1;) and each of the cases is finite). Hence there exists
a neighbourhood Xy x Yy € X x Y of (0,0) and a differentiable function ¢ : Xy — Yj such
that

if and only if
©(0) =0 and ®(e,u(e)) = 5.(u + u(e) +en) = 0.

As a result p(e) € U; for all € € [0,ep), p is differentiable and p(0) = s + ©(0) = 4;. In
addition, as
D.®(0,0) = [Dusi(ae + u+ en)nlo,0)] = Dusi(ie)n =0

one has
P'(0) = ¢'(0) + 1 = =[D,®(0,0)|y] ' D-B(0,0) +n = n,

what was to be proven. O

The notation introduced in the previous chapter can be extended to our case. Let us denote

Lt — 5Ut(at) vt 6 NO;
L o= 5 x ("0 (Lo x Ly x Ly x -++)),

Since the state equation holds as in the previous case, the necessary condition for admissi-
bility of the pair (§,n) is

(&.m) € N(w, (0 — A, -B)) =K

and we have to assume that K has a closed complement. As the value of the admissible
perturbation must lie within the set U, for all t € Ny, the admissible pair (§,17) must lie
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within the variation cone L. Therefore (&, n) is admissible, if (§,m) € KN L. Thus the cost
function cannot decrease along any admissible direction from the optimal pair (x, @)

DJ(%,0)(€,m) <0 V(&) eKNL = DJ(%,1) € (KNL).

Since 0U; () is closed and convex for all ¢ € Ny (Proposition 2.3.1) L is clearly convex and
closed. In addition to that, K is a closed convex cone (see Propositions 1.3.2). Now we
would like to use the Proposition 1.3.1 to decompose the set (K N L)°. Hence we have to
check, if the condition K Nint L # () is satisfied. In the following example we introduce a
condition on the matrices A and B, when this is fulfilled.

Example 10. At first let us show that [int (Lo X Ly x Ly X ---)] # (. To this end let us
denote Dy = D, 8(1;) for all t € Ny and |I;(a;)| = my. Since the regularity conditions are
fulfilled in 4, the matrix D, is an m; X m matrix with rank m; and linearly independent
rows. We want to prove that

Vt € NU El??t e R™: Dtnt < 0.
Consider the vector
Dlv, where v = (v1,...,0m,) € R™, v; <0Vi=1,..., 1M,

Then the linear independence yields D; Df'v < 0Vt € Ny, hence [int (Lo x Ly x Ly x -+ )] # 0.
Now we show that the set I[7* Nint (Lg X Ly X Ly X ---) is nonempty. Consider a sequence
of positive numbers {&; }1en, = € € [; and let us define

5, = —L Vvt e N,
|77t|

Clearly 6; > 0, so if 1, € int L;, then also §;n; € int L, and one has

|6n]| = Z |0eme| = Z5t|77t| = th = [lef| < oo.
t=0 =0 =0

It remains to show that for some n € [I7* Nint (Lo X Ly X Ly X -+ -)] there exists & € I]* such
that (§,m) is a solution to the equations

S = 0,
&1 = A&+ By YVt e N

This could be written as

& = Ao+ Bono = Bono,

& = A&+ By = AyBono + Bin,
§3 = Aglo+ Bang = AsA1Bono + AxBim + Ban,
=
t—2 t—1 t—1
& = o= < H Aj) Bini + Bi_1mp—1 = Zc(tﬂ' + 1)Bn;.
=0 \j—itl i—0
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where C'(t,7 + 1) is defined as in the Example 7. Consider the operator A such that
IM e [1,00) A IXN<1: |Ot,s)| < MN*Vt,s €Ny, t>s

(this is fulfilled for example if one has max{|\| : A € sp(As)} = A < 1, see Remark 5). Tt
follows that

t—1

=1 t—1
&l =13 Cti+ 1Bl < S 1Billnil - 10+ 1) < M- Mg > A=,
=0 i=0

=0

where Mp is defined as the smallest constant such that sup,cy, |B:| < Mp < oo (such
a constant exists according to the Example 6). Therefore if £ fulfills the linearized state
equation we obtain

co t—1

i - - M - Mpg
€I < M- Mp > Y X =M Mg | Y N = T Il < oo
=0 t=0

t=1 =0

Hence for all n € [I[7* Nint (Lo x Ly x Ly x ---)] there exists £ € [} such that the linearized
state equation is fulfilled and therefore K Nint L # ().
Finally, we can employ the Proposition 1.3.1 and we obtain
DJ(x,u) € (KNL)°=K°+L°.
Hence there exist p € K° and q € L° such that
DJ(x,u) =p+q.
Now we rewrite the variable p using the following proposition.

Proposition 2.3.3. Let A: X — Y be a linear operator and let R(A*) be closed. Then one
has

—K*=K°=R(A"),
where the cone K is defined as in Proposition 1.3.2.

Proof. We would like to prove that n € K£°, if and only if n € R(A*). Since
K={z:Az=0, z€ X} =N(A),
this can be rewritten as
<nx><0VeeN(A) & neR(A).
Let us consider # € N'(A). Then also (—z) € N(A) (because Ax = A(—z) = 0) and hence
<nz><0VzeN(A) & <n,—z>=—<nx><0VreN(A).
Summing up, we would like to prove that if R(A*) is closed, then
<nz>=0Vr e N(A) & neR(A),

what is exactly the claim in the Proposition 2.1.1. O
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3))*). Hence there exists ¢ € (I7)* =
B))*¢. Therefore

By this proposition we have p € K° = R((wg, (o —A~,
I (see Proposition 1.1.5) such that p = (¢, (60 — A,

DJ(x,4) = (19, (0 — A, ~B))"¢ +q.

If we put o = 1 we can rewrite these equation with regard to the previous sections as
D, f(#,1) = Y1 — Ajp VEEN, (2.25)
Duf(i't, 'LAl/t> = —B:wt + G4 YVt € No, (226)

where ¢, € [0Uy(1;)]° for all ¢ € Ny. In the following theorem we summarize the Pontryagin
maximum principle according to the assumptions in the Proposition 1.4.2.

Proposition 2.3.4. Let us suppose that U; are convex, the function F is linear in u; for
a fived x; (i.e. F(xy,u) = Fo(xy) + Bug) and the function f is concave in u, for a fived x;
and for all t € Ny. Then the obtained equation (2.26) is sufficient for the existence of a
mazximum and therefore one has

f(i’tv ﬂt) + F(..'i't, ?lt)th = maX(f(i’t, ut) + F(fi't, Ut)T'l,Dt) Vt € No.

ur €Ut

The last equation is the so-called Pontryagin’s mazimum principle.
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Conclusion

In this thesis we focused on the discrete-time infinite-horizon optimal control problem. In the
first chapter we summarized the essential theory that was consequently used in the second
chapter. In the second chapter of this work we successively studied the problems with linear
state equation, with general state equation and with constraints.

For the problem with linear state equation we derived the adjoint equation and the necessary
conditions of the Pontryagin maximum principle. We managed to do this without any further
condition on the matrices of the linearized dynamics.

The adjoint equation was derived for the problem with general dynamics, as well. However
we did not succeed to get rid of the restrictive conditions on our matrices. Therefore we
introduced some sufficient conditions such that under any of them the deductions hold.
The derivations in the third section were combined with the notion of a cone and we obtained
the adjoint equation and the necessary conditions of the Pontryagin maximum principle
under a sufficient condition again.

In conclusion, the problem itself turned out to be much more difficult than anticipated. Even
in this case we were not able to dispose of the restrictive conditions, albeit we managed to
weaken them. Research is still under way. For this reason we did not include the perhaps
more widely studied discounted problems in this work.
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Resumé

V tejto préci sa zaoberame moznostou rozsirenia nutnych podmienok optimality pre diskrétne
tlohy optimalneho riadenia na nekone¢nom horizonte na tlohy s nie regularnou maticou dy-
namickej linearizacie. Za tymto tcelom pouzivame nastroje funkcionalnej analyzy. Motivacia
pre tento pristup vychadza z ¢lanku [3], v ktorom bol podobny postup vyuzity. Vyhodou
oproti klasickému pristupu, ako je pouzity napriklad v [13], je fakt, Ze namiesto Studia
konecnorozmerného prikladu a nasledného prechodu k jeho nekone¢norozmernej verzii, sa
priamo zaoberdme nekonec¢norozmernou verziou prikladu. Z toho dévodu predpokladame,
Ze premenné riadenia u = (ug,uy,...), ako aj stavova premenna x = (xg,xq,...), patria
do priestoru [¥, kde k oznacuje rozmer prislusnej premennej v jednotlivych ¢asovych vrstvach
a priestor [} je definovany ako

llf = {{wihten, : wy € R* vVt € Ny A Z |wy| < o0}

t=0

Na zaciatku prace skiimame nasledovny problém optimalneho riadenia

J(x,u) = Zf(xt,ut) — max, (2.27)
=0

L1 = A[L‘t + But Vit S N(), (228)

To = 7 (2.29)

kde f € CHX x U,R), X C R" a U C R™ st otvorené mnoziny, z; € int X, u; € int U
pre vietky t € Ny. Za predpokladu, ze dvojica (x,10) je optimélna, odvodime adjungovanui
premennu ako prvok priestoru [7, ako aj adjungovand rovnicu v tvare

D, fi(Zy, ) = Py — A"y YVt € N.

NavySe pri tomto postupe nepotrebujeme dodat ziadne dodato¢né predpoklady na matice A
a B, teda ani predpoklad regularity.

V dalsej casti prace skumame zovSeobecneny problém optimalneho riadenia, v ktorom
nahradime stavova rovnicu (2.28) rovnicou

Tir1 = F(.Z't, Ut) YVt € No.

Ak méa byt dvojica (x,u) optimalna, tak ucelova funkcia musi klesat v kaZdom smere,
v ktorom existuje perturbacia leziaca v pripustnej mnozine a zacinajica v bode (x,u). Ak
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oznacime
D,F(zy,1;) = Ay Vt €Ny,
D, F(&,1) = By Vte N,
(Ag,Ay,...) = A,
(Bo,Bi,...) = B,
(Inxmonxm) = o,

a o ako operator posunu, tak podmienky, za ktorych existuje takyto smer sumarizuje nasle-
dujtca veta.

Veta 2.3.1. Predpokladajme, Ze jadro zobrazenia (1o, (0—A, —B)) md uzavrety komplement.
Potom v kazdom smere (€,m) € N (v, (0 — A, —B)) existuje pripustnd perturbdcia.

Uzavretost komplementu uvedeného v predchadzajicej vete dokadzeme v lubovolnom z nasle-
dujtcich pripadov.

e max{|A\|: A€ sp(Ax)} <1
e A; regularne a sup,ey, |A4; '] < 1
e m =n, B, regularne a sup,y, |B; | < o
Pomocou vety 2.3.1 potom vyjadrime nutné podmienky optimality

D, f(2y, 1) = o1 — Afpy VEEN,
Duft<jt7 ’Ebt) — —Bt*i/Jt Vt € NQ,

kde prva rovnica opét vyjadruje tzv. adjungovanu rovnicu.
V poslednej ¢asti studujeme predosly problém rozsireny o ohranicenia na stavovi premennii
v tvare

u € Uy ={u € R™: s4(u) <0}, Vte N,

kde s, € CH(R™, R™) pre vietky t € Ny. Navyse mnozina U; je konvexna uzavreta podmnozi-
na mnoziny U. Rovnako ako v predoslom pripade moézeme pouzit vetu 2.3.1 na identifikaciu
vietkych smerov, v ktorych existuje perturbaéna krivka spliiajica stavovi rovnicu. Navyse
chceme, aby takato perturbécia patrila aj do mnoziny U, pre kazdé t. Ak pre kazdy cas
t € Ny oznacime

)y = {ke{l,...,m}:sF(q,) =0},
Se(tie) = {st () brercan)s
) {n € R™ : D,5,(t,)n < 0},
L, = 0U(wy),
tak pre mnozinu vietkych kriviek, v ktorych existuje perturbécia spliajiica ohrani¢enia na ri-
adenie, plati

(Em) el =107 x "N (Lox Ly x Ly x---)).
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Takze kazdy smer, v ktorom existuje pripustné perturbacia musi spliiat
(¢,m) € LNK, (2.30)

kde K = N (1, (0—A, —B)). Navyse v takomto smere tcelova funkcia klesa D.J(%, 0)(€,n) <
0. Tieto rovnice vieme prepisat v zmysle definicie polarneho kuzela ako

DJ(%,a)(&,n) <0 V(&) e KNL = DJ(%,4) € (KNL).

Ak je splnena niektora z postacujicich podmienok (ako je uvedena v priklade 10), moéZzeme
posledny vztah napisat v tvare

DJ(x,0) € (KNL)° = K°+L° = R((to, (0 — A, —B))*) + L°.
Tym padom znova dostavame nutné podmienky optimality.

D, f(Zy,4) = g —Ajpy VEEN,
Dyf(Z, 1) = —Bfvy+q Vt e Ny,

kde g; € [0U(1)]° pre vetky t € Ny a ¢ € (I7)* =[12.
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