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Fakulta Matematiky, Fyziky a Informatiky

Katedra Aplikovanej Matematiky

Optimálne spravovanie portfólia na
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Abstract

Mean-Variance hedging presents a way to evaluate total hedging error in

incomplete markets. We use this framework to define and derive an approxi-

mate formula for covariance between european options in a matrix form. Us-

ing this result, we compare existing hedging strategies used by market-makers

(gamma strategy) with a strategy based on mean-variance preferences. The

covariance matrix derived in previous step is used as a way to express the

volatility of portfolio. Total performance of both trading strategies is com-

pared using monte carlo simulation that provides approximate distributions

of their respective profits.

Keywords: mean-variance hedging, covariance matrix, monte carlo sim-

ulation, quadratic programming, expected utility maximization



Abstrakt

Kvadratické zaisťovanie predstavuje možný pŕıstup na určenie zaisťovacej

chyby na nekompletnom trhu. Tento rámev použ́ıvame na defińıciu a odvode-

nie aproximácie kovariancie európskych opcíı v maticovej forme. Použit́ım to-

hto výsledku porovnávame bežne použ́ıvané zaisťovacie stratégie so stratégiou

založenou na kvadratických preferenciách. Kovariančnú maticu odvodenú v

predošlom kroku použ́ıvame ako prostriedok na vyjadrenie volatility portfólia.

Celkovú výkonnosť oboch stratégii porovnávame pomocou monte carlo simulácie,

ktorá poskytuje aproximat́ıvnu distribúciu ziskov z nich.

Kľúčové slová: kvadratické zaisťovanie, kovariančná matica, monte

carlo simulácia, kvadratické programovanie, maximalizácia očakávanej užitočnosti
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Introduction

Derivative securities form an important aspect of financial markets. While

previously used mainly as a form of insurance, we can see an increase in

their trade by speculators who seek opportunities like arbitrage or so called

good deals. Since their establishment as financial instruments, derivative

securities have come a long way to the stage in which we know them today.

While many aspects have pushed the theory behind them forward, the most

crucial and famous article in this field was probably the paper written by

Fischer Black and Myron Scholes in 1973 [3].

Although their model explains some characteristics that a given no-arbitrage

priced derivative security should posess, it is today still considered mainly as

a benchmark for other more complicated methods, mostly due to its robust-

ness. The main reason why the result of Black and Scoles cannot be taken

too seriously in the real world is the fact that its underlying assumptions do

not necessarily hold at all times. For example, the underlying asset does not

have to follow the Brownian motion but tends to jump now and then instead,

or there might be transaction costs when trading in the derivative security.

In order to look into the problem more deeply, one can lose some of

the Black-Scholes assumptions and watch what happens afterwards. For

example, we may assume that the market is in fact not complete, e.g. that

not every derivative can be hedged perfectly. In this case, we always have to

expect some possible variance in the hedging portfolio that may occure when

trading in the underlying asset.

Different methods have been introduced in order to evaluate risk that
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Introduction

stems from the market incompleteness. The mean-variance hedging belongs

to common approaches in this area. The concept was introduced for the first

time by Hans Föllmer and Martin Schweizer in 1988 [8]. The whole idea is

a minimization of the squared hedging error which is the difference between

the terminal payoff of the derivative and the value of self-financing hedging

portfolio.

Aim of this thesis is twofold. Firstly, we want find a way to define a

covariance matrix for a given portfolio of hedged positions in terms of the

mean-variance hedging theory. Since the computation of such matrix is too

extensive using the classical theory, we intend to derive an approximation

that reduces the computational time to a minimum. We derive and create

this matrix for a portfolio of hedged european options where the hedging is

done in the mean-variance sense.

And secondly, after this structure is created, we use it to define a par-

ticular option trading strategy that assumes mean-variance preferences of

investor. More precisely, we present an alternative to commonly used tech-

niques such as delta hedging or gamma hedging. We also simulate the un-

derlying price process as a geometric Brownian motion in order to explore

the efectiveness of our strategy in comparison with delta and gama hedging

using monte carlo simulation.

The organization of thesis looks as follows. First chapter introduces the

concept of mean-variance hedging and explains the derivation of a particular

hedging strategy together with its hedging error. The second chapter defines

a covariance between two hedged positions and uses this definition to create

an approximative covariance matrix for a given portfolio of hedged european

options. And finally, the third chapter uses this concept to present a particu-

lar trading strategy and evaluate its efectiveness with respect to the gamma

hedging strategy. Fourth chapter summarizes the results and some proofs

and lemmas are mentioned in the last chapter.

2



Chapter 1

Mean-Variance Hedging

Strategies

This chapter serves as an introduction to the theory of mean-variance hedg-

ing. We present notation and assumptions used throughout the thesis and

explain the difference between two different hedging strategies. This intro-

duction is almost completely based on the paper from Černý and Kallsen [7].

Under the term mean-variance hedging we understand a problem of mini-

mizing the squared difference between the derivative’s payoff and the value

of self-financing replicating portfolio.

Our goal is to solve the following problem:

inf
ϑ

E[(ν + ϑ · ST −H)2], (1.1)

where ν is an admissible initial endowment, ϑ is an admissible trading strat-

egy, S is the price of underlying asset, H is a derivative we are going to

hedge and ϑ ·ST stands for our gains from trading in the time interval [0, T ].

This approach contrasts with the local risk minimization in a sense that it

minimizes the total hedging error.

3



Notation and Assumptions Mean-Variance Hedging Strategies

1.1 Notation and Assumptions

Consider trading on a time horizon T ∈ N and the set of trading dates

τ := 0, 1, . . . , T . We fix a probability space (Ω, P,F) a filtration F = {Ft}t∈τ ,
FT = F and an FT - measurable contingent claim H ∈ L2(P ). We use the

following notation for conditional expectations for a given random variable

X : Ω→ R:

Et[X] : = E[X|Ft], (1.2)

Vart[X] : = Et[X
2]− (Et[X])2 (1.3)

The discounted stock price process {St}t∈T is adapted to F and we assume

that ∀t: St is locally square-integrable meaning that for ∆St+1 := St+1 − St
we obtain

Et[(∆St+1)2] <∞ ∀t < T (1.4)

Definition 1. We say that process S admits no arbitrage if ∀t ∈ T\{0} and

all Ft−1 measurable portfolios ϑt we have that ϑ∆St ≥ 0 almost surely implies

ϑ∆St = 0 almost surely.

Definition 2. We say that (ν, ϑ) is an admissible endowment - strategy pair

if and only if ν is F0-measurable, ϑ = {ϑt}t∈T\{0} is predictable and

ν + ϑ · ST := ν +
T∑
t=1

ϑt∆St ∈ L2(P ). (1.5)

The set of admissible strategies is denoted by Θ(ν) (depending on the

initial endowment). We use Θ as a shorthand for Θ(0).

1.2 Hedging strategies

There are two hedging strategies presented in [6], the locally optimal and

the globally optimal one. The globally optimal strategy solves (1.1). It

4



Hedging strategies Mean-Variance Hedging Strategies

computes the hedging error we obtain when hedging dynamically, while the

local hedging error is obtained when using the locally optimal strategy. The

whole idea behind the local risk minimization approach is about pretending

that we are able to choose the value of self-financing portfolio arbitrarily and

that it does not depend on previous trading.

In other words, unlike the locally optimal strategy, the dynamically opti-

mal strategy is path-dependent, meaning that in every time we need to know

not only the asset price and the time remaining to maturity, but the value of

replicating portfolio as well. And according to fact that this value depends

on the previous trading, it may be computationally too demanding to use

the globally optimal strategy. The locally optimal strategy does not take

into account the actual value of self-financing portfolio. It behaves as if we

have so far traded in such a way that its value equals the value of derivative

we are trying to hedge. However, this property is not necessarily satisfied in

incomplete markets. On the other hand, the globally optimal strategy takes

into account the value of self-financing portfolio and adjusts the amount of

stock we are buying by its difference from the optimal value (which is the

price of derivative we are hedging).

The locally optimal strategy was for the first time introduced in an influ-

ential paper from Föllmer and Schweizer [8]. They explain that the result of

Black and Scholes is simply a special case of sequential regressions that min-

imizes the local one-period hedging error. More specifically, they introduced

a way to handle the option hedging in the case of incomplete markets and

that their result actually reduces to the Black-Scholes formula if the market

becomes complete and if we allow for continuous hedging.

1.2.1 Derivation of hedging strategies

In the following section, we are going to introduce explicit formulae for both

locally and globally optimal strategy with restriction to a case when returns

are IID. It is possible to find a solution for a more general non-IID case as

well using so-called opportunity neutral measure, but for the sake of keeping

5



Hedging strategies Mean-Variance Hedging Strategies

things simple we are not going to mention it here. Further details about this

extended approach can be found in [7].

Suppose that S0 > 0 and that {Rt}t∈T are IID random variables with

finite second moment such that Rt > 0 almost surely. Define

St := S0

t∏
j=1

Rj ∀t ≥ 1. (1.6)

• Locally Optimal Strategy

In the case of local risk minimization, the problem can be formulated

as follows:

{Vt−1, ξt} : = arg min
νt−1,ϑt

{Et−1[(νt−1 + ϑt∆St − Vt)2]} (1.7)

VT : = H, (1.8)

where νt−1 and ϑt are Ft−1-measurable. If we look at the problem as if

it were a least squares regression, we can see that the solution looks as

follows:

Vt−1 = EQ
t−1[Vt] (1.9)

ξt =
Covt−1(Vt,∆St)

Vart−1(∆St)
=

Et−1 [(Vt − Vt−1)∆St]

Et−1 [(∆St)2]
, (1.10)

where Q stands for the minimal martingale measure which is defined

in a following way with respect to the objective real-world measure P :

dQ

dP
:=

T∏
t=1

1− λ̃t∆St
1−∆K̃t

. (1.11)

The quantities λ̃t and ∆K̃t are in fact the coefficients and the sum of

explained squares from an auxiliary regression of the constant onto the

explanatory variable ∆St,

λ̃t : = arg min
ϑt∈R

E
[
(ϑt∆St − 1)2

]
=

Et−1 [∆St]

Et−1 [(∆St)2]
(1.12)

∆K̃t : =
(Et−1 [∆St])

2

Et−1[(∆St)
2]

= 1− Et−1

[
(1− λ̃t∆St)2

]
(1.13)

6



Hedging strategies Mean-Variance Hedging Strategies

• Globally Optimal Strategy

In the case of dynamically optimal strategy, we are trying to minimize

the expected squared replication error at maturity where the expecta-

tion is taken at time zero. Denote the dynamically optimal delta by

φ(ν) = {φt(ν)}t∈τ . The problem can therefore be written in a following

way:

min
ϑ

E
[
(Gν,ϑ

T − VT )2
]
, (1.14)

where VT := H and the self-financing condition G
ν,φ(ν)
t+1 = G

ν,φ(ν)
t +

ϑt+1∆St+1 is required to hold throughout the whole process. The actual

hedging strategy depends on initial wealth ν. We also suppress its

dependence on H because we treat the derivative’s terminal payoff as

if it were constant.

After plugging the self financing condition into (1.14), we obtain that

the globally optimal delta should solve

φt(ν) = arg min
ϑ

Et−1

[
(G

ν,φ(ν)
t−1 + ϑt∆St − Vt)2

]
. (1.15)

Similarly to the locally optimal case, this can be viewed as a least

squares regression. The only difference is that this time we do not

include intercept because of the self-financing condition which already

implies a particular value for G
ν,φ(ν)
t−1 (i.e. it is already given by our

previous trading in the stock). Therefore now we have a regression with

dependent variable Vt − Gν,φ(ν)
t−1 , explanatory variable ∆S and with no

intercept. This implies the hedging strategy has to take on the following

form:

φt(ν) =
Et−1

[
(Vt −Gν,φ(ν)

t−1 )∆St

]
Et−1 [(∆St)2]

= (1.16)

=
Et−1 [(Vt − Vt−1)∆St]

Et−1 [(∆St)2]
+ λ̃t(Vt−1 −Gν,φ(ν)

t−1 ) = (1.17)

= ξt + λ̃t(Vt−1 −Gν,φ(ν)
t−1 ). (1.18)

We have used (1.10) in the last equality.

7



Hedging strategies Mean-Variance Hedging Strategies

As we can see, the globally optimal strategy is always more precise in finding

a solution to the dynamical problem, because what we are actually trying to

find is a strategy minimizing total hedging error, not only one-period errors.

So the question remains: Why should we even mention the locally optimal

strategy, if the global strategy behaves always better?

The reason is simple: If we compare the two strategies according to the

expected hedging error they imply, the locally optimal strategy behaves only

slightly worse in comparison to the dynamically optimal strategy, as showed

in [6]. According to fact that the locally optimal strategy is easier to im-

plement computationally, it is obvious why we mentioned it here. The next

section will compare the hedging errors incurred from both strategies more

thoroughly.

1.2.2 Hedging Errors

This section provides formulae for both strategies.

• Locally Optimal Strategy

In order to simplify the derivation, denote by et := Vt−1 + ξt∆St − Vt
the one-period locally optimal hedging error.

Denote by ψt the following expression:

ψt := Et−1[e2
t ] = Vart−1[Vt]− ξtCovt−1[∆St, Vt]. (1.19)

Set VT := H and suppose that the value of our portfolio at time t is

defined as a sum of initial wealth and the profit (loss) incurred from

trading up to the time t:

Gν,ξ
t := ν + ξ · St. (1.20)

If we apply the self-financing condition Gν,ξ
t+1 = Gν,ξ

t + ξt+1∆St+1, we

8



Hedging strategies Mean-Variance Hedging Strategies

get the expected hedging error in a following form:

E
[
(Gν,ξ

T − VT )2
]

= E
[
ET−1

[
(Gν,ξ

T − VT )2
]]

= (1.21)

= E
[
ET−1

[
(Gν,ξ

T−1 − VT−1 + VT−1 + ξT∆ST − VT )2
]]

= (1.22)

= E

ET−1

(Gν,ξ
T−1 − VT−1)2︸ ︷︷ ︸

T − 1 measurable

+ (1.23)

+ 2 (Gν,ξ
T−1 − VT−1)︸ ︷︷ ︸

T − 1 measurable

(VT−1 + ξT∆ST − VT )︸ ︷︷ ︸
E(.)equals zero

+ (1.24)

+ (VT−1 + ξT∆ST − VT )2︸ ︷︷ ︸
e2T


 = (1.25)

= E
[
(Gν,ξ

T−1 − VT−1)2 + ψt

]
. (1.26)

Now it is obvious that after repeating this T times, we get the following

result:

E
[
(Gν,ξ

T − VT )2
]

= (ν − V0)2 +
T∑
t=1

E[ψt]. (1.27)

• Globally Optimal Strategy

Analogically to the previous case, we use the property of zero expected

value of one-period hedging error. Consequently we can express the

expected value of one-period squared hedging error as follows:

Et−1

[
(G

ν,φ(ν)
t−1 + φt(ν)∆St − Vt)2

]
= (1−∆K̃t)(G

nu,φ(ν)
t−1 − Vt−1)2 + ψt

(1.28)

At this point, we can define process Lt in a following way:

Lt =
T∏

j=t+1

(1−∆K̃j), LT = 1 (1.29)

Due to fact that L is deterministic, we can express the total hedging

error in a global strategy case similarly to the previous local strategy

9



Hedging strategies Mean-Variance Hedging Strategies

case:

E
[
(G

ν,φ(ν)
T − VT )2

]
= L0(ν − V0)2 +

T∑
t=1

E[Ltψt]. (1.30)

Now we can see why it was convenient to work with returns that are

IID, so that L remains deterministic. In case we would like to explore

model with non-IID one period returns, we could do it by changing

the measure. Černý and Kallsen define this measure as a so-called

”opportunity neutral measure”. Further details can be found in [7].

10



Chapter 2

Covariance matrix

In this chapter, I would like to derive an approximate formula for the covari-

ance between european options where under the term ”covariance between

options”, we actually mean the covariance between their hedged positions.

Aim of this whole chapter is to find a formula that expresses the covariance

between two european options (call or put, it does not matter as we will see

later) in the mean-variance hedging framework. After that, we are able to

create a covariance matrix for a given portfolio of their hedged positions.

So far, we have spoken about two different types of hedging error. One

of them was a result of dynamical hedging strategy while the other one was

a result of locally optimal hedging strategy. We will continue to work with

the local hedging error as it performs only slightly worse in comparison with

its dynamical counterpart.

2.1 Definition

First, we need to define the covariance between two options properly (or

between their hedged positions to be more precise). Following is a well known

identity between two random variables X and Y .

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ). (2.1)

11



Approximation I Covariance matrix

From this, we can see that a covariance should generally satisfy:

Cov(X, Y ) =
Var(X + Y )− Var(X)− Var(Y )

2
. (2.2)

If we assume that the variance of a given hedged position is in fact its squared

hedging error, then the covariance between two positions of european options

should satisfy the following definition:

Definition 3 (Covariance). Suppose we have two positions, Xt and Yt at a

given time t ∈ [0, T ], and that both of them consist from holding one european

option and ξXt (ξY t) underlying assets, where ξX and ξY are their respective

mean-variance hedging strategies. We define the covariance between these

two positions as follows:

Cov(Xt, Yt) =
ε20X+Y − ε20X − ε20Y

2
(2.3)

where under ε we understand the mean-variance hedging error and the sub-

scripts X, Y and X + Y mean that we are working with terminal payoffs of

options from positions X, Y and the sum of their payoffs X+Y respectively.

We may use a term ”covariance of options” in the the rest of the thesis. In

that case, we always mean a covariance of their hedged position where the

hedging is done according to the mean-variance theory from chapter one.

This way, we can define covariance using the theory behind mean-variance

hedging. In other words, all we need to do is to take the formulas derived in

previous section and plug them into (2.3) to obtain the desired covariance.

However, it would be computationaly too extensive which is the reason why

we intend to derive an approximation.

2.2 Approximation I

Following lines can be found in [6] for a case of a single derivative. We

extend this analysis further. Černý shows in his book that the hedging error

12



Approximation I Covariance matrix

of a certain derivative can be approximated in a following way using the

Black-Scholes model:

ε20 ≈
(

Kurt(R)− 1

2

)
1

2
(Var(R))2

T−1∑
t=0

R
2(T−t−1)
f E[(γtS

2
t )

2] (2.4)

where γt is a gamma of the derivative, R is a random one period return and

Rf is a risk free rate. In order to evaluate this expression, one needs to find

the value of E[(γtS
2
t )

2]. For european options this problem can be solved

analytically as we will see in the following lines. Toft[13] has already done so

in a case of a single derivative. However, we will have to derive a more general

formula. It is now also clear that in case of european options there is no need

to distinguish between put and call options simply because their gamma is

always the same, no matter what type of option we are talking about (see

(5.0.3)). Since there is nothing else except gamma in the expression that

could distinguish different types of options from each other, it remains the

same for both put and call options.

13



Approximation I Covariance matrix

After plugging (2.4) into (2.3), the covariance equals:

Cov(X, Y ) =
Var(X + Y )− Var(X)− Var(Y )

2
=

=
ε20X+Y − ε20X − ε20Y

2
=

=
1

2

[(
Kurt(R)− 1

2

)
1

2
(Var(R))2

T−1∑
t=0

R
2(T−t−1)
f E[(γX+Y tS

2
t )

2] −

−
(

Kurt(R)− 1

2

)
1

2
(Var(R))2

T−1∑
t=0

R
2(T−t−1)
f E[(γXtS

2
t )

2]−

−
(

Kurt(R)− 1

2

)
1

2
(Var(R))2

T−1∑
t=0

R
2(T−t−1)
f E[(γY tS

2
t )

2]

]
=

=
1

2

[(
Kurt(R)− 1

2

)
1

2
(Var(R))2 .

.
T−1∑
t=0

R
2(T−t−1)
f

(
E[(γX+Y tS

2
t )

2]− E[(γXtS
2
t )

2]− E[(γY tS
2
t )

2]
)]

=

=
1

2

[(
Kurt(R)− 1

2

)
1

2
(Var(R))2 .

.
T−1∑
t=0

R
2(T−t−1)
f

(
E[((γXt + γY t)S

2
t )

2]− E[(γXtS
2
t )

2]− E[(γY tS
2
t )

2]
)]

=

=

(
Kurt(R)− 1

2

)
1

2
(Var(R))2

T−1∑
t=0

R
2(T−t−1)
f

(
E[γXtγY tS

4
t ]
)

In the process of derivation we have used lemma (5.0.1). As we can see, the

problem reduces to a simple issue of evaluating expression

E[γXtγY tS
4
t ] (2.5)

since distribution of one period return as well as the risk free rate are both

known to us.
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2.3 Evaluation of E[γXtγY tS
4
t ]

This particular issue has already been solved in [13] by Klaus Bjerre Toft,

however only for a case where γX = γY . As our case is more complicated and

the solution more complex, we will derive it in the following lines. Lemmata

(5.0.2) and (5.0.3) will be used in the process, see appendix for more details.

Density function of normalized normal distribution is denoted by φ(.).

E[γXtγY tS
4
t ] =

1

σ2(T − t)
E
[
φ(d1X)φ(d1Y )S2

]
=

=
S2

0

σ2(T − t)
E


S2

S2
0

φ



=:X︷ ︸︸ ︷
ln
S

S0

+

=:aX︷ ︸︸ ︷
ln

S0

KX

+ (r +
σ2

2
)(T − t)

σ
√
T − t

 ·

· φ



=:X︷ ︸︸ ︷
ln
S

S0

+

=:aY︷ ︸︸ ︷
ln

S0

KY

+ (r +
σ2

2
)(T − t)

σ
√
T − t



 =

=
S2

0

σ2(T − t)
E

[
e2xφ

(
x+ a1

σ
√
T − t

)
φ

(
x+ a2

σ
√
T − t

)]
=

=
S2

0

σ2(T − t)
E

[
e2x 1

2π
e
− 1

2

(
(x+a1)

2+(x+a2)
2

σ2(T−t)

)]
=

=
S2

0

2πσ2(T − t)
E

[
exp

(
−1

2

(
(x+ a1)2 + (x+ a2)2

σ2(T − t)

)
+ 2x

)]
=

= (∗)

So far, we have only simplified the expression using explicit formulae for

gamma of european call and put option. We have defined a new variable

X = ln S
S0

. Since our approximation is based on the Black-Scholes model, it

holds that Xt ∼ N(µt− σ2

2
t, σ2t) due to the character of S (which behaves as

a geometric Brownian motion and therefore has a lognormal distribution at

maturity). Using the fact that X has normal distribution, we can continue
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in the derivation:

(∗) =
S2

0

2πσ2(T − t)

∫ ∞
−∞

1√
2πσ2t

·

· exp

−
1

2

(
(x+ a1)2 + (x+ a2)2

σ2(T − t)

)
+ 2x−

(x−

=: µ̃t︷ ︸︸ ︷
(µt− σ2

2
t))2

2σ2t

 dx =

=
S2

0

(2π)
3
2σ3
√
t(T − t)

∫ ∞
−∞

exp

[
−1

2

(
2x2 + 2(a1 + a2)x+ a2

1 + a2
2

σ2(T − t)

)
+

+2x− x2 − 2µ̃tx+ µ̃2t2

2σ2t

]
dx =

=
S2

0

(2π)
3
2σ3
√
t(T − t)

∫ ∞
−∞

exp

[
−1

2

(
1

σ4t(T − t)

)
·

·
(
2σ2tx2 + 2(a1 + a2)σ2tx+ (a2

1 + a2
2)σ2t− 4σ4t(T − t)x +

1

2
+σ2(T − t)x2 − 2σ2t(T − t)µ̃x+ σ2t2(T − t)µ̃2

)]
dx =

=
S2

0

(2π)
3
2σ3
√
t(T − t)

∫ ∞
−∞

exp

−1

2

 1

σ4t(T − t)︸ ︷︷ ︸
=:k

 ·

·

[2σ2t+ σ2(T − t)︸ ︷︷ ︸
=:A

]x2+

+ [2(a1 + a2)σ2t− 4σ4t(T − t)− 2σ2t(T − t)µ̃︸ ︷︷ ︸
=:B

]x+

+ [(a2
1 + a2

2)σ2t+ σ2t2(T − t)µ̃2︸ ︷︷ ︸
=:C

]

 dx =

=
S2

0

(2π)
3
2σ3
√
t(T − t)

∫ ∞
−∞

exp

[
− 1

2k

(
Ax2 +Bx+ C

)]
=

= (∗∗)
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At this point, we have reduced the former expression to a more suitable

form. Using (5.0.2), we are able to simplify this integral form even further.

However, the derivation is too extensive and it would span about a dozen

of pages, using only basic algebraic operations from now on that are not

interesting in any way. Therefore, we omit it here and state the final form

directly.

E[γXtγY tS
4] = (∗∗) =

S2
0e

2µt

2πσ2
√
T 2 − t2

exp

[
− 1

4σ2(T 2 − t2)
· (2.6)

·
(
2T (λ2

X + λ2
Y ) + 2σ2(λX + λY )(T − t)(T + 2t)−

1

2
−4tλXλY + σ4T 2(T − t)

)]

λX = ln
S0

KX

+ r(T − t) + µt (2.7)

λY = ln
S0

KY

+ r(T − t) + µt. (2.8)

where r is the risk-free rate per unit of time, µ is the expected rate of return

per unit of time, and σ2 is the variance of log return per unit of time.

We have successfully derived explicit formula for E[γXγY S
4]. We have

also tested it using monte carlo simulations to ensure that no errors were

made during the long derivation. Two graphs are presented in figures (2.1)

and (2.2), showing the character of E[γXtγY tS
4] in two different scenarios

(equal and different strike prices). We can see both from the figures and

from the shape of the solution, that it is quantitatively different for equal

and for different strike prices.

2.4 Approximation II

Now we are able to plug the result back to the original formula. However, few

modifications will take place. Due to fact, that we are already approximating,

there is no need for exactness in evaluating the sum that our expression
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Figure 2.1: E[γXtγY tS
4] computed for t ∈ [0, T ] (S = 100, T = 1, K1 = 110,

K2 = 110, µ = 0.05, σ = 0.2, r = 0)

contains. Therefore, we modify the approximation in a following way:

Cov(X, Y ) ≈
(

Kurt(R)− 1

2

)
1

2
(Var(R))2

T−1∑
t=0

R
2(T−t−1)
f E[γXtγY tS

4
t ] ≈

≈
(

Kurt(R)− 3 + 2

2

)
1

2
(σ2∆t)2

T−1∑
t=0

R
2(T−t−1)
f E[γXtγY tS

4
t ] =

=

(
Kurt(R)− 3

2

)
1

2
σ4(∆t)2

T−1∑
t=0

R
2(T−t−1)
f E[γXtγY tS

4
t ]+

+
1

2
σ4(∆t)2

T−1∑
t=0

R
2(T−t−1)
f E[γXtγY tS

4
t ] =

=

const. for ∆t→ 0︷ ︸︸ ︷
(Kurt(R)− 3)(∆t)

1

4
σ4

Definite integral for ∆t→ 0︷ ︸︸ ︷
T−1∑
t=0

R
2(T−t−1)
f E[γXtγY tS

4
t ]∆t+

+
1

2
σ4(∆t)2

T−1∑
t=0

R
2(T−t−1)
f E[γXtγY tS

4
t ]︸ ︷︷ ︸

This expression goes to zero for ∆t→ 0

=

= (ExKurt(R))
1

4
σ4

∫ T

0

R
2(T−t−1)
f E[γXtγY tS

4
t ]dt
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Figure 2.2: E[γXtγY tS
4] computed for t ∈ [0, T ] (S = 100, T = 1, K1 = 100,

K2 = 110, µ = 0.05, σ = 0.2, r = 0)

Under the expression ExKurt(R), we understand the excess kurtosis:

ExKurt(R) := Kurt(R)− 3 (2.9)

It can be shown that in Lévy model this expression goes to ∞ as ∆t→ 0 by

order 1
∆t

. Therefore if multiplied by ∆t, it remains constant for sufficiently

small ∆t. We need it to be close to zero to lower the probability of price

jumps. For further references see [6]. Analogically, we have approximated

the sum by a definite integral after multiplying it by ∆t and sending it to

zero. For more details regarding this concept, refer to [2].

At this moment, we can use the result from (2.6) and insert it into our

expression. After we do so, the task reduces to a problem of definite integral

evaluation.

2.5 Numerical evaluation of definite integrals

Last key step that has to be completed in order to find the desired approx-

imation is a numerical evaluation of the definite integral we have derived in

19



Numerical evaluation of definite integrals Covariance matrix

previous sections. More precisely, we are going to find a value of∫ T

0

R
2(T−t−1)
f E[γXtγY tS

4
t ]dt (2.10)

with E[γXtγY tS
4
t ] defined previously in (2.6). After examining the conver-

gence, one will obtain that in case of equal strike prices (K1 = K2), the

value of function we are trying to integrate is going to ∞ with t→ T . This

property can be easily seen also from figures (2.1) and (2.2). According to

fact that we are going to approximate this integral numerically using adap-

tive Simpson quadrature [10] in MATLAB, it is neccessary to somehow solve

this little inconvenience. Note that the formula for K1=K2 has already been

derived in [13] and that this is the only case in which our expected value goes

to infinity with time close to expiration date.

We are going to express (2.6) differently using the per partes integration

such that the expression no longer contains a definite integral that goes to

∞. Obviously, the part in the exponential can be expressed as

exp

[
− 1

4σ2(T 2 − t2)

(
At2 +Bt+ C

)]
, (2.11)

where A,B and C are some constants. Therefore after assuming continuous

compound interest the whole expression (2.10) can be seen in a following
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way: ∫ T

0

E[γXtγY tS
4
t ]dt = (2.12)

=

∫ T

0

S2
0e
µt

2πσ2
√
T 2 − t2

e2r(T−t)· (2.13)

· exp

[
− 1

4σ2(T 2 − t2)

(
At2 +Bt+ C

)]
︸ ︷︷ ︸

=:f(t)

dt = (2.14)

=
S2

0e
2rT

2πσ2

∫ T

0

1√
T 2 − t2

e2t(µ−r)f(t)dt = (2.15)

=
S2

0e
2rT

2πσ2

[
arcsin

t

T
e2t(µ−r)f(t)

∣∣∣∣T
0

− (2.16)

−
∫ T

0

arcsin
t

T
e2t(µ−r)(f ′(t) + 2f(t)(µ− r))dt

]
(2.17)

Since f(T ) and f(0) is finite for K1 = K2 as we can see in [13] or [6], the per

partes integration changes the former problem to a problem of finite definite

integral evaluation which we can be solved by using the same method we have

used in case K1 6= K2. The new function we need to integrate is depicted

in figure 2.3 and as we can see it does not go to infinity like its previous

counterpart.

2.6 Final shape of covariance matrix

At this moment, we are finally able to create the covariance matrix for a

given portfolio of european options. Previous sections were necessary both for

obtaining the explicit formula as well as for explaining its further numerical

approximation.

The final step we are going to do is expressing the volatility of a given

portfolio in terms of covariance matrix.

Definition 4 (Covariance matrix). Suppose we have a portfolio of k call

options and l put options. Denote the covariance of any two options Xi, Xj
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Figure 2.3: Per partes new definite integral computed for t ∈ [0, T ] (S = 100,

T = 1, K1 = 110, K2 = 110, µ = 0.05, σ = 0.2, r = 0)

by: σ2
ij := Cov[Xi, Xj] where the covariance is meant in the sense described

in previous sections. Consequently, the covariance matrix of our portfolio Σ

is defined as follows:

Σ :=



σ2
11 σ2

12 . . . σ2
1k σ2

1,k+1 σ2
1,k+2 . . . σ2

1n

σ2
21 σ2

22 . . . σ2
2k σ2

2,k+1 σ2
2,k+2 . . . σ2

2n

...
...

. . .
...

...
...

...
...

σ2
k1 σ2

k2 . . . σ2
kk σ2

k,k+1 σ2
k,k+2 . . . σ2

kn

σ2
k+1,1 σ2

k+1,2 . . . σ2
k+1,k σ2

k+1,k+1 σ2
k+1,k+2 . . . σ2

k+1,n

...
...

. . .
...

...
...

...
...

σ2
n1 σ2

n2 . . . σ2
nk σ2

n,k+1 σ2
n,k+2 . . . σ2

nn


(2.18)

where the first k derivatives are call options and the rest are put options

and for any i, j ∈ {1, . . . , k}: i < j ⇒ Ki < Kj (analogically for any

i, j ∈ {k + 1, . . . , n}: i < j ⇒ Ki < Kj).

We have defined the covariance matrix and explained its approximation.
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Figure 2.4: One of four identical blocks of covariance matrix computed for t = 0,

S = 100, T = 1, µ = 0.05, σ = 0.2, r = 0. X and Y axes represent the strike

prices and Z axis represents the actual value of covariance between the respective

options.

Note however, that the computational time used to evaluate it can be de-

creased dramatically if we assume the same strike prices for both call and

put options (which is the case of real market data). At this moment, the

matrix consists of four blocks, each of which corresponds to different pairs of

options. In other words, we can rewrite it in the following block form :

Σ :=

[
ΣCC ΣCP

ΣPC ΣPP

]
(2.19)

where ΣCC and ΣPP correspond to covariance matrices for call and put op-

tions respectively, while ΣCP and ΣPC stand for their combinations.

The restriction of equal strike prices for both types of options will help

us significantly, since our matrix will attain a particular special form. More

precisely, the four blocks that the matrix is currently formed from are iden-

tical in this special case. This follows directly from the way we have defined

the matrix in the first place. Since there is the same number of calls and

puts and their gammas do not differ, it is obvious that it does not matter

what block we choose in case of equal strike prices, they are simply identical.
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Figure 2.5: One of four identical blocks of covariance matrix computed for t = 0,

S = 100, T = 1, µ = 0.05, σ = 0.2, r = 0. X and Y axes represent the strike

prices. The colour of figure represents the level of covariance between respective

options.

However, this is not the only improvement we are able to achieve when

trying to optimize our task. Obviously, thanks to the symmetry of covariance,

all of these four equal blocks have to be symmetric as well. Therefore, it is

not necessary to evaluate the whole block, the upper or lower half will do the

same trick in almost a half of the former computation time.

In summary, we can reduce the computation time by exploiting the spe-

cific shape of covariance matrix. This way, instead of computing n2 integrals

numerically, we only need to compute n2

8
+ n

4
of them. One of four identical
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Figure 2.6: One of four identical blocks of correlation matrix computed for t = 0,

S = 100, T = 1, µ = 0.05, σ = 0.2, r = 0. X and Y axes represent the strike

prices and Z axis represents the actual value of correlation between the respective

options.

blocks that the covariance matrix is composed from can be seen in figures

(2.4) and (2.5).

Also, for a better overview, we are including figures of correlation matrix,

which is made analogically to the covariance matrix, with the only difference

that every element is divided by the product of respective option variances

(their squared hedging errors in our case). Graphs of this stucture are de-

picted in figures (2.6) and (2.7).

This whole chapter was supposed to bring some light in the definition and

derivation of covariance matrix for european options. We have first defined

it properly, using results from mean-variance hedging theory. Afterwards, we

have used some known approximations and derived a formula that expresses

a key part of one of them. At last, we have depicted the final shape in a

figure and for a better understanding, we have also included a closely related

correlation matrix. This whole concept will be used in the next chapter

to create a trading strategy that can be compared with some already used

approaches.
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Figure 2.7: One of four identical blocks of correlation matrix computed for t = 0,

S = 100, T = 1, µ = 0.05, σ = 0.2, r = 0. X and Y axes represent the strike

prices. The colour of figure represents the level of correlation between respective

options.
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Chapter 3

Portfolio Management

This chapter introduces a stragety for portfolio management in incomplete

markets. It is based on the results from previous chapters, most importantly

on the covariance matrix concept. We compare existing hedging strategies

used commonly by market makers with a mean-variance hedging strategy

using simulated stock prices in order to evaluate their effectiveness. The

actual comparison is provided by a monte carlo simulation of stock price

process which allows us to trade options in discrete time. We assume the

risk free rate to be zero throughout the whole chapter in order to keep things

simple. There are T trading periods: t ∈ {0, . . . , T − 1}.

3.1 Problem Formulation

Suppose we have a bank (or any other market maker) which decides to issue

certain number of call or put options. All of these options are issued on the

same underlying asset, but they differ in their strike prices. We assume that

this market maker was initially able to sell them with a certain profit, i.e.

for a price higher than some fair price (for example Black-Scholes price [3])

and is now trying to hedge the position with the underlying asset in some

way. We allow for changes in the option portfolio in the course of time and
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we are looking for a best way to do so.

Usually, the first approach that a company would choose in this scenario

is a delta or gamma hedging. However, if the issuer wants to weight the risk

more precisely, she may want to choose a mean-variance hedging strategy

that we propose instead. Its advantage over the commonly used gamma

hedging is its variability. In other words, we can adjust it according to the

level of risk aversion of the issuer. But more importantly, as we will show

in the simulations, it behaves better than the standard gamma hedging in

terms of expected profit.

Definition 5. We define processes πδ, πγ and πMV as follows:

πt
δ := πδt−1 + βδt−1

T
(CBStδt−1(St − St−1)− CBSt−1) (3.1)

πt
γ := πγt−1 + βγt−1

T (CBStδt−1(St − St−1)− CBSt−1) + (βγt − β
γ
t−1)TCBSt−

−
[
(βγt − β

γ
t−1)+T cask − (βγt − β

γ
t−1)−

T
cbid

]
(3.2)

πt
MV := πMV

t−1 + βγt−1
T (Vt − ξt−1(St − St−1)− Vt−1) + (βγt − β

γ
t−1)TVt−

−
[
(βγt − β

γ
t−1)+T cask − (βγt − β

γ
t−1)−

T
cbid

]
(3.3)

πδ0 := W0 + βδ
T
CBS0 (3.4)

πγ0 := W0 + βγTCBS0 (3.5)

πMV
0 := W0 + βMVTV0. (3.6)

All variables mentioned in this definition are time-dependent (this is rep-

resented by the time subscript) and they have the following meaning:

• πδ (scalar) - profit from following delta strategy. Under this term, we

understand the joint value of all options plus the amount of money on

a risk-free bank account plus the value we have in underlying asset.

• πγ (scalar) - profit from following gamma strategy.
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• πMV (scalar) - profit from following mean-variance strategy.

• βδ (vector) - amount of options in delta portfolio.

• βγ (vector) - amount of options in gamma portfolio.

• βMV (vector) - amount of options in mean-variance portfolio.

• CBS (vector) - Black - Scholes price of options in portfolio [3].

• Cbid (vector) - Bid prices of options (prices somebody is willing to buy

the options for)

• Cask (vector) - Ask prices of options (prices that I can buy the options

for in the market)

• W0 (scalar) - Initial wealth (the initial profit from selling the options

for a higher than Black - Scholes price).

• V (vector) - mean value process, for more details see [6]. We approx-

imate it by a Black-Scholes option price. For a justification, see again

[6].

• δ (vector) - Black - Scholes delta.

• ξ (vector) - locally optimal hedging strategy. In our case, it is again

approximated by the Black - Scholes delta.

• S (scalar) - underlying asset price. In the simulation, we use a geo-

metric Brownian motion.

Processes πδ, πγ and πMV serve as a comparison of our three strategies

and they are very important characteristics. We compare their distribution

in time T using monte carlo simulation.
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Following sections define the delta trading strategy, the delta-gamma

trading strategy and the mean-variance trading strategy which we are go-

ing to compare afterwards more thoroughly.

Figure 3.1: Realization of processes πδ, πγ and πMV using monte carlo simulation

3.2 Delta Trading Strategy

This is the simplest of the three approaches we are working with. It uses

the standard delta hedging, e.g. it keeps the delta of portfolio equal to

zero. When using this strategy, the portfolio of options does not change in

time, we only trade in the underlying asset. This is by the way the major

difference between delta hedging and the other two strategies, because both

delta-gamma and mean-variance approaches dynamically change number of

options in portfolio in time. Nevertheless, we include the variable β in (3.1)

in order to remain consistent with the other two strategies, even though

βδ0 = βδ1 = . . . = βδT is always satisfied.
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3.3 Delta - Gamma Trading Strategy

The delta - gamma hedging strategy is a very simple method to manage a

given portfolio of derivatives. Its main idea is keeping the total gamma of the

portfolio close to zero such that the fluctuations of underlying asset do not

affect its value too much. This is done using gammas of options included in

portfolio. Furthermore, the total delta is put equal to zero by some amount

of the underlying asset. But firstly, we want to achieve a zero gamma.

In case of european options, the task is very simple since the total gamma

of the portfolio Γ equals the weighted sum of gammas of all the options in

this portfolio and we are able to analytically find a formula that expresses

them in the Black Scholes model (see lemma (5.0.3)). Strictly speaking, if

we had n options denoted by i ∈ {1, 2, . . . , n} in every time period then the

gamma hedging constraint would take on the following form:

Γ =
n∑
i=1

βiγi = 0. (3.7)

Since there are n derivatives in our portfolio, there is obiously not a

unique solution to (3.7), but a set of solutions instead. Therefore, we have

to find a unique gamma-hedged portfolio in each time period. Since there

are multiple ways to do so, we have to pick one particular. Therefore we are

going to solve the following problem in every period t ∈ {0, 1, . . . , T − 1}:

{∆β+
t ,∆β

−
t } := arg max

x≥0,y≥0

[
cTBS(βt−1 + x− y)− (xT cask − yT cbid)

]
(3.8)

s.t. (βt−1 + x− y)Tγt = 0 (3.9)

What it actually states is that we want to maximize the portfolio Black-

Scholes value with the least possible cost while keeping the Γ equal to zero.

The new β is consequently defined as follows:

βt := βt−1 + ∆β+
t −∆β−t (3.10)
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It is understandable that this approach is rather locally optimal, because

we are not considering the character of S in a long time horizon. Instead, we

only focus on a one period optimization.

The actual optimization is done using MATLAB, more precisely using its

built-in function called linprog. linprog uses a projection method to solve

the medium scale linear programming problems which is exactly our case 1.

Now the only thing that needs to be done is keeping the portfolio delta

equal to zero. This is done simply by delta hedging each option that we

are trading in and can be seen from the way process πγ is defined in the

beginning of chapter (3.2).

In the simulation, we stop trading in options some time before the ex-

piration date in order to maintain lower standard deviation. The reason

is very well described by the quotation from [12]: ”The instability comes

about because gamma goes to zero extremely quickly—exponentially squared

fast—when the strike moves away from the spot. The closer we are to expiry,

the worse things are.”

3.4 Mean-Variance Trading Strategy

The Mean-Variance trading strategy does not differ from the gamma strategy

that much. Just like in the previous strategy, we are working both with

options and stock again. The difference is in the way how portfolio is created.

As we will see, the task cannot be reduced to a linear programming problem

which was the case of gamma strategy, but to a quadratic programming

problem instead.

Since the correlation matrix derived in previous chapter was defined for a

given hedged positions, it is understandable that we have to work with them

if we want to use this matrix in our approach. Therefore, we are not trading

only in options, but in the underlying asset as well.

1It is an active set method which means it is derived from a well known simplex method

proposed by Dantzig, more details in [5].
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The actual Mean-Variance trading strategy rebalances the portfolio vector

βt in every period t ∈ {1, 2, . . . , T − 1} such that the following utility is

maximized:

U(πT ) = E[πT ]− α

2
Var[πT ] (3.11)

πT := πt + (βTt VT − βTt ξ · St − βTt Vt), (3.12)

where again, βTt ξ ·St stands for any trading in stock that was made between

t and T , with ξ being a vector now.

In other words, we are trying to find a beta as of time t that would follow

our mean-variance preferences if not changed again in due course. This is the

reason why no transaction costs were included in the definition of U(.). We

are simply looking for an optimal β, given that we are not going to change

it again. Obviously:

Et[πT ] = Et[πt + (βTt VT − βTt ξ · St − βTt Vt)] =

= Et[πt] + Et[(β
T
t VT − βTt ξ · St − βTt Vt)] =

= Et[πt] =

= πt

Vart[πT ] = Vart[πt + (βTt VT − βTt ξ · St − βTt Vt)] =

= Vart[β
T
t VT − βTt ξ · St − βTt Vt] =

= Vart[β
T
t (VT − ξ · St − Vt)] =

= βTt Vart[VT − ξ · St − Vt]βt =

= βTt Σtβt,

where Σ is our well known covariance matrix of hedged positions.

Therefore, we are able to express the utility at time t in a following way:

U(πT ) = πt −
α

2
βTt Σtβt (3.13)

The question we are going to solve looks as follows. Suppose we have just

arrived at time t, which means we have a current portfolio value of πt−1 plus
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some changes in the option and stock price that have occurred since the last

period. This portfolio value consists from a set of βt−1 options and −βTt−1ξt−1

stocks, the rest is money on a risk-free bank account. The question we are

asking ourselves is how can we change the option portfolio such that the

utility U(πT ) from (3.11) is maximized?

In summary, the problem formulated at time t takes on the following form

if we replace βt with βt−1 +x−y which is how we construct the new portfolio

vector:

{∆β+
t ,∆β

−
t } := arg max

x≥0,y≥0

[
πt−1 + (x− y)TVt+ (3.14)

+ βTt−1(Vt − ξt(St − St−1)− Vt−1)−

−(xT cask − yT cbid)−
α

2
(βt−1 + x− y)TΣ(βt−1 + x− y)

]
.

As we have already mentioned, the new vector βt is constructed in the

same fashion as it was in the previous strategy. That means:

βt := βt−1 + ∆β+
t −∆β−t (3.15)

This, however, is where the similarity ends. Unlike the problem in gamma

hedging, this optimization is not linear and therefore cannot be solved using

linear programming techniques. In order to solve it, we are going to transform

it to a quadratic programming problem of a specific shape which can be solved

numerically.

Define vector ∆β∗t and matrix Σ∗t :

∆β∗t :=

[
∆β+

t

∆β−t

]
(3.16)

Σ∗t :=

[
Σt −Σt

−Σt Σt

]
(3.17)

(3.18)
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Then (3.14) can be rewritten as:

∆β∗t := arg max
z≥0

[
πt−1 + zT

[
Vt

−Vt

]
+

+ βTt−1(Vt − ξt(St − St−1)− Vt−1)−

−zT
[
cask

−cbid

]
+ zT

[
−αΣβt−1

αΣβt−1

]
− α

2
zTΣ∗t z

]
=

= arg max
z≥0

[
zT

[
Vt − cask − αΣβt−1

cbid − Vt + αΣβt−1

]
− α

2
zTΣ∗t z

]
. (3.19)

Clearly, (3.19) is a problem where the optimized function takes on form

fTx− 1
2
xTHx which is already a shape that can be solved using MATLAB’s

function quadprog 2.

3.5 Monte Carlo Simulation

We have defined all three strategies in the previous section. Now we are

going to compare them using a monte carlo simulation. We assume to have

a stock with initial value S0 at time zero which follows a geometric Brownian

motion without price jumps. There is a spread in the option price just like

in the real market with the Black-Scholes value being the benchmark from

which it is created. A particular relization of the spread can be seen in figure

(3.2). We create the spread according to the value of the option and to the

change in the underlying stock.

We assume the Black-Scholes price to be lower than the bid price of the

option. This corresponds with the real market data. The actual comparison

of strategies is based on the processes πδ, πγ and πMV from (3.1),(3.2) and

(3.3), since they represent the total profit from following a particular strategy,

including the value obtained from trading in the underlying asset and the

total value of all options.

2This function is based on the interior-reflective Newton method described in [4].
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Figure 3.2: Realization of a bid-ask spread with S0 = 100,K = 100, µ = 0.05, σ =

0.2, T = 1

Simulation of Mean-Variance strategy for different levels of risk aversion

is depicted in figure (3.3).

Both gamma and delta approaches tend to have higher standard deviation

and lower expected profit than the mean-variance strategy we propose. We

have simulated their evolution using monte carlo technique. The distribution

of profit in this case depends on the risk aversion coefficient as well, because

delta and gamma strategies both start from the portfolio which is optimal

in a mean-variance sense. In order to create such a portfolio, coefficient α is

required. Therefore, the distribution of profit depends on it. Consequently,

the characteristics of the two strategies look as shown in figures (3.4) and

(3.5).

In order to clarify the approach, we present the step-by-step algorithm
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Figure 3.3: Monte Carlo simulation of profit from following the Mean-Variance

strategy for different values of risk aversion coefficient α with parameters S0 =

100, µ = 0.05, σ = 0.2, T = 1 in case CBS < Cbid < Cask

α Avg CI of Avg Std CI of Std

0.05 10.0783 [9.7972,10.3608] 3.1600 [2.9521,3.4048]

0.1 9.9430 [9.7085,10.1644] 2.5765 [2.4177,2.7548]

0.5 9.5200 [9.4423,9.5950] 0.8787 [0.8278,0.9313]

1 7.9354 [7.8871,7.9817] 0.5525 [0.5192,0.5882]

5 6.6575 [6.6111,6.7024] 0.5289 [0.4982,0.5615]

100 6.2986 [6.2498,6.3494] 0.5791 [0.5374,0.6257]

for generating the monte carlo simulation:

1. Initialization of market

We set the basic parameters of the market. These include the time to

expiry, the number of trading days per year, the parameters of under-

lying price process or for example the investor’s risk aversion.

2. Creation of starting portfolio

This portfolio maximizes the mean-variance preferences for a given risk

aversion coefficient α.

3. Simulation

We generate random stock prices such that the underlying price pro-

cess follows geometric Brownian motion. Strategies trade in underlying

and/or options according to their definitions during the whole simula-

tion.

4. Collecting Results

Sample distribution of profit from following a particular strategy is

created for all of them and some characteristics are evaluated (mean,

standard deviation and confidence intervals for both parameters).
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Figure 3.4: Monte Carlo simulation of profit from following the Delta strategy

for different values of risk aversion coefficient α with parameters S0 = 100, µ =

0.05, σ = 0.2, T = 1 in case CBS < Cbid < Cask

α Avg CI of Avg Std CI of Std

0.05 10.0676 [9.7817,10.3447] 3.2906 [3.0582,3.5952]

0.1 9.9745 [9.6920,10.2385] 3.0748 [2.8767,3.2985]

0.5 9.6106 [9.4409,9.7728] 1.8895 [1.7615,2.0562]

1 7.6103 [7.5101,7.7016] 1.0627 [0.9888,1.1600]

5 5.9256 [5.9082,5.9420] 0.1931 [0.1788,0.2097]

100 5.5583 [5.5574,5.5591] 0.0100 [0.0092,0.0107]

In every simulation, we assume to issue a portfolio of options that ex-

pires in one year. This portfolio is dynamically rebalanced depending on the

strategy we use (except for delta strategy which does not change the amount

of options). We are initially assuming to sell options with profit and then we

are trying to hold the portfolio steady and obtain some positive profit from

the whole process.

As we can see from the figures, the mean-variance strategy behaves much

better than the other two strategies do both in the matter of expected profit

and in the matter of standard deviation. For an example of approximate

distribution for all strategies refer to figure (3.6).

Furthermore, it is worth noting what happens for different levels of risk

aversion. Clearly, if we put α closer to zero, we are actually stating that risk

does not mean that much to us. And of course as we can see from the figures,

the mean-variance characteristics of this case are close to the characteristics

of basic delta hedging, because that is exactly how delta hedging is defined.

Therefore, we can understand our strategy as a modification of delta

hedging, where we are able to decrease the standard deviation of profit in

exchange for a decrease in its expected value. Then, depending on our sub-

jective preferences, we can adjust the value of α such that the resulting
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Figure 3.5: Monte Carlo simulation of profit from following the Delta strategy

for different values of risk aversion coefficient α with parameters S0 = 100, µ =

0.05, σ = 0.2, T = 1 in case CBS < Cbid < Cask

α Avg CI of Avg Std CI of Std

0.05 8.8758 [8.4714 9.2170] 4.2958 [3.5750 5.8114]

0.1 9.0280 [8.6934 9.3775] 3.9389 [3.1533 5.4118]

0.5 8.9437 [8.6638 9.2717] 3.4948 [2.9006 5.0554]

1 7.1680 [6.9712 7.3531] 2.1465 [1.7671 2.8073]

5 5.9117 [5.8618 5.9696] 0.6216 [0.4737 0.9050]

100 5.5555 [5.5536 5.5574] 0.0218 [0.0177 0.0303]

distribution reflects them better.

3.5.1 Summary

We have tested the mean-variance strategy in two different cases of which

one was meant for its theoretical evaluation and the other one tried to mimic

real markets by the choice of bid and ask prices above the Black-Scholes

price. We have included only one of them in the thesis because they behave

almost identically. In both variants, we have observed that our strategy

dominates both delta and gamma hedging in terms of expected profit and

expected variance. In other words, we are able to reduce the risk incurred

from hedging european options in discrete time significantly by following this

approach.
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Figure 3.6: Approximate distribution of profit from following a particular strat-

egy. Computed for α = 1 and 500 observations from monte carlo

40



Chapter 4

Results & Conclusions

Despite the fact, that the primary goal of the Mean-Variance theory is to

evaluate risk associated with trading in derivatives, we have shown that it is

actually possible to use it for expressing covariance between hedged positions

and moreover to create an interesting trading strategy.

Contribution of this thesis is twofold. One major contribution is the

derivation of covariance matrix for a given portfolio of options described

in chapter 2. Despite really extensive derivation which we did not include

completely1, it can be easily implemented due to its quite simple final shape.

Although this concept by itself is already very interesting, we have decided

to go even further and to use it for creating a trading strategy, which is the

second contribution of our thesis. As we have seen, this strategy behaves very

well in comparison with two basic approaches that are commonly used today.

For an investor with Mean-Variance preferences, our strategy is exactly what

he is looking for. And since the Mean-Variance preferences are realistic when

dealing with uncertainty, we believe that our strategy is a very reasonable

alternative to the other ones we have compared it to.

1The derivation spans a huge amount of pages and includes only some basic algebraic

operations. Therefore it is not interesting to mention it here in its full length
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Chapter 5

Appendix

Lemma 5.0.1. Let X and Y be two european options and let X+Y be their

combination (i.e. a position of holding one X and one Y ). Denote by γX ,

γY and γX+Y their respective gammas. Then the following identity holds:

γX+Y = γX + γY (5.1)

Proof. From [3] we know the price PX+Y of the position X + Y equals:

PX+Y = PX + PY (5.2)

Therefore it holds that:

∂2PX+Y

∂S2
=
∂2PX
∂S2

+
∂2PY
∂S2

(5.3)

γX+Y = γX + γY (5.4)

Lemma 5.0.2. Suppose A,B and C are real numbers and moreover that

A > 0. Then the following equality holds:∫ ∞
−∞

exp

[
−1

2

(
Ax2 +Bx+ C

)]
dx =

√
2π√
A

exp

[
−1

2

(
C − B2

4A

)]
(5.5)
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Proof. Firstly, we will focus on the expression in brackets inside the integral.

It can be easily seen that:

Ax2 +Bx+ C = Ax2 + 2
√
Ax

B

2
√
A

+
B2

4A
− B2

4A
+ C = (5.6)

=

(√
Ax+

B

2
√
A

)2

+

(
C − B2

4A

)
. (5.7)

Now let us focus on the original integral and its evaluation. Using the previ-

ous result, we obtain the following formula:∫ ∞
−∞

exp

[
−1

2

(
Ax2 +Bx+ C

)]
dx = (5.8)

=

∫ ∞
−∞

exp

[
−1

2

((√
Ax+ (

B2

2
√
A

)

)2

+

(
C − B2

4A

))]
dx = (5.9)

= exp

[
−1

2

(
C − B2

4A

)]∫ ∞
−∞

exp

[
−1

2

(√
Ax+

B

2
√
A

)2
]

dx = (5.10)

=

√
2π√
A

exp

[
−1

2

(
C − B2

4A

)]
· (5.11)

·
∫ ∞
−∞

1√
2π

exp

[
−1

2

(√
Ax−

(
− B

2
√
A

))2
]

︸ ︷︷ ︸
Density function of normal distribution

dx = (5.12)

=

√
2π√
A

exp

[
−1

2

(
C − B2

4A

)]
(5.13)

(5.14)

,where we have used that the density of any statistical distribution including

normal distribution must have integral from −∞ to ∞ equal to 1. In our

case, the random variable was
√
AX with mean equal to − B

2
√
A

and variance

equal to 1.

Lemma 5.0.3. Gammas of european put and call options are the same and

equal to

γ =
φ(d1)

Sσ
√
T − t

(5.15)
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where φ(.) is a density of normalized normal distribution and

d1 =
ln S

K
+ (r + σ2

2
)(T − t)

σ
√
T − t

(5.16)

Proof. We will derive the gamma for both types of option separately.

• Call option

Since γ is a second partial derivative of option price with respect to

the underlying asset price, we can evaluate it as a partial derivative

of option’s delta with respect to the same variable. Therefore, we will

evaluate the option’s delta first. Denote the price of european call

option in time t by C(S, t). It follows from [3] that

C(S, t) = Φ(d1)S − Φ(d2)Ke−r(T−t) (5.17)

where Φ(.) is a cumulative distribution function of standard normal

distribution and

d1 =
ln S

K
+ (r + σ2

2
)(T − t)

σ
√
T − t

(5.18)

d2 =
ln S

K
+ (r − σ2

2
)(T − t)

σ
√
T − t

(5.19)

Therefore the option delta equals:

∆ =
∂C(S, t)

∂S
= Φ(d1) + S

∂Φ(d1)

∂S
−Ke−r(T−t)∂Φ(d2)

∂S
= (5.20)

= Φ(d1) + S
∂Φ(d1)

∂d1

∂d1

∂S
−Ke−r(T−t)∂Φ(d2)

∂d2

∂d2

S
= (5.21)

= Φ(d1) + S
1√
2π
e
−d21
2

1

Sσ
√
T − t

− (5.22)

−Ke−r(T−t) 1√
2π
e
−d21
2
S

K
er(T−t)

1

Sσ
√
T − t

= (5.23)

= Φ(d1) +
S

Sσ
√

2π(T − t)
e
−d21
2 − S

Sσ
√

2π(T − t)
e
−d21
2 = (5.24)

= Φ(d1). (5.25)
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This follows from the fact that

∂Φ(d1)

∂d1

= φ(d1) =
1√
2π
e
−d21
2 (5.26)

∂Φ(d2)

∂d2

= φ(d1) =
1√
2π
e
−d22
2 =

1√
2π
e
−(d1−σ

√
T−t)2

2 = (5.27)

=
1√
2π
e
−d21
2 ed1σ

√
T−te

−σ2(T−t)
2 = (5.28)

=
1√
2π
e
−d21
2 e

ln S
K

+
(
r+σ2

2

)
(T−t)

e
−σ2(T−t)

2 = (5.29)

=
1√
2π
e
−d21
2
S

K
er(T−t) (5.30)

∂d1

∂S
=

1

Sσ
√
T − t

. (5.31)

Derivation of gamma for a call option is now straightforward:

γ =
∂2C(S, t)

∂S2
=
∂δ

∂S
=
∂Φ(d1)

∂S
=
∂Φ(d1)

∂d1

∂d1

∂S
= (5.32)

=
φ(d1)

Sσ
√
T − t

. (5.33)

• Put option

Denote the price of european put option in time t by P (S, t). We

could proceed analogically to the previous case of call option, but the

derivation is much more simple using the put call parity [11].

P (S, t) = Ke−r(T−t) − S + C(S, t) (5.34)

It is obvious that this implies the delta of put option equal to:

δ = Φ(d1)− 1 (5.35)

And therefore since derivative of a constant is zero, it is clear that γ of

a put option is the same as the γ of a call option which is

γ =
φ(d1)

Sσ
√
T − t

. (5.36)
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[8] Hans Föllmer and Martin Schweizer. Hedging by sequential regression:

An introduction to the mathematics of option trading. ASTIN Bull,

18:147–160, 1988.

[9] Michael Kamal. Quantitative strategies research notes. Goldman Sachs

Equity Derivatives Research, 1998.

[10] G.F. Kuncir. Algorithm 103: Simpson’s rule integrator. Communica-

tions of the ACM, 5(6):347, 1962.

[11] Samuel Armstrong Nelson. The ABC of options and arbitrage. New

York, Nelson, 1904.

[12] Rolf Poulsen. Four things you might not know about the black-scholes

formula.

[13] Klaus Bjerre Toft. On the mean-variance tradeoff in option replication

with transaction costs. Journal of Financial and Quantitative Analysis,

31(2):233–263, Jun 1996.

47


