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Abstract

Uhliarik, Marek: In this thesis we focus on the nonlinear Black-Scholes equa-
tion and its solving by numerical methods. Nonlinear Black-Scholes models im-
prove the linear ones in the way that volatility is no longer constant but it takes
into consideration some extra variables. It can be e.g. transaction costs, a risk
from a portfolio, preferences of a large trader, etc. We shall work with the trans-
Jformed Black-Scholes equation (Gamma equation) yielding more robust numeri-
cal approximation schemes.

This master thesis is organised in the following way. In the first chapter we offer
some short introduction into the theory of the financial derivatives. The second
chapter is devoted to the volatility models which are further used in the thesis.
We work with e.g. Jumping volatility model, Leland’s model or RAPM model. In
the third and fourth chapter we introduce used numerical schemes and deriva-
tion of the Gamma equation. In the last chapter, there are numerical results from
our experiments. [Master thesis], Comenius University in Bratislava, Faculty of
Mathematics, Physics and Informatics, Department of Applied Mathematics and
Statistics. Bratislava, 2011, 66 p.

supervisor: Prof. RNDr. Daniel Sevéovic, CSc.

Keywords: nonlinear Black-Scholes equation, Gamma equation, numeri-
cal methods, Khaliq-Liao method, RAPM model, Model with variable trans-
action costs according to Amster and et al.



Abstrakt

Uhliarik, Marek: V tejto diplomovej prdci sa zameriavame na nelinedrnu Black-
Scholesovu rovnicu a na moZnosti rieSenia tejto rovnice pomocou numerickych
metod. Nelinedrne Black-Scholesove modely vylepsuji linedrne tym, Ze volatilita
uZ nie je konstantou, ale je to funkcia zdavisld od viacerych premennych a tym pd-
dom dokdZe lepSie aproximovat’ skutocnost’. K takymto premennym patria napri-
klad transakcné ndklady, riziko z portfolia alebo preferencie vel’kého investora na
trhu. Pracujeme s tzv. Gamma rovnicou, ktord je odvodend od Black-Scholesovej
rovnice a poskytuje lepSie moZnosti pre numerické riesenie.

Usporiadanie diplomovej prdce je nasledovné. V prvej kapitole uvedieme krdtky
prehl’ad z oblasti financnych derivdtov. Druhd kapitola sa bude venovat’ mode-
lom volatility, ktoré sa v prdci d’alej vyuZivaju. Je to napriklad Amsterov model,
Lelandov alebo RAPM model. V tretej a Stvrtej kapitole predstavime numerické
schémy ako aj odvodenie Gamma rovnice 7 Black-Scholesovej rovnice. Poslednd
kapitola bude venovand numerickym vysledkom. [Diplomova praca], Univerzita
Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky, Katedra ap-
likovanej matematiky a Statistiky. Bratislava, 2011, 66 s.

vediici diplomovej préce price: Prof. RNDr. Daniel Sevovié, CSc.

Kracové slova: nelinearna Black-Scholesova rovnica, Gamma rovnica,
numerické metédy, Khalig-Liao metéda, RAPM model, Model s variabil-
nymi transakénymi nakladmi podla Amstera a kol.
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Introduction

Introduction

In finance, a financial derivative is a instrument whose value depends on some
more basic underlying asset. A big part of the financial market is devoted right
to the financial derivatives. For some of them it is difficult to find a proper price
and therefore there is a big effort to find new models or to improve current ones
which would approximate the real price of the derivative as good as possible.
Model which is particularly used for this purpose is Black-Scholes model and in
this thesis we will work with it. Generally used Black-Scholes model considers
volatility to be constant. However, there are extensions of this model which take
some extra variables (transaction costs, presence of a big trader on the market, ...)
into consideration. Volatility in these extended models is not constant anymore
and therefore term nonlinear Black-Scholes models is used for such models. This
thesis is focused right on these volatility models.

In the beginning of the thesis we will introduce theory from the area of the
financial derivatives. We will focus particularly on the options. Then we will in-
troduce some nonlinear volatility models. Among others there will be Leland’s
model, RAPM model or Model with variable transaction costs. We shall work
with a transformed Black-Scholes equation (Gamma equation) yielding more ro-
bust numerical approximation schemes. Also these numerical schemes will be

introduced.



Chapter 1
Financial derivatives

A financial derivative (contingent claim) can be defined as a security which value
depends on the value of a more basic underlying asset. To the most common vari-
ables affecting financial derivatives belong the price of the traded asset, interest
rate, time to maturity, exercise price and so on.

The primary purpose to trade financial derivatives is to minimise potential
losses, caused by unpredictable movements of the underlying asset. The basic
financial derivatives are particularly forwards and options.

A forward contract (also future if traded on an exchange) represents an agree-
ment between two parties, that one party will purchase an asset on a certain time
for a predetermined price from a counterparty.

On the other hand, options offer a right but not the obligation (compared to
forwards) to sell or buy an asset for a predetermined price at a certain time in the
future. Therefore, options can be considered as the way of an "insurance" against
unpleasant movements of the price. Except from the right for selling / buying the
asset, the option’s owner has to pay some fee, called premium, for entering the
option contract. On the contrary, by a forward contract no such fee exists. In this
thesis we will focus especially on the call and put options.

European call (put) option is a contract which gives the holder the right, but
not the obligation to buy (sell) a predescribed asset, known as an underlying asset
by a certain date 7' (expiration date or maturity) for a predetermined price F
(called strike or exercise price). If the holder of the option wants to exercise the

call option, the writer has the obligation to sell (buy from) him the underlying



Financial derivatives

asset for an agreed strike price (then it is called exercised option). The holder of
the European option can exercise this option only at the expiration time 7'.
At the time 7', when the holder has the possibility to exercise the call option,

three different scenarios of the asset’s current price S(7°) can come true.

e S(T) > E - in this case the holder of the option can buy an asset for the
strike price which is lower than the current price. Therefore he will exercise
the option and he has the possibility to sell immediately the asset for the
price S(7"). Then his gain S(7") — E will be positive. This option is called

in-the-money option.

e S(T) = FE - the cash flow following immediate exercising of the option has

zero value. This option is called at-the-money option.

e S(T) < FE - exercising of the option would result in negative cash-flow.

This last case is called out-the-money option.

In the last two cases the holder will not exercise the option because at the time 7'
he has the possibility to buy an asset on the market for a price equal to or lower
than £. It would be therefore pointless to exercise the call option and to pay more
than the asset’s market price. The value of the European call option is represented

by the following function (so-called pay-off function)
V(S,T) =max(S(T) — E,0) = (S(T) — E)*.

In Figure (1.1) the payoft function for the European Call option is depicted.

The same three cases may appear for a European Put option. If S(7') < E,
the option is in-the-money. The holder can sell the asset for a price higher than
its current price. If S(T) = FE it is at-the-money and in the last case we refer to
the out-the-money option. The pay-off function for an European put option (see
Figure 1.2) is given by

V(S,T) = max(E — S(T),0) = (E — S(T))*.

Already mentioned pay-off functions were from the perspective of the holder
of the option, i.e. of the long position. The holder has the possibility to buy

the underlying asset and become the owner of the asset. We can obtain pay-off

10
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Figure 1.1: Pay-off function for a Call option.

functions for the writer of the option (short position) by multiplying the pay-off
function for the holder by (—1).

The second type of the options are American options. In contrast to the Euro-
pean options, American options can be exercised at any time until the expiration
date. This extra right has to be also reflected in the price of the option. Therefore,
the value of an American option is never smaller than the value of the European
option (the holder of the American option has at least the same rights as the holder
of the European option). This extra premium is called the early exercise premium.

The price of the stock option is affected by the following factors: the current
stock price (Sp), the strike price (£, time to expiration (7' — t), the volatility of
the stock (o), the risk-free interest rate (r), dividends expected during the life time
of the option. The good way of an explanation of the influence of these variables
on the American / European options offers Table 1.1 taken from Hull [15].

The influence of the strike price and the current stock price at the time 7'
is evident from the payoff function of the option. The time effect is obvious.
The holder of the American option with 75 > 7} has all the opportunities for
exercising the option as the holder of the American option with the exercise time
Ty and even more. Therefore, with the increasing time the value of the option also
increases for the American options. The time effect for the European options is

not so clear. As the volatility of the underlying asset increases, the chance that the

11
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Figure 1.2: A pay-off function for a Put option (K is the strike price).

value of the option will do very well or poorly increases. On the other hand, the
holder of the option has only limited losses. So with increasing volatility the value
of the option also increases. By increasing interest rate in economy, the expected
return for investors has to increase too. The present value of the future cash flow
decreases. So the value of the put decreases and the value of the call increases.
The last factor which influences the value of options is the presence of dividends.
Dividends reduce the stock price on the "exdividend date" (time after dividends
are paid out). The value of the call option is therefore decreasing and the value of
a put is increasing.

The presence of dividends is described by a dividend yield q. 1f there are no
dividends and all other parameters are the same, it is supposed that the value of
the American and European Call to be equal. On the other hand, exercising of the
American Put option prior to expiry can be often more advantageous than waiting
to expiry. So the value of the American Put option is higher than the value of the

European Put option.

12



1.1. THE BLACK-SCHOLES EQUATION Financial derivatives

Variable European European American American
call put call put
Current stock price + - + -
Strike price - + - +
Time to expiration ? ? + +
Volatility + + + +
Risk free interest rate + - + _
Dividends - + - +

Table 1.1: The effects of increasing one variable on option price, while others are
fixed

The American and European options are called vanilla options. This means,
that their value depends only on the value of the asset at focus on the final time 7'.
Options which value depends on the path of the underlying asset are called exotic
or path-dependent options. To this type of options belong for example Asian
options, Barrier options and others. However, in this thesis we focus particularly

on the vanilla European options.

1.1 The Black-Scholes equation

1.1.1 The linear Black-Scholes equation

In the beginning of the 1970’s Fisher Black, Myron Scholes [6] and Robert Mer-
ton [21] made a great progress in the option pricing theory. Their classical model
had a great influence on how traders priced options and also classical hedge op-

tions. The famous Black-Scholes (linear) partial differential equation (PDE)

ov OV o 0%V

was first time introduced in 1973 by Black and Scholes [6]]. They derived it by
using It6 ’s lemma (see Appendix) and used that

dS = puSdt + o SdW. (1.2)
The derivation was based on a synthetized portfolio

=V + 68, (1.3)

13



1.1. THE BLACK-SCHOLES EQUATION Financial derivatives

where § = —g—‘g is a trading strategy. In equation ll S stands for S(t) > 0
and time ¢ € (0,7T"). This equation gives us an option pricing formula for both the
American and European option in dependence on the terminal conditions. The

rather restrictive assumptions of this equation are following [24]

1. There are no arbitrage opportunities - it means there is no possibility to
make a risk free profit ("no free lunch").

2. The price of the asset follows the Geometric Brownian motion (GBM) - this
means, that the price of the asset S fulfills equation (1.2]).

3. The trend (drift) u, the risk-free interest rate r and the volatility o are con-

stant.

4. The market is frictionless - market is without any transaction costs (no fees
and no taxes), the interest rates for borrowing and lending money are equal,
all parties have an immediate access to complete information. All securities,
informations and credits are available at any time and at any size. Therefore,
all variables are perfectly divisible (can take any real number). It is also

assumed that the individual trading will not influence the price.

Kwok [19] mentions even some more assumptions. He assumes also that the
trading takes place continuously in time, there are no dividends and no penalties
to the short selling and the full use of proceeds is permitted.

Under this assumptions we talk about a complete market, i.e. any derivative
can be replicated or hedged with a portfolio of other assets in the market. The
derivation of the Black-Scholes formula can be found for example in Seydel’s
book [24].

1.1.2 Nonlinear Black-Scholes equations

As we can see from the assumptions of the linear Black-Scholes equation (1.1
some of its assumptions are rather restrictive. Furthermore, some of them are
never fulfilled in reality. The problem is particularly with the presence of transac-
tion fees, incomplete markets or large investors preferences. In recent years some
assumptions have been relaxed to solve these restrictions. Here comes the moti-

vation to study the Black-Scholes equation in a nonlinear way. In this thesis we

14



1.2. THE TERMINAL AND BOUNDARY CONDITIONS Financial derivatives

consider different models concerning the volatility to be not constant. This means
that it depends on time to maturity (7' — t), the asset price (S) or on the second

derivative of the option price 92V, i.e. we put

~ ~ 2
02 =02 (T—t,S,a—V>.

05?2
Consequently, the nonlinear Black-Scholes equation has the following form
ov ov 1~ OV _,0%V
— 4+ rS—+ =0T 1,8, ——)S*— —rV =0 1.4
or s T I TS e g V=0 (49

with dS = pSdt +aSdW, S > 0.
It is worthwhile noting, that in the financial world partial derivatives from the
Black-Scholes equation are often represented by so-called Greeks
ov ov 0*V
— =: 0: — = A —_—
ot ’ 08 ’ 05?2
The nonlinear Black-Scholes equation (I.4)) has then following form

1
O +rSA + 5&2(T —t,5,1)S’T —rV = 0. (1.5)

1.2 The terminal and boundary Conditions

In order to find the solution of the Black-Scholes equation (I.4)) we have to supply

boundary and terminal conditions.

1.2.1 The European Options
The European Call option

The terminal condition for the European Call option was already mentioned (con-
dition at time ¢t = T"). The boundary conditions are located at S = 0 and .S — oo.
To summarise it, the solution of for the Call option defined on the domain
S €1]0,00) and t € [0, 7] has the following conditions

15



1.2. THE TERMINAL AND BOUNDARY CONDITIONS Financial derivatives

V(S,T) = max(S — E,0), S €]0,00),
V(0,t) =0, tel0,T],
V(S,t)~S —Ee Tt S 0.

With these boundary and terminal conditions we can determine the value for

the European Call option from the equation (I.4)) as
C(S,t) = SN(dy) — Ee " T=YN(d,), (1.6)

where

d = , (1.7)

4 — ln(%)—k(r—%)(T—t):dl_aﬁ.

and N (z) is normal cumulative distribution function.

The European Put option

In the same way we formulate terminal and boundary conditions for the European
Put option on the domain S € [0,00) and ¢ € [0, T

V(S,T) = max(E — S,0), S € [0,00),
V(0,t) = Ee"T=t)  t 0,7,
V(S,t)=0, S — oc.

The value of the European Put option with the above mentioned terminal and

boundary conditions is
P(S,t) = Be "M N(—dy) — SN(—d,), (1.8)

where d; and d, are given in (1.7).

16



Chapter 2
Volatility models

As it was already mentioned in the first chapter, the considered nonlinear Black-
Scholes equation differs from the linear Black-Scholes equation right in the volatil-
ity. In the case of the nonlinear Black-Scholes equation we cannot consider
volatility as constant, but it depends on some variables. In this chapter we will
mention five volatility models including transaction costs: Leland’s model, the
Risk adjusted pricing methodology model (RAPM), Model with variable transac-
tion costs according to Amster and et al., Jumping volatility model and Barles-
Soner’s model which consideres also investor’s preferences. Furthermore, we

present one extra model using the idea of Amster et al.’s model.

2.1 Leland’s model

The first model concerning transaction costs we mention is Leland’s model [20].
This model was introduced in 1985 by Leland and further extended by Hoggard,
Whalley and Wilmott [12]. We are concerning a portfolio IT = V' + .S. Change
of the portfolio is equal to the change of a riskless bond (i.e. portfolio with a
risk-free interest rate). On the other hand, trading of an asset leads also to some
nontrivial transaction costs 7'C, that should be also added to the change of the

portfolio. Therefore we get
rlldt = dll = d(V +§S) — dT'C, (2.1)
where

dTC = C|k|S/2. (2.2)

17



2.1. LELAND’S MODEL Volatility models

Here C denotes the round trip transaction cost per unit dollar. Then

Sask: - Sbid
g )

where Sy, Spiq stand for Ask and Bid prices of assets, respectively (see Ap-

C = (2.3)

pendix) and S is the mid value of the asset (average of Bid and Ask prices).
As k stands for amount of the traded assets [20], it can be written as &k = dd
(change of the traded amount over a time step dt - if the sign is negative we

sell, if positive we buy the asset). As the trading strategy standard delta hedging

0 =—5%¢ 1s used. Therefore applying It6’s lemma (see Appendix) on this strategy
foads to 0?V 0*V 103V

dd = ———oSdW — dt — = ——cdt. 24

0527 052! T 29587 9

We approximate d¢ in dWW and get

0*V

Following Leland’s approach from [20] we approximate |dWW| by E(|dW|) and

E(|dW|) = E(|®))Vdt = \/g\/%. (2.6)

Therefore
o*V

\/_832\/%

Finally, after some adjustments and applying It6’s lemma on the function V', ap-

dTC = S?

proximating the equation in dt and finally after deviding whole equation by dt we

get the governing equation

av 1 o*V o*Vv oV
W%—— 0?52 (1+L651gn<652>> 552 S%—H/—O (2.7)

Therefore the volatility in the case Leland’s model is

2
=0 (1 + Le sign (g;ﬁ)) (2.8)

and Le is so called Leland’s constant defined as

2 C
Le=4/— ) 2.9
¢ \/;0\/ dt (29)

18




2.2. THE RISK ADJUSTED PRICING METHODOLOGY Volatility models

2.2 The Risk Adjusted Pricing Methodology

Another model discussing transaction costs is the Risk Adjusted Pricing Method-
ology (RAPM) model. This model was introduced by Kratka [18] and improved
by Sev&ovi¢ and Jandatka [16] . Improvement of [16] concludes with a model,
which is scale invariant and mathematically well-posed, what was missing in
Kratka’s model. In this paper except from the transaction costs also risk from
a volatile portfolio is concerned. Both risk and transaction costs are dependent
on the time lag between two consecutive adjustments of the portfolio. With in-
creasing time lag, the risk from volatility of the portfolio is increasing, on the
other hand with decreasing time lag the transactions costs are increasing. In [16]

authors look for an optimal time difference between consecutive adjustments.

2.2.1 Derivation of the RAPM model

By derivation of the scale-invariant RAPM model we assume that the asset pays
no dividends and the asset price follows (I.2). Following the ideas of Black and
Scholes a portfolio (1.3) is constructed. Originally, in Black-Scholes theory is
assumed, that

AIl = rllIAt. (2.10)

However, such a simplified assumption is not satisfied and risk should be also
considered. In the RAPM model we consider AIl = rITIAt + rrSAt [16]. The
total risk (rz) per unit asset price consits of the transaction risk rp¢ and risk,
which comes from the volatility of the portfolio ry p, so rg = rrc + ryp. The
model of [16] considers separately transaction costs and risk of portfolio and then,

as already mentioned, minimises the total risk.

Modeling the risk from transaction costs and volatile portfolio

Transaction costs - Similarly as in the case of the Leland’s model, the transaction
costs are considered to be C'S/2|k|. The change of portfolio can be again written
as dIl = AV + ddS — C|dd|S/2, where § is again the hedging strategy. And
finally we arrive at

AIl = AV 4+ 6AS — rpeSAL, (2.11)

19



2.2. THE RISK ADJUSTED PRICING METHODOLOGY Volatility models

where the coefficient for the risk of transaction costs is of the form [16]

CoS 1
rre = 2o 03V] . (2.12)

As we can see, by increasing time the lag between two adjustments of portfolio
we are decreasing risk from the transaction costs.

Volatile portfolio - when an investor invests into portfolio, which is highly
volatile, mostly he awaits some extra compensation. The variance of the portfolio
can be measured through the relative increments of the replicating portfolio (Il =
V +49), i.e. var((AIl')/S). We can write [16]

var(AIl'/S)

A7 . (2.13)

rvp =R

The constant R in (2.13)) denotes the risk premium coefficient. With increasing R
the investor seems to be more risk aversive. By using relations for variance and

after some more adjustments we arrive at the final formula
1
Tvp = §Ro—452(a§V)2At. (2.14)

Again, from the previous relation we can see, that with increasing time interval,
there is a higher risk from the volatile portfolio.

Finally, by minimising the total risk [16] through the time lag

L sa a2 CoS | 1
At — g = 5Ro'S*(95V) At+\/ﬁ\8SV\\/A_t (2.15)

we come to value of 7 with this optimal At

3 (C2R\ Y3
st =3 (5F) Plsoavits 2.16)
where s
K? C
Atyy=— " K= . 2.17
P 2SOV (Rm) S

It is worth to remind the reader, that this relation is valid only in case, when At is
sufficiently small, i.e. 0 < At << 1.
Finally, by taking into consideration both risk from the volatile portfolio and

risk from transaction costs we can write the change of portfolio as AIl = AV +
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2.2. THE RISK ADJUSTED PRICING METHODOLOGY Volatility models

6AS — rrSAt. From this portfolio with value of 7 in optimal time lag Sev&ovic
and Jandacka arrive at the so called Risk-adjusted Black-Scholes equation

C?R
2

9 1/3
AV + %52 (1 +3 ( Sagv) ) OV =r(V—-SosV)  (2.18)

and

2 1/3
5 =0’ <1 +3 (C’;WRsagv) > . (2.19)

Further, following the notation from [16], in Matlab code term 3(%)1/ 3 is also
denoted as .
The risk adjusted Black-Scholes equation (2.18) can be backward parabolic

equation if and only if the function

2

B(ST) = %(1 — u(ST)V3)ST (2.20)

will be an increasing function in ST'. This condition will be fulfilled when

3\ 3
ST < k= (—) (2.21)
4p

what is the point where function (2.20)) has its maximum value.

Early exercise

In the RAPM model we consider Leland’s model [20] for transaction costs. One
of the assumptions in this model is that the time lag between two adjustments is
sufficiently small compared to 7" — ¢t. A natural way to satisfy this condition is
to disallow adjustments of portfolio near exercise time. One of ways is to divide
the interval interval (0,7") into two subintervals (0, t,) and (¢,,7"). While on the
first subinterval portfolio adjustments are allowed, on the second they are not. The
time ¢, is so called switching time. Before this switching time the risk-adjusted
equation takes place and because of fact that there are no portfolio adjustments
after this time allowed, on the second interval we can use for pricing of options
just formulas for pricing European options [16].

The next problem is how to find this switching time. The idea of finding it is

based on finding the last portfolio adjustment before the expiry. If our hedging

21



2.2. THE RISK ADJUSTED PRICING METHODOLOGY Volatility models

strategy follows optimal time lag (2.17), we can approach this problem in the
following way [16]

T—t,= %1;51 Atopt (S, t), (2.22)
what is adequate to looking for

2 _—2 —2/3
K?0(max ST(S, £,))*/°. (2.23)

Finally, we come to the relation
e
"~ Ro?

and as ¢, must be positive, (1" — ¢, < T') following has to be true

T—t, (2.24)

C < oRT.

For the existence of a solution of the Risk adjusted Black-Scholes equation on

interval (0,t,), it is necessary to fulfill the condition of backward parabolicity.
The maximum from (2.23)) is

max ST (S, t,) = (2n0*(T —t,))"/3 (2.25)
>

(for more details see [16]). As relation (2.21)) has to be valid for all ST, together
with condition for ¢, (2.24)), finally we come to

CR < g (2.26)

what assures backward parabolicity of the equation on the interval where risk

adjusted Black-Scholes equation is valid.

Scale invariance

The RAPM model was first introduced by Kratka [18]. The improvement of this
model made by Sev¢ovi¢ and Jandacka [16] was in scale invariance property. It
means the term S04V remains unchanged after scaling of V' and S by a factor
. The main difference lies in the definition of risk from volatile portfolio (2.13)),
which was in Kratka’s work defined as

var(All')

At

In [17] Jandacka mentiones an example for this scale invariance. In the model

Tvp = R . (227)

without the scale invariance change of the currency unit from euors to cents causes

an increase of the risk premium 10000 times.
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2.3. BARLES AND SONER’S MODEL Volatility models

2.3 Barles and Soner’s model

The second model we will mention, is Barles and Soner’s model [5] which is
taking to considerations investor’s preferences. The investor’s preferences are
described by the utility function of the investor with a constant investor’s risk
aversion. We again assume that the stock pays no dividends and follows stochastic
differential equation with a nonconstant volatility.

Barles and Soner derived in their paper [5] this model with introducing stochas-
tic processes X; and Y; which stand for dollar holding in money market and
amount of shares of stocks owned, respectively. They introduced trading strategy
on [t, T] as pair of left nondecreasing functions (L;, M;) such that L, = M, = 0.
The interpretation of these functions can be as number of shares of stocks trans-
fered from the money market to the stock (L;) and vice versa (M;). In this model
are also included proportional transaction costs i (Sasr = (144); Spig = (1—p)S,
where S is average of S,s; and Sy;y - see Appendix). The increments of dollar
amount on the market and amount of shares in the portfolio, respectively are then

expressed as [S]

dX = —S(1+ p)dL+ S(1— p)dM, (2.28)
dY = dL —dM. (2.29)

As it was already mentioned, this model considers utility function of investor. In
general a utility function is increasing and concave. In the derivation of Barles
and Soner’s model was used exponential utility function with constant absolute

risk aversion

U(§) = U(¢/e),
where

Ur)y=1—¢€"

and the parameter

is considered to be small, 0 < e << 1.
We price European call option through utility maximization which was pro-
posed by Hodges and Neuberger in [11]. They consider two optimization prob-

lems. In the first one (vf), there are no options in investor’s wealth in terminal
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2.3. BARLES AND SONER’S MODEL Volatility models

time, while in the second there are N European call options (V') [S]. These
stochastic optimization problems can be written as

v/ (x,y,5,t) = sup E(U (X1 + Y7Sr)), (2.31)
LM
U(ZL‘, ya S, t) = SU.p E(U(XT + YTST - N(ST - E)+))’ (232)
LM

where + = X;, y = Y, and s = S;. In other words we are maximizing the
expected utility from the final wealth with respect to all trading strategies (L;, M,).
Hodges and Neubringer in [11] postulate that the price of the call option is equal
to maximal solution A = A(z, vy, s,t,7, N) of the equation

v(x 4+ NA,y, s,t) =/ (2,9, s,1). (2.33)

In the option price A we can see a linearity argument. Selling N options with
risk aversion factor + is the same as selling one option with risk aversion N+. For
simplification Barles and Soner introduce two auxiliary functions z¢(z, y, s, t) and
z/¢(x,y, s,t) in the following way [5]
v(x,y,s,t) =U(x+ys — 2, (2.34)
vl (x,y,8,t) = U(x 4+ ys — 27). (2.35)
Attime t = T we have z¢(x,y,s,T) = (s — E)* and 2/¢(x,y,s,T) = 0 and due
to linearity and (2.30) we get value of option price as

Az, y,s,t,1/e,1) = 2°(x,y, s,t) — zf’e(x, Y, s, 1). (2.36)

Using knowledge of stochastic dynamic programming Barles and Soner come to

the equation

which is valid for v and v/. This equation can be transformed to a minimising

problem [S]
_ < ov ov 6252 0% ov  Ov Ov ov
min [ —— — ps— —

o "0~ o o U g T ayiey U Mg,
(2.37)
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2.4. JUMPING VOLATILITY MODEL Volatility models

From the previous minimising equation we can get to maximising equation for z
(according to assumption that utility function U¢ is increasing).
We assume proportional transaction costs p to be expressed as p = a4/,

where a 1s some constant. Finally, as € is approaching 0 we get
2y, s,t) = 0, 2(y, s,t) = V(s,t), (2.38)

where V (s, t) is a solution of nonlinear Black-Scholes equation with the volatility
function
5(S?Vig, T —t) = 6%(1 + U(a®e" TV S*VZ)). (2.39)

Here ¢ stands for constant volatility of the underlying stock price and function ¥

can be counted from nonlinear singular ordinary differential equation

W AL
dAY 7 2\ /T(A)A - A

In [[7] the volatility function ¥ of Barles and Soner is implicitely defined as

. 2
A = (—% V(\Ij)%—\/E) TS ) (2.41)

U(0) = 0. (2.40)

VU 41

2
__ (aresinhy/(=V)  — , B
A = ( NS Vi \If) L 0> T > 1. (242)

Furthermore, W is a one to one increasing function mapping the real line onto the

interval [—1, co.

For more details about Barles and Soner’s model see [23]].

2.4 Jumping volatility model

In this model we again assume that the volatility is not known precisely but we
know some boundaries inbetween which the volatility lies. These two extremes
(Omin and o,,4,) can be inferred e.g. from the extreme values of the historical
volatility. They can be viewed as defining a confidence interval for the future
volatility values and can be modeled as functions of the time to maturity and price

of the underlying asset. Throughout this thesis we consider a simple Jumping
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2.5. MODEL WITH VARIABLE TRANSACTION COSTS ACCORDING »
TO AMSTER AND ET AL. Volatility models

volatility model and set these functions to be constant over the time and inde-
pendent of S. In this model the volatility can switch between these two values
depending on the sign of the second derivative of the option price
o2, if 2V <0
o?(S20V, S, 1) =< s (2.43)
o3, if 92V > 0.

As we can see, when both volatilities are the same we have classical Black-

Scholes equation.

2.5 Model with variable transaction costs according

to Amster and et al.

Another model using Leland’s approach in transaction costs was introduced by
Amster, Averbuj, Mariani and Rial. In this thesis we will refer to this model as
Amster et al.’s model. In [2] transaction costs behave as a nonincreasing linear
function h(S) = a — bS. The idea behind this model is that the value of the
transaction costs is decreasing function of the amount of traded assets, i.e. by the
increasing amount of the traded assets there is some kind of discount.

Similarly as in derivation of the Leland’s model, we start from the equation

(2.1). In contrast to Leland’s model, the transaction costs here have form
dTC = (a — b|k|)S|k|. (2.44)

Again k = d6 and as a hedging strategy § = —5¢ 1s used. Applying the expected
value of the Wiener process (??) we gain the expected value of the transaction

costs in case of Amster et al.’s model as

2
05? \/7\/ dta — bS® <052> (-) o’dt. (2.45)
T
Finally we obtain the equation

[2 [0°V\? [2 1%
2 e = 3 2 -
oS dt+(852) b(ﬂ)Saer(aSS V)

(2.46)

E((a — blk[)S[k]) =

@

82V
‘1952

v, 102 0V
ot 052
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2.5. MODEL WITH VARIABLE TRANSACTION COSTS ACCORDING »
TO AMSTER AND ET AL. Volatility models

The nonlinear volatility for Amster et al.’s model has the form

G (EVY 2y (2) 62V
- =1 s1gn( ) wdt+2b - 5852' (2.47)

According to [2] in the Amster et al.’s model there is one extra condition for a

2
2 1_9 i 2.4
o ( a“wdt >0, (2.48)

therefore constant a has to be sufficiently small.

In this model we see one thing which could be improved. When we look
in , the first part of the expression tells us that although until £ = ¢ the
transaction costs are increasing, after this point they decrease. It would mean that
when we trade a big amount of the asset there will be only small transaction costs
for this amount or even the transaction costs will be negative.

As a solution to his problem we tried to change the transaction costs function

and instead of (a — b|k|) we tried to consider decreasing exponencial function

dTC = aexp (—g\k\) |k|. (2.49)

This function would assure that there would be also discount for traded amount
but the total transaction costs would increase. However while working with this

problem we realised that using Taylor expansion of the exponential function

b b k|*b?
coxp (<2 ) 1el=a (1= 2+ 4 )W @so

2a2

leads again to Amster model for lim |k| — 0 as E(|k|) ~ V/dt (seeand for
dt — 0. Therefore we were working only with transaction costs function (2.44)).
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Chapter 3
Gamma equation

In this chapter we will introduce Gamma equation [23] and present its derivation
from Black-Scholes equation. The aim of this chapter is to transform fully non-
linear parabolic equation into a quasilinear equation. For such an equation more
effective numerical schemes for approximation can be constructed.

The original nonlinear Black-Scholes equation (1.4) can be written as

oV ov
%‘I—SB(SF)—F(T—Q)Sﬁ—TV:O, (3.1)

where the Greek I' (see Section 1.1.2) stands for 8§V and the volatility from
nonlinear Black-Scholes equation is concerned in the function §(ST"). In the
derivation of the Gamma equation, there are necessary some standard change of
independent variables: z = In(S/FE), x € (—oo,00) and 7 =T —t, 7 € (0,7).
Furthermore, as term ST = SOV is present in the equation , the following

transformation is introduced

H(z,7) = ST = SoVyZ.

3.1 Derivation of the Gamma equation

The Gamma equation is derived by taking the second derivative of the nonlin-

ear Black-Scholes equation (1.4 with respect to x. Next we show this Gamma
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3.1. DERIVATION OF THE GAMMA EQUATION

Gamma equation

equation’s derivation.

8_28_‘/ 0 82V§ OV 2+8 ov
Ox? \ Ot - Oz \0Sotor) 815825 dx \ ot
0 96(H)
g 580 = 5 (grtsaun ) = 5 (s + 750 )
B 0
e )]
0? ov 0 ov , O*V
g (- 0555) = 52 (- 0855+ - 055 )
0*V PV o0 ov
_ _ 29V 30V 0 oV
= 2= 08 G - 08 g+ o (- 085 ),
0*V 0 ov L,V 0
852( T’V) a—x<—r5$) —rS W"—%( TV)
When we sum all the terms on the right hand side we get
PV, O0B(H) O?B(H) , O*V N
0 = (9258255 +95 pe +S 92 +2(r —q)S? 852+( q)S @—f—
*V 9 [oV ov
J— 2_ —_— —_— J—— _—
5852+8 <at+56( )+ (r q)SaS H/)
As the last bracket is equal to 0 (see[3.1)) after deviding the whole equation by
S we get
PV _ OB(H) 0°B(H) 0*V , PV 0*V
B A T T T T I T
_ OB(H) 0°B(H) 0*V , O3V 0*V
B TR U T U T S
As
OH 0 (VY OV o5V
or — or\"052) “otrSor 0280t
0H 0 0*V 0*V 283V
-0 = -0g (S5 ) =0 - 085g + - 0575,
82
—qH = —qS@,
we finally get the Gamma equation , i.e.
OH 0°B(H)  0B(H) 0OH
o~ o o TUT9% T (32)
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3.1. DERIVATION OF THE GAMMA EQUATION Gamma equation

Another derivation of the Gamma equation can be found e.g. in [23].

As an approximation of the initial Dirac delta function we will use H(z) =
N'(d)/(6+/1*), where 7* is sufficiently small, & is the constant volatility, N (d)
is the cumulative distribution function of the standard normal distribution and
d=(z+ (r —q—6%/2)r*)/6+\/7*. The form of N'(d) is following

1 2
N'(d) = —=e""/2.
@ V2r
The initial condition for (3.2)) at 7 = 0 are

H(x,0) = H(x) (3.3)

and H (z) is the Dirac § function, i.e.
| s —aot)ts = oo,

/ S(z)de = 1,

where ¢(x) is a smooth function and on the set where it cannot have zero values

it is also bounded. The boundary conditions of the function H (z, T) are
H(—o0,7) = H(co,7) =0. (3.4)

The solution of the financial derivative V (.S, ¢) can be finally computed from the

Gamma equation as

S In(S/E)
sV (S.1) = sV (0,1) + / Y n(s/B), T — #)ds = / Hx, T — t)dz
o S —o
and by integration we get formula for the call option
V(S t) = / (S — Be") H(x, T — t)dz, (3.5)

as 0sV(0,t) = V(0,t) = 0. Similarly, the value of put option is

V(S,1) = / T (Bet = ) H(n, T — t)da. (3.6)

—00
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3.2 [ functions

In this section we introduce (3 functions for different nonlinear models. We just

remind that nonlinear Black-Scholes equation has form

oV v 1 - o2V 0%V

¢ RAPM model

The volatility function in RAPM model is given as

) 1/3
52=02<1+3(673&ﬁv> )
2

1/3

we use substitution p = 3 (%if) and we come to the S-function for
RAPM model i
o

me:Eu+pH%H. (3.7)

e Barles’s and Soner’s model

The volatility function in this case has form

FH(S?VE, T —t) = &6%(1+ U(a®e"T-9S5%V2))
= (14 U(a*e" TP ESVE))

and the S-function of Barles’s and Soner’s model has form

N

o

B(H,z,T) = ?(1 + U (Ea*e" ™ H))H. (3.8)

e Jumping volatility model

The volatility function of Jumping volatility model has form

o2, if 02V <0
(S22, 8, 1) =4 ! >
o2, if 62V > 0.

So the S-function is easy to derive and its form is
o2 .
- H, ifH <0

B(H)=S 2" (3.9)
ZH, if H>0.
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3.2. B FUNCTIONS Gamma equation

e Leland’s model The volatility of Leland’s model is of the form

2
52 = o? (1 + Le sign (%)) )

so the derived S— function is

02

B(H) = 5 (14 Lesign(H)) H.

e Amster et al.’s model

The volatility

o (VY T (2) 6PV
o =1 Js1gn<852> 7Tdt+2b ™ SE)SQ

transforms to

B(H) = 0; (1 - %a sign(H)\/%> H+2b (%) H?.

32
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Chapter 4
Numerical methods

In this section we will introduce the numerical way we will work with in this
thesis. Throughout this chapter we will work with grid where £ = At is a time
step for the time variable ¢ and we donote a spatial step as h = Ax.

4.1 Explicit numerical method

This method is defined through approximations of derivative 0; by a forward dif-

ference, 0, by a central difference and 9% by a symmetric forward difference, i.e.

ft+k,x)— f(t, )

Of(t+k )= . + O(k),
O, F(t + ) = f(t+k:,x+h)2—hf(t+k,x—h) o),
O F(t+ k) = f(t+k:,:x—|—h)—2f(t2—2k,:v)+f(t—|—k,a;—h)+O(h2>.

The stability condition for explicit method in the case of Black Scholes model
requires the so called Courant-Lewy-Fridrichs condition, i.e.

%k
y5) <1
In the case of explicit method the Gamma equation can be written as
HT-H 1 . | S
3 = 75 (O (H)(Hyy — HY) = B'(HL)(H] = HL,)) (4.1)
H!  —H H, — H
(I i+1 i—1 i+1 i—1
+ B'(H) oh +r o i
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4.2. IMPLICIT NUMERICAL METHOD Numerical methods

This form of the explicit method is also known as FTCS (Forward time central
space). It means that in time we move one step forward (left side of the equation)
and for the derivative on the right side central derivative is used.

In case of explicit method it is possible to write the equation we are working
with in a matrix form 277! = Az? + o/. The matrix A is a tridiagonal matrix
with the nonnegative elements on the diagonals and the maximum norm of the

elements is at most 1.

4.2 Implicit numerical method

As we can see the relation between k, h and o is rather restrictive. For example
in the case when h = 0.01 and 0 = 0.4 the longest time step we can take is
k = 1/1600. Implicit method overcomes this problem and therefore we can work
with shorter time step (there is no more such restriction for the time step). The
approximations are defined as following

flt+k,x)— f(t,x)

O f(t,z) = g + O(k),
O, F(t 1) f(t,a:—l—h)Z—hf(t,x —h) L oY),
92 (1) — f(t,x+h) —2f§Lt2,:B)+f(t,x—h) o),

4.3 Semi-Implicit numerical method

Semi-Implicit method is somehow combination of explicit and implicit method.
The nonlinear terms 5, (H, z, 7) and 8. (H, =, T) are evaluated from the previous
time step 7;_; and the linear terms are evaluated in the current time level, i.e. the
Gamma equation has the following form

Hij—i_l — sz 1 , j j+1 41 / J J+1 Jj+1
R (B'(H)(HL — 7T = B/(H)(HT — HY))
i+1 i+1 j+1 41
N 6,(HJ)H5+1 - H]T n er']H — Hj™) .

2h 2h
This form of the equation can be again reffered as BTCS (backward time cen-

tral space) numerical method. Similarly as in case of FTCS method the central
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derivative is used in the method but we move one time step back in this method.
In Chapter 5 we are comparing results from explicit and implicit model in case of

Jumping volatility model.

4.4 Khaliq-Liao method

In following we are going to present scheme introduced by Liao and Khaliq in
[13]]. Khalig-Liao method is using Padé approximation and Richardson extrapo-

lation and instead of solving a single convection-diffusion equation,
up = Pugy + Ay

a system of two equations is considered. We introduce a new unknown function
v(z,t) = uy(z,t)

and the original convection-diffusion equation is converted into the following sys-

tem

U = ﬂuxx + f(ua U)a
Uy = Bvxx + /\uac:c + g(ua U)'

The boundary and initial conditions for variable u are given as u(x,0) = ug(z),
u(0,t) = bo(t) and u(1,t) = by(t). In case when u is not smooth enough, we
have to approximate these boundary conditions. In the derivation of the bound-
ary/initial conditions for the new variable v we will follow the notation from [13]].
Let difference operator A, be defined as

Agu; = Ui+1 — Uj—1,

so the approximation of variable v is

u(2h,t) —u(0,t) A,

This second order approximation can be improved to fourth order approximation
taking A, /(1 +1/662), 62u; = ui + 1 — 2u; + u;_;. Therefore we get from

v(h,t) =

1, A,
(1 + 663”) v(h,t) = ﬁu(h, t) (4.2)
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4.4. KHALIQ-LIAO METHOD Numerical methods

the boundary conditions

0(0,8) = %(u(2h, £ — u(0,4)) — dv(h, t) — v(2h,¢),

(1) = %(u(l C ) — u(1, ) — (1 — B, 1) — v(1 — 28, 8).

Finally, after Padé approximation Khalig-Liao method can be written as

+1 0p | P8 o
14 e P Y (R LA BT
(+12 2AL )” <+12+2At“”>u’

At 02
(1 n+1 n
v 5 (1) U,
5 _ B 52 R h2
1 -z n+l 1 Iy v/ 2 n+1
( METIRETNA >”’ < 12 +2At5> FAGR O )
At 62 n+1 n

Terms f7"*! or 7 stand for f(u?™ v or f(ul',v!) respectively. The same
notation is for the function g(u, v). The truncation error of Khalig-Liao method is
in the form of K| At? + K,At* 4 K3 Ah*. However, Richardson extrapolation can
be used for the solution where we can eliminate the term At? and consequently

we get method which is of the fourth order in both time and spatial dimension.
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Chapter 5
Numerical experiments

Throughout this thesis we were working with the function H(x,t). As it was al-
ready introduced in Chapter 4 the domain of this function is (—o0, c0) x (0,7).
Anyway, for numerical purposes we had to somehow shorten the interval (—oo, 00).
As the variable x stands for x = ln% an appropriate interval canbe = € (—1.5,1.5)
as it was already used in ( [23]).

5.1 Jumping volatility model

First of all we will present numerical results considering Jumping volatility model.
These results are based on the bull spread strategy. A spread trading strategy takes
position in two or more options of the same type. A bull spread strategy is created
by buying a call option with exercise price F; and selling another call option with
another exercise price F/; both with the same expiration date. This strategy gives
us the opportunity to work with the Jumping volatility model as it concerns both

9%V
852

Strike prices in this model were E; = 25 for the call option we are buying and

positive and negative

E5 = 30 for the call option we are selling, » = 0.011, oy = 0.2 (volatility in case
H<0),00=04(¢Gncase H >0)and T = 1.

When we compare results among a numerical scheme we use CPU time (in
seconds) and the difference from the benchmark in the euclidean norm. As the
benchmark were used results from the gentlest grid (with the time step £ =

1/7000). The spatial step was proportional to the second square root of the time
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5.1. JUMPING VOLATILITY MODEL Numerical experiments

step (h ~ \/E).
The initial function in this case when we work with spread trading strategy has
form
H(x,0) = exp (—<<x+ <r—q—a%/z>r*>/<mﬁ>>2) !
2 (0'1\/;\/%>
—exp (—((x ~ In(30/25) 4 (r — g - a%/zw*)/(@mv) L
2 Uzﬁm

In Figure (5.1) we can see the function H(x, 7) in the points 7 = 0 or 7 = T.

From the values of this function is finally the value of the derivative computed.

80 06

Figure 5.1: Function H (z, 7) in point 7 = 0 (left) and 7 = T (right).

Figure (5.2) shows the price of the derivative with different volatility and pay-
off of this derivative. Price of the derivative using jumping volatility is computed
by Khalig-Liao method. In [23] was previous computation also done but authors

work with another numerical method.
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5.1. JUMPING VOLATILITY MODEL Numerical experiments

Figure 5.2: Comparison of the price V(S), where the volatility was from jumping
volatility model (blue solid line), constant volatility o = 0.4 (dashed line) or
o = 0.2 (dash-dot line), pay-off of the derivative (red solid line)

5.1.1 Numerical results

In this subsection we present results from three numerical methods considering
Jumping volatility model. For each method table with CPU time and convergence
graph is given.

Khalig-Liao method

The next graph (Figure 5.3) depicts difference between the benchmark and the
result of the function H(x, 7) at the time 0.
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5.1. JUMPING VOLATILITY MODEL Numerical experiments

m k CPU(s) difference
250 | 1/250 | 2.4376 3.93863
1000 | 1/1000 | 32.5185 0.01912
1750 | 1/1750 | 101.7569 | 0.01538
2500 | 1/2500 | 212.3195 | 0.00041
3250 | 1/3250 | 360.2153 | 0.00461
4000 | 1/4000 | 561.1594 | 0.00140
4750 | 1/4750 | 790.4845 0

Table 5.1: Comparison of results with different time step (Khalig-Liao method).
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Figure 5.3: Convergence of Khalig-Liao method
Implicit method

The next graph (see Figure 5.4) depicts difference between the benchmark and the
result of the function H (x, 7) at the time 0 in case of implicit method.
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5.1. JUMPING VOLATILITY MODEL Numerical experiments

m k CPU(s) | difference
250 | 1/250 | 0.816 4.08019
1000 | 1/1000 | 8.143 0.04811
1750 | 1/1750 | 25.565 0.00065
2500 | 1/2500 | 50.874 0.01046
3250 | 1/3250 | 82.173 0.00083
4000 | 1/4000 | 124.629 | 0.00315
4750 | 1/4750 | 169.845 0

Table 5.2: Comparison of results with different time step (Implicit method).
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L4
1 . 1 1 1 . 1 1 1 .
01 15 2 25 3 35 4 45 5
Number of time steps (x 103)
Figure 5.4: Convergence of Implicit method
Explicit method

The next graph (see Figure 5.5) depicts again the difference between the bench-
mark and the result of the function H (z, 7) at the time 0 in case of using explicit
method.
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5.1. JUMPING VOLATILITY MODEL Numerical experiments

m k CPU(s) | difference
250 | 1/250 | 0.029 4.08019
1000 | 1/1000 | 1.326 0.04811
1750 | 1/1750 | 6.199 0.00065
2500 | 1/2500 | 15.162 | 0.01046
3250 | 1/3250 | 29.200 | 0.00083
4000 | 1/4000 | 47.017 0.00315
4750 | 1/4750 | 71.188 0

Table 5.3: Comparison of results with different time step (Explicit method).
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Figure 5.5: Convergence of Explicit method

5.1.2 Comparison of explicit and implicit method

As it was mentioned in Chapter 4.1 the stability condition in the case of Black-
Scholes equation requires so called Courant-Lewy-Fridrichs condition (# <
%). In the following we are comparing explicit and implicit methods when the
Courant-Lewy-Fridrichs condition does not hold. As a benchmark for compar-
ing these two methods we are using number of steps m = 2000 and spatial step
h = 0.0089. The time step £ is then computed according to the CLF ratio, where

as the parameter o the higher volatility (o5) is used.
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5.2. RAPM MODEL

Numerical experiments

CLF-ratio | Explicit Implicit

1 0 0

1.1 0.098 5.699E-07
1.2 0.714 3.236E-07
1.3 6.443 1.012E-06
1.4 1.104E+02 | 3.146E-07
1.5 6.343E+03 | 2.091E-07
1.6 1.031E+117 | 1.003E-06

Table 5.4: Comparison of Explicit and Implicit method

As it was already mentioned, from comparison of explicit and implicit method
we can see that explicit is faster than implicit, on the other hand the stability
condition is rather restrictive.

5.2 RAPM model

In this section we present numerical results based on the RAPM model. Through-
out this computation we set the paramters as C' = (.01 (round trip transaction
costs per unit dollar) and R = 30 (risk premium coefficient). Therefore the value
of the parameter p is © = 0.2345. Call option was used for the computation
in case of this RAPM model. The form of the initial condition for the function
H(z,T)is

. .D

e e

2 o/ T/ 2r)
The following picture shows form of the function H (z, 7) at the beginning and
also the final form of this function.
As it was already introduced in Chapter 3 the Gamma equation (3.2) has form
OH _0*B(H)  9B(H)
o 0x? ox

There are two possibilities how to proceed with the second derivative

o\ |
ox

+(r—a)5-—q

9%B(H)
0z2

. The
first possibility is

PB(H) 0 (09BN _ 0 (0BoH
Ox? <8I) (8[—[ (99[:)

o3 1
OH 0x%°

_ 9B
 OH?

T oz T o
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5.2. RAPM MODEL Numerical experiments
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Figure 5.6: Comparison of the function H(x,7) in point 7 = 0 (left) and 7 = T
(right).

As in case of RAPM model

of the second derivative is more appropriate (through numerical approximation),

> would contain H —%7 the second approximation

a3
OH

1.e.

TO) (01,3031 — # (G~ L )G~ 1,5)0)

SRS

5.2.1 CLF condition-fixing time or spatial step

As one of the assumptions of explicit numerical method is that the mesh ratio
% < 1, there were two possibilities how to ensure this condition to be valid.
One of them was to fix the spatial step h and then compute the time step & and the
second possibility was first to fix the time step k£ and consequently compute the
spatial step h according to the CLF condition. While working with RAPM and
Amster et al.’s model we were trying both approaches but when the mesh ratio
was small enough there was problem with the initial condition H (z,0) when we
fixed the time step k. Mesh for the initial function was not dense enough and the
results were not precise. Therefore in case of RAPM and Amster et al.’s model

we fixed spatial step at the value A = 0.008 and worked further with this value.
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5.3. AMSTER ET AL.’S MODEL Numerical experiments

5.2.2 Numerical results considering RAPM model

Table 5.5 shows computed values of the financial derivative V' (.9, t) for different
values of parameters R and C' at variable time points. The constant 7% was com-
puted for each values according to the relation (2.24). Explicit numerical method

was used for the computation.

S=E=25 S=20 S=30

R 0 30 45 0 30 45 0 30 45

C 0 0.01  0.0087 0 0.01  0.0087 0 0.01  0.0087
I 0 0.234  0.2446 0 0.234 0.2446 0 0.234 0.2446
V(S,0) 3989 3442 3423 | 1.611 1.2 1.183 | 7.335 6.843 6.836
v

v

(5,0.5) | 2.787 2341 2326 | 0.762 0496 0484 | 6.167 5.83 5833
(S,%) 2253 1.862 1.847 | 0444 026  0.251 | 5.693 5477 5.458

Table 5.5: Computed values of V' (.S,t) - RAPM model

When the parameter 1 is equal to 0, the derivative’s prices V' (.5, 0), V (S, 0.5)
and V' (S, %) computed by explicit method were on the level of the prices computed
by Black-Scholes equation (I.6). In this case nonlinear Black-Scholes equation
changes to linear because the nonlinear term disapperas and therefore it is equal
to the value computed by formula (1.6). The difference is on the level of discreti-
sation error.

5.3 Amster et al.’s model

Similarly as in case of RAPM model in Amster et al.’s model we also make com-
putation on the call option. As it was already mentioned in Chapter 2.3 transac-
tion costs in this model are considered to be as a nonincreasing linear function
h(S) = a — bS. According to the note in [2] the constant a should fulfill the

following relationship
2 a | 2
I——/— | >0.
’ ( o 7Tdt>

Considering this, we fixed the value of a to be equal mo.gg and the value of

the constant b we considered to be equal to 1. Similarly as in case of RAPM model

we fixed the value of the spatial step 2~ = 0.008 and the time step was computed
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5.3. AMSTER ET AL.’S MODEL Numerical experiments

according to the mesh ratio % = 4. It was k = 5.0 exp,((—6). Following two
pictures (see Figure 5.7 and Figure 5.8) show development of the call option with
the exercise price I/ = 25 in case of Amster et al.’s model. We were using explicit

forward time central space method to compute the value of the derivative.

Figure 5.7: Development of the call option in Amster et al.’s model
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5.3. AMSTER ET AL.’S MODEL

Numerical experiments

The following table (Table 5.6) contains values of the derivative’s price with

some concrete values of parameters a, b and the asset’s price. Value a* stands for

the value also used in the Matlab code (see Appendix). Semi-implicit method was

used for the computation.

S=E=25 S=20 S=30
a 0 a* 0.001 0 a* 0.001 0 a* 0.001
b 0 1 0.7 0 1 0.7 0 1 0.7
V(S,0) 3987 5.583 4.633 | 1.609 2.239 2.155| 7.333 8.829 7.83
V(S,0.5) | 2785 4312 3.592 | 076  1.903 1.341 | 6.166 7.506 6.759
V(S, %) 2252 3705 3.092 | 0.443 1.427 0974 | 5.692 6.882 6.621

Table 5.6: Computed values of V (S, t) - Amster et al.’s model

When the values of the parameters were set to a = b = 0, the derivative’s
prices V(S,0),V(S,0.5), V(S, %) computed by numerical method were on the
level of the prices computed by Black-Scholes equation (1.6). When mentioned

Figure 5.8: Development of the call option in case of Amster et al.” s model: blue

dotted line at time t=1, green dashed line at time t=1/2 and the solid red line shows

the price of the derivative at the beginning (t=0).
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5.4. LELAND’S MODEL

Numerical experiments

parameters a, b are set to those values, similarly as in case of RAPM model, we

have linear Black-Scholes equation.

5.4 Leland’s model

The last section is devoted to the presentation of the numerical results in case

of Leland’s model (see Table 5.7). We present results for different value of the

parameter o which sonsequently changes the value of the Leland’s number. Again

all results are presented for three different prices S. In the case of Leland’s model

Khalig-Liao method was used for the computation. Constant C' = 0.00005 was

used as an input into the Leland’s number.

S=E=25 S=20 S=30
o 0=03 0=04 0=05| 0=03 0=04 =05 |0=03 0=04 c=0.5
V(S,0) 3.087 4.056 4903 | 0942 1.658 2.339 | 6490 7.409 8.229
V(S, %) 2494 3299 4.086 | 0.567 1.102 1.690 | 5943 6.662 7.421
V(S,0.5) | 2.143 2842 3.537 | 0.374 0.793 1.28 | 5.644 6.231 6.878

Table 5.7: Computed values of V' (S, t) - Leland’s model
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Conclusion

Conclusion

The aim of this thesis was to work with the nonlinear Black-Scholes equation.

Nonlinear Black-Scholes equation differs from the linear one in the way that the
volatility is not constant but it is a function dependent on some extra variables.
We focused particularly on the volatility functions concerning transaction costs,
i.e. Leland’s model, RAPM model, Amster et al.’s model and Jumping volatility
model.
We were working with the transformed Black-Scholes equation. As the used vari-
able H = S Q%V includes 8§V, known in financial world as Gamma, this trans-
formed equation was named Gamma equation. The Black-Scholes equation yields
more robust numerical approximation schemes.

Thesis is organised in the following way. The first chapter offers a short intro-
duction into the field of financial derivatives. It concerns particularly theory about
options. Except from mentioned volatility models also Barles’s and Soner’s model
is introduced in the second chapter. The third chapter is devoted to the derivation
of the Gamma equation and in the fourth chapter the theory from used numeri-
cal schemes (explicit, implicit and Khalig-Liao method) are presented. The last
chapter presents numerical results.

In the numerical computation we used two different initial functions. The first
one was bull spread strategy for Jumping volatility model. This strategy behaves
differently depending on the sign of the Js where we could use the properties of
Jumping volatility model. The second initial function was call option and com-
putation with Leland’s, RAPM’s, Amster et al.’s model or Model with nonegative
transaction costs function was done.

The numerical methods are presented seperately for each model. On the Jump-
ing volatility model convergence and CPU time of all numerical schemes are com-
pared. In case of RAPM, Amster et al.’s and Leland’s model we introduce results
of semiimplicit, explicit and Khalig-Liao method, respectively. Parameters as in-
put into the model were changed and further compared. When the parameters
were set in the way that nonlinear term dissapeared, the results were in line with

the results computed using Black-Scholes formulas (the difference was in line
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Conclusion

with the discretisation error).
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Resume

Resume

Ciel'om tejto prace bolo numerické spracovanie transformovanej nelinedrne;j
Black-Scholesovej rovnice. Rozdiel medzi linedrnou a nelinedrnou Black-Scholesovou
rovnicou spociva vo volatilite. Linedrna Black-Scholesova rovnica totiz pred-
poklada konStantnd volatilitu. Funkcia volatility, ktord vstupuje do nelinedrne;j
rovnice dokaZe lepSie aproximovat’ skutoCnost’, ked’Ze berie do tvahy faktory,
ktoré linedrnu rovnicu neovplyviuji. Existuje preto viacero modelov, ktoré rieSia
otdzku nelinearity rozdielnym sposobom. Md&zu sa zaoberat’ transakénymi ndk-
ladmi (RAPM model, Lelandov model, Model zohl’adiiujici variabilné transakcné
ndklady), funkciou uZitocnosti obchodovatel’a alebo jeho preferenciami (Barles-
Sonerov model). Pritomnosti vel'’kého investora na trhu, ktory svojim konanim
dokaZe istym spdsobom ovplyviiovat’ ceny, je zas venovany Freyov model.

Prva kapitola tejto diplomovej prace je venovana teorii finanénych derivatov.
St tam predstavené zakladné financné derivaty (forwardy, furturity, eurépske a
americké opcie). Ked'Ze d’alej sa venujeme predovSetkym eur6pskym opciam,
opciam ako celku je aj venovand podstatna Cast’ tejto kapitoly. Opcie mbzu byt
ovplyvnené viacerymi premennymi. Patria k nim sicasnd cena aktiva, realiza-
¢nd cena, Cas do expirdcie, volatilita, bezrizikova trokova cena alebo dividendy.
Vplyv tychto premennych na jednotlivé opcie (eurdpske a americké put alebo call
opcie) je prehl'adne zndzorneny v tabul’ke 1.1. Je tu aj tedria k Black-Scholesove;j
rovnici (linedrnej aj nelinedrnej).

Modely nelinedrnej Black-Scholesovej rovnice su bliZSie rozpracované v druhej
kapitole. Prvym modelom, ktory je tu bliZsie predstaveny Lelandov model sku-
majuci transakéné naklady. Tie s zahrnuté formou d7'C' = C|k|S/2, kde pre-
mennd k predstavuje pocet zobchodovanych aktiv (podl'a znamienka urcujeme,
¢i sa jedna o predaj alebo kipu) a premenna C' oznacuje transakéné ndklady
na jednu menovu jednotku. Lelandov model je zdkladom pre d’alSie modely,
ktorym sa v praci venujeme. RAPM model zohl'adiiuje okrem transakénych
ndkladov aj riziko z volatilného portfélia a h'add optimélny Casovy krok medzi
jeho dvomi tpravami. Dalsi model (Model s variabilnymi transakénymi nakladmi

podl’a Amstera a kol.) sa zaoberd myslienkou vysky transakénych nédkladov podl’a
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mnoZstva zobchodovanych aktiv. Cim je toto mnoZstvo vyssie, tym obchodnik
dostdva vyssiu "zl'avu". Poslednym modelom zaloZenym na Lelandovom modeli
je Jumping volatility model, ktorého volatilita sa pohybuje medzi istymi hrani-
cami. Okrem spomenutych modelov, ktorym sa d’alej venujeme v praktickej Casti
tejto prace uvddzame eSte jeden model, ktorého zakladom su preferencie vel’kého
investora na trhu. Na tento model uz ale numerické schémy neaplikujeme.

Ako uz bolo spomenuté na zaciatku prace, venujeme sa transformovanej Black-
Scholesovej rovnici. Této transformdcia je zaloZzend na zmene nezavislych pre-
mennych Casu a ceny a transformdcii H(z,7) = ST = S9%V. Vyhodou tejto
transformovanej rovnice je, Ze pre tito rovnicu vieme odvodit’ efektivne numer-
ické schémy. Navyse okrajové podmienky tejto rovnice st H (—oo, 7)=H (00, 7) =
0.

V préci pouZivame explicitnd a semiimplicitnd numerickd metddu, ktord pouzi-
vame na vSetky modely a navySe pracujeme aj s Khalig-Liaovou metédou, ktort
aplikujeme na Lelandov model a na Jumping volatility model.

V préci porovndvame konvergenciu a dizku vypoctového Casu jednotlivych
metdd (na Jumping volatility modeli), skimame CLF podmienku medzi explicit-
nou a implicitnou numerickou metédou. Té4to podmienka je istym nedostatkom
explicitnej metddy a hovori o pomere medzi casovym a priestorovym krokom. Ti-
eto numerické rieSenia st spracované na eurdpskej call opcii, pripadne na bullish
spread. Bullish spread je pre Jumping volatility model, ked’Ze hodnota volatility

v tomto modeli zavisi od znamienka druhej derivécie funkcie V (.S, t) podl'a ceny.
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List of Symbols

Option Variables

t, T Time, Expiration time.

T Time to maturity, 7 = T — .

E Exercise price (’strike price’) of an option.

S, S(t) Price of the underlying asset at time ¢ .

V, V(S,t) Price of the financial derivative at time ¢ and asset’s price .S.
(S(T) — E)™ Payoff function at time T, (= max(0, S(T') — E)).

o Constant volatility.

q, T Dividend yield rate.

a,b Parameters from Amster’s model.

C.R Parameters from RAPM model (transaction costs, risk premium).
Le Parameter from Leland’s model, Leland’s number.

x Transformed spatial variable z = In %

H(z,T) Variable from Gamma equation, H = SOVZ.

a(.) Nonconstant volatility function.

Grid

k, h Time step, Spatial step.

J Index for time step.

1 Index for spatial step.

m, n Number of time steps, Number of spatial steps.
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Appendix

Appendix

1. Ito’s lemma

Theorem Consider a function V' (.S, ) and suppose that S(t) follows Itd’s

process
dS = a(S, t)dt + b(S, t)dW,

where W (t) is the standard Wiener’s process. Then V' follows an Itd’s pro-
cess with the same Wiener process W (t):

1
dV = (aVs + §b2vs23 + Vy)dt + bVsdW,

where a:=a(S,t) and b:=b(S,t).

In our case, where a(S,t) = wS and b(S,t) = ¢S (in nonlinear Black-

Scholes equation b(S,t) = 6.5) we come to

dS = pSdt + oSdW.
or in the case of nonconstant volatility

dS = pSdt + aSdW.

Using It6’s lemma we come to
dv = (MSVS + %UQSQVSQS + Vt) dt + o SVgdW
= (%UZSQVSQS + Vt) dt + VsdS.
and again in the case of the nonconstant volatility function we have
dv = (uSVS + %52521/325 - V;) dt + 5SVgdW

1
_ (5&2521/525 " w) dt + VidS,
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Appendix

Sq.sk market price for selling an asset (trader wants to buy),

Spiq  market price for buying an asset (trader wants to sell).

2. Bid and Ask Prices

If the transaction costs are available on the market, there are different prices

for buying and selling an asset. We donote as

3. Matlab codes

In this Appendix we present Matlab codes we were using. The first code
stands for the explicit numerical method used for RAPM model.

% Variables used in this code have the same
notation as in the thesis.

taustar=0.0021;

L=1.5; %variable x is defined on <-L,L>

E=25;

T=1;

h=0.008;

sigma_hat=0.4;

k=h"2/472/sigma_hat"2/5;

x==1.5;

m=floor (T/k);

r=0.011;

a=0;

R=30;

C=0.01;

mu=3* (C"2+xR/2/pi) " (1/3);

n=floor (2xL/h)+1;

%$initial value of the vector H according to the
%approximation of the function N(d)

for i=1:1:n;

Hint (i) =exp (- ( (x+ (r—-g+sigma_hat”2/2) xtaustar) /...
(sigma_hat+*sqgrt (taustar)))”2/2)/ (sigma_hat=*...
sqgrt (taustar) »sqrt (2*xpi)) ;
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x=x+h;

end

$matrix initializing with appropriate size
H=zeros (n,m+1);

H(:,1)=Hint’;

x=1.5;

$following four constants are further

%used in the cycle

c_1l=k/h"2;

c_2=k/2/h;

c_3=sigma_hat"2/2;

c_4=2/3*sigma_hat”2+mu;

prem=0;

for j=1:m

for i=1:n

if (i==1)

H(i, j+1)=c_1x%((c_3-c_4*H(1i,3)"(1/3))*...
(H(i+1,3)-H(i,3)) - (c_3-c_4dxprem™ (1/3))*...
(H(i, j)-prem))+c_2*(c_3-c_4«H (i, J)" " (1/3))*...
(H(i+1, j) —prem) +rxc_2* (H(i+1l, j) —prem)+H (i, j);
elseif (i==n)

H(i, j+1)=c_1x((c_3—-c_4*H (i, J)(1/3))*...
(prem-H (i, J))—-(c_3-c_4*H(i-1,3)"(1/3)) ...
(H(i,J)-H(1i-1,3)))-c_2x(c_3+c_4x...

H(i, J)"(1/3))* (prem-H(i-1, j))+r*c_2x* (prem—. ..
H(i-1,3))+H(1,3]);

else
H(i, J+1)=c_1%((c_3-c_4+H(1i,3)"(1/3))*...

(H(i+1,3)-H(i,3))-(c_3-c_4xH(i-1,3)"(1/3))*...
(H(di,J)-H(i-1,3)))+c_2+(c_3-c_4*H (i, J) " (1/3)) ...
(H(i4+1,j)-H(i-1, J))+r*c_2+ (H(i+1, J)-H(i-1,3))+H (1, J);
end

end

end

59



Appendix

The second Matlab code is working with Amster’s model and semi-implicit

numerical method.

taustar=0.001;

L=1.5;

E=25;

T=0.999;

x=-1.5;

sigma_hat=0.4;

h=0.008;

k=h"2/472/sigma_hat"2/5;

m=floor (T/k)

r=0.011;

a=0;

a=sigma_hat/ (sqgrt (2/pi/k)*1.9);

b=1;

%initial value of the vector H according to the
%$approimation of the function N (d)

for i=1:1:floor (2*xL/h)+1;

Hint (i) =exp (- ( (x+ (r—g+sigma_hat”2/2) xtaustar) /...
(sigma_hat+*sqgrt (taustar)))”2/2)/ (sigma_hat=*...
sgrt (taustar) *sqrt (2*xpi)) ;

x=x+h;

end

n=floor (2xL/h)+1;

x=1.5;

c_l=sigma_hat"2/2;
c_2=-c_l*a/sigma_hat*sqgrt (2/pi/k);

H=zeros (n,m) ;

H(:,1)=Hint’;

n=size(H(:,1));

n=n(l,1);
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A=zeros (n);

c_1=k/h;

c_2=r*c_1;

c_3=sigma_hat"2/2;
c_4=-a/sigma_hat*c_3+sqgrt (2/pi/k);
c_5=2xbxsigma_hat"2;

for j=1:m

for i=1:n

for 1=1:n

if(i==1 && 1l==1) A(i,1)=1+k/h"2* (c_3+c_4+c_b5x*...
H(i, J)+c_3);

elseif (i==1 && 1==2)A(i,1)=-k/h"2xc_3-k*r/2/h-...
k/2/h* (c_3+c_4+c_5+H (i, 3));

elseif (i==1) A(i,1)=1+k/h"2* (c_3+c_4+c_5+H(i,J)+...
c_34c_4+c_5*H(i-1,73));

elseif (i==1+1)A(1i,1)=-k/h"2% (c_3+c_4+c_5%*...
H(i-1,7))+k*r/2/h+k/2/h* (c_3+c_4+c_5+H(i,73));
elseif (i==1-1) A(i,1l)=-k/h"2x(c_3+c_4+c_b5*...
H(i,3))-k+r/2/h-k/2/h* (c_3+c_4+c_5+H(i, 7)) ;

end

end

end

H(:, j+1)=1linsolve (A, H(:,3));

end

for S=10:1:45

for i=2:floor (2*xL/h)

V(S,1)=0;
V(S,1)=V(S,i-1)+thxmax (S-Exexp (-L+i*h),0)*«H(i,m+1);
end

end
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The last presented Matlab code is concerning Khalig-Liao method applied
on Leland’s model.

taustar=0.001;

IL=1.5;

E_1=25;

T=1-taustar;

h=0.006;
sigma_hat=0.4;
k=h"2/472/sigma_hat"2;
m=floor (T/k);

x=-1.5;

Co=0.00005;

Le=sqrt (2/pi) xCo/ (sigma_hat*sqgrt (k) ) ;
r=0.011;

a=0;

n=floor (2*«xL/h+1)

for i=1:1:n;

Hint (i) =exp (- ( (x+ (r—-g—-sigma_hat”2/2) xtaustar) /...
(sigma_hat*sqgrt (taustar)))"2/2)/ (sigma_hat=«...
sgrt (taustar) *sqrt (2*xpi));

x=x+h;

end

x=1.5;

H=zeros (n,m) ;

H(:,1)=Hint’;

c_l=sigma_hat"2/2;

c_2=c_1l+Le;

for i=1:1: (floor (2+xL/h)+1)

if (Hint (i)>0) v(1,i)=(c_1l+c_2);

elseif (Hint (1)<=0)v(l,i)=(c_l-c_2);

end

end
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H(:,1l)=Hint’;
A_l=zeros((floor (2+«L/h)+1)
((floor (2+xL/h)+1)
((floor (2«L/h)+1)
((floor (2+xL/h)+1)
C_l=zeros((floor (2+xL/h)+1)
C_2=zeros ((floor (2«L/h)+1)
(( )
(( )
(( )
(( )

4

A_2=zeros ;

’

B_l=zeros

’

B _2=zeros

’

4

4

floor (2*«L/h)+1
floor (2xL/h)+1
floor (2xL/h)+1
floor (2xL/h)+1

D_l=zeros

14

D_2=zeros

’

E_l=zeros

)
)
)
)
)
)
)
)
)
)

E_2=zeros 7

A_l=diag(ones ((floor (2+*L/h)+1),1) ...
(5/64+ (c_1l-c_2)*xk/h"2))+...
diag(ones ((floor (2+xL/h)+1)-1,1)*...
(1/12-=(c_1-c_2)/2*k/h"2),1)+...
diag(ones ((floor (2+xL/h)+1)-1,1) *
(1/12-(c_1-c_2)/2+xk/h"2),-1);
A_2=diag(ones ((floor (2+xL/h)+1),1)*...
(5/6+ (c_l+c_2)*k/h"2))+...
diag(ones ((floor (2+xL/h)+1)-1,1)*...
(1/12-(c_14+c_2)/2xk/h"2),1)+...

diag (ones ((floor (2+xL/h)+1)-1,1) ...
(1/12-(c_1+c_2)/2xk/h"2),-1);

B_l=diag (ones ((floor (2«L/h)+1),1)*...
(5/6-(c_1l-c_2)*xk/h"2))+...
diag(ones ((floor (2+xL/h)+1)-1,1)*...
(1/12+ (c_1-c_2)/2*k/h"2),1)+...

diag (ones ((floor (2+xL/h)+1)-1,1) ...
(1/12+ (c_1-c_2)/2xk/h"2),-1);
B_2=diag(ones ((floor (2+«L/h)+1),1) ...
(5/6-(c_l+c_2)*k/h"2))+...
diag(ones ((floor (2+xL/h)+1)-1,1)*...
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(1/124+(c_l4+c_2)/2xk/h*2),1)+...
diag(ones ((floor (2+xL/h)+1)-1,1)*...
(1/124 (c_1+c_2)/2*xk/h"2),-1);

C_l=diag(ones((floor (2+«L/h)+1),1) ...

(5/6+(c_1l-c_2)*k/h*2))+...

diag (ones ((floor (2«L/h)+1)-1,1) ...
(1/12-(c_1-c_2)/2xk/h"2),1)+...
diag (ones ((floor (2+L/h)+1)-1,1) ...
(1/12-(c_1-c_2)/2%k/h"2),-1);

C_2=diag(ones((floor (2+«L/h)+1),1) *...

(5/6+ (c_1+c_2)+k/h"2))+...
diag(ones ((floor (2+xL/h)+1)-1,1) *
(1/12-(c_14+c_2)/2xk/h"2),1)+...
diag(ones ((floor (2+xL/h)+1)-1,1)*...
(1/12-(c_1+c_2)/2xk/h"2),-1);

D_l=diag (ones ((floor (2«L/h)+1),1)*...

(5/6—(c_1-c_2)*k/h*2))+...

diag (ones ((floor (2«L/h)+1)-1,1)*...
(1/12+ (c_1-c_2)/2xk/h"2),1)+...
diag (ones ((floor (2+L/h)+1)-1,1) ...
(1/124(c_1-c_2)/2*xk/h"2),-1);

D_2=diag(ones ((floor (2+«L/h)+1),1) ...

(5/6—(c_1l+c_2)*k/h"2))+...
diag(ones ((floor (2+xL/h)+1)-1,1) *
(1/124 (c_1+c_2)/2*xk/h"2),1)+...
diag(ones ((floor (2+xL/h)+1)-1,1)*...
(1/12+ (c_1+c_2)/2xk/h"2),-1);

E_l=diag(ones ((floor (2«L/h)+1),1)*...

((=2)*(r+(c_1l-c_2))*xk/2/h*2))+...
diag(ones ((floor (2+xL/h)+1)-1,1)*...
((r+(c_l-c_2))*k/2/h"2),1)+...
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diag (ones ((floor (2+xL/h)+1)-1,1) ...
((r+(c_1-c_2))*k/2/h"2),-1);
E_2=diag(ones ((floor (2+«L/h)+1),1)*...
((=2)* (r+(c_l+c_2))*«k/2/h"2))+...
diag(ones ((floor (2+L/h)+1)-1,1) ...
((r+(c_l4+c_2))*k/2/h"2),1)+...

diag (ones ((floor (2«L/h)+1)-1,1) ...
((r+(c_l+c_2))*k/2/h"2),-1);

for j=1:m

for (i=1: (floor (2*«L/h)+1))
A(i,:)=A_1(i,:).*(H(:,3)<=0)"+A_2 (i, :) .x...
(H(:,3)>0)";
B(i,:)=B_1(i,:).*x(H(:,3)<=0)"+B_2(i,:) .*...
(H(:,3)>0)";
vec=(c_l-c_2).x(H(:,3)<=0)"+(c_1+c_2) .*...
(H(:,3)>0)";

end

if (j==1)

for prem=1:(floor (2+L/h)+1)

if prem==1 v (1l,prem)=0;

elseif prem==(floor (2+«L/h)+1) v (l,prem)=0;
else v (l,prem)=(Hint (prem+1)-Hint (prem-1))/2/h;
end

end

for prem=1:1: (floor (2+xL/h)+1)

if prem==1
jo(J,prem)=(vec (prem)+r) v (j,prem) +. ..

(=2xv (j,prem) +v (j,prem+l)) /12 (vec (prem) +r) ;
elseif prem==(floor (2+«L/h)+1)
jo(j,prem)=(vec (prem)+r*xv (j,prem))+...

(=2xv (j,prem) +v (j,prem-1)) /12 (vec (prem) +r) ;
else jo(j,prem)=(vec (prem)+r)*v(j,prem)+...

(v(j,prem—1)-2%v (j,prem)+v (j,prem+1l))/12x...
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(vec (prem) +r) ;

end

end

H(:, j+1)=linsolve (A,BxH(:, j)tkxJjo(j, :)");
else

for prem=1:1: (floor (2+xL/h)+1)

if prem==
jo(j,prem)=(vec(prem)+r)*v(Jj,prem)+...
(=2*v (J,prem)+v (J,prem+l)) /12 (vec (prem) +r) ;
elseif prem==(floor (2+«L/h)+1)

jo (J,prem)=(vec (prem)+r)*v(j,prem) +. ..
(=2*v (j,prem)+v (Jj,prem-1)) /12 (vec (prem) +r) ;
else jo(j,prem)=(vec (prem)+r)*v(]j,prem)+...
(v(j,prem—1)-2%v (]j,prem)+. ..

v (j,prem+l)) /12 (vec (prem) +r) ;

end

end

H(:, j+1)=linsolve (A,B*H(:, j)+k/2*...
((Jo(J, ) "+Jo(J3=1,:)")));

end

for(i=1l: (floor (2+xL/h)+1))
C(i,:)=C_1(i,:).x(H(:,3)<=0)"+...

C_2(i,:).*(H(:,3)>0)";
D(i,:)=D_1(i,:).x(H(:,3)<=0)"+...
' (:,3)>0)";

1
H(:,
i,0) .%x(H(:,3)<=0)"+...
H(:,3)>0)";

v(j+l,:)=linsolve (C,Dxv(J,:) " +...

Ex(H(:,J)+H(:,J+1)));

end
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