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Abstract

Author: Bc. Mária Holecyová

Thesis Title: Dynamic Analysis of Pandemic Measures

Institution: Comenius University in Bratislava

Faculty: Faculty of Mathematics, Physics and Informatics

Department: Department of Applied Mathematics and Statistics

Supervisor: Prof. RNDr. Pavel Brunovský, DrSc.

Date: April 2012

We present an analysis of pandemic measures that might be carried out during in-

�uenza epidemics, i.e. vaccination and implementation of face masks, in the population

of Slovak Republic. At the beginning we provide a brief overview of current issues of

mathematical epidemiology, the models and problems that they are used to solve. There-

after we decide for the deterministic model that suits the behavior of in�uenza diseases

and discuss its advantages and disadvantages comparing it with SIR model that is typ-

ically used in the literature. We apply the model to analyze the impact of vaccination

and wearing masks on the spread of epidemics from the medical perspective as well as

from the economic perspective using optimal control theory. And at the end, we derive a

stochastic model of epidemics, we apply it to investigate the e�ect of pandemic measures,

discuss the scope of its use and suggest how the theory of stochastic modeling could be

extended in the future.

Keywords: pandemic measures, SIR model, vaccination, face masks, in�uenza, de-

terministic model of epidemics, optimal control theory, stochastic model of epidemics
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V tejto práci predkladáme analýzu protipandemických opatrení (o£kovanie a zavede-

nie rú²ok), ktoré môºu by´ vykonávané po£as chrípkových epidémií a orientujeme sa na

populáciu Slovenskej republiky. V úvode poskytujeme £itate©ovi stru£ný preh©ad aktuál-

nych otázok matematickej epidemiológie, modelov a problémov, ktoré sú pomocou nich

rie²ené. Na základe toho si vyberáme taký deterministický model, ktorý najlep²ie zod-

povedá správaniu chrípkových ochorení a rozoberáme jeho výhody a nevýhody v porov-

naní so SIR modelom, ktorý je tradi£ne vyuºívaný v literatúre. Model ¤alej vyuºívame na

analýzu dopadu o£kovania a nosenia rú²ok na vývoj epidémie a to nielen z medicínskeho

uhla poh©adu, ale aj z ekonomického h©adiska vyuºitím teórie optimálneho riadenia. Na

záver práce odvádzame stochastický model epidémie, pomocou ktorého opä sledujeme

´ efekt protipandemických opatrení, zamý²©ame sa nad rozsahom jeho vyuºitia a prácu

uzatvárame návrhom, akým novým výzvam by mala teória stochastického modelovania

£eli´ v budúcnosti.

K©ú£ové slová: protipandemické opatrenia, SIR model, o£kovania, rú²ka, chrépka,

deterministický model epidémie, teória optimálneho riadenia, stochastický model epidémie
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Preface

If people do not believe that mathematics is simple, it is only

because they do not realize how complicated life is.

John Louis von Neumann

The symptoms of human in�uenza were clearly described by Hippocrates about 2,400

years ago [32], but despite our deep knowledge about its causes and behavior, �u epidemics

are reappearing a year after year and typically there are between three and �ve million

cases of severe illness and up to 500,000 deaths worldwide every year [42]. Three in�uenza

pandemics occurred in the 20th century and killed tens of millions of people, with each of

these pandemics being caused by the mutation. Often, these new strains appear when an

existing in�uenza virus spreads to humans from other animal species, or when an existing

human strain picks up new genes from a virus that usually infects birds or pigs.

Probably the most devastating in�uenza pandemic was caused by Spanish �u lasting

from 1918 to 1919. It is estimated that 3 per cent of the world population died of the

disease, and so it is sometimes called "the greatest medical holocaust in history". The

latest in�uenza pandemic, swine in�uenza, occurred in 2009. It was not as lethal as

Spanish �u, but still there are 1,632,258 con�rmed cases and 19,633 deaths caused by the

disease [20].

These numbers are alarming and rise concerns about our ability to control the disease

if a new strain appear again. According to the World Health Organization (WHO), one

of the biggest concerns for international health is an in�uenza pandemic [15]. The avian

�u is a focus of pandemic preparedness, the conclusion of WHO is that a �u pandemic

is inevitable [15]. And still there are in�uenza epidemics that we are more or less used

to overcome every year by taking medications or vaccinating, but it is a serious threat

for people with weaker immunity leading to more than half million deaths a year. How

can we prepare for the epidemics? How can pandemic measures a�ect the spread of the

disease? How does their impact change when they are implemented later, when the virus

is already spreading?

We apply the theory of mathematical epidemiology to �nd at least partial answers
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to these question. There are two main types of models, deterministic and stochastic,

used to describe the course of the epidemics. And although one would probably expect

that stochastic models rather than deterministic are used most as the nature of epidemics

is basically stochastic, in the literature we can �nd much more deterministic analysis.

Diekmann and Heesterbeek [18] note that epidemiological models provide only caricatu-

ral mathematical description of the mechanisms of transmission diseases. Although the

theory is now centuries old and the models include numbers of factors a�ecting the trans-

mission, it still does not provide the complex understanding of the phenomena. It it only

a tool that can describe the principles of epidemics and help us to �nd the answers to

questions we ask.
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Introduction

According to Gani and Jerwood [19] epidemic modeling has three main aims:

• to understand better the mechanisms by which diseases spread,

• to predict the future course of the epidemic,

• to understand how we may control the spread of the epidemic.

In this thesis we deal with all the aims, analyzing impact of pandemic measures (vac-

cination and implementing face masks) on the spread of in�uenza epidemics in Slovakia.

Firstly, we present a brief overview of mathematical epidemiology to understand the de-

velopment of the theory and to decide how far can we go in order to describe the epidemics

as rigorously as it is possible. Although we admit that the nature of virus transmission is

stochastic, most of this thesis work with deterministic models, as it is considered a su�-

cient approximation and its main advantage is its simpler, but not necessarily simplistic

analysis. We want to investigate the expected e�ect of the pandemic measures on epi-

demics, dealing with expected behavior of its spread that deterministic models illustrate.

In the second chapter, we decide for the deterministic model that suits the in�uenza

and compare it to the SIR model typically used in the literature to analyze pandemic

measures, e.g. Scherer and McLean [40]. We discuss its advantages and show the di�erence

between the models both in the short term and in the long term.

Next chapter deals with vaccination. In its �rst part, we assume that vaccines are

fully e�ective and in the second part, we assume their e�ectiveness to be only 70 per cent.

In both cases, we do not look at the problem only from medical perspective, i.e. how

vaccination can a�ect the spread of the disease, but also from economical perspective, i.e.

how much we can save when we vaccinate the population.

The fourth chapter follows the methods derived in the previous chapter and analyze the

impact of wearing face masks on the spread of the epidemics. We discuss the problem from

medical perspective and economical point of view, as well. At the end of the chapter, we

discuss the possibility of replacement of the vaccination by face masks. This is important

when a new type of in�uenza appears and there are no e�cient vaccines.
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The purpose of the last chapter is to develop a stochastic model, discuss its use and

study the instantaneous impact of pandemic measures on the probability that no more

infective cases appear. The results can only indicate the principles of stochastic behavior

and serve only to understand the basis of the nature of epidemics. We do not derive an

e�ective tool to describe the stochasticity of epidemics. Therefore, we conclude the thesis

suggesting some challenges that mathematical epidemiology should face in the future.
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Chapter 1

Mathematical Epidemiology

This chapter serves as an introduction to mathematical epidemiology. We provide a brief

history overview of mathematical approach in epidemiology from its very beginning. We

also summarize current trends and describe the basic models that are widely used in the

literature. The discussion about advantages and disadvantages of using stochastic model

is included at the end of the chapter, suggesting that we should prefer deterministic model

in our analysis as it is recommended in the case of larger populations.

1.1 History Overview

The mathematical study of diseases and their dissemination is at most just over three

centuries old, dating from the �rst quantitative study of human diseases and deaths

ensuing from them written by John Graunt [19]. However, the �rst study based on

theoretical and mathematical approach to the e�ects of a disease, namely smallpox, can

be be traced back to Daniel Bernoulli [10] almost a century later. In next years, only

few works on mathematical epidemiology appeared, most of them based on Law of Mass

Action (Boyle [11], Glasstone [22]). In 1854, John Snow demonstrated that cholera could

be transmitted via drinking water applying statistical data of the infectious cases and

after his discovery mathematical epidemiology had not recorded greater success for a long

time. Hamer [24] was the �rst who foreshadowed the pragmatic 'mass action' principle for

a deterministic epidemic model in discrete time. This principle, which incorporates the

principle of homogeneous mixing, has been the basis of most subsequent developments in

epidemic theory [19]. His idea was based on the equation

4I(t) = βS(t)I(t)
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Deterministic Models Mathematical Epidemiology

where S(t), I(t) are the number of susceptible individuals and infective individuals re-

spectively at times t = 0, 1, 2, ....

The theory of mathematical epidemiology has become a real scienti�c challenge since

the end of First World War, when Spanish in�uenza, the most serious pandemic in recent

history, occured. It is estimated to be responsible for the deaths of over 50 million people.

Continuous time versions of epidemic equations derived by Hamer [24] were used by

Ross [39] in 1916, and Ross and Hudson [38], but the form of equations most commonly

used to characterize the typical general epidemic with the number of susceptibles S(t), the

number of infectives I(t) and the number of removed (recovered) R(t) is due to Kermack

and McKendrick's study [28] in 1927.

dS(t)

dt
= −βS(t)I(t)

dI(t)

dt
= βS(t)I(t)− αI(t)

dR(t)

dt
= αI(t)

(1.1)

where β is called transmission rate and α is removing (recovery) rate. The model is

also called SIR model. McKendrick also derived one of the earliest of stochastic models

[33], but Greenwood and Reed-Frost models have replaced it. SIR model (1.1) was later

modi�ed to stochastic continuous model, e.g. [34]. Finally, since 1957, the date of publi-

cation of Bailey's book The Mathematical Theory of Epidemics [3], that provided a great

overview of epidemiological theory, the contributions to the subject of mathematical epi-

demiology have themselves behaved like an epidemic. Bailey's studies on malaria [5] and

other infectious diseases [4] were accompanied by stochastic epidemic modelling provided

by [9], [31] and others. The deterministic model was modi�ed in several ways, adding

mortality rates and more parameters to the dynamic system. The book by Gani and

Jerwood [19] summarizes epidemiological modeling as it was till 1999. It presents a pillar

for applications of epidemiological models. There has not remained much space for new

inventions in the �eld of modeling, mainly deterministic modeling, therefore the newest

studies are mostly aimed at applications of existing models, e.g. vaccination control tools

[17], and at commenting and comparing the models [18].

1.2 Deterministic Models

Deterministic models currently used in literature are based on the Kermack and McK-

endrick ODE model (1.1). In these models, population sizes of susceptibles, infectives
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Deterministic Models Mathematical Epidemiology

and removals are assumed to be functions of discrete time t = 0, 1, 2, ... or di�erentiable

functions of continuous time t > 0. The evolution of epidemics is deterministic in the

sense that no randomness is allowed. The results of a deterministic process are usually

regarded as giving an approximation to the mean of a random process [19]. The deter-

ministic model is an acceptable approximation of the stochastic one if the population is

su�ciently large, however it is not exactly explained when the population is large enough

[34]. Nevertheless, the SIR model (1.1) has proven useful in ascertaining gross factors

a�ecting rate of growth and �nal size of epidemic [25]. The major signi�cance of the

model at the time of its �rst publication was a mathematical demonstration that even

with a major outbreak of a disease satisfying the simple model, not all susceptibles would

necessarily be infected.

The standard SIR model assume that demographic changes can be neglected, i.e. there

are neither deaths nor births during the epidemics. This assumption was later excluded

and a new SIR model with demographic changes derived [12].

dS(t)

dt
= −βS(t)I(t) + µ(N − S(t))

dI(t)

dt
= βS(t)I(t)− αI(t)− µI(t)

dR(t)

dt
= αI(t)− µR(t)

(1.2)

where µ is mortality rate from causes unrelated to the infection. It is neccessary to

include demographic changes when the epidemics lasts a long time.

Moreover, the SIR model is based on assumption that each infected individual can trans-

mit the infection and later he recovers fully immune. When the infectious period is long,

the assumption should be modi�ed and a new parameter E(t), number of infected but not

infectious individuals at time t, should be introduced. The following di�erential equations

represent this model:

dS(t)

dt
= −βS(t)I(t) + µ(N − S(t))

dE(t)

dt
= βS(t)I(t)− (µ+ γ)E(t)

dI(t)

dt
= γE(t)− (α + µ)I(t)

dR(t)

dt
= αI(t)− µR(t)

(1.3)

where γ is the expected length of the latent period. [17] also added ω as the rate of

loosing immunity. Another option is to simplify the model to SIS model (1.4) assuming

7



Deterministic Models Mathematical Epidemiology

that a recovered individual can be infected again [2] or after some time, i.e. SIRS model

(1.5) analyzed in [26].

dS(t)

dt
= −βS(t)I(t) + µ(N − S(t)) + αI(t)

dI(t)

dt
= βS(t)I(t)− (µ+ α)I(t)

(1.4)

dS(t)

dt
= −βS(t)I(t) + µ(N − S(t)) + ρR(t)

dI(t)

dt
= βS(t)I(t)− (µ+ α)I(t)

dR(t)

dt
= αI(t)− (µ+ ρ)R(t)

(1.5)

where ρ is an average length of period during which an individual is immune.

There are also several diseases when an individual is born with a passive immunity

from its mother [30]. To indicate this mathematically, an additional compartment M(t)

is added, which results in the following di�erential equations:

dM(t)

dt
= B − δS(t)M(t) + µM(t)

dS(t)

dt
= δS(t)M(t)− βS(t)I(t) + µS(t)

dE(t)

dt
= βS(t)I(t)− (µ+ γ)E(t)

dI(t)

dt
= γE(t)− (α + µ)I(t)

dR(t)

dt
= αI(t)− µR(t)

(1.6)

Brunovsky and Kilianova [13] replaced expected length of infectious period by �xed

length τ and derived the SIR model with following equations:

dS(t)

dt
= −βS(t)I(t)

dI(t)

dt
= βS(t)I(t)− βS(t− τ)I(t− τ)

dR(t)

dt
= βS(t− τ)I(t− τ)

(1.7)

In order to provide a model that describes the disease behavior best, we can also use

combinations of the models above. It is important to understand the basics of behavior

of the epidemics we are about to analyze, using statistical data or medical theory before

we decide for the model.

8



Stochastic Models Mathematical Epidemiology

1.3 Stochastic Models

While deterministic methods may be adequate to characterize the spread of an epidemic

in a large population, they are not satisfactory for smaller populations, in particular those

of household size [19]. The stochastic models most cited in the literature are Greenwood

and Reed-Frost models [25] that di�er only in the probability of a susceptible becoming

infected at time t, p(t). While in Greenwood model p(t) = p is a constant not depending

on the number of infectives, in Reed-Frost model it is supposed that the probability of a

susceptible not becoming infected at time t is 1− p(t) = (1− p)I(t). Then the probability

that there will be n new infective individuals in the population is binomially distributed,

P (I(t+ 1)− I(t) = n|S(t) = s, I(t) = i) =

(
s

n

)
p(t)n(1− p(t))s−n.

The future generation of the dynamic system S(t), I(t)1 depends only on the previous

its generation, so we deal with Markov chain with conditional probabilities

P (Y (t+ 1) = n|S(t) = s, Y (t) = i) =

(
s

n

)
(1− p)n ps−n (1.8)

for Greenwood model and

P (Y (t+ 1) = n|S(t) = s, Y (t) = i) =

(
s

n

)
(1− (1− p)i)n

(
(1− p)i

)s−n (1.9)

for Reed-Frost model, where Y (t + 1) = I(t) − I(t − 1) the number of newly infected

individuals at time t. Then S(t + 1) = S(t) − Y (t) and S(t) +
t∑

j=0

Y (j) = N , where N

denotes the size of the population. The models are evidentally special cases of SIR model

when the length of infectious period is deterministic.

Despite its apparent simplicity, the models are not readily analyzed for large popula-

tions due to computational di�culties. Although Ball and O'Neill [8] have managed to

�nd the distribution of the �nal size, i.e. the total number of infected invidivuals during

the epidemics, in the Reed-Frost model, Anderson and Britton show [2] that recursive

formulas used to calculate it are numerically unstable and cannot be applied to obtain

solutions when the number of susceptibles exceeds 50-100 individuals.

The main advantage of deterministic models is based on its simpler analysis, they can be

more complex and yet still possible to be analyzed at least numerically. However, the de-
1R(t) can be expressed as N − I(t)− S(t) as the size of the population is consider constant N .

9



Stochastic Models Mathematical Epidemiology

terministic process characterizes the epidemics as a mass action relying on the law of large

numbers. Naturally, when we describe the spread of the disease we rather talk about the

probability that one becomes infected than stating certainly whether the disease will be

transmitted, as the nature of epidemic growth and spread is for the most part stochastic.

Furthermore, probability of extinction cannot be analyzed in the deterministic model that

describes only expected course of the epidemics not its deviations from expectations such

as extinction. Anderson and Britton [2] provide even more detailed explanation claim-

ing that stochastic models should be preferred when their analysis is possible, otherwise,

deterministic models should be used. Since we consider a large population of about 5

million individuals, we decide to deal with deterministic model at �rst.

10



Chapter 2

Deterministic Model of Epidemics

In this chapter, we present notation and assumptions used throughout the thesis and

derive a deterministic model of epidemics that is subjected to analysis and expanded in

next chapters. The literature o�ers us various models that have been already deeply an-

alyzed, but we focus on in�uenza epidemics and choose the model that suits the behavior

of in�uenza best. Then, we compare our model to the one that is typically used in liter-

ature and discuss whether our choice makes a signi�cant di�erence. We also de�ne the

reproduction number in order to precisely explain the di�erence between the models.

2.1 SIR model

The basic model that is typically used to analyze course of epidemics and have already

been described in Chapter 1 Mathematical Epidemiology is called SIR model (1.1) and it

is characterized by the system of di�erential equations. We derive our model from this

one as the assumptions that it is based on, suite the case of in�uenza reasonably well.

This model is comes from following assumptions:

(i) The population is closed.

Populations are permanently changing: a part of individuals disappear by death or

emigration and another part of them appear by birth or immigration. However, the

time scale at which an in�uenza spreads though the population is often shorter than

the time scale of demographic or migration process. Therefore we neglect all the

changes within the population and consider it closed.

(ii) The population is homogenous.

11



SIR model Deterministic Model of Epidemics

Generally, individuals have di�erent immunity against diseases depending on their

physical condition, immune system, genetic in�uences etc. In our model, we assume

that di�erences in their immunity are small and can be neglected, so the population

is equally vulnerable to infection. Moreover, we assume that all the parameters used

in the model have the same value for each individual.

(iii) A recovered individual is absolutely immune to infection during the rest of the epi-

demics.

We assume that we deal with microparasites; they trigger an autonomous process in

the host which end up with either immunity or death. No individual can be infected

more than once and we do not expect any death caused by the disease in the short

time scale of in�uenza spread.

(iv) Infectivity of infected individual does not vary in time.

Although it is natural that at the beginning of infectious period a disease is strongest

and can be transmitted easier, we assume that in the short time scale of infective

period the transmissibility of disease does not change.

(v) The number of contacts per time unit is deterministic. We assume that each

individual meet a constant number of di�erent individuals and the transmission rate

is directly proportional to the number of contacts.

(vi) The length of the infectious period is random and has an exponential distribution.

The distribution has parameter α, i.e. the probability to be still infectious T units

of time after infection is e−αT . So the increase in number of recovered individuals is

a constant proportion of the number of infectives.

The last assumption is problematic, as in�uenza does not behave in such a way. The

disease itself lasts from three to six days in average and it can be followed by fatigue for

two or three weeks [29]. Therefore, we will change the (vi) assumption and assume that

the average time during which an infected individual remains infective is �xed. Let us

denote it by τ . We will mostly assume that τ = 4. Hence, in general

I(t) = S(t− τ)− S(t)

R(t) = N − S(t− τ)
(2.1)

12



Discretization of the Model Deterministic Model of Epidemics

The model we will consider is

dS(t)

dt
= −βS(t)I(t) = βS(t)(S(t− τ)− S(t))

dI(t)

dt
= βS(t)I(t)− βS(t− τ)I(t− τ) =

= βS(t)(S(t− τ)− S(t))− βS(t− τ)(S(t− 2τ)− S(t− τ))
dR(t)

dt
= βS(t− τ)I(t− τ) = βS(t− τ)(S(t− 2τ)− S(t− τ))

(2.2)

As S(t) can be expressed by its previous states, we can reduce the model to only �rst

equation. Other variables can be derived from S(t).

Following [18], we add three more parameters

N ... size of the population

k ... expected number of contacts of one individual per unit of time

π ... probability that an individual becomes infected after having met an infective one.

From the above assumptions and [13] we can �nd an expression for the transmission rate

β. The instantaneous average number of infective individuals a susceptible one meets

during an interval of unit length is k
I(t)

N − 1
. We consider a large population, particularly

5 million population of Slovakia, so we can neglect the di�erence between N and N − 1,

and simplify the expression to k
I(t)

N
.

The probability of a susceptible becoming infected during a unit time period is the prob-

ability of becoming infected by one infected individual multiplied by the probability of

meeting one infective individual, i.e. πk
I(t)

N
. Hence, the number of newly infected during

a unit time period is πk
I(t)

N
S(t). Denoting β :=

πk

N
, we obtain (2.2).

2.2 Discretization of the Model

We decide to work with the model numerically by discretization

S(t+4t)− S(t)
4t

= βS(t)(S(t)− S(t− τ))

S(t+4t) = S(t) + βS(t)(S(t)− S(t− τ))4t.
(2.3)

We divide the duration of epidemics by time unit 4t = 1 day, so we obtain

S(t+ 1) = S(t)(1 + β(S(t)− S(t− τ))) (2.4)
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As we assume that S(t) ≥ 0 ∀t, the sum 1 + β(S(t) − S(t − τ)) should always be

positive. This is not true when N < πk(S(t− τ)− S(t)). In that case, the spread of the

disease is extremely strong and has the ability to infect more susceptibles than there are

in the population. Then the model have to be modi�ed to

S(i+ 1) = max (0, S(t)(1 + β(S(t)− S(t− τ))). (2.5)

Despite this fact, we will use simpler formula (2.4) as we assume that the number of

infectives during epidemics will not reach such a high level so that the whole population

can be a�ected.

2.3 Reproduction Number

According to [18], we de�ne the reproduction number R0 as the expected number of

e�ective contacts by one infected individual during an infectious period in virgin popu-

lation (the population that is completely susceptible). Contact between an infected and

susceptible individual is e�ective, when the disease is transmitted to a susceptible.

R0 has a threshold value 1, i.e. if R0 > 1, introduction of an infected individual to the

completely susceptible population will result in epidemics, if R0 < 1 the infection will die

out soon. Generally, the larger the value of R0, the harder it is to control the epidemics.

From the assumptions including infectious period τ = 4 days, we �nd

R0 = βS(0) + βS(1) + βS(2) + βS(3)

where

S(1) = (1− β)S(0)

I(1) = 1 + βS(0)

S(2) = (1− βI(1))S(1) = (1− β)S(0)(1− β(1 + βS(0)))

I(2) = 1 + βS(0) + βS(1)I(1) = (1 + βS(0))(1 + β(1− β)S(0))

S(3) = (1− βI(2))

S(3) = (1− β)S(0)(1− β(1 + βS(0)))(1− β(1 + βS(0))(1 + β(1− β)S(0))).

As we assume that β =
kπ

N
is low for large N , we can neglect its higher powers. Using

this approximation the value of R0 will increase somewhat, as in fact we assume that the

number of individuals getting infected by infectives other than the initial one is so small
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that it can be neglected and so the initial one can infect more susceptibles.

Hence, in general
S(1) = (1− β)S(0)

S(2) = (1− β)2S(0)
...

S(τ − 1) = (1− β)(τ−1)S(0)

For τ = 4, the reproduction number R0 = S(0)(1 − (1 − β)4) and generally R0 =

S(0)(1 − (1 − β)τ ). Brunovsky and Kilianova [13] neglected not only the part of pop-

ulation infected by individuals infected later as we did, but also changes in number of

susceptibles at the beginning of epidemics. They derived R∗ = βS(0)τ . The Figure 2.3

shows the di�erence between our reproduction number R0 and R∗ depending on the length

of infectious period. The di�erence is very low, but we do not neglect it because there is

no need to simplify the formula; calculations are not much more complicated.

Figure 2.1: The di�erence between reproduction number R0 and R∗ for di�erent lengths
of infectious period τ

Figures 2.2 and 2.3 show the spread of the epidemics for reproduction number below

and above 1. Although it is not clear from Figure 2.3 the number of infective individuals

have not reached zero, it was only close to zero.
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Figure 2.2: Reproduction number R0 under
its threshold value

Figure 2.3: Reproduction number R0 above
its threshold value

2.4 Comparison of the Models

The model with exponential distribution is widely used in the mathematical epidemiology

as it is relatively easily computable. Using the model with time delay may lead to compli-

cations because we have to remember τ previous states to compute the next one, and less

standard functions with time delay generally require more complicated theory. Although

the in�uenza behavior �ts to the model with time delay, we ask whether the di�erences

between models are so signi�cant that we cannot simplify our problem by using ODR.

Figure 2.4 illustrates the di�erence between these approaches. If there are no new

infected cases in the population, the number of infectives changes exponentially according

to (1.1), while according to our assumptions and model (2.2) can reach zero in �nite time.

Figure 2.4: Decrease in number of infectives when no new infected individuals appear
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In order to go deeper in analysis of the di�erence between the models, we have to

calculate appropriate α, i.e. the parameter of exponential distribution in (1.1). We

consider τ = 4 as the average length of infectious period, so we �nd∫ ∞
0

te−αtdt =
1

α
= 4.

Hence, α =
1

4
and generally α =

1

τ
and the models to compare are

S1(t+ 1) = S1(t)− βS1(t)I(t)

I(t+ 1) = I(t) + βS2(t)I(t)−
1

τ
I(t).

(2.6)

and

S2(t+ 1) = S2(t)(1 + β(S2(t)− S2(t− τ))) (2.7)

And for the same input parameters, i.e. N = 5.106, τ = 4, I(0) = 1, the development

of epidemics does not di�er much neither at the beginning of the epidemic season and nor

at the end of the season as it is shown in the Figure 2.6. Naturally, in the long term there

should not be big di�erence since we replaced exponential distribution by its expected

value. And at the beginning, the epidemics does not spread quickly, so the di�erences

are small. However, the di�erences always reach their relatively high peak between the

beginning and the end of season. Since epidemic season does not last long, usually about

28 weeks in Slovakia, we cannot consider long term. If we were interested only in the

�nal size of the epidemics and we consider longer term, the model with exponentially

distributed infectious period would be acceptable as well. The crucial question would be:

When is the term long enough?

In the long term, the di�erence yields to zero, but it does not go to zero neither with

growing nor with decreasing reproduction number. The Figure 2.7 shows that after 1000

days, there is no di�erence in the number of susceptibles when reproduction number is

lower than 1. This must be true because R0 < 1 indicates that the epidemics has died out

soon after its beginning and then S(t) has not changed. Figure 2.6 showed that at the

beginning of the epidemics, there are only very small di�erences. If R0 > 1 the di�erence

is growing and its peaks when R0 is about 1.8.

We do not consider higher reproduction numbers because their transmission rate would

be extremely high and it would lead to con�ict with our assumption from section 2.2. Dis-

cretization of the Model that the number of infectives during epidemics will not reach such
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Figure 2.5: The di�erence between number of susceptibles in the model (2.6) and in the
model (2.7)

Figure 2.6: The number of susceptibles in the models. The black line shows the time,
when the di�erence is highest.

a high level so that the whole population can be a�ected.

In next chapters, we will assume that reproduction number of in�uenza viruses R0 ∈
(1, 1.5) and following [13] we will mostly use the reproduction number R0 = 1.25. We

provide a detailed explanation in Appendix.
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Figure 2.7: The di�erence between number of susceptibles in the model (2.6) and in the
model (2.7) if we assume that the epidemic season ends after 1000 days

When we consider in�uenza with reproduction numbers below 1, we can use the model

with exponential distribution of infectious period. When reproduction number increases,

we should skip to the model with time delay that is more suitable for in�uenza and that

di�ers to the previous model in the short term. If we are not interested in the development

of the disease, only in its �nal size when the epidemic season is long enough, the models

lead to the same results and we can prefer the model without time delay because it does

not require so much memory. The longer the season is, the better. For reproduction

numbers As the aim of this thesis is to analyze pandemic measures on the spread of the

disease, we are not interested only in its �nal size, but also in its developlment. Therefore

we decide to use only the model with time delay.
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Chapter 3

Vaccination

Vaccination is the administration of antigenic material to stimulate the immune system of

an individual and to develop adaptive immunity to a disease. The in�uenza vaccine is an

annual vaccine to protect against the in�uenza viruses: type A subtype H3N2 virus strain,

type A subtype H1N1 (seasonal) virus strain, and type B virus strain, the most common

in�uenza viruses [16]. In large population, it is not possible to vaccinate everyone, at least

not at once. However, if we vaccinate some higher proportion of the population, we can

moderate the epidemics or even cause the epidemics dies out after vaccination is carried

out.

Vaccination as the most e�cient pandemic measure serves not only to control the

epidemics, but consequently to save money. From the economical perspective, if vaccines

are not too expensive and their e�ciency is high enough, vaccination is bene�cial as well.

In this chapter, we will focus on the e�ect of vaccination when it is both fully and partially

e�ective, asking how can we control the epidemics by vaccination and how can we bene�t

from that.

3.1 Vaccination with Full E�ciency

Following Brunovsky and Kilianova [13], we asses the e�ect of vaccination assuming that

vaccination is fully e�ective, i.e. vaccinated individual is immune for the whole duration

of the epidemics. We analyze the vaccination carried out before the epidemics starts, after

it starts, and the case when it is carried out gradually.
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3.1.1 Vaccination Before the Epidemics Starts

At �rst, we assume that vaccination is carried out shortly before or immediately at the

beginning of the epidemics. In the previous chapter we derived reproduction number

R0 according to which we decide whether the epidemics dies out or spreads. When we

vaccinate population before the epidemics starts, we change the reproduction number

and so we may ask: What part of the population has to be vaccinated to prevent the

epidemics, i.e. to achieve R0 < 1?

Based on the previous subsection we have

R0 = S(0)(1− (1− β)4) = (N − V )(1− (1− β)4),

where V denotes number of vaccinated individuals. Thus, threshold for vaccination is

V ∗ = N − 1

1− (1− β)4

In relative terms, this yields

v∗ =
V ∗

N
= 1− 1

N(1− (1− β)4)

Figure 3.1: Vaccination threshold v∗ for various transmission rates β

For example, if R0 = 1.25, then it is su�cient to vaccinate 21 per cent of the population

in order to avoid epidemics. As Brunovsky and Kilianova derived di�erent reproduction

number R∗, their result is not the same, optimal v∗ does not depend on the size of

population [13]. The same results can be found in Sherer and McLean [40]. However, the
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optimal threshold v∗ does not di�er much as it is shown in Figure 3.2.

Figure 3.2: The di�erence in vaccination threshold v∗ derived from R0 and R∗

3.1.2 Vaccination After the Epidemics Starts

When a new type of disease appears, there are no vaccines and it takes some time to

develop an e�ective antidote. This is a typical feature of in�uenza viruses, i.e. their ability

to mutate to new types. Hence, the vaccination cannot be carried out shortly before the

epidemics, but after some time. Let us denote it T . The new model is following

∀t 6= T : S(t+ 1) = S(t)(1− βI(t)))

I(t+ 1) = I(t) + βS(t)I(t)− βS(t− τ)I(t− τ)

S(T + 1) = S(T )(1 + β(S(T )− S(T − τ)))− vS(T )

(3.1)

First τ days after vaccination, we cannot use the equation (2.4) because S(t−τ)−S(t)
would also include vaccinated part of the population.

The reproduction number will not help us in this case. At time T there is no virgin

population, the number of recovered and infected individuals is non-zero. If it is not,

the disease does not cause any harm to population and vaccination is not needed. The

reproduction number is number of individuals infected after introduction of one infective.

At time T , there are more infectives with di�erent number of remaining infectious days.

When a single infective enters the population, his contacts are maximum e�ective. Hence,

if he is not able to infect at least one individual, others will not be able to do so neither

and the epidemics will end soon. As the disease spreads, calculating reproduction number,
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i.e. number of e�ective cases in the population when there are I(T ) infectives, clearly

cannot be based on the same idea. R0 has no sense in this case. We only know that if R0

was lower than 1, the epidemics will die out even without vaccination.

Figure 3.3: Number of susceptibles in non-vaccinated population and when 20% of sus-
ceptible population is vaccinated at time T = 50

As it is shown in Figure 3.3, vaccination of the population when the epidemics has

been already spreading, can slow it down, but it does not a�ect transmission strength of

the disease, i.e. βI(t). The rest of the population will remain in danger as vaccination

only reduces the number of susceptibles to the number that it would reach later. The

crucial is fact that the �nal size of epidemics is not S(0)− S1(∞), where S1(∞) denotes

the number of susceptibles at end of epidemics when vaccination is not carried out, but

it is S(0) − S2(∞) − V (T ). Moreover, S2(∞) > S1(∞), so the �nal size will be much

smaller if we vaccinate.

The problem is described in diagrams (3.1.2),(3.5). When we vaccinate at time T , we

exclude vS(T ) individuals from the dynamic process and only the rest of the susceptible

population can become infective and later recovered. When we do not vaccinate, we can

divide the susceptible population at time T to two parts, the second one includes the

same number of susceptibles as it was vaccinated in the �rst case. It is still part of the

dynamic system and moreover it contributes to higher I(t), so the transmission strength

of the disease, βI(t), is higher.

When T is high, it would be di�cult to vaccinate su�ciently high proportion of sus-

ceptible population to make the epidemics die out soon after vaccination. The reason is
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Figure 3.4: The e�ect of vaccination after epidemics starts

Figure 3.5: The dynamic system when vaccination is not carried out

based on high transmission strength of the disease. As the epidemics did not end soon

after the beginning, reproduction number is higher than 1 and so transmission rate is

high. Multiplied by increasing number of infectives, it is even higher and vaccination does

not change it. It changes only number of susceptibles and so number of future infective

cases. To eliminate such a strong transmission spread in the population we would need

so many vaccines that probably it would not be possible to supply and employ so much

medical personnel. We denote N −S(∞)−V (T ) the �nal size of the epidemics when vac-

cination is carried out and N−P (∞) the �nal size when the population is not vaccinated.

Then S(∞) + V (t)− P (∞) is the number of individuals who escape from being infected

if vaccination is carried out. Figure 3.6 shows, that the e�ect of vaccination decreases

with growing T . When reproduction number is lower than 1, vaccination has no sense

for higher T as in that time the spread has already ended. Reproduction numbers higher

than 1 change the situation; when vaccination is carried out soon, it has strong e�ect on
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the �nal size of the epidemics and it grows with increasing R0. However, the time interval

when vaccination can have signi�cant e�ect on the �nal size is shorter for higher values

of reproduction number.

Figure 3.6: The absolute di�erence between S(∞) + V (T ) and P (∞) depending on the
time when vaccination is carried out

3.1.3 Gradual Vaccination

In fact, vaccination at once at a given time is not practically feasible because medical

personnel, space and supply are limited. Therefore, we will assume that vaccination will

be carried out gradually, i.e. v(t) per cent of the remaining susceptible population will be

vaccinated at time t. This yields to the model

S(t+ 1) = S(t)(1− v(t)− βI(t))

I(t+ 1) = I(t)(1 + βS(t))− βS(t− τ)I(t− τ)

V (t+ 1) = V (t) + v(t)S(t) =
t∑

k=0

v(k)S(k)

(3.2)

Again, I(t) 6= S(t − τ) − S(t) since S(t) decreases by vaccination as well. However,

we can reduce the model (3.4) to equation of one variable by replacing I(t) = S(t− τ)−
S(t)− v(t)S(t)− v(t− 1)S(t− 1)− . . .− v(t− τ)S(t− τ). We obtain

S(t+ 1) = S(t)(1− v(t)− β(S(t− τ)− S(t)− v(t)S(t)− . . .− v(t− τ)S(t− τ)))
(3.3)
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If v(t) is constant in time, the model can be simpli�ed

S(t+ 1) = S(t)(1− v − β(S(t− τ)− S(t)− v
τ∑
k=0

S(t− k)) (3.4)

Let Q denote the maximum proportion of the population that can be vaccinated at

once because of the limited vaccination requirements. As we have shown in the previous

subsection, when we are vaccinating after after the epidemics starts, a relatively high

level of vaccination is need to make it die out after the vaccination process, probably the

number that could not be reached in the time scale of in�uenza epidemics and with Q

limitation of vaccination. Therefore we will focus on vaccination from economic perspec-

tive.

Our goal now is to �nd optimal v(t) not necessarily in order to force the epidemics

spread to stop, but to minimize costs for medical treatment during the epidemic season,

i.e. treatment costs for infected individuals and costs for vaccination.

It is an optimal control problem with boundaries in both state and control, with

discrete time, with free end, given time, and state variables X1, X2, ..., Xτ+1. We can

easily derive objective function in both Lagrange and Bolza functional form.

min
v

T∑
k=0

Av(k)S(k) +BβI(k)S(k)

or

min
v
A

T∑
k=0

v(k)S(k) +Bβ(N − S(T )−
T∑
k=0

v(k)S(k))

with following conditions
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X1(k + 1) = S(k + 1) = S(k)(1− v(k)− β(S(k − τ)− S(k)−

− v(k)S(k)− . . .− v(k − τ)S(k − τ)))

X2(k + 1) = S(k) = X1(k)

...

Xτ+1(k + 1) = S(k − τ + 1) = Xτ−1(k)

S(k) ∈ 〈0, N〉 ∀k = 0, 1, ..., T

v(k) ∈ 〈0, Q〉 ∀k = 0, 1, ..., T

(3.5)

It is τ -dimensional problem, as we have to remember all τ previous states of S(t) to

calculate S(t + 1) and next. We could replace the vaccination rate v(k) by number of

susceptibles V (k) with admissible interval 〈0, C〉, where C = constant ≤ S(t) ∀t. But

we assume that if we have vaccinated V (k − 1) individuals yeasterday, we are not able

to vaccinate the same number today due to limited supply. The number of vaccinated

individuals should depend on the vaccination carried out in the past, therefore we decided

to limit the percentage of vaccinated population. We expect the solution showing that

we should vaccinate the majority at the beginning of the epidemic season because at that

time the susceptible population is biggest and so we can vaccinate the highest number of

individuals.

Now we have to determine the parameters. Brunovsky et al.[14] analyzed the socio-

economic impacts of several mitigation scenarios for Slovakia using following parameters

Vaccine price 7.83 Euro
Antibiotics 26.55 Euro
Complication treatment drugs 6.63 Euro
Hospitalization costs 445.7 Euro
Percentage of infected hospitalized 10%

Table 3.1: The parameters used in [14]

We use this information to decide the value of parameters in our problem.

Moreover, we will reduce the infectious period τ to one day, so that the problem is
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Parameter Value Explanation

A 7.83 Euro The price of one vaccine.

B 77.75 Euro
The average cost for one infected individual is sum of
antibiotics' price, drugs' price and 10% of hospitalization costs.

Q 1%
We assume that not more than 1% of the susceptible population
can be vaccinated at once.

N 5.106 The epidemics spreads in the Slovak population.
T 196 In Slovakia, epidemic season lasts about 28 weeks.
k 50 The average number of individuals that one meets is 50.

π 0.0125
The probability that a susceptible will be infected after meeting
one infective is expected to be 0.0125,
so that reproduction number is about 1.25.

β 1, 25.10−7 β =
kπ

N
v(0) 0 At the beginning, nobody is vaccinated.
S(0) N At the beginning, nobody is infective.
S(1) N − 1 We introduce one infective to the population.

Table 3.2: The parameters we use in optimal vaccination control problem

only 2-dimensional and it can be computed easier. The new problem is then

min
v

196∑
k=0

7.83v(k)S(k) + 77.75βS(k)(S(k − 1)− S(k)− v(k)S(k)− v(k − 1)S(k − 1))

X1(k + 1) = S(k + 1) = S(k)(1− v(k)− β(S(k − 1)− S(k)− v(k)S(k)− v(k − 1)S(k − 1)))

X2(k + 1) = S(k) = X1(k)

S(k) ∈ 〈0, 5.106〉 ∀k = 0, 1, ..., 196

v(k) ∈ 〈0, 0.01〉 ∀k = 0, 1, ..., 196

(3.6)

We solve the problem by Bellman's principle of optimality that is described in Halicka

et al. [23]. As there are too many admissible states for S(k) and the solution would

require long computation process, we divide its admissible interval to smaller parts, i.e.

to 100 parts. The admissible interval for v(k) is divided to 30 parts. This can lead to

some inaccuracies in the results, but we still keep the problem complex and so our results

can su�ciently uncover principles of optimal vaccination.

According to the solution, we should vaccinate at the beginning as much as possible

till 18 days, because after that the e�ect of vaccination would not be strong enough to

compensate its costs. Naturally, at the beginning of the epidemics we are able to vaccinate

more, i.e. maximum 1 per cent of the susceptible population that is almost N and as
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Figure 3.7: Optimal control v(t)

the time goes on, the number of susceptibles is decreasing, so we can vaccinate fewer

individuals.

Figures 3.12, 3.13 show the development of epidemics when the optimal vaccination

strategy is carried out and when it is not. Let denote the number of susceptibles when the

vaccination is carried out S(t), V (t) the total number of vaccinated individuals at time

t, and U(t) the number of susceptibles when the vaccination is not carried out. The �nal

size of the epidemics, the total number of individuals who became infected during the

epidemics is then S(0)−S(∞)−V (∞) and U(0)−U(∞). If we consider T = 196 the end

of the epidemic season, then the di�erence between �nal sizes is 1,425,300 individuals.

So if we vaccinate, we save 1.425.300B − V (∞)A Euros. In this case, our savings are

1, 0494.108 Euros. We pay 4, 4557.107 Euros when we vaccinate and we pay 1, 4949.108

Euros for medical treatment when we do not vaccinate.

Vaccination with Progressive Price of Vaccination

In the problem (3.6), we did not take into account costs for the work of medical personnel

in vaccination price. Moreover, when we vaccinate too much, we have to order extra

supply and our costs rises. Therefore, we change the constant price, A, to progressive

price depending on the number of vaccinated individuals. The new price is then

A(k) = A exp

{
30v(k)S(k)

N

}
.

For smaller number of vaccinated susceptibles, it grows slightly and it goes up sharply
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Figure 3.8: Number of individuals who are
not hurt by the disease when optimal vacci-
nation is carried out and when it is not

Figure 3.9: Number of infective individuals
when optimal vaccination is carried out and
when it is not

Figure 3.10: The vaccination price depending on the number of vaccinated individuals

with the increasing number of vaccinated individuals.

Progressive vaccination price did not change the optimal strategy, i.e. vaccinate at the

beginning of the epidemics, but it changes the value of vaccination rate. We vaccinate

less because the price rises with each new vaccinated individual and as the number of

susceptibles is decreasing, we can vaccine a higher percentage of them for the same price

as we paid at the beginning for the smaller percentage.

The di�erence in �nal size, i.e. in the total number of individuals who became infected

during the season when optimal vaccination is carried out and when it is not, is lower

than in the case of constant vaccine price because we vaccinate less. If we vaccinate, we

save 1,000,730 individuals from becoming infected and so we pay 7.4136.107 Euros less

(7.5359.107 Euros if we vaccinate).

The optimal solution strongly depends on both reproduction number and vaccine price.
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Figure 3.11: Optimal control v(t) for problem with progressive and constant price of one
vaccine

Figure 3.12: Number of individuals who are
not hurt by the disease when optimal vacci-
nation is carried out and when it is not

Figure 3.13: Number of infective individuals
when optimal vaccination is carried out and
when it is not

If R0 = 2, we keep on vaccinating during the whole season and at the same vaccination

level 0.033%, but at the beginning of the season we should vaccinate less than in the

case of R0 = 1.2. The reason is probably based on the threshold value of reproduction

number. When it is more than 1, the epidemics does not die out. However, if it is still not

so high and if we have su�cient measures to carry out, we can stop its spread after some

time. For higher reproduction numbers and with limitations we set, this e�ect cannot be

achieved, the vaccination is not so e�ective and it is not reasonable to vaccinate with a

such e�ort because its costs will not be compensated in given time.

When R0 < 1, population should be vaccinated only at the beginning as later the epi-

demics dies out and so it would not require high treatment costs if we did not vaccinate.
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Figure 3.14: Number of susceptibles for var-
ious reproduction numbers

Figure 3.15: Number of susceptibles for var-
ious vaccine prices

Vaccination only speeds up the process. The vaccination control for R0 = 0.4 is the

smallest among considered, as the transmission strength of epidemics is low and there is

much more susceptibles than in the models with higher reproduction number at the same

time.

Another critical factor is price. The lower is the price of vaccine (or the higher is di�er-

ence between treatment costs and vaccine costs), the later we should stop vaccinating.

When the vaccine price is 60 Euro, the optimal solution is a vector of zeros, i.e. we do

not vaccinate at all.

3.2 Vaccination With Partial E�ciency

Vaccines are not usually fully e�ective. A metastudy by Osterholm et all. [37] analyzed 31

prior studies on the e�ectiveness of in�uenza vaccination trials conducted between 1967

and 2011. The analysis found that �u shots were e�ective 67 percent of the time. The

group most vulnerable to �u, the elderly, is also the least bene�tted by the vaccine, with

an average e�cacy rate ranging from 40-50 per cent at age 65, and only 15-30 per cent past

age 70 [35], while the populations that bene�t the most from the vaccination were HIV-

positive adults ages 18 to 55 (76 per cent), healthy adults ages 18 to 46 (approximately

70 per cent) and healthy children ages 6 to 24 months (66 per cent) [37]. Since we

still consider the homogenous population, we neglect the di�erent results within di�erent

groups in the population and we assume that our population is relatively young. We set

the e�ectiveness of our vaccines is 70 per cent, and so the vaccination will decrease the

probability of becoming infected after meeting one infective individual, i.e. from π to

p = 30%π.
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3.2.1 Vaccination Before the Epidemics Starts

If we vaccinate v per cent of the population before the epidemics starts, the transmission

rate for the vaccinated individuals will change from β =
kπ

N
to γ =

0.3πk

N
=
kp

N
= 0.3β.

Hence, the model is

S(t+ 1) = S(t)− βS(t)I(t)

V (t+ 1) = V (t)− γV (t)I(t)

I(t+ 1) = I(t) + (βS(t) + γV (t))I(t)− (βS(t− τ)

+ γV (t− τ))I(t− τ)

= S(t− τ) + V (t− τ)− S(t)− V (t)

R(t+ 1) = R(t) + (βS(t− τ) + γV (t− τ))I(t− τ)

(3.7)

where S(0) = (1 − v)N and V (0) = vN . The sum S(t) + V (t) represent the part of

population that has not been hurt by the disease till time t. The question we want to ask

is how bene�cial is to vaccinate vN individuals before the epidemics. To �nd the answer

we should calculate

AvN +B
T∑
t=0

[βS1(t) + γV (t)]I1(t)−B
T∑
t=0

βS2(t)I2(t) (3.8)

where S1(t), I1(t) is number of susceptibles according to model (3.7) and S2(t), I2(t)

is number of susceptibles according to model without vaccination (2.4). Using the data

from the previous section, the equation and assuming that v = 10% is

7.83vN +77.75
1∑
t=0

96[S1(t)+0.3V (t)]βI1(t)−77.75
1∑
t=0

96βS2(t)(S2(t− τ)−S2(t)) (3.9)

In this case, the sum of costs for vaccination of 10 per cent of the population and costs

for medical treatment of infected individuals during the whole season is 290.820.000 Euro

and when the population is not vaccinated, the costs are 319.250.000 Euro, so we save

28.426.000 Euro.

Although we said, that there is no need to vaccinate the population when reproduction

number R0 < 1 because the epidemics dies out soon, from the �nancial perspective it

can be reasonable. As the Figure 3.19 shows, when reproduction number is very low,

vaccination leads to losses, but when R0 ≈ 1 it yields to highest bene�ts. The reason

again is based on the strength of vaccination e�ect on the population. While 10 per cent
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Figure 3.16: The number of individuals who are not hurt by the disease when vaccination
is carried out with v = 10 per cent and when it is not.

vaccinated population is enough for the disease with reproduction number close to 1 to

stop the spread of the epidemics in the given time and compensate the costs for such a

high e�ort, it is not enough for the stronger diseases with higher reproduction number, i.e.

in that case, the epidemics spreads, there is an increasing number of infectives and that

results in higher treatment costs. When the disease has very low reproduction number,

only few infectives appear during the season and costs for vaccination are higher than

costs for their treatment.

Figure 3.17: Savings resulting from vaccination with 70 per cent e�ciency dependent on
reproduction number, R0, when 10 per cent of the population is vaccinated

The savings rise with the increasing vaccination rate v until its exceeds border, i.e.
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there are too many vaccinated individuals which yields to high vaccination costs that

are not appropriately compensated by its e�ect on the course of the epidemics. The

Figure 3.18 shows that the border is quite high, about 60 per cent. In order to reach

the border, we would need a great supply and we would have to hire huge number of

new medical personnel, so its realization would be probably impossible. We can conclude

that the more individuals are vaccinated before the epidemics, the better not only from

medical perspective but from economical perspective as well. Moreover, when we focus

on reproduction numbers ∈ (0.9, 1.3) that characterize the standard in�uenza epidemics

[13], we can see that the savings are highest.

Figure 3.18: Savings resulting from vaccination with 70 per cent e�ciency dependent on
vaccination ratio, v

3.2.2 Gradual Vaccination

Similarly to the previous section, we assume that the vaccination is carried out gradually,

v(t) per cent of the susceptible population at time t, but the vaccination is only partially

e�ective.

This yields to a new model

S(t+ 1) = S(t)− βS(t)I(t)− v(t)S(t)

V (t+ 1) = V (t)− γV (t)I(t) + v(t)S(t)

I(t+ 1) = I(t)− (βS(t) + γV (t))I(t)− (βS(t− τ) + γV (t− τ))I(t− τ)

R(t+ 1) = R(t) + (βS(t− τ) + γV (t− τ))I(t− τ)

(3.10)
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Our goal is to �nd optimal vaccination strategy that minimizes costs for medical

treatment. Again, we use the same parameters as in the Table 3.1.3, we just add one

more parameter V (0) = 0, i.e. at the beginning we do not vaccinate. The problem is

optimal control problem with boundaries in both state and control, with free end and

given time.The problem is now 4-dimensional as we need to calculate states of V (t) as

well and generally for τ it is 2(τ + 1)-dimensional problem.

min
v

196∑
k=0

7.83v(k)S(k) + 77.75βS(k)(S(k − 1) + V (k − 1)− S(k)− V (k))

X1(k + 1) = S(k + 1) = S(k)(1− v(k)− β(S(k − 1) + V (k − 1)− S(k)− V (k)))

X2(k + 1) = S(k) = X1(k)

Y1(k + 1) = V (k + 1) = V (k)(1− γ(S(k − 1) + V (k − 1)− S(k)− V (k))) + v(k)S(k)

Y2(k + 1) = V (k) = Y1(k)

S(k) ∈ 〈0, 5.106〉 ∀k = 0, 1, ..., 196

V (k) ∈ 〈0, 5.106〉 ∀k = 0, 1, ..., 196

v(k) ∈ 〈0, 0.01〉 ∀k = 0, 1, ..., 196

(3.11)

Figure 3.19: Optimal vaccination when vaccines are 70 per cent e�ective

The optimal solution has not changed much. At the beginning, we should vaccinate

as much as possible, but we should stop vaccinating sooner than in the case of full e�-

ciency. The e�ect of 70% e�ective vaccination for the same price sooner loses an ability

to compensate its costs and therefore we vaccinate shorter time. In both cases, the fully
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and partially e�cient vaccines, the optimal solution with constant prices is on the bound-

aries of its interval as Hamiltonian function of the problem is linear in v(t). Only when

special conditions are satis�ed, it can reach values in its admissible interval. Our results

slightly deviate from the boundary of 0.01 due to the inaccuracies resulting from numerical

solution, but still suggest that we should vaccinate as much as possible at the beginning.
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Chapter 4

Wearing Face Masks

In this chapter, we analyze the impact of wearing face masks on the spread of in�uenza.

We focus on N95 respirator that is currently the most common of the seven types of

particulate �ltering face piece respirators [36]. There is a number of studies that have

analyzed the e�ectiveness of face masks against nanoparticles in the size range of viruses

[6], [7]. They showed that it is e�ective at almost 95%. However, it is not so e�ective in

real. These studies provide data on the actual protection of masks against nanoparticles,

it does not take into consideration that a mask will not be completely sealed on an indi-

vidual, and that he will not always be wearing the mask, e.g. when he eats.

The study by Aiello et al. [1] evaluates the e�ectiveness of hygiene and face masks in

preventing in�uenza from spreading. The study conducted a randomized cluster interven-

tion trial among students living in dorm housing. The students were randomly separated

into two intervention groups, one wearing masks and practicing hand hygiene, one just

wearing masks, and also in a control group. The study found that the group wearing

face masks and practising hand hygiene was 35�51% better protected against in�uenza.

Therefore we assume that wearing masks is 40% e�ective in protection against the disease

and it decreases the probability of becoming infected when an infective individual is met

from π to p = 0.6π. This yields to almost the same problem as we have already analyzed

in the section 3.2. Vaccination with Partial E�ciency.
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S(t+ 1) = S(t)− βS(t)I(t)

W (t+ 1) = W (t)− γW (t)I(t)

I(t+ 1) = I(t) + (βS(t) + γW (t))I(t)− (βS(t− τ) + γW (t− τ))I(t− τ)

= S(t− τ) +W (t− τ)− S(t)−W (t)

R(t+ 1) = R(t) + (βS(t− τ) + γV (t− τ))I(t− τ)

(4.1)

where W (t) is number of individuals wearing face masks and γ = 0.6β. We assume

that W (0) = wN and when an individual who wears face mask gets infected, he stops

using masks. The Figures 4.7, 4.8 show the impact of wearing face masks on the spread of

epidemics if R0 = 1.25, w = 80%, T = 196. The di�erence between S1(t), i.e. number of

susceptibles when nobody wears face masks, and S2(t), i.e. number of susceptibles when

80% of the population is wearing masks, is in fact very low. The e�ciency of masks is

too low to have a stronger impact on the spread of epidemics during such a short time.

The di�erence increases with time, so in the longer term wearing masks would be more

crucial.

Figure 4.1: Number of susceptibles when
80% of the population wear face masks of
40% e�ectivess and when nobody wears them

Figure 4.2: The di�erence between the num-
ber of susceptibles when 80% of the popula-
tion wear face masks and when nobody wears
them

People do not wear face masks right after the epidemics starts, it has to spread a

while and after some T days, they start wearing them. The Figure 4.3 shows that masks'

impact on the development of epidemics in the case of R0 = 1.25 does not depend on T

signi�cantly.

For the same input parameters, the number of susceptibles wearing masks at the

beginning has not signi�cant impact on the �nal size of epidemics. The spread of the

disease is in the case of R0 mild and so implementation of masks with only 40% e�ciency
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Figure 4.3: Sensitivity of the impact of wearing masks to the time when masks are im-
plemented to the population

leads to only slight improvement.

Figure 4.4: Number of susceptibles for various w(0), i.e. the proportion of the population
that wears masks at the beginning of the epidemics

Is this improvement worth of buying masks? Now, we solve the problem from eco-

nomical perspective. The price for pack of 20 respirators costs 8.45 Euro, the price of one

respirator is then approximately 0.42 Euro. Respirator should be changed at least every

day, therefore those who wear face masks and do not get infected during the whole season

pay 0.42T Euro. For T = 196, the costs for wearing masks and not getting infected are

141.12 Euro. We again assume that the price of medical treatment is 77.75 Euro, i.e. 55%

of the price of wearing masks. Can the e�ciency of the face masks compensate such high
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expenses? Individually, it is reasonable to pay 77.75 Euro with probability lower than

1, i.e. the probability of becoming infected during the season, rather than paying 141.12

Euro for sure. However, when we solve the problem looking at the population as a whole

and minimizing common costs, it could be bene�cial to implement masks and so lower

the spread of the epidemics.

The price the population pays during the season is

77.75
T∑
t=0

[βS(t) + γW (t)]I1(t) + 0.42W (t) (4.2)

We compare the costs with the situation when we do not implement masks and the

Figure 4.9 shows our results for various w(0) and for the same parameters as we used

before.

We lose when we implement face masks to the population. The more individuals wear

face masks, the worse the loss. As it was already said, the impact of wearing masks is

very small so it cannot compensate its high costs.

Figure 4.5: Losses resulting from implementation of face masks to the population for
various w(0)

However, the situation changes with higher reproduction numbers. When the disease

is stronger, the spread of the disease is fast and we are willing to pay more to slow it

down. The costs are compensated by the impact of wearing masks. Highest gains are

reached for the diseases with reproduction number ∈ (2, 2.5) when the face masks can

signi�cantly slow down the epidemics. In the case of stronger diseases, their e�ciency is
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too low to a�ect the spread so much. Disease with such reproduction numbers would be

disastrous for the population as in the very short term, the whole population would get

infected.

Figure 4.6: Savings resulting from implementation of face masks to the 80% of the pop-
ulation at the beginning of the epidemics for various R0

Only a small increase in the reproduction number lead to signi�cant di�erence. If we

keep R0 = 1.25, even the highest e�ciency of face masks will not lead to gains. However,

if R0 = 1.5 we always gain from implementation of masks to 80% of the population.

Figure 4.7: Savings depending on the price
of face masks for reproduction number 1.25

Figure 4.8: Savings depending on the price
of face masks for reproduction number 1.5

When reproduction number is 1.25, wearing face masks leads to losses, so they would

rather not be implemented. However, when reproduction number increases, face masks

have stronger impact on the epidemics and their implementation may lead to gains.
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Moreover, their impact is comparable to the impact of vaccination. We set R0 = 1.5

and we compare the e�ect of vaccinating 10 per cent of the population by the vaccine of

constant price 7.83 to the e�ect of wearing masks with 40 per cent e�ciency. We can see

in the Figure 4.9 that we need to implement masks to about 18 per cent of the population

to reach the same �nal size as in the case of vaccination. This might be important when

a new disease occurs and there is no vaccines yet. Wearing masks can lead to the same

�nal size of the epidemics, but its costs would be higher. In this case, the vaccination

costs are 4, 2919.106 Euro and face masks costs are 2, 304.107 Euro, it is 18, 7481.106 Euro

more.

Figure 4.9: Savings resulting from implementation of face masks to the 80% of the pop-
ulation at the beginning of the epidemics for various R0

The impact of wearing masks strongly depends on the reproduction number. We have

shown that if R0 = 1.25 using masks will not lead to improvement that is worth of its

costs. However, only slight increase in the reproduction number leads to absolutely dif-

ferent results and the implementation of face masks may lead to high gains.

Furthermore, wearing face masks can have the same impact as vaccination. When a new

type of in�uenza appears, implementation face masks to about 18 per cent of the pop-

ulation lead to the same �nal size of epidemics as vaccination of 10% of population by

vaccines with 70% e�ciency. We still assume that the epidemics season lasts 28 weeks

that would not be probably true in the case of new type of virus. However, we repre-

sented universal method that lead to the conclusion that wearing masks can compensate

vaccination in given conditions.

In conclusion, implementation of masks is bene�cial only for stronger diseases. The
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higher e�ciency they have, the better. Vaccination is typically more e�cient and cheaper

way to prevent the disease, but when there is no e�ective antidote yet, vaccination can

be su�ciently substituted by wearing masks.
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Chapter 5

Stochastic Model of Epidemics

In this chapter, we deal with stochastic nature of epidemics. According to Isham [8],

the simple stochastic models may be useful for understanding underlying principles and

according to Nasel [34] they should not be replaced by deterministic approximation when

population is not su�ciently large, i.e. in the case of households [21]. In the Chapter

1 Mathematical Epidemiology, we discussed the advantages and disadvantages of using

stochastic model and concluded that if it can be analyzed, it should be preferred to

deterministic model. However, Anderson and Britton showed [2] that when number of

susceptibles is about 50 and more, the equations of existing stochastic models are numer-

ically unstable and therefore we are not able to use the models for the population of 5

million individuals. However, stochastic modeling has several advantages, i.e. the nature

of epidemics is stochastic, deterministic model in fact works only with expected course of

the epidemics, so it cannot include deviations from the expected processes, e.g. extinction,

some cases of stochastic processes does not satisfy the law of large numbers, i.e. when

only a small proportion of the population gets infected. Due to these reasons we decide

to deal with stochastic process of epidemics as well and derive a new stochastic model

based on the deterministic model used throughout the thesis and the existing stochastic

models and discuss its possible use.

In the literature we can �nd two classical discrete time stochastic models, both of the

so called chain-binomial type. These are the Greenwood model and the Reed-Frost model,

which was proposed in 1928 in biostatistics lectures at Johns Hopkins, not published by

the proponents but subsequently referred to. Both models are described in Chapter 1

Mathematical Epidemiology.

In the Greenwood model, probability that one infective becomes infected at time t is

constant, while in Reed-Frost it depends on the number of infectives in the population.
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The models were later modi�ed in several ways, e.g. [34] where models are transformed

to continuous time SIR, SIS and SIRS model and [25] that made it adaptable for di�erent

diseases.

We keep the notation and assumptions of Chapter 2 Deterministic Model of Epidemics,

including the length of infectious period being �xed to τ days. According to Reed-Frost

model, we assume that the probability of an individual becoming infected at time t varies

in time and depends on the number of infectives in the population.

If one meets k di�erent individuals at time t, the probability of meeting i infectives

has an hypergeometric distribution, i.e. p∗(t) ∼ Hg(N − 1, I(t), k).

pi(t) =

(
I(t)
i

)(
N−I(t)−1

k−i

)(
N−1
k

) . (5.1)

In the the deterministic model, we could replace N − 1 by N as we considered large

population. In stochastic model we keep N − 1 because it is basically used for smaller

populations.

And the probability of a susceptible becoming infected after meeting i infectives is

qi = 1− P (not becoming infected after meeting i individuals), so that

p∗i = 1− (1− π)i. (5.2)

Summing the products of (5.1), (5.2) over i leads to probability that a susceptible

individual becomes infected at time t

p1(t) =

min k,I(t)∑
i=1

qipi(t) =

min k,I(t)∑
i=1

(1− (1− π))i
(
I(t)
i

)(
N−I(t)−1

k−i

)(
N−1
k

) (5.3)

In [27] the same probability is expressed by the formula

p(t) = 1−
(
1− π I(t)

N − 1

)k
, (5.4)

clearly assuming that one individual meets k individuals in unit time who are not

necessarily di�erent.

Figure 5.1 and Figure 5.2 depict the di�erence between these approaches when π = 0.06

and N = 200. It is small and it is increasing with growing I(t). The population is big

enough so that we can assume that if one meets k individuals at time t, the probability
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he meets one individual more than once can be neglected. Therefore we are indi�erent

to the approaches and decide for (5.4) as it does not require so complicated calculations

that may result in non-exact values after computation.

Figure 5.1: Probabilities of a susceptible be-
coming infected at time t when there is I(t)
infectives in the population

Figure 5.2: The di�erence between proba-
bilities of a susceptible becoming infected at
time t depending on I(t)

The probability that n susceptibles do not become infected at time t when there is

I(t) = S(t−τ)−S(t) infected individuals, is binomially distributed, i.e. P (S(t)−S(t+1) =

n) ∼ bin(1− p(t)), hence

P (S(t)− S(t+ 1) = n|S(t) = i, I(t) = j)) =

(
i

n

)
(1− p(t))np(t)i−n =

=

(
i

n

)(
1−

(
1−

(
1− π j

N − 1

)k))n(
1−

(
1− π j

N − 1

)k)i−n (5.5)

5.1 τ -dimensional Markov chain

To calculate future states, we need to remember all the states of number of susceptibles

from t− τ to t . So we de�ne vector U(t) = (S(t), S(t− 1), ..., S(t− τ)). We can express

conditional probabilities

P (U(t+ 1) = j|U(t) = i, U(t− 1) = i1, ..., U(0) = it)

= P (S(t+ 1) = j0, S(t) = j1, ..., S(t− τ + 1) = jτ |S(t) = i0, S(t− 1) = i1, ...

..., S(t− τ) = iτ ) = pj0j1...jτi0i1...iτ
(t) = P (U(t+ 1) = j|U(t) = i)

(5.6)

So that U(t) is τ -dimensional Markov chain with conditional probabilities pj
i(t). The

number of susceptibles is non-increasing function of time, so it applies
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pj
i(t) = pj0j1...jτi0i1...iτ

(t) =


(
i0
j0

)
(1− p(t))j0p(t)i0−j0 ifj0 ≤ i0 = j1 ≤ i1 = j2 ≤ ... ≤ iτ

0 otherwise,
(5.7)

where p(t) = 1−
(
1− π iτ − i0

N − 1

)k
.

The chain is homogenous, as pj0j1...jτi0i1...iτ
(t + T ) = pj0j1...jτi0i1...iτ

(t) ∀T ∈ N0, so we can use

notation pj0j1...jτi0i1...iτ
. Now, we can express absolute probabilities pj0j1...jτ (t + 1) = P (S(t +

1 + τ) = j0, S(t+ τ) = j1, ..., S(t+ 1) = jτ ).

pj0j1...jτ (t+1) =
∑
i0

∑
i1

...
∑
iτ

pj0j1...jτi0i1...iτ
pi0i1...iτ (t) (5.8)

or in the form of matrices

p(t+ 1) = p(t)P, (5.9)

where we de�ne transition matrix P = {pj0j1...jτi0i1...iτ
}Nj0≤i0=j1≤i1=j2≤...≤iτ=0. Then we obtain

p(t+ τ) = p(0)Pt.

The size of matrix is huge, S1×S2× ...×Sτ ×S1×S2× ...×Sτ . We have to calculate

the number of variations with repetition where i0 ≤ i1 ≤ ... ≤ im to determine Sm. It is

an arithmetic progression with common di�erence of m and the initial term 1. Then the

size is

(N + 1)× (N + 1)(N + 2)

2
× (2N + 2)(N + 1)

2
× ...× (τN + 2)(N + 1)

2
×

× (N + 1)× (N + 1)(N + 2)

2
× (2N + 2)(N + 1)

2
× ...× (τN + 2)(N + 1)

2

If we assume that τ = 1, and simplify our problem to second order Markov chain, the

transition matrix

P = {pni0i1}
N
n≤i0≤i1=0

is of size (N + 1)× (N + 1)(N + 2)

2
× (N + 1)× (N + 1)(N + 2)

2
and it is clearly not

feasible to work with such a big matrix for large N . We did not manage to derive the

model that would allow us to determine the stochastic behavior of the epidemics and its

�nal size in the Slovak population.
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5.2 The E�ect of Pandemic Measures on Stochastic

Model

In order to analyze the stochastic model and the instantaneous e�ect of pandemic mea-

sures, we do not have to necessarily focus on the �nal size of the epidemics that require a

lot of calculations, we can use the probability that no more infectives appear as it is done

in [25].

We use following parameters

τ 4 the infectious period is �xed to 4 days
π 0.006 the probability of a susceptible becoming infected after meeting one infective
k 50 number of contacts remains 50
N1 180 we assume the small population of 180 individuals
N2 5.106 we also assume the large population of 5.106 individuals

Table 5.1: The values of parameters used in stochastic model of epidemics

In our model the probability of no new infected cases at time t is

P (nobody gets infected|S(t) = i, I(t) = j) = (1− p(t))iτ =
(
1− π j

N − 1

)kiτ
(5.10)

When we vaccinate the population or implement face masks, the probability that one

gets infected after meeting one infective individual, i.e. π, decreases. The impact of the

measures depends on e�ectiveness of vaccines or face masks. Let denote their e�ectiveness

α. Then the probability of becoming infected after meeting one infective is (1− α)π.
We also assume that 5 per cent of the population is recovered and 5 per cent, hence

we calculate

P (nobody gets infected|S(t) = 0.9N, I(t) = j) = (1− p(t))0.9Nτ =
(
1− π j

N − 1

)0.9Nkτ

(5.11)

When we consider only small populations there are not limitations on supply and we

can assume that everyone can be vaccinated at once and everyone can wear face masks.

Figure 5.3 shows that we are able to maximize the probability that there will not be

more infective cases to almost 1 when the measure we carry out is 90 per cent to 100 per

cent e�ective.
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Figure 5.3: The probability that no more infectives appear depending on the e�ectiveness
of the pandemic measure for various numbers of infectives in the population when the
population is small and τ = 4

However, as argued in the chapters 3 Vaccination and 4 Wearing Face Masks, the ef-

fectiveness is typically no more than 70 per cent. In this case, the probability can be

risen signi�cantly only when the number of infectives is low, i.e. at the beginning of

the epidemics. In this case, as the probability of no more infected cases is almost one,

the epidemics is about to die out soon after the measures have been carried out. When

we carry out the pandemic measures later with the same e�ciency, we are only able to

moderate the epidemics.

Interestingly, for higher numbers of infectives, the probability does not vary so much and

e�ectiveness lower than 60 per cent has no noticeable e�ect. If we wanted to a�ect the

epidemics, we would have to use highly e�ective pandemic measures or just minimize the

number of contacts, i.e. if we consider the population of students and teachers in a school,

an e�ective measure would be �u vacations.

For longer infectious periods, the probability is again very low and only highly-e�ective

measures can a�ect the epidemics signi�cantly. The period can be in�uenced by better

medicaments. Figure 5.7 shows that although there is 10 infectives in the population the

measures are only able to moderate the epidemics in the case of long infectious period.

When we investigate the impact of pandemic measures on the probability that no

more infective cases appear and changes the size of the population to large number N2,

we �nd out that the measures has not such e�ect. It is clear from the equation (5.11) that

the probability depends on N , the larger it is, the smaller is the probability. Moreover,
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Figure 5.4: The probability that no more infectives appear depending on the e�ectiveness
of the pandemic measure for various lengths of infectious period when the population is
small and I(t) = 5%N

Figures 5.5 and 5.6 shows that the 70 per cent e�cient measures almost do not a�ect the

probability, even when the whole population is vaccinated. Changing the proportion of

vaccinated population would lead to even smaller impact. When there is 5 per cent of

the population infectious, the impact of measures is so small that it does not vary with

growing infectious period.

Figure 5.5: The probability that no more in-
fectives appear depending on the e�ective-
ness of the pandemic measure for various
numbers of infectives when the population is
large and τ = 4

Figure 5.6: The probability that no more in-
fectives appear depending on the e�ective-
ness of the pandemic measure for various
lengths of infectious period, when the pop-
ulation is large and I(t) = 5%N

When the size of the population exceeds 10,000, the di�erence of probabilities of no

more cases is very small. In this case, if 5% of the population is infected, vaccination or
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face masks have a signi�cant impact only if they are almost fully e�cient. In the Chapter

3 Vaccination we investigated the fully e�cient vaccination of 20% of the population and

according to Figure 3.3 it has instantaneous e�ect, but also very small. In the long term, it

yields to signi�cant di�erence in comparison to the non-vaccinated population. Therefore,

we assume that even small instantaneous impact on the probability of no more cases may

lead to signi�cant di�erence in the long term and we can not conclude that a pandemic

measure with available e�ciency about 70% cannot signi�cantly a�ect the spread of the

disease.

However, for smaller population it can lead to a sooner termination of the epidemics,

while in the case of larger population, its impact does not vary as much as in the case

of smaller population and can only moderate the spread of the disease. So the e�ect

of the measures depends on N . In the section 3.1.1 Vaccination Before the Epidemics

Starts, we calculated the threshold value v∗, the optimal vaccination rate so that R0 < 1

and we avoid the epidemics, we derived the formula depending on N . The approach by

Brunovsky and Kilianova [13] and others, leads to formula independent to N that is not

in accordance with results from this chapter.

Figure 5.7: The probability that no more infectives appear depending on the e�ectiveness
of the pandemic measure for sizes of the population I(t) = 5%N and τ = 4

In order to analyze the impact of pandemic measures in the long term, we would have

to use some of the stochastic models and calculate the distribution of �nal size of the

epidemics. The model however should not be too simple in order to make it computable,

as it could lose its realistic value. In [8] a method is derived only for smaller populations

but not for larger, so there is still a lot of space for new �ndings. The stochastic model

that could be used even for larger population should become a new challenge in the �eld
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of mathematical epidemiology.

The stochastic model we present in this chapter requires a huge memory, but it can be

still used in smaller populations such as households or classes in the school instead of

traditional the Reed-Frost or the Greenwood model.

53



Conclusion

We analyzed the e�ect of pandemic measures on the spread of epidemics in Slovak republic,

mostly for epidemics with reproduction number 1.25. We decided to use deterministic

SIR model based on the assumption that the length of infectious period is �xed and

we discussed the di�erence that it makes in comparison to the traditional SIR model

with exponential distribution of the length of infectious period. When we consider weak

diseases with reproduction number less than 1, there is no di�erence and we should prefer

traditional model mainly because it does not require so much memory. In the long term,

the models yield the same results, so if we are not interested in the development of the

epidemics, only in its �nal size, we can use a traditional SIR model. Otherwise, we prefer

the time delay model, especially in the case of in�uenza epidemics because within the

interval of in�uenza pandemics and with the typical length of their duration the di�erence

between the models is most signi�cant.

In the next chapter we investigated the e�ect of vaccination, when it is fully, and

when it is partially e�cient. We derived a formula for threshold value of vaccination

rate, saying what proportion of the population should be vaccinated before the epidemics

starts in order to avoid its outbreak. Our formula depends on the size of the population,

while the formula used in several resources is independent to the size of the population.

However, our �ndings in the last chapter suggest, that the e�ect of vaccination varies with

growing number of individuals in the population, so our formula can o�er more precise

threshold values.

We also found out that it would be di�cult to make the epidemics die out after the

vaccination process if it is carried out when the disease is already spreading. Supply of

vaccines and medical personnel are limited and when the disease is strong, i.e. it has large

reproduction number or there are a lot of infectives in the population, vaccination can

only moderate the spread. It still makes a sense, even when it can not cause the epidemics

die out, because there is still di�erence in the �nal size of epidemics when vaccination

is carried out and when it is not. Hence, vaccination can lead to �nancial bene�ts even

in the case when it can not stop the spread. We solved the optimal control problem of
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vaccination asking how should we vaccinate gradually during the epidemics when there are

limitations to supply in order to minimize our costs for medical treatment and vaccination.

The solutions were based on the same idea - to vaccinate at the beginning as much as

possible and after given time units to let the epidemics spread without vaccination because

the costs for vaccination would not be compensated by its e�ect on the development of

epidemics. When the reproduction number is near 1 and limitations not so strict, we can

stop the spread after some time and in this case, our bene�ts are highest. It is also the case

of reproduction number of typical in�uenza epidemics. Vaccination does not necessarily

lead to bene�ts when reproduction number is lower than 1 as it can only speed up the

extinction process of the epidemics.

In next chapter, we deal with implementation of wearing face masks. Neither its

economical nor its practical e�ect is as high as the e�ect of vaccination, but they have one

main advantage; they are always available. If a new type of virus mutates and there is no

antidote yet, we can implement face masks to the part of population achieving the e�ect

comparable to the e�ect when some smaller proportion of the population is vaccinated.

However, when the disease has reproduction number 1.25, implementation of wearing

masks lead to �nancial losses and therefore we do not recommend it during the typical

in�uenza epidemics.

We also derived a stochastic model of the epidemics, but it is not computable for large

populations. We could only observe the impact of pandemic measures on the probability

that no more infective cases appear and that helped us to understand some principles

of epidemic behavior. Surely, if there is a stochastic model that can be applied to large

population, it would uncover more principles, we would be able to calculate the probability

of extinction of the population etc. Therefore, the epidemiological modeling should �ll

this gap in the future, setting this as a prior challenge.
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Appendix

Brunovsky and Kilianova [13] de�ne the attacked rate α =
S(0)− S(∞)

S(0)
, where S(0) is

the initial number of susceptibles and S(∞) is the number of susceptibles having avoided

the disease transmission. The di�erence S(0) − S(∞) is the �nal size of the epidemics.

And they analyze the development of in�uenza for α ∈ 〈0.15, 0.5〉.
An implicit formula for the �nal size of epidemics is derived in [18] and it reads

lnS(∞)− lnS0 = A(S(∞)− S0) (5.12)

Keeping the de�nition β =
kπ

N
, we can express β from the equation (5.13)

β =
1

τ(S(0)− S(∞))
ln

S(0)

τS(∞)
=

1

τ(S(0)− S(∞))
ln

1

1− α
=

1

ταS(0)
ln(1− α) (5.13)

Then using the simplistic formula for reproduction number derived in [13], R0 =

βS(0)τ , we obtain R0 = − 1

α
ln (1− α). Therefore, if the disease is characterized by the

attack rate α ∈ 〈0.15, 0.5〉, then its reproduction number is α ∈ 〈1.08, 1.38〉. We assume

that the average reproduction number of in�uenza is then 1.25.
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