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Abstract

The aim of this work is to study the support vector machine (SVM) algorithm from
a statistical perspective using tools of empirical processes and concentration theory.
The gist of this approach lies in casting the support vector machine as a regularized
empirical minimization scheme where the regularizer is the squared norm in a Hilbert
space of functions on the input space. Recent results on convergence rates of empirical
contrast estimators, and specifically, the support vector machine, to the Bayes risk
are presented and discussed. For support vector machines with Gaussian kernels, we
follow the approach of Van der Vaart and Wellner in [11], Bousquet, Blanchard and
Massart [2] and finally Steinwart and Scovel in [9]. Under Tsybakov noise assumption
and a geometric noise assumption on the underlying distribution, and using properties
of reproducing kernel Hilbert spaces with a Gaussian kernel analyzed in [12], we obtain
an improvement of the bound on the convergence rates presented in [9]. Finally, we
rederive the same rates using a different bound on the entropy number of a unit ball
in a reproducing kernel Hilbert space with a Gaussian kernel.

Keywords: support vector machine, Bayes risk, empirical process, Gaussian kernels,
entropy
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Konzultant: Prof. dr. Aad W. van der Vaart

Department of Mathematics
Faculty of Sciences
Vrije Universiteit Amsterdam

Abstrakt

V práci sa venujeme štúdiu metódy oporných bodov prostredńıctvom teórie empir-
ických procesov a teórie koncentrácie pravdepodobnostných mier. Hlavnou ideou tohto
pŕıstupu je pozorovanie, že metóda oporných bodov je špeciálnym pŕıpadom štatistickej
procedúry, známej ako minimalizácia empirického rizika s regularizáciou, kde regu-
larizáciu predstavuje norma v Hilbertovom priestore funkcíı definovaných na množine
vstupov. Predstav́ıme a porovnáme najnovšie výsledky pre rýchlosť konvergencie
odhadov založených na minmizalizácii empirického rizika k Bayesovskému riziku a
zhrnieme známe výsledky pre metódu oporných bodov. Zameriame sa na metódu
oporných bodov s Gaussovskými jadrami a študujeme ich podobne ako v práci Van der
Vaarta a Wellnera [11], Bousqueta, Blancharda a Massarta [2] a napokon Steinwarta
a Scovela [9]. Za Tsybakovho predpodkladu na šum v rozdeleńı a za predpokladu na
geometrický šum v rozdeleńı, a tiež pomocou vlastnost́ı tzv. Hilbertových priestorov s
Gaussovským jadrom podrobne analyzovaných v [12], odvod́ıme rýchlosti konvergen-
cie k Bayesovskému riziku, ktoré vylepšujú odhady odvodené v [9]. Napokon rovnaké
výsledky odvod́ıme pomocou iného ohraničenia na entropiu, v súlade s prácou [9].

Kľúčové slová: metóda oporných bodov, Bayesovské riziko, empirický proces, Gauss-
ovské jadrá, entropia
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Introduction

Why asymptotic statistics? The use of
asymptotic approximations is twofold. First,
they enable us to find approximate tests and
confidence regions. Second, approximations
can be used theoretically to study the quality
(efficiency) of statistical procedures.

Aad van der Vaart

The goal of statistical learning theory is to provide the theoretical framework to study
problems of inference such as constructing models from a set of data. Under assump-
tions of statistical nature, this theory produces techniques that allow for studying
properties of learning algorithms that are increasingly popular in a variety of applica-
tions such as speech and text recognition, image analysis and data mining.

In this work, we specify to a subclass of supervised learning procedures known as
binary classification. Within this framework, data consists of label-instance pairs,
where the label only takes the values −1 or 1. Given a data set, a learning algorithm
aims at constructing a mapping from the space of instances to the space of labels. It
seems reasonable that the mapping should aim to minimize the probability of wrong
classification when predicting the label of unseen instances. Although given a training
set, one could always build a function that fits the data exactly, in general it is not a
wise thing to do, as in presence of some noise in the data, this would lead to very poor
performance on unseen instances. In general, one aims to construct a model which fits
the data well, but is, in some sense, as simple as possible. That is, one looks for some
regularities.

This work focuses on a special instance of statistical learning algorithms for binary
classification known as the support vector machine (SVM). A support vector machine
(in high-dimensional or infinite-dimensional space) constructs a hyperplane that sepa-
rates the two groups of data with a gap as wide as possible. The original formulation
was proposed by Vapnik [15] in 1963 as a linear classifier. However, this simple formu-
lation only applies when the two data sets are linearly separable. In 1995, Vapnik and
Cortes [5] proposed a soft-margin version of the algorithm that allows for mislabeled
examples. Furthermore, in 1992, Boser, Guyon and Vapnik suggested a way of creating
nonlinear classifiers by applying the kernel trick [3]. This essentially means that the
problem is transformed into a higher dimensional space, where the original algorithm
is applied. However, in the original space the corresponding classifier may be nonlinear.

The success of the SVM algorithm is mainly due to the number of experimental results
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that have been obtained in very diverse domains of application, such as pattern recog-
nition and regression. From the computational point of view required in applications,
the algorithm is mostly treated as a convex optimization problem. However, this ap-
proach does not allow for investigation of its statistical behaviour which still remains
only partially understood. This may be achieved by expressing the problem as the
minimization of a regularized functional where the regularizer is the squared norm in
a Hilbert space of functions on the input space. Our goal in this work is to adopt the
latter approach to investigate the properties of the support vector machine algorithm
in a statistical setting. As the main tool that develops the theoretical framework to
study statistical properties of learning algorithms, we introduce some results from the
theory of empirical processes.

In the first chapter, we outline and explain binary classification, introduce the sup-
port vector machine algorithm and transform it to a more suitable form which will
allow us to apply results derived for empirical risk minimization estimation tasks. We
introduce reproducing kernel Hilbert spaces and discuss some of their properties.

In the second chapter we give an introduction to the theory of empirical processes
and the penalized empirical minimization problem and note that the support vector
machine may be cast in this framework, as derived in Chapter 1. We explain the gen-
eral approach which gives us the rates of convergence for specific problems arising in
empirical risk minimization procedures. We reformulate the results to fit the frame-
work of the SVM. In the end of the chapter, we discuss entropy bounds for unit balls in
RKHSs, which are crucial to obtain any rates of convergence in light of the presented
results.

The third chapter further presents some recent results on convergence rates for SVMs.
First we present and discuss a result for the special case of Gaussian kernel RKHS as
given in [9] and then a more general result derived in [2]. In the second part of this
chapter, we adopt the approaches in [11], [9] and [2] for reproducing kernel Hilbert
spaces with a Gaussian kernel function. We follow these to obtain convergence rates
to the Bayes risk for SVMs with a Gaussian kernel. We summarize our results and
discuss their implications.



Chapter 1

Notation and Preliminaries

This chapter provides an introduction to the problem of statistical classification and
treats relevant theoretical framework. We first introduce binary classification in general
and then specialize to a binary classification algorithm known as the support vector
machine, treating it first mainly as a problem of convex optimization. Later on we un-
derline the connection between the SVM algorithm and a statistical procedure called
the penalized empirical contrast.

We provide an overview of kernel functions which lead to a generalization of the SVM
algorithm and we introduce associated reproducing kernel Hilbert spaces. We specif-
ically consider reproducing kernel Hilbert spaces associated with a Gaussian kernel
functions. We briefly discuss the notion of consistency of a classifier.

To simplify the notation, we shall use the shorthand Pf =
∫
fdP for a given dis-

tribution P.

1.1 Classification

Statistical classification is the problem of identifying the group to which a new obser-
vation belongs, purely on the basis of a training set of data for which the group labels
are known.

We assume that the input data comes from a Hilbert space H, i.e. a real (or com-
plex) vector space endowed with an inner product and associated norm and metric
that is also a complete metric space. Consider therefore the Hilbert space (X , 〈·, ·〉)
that represents the input data space and Y that represents the corresponding group
labels of the data. We shall only consider the case Y = {−1, 1}, which corresponds to
the assumption that the data belongs to one of the two groups labeled with 1 or −1
(i.e. binary classification). Consider an (unknown) probability measure P defined on
X × Y . We are also given a training set (X1, Y1), . . . , (Xn, Yn) that represents an i.i.d.
sample from the distribution P. Each Yi ∈ Y indicates to which group Xi ∈ X belongs.

Based on the training set, we would like to construct a classifier that will assign a
group label to a new given observation X. Formally, a classifier is simply any mea-
surable function θ : X → Y . (Let us remark that we may instead consider a classifier
as a function from X → R and classify an instance as 1 or −1 according to the sign
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of θ(X). Later on we adopt this approach). The challenge of constructing a classifier
now lies in how to construct a “good” classifier and, in fact, what are the requirements
a classifier should satisfy.

It seems natural to require that a classifier, say θ, in some sense minimizes the risk of
misclassification, that is, minimizes the probability that the predicted label θ(X) does
not equal the true label Y ,

P(Y 6= θ(X)). (1.1)

At this point, we will make a slight diversion from the minimization problem (1.1)
with the aim of introducing some more general notation which will prove to be more
convenient in the sections to follow. First note that we may rewrite

P(Y 6= θ(X)) = P (1Y 6=θ(X)) (1.2)

where P denotes the expectation w.r.t. P. In general, we may denote by Prθ the risk
associated with a loss function rθ : X ×Y → R given a classifier θ (w.r.t. the distribu-
tion P). (In fact, we could equivalently consider loss functions as functions of θ(x) and
y (or their product) only, since we are only interested in the label that the classifier θ
assigns to x, not in the x itself.) For instance, in (1.2) the corresponding risk function
is given by rθ(x, y) = 1y 6=θ(x). We will denote this specific loss function by lθ.

Although we did not impose any specific requirements on a loss function, some loss
functions seem to be a more reasonable choice. Intuitively, loss functions represent the
price we are willing to pay for predicting θ(x) in place of y. The choice of a loss function
is mainly an empirical problem, and it is often the case that the choice strongly de-
pends upon computational issues. But as a reasonable requirement, we typically want
the loss function to be convex in the variable t := θ(x)y. We give a few examples of
the most commonly used loss functions. Note that the 0-1 loss lθ that appears in the
classification error (1.2) is not a convex function.

• 0-1 loss lθ(x, y) = 1yθ(x)<0

• hinge loss mθ(x, y) = (1− yθ(x))+

• square loss rθ(x, y) = (θ(x)− y)2

• logistic loss rθ(x, y) = (ln 2)−1 ln(1 + e−θ(x)y)

These are illustrated in figure 1.1.

1.1.1 The Bayes classifier

Now we return back to the problem of minimizing (1.1). If we knew the distribution
P, then we could explicitly find the classifier which minimizes the risk given by (1.1)
over all θ ∈ Θ, where Θ denotes the set of all measurable functions θ : X → Y . This
classifier is called the Bayes classifier and the corresponding risk is called the Bayes
risk. The following lemma identifies the Bayes classifier in terms of the distribution P.

Lemma 1. The risk function (1.1) is minimized over the set Θ of all measurable maps
θ : X → R by

θ0(x) = 21η(x)> 1
2
− 1 where η(x) := P(Y = 1|X = x).
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Figure 1.1: Loss functions. The variable on the x-axis is t := yθ(x) and the functions plotted
are t 7→ V (t) = rθ(x, y). In this case, we assume an alternative definition of a classifier θ as
a map from X → R and we classify x as 1 or −1 according to the sign of θ.

Proof. Conditioning on the input x we may write

Plθ = P(Y = 1, θ(X) = 1) + P(Y = −1, θ(X) = 1)

=

∫
η(x)1θ(x)=−1 + (1− η(x))1θ(x)=1dPX(x),

where PX denotes the marginal distribution w.r.t. X. We can minimize the integral by
separately minimizing the integrand for each x. If for a given x we have η(x) > 1−η(x),
i.e. η(x) > 1/2, then we put θ0(x) := 1, if η(x) < 1/2 we put θ0(x) := −1. For all x
such that η(x) = 1/2, the choice of the classifier is irrelevant and the minimizer is not
unique on this set. Thus we see that the function θ0(x) = 21η(x)> 1

2
− 1 is a possible

choice for a minimizer.

The function θ0 in the preceding lemma is the Bayes classifier mentioned above. It
simply classifies the input x as −1 or 1 according to the biggest of the two prob-
abilities P(Y = 1|X = x) and P(Y = −1|X = x). In the deterministic case, i.e.
P(Y = 1|X = x) ∈ {0, 1}, we have Y = θ0(X) almost surely and the Bayes risk is zero.

In estimation procedures based on some data, there are two restrictions we have to
consider. Both arise as a consequence of the fact that the distribution P is unknown.
Firstly, the definition of η implies that the Bayes classifier depends on the underlying
distribution P. Thus the best we can do is approximate the optimal Bayes classi-
fier (or rather its minimal risk as outlined above) as closely as possible by a classifier
θ̂n(.) = θ̂n(., X1, Y1, . . . , Xn, Yn) based on the observations. Secondly, again since the
distribution P is unknown, we cannot directly measure the risk (1.1) for a given estima-
tor θ̂n based on the data. We can only measure the agreement of a candidate function
with the data. For that we often consider the empirical risk

Pnlθ :=
1

n

n∑
i=1

1θ(Xi)6=Yi

that is a natural estimate of the risk (1.1).
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We review some common strategies that are used in learning algorithms. The basic
approaches to finding an approximation to the Bayes classifier lie in

• restricting the class of functions in which minimization is considered

• modifying the criterion to be optimized.

Empirical Risk Minimization. The idea is to choose a model G of possible functions
and minimize the empirical risk within that model. Thus the function returned by the
algorithm, denote it θ̂n, is given by

θ̂n := arg min
g∈G

Png.

This will work best if the target function θ0 belongs to G. However, this is often not
the case.

Structural Risk Minimization. The idea is to choose an infinite sequence of models
{Gd : d = 1, 2, . . . } of increasing size and minimize the empirical risk in each model
with an added penalty for the size of the model. Then θ̂n is given by

θ̂n := arg min
g∈Gd,d∈N

Png + pen(d, n).

The penalty pen(d, n) measures the “size” of the model.

Regularization. The approach lies in choosing a large model G and defining a regu-
larizer, typically a norm ‖g‖. Then one has

θ̂n := arg min
g∈G

Png + λ‖g‖2.

Here one has a free parameter λ, called the smoothing parameter which allows to choose
the right trade-off between “fit” and “complexity”.

We have already pointed out that it seems natural to require that the classifiers θ̂n
we construct based on the training set generate risk which tends to the Bayes risk as
the sample size n tends to infinity. We may thus consider the notion of consistency of
a classifier. A universally consistent classifier is such, that for any probability measure
the risk generated by the classifier θ̂n converges to the Bayes risk. We give a formal
definition.

Definition 1. We say that a classifier θ̂n(.) = θ̂n(., X1, Y1, . . . , Xn, Yn) based on an
i.i.d. sample (X1, Y1), . . . , (Xn, Yn) from a distribution P on X × Y is consistent if

Plθ̂n → Plθ0

holds in probability if n → ∞. If a classifier is consistent for all distributions P on
X × Y, it is said to be universally consistent.

However, even if a classifier is shown to be universally consistent, this does not mean
that it works well for a specific classification task. It can be shown that for no classifier
there exists a uniform rate of convergence to the Bayes risk (a rate of convergence
essentially means what sample size n we need to ensure accuracy up to some given
ε > 0, but we will formalize the notion in the next chapter). This underlines the
importance of studying the speed of convergence to the Bayes risk and will be the
main focus of this work. We will return to rates of convergence in chapter 2.
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1.2 Introduction to the Support Vector Machine

Algorithm

Support vector machine is an algorithm for binary classification that, given an i.i.d.
sample (X1, Y1), . . . , (Xn, Yn), where (Xi, Yi) ∈ X × Y , i = 1, . . . , n from the distribu-
tion P, outputs a data-dependent classifier θ̂n : X → { − 1, 1} we shall now specify.

First we shall consider the case when the data set groups {Xi : Yi = 1} and {Xi :
Yi = −1} can be linearly separated in the space X Let us first establish some notation
and a few elementary observations.

Given a “normal” vector β ∈ X and “displacement” b ∈ R, define Hβ,b to be the
hyperplane

Hβ,b = {x ∈ X : 〈x, β〉+ b = 0}.

The distance of an arbitrary point a ∈ X to the hyperplane Hβ,b is given by

‖a−Hβ,b‖ =
1

‖β‖
|〈a, β〉+ b|,

where ‖x‖ =
√
〈x, x〉 for every x ∈ X is the norm associated with the scalar product

in the Hilbert space H. Now we may give a definition of the support vector machine.

Definition 2. A support vector machine is a hyperplane in X that separates the two
sets of points {Xi : Yi = −1} and {Xi : Yi = 1} and that maximizes the minimum
distance of the points to the hyperplane. Formally, a support vector machine is the
hyperplane Hβ̂,b̂ where (β̂, b̂) is the solution to the optimization problem

max
(β,b)∈X×R

min
i

1

‖β‖
|〈Xi, β〉+ b|

〈Xi, β〉+ b ≤ 0 if Yi = −1 (1.3)

〈Xi, β〉+ b ≥ 0 if Yi = 1 (1.4)

for i = 1, . . . , n.

The classifier corresponding to the support vector machine is as follows: classify a new
given observation x as 1 if 〈x, β̂〉+ b̂ ≥ 0 and as −1 if 〈x, β̂〉+ b̂ < 0.

The two halfspaces defined by the hyperplane Hβ,b are determined by the sign of
〈a, β〉+ b, thus the two sets of points are separated by Hβ,b if and only if the numbers
Yi(〈Xi, β〉 + b) for i = 1, . . . , n possess the same sign. As given in definition 2, the
support vector machine is the hyperplane Hβ,b defined by a pair (β, b) that maximizes

min
i

1

‖β‖
|〈Xi, β〉+ b|,

under these restrictions. Noting that a pair (cβ, cb) describes the same hyperplane as
the pair (β, b) for any c ∈ R, we replace the restrictions (1.3) and (1.4) by

min
i
Yi(〈Xi, β〉+ b) = 1. (1.5)
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Figure 1.2: Support vector machine in X = R2. Data point color corresponds to the class
label of that particular data point (i.e. black: Y = 1, white: Y = −1). Hyperplanes H1

and H2 separate the two sets of points, while H3 does not. Hyperplane H2 gives a larger
minimum distance (so-called “margin”) to the data set points. [17]

The criterion function 1
‖β‖ |〈Xi, β〉 + b| then reduces to 1

‖β‖ ; equivalently, we minimize
1
2
‖β‖2 (we include a factor 1

2
for mathematical convenience). The restriction can next

be relaxed by replacing the equality in (1.5) by ≥, as a value (β, b) giving a minimum
m = mini Yi(〈Xi, β〉 + b) strictly larger than 1 gives a larger value to the criterion
than the value (β/m, b/m). Hence we may recast the support vector machine to be the
hyperplane Hβ,b found by minimizing the criterion

f(β, b) :=
1

2
‖β‖2

over (β, b) ∈ X × R under the constraints

gi(β, b) := 1− Yi(〈Xi, β〉+ b) ≤ 0 for i = 1, . . . , n.

The Lagrangian corresponding to this optimization problem takes the form

L(β, b, λ) := f(β, b) + λTg(β, b) =
1

2
‖β‖2 +

n∑
i=1

λi (1− yi(〈xi, β〉+ b)) .

This quadratic programming problem may be expressed as

min
(β,b)∈X×R

max
λ≥0
L(β, b, λ), (1.6)

i.e. we are looking for a saddle point of the Lagrangian.

We may note that the term b
∑n

i=1 λiyi is linear in b. Thus if
∑n

i=1 λiyi 6= 0, then
the term minimizes to −∞. But such values of λ (i.e. λ :

∑n
i=1 λiyi 6= 0,) will not yield

a maximum over λ in the maximization step of the optimization problem (1.6), thus
the optimal λ satisfies

n∑
i=1

λiyi = 0.
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Hence the variable b does not enter the criterion which is then a function of β only

f(β) =
1

2
‖β‖2 − 〈β,

n∑
i=1

λiyixi〉+
n∑
i=1

λi. (1.7)

Function f attains its minimum for β (as a function of λ) given by

βλ =
n∑
i=1

λiyixi.

Plugging this value into the criterion function (1.7) yields

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjyiyj〈xi, xj〉.

Maximizing this function over λ ≥ 0 gives an optimal λ∗. Thus the optimal β∗ = βλ∗ . By
the Kuhn-Tucker theorem, the saddle point (β∗, b∗, λ∗) satisfies, for every i = 1, . . . , n

λ∗i (1− yi(〈xi, β〉+ b∗)) = 0.

The Lagrange multiplier λ∗i can be non-zero if and only if 〈xi, β〉 + b = ±1, i.e. the
point xi is a point nearest to the hyperplane. Such points xi are called support points
of the support vector machine. The optimal β∗ is a linear combination of such xi, given
by βλ∗ =

∑n
i=1 λ

∗
i yixi. The support points are also illustrated in figure 1.3.

Figure 1.3: Support vector machine in X = R2. The gap between the data sets correspond-
ing to the maximum margin hyperplane is 2/‖β‖. The support vectors are labeled with a
bold circle. They lie on the hyperplanes 〈β, x〉+ b = ±1. [17]



Introduction to the Support Vector Machine Algorithm 20

1.2.1 Soft Margin SVM

A support vector machine exists if and only if the sets {Xi : Yi = 1} and {Xi : Yi = −1}
are linearly separable. Moreover, even in the separable case it is fruitful to include a
tuning parameter. The soft margin support vector machine allows for the training
points to be misclassified. It is defined as the hyperplane Hβ,b given by (β, b) obtained
from minimizing, for a given nonnegative tuning parameter λ,

λ2‖β‖2 +
1

n

n∑
i=1

ξi

over (β, b, ξ) ∈ X × R× Rn under the constraints

ξi ≥ 0, 1− ξi ≤ Yi(〈Xi, β〉+ b) i = 1, . . . , n.

A value ξi > 1 allows the point Xi to fall on the “wrong” side of the hyperplane, and
a value of ξi ∈ (0, 1) is said to allow the point Xi to fall “within the margin”. This
optimization problem always has a solution. Misclassification and points within the
margin are discouraged by inclusion of the penalty 1

n

∑
i ξi in the criterion. Lower

values of the tuning constant λ increase the influence of this penalty.

The Lagrangian for this problem takes the form

L(β, b, λ, µ) :=
1

2
‖β‖2 + C

n∑
i=1

ξi +
n∑
i=1

λi (1− ξi − yi(〈xi, β〉+ b)) = µT ξ.

We may proceed similarly as in the separable case and solve the optimization problem
by expressing it in the following form

min
(β,b,ξ)∈H×R×Rn

max
(λ,µ)∈Rn+×Rn+

L(β, b, λ, µ).

This procedure will yield a saddle point (β∗, b∗, ξ∗, λ∗, µ∗) of the Lagrangian.

But we are interested in expressing the problem in a slightly different form that
is often studied in statistics. First observe that the constraints can also be writ-
ten as ξi ≥ (1 − Yi(〈Xi, β〉 + b))+ for i = 1, . . . , n. The constrained minimization of
λ2‖β‖2 + 1

n

∑n
i=1 ξi over (β, b, ξ) ∈ X × R × Rn is therefore equivalent to minimizing

over (β, b) ∈ X × R
1

n

n∑
i=1

(1− Yi(〈Xi, β〉+ b))+ + λ‖β‖2. (1.8)

This is obvious from the fact that λ2‖β‖2 + 1
n

∑
i ξi can be minimized in two steps: first

with respect to ξ and next with respect to (β, b); the minimum over ξ is assumed at
the boundary of the constraint. The formulation (1.8) will be important later on, let
us now only remark that it is a special case of a general formulation known as penalized
empirical contrast procedure. This observation will prove to be useful to analyze the
rates of convergence of the SVM. But first we generalize the support vector machine
by the “kernel trick.”
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1.2.2 The Kernel Trick

We may note that the procedure that gave us the optimal solution to the soft margin
SVM in the previous section depended only on the inner products of the data points
xi, i = 1, . . . , n. Thus even for very complex inputs, the computations only involve a
matrix of dimensions determined by the size of the training set n. This allows us to use
even very high-dimensional, or even infinite-dimensional, Hilbert spaces. This enables
us to make use of the following idea of transforming the data into a higher dimensional
space.

Suppose that an input x in an arbitrary set X can be mapped into a Hilbert space H
by a map φ : X → H. The support vector machine can then be applied to the data
(φ(Xi), Yi) and finds a hyperplane in H parametrized by a pair (β∗, b∗) ∈ H × R. A
new instance x is then classified according to the sign of 〈φ(x), β∗〉 + b∗. The kernel
trick is that this procedure can be implemented without explicitly defining the feature
map φ, but solely in terms of the inner products

K(u, v) := 〈φ(u), φ(v)〉H u, v ∈ X . (1.9)

The kernel function K : X × X → R in 1.9 is clearly symmetric and positive definite
(in the sense that the matrix (K(xi, xj))i,j=1,...,n is nonnegative definite for every finite
set x1, . . . , xn ∈ X ). It can be shown that symmetricity and positive definiteness
also characterize a kernel. That is, any symmetric positive definite function can be
represented in the form K(u, v) = 〈φ(u), φ(v)〉H for some feature map φ.

Figure 1.4: A feature map φ from the input space X to the feature space H. [17]

It is also interesting to note that kernels are in fact the same objects as the covariance
functions. It is well known that every symmetric positive definite function arises as a
covariance function of some centered (i.e. mean-zero) stochastic process (Gx : x ∈ X )

K(x1, x2) = EGx1Gx2 .

Conversely, every covariance function is symmetric and positive definite.

Example 1. The covariance function of Brownian motion (Wt)t≥0, given by

k(s, t) = min(s, t) s, t ∈ R

is an example of a kernel function.
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The above considerations lead us to the notion of reproducing kernel Hilbert spaces,
which we now define (see e.g. [14]).

Definition 3. A Hilbert space (H, 〈., .〉H) of functions h : X → R on an arbitrary
set X is called a reproducing kernel Hilbert space if there exists a symmetric function
K : X × X → R such that the function y 7→ K(x, y) is an element of H for every
x ∈ X and, for every h ∈ H and x ∈ X we have

h(x) = 〈K(x, .), h〉H. (1.10)

The following lemma (see e.g. [14]) shows that the feature space H we introduced
above can be without loss of generality taken to be a reproducing kernel Hilbert space
(RKHS) H and describes the support vector machine in terms of H.

Lemma 2. If K : X ×X → R is a symmetric positive definite function on the product
of an arbitrary set X with itself, then there exists a unique Hilbert space (H, 〈·, ·〉H) of
functions h : X → R such that:

(i) the map K(x, ·) : X → R is contained in H for every x ∈ X and the span of these
maps is dense in H;

(ii) h(x) = 〈K(x, ·), h〉H for every h ∈ H and x ∈ X ;

(iii) K(x, y) = 〈K(x, ·), K(y, ·)〉H for every x, y ∈ X ;

(iv) the map φ̄ : x 7→ K(x, ·) is 1− 1 from X to H and 〈φ̄(x), φ̄(y)〉H = K(x, y).
Furthermore, if K(x, y) = 〈φ(x), φ(y)〉H for some map φ : X → H into a Hilbert
space H, then β∗ ∈ H minimizes

β 7→ 1

n

n∑
i=1

(1− Yi(〈Xi, β〉+ b))+ + λ‖β‖2
H

over H if and only if fβ∗ ∈ H given by fβ∗(x) = 〈φ(x), β∗〉H minimizes over H
the map

f 7→ 1

n

n∑
i=1

(1− Yi(f(Xi) + b))+ + λ‖f‖2
H. (1.11)

If we denote the functions f + b by θ, add the constants to H and define the seminorm
‖θ‖H to be invariant under shifts, then we can identify a “kernelized” support vector
machine with the map θ : X → R that minimizes

θ 7→ 1

n

n∑
i=1

(1− Yiθ(Xi))+ + λ2‖θ‖2
H. (1.12)

This observation will play a crucial role later on.

Examples of Kernels

We now give a few examples of the most commonly used kernel functions in the case
X = Rp.

• polynomial (homogeneous) k(x1, x2) = xT1 x2
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• polynomial (inhomogeneous) k(x1, x2) = (1 + xT1 x2)k

• Gaussian kσ(x1, x2) = exp(−σ‖x1 − x2‖2)

• hyperbolic tangent k(x1, x2) = tanh(cxT1 x2 + c2)

Gaussian Kernel RKHS

In this work, we mainly focus on RKHS associated with Gaussian kernels, which are the
most widely used kernels in practice [9]. We give a precise definition of the Gaussian
kernel function.

Definition 4. A Gaussian kernel function is of the form

kσ(x1, x2) := exp
(
−σ2‖x1 − x2‖2

2

)
where x1, x2 ∈ X , σ > 0 is a free parameter whose inverse 1/σ is called the width of
the kσ. We shall denote the corresponding RKHS by Hσ(X ) or simply Hσ.

The Gaussian reproducing kernel Hilbert space is the Hilbert space attached to a kernel
function kσ in view of lemma 2. For a thorough analysis of the Gaussian RKHSs see
e.g. [12]. We shall give a characterization of Gaussian kernel RKHS as derived in [12],
but first let us fix some notation. By Lr(P) we shall denote the space of measurable
functions that are r−integrable with respect to the measure P and by ‖ ·‖P,r we denote
the norm corresponding to the space Lr(P).
The reproducing kernel Hilbert space with a Gaussian kernel is shown in [12] to be the
set of real parts of the functions hψ : X → C given by

hψ : x 7→
∫
eiλ

T xψ(λ)dµσ(λ),

where ψ runs through the complex Hilbert space L2(µσ) with RKHS norm equal to
‖ψ‖µσ ,2 and µσ is the measure with density relative to the Lebesgue measure given by

f : λ 7→ σd

2dπd/2
e
−σ2‖λ‖2

4 .



Chapter 2

Empirical Processes And Rates of
Convergence

This chapter provides brief introduction to the theory of empirical processes, which
is the main tool that will allow us to study statistical properties of support vector
machines. We give heuristic arguments for estimation procedures related to empirical
risk minimization and analyze the type of errors that arise within these procedures.
The error analysis leads us to study measures of complexity of sets of functions such
as metric entropy and we relate the rate of entropy increase to the empirical process.
We then cast the support vector machine as a penalized empirical minimization prob-
lem. A general result derived in [11] that provides rates of convergence of estimators
in specific classes of empirical risk minimization procedures will be presented, with the
aim to apply it to the support vector machine algorithm.

For two sequences {fn}n, {gn}n we use the notation fn . gn meaning that there exists
a universal constant C > 0 such that fn ≤ Cgn over a pre-specified range of values n
(e.g. all n sufficiently large). We use the notation & with a similar meaning and ∼
when both . and & hold.

In the chapters that follow, we shall often consider a supremum of uncountably many
random variables. Note that this is not necessarily a random variable. Some results in
the following are only true if certain measurability conditions are satisfied. We shall
ignore the technicalities of measurability (see [11] for full details), although sometimes
we write E∗ or P∗ for expectations and probabilities, where the asterisk refers to “outer”
measure.

2.1 Relationship to Empirical Processes

The motivation for studying empirical measures is that in reality, it is often impos-
sible to know the true underlying probability measure P. We collect observations
X1, X2, . . . , Xn and we can estimate P, or its corresponding distribution function F by
means of empirical measure or empirical distribution function, respectively.

Assume that we have an i.i.d. sequence of random variables X1, . . . , Xn in a mea-
surable space (Ω,S). Let Pn denote the empirical measure induced by the sequence
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X1, . . . , Xn, i.e. for any A ∈ S define

Pn(A) :=
1

n

n∑
i=1

1A(Xi),

where 1A is the indicator function of the set A. The empirical measure Pn maps
measurable functions f : Ω→ R from a given set F to their empirical mean by a map
from F → R given by

f 7→ Pnf =

∫
Ω

fdPn =
1

n

n∑
i=1

f(Xi).

Let P denote the true distribution of the Xis. Then for a fixed measurable function f ,
Pnf is a random variable with mean Pf and variance 1

n
P (f − Pf)2.

The centered and scaled version of the map f 7→ Pnf is called the F -indexed em-
pirical process Gn given by

f 7→ Gnf :=
√
n(Pn − P )f =

1√
n

n∑
i=1

(f(Xi)− Pf) .

Example 2. For Ω := R and F the set of all intervals of type 1(−∞,x], x ∈ R, the em-
pirical measure indexed by F can be identified with the empirical distribution function
Fn given by

x 7→ Fn(x) := Pn1(−∞,x] =
n∑
i=1

1Xi≤x.

Remark 1. For the empirical measure Pn, we shall use the shorthand Pnf =
∫
fdPn (to

prevent possible confusion between Pnf and Pf if we used the notation Pnf =
∫
fdPn

and Pf =
∫
fdP).

The relationship of learning algorithms and empirical processes has already been sug-
gested in section 1.1.1. Recall that we are mainly interested in estimating the risk Pmθ

(assume now a given loss function mθ) generated by candidate classifiers θ ∈ Θ and we
would like to choose a classifier θ̂n such that this risk is minimal. However, the true risk
cannot be directly observed since it depends on the underlying unknown distribution
P. One way to make a statement about this quantity is to say how it relates to the
empirical risk Pnmθ of a classifier θ given by

Pnmθ :=
1

n

n∑
i=1

mθ(Xi, Yi)

for a loss function m given a data set (X1, Y1), .., (Xn, Yn). In general, learning al-
gorithms use the empirical risk Pnmθ as a criterion function to minimize (maximize)
instead of the true risk.

The criterion function Pnmθ converges to the asymptotic criterion function Pmθ as
n → ∞. We may thus expect that the minimizers θ̂n of Pnmθ converge to the mini-
mizer θ0 of θ 7→ Pmθ. If we introduce some metric d, we may be interested in the rate
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of convergence of d(θ̂n, θ0) as n→∞.

Let us now finally formalize what we actually mean by the rate of convergence of
a random variable. The definition is analogous to the well known “big-O” notation
that is used to describe limiting behaviour of a deterministic function. If we were
only interested in the limiting behaviour (as n→∞) of the expectation of a sequence
of random variables, say {Zn}n, we write that E|Zn| = O(δn) for some deterministic
function δn of n meaning that there exists a constant M such that

E|Zn| ≤Mδn

for all n sufficiently large. Similarly, for the random variable Zn, we write Zn = O∗P (δn)
if for all ε > 0 there exists a constant M ∈ R such that

P∗
(
|Zn|
δn

> M

)
< ε

for all n sufficiently large. E.g. OP (1) means that a sequence is bounded in probability.

For the sake of clarity, we shall set the metric d equal to the quantity of our inter-
est, i.e.

d2(θ̂n, θ0) := Pmθ̂n
− Pmθ0

that will measure the distance between θ̂n and θ0. Let us only remark that the results
that will follow remain true with any chosen metric, or even for an arbitrary map from
Θ → [0,∞) (see [11]), under an additional assumption that the asymptotic criterion
decreases quadratically when θ moves away from θ0, i.e.

P (mθ −mθ0) ≥ d2(θ, θ0) (2.1)

Before we introduce results that give actual rates of convergence to the Bayes risk for
specific estimation tasks, we will provide a brief insight into the sources of errors that
are inherent to empirical risk minimization problems. We are mainly interested in how
much the risk generated by a data-dependent classifier θ̂n differs from the Bayes risk,
i.e. the so called excess risk

Pmθ̂n
− Pmθ0 .

An estimation algorithm in general chooses its output θ̂n from a class of functions
F ⊂ Θ, which is not necessarily equal to the whole space Θ. Note that this implies
that θ0 does not necessarily lie in F . If we denote θ∗ = arg infθ∈F Pmθ, i.e. θ∗ is the
best function that can be chosen from the model F(with respect to risk minimization),
then we may decompose the excess risk as follows

Pmθ̂n
− Pmθ0 = (Pmθ∗ − Pmθ0) + (Pmθ̂n

− Pmθ∗). (2.2)

The first term, Pmθ∗ − Pmθ0 , is called the approximation error and it measures how
well can functions or classifiers in F approximate the target Bayes risk (it would be
zero if θ0 ∈ F). Note that the approximation error does not depend on the data, it is
solely a property of F . The second term is called the estimation error and it measures
how close is θ̂n to the best possible choice θ∗ ∈ F in terms of the theoretical risk P .
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Figure 2.1: Schematic diagram of approximation and estimation errors.

Note that there is some trade-off between the approximation and the estimation error.
When the class of functions F is large, infθ∈F Pmθ may be close to Pmθ0 , but the es-
timation error may be large. On the other hand, if the class F is small, there could be
a gap between infθ∈F Pmθ and Pmθ0 so the approximation error could be substantial.

Results that give us some information about the rate of convergence to the Bayes
risk, i.e. the rate of convergence of the random variable P (mθ̂n

−mθ) to zero, typically
assume that we are able to obtain some bounds of the supremum of the empirical pro-
cess Gn(mθ−mθ0) over a given class of functions θ. How to obtain such bounds will be
discussed in the next section. Let us now only remark that these bounds are strongly
related to measures of complexity of spaces of functions, such as metric entropy.
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2.2 Entropy Bounds

While the approximation error is a property of the class F only, the two types of error
that depend on data Pmθ̂n

−Pmθ∗ , i.e. the estimation error, and Pnmθ̂n
−Pmθ̂n

which
represents the error due to the estimation of the risk from the data, can be reduced
by increasing the sample size. As both errors involve random quantities (Pnmθ̂n

and
Pmθ̂n

), statistical learning theory mainly aims at their probabilistic bounds. That
is, how to bound the tail probabilities of the differences in risk. The following in-
equalities suggest that the two types of error can be dealt with as one by examining
supθ∈F |Pnmθ − Pmθ|.

|Pnmθ̂n
− Pmθ̂n

| ≤ sup
θ∈F
|Pnmθ − Pmθ|

Pmθ̂n
− inf

θ∈F
Pmθ ≤ 2 sup

θ∈F
|Pnmθ − Pmθ|.

While the first inequality trivially holds, the second requires a bit of manipulation and
we omit the proof.

In general, bounds on expressions of the type

E sup
f∈F
|Gnf | (2.3)

for a given class of functions F can often be obtained by studying specific measures
of complexity of a class of functions. One such measure is a covering number, which
essentially tells us how many “balls” of a given radius (in a (semi)metric space) are
required to cover a set.

Definition 5. Let (T, d) be an arbitrary semimetric space. Then the covering number
N(ε, T, d) is the minimal number of balls of radius ε needed to cover T. The corre-
sponding entropy number is the logarithm of the covering number.

Figure 2.2: Illustration of a possible covering of a set.

First we may note that covering number is a decreasing function of ε and typically
tends to ∞ for ε ↓ 0. If the covering number is finite for every ε > 0, we say that
the semimetric space T is totally bounded. The upper bounds on (2.3) depend on the
rate at which the entropy numbers for T taken to be a class of functions F grow as ε ↓ 0.

For the case of Gaussian kernel RKHS Hσ and the uniform norm, the entropy number
logN(ε, BHσ , ‖.‖∞), where BH = {θ ∈ H : ‖θ‖H ≤ 1} denotes the unit ball in H may
be bounded (with respect to the uniform norm) as derived in [12].
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Lemma 3. Assume that X ⊂ Rd. Let Hσ(X ) be a reproducing kernel Hilbert space
corresponding to the Gaussian kernel kσ with width 1/σ. Then for every ε < 1

2
,

logN(ε, BHσ , ‖.‖∞) . σd
(

log
1

ε

)1+d

.

For most classes of functions F we might be interested in, the covering number grows
to infinity as ε → 0. We are mostly interested in the speed of this growth, which can
be measured in terms of the entropy integral

J(δ,F , L2) =

∫ δ

0

sup
Q

√
1 + logN(ε,F , L2(Q))dε

where the supremum is taken over all discrete probability measures Q.

An alternative way of measuring the size of a class of functions may be in terms
of bracketing numbers.

Definition 6. Given two functions l and u, the bracket [l, u] is the set of all functions
f with l ≤ f ≤ u. An ε−bracket in Lr(P) is a bracket [l, u] with P |u − l|r < εr.
The bracketing number N[](ε,F , Lr(P)) is the minimum number of ε−brackets needed
cover F . The entropy with bracketing is the logarithm of the bracketing number. (The
bracketing functions l and u must have finite Lr(P)-norms, but need not belong to F .)

Bracketing numbers very much resemble covering numbers and they are decreasing
functions of ε as well. The advantage of bracketing numbers over covering numbers
is that we gain pointwise control over the function f : l(x) ≤ f(x) ≤ u(x) for every
x. The Lr(P) balls give only control over the integral, not bounds on the function itself.

One may note that a bracket [l, u] of size ε can be covered with a ball with center l+u
2

of
radius ε/2, since |f−u+l

2
| ≤ |u−u+l

2
| = |l−u+l

2
| implies ‖f− l+u

2
‖P,r ≤ ‖u− l+u

2
‖P,r < ε/2.

We thus obtain the following relationship between covering and bracketing numbers

N(ε/2,F , Lr(P)) ≤ N[](ε,F , Lr(P)).

Note that this also implies N(ε,F , Lr(P)) ≤ N[](ε,F , Lr(P)) by the decreasingness of
a covering number in ε. Hence bracketing numbers are in general bigger than covering
numbers.

To measure the speed of growth of bracketing numbers for ε ↓ 0 we define the bracketing
integral

J[](δ,F , L2(P )) =

∫ δ

0

√
logN[](ε,F , L2(P ))dε.

The integrand is a decreasing function of ε, since the bracketing number decreases as
a function of ε. Thus the convergence of the integral depends only on the size of the
bracketing numbers for ε ↓ 0. We may note that since the integral

∫ 1

0
ε−rdε converges

for r < 1 and diverges for r ≥ 1, then (roughly speaking) bracketing integral is finite
if the growth of bracketing entropies is slower than ε−2.

Theorem 15 in [11] gives us a bound on the supremum of the empirical process over
a set F of uniformly bounded measurable functions and thus relates the complexity
measures of spaces of functions to empirical processes.
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Theorem 1. Let F be a set of measurable functions f : X → R such that |f(x)| ≤
F (x) ≤ 1 for all x ∈ X , and such that for some δ ∈ (0, 1) and for every f ∈ F it holds
Pf 2 < δ2PF 2. Then

E∗P sup
f∈F
|Gnf | . J(δ,F , L2(P ))

(
1 +

J(δ,F , L2(P ))

δ2
√
n‖F‖P,2

‖F‖P,2
)
.

A similar result may be obtained for bracketing numbers (Theorem 23 in [11]).

Theorem 2. Let F be a set of measurable functions f : X → R such that for some
δ ∈ R and for every f it holds Pf 2 < δ2 and ‖f‖∞ ≤M for a constant M. Then

E∗P sup
f∈F
|Gnf | . J[](δ,F , L2)

(
1 +

J[](δ,F , L2)

δ2
√
n

M

)
.

We will see in the next section how one applies entropy measures in estimation prob-
lems. Specifically for the SVM, the bound on (2.3) may be obtained by finding bounds
on entropy numbers of the associated RKHS that a SVM uses. Then we are able
to obtain corresponding entropy integrals and thus bound the supremum of the re-
lated empirical process, which is essential for the techniques that guarantee rates of
convergence in empirical risk minimization procedures.
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2.3 Rates of Convergence

Consider a general empirical risk minimization procedure that gives output

θ̂n := arg min
θ∈Θ

Pnmθ.

We finally give a general result derived in [11] that gives rates of convergence to the
Bayes risk provided that we are able to bound the supremum of the empirical process
Gn indexed by the class of functions Fδ := {mθ −mθ0 : θ ∈ Θ, P (mθ −mθ0) ≤ δ2} by
some function φn(δ).

Theorem 3. Suppose that for every δ > 0

E∗ sup
θ∈Θ:Pmθ−Pmθ0≤δ

2

|Gn(mθ −mθ0)| . φn(δ)

for a function φn : [0,∞) → R such that δ 7→ φn(δ)/δα is decreasing for some α < 2.
Then the minimizer θ̂n of θ 7→ Pnmθ satisfies

Pmθ̂n
− Pmθ0 = O∗P (δn)

for some δn such that φn(δn) ≤
√
nδ2

n.

Proof. Fix n ∈ N. The set Θ may be written as a union over j ∈ Z of disjoint sets of
the form

Sn,j := {θ ∈ Θ : δn2j−1 < (P (mθ −mθ0))
1/2 ≤ 2jδn}.

If the minimizer θ̂n of θ 7→ Pnmθ belongs to Sn,j then by the definition of Sn,j it

holds Pmθ̂n
> Pmθ0 + 22j−2δ2

n. By the definition of θ̂n it holds that Pnmθ̂n
≤ Pnmθ0 .

Combining the two inequalities gives that θ̂n ∈ Sn,j implies

Pnmθ̂n
− Pmθ̂n

≤ Pnmθ0 − Pmθ0 − 22j−2δ2
n,

or, rearranging,
Gn(mθ0 −mθ̂n

) ≥
√
n22j−2δ2

n.

We conclude that

P(θ̂n ∈ Sn,j) ≤ P

(
sup
θ∈Sn,j

Gn(mθ0 −mθ) ≥
√
n22j−2δ2

n

)
≤ φn(2jδn)√

n22j−2δ2
n

,

where the last inequality follows by Markov’s inequality and by the definition of φn.
Since δ 7→ φn(δ)/δα is decreasing for some α < 2 we obtain φn(2jδn) ≤ 2jαφn(δn). Then
for any M ∈ N we get

P((P (mθ̂n
−mθ0))

1
2 > 2Mδn) ≤

∞∑
j=M

2jαφn(δn)√
n22j−2δ2

n

.
∞∑
j=M

2j(α−2),

where the last inequality follows by the definition of δn. Note that the remainder of the
series in the last expression converges (to zero) for M →∞ since α < 2.
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Example 3 (Euclidean parameter space). Suppose that Θ ⊂ Rd and that for every
θ, θ′ and x ∈ X

|mθ(x)−mθ′(x)| ≤M‖θ − θ′‖2,

for a constant M ∈ R. Then the class of functions Mδ := {mθ −mθ0 : ‖θ − θ0‖2 < δ}
is upper bounded by δM and hence the bracketing numbers satisfy

N[](εM,Mδ, L
2(P )) ≤ N(ε, {θ : ‖θ − θ0‖2 < δ}, ‖·‖∞) .

(
δ

ε

)d
.

The last inequality is the consequence of the fact that (1) the ε−covering number of
a ball of radius δ equals the ε

δ
−covering number of a unit ball, (2) the ε−covering

number of a unit ball in Rd equals 1
εd

up to a constant.

A bound on supf∈Mδ
|Gnf | may then be obtained in view of section 2.2 on entropy

bounds as follows

sup
f∈Mδ

|Gnf | .
∫ δM

0

√
log

(
δ

ε

)d
dε . δ.

Thus φn(δ) in Theorem 3 can be taken equal to δ and the (worst) solution to the
inequality φn(δn) ≤

√
nδ2

n is given by δn = 1√
n
. Thus the rate of convergence is 1√

n

provided that P (mθ −mθ0) ≥ c‖θ − θ0‖2
2 for every θ ∈ Θ in view of (2.1).

In some cases, minimization of a criterion over the full space Θ may not be a good
idea. For instance, consider fitting a function θ : [0, 1] → R to a set of observations
(X1, Y1), . . . , (Xn, Yn) by least squares, i.e. we minimize

θ 7→ 1

n

n∑
i=1

(Yi − θ(Xi))
2 .

If the space Θ consists of all measurable functions θ : X → R, then the minimum is
zero; the maximizer being any function θ : X → R that interpolates the data points
exactly, i.e. θ(Xi) = Yi for i = 1, . . . , n. This is usually not a very good estimator,
which overfits the data. To prevent overfitting, we need to impose quantitative restric-
tions on the class of functions we minimize over, e.g. in regression one often considers
the space of linear functions.

Alternative to restricting minimization (maximization), overfitting can be solved by
add-ing a penalty function to the criterion function. Assume now that we want to
minimize the criterion function Pnmθ and we add a penalty function J : Θ → [0,∞).
We get a so-called penalized minimum contrast estimator that minimizes the criterion
function

θ 7→ Pnmθ + λ2
nJ

2(θ)

over a given class of functions, where m is a given loss function and J is a penalty
function.

The purpose of the penalty is to decrease the criterion value when θ is far from θ0.
Thus we discourage those θs which give a high value Pnmθ but are not near the true
parameter. This could happen, for instance, by overfitting. The trade-off between the
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empirical criterion Pnmθ and the size of the penalty J(θ) is moderated by the smooth-
ing parameter λn. Smoothing parameter decreases as n increases and asymptotically
the penalty becomes inactive.

Recall that in section 1.2 we rewrote the support vector machine algorithm as the
minimizer of the criterion

θ 7→ 1

n

n∑
i=1

(1− Yiθ(Xi))+ + λ2‖θ‖2
H (2.4)

over a reproducing kernel Hilbert space H. This is the formulation that exactly fits the
penalized empirical minimization problem, with loss function equal to the hinge loss
and penalty equal to the norm ‖.‖H, i.e.

mθ(x, y) := (1− yθ(x))+

J(θ) := ‖θ‖H.

From now on, we will work with hinge loss m as our loss function, and the following
result by Van der Vaart and Wellner [11] is already stated to match the needs of SVM
formulation.

Theorem 4. Let λn > 0. Suppose that for every n ∈ N and δ > 0

E∗ sup
{√

n|Gnmθ −Gnmθ0 | : θ ∈ H, Pmθ − Pmθ0 ≤ δ2, ‖θ‖H < δ/λn
}
. φn(δ)

(2.5)
for an increasing function φn : (0,∞) → R such that δ 7→ φn(δ)/δα is decreasing for
some α < 2. Let θn ∈ H and let δn satisfy

φn(δn) ≤
√
nδ2

n (2.6)

δ2
n ≥ Pmθn − Pmθ0 (2.7)

δn ≥ λn‖θn‖H (2.8)

then
Pmθ̂n

− Pmθ0 = O∗P (δ2
n).

The theorem thus states that the rate of convergence of P (mθ̂n
−mθ0), where θ̂n is the

minimizer of the criterion function (2.4) and θ0 is the minimizer of the true risk Pmθ

is given by the approximation error

inf
θ

(P (mθ −mθ0) + λ2‖θ‖2
H)

which corresponds to (2.7) and (2.8), and the square of the solution δn to the equation
φn(δ) ≤

√
nδ2

n.

In the first chapter, we have already studied the smallest achievable risk associated
with 0-1 loss function, which is attained by the Bayes classifier θ0. The same is true of
the hinge loss function mθ. This forms the content of the following lemma.

Lemma 4. The risk associated with the hinge loss function mθ is minimized over the
set Θ of all measurable maps θ : X → R by

θ0(x) = 21η(x)> 1
2
− 1 where η(x) := P(Y = 1|X = x).
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Proof. Conditioning on the input we may write

Pmθ =

∫
(η(x)(1− θ(x))+ + (1− η(x))(1 + θ(x))+)dPX(dx).

We minimize the integrand separately for each x. The integrand is minimized over
θ(x) ∈ R for the case η(x) = 0 at every θ(x) ≤ −1, for η(x) ∈ (0, 1

2
) it is minimal

at θ(x) = −1, for η(x) = 1/2 minimal at every θ(x) ∈ [−1, 1], for η(x) ∈ (1/2, 1)
minimal at θ(x) = 1 and for η(x) = 1 minimal at every θ(x) ≥ 1. The function
θ0(x) = 21η(x)> 1

2
− 1 is a possible choice.



Chapter 3

Convergence Rates for Support
Vector Machines

In the first part of this chapter, we present and discuss recent results on convergence
rates for SVM. Steinwart and Scovel in [9] derive fast rates for the case of Gaussian
kernel RKHS under Tsybakov noise assumption and a geometric noise assumption they
introduce. The second result proved by Blanchard, Bousquet and Massart in [2] is a
very general model selection procedure with penalization. Their bound on excess risk
admits an arbitrary choice of RKHS, thus no actual bound is provided for the approx-
imation error. The second part of this chapter aims at obtaining convergence rates for
the case of Gaussian kernel RKHS, first deriving the rates following the approach of
Blanchard, Bousquet and Massart and next the approach of Van der Vaart and Wellner
in [11]. Finally, we rederive the same rates using an entropy bound as in [9].

3.1 Rates for Support Vector Machines with a

Gaussian Kernel

In [9] Steinwart and Scovel treat SVMs in the special case of Gaussian kernel RKHS
and assume X ⊂ Rd which is to be assumed throughout this section.

3.1.1 Assumptions

We first introduce Tsybakov’s noise assumption, which describes the amount of “noise”
in the labels. (By a noise-free distribution we understand P(Y = 1|X = x) ∈ {0, 1}).
This may be achieved in terms of the function

min{η(x), 1− η(x)} =
1

2
− |η(x)− 1

2
|.

In other words, we are interested in the behaviour of the function η(x) around the
critical level 1

2
. Observe that we may equivalently consider the function |2η − 1|. In

regions where the function |2η − 1| is close to 1, there is only a small amount of noise,
whereas function values close to 0 only occur in regions with a high level of noise. The
following assumption describes the size of the regions with a high level of noise.

Assumption 1. (Amount of noise) Let 0 ≤ κ ≤ ∞ and P be a probability measure
on X × Y . We say that P has Tsybakov noise exponent κ if there exists a constant
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C > 0 such that for all small t > 0 we have

PX({x ∈ X : |2η(x)− 1| ≤ t}) ≤ Ctκ. (3.1)

Observe that all distributions have Tsybakov noise exponent κ = 0. It is also easy to
see that a distribution with Tsybakov noise exponent κ has Tsybakov noise exponent
κ′ for all κ′ < κ. In the extreme case κ =∞, the conditional probability η is bounded
away from 1/2.

We may note that (3.1) does not make any assumption on the location of the noise.
This will be covered in the assumption to follow.

To formulate a geometric noise assumption which describes the location of noise of
the P distribution, we first need the following definitions. Let

X1 :=

{
x ∈ X : η(x) >

1

2

}
X0 :=

{
x ∈ X : η(x) =

1

2

}
X−1 :=

{
x ∈ X : η(x) <

1

2

}
and for x ∈ X we define a distance function x 7→ τx by

τx :=


d(x,X0 ∪ X−1) if x ∈ X1

d(x,X0 ∪ X1) if x ∈ X−1

0 otherwise,

(3.2)

� 
�
�

 

��� 

�� 

 

Figure 3.1: τx measures the distance to the decision boundary.

where d(x,A) denotes the distance between x and the set A with respect to the Eu-
clidean norm, i.e.

d(x,A) = inf{‖x− y‖2 : y ∈ A}.
The function τx measures the distance of x to the “decision boundary”.
Now we may formulate the geometric noise assumption, which addresses the location
of noise of the distribution P. It allows one to estimate the approximation error for
Gaussian RKHS and therein lies its main value.
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Assumption 2. (Location of noise) Let X ⊂ Rd be compact and P be a probability
measure on X × Y . We say that P has geometric noise exponent α > 0 if there exists
a constant C > 0 such that∫

X
|2η(x)− 1| exp

(
−τ

2
x

t

)
PX(dx) ≤ Ctαd/2, t > 0. (3.3)

We say that P has geometric noise exponent ∞ if it has geometric noise exponent α
for all α > 0.

The condition (3.3) describes the concentration of the measure |2η−1|dPX around the
decision boundary. The less the measure is concentrated in this region, the larger the
geometric noise exponent can be chosen. The assumption is illustrated in figure 3.2.

Figure 3.2: Illustration of the geometric noise assumption. Assume X0 = ∅. From left
to right, we can see three cases (1) α = ∞. X1 and X−1 are strictly separated, (2) PX is
lowly concentrated around the decision boundary, (3) |2η − 1| is close to 0 near the decision
boundary.

3.1.2 Results

Under assumptions 1 and 2 it is possible to obtain learning rates for Gaussian kernel
SVMs. This is the content of the next theorem derived in [9].

Theorem 5. Let X be the closed unit ball of Rd and P be a distribution on X ×Y with
Tsybakov noise exponent κ ∈ [0,∞] and a geometric noise exponent α ∈ (0,∞). Let θ̂n
be the solution to the minimization problem

θ̂n := arg min
θ∈Hσn (X )

(
Pnmθ + λ2

n‖θ‖2
Hσn(X )

)
.

Define

β :=

{
α

2α+1
if α ≤ 1

2
+ 1

κ
2α(κ+1)

2α(κ+2)+3κ+4
otherwise,

and λn := n−(α+1)/(2α)β and σn := nβ/(αd). Then for all ε > 0 there exists a C > 0 such
that for all x ≥ 1 and n ≥ 1 (the SVM classifier) θ̂n satisfies with probability at least
1− e−x

Plθ̂n − Plθ0 ≤ Cx2n−β+ε.

If α =∞ the last assertion holds if σn = σ is a constant with σ > 2
√
d.
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First we may note that in the case when α ≤ 1
2

+ 1
κ
, we do not get very fast rates, i.e.

we get rates slower than n−1/2. In the other case, i.e. when α > 1
2

+ 1
κ
, we may obtain

rates that are faster than n−1/2. This is the case if and only if α > 3κ+4
2κ

.

It is also interesting to consider what happens in the limiting cases. In the limit-
ing case κ → ∞, we have a strong assumption on the amount of noise, but a weak
assumption on the location of noise. In this situation we get

2α(κ+ 1)

2α(κ+ 2) + 3κ+ 4
→ 2α

2α + 3
.

Thus we have rates faster than n−1/2 if and only if α > 3/2.

In the limit case α →∞, we have a strong assumption on the location of noise and a
weak assumption on the amount of noise. Then we get

2α(κ+ 1)

2α(κ+ 2) + 3κ+ 4
→ κ+ 1

κ+ 2
.

3.2 A General Bound on Excess Risk

In this section, we consider an arbitrary reproducing kernel Hilbert space H associated
with a kernel function k : X ×X → R. Bousquet, Blanchard and Massart in [2] prove
a very general result that may in particular be applied to bound the excess risk for a
support vector machine classifier.

3.2.1 Assumptions

We present two different settings that are treated in [2]. The difference lies in the way
the capacity of the RKHS is analyzed. We shall consider the following assumptions.

(A1) H is a separable space. (Separability of H is ensured e.g. when X is a compact
topological space, k is continuous on X × X and k(x, x) ≤ M2 < ∞ for all
x ∈ X .)

(A2) (“Low noise” condition) for all x ∈ X : |η(x)− 1
2
| ≥ η0.

(A3) for all x ∈ X : min{η(x), 1− η(x)} ≥ η1.

We shall consider two different settings employing the assumptions above.

Setting S1. Suppose that the assumptions (A1), (A2) and (A3) are all satisfied. In this
setting, the capacity of the RKHS is analyzed via the spectral properties of the kernel
integral operator Lk : L2(PX)→ L2(PX) given by

(Lkf)(x) =

∫
k(x, y)f(y)dPX(y),

which is positive, self-adjoint and trace-class (see [2] for full details). The operator
Lk can be diagonalized in an orthogonal basis of L2(PX), it has discrete spectrum
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λ1 ≥ λ2 ≥ . . . (the eigenvalues are considered with repeated multiplicities) and satisfies∑
j≥0 λj <∞. For n ∈ N define

γn := η−1
1

1√
n

inf
d∈N

 d√
n

+
η1

M

√∑
j>d

λj

 .

Setting S2. Suppose that the assumptions (A1) and (A2) are satisfied. Define

φn(δ) :=

∫ δ

0

√
N(ε, BH, ‖·‖∞)dε. (3.4)

Let δn be the solution to the equation

φn(δn) = M−1
√
nδ2

n. (3.5)

For n ∈ N define
γn := M−2δ2

n.

3.2.2 Results

Theorem 6. Consider either setting (S1) under assumptions (A1), (A2) and (A3), or
setting (S2) under assumptions (A1) and (A2). Define the constant w1 = η1 for setting
(S1) and w1 = 1 for setting (S2). Let ν > 0 be a fixed real number, and let λn > 0 be
a real number satisfying

λ2
n ≥ c

(
γn +

1

w1

log( logn
ν

) ∨ 1

n

)
, (3.6)

where c is a universal constant. Let θ̂n be the solution to the optimization problem

θ̂n := arg min
θ∈H

1

n

n∑
i=1

(1− θ(Xi)Yi)+ + λ2
n‖θ‖2

H. (3.7)

Then

Pmθ̂n
− Pmθ0 ≤ 2 inf

θ∈H

[
Pmθ − Pmθ0 + 8λ2

nM
2‖θ‖2

k

]
+ 4λ2

n

(
16 +

cw1

η0

)
.

The reader might have noticed the resemblance of Theorem 6, Setting (S2), to Theorem
4 in the sense that both give a bound on the excess risk in terms of the approximation
error

a(λ) := inf
θ∈H

(P (mθ −mθ0) + λ2
n‖θ‖2

H)

and the square of the worst solution δn to the equation φn ≤
√
nδ2

n. The function φn
in (3.4) corresponds to an entropy bound on the supremum of the empirical process in
view of section 2.2 on entropy bounds.
A slight difference in the formulations of the theorems lies in the bound (3.6) that gives
a restriction on the smoothing parameter λn in Theorem 6.

Remark 2. Let us remark that the relative classification error Plθ̂n − Plθ0 is upper-
bounded by the relative hinge loss error Pmθ̂n

− Pmθ0 as shown in [11], lemma .4.23,
hence, the theorem results in a bound on the relative classification error as well.
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3.3 Deriving Convergence Rates for Support Vec-

tor Machines With a Gaussian Kernel

Thus far we have presented two general results that give rates for empirical minimiza-
tion classifiers with regularization, namely Theorem 4 and 6. Next we specialize to
SVM with a Gaussian kernel RKHS, which we briefly introduced in section 1.2.2.

3.3.1 Following the Approach of Bousquet et al. [2]

In this section we shall assume that the Tsybakov noise exponent κ is infinite; as is
implied by assumption (A2). We shall assume that the distribution P has a geometric
noise exponent α > 0, which will help us bound the approximation error. Under these
assumptions, we obtain rates for SVM as stated in the following theorem.

Theorem 7. Let X be the closed unit ball of Rd, and P be a distribution on X ×Y with
Tsybakov noise exponent κ = ∞ and a geometric noise exponent α ∈ (0,∞). Let as-
sumptions (A1) and (A2) be satisfied. Let σn := n1/((2+α)d) and λn := n−(1+α)/(2+α). Let
Hσn be the reproducing kernel Hilbert space on X with a Gaussian kernel of width 1/σn.
Let (X1, Y1), . . . , (Xn, Yn) be a given training set and Pn the corresponding empirical
measure. Finally, let θ̂n be the solution to the minimization problem

θ̂n := arg min
θ∈Hσn (X )

(
Pnmθ + λ2

n‖θ‖2
H
)
.

Then the SVM classifier θ̂n satisfies

P (mθ̂n
−mθ0) = O∗P (n−

α
α+2 (log n)d+1).

Before we give the proof of theorem 7, we will need one technical lemma and a bound
on the approximation error. We follow the approach presented in [9], which gives a
bound on the approximation error

aσ(λ) := inf
θ∈Hσ

P (mθ −mθ0) + λ2‖θ‖2
Hσ

by a suitable combination of σ and λ. More precisely, for all λ > 0 it holds

aσ(λ) . σdλ2 + σ−αd. (3.8)

Note that in order for the right hand side of (3.8) to converge to zero it is necessary to
assume that λ→ 0 and σ →∞.

Theorem 8. Let σ > 0, X be the closed unit ball of the Euclidean space Rd and aσ(·)
be the approximation error function with respect to Hσ(X ). Furthermore, let P be a
distribution on X × Y that has a geometric noise exponent 0 < α < ∞ with constant
C as in Assumption 2. Then there exists a constant cd > 0 depending only on the
dimension d such that for all λ > 0 we have

aσ(λ) ≤ cd(σ
dλ2 + C(2d)αd/2σ−αd).
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Proof. We first rewrite the approximation error by introducing a linear operator Vσ :
L2(Rd)→ Hσ(Rd) defined by

Vσg(x) =
(2σ)d/2

πd/4

∫
Rd
e−2σ2‖x−y‖22g(y)dy

for g ∈ L2(Rd), x ∈ Rd (here L2(Rd) denotes the space of measurable functions whose
rth powers are Lebesgue integrable). This operator is an isometric isomorphism, i.e.
a surjective linear map such that ‖Vσg‖Hσ(Rd) = ‖g‖L2(Rd) for all g ∈ L2(Rd). Thus we
obtain

aσ(λ) = inf
g∈L2(Rd)

λ2‖Vσg‖2
Hσ(Rd) + P (mVσg −mθ0) (3.9)

= inf
g∈L2(Rd)

λ2‖g‖2
L2(Rd) + P (mVσg −mθ0). (3.10)

We find a bound on the approximation error aσ(λ) by making a specific choice of
g ∈ L2(Rd). However, first we need a lemma that enlarges the support of P to ensure
all balls of the form B(x, τx), where τx is the distance to the decision boundary as
defined in (3.2), are contained in the enlarged support. This is crucial to enable to
control the behaviour of Vσg by tails of Gaussian distributions.

Lemma 5. Let X be a closed unit ball of Rd and P be a probability measure on X ×Y
with regular conditional probability η(x) = P(Y = 1|x), x ∈ X. Let X̃ := 3X, i.e.
X̃ := {3x : x ∈ X}. Define

η̃(x) :=

{
η(x) if ‖x‖ ≤ 1,

η
(

x
‖x‖

)
otherwise.

Define also X̃−1 = {x ∈ X̃ : η̃(x) < 1
2
} and X̃1 = {x ∈ X̃ : η̃(x) > 1

2
}. Let B(x, r)

denote the open ball of radius r about x in Rd. Then for x ∈ X1 = {x ∈ X : η(x) > 1
2
}

we have B(x, τx) ⊂ X̃1 and for x ∈ X−1 = {x ∈ X : η(x) < 1
2
} we have B(x, τx) ⊂ X̃−1.

Proof. Let x ∈ X1 and x̃ ∈ B(x, τx). If x̃ ∈ X we have ‖x − x̃‖ < τx which implies
η̃(x̃) = η(x̃) > 1/2 by the definition of τx. This shows x̃ ∈ X̃1. Now assume x̃ 6∈ X, i.e.
‖x̃‖ > 1. Since ‖〈x, x̃〉‖ ≤ ‖x̃‖ and using Pythagoras’ theorem we obtain∥∥∥∥ x̃

‖x̃‖
− x
∥∥∥∥2

≤
∥∥∥∥x̃− 〈x, x̃〉x̃‖x̃‖2

∥∥∥∥2

+

∥∥∥∥〈x, x̃〉x̃‖x̃‖2
− x
∥∥∥∥2

= ‖x− x̃‖2.

Thus
∥∥∥ x̃
‖x̃‖ − x

∥∥∥ < τx, which implies η̃(x̃) = η
(

x̃
‖x̃‖

)
> 1/2.

Proof of Theorem 8 (continued). We first define a measurable map θ̃ : X̃ → [−1, 1]

which satisfies θ̃ = 1 on X̃1, θ̃ = −1 on X̃−1 and θ̃ = 0 otherwise. Set g :=
(
σ2

π

)d/4
θ̃.

Then we obtain

‖g‖L2(Rd) ≤
(

81σ2

π

)d/4
Bd, (3.11)

where Bd denotes the volume of X.

By lemma (4) we may rewrite

P (mθ −mθ0) = PX(η(1− θ)+ + (1− η)(1 + θ)+ − η(1− θ0)+ − (1− η)(1 + θ0)+)
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where denote PXf =
∫
f(x)PX(dx). For measurable θ ∈ [−1, 1] it then follows

P (mθ −mθ0) = PX(η(1− θ) + (1− η)(1 + θ) +

−η(1− θ0)− (1− η)(1 + θ0))

= PX((θ − θ0)(1− 2η)) = PX(|θ − θ0||1− 2η|). (3.12)

Since −1 ≤ θ̃ ≤ 1, then we get also −1 ≤ Vσg ≤ 1. Since PX has support in X, then
by (3.12), we obtain

PmVσg − Pmθ0 = EPX (|2η − 1||Vσg − θ0|). (3.13)

To bound |Vσg(x)− θ0(x)| for x ∈ X1, observe

Vσg =

(
2σ2

π

)d/2 ∫
Rd
e−2σ2‖x−y‖22 θ̃(y)dy

=

(
2σ2

π

)d/2 ∫
Rd
e−2σ2‖x−y‖22(θ̃(y) + 1)dy − 1

≥
(

2σ2

π

)d/2 ∫
B(x,τx)

e−2σ2‖x−y‖22(θ̃(y) + 1)dy − 1.

Lemma 5 showed that for all x ∈ X1 it holds B(x, τx) ⊂ X̃1 thus we get

Vσg ≥ 2

(
2σ2

π

)d/2 ∫
B(x,τx)

e−2σ2‖x−y‖22dy − 1

= 1− 2Pγσ(|u| ≥ τx),

where γσ := (2σ2/π)d/2e−2σ2|u|2du is a spherical Gaussian in Rd. According to the tail
bound in [7], inequality (3.5) on page 59, we have

1 ≥ Vσg(x) ≥ 1− 8e−σ
2τ2x/2d, x ∈ X1.

Since for x ∈ X−1 we can obtain an analogous estimate, we have

|Vσg(x)− θ0(x)| ≤ 8e−σ
2τx/2d

for all x ∈ X1 ∪X−1. Using 3.13, the last observation and the geometric noise assump-
tion for t := 2d/σ2 yields

PmVσg − Pmθ0 ≤ 8Ex∼PX (|2η(x)− 1|e−σ2τx/2d)

≤ 8C(2d)αd/2σ−αd, (3.14)

where C is the constant in the theorem. The result follows combining (3.11), (3.14)
and (3.9).

Proof of Theorem 7. Lemma 2 gives us a bound on the entropy number of a unit ball
in a Gaussian RKHS as follows

φn(δ) =

∫ δ

0

√
logN(ε, BHσ , ‖.‖∞)dε .

∫ δ

0

σd/2
(

log
1

ε

) 1+d
2

dε.
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We would like to obtain the solution to equality (3.5). Thus we consider the following
equality (note that we are only interested in the asymptotic behaviour (as n→∞) of
the solution, thus we leave out constants and write ∼ instead of equality)∫ δn

0

σd/2n

(
log

1

ε

) 1+d
2

dε ∼
√
nδ2

n.

We now need the following lemma.

Lemma 6.
∫ δ

0

(
log 1

ε

) 1+d
2 dε ∼ δ

(
log 1

δ

) d+1
2 for δ → 0.

Proof. Since the function log 1
δ

is decreasing, the integral is lower bounded by

∫ δ

0

(
log

1

ε

) 1+d
2

dε ≥ δ

(
log

1

δ

) 1+d
2

.

Integration by parts and again using that log 1
δ

is decreasing yields

∫ δ

0

(
log

1

ε

) d+1
2

dε = δ

(
log

1

δ

) d+1
2

+
d+ 1

2

∫ δ

0

(
log

1

ε

) d−1
2

dε

≤ δ

(
log

1

δ

) d+1
2

+
d+ 1

2

1

log 1
δ

∫ δ

0

(
log

1

ε

) d+1
2

dε

which gives an upper bound∫ δ

0

(
log

1

ε

)1+d

dε ≤ 1

1− d+1
2

1
log 1

δ

δ

(
log

1

δ

) d+1
2

.

The assertion follows.

Hence (3.5) reduces to

σd/2n δn

(
log

1

δn

) d+1
2

∼
√
nδ2

n. (3.15)

It can be shown that the solution to equality (3.15) is of order σ
d/2
n√
n

(log n)
d+1
2 . Consider

substitution yn := δ
2/(d+1)
n that will transform equation (3.15) into a more suitable form

κn log
1

yn
= yn, (3.16)

where we used the notation κn := (σ
d
n

n
)1/(d+1) to simplify the manipulation. If we define

a function f : x 7→ xeκ
−1
n x, then the solution yn to (3.16) satisfies f(yn) = 1. For every

a ∈ R define
yan := κnlog n− aκnlog log n.

Then for every fixed a, it is straightforward to show that

lim
n→∞

f(yan)(log n)a−1 = 1.
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Thus for every a > 1 there exists n0 ∈ N such that yn ≥ yan for all n > n0, and for
every a < 1 there exists n1 ∈ N such that yn ≤ yan for every n > n1. Hence we conclude
that for n→∞

yn = κnlog n− κnlog log n+ o (κnlog log n) .

Thus yn ∼ κnlog n =
(
σdn
n

)1/(d+1)

log n, which implies δn ∼ σ
d/2
n√
n

(log n)
d+1
2 .

Substituting the solution δn into (3.6) we obtain

λ2
n &

σdn
n

(log n)d+1 +
log(log n)

n
. (3.17)

By Theorem 6, Theorem 8 and by (3.17) it follows that (as n→∞)

Pmθ̂n
− Pmθ0 . a(λ2

n) + λ2
n

. σdnλ
2
n + σ−αdn +

σdn
n

(log n)d+1 +
log(log n)

n

. σdn

(
σdn
n

(log n)d+1 +
log(log n)

n

)
+ σ−αdn

+
σdn
n

(log n)d+1 +
log(log n)

n

.
σ2d
n

n
(log n)d+1 + σ−αdn (3.18)

We obtained a rate in (3.18) that is valid for an arbitrary choice of σn (note that the
parameter σn may be chosen arbitrarily in our estimation procedure provided that
σn → ∞ as n → ∞). But we are mainly interested in a rate that is optimal with
respect to the choice of σn, hence we may assume σn = nx. Then the rates generated
by the terms in (3.18) are 2dx− 1 and −αdx respectively (neglecting the influence of
the logarithm since it may be dominated by n to the power ε for any small ε > 0). To
obtain the optimal rate, we minimize the maximum of 2dx − 1 and −αdx to get the
optimal solution

x∗ =
1

d(2 + α)
.

The optimal choice of σn = 1/(d(2 + α)) and λn = −(1 + α)/(2 + α) leads to a rate
P (mθ̂n

−mθ0) = O∗P (n−
α

2+α (log n)d+1).
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3.3.2 Following the Approach of Van der Vaart and Wellner
[11]

We adopt the approach presented in section 2.3 and assume that the SVM uses a
Gaussian kernel RKHS. In this case there is no obvious restriction on the smoothing
parameter λ. In this section we also assume that the distribution P has a geometric
noise exponent α > 0 and a Tsybakov noise exponent κ ≥ 0.

Theorem 9. Let X be the closed unit ball of Rd, and P be a distribution on X × Y
with Tsybakov noise exponent κ ∈ [0,∞) and a geometric noise exponent α ∈ (0,∞).
Let σn = nβ/(αd) and λn := n−(1+α)/(2α)β. Let Hσn be the reproducing kernel Hilbert
space on X with a Gaussian kernel of width 1/σn. Finally, let θ̂n be the solution to the
minimization problem

θ̂n := arg min
θ∈Hσn (X )

(
Pnmθ + λ2

n‖θ‖2
H
)
.

Then the SVM classifier θ̂n satisfies

P (mθ̂n
−mθ0) = O∗P (n−β (log n)2(d+1)),

where β is given by

β =

{
2α

2α+3
if α ≤ κ

2
+ 1

2
α(κ+1)

κ+1+α(κ+2)
if α > κ

2
+ 1

2
.

Proof. Theorem 2 that guarantees us a bound on (2.5) provided that we can uniformly
bound the class of functions over which the supremum is taken and that we can bound
the L2(P)-norm ‖mθ −mθ0‖P,2 in terms of P (mθ −mθ0).

Fix δ > 0 and n ∈ N (sufficiently large). Define

Fn,δ :=

{
mθ −mθ0 : ‖θ‖Hσn ≤

δ

λn
, P (mθ −mθ0) < δ2

}
.

It is shown in [11], lemma .4.23, that ‖mθ−mθ0‖P,2 may be bounded above by P (mθ−
mθ0) under the assumption that the distribution P has a Tsybakov noise exponent κ.
Then

‖mθ −mθ0‖P,2 ≤ (1 + ‖θ − θ0‖1/2
∞ )P (mθ −mθ0)

1
2 + C1/(κ+1)P (mθ −mθ0)

κ
2(κ+1) . (3.19)

Since by the definition of Fn,δ it holds P (mθ−mθ0) < δ2, then we can bound (3.19) as
follows

‖mθ −mθ0‖P,2 ≤ (1 + ‖θ − θ0‖1/2
∞ )δ + C1/(κ+1)δκ/(κ+1).

We realize that the uniform norm ‖·‖∞ can be bounded with the norm corresponding
to a reproducing kernel Hilbert space, as shown in [2]. This essentially follows by the
reproducing kernel property (1.10), but we have to guarantee a bound on the kernel
function k as well (for the Gaussian kernel, this is satisfied). For all f ∈ H and for all
x ∈ X it then follows by (1.10) and the Cauchy-Schwarz inequality

|f(x)| = |〈f, k(x, ·)〉H| ≤ ‖f‖H‖k(x, ·)‖H
= ‖f‖H

√
k(x, x) ≤M‖f‖H,
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where M2 is a (constant) bound on k(x, x) for every x ∈ X . Thus ‖f‖∞ ≤M‖f‖H.

Next by the triangle inequality and using the bound on ‖θ‖Hσn in the definition of
Fn,δ, we obtain

‖θ − θ0‖∞ ≤ ‖θ‖∞ + ‖θ0‖∞ ≤M
δ

λn
+ 1

Hence we finally get a bound (denote it fn(δ)) on the L2(P)−norm ‖mθ−mθ0‖P,2 given
by

fn(δ) :=

[
1 +

(
1 +M

δ

λn

)1/2
]
δ + C1/(κ+1)δκ/(κ+1). (3.20)

The Lipschitz property of the map θ 7→ mθ gives us a bound on

‖mθ −mθ0‖∞ ≤ L‖θ − θ0‖∞ ≤ L

(
1 +

δ

λn

)
. (3.21)

By Theorem 2 it follows

E∗P sup
mθ−mθ0∈Fn,δ

|Gn(mθ −mθ0)| . J[](fn(δ),Fn,δ, L2(P ))

+
J2

[](fn(δ),Fn,δ, L2(P ))

fn(δ)2
√
n

L

(
1 +

δ

λn

)
. (3.22)

Next we bound the entropy integral

J[](fn(δ),Fn,δ, L2(P )) =

∫ fn(δ)

0

√
logN[](ε,Fn,δ, L2(P ))dε.

The bracketing number N[](ε,F , L2(P )) is dominated by the covering number corre-
sponding to the uniform norm in the following way

N[](ε,F , L2(P )) ≤ 2N(ε,F , ‖·‖∞).

This can be seen as follows: a ball of radius ε > 0 with respect to the uniform norm,
centered at f ∈ F , can be covered by two brackets [f − ε, f ] and [f, f + ε] of size
‖f − (f − ε)‖2 = ‖(f + ε)− f‖2 = ε.

Next, we realize that (1) since θ 7→ mθ is Lipschitz (with some constant L) we can
bound the entropy number of Fn,δ in terms of a corresponding class of functions θ (2)
a covering number is an increasing function with respect to set inclusion and (3) the
ε−covering number of a ball with radius R equals ε/R−covering number of a unit ball.
These observations yield

N(Lε,Fn,δ, ‖·‖∞) ≤ N

(
ε,

{
θ ∈ Hσn : ‖θ‖Hσn ≤

δ

λn
, P (mθ −mθ0) < δ2

}
, ‖·‖∞

)
≤ N

(
ε,

{
θ ∈ Hσn : ‖θ‖Hσn ≤

δ

λn

}
, ‖·‖∞

)
= N

(
ελn
δ
, BHσn , ‖·‖∞

)
.
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A bound on entropy number of a unit ball in a Gaussian RKHS derived in [12], lemma
4.5, yields

logN

(
ελn
δ
, BHσn , ‖·‖∞

)
. σdn

(
log

δ

ελn

)d+1

.

To obtain a bound on the entropy integral J[](fn(δ),F , L2(P )) we realize by lemma (6)
that ∫ fn(δ)

0

σd/2n

(
log

δ

ελn

)(d+1)/2

dε ∼ σd/2n fn(δ)

(
log

δ

λnfn(δ)

)(d+1)/2

.

It follows by (3.22) and the last observation

E∗P sup
mθ−mθ0∈Fn,δ

|Gn(mθ −mθ0)| . σd/2n fn(δ)

(
log

δ

λnfn(δ)

)(d+1)/2

+σdn

(
log

δ

λnfn(δ)

)(d+1)(
1 +

δ

λn

)
1√
n
.

Note that the right hand side of the last expression depends on the asymptotic rela-
tionship between δn and λn, thus in order to simplify expressions, let us first consider
what can we deduce about the ratio δn/λn. By the bound on the approximation error
it follows that δ2

n cannot be smaller that the approximation error for the best possible
choice of σ. This implies

δ2
n & inf

σ

(
σdλ2 + σ−αd

)
= λ

2α
1+α ,

since infimum is attained for σ ∼ λ−
2

(1+α)d . Thus

δn & λ
α

1+α
n . (3.23)

Since for λ ↓ 0 it holds λ
α

1+α & λ, it follows that δn
λn

& 1. Hence

fn(δ) =

(
1 +

(
1 +M

δn
λn

) 1
2

)
δn + C

1
κ+1 δ

κ
κ+1
n .

δ
3
2
n√
λn

+ δ
κ
κ+1
n .

and

E∗P sup
mθ−mθ0∈Fn,δ

|Gn(mθ −mθ0)| . σd/2n fn(δ)

(
log

δ

λnfn(δ)

)(d+1)/2

+σdn

(
log

δ

λnfn(δ)

)(d+1)
δ

λn
√
n

=: φn(δ).

We want to find a solution δn such that φ(δn) .
√
nδ2

n, where by φn we denoted the
right hand side of the last inequality.

Without any further assumptions, we cannot deduce which of the terms in

fn(δ) = δ
3
2/
√
λ+ δ

κ
κ+1

dominates for δ → 0. Let us therefore first consider the two cases separately.
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Assume first that δ
3
2/
√
λ & δ

κ
κ+1 , which is the case if and only if δ

κ+3
κ+1 & λ. Then

fn(δ) may be dominated by δ
3
2/
√
λ. To find δn that satisfies φn(δn) .

√
nδ2

n, we are
looking for δn that satisfies (note here that the entropy integral is an increasing function
of fn(δ) hence we may plug in a bound on fn(δ))

σd/2n

δ
3
2
n√
λn

(
log

1√
δnλn

)(d+1)/2

.
√
nδ2

n (3.24)

σdn

(
log

1√
δnλn

)d+1
δ

λn
√
n

.
√
nδ2

n. (3.25)

To solve (3.24) and (3.25) we may use substitutions τ :=
√
δλ, ω := δλ, respectively.

This yields

δn ∼
σdn
nλn

(log n)d+1 .

By theorem 4 a bound on the rate to the Bayes risk is given by

P (mθ̂n
−mθ0) = O∗P

(
σ2d
n

n2λ2
n

(log n)2(d+1) + σdnλ
2
n + σ−αdn

)
.

To find the optimal rate with respect to the choice of σn, λn, we substitute powers of n
for σn := nx and λn = ny, which reduces the problem to a 2−dimensional optimization
problem. Thus we would like to minimize the function of two variables

f : (x, y) 7→ max{2dx− 2y − 2, dx+ 2y,−αdx}. (3.26)

It is relatively easy to see that f is lower bounded. Simple calculations show that the
three hyperplanes in the argument of maximum (3.26) have a single point of intersection
for any admissible values of parameters d, α given by

(x∗, y∗) =

(
2

d(2α + 3)
,− 1 + α

2α + 3

)
.

By lower boundedness of f and given the geometric interpretation (of mutual position
of hyperplanes in R3), it follows that the point of intersection is a global minimum of
f. The value of f at the point of minimum is f(x∗, y∗) = − 2α

2α+3
.

Our initial assumption δ
3
2/
√
λ & δ

κ
κ+1 gives us (after plugging in the solution δn and

λn) the following relationship between α and κ

α <
κ

2
+

1

2
.

Thus in the above case, the rate of convergence to the Bayes risk is n−
2α

2α+3 .

Next we consider the case δ
3
2/
√
λ . δ

κ
κ+1 , which is the case if and only if δ

κ+3
κ+1 . λ.

Then fn(δ) may be dominated by δ
κ
κ+1 . It follows

φn(δ) . σd/2n δ
κ
κ+1

(
log

δ

λnδ
κ
κ+1

)(d+1)/2

+ σdn
δ

λn
√
n

(
log

δ

λnδ
κ
κ+1

)(d+1)

.
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We want to find δn such that

σ
d
2
n δ

κ
κ+1
n

[
log

δn

λnδ
κ
κ+1
n

] d+1
2

.
√
nδ2

n (3.27)

σdn
δn

λn
√
n

[
log

δn

λnδ
κ
κ+1
n

]d+1

.
√
nδ2

n. (3.28)

Solving (3.27)-(3.28) yields

δn &
σ

(κ+1)
2(κ+2)

d

n

n
(κ+1)
2(κ+2)

(log n)
(κ+1)
2(κ+2)

(d+1) (3.29)

δn &
σdn
nλn

(log n)d+1 , (3.30)

where (3.29) corresponds to (3.27) and (3.30) corresponds to (3.28). Thus the rate is
given by

P (mθ̂n
−mθ0) = O∗P

σ κ+1
κ+2

d
n

n
κ+1
κ+2

(log n)
κ+1
κ+2

(d+1) +
σ2d
n

n2λ2
n

(log n)2(d+1) + σdnλ
2
n + σ−αdn

 .

Optimizing over λn = ny, σn = nx reduces to minimizing the maximum of κ+1
κ+2

(dx −
1), 2dx − 2y − 2, dx + 2y,−αdx. Observe that we cannot attain a better bound from
the approximation error than when σdλ2 ∼ σ−αd, i.e. dx∗ + 2y = −αdx∗. Thus we
conclude that if we can find x∗, y∗ such that the following is satisfied

κ+ 1

κ+ 2
(dx∗ − 1) ≥ 2dx∗ − 2y∗ − 2 = dx∗ + 2y = −αdx∗, (3.31)

then the rate −αdx∗ is optimal. Condition (3.31) corresponds to a solution

(x∗, y∗) =

(
2

d(2α + 3)
,− 1 + α

2α + 3

)
,

and the inequality yields α ≤ κ
2

+ 1
2
. The optimal rate is then f ∗ = − 2α

2α+3
. However,

our initial assumption δ
κ+3
κ+1 . λ yields α ≥ κ

2
+ 1

2
.

Similarly, if we can find x∗, y∗ such that

2dx∗ − 2y∗ − 2 ≥ κ+ 1

κ+ 2
(dx∗ − 1) = dx∗ + 2y = −αdx∗, (3.32)

then the rate −αdx∗ is optimal. Condition (3.32) corresponds to a solution

(x∗, y∗) =

(
κ+ 1

d(κ+ 1 + α(κ+ 2))
,− (1 + α)(κ+ 1)

2(κ+ 1 + α(κ+ 2))

)
and the inequality yields α ≥ κ

2
+ 1

2
. Our initial assumption δ

κ+3
κ+1 . λ yields α ≥ κ

2
+ 1

2
.

The optimal rate is then f ∗ = − α(κ+1)
κ+1+α(κ+2)

. This finishes the proof.
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3.3.3 Steinwart and Scovel’s Entropy Bound

Steinwart and Scovel in [9] use a different bound on the entropy number of a unit
ball in a Gaussian kernel RKHS. We believed that the reason why we obtained faster
convergence rates might be caused by the type of bound they use, however, it turns
out that their bound is, in a sense, a limiting case of the bound in lemma (2) and we
obtain (in limit) the same rates as in the previous section. The bound they suggest is
as follows.

Lemma 7. Let σ ≥ 1, 0 < p < 2 and X ⊂ Rd be a compact subset with nonempty
interior. Then there is a constant cp,d independent of σ such that for all ε > 0 we have

logN(ε, BHσ(X), ‖ · ‖∞) ≤ cp,dσ
(1− p

4
)dε−p.

We obtain the following result.

Theorem 10. Let X be the closed unit ball of Rd, and P be a distribution on X × Y
with Tsybakov noise exponent κ ∈ [0,∞) and a geometric noise exponent α ∈ (0,∞).
Fix a constant p ∈ (0, 2). Let σn := nβ/(αd) and λn := n−(1+α)/(2α)β. Let Hσn be the
reproducing kernel Hilbert space on X with a Gaussian kernel of width 1/σn. Finally,
let θ̂n be the solution to the minimization problem

θ̂n := arg min
θ∈Hσn (X )

(
Pnmθ + λ2

n‖θ‖2
H
)
.

Then the SVM classifier θ̂n satisfies

P (mθ̂n
−mθ0) = O∗P (n−β (log n)2(d+1)),

where β is given by

β =


2α

(2+p)α+3
α ≤ κ

2
+ 1

2
α(κ+1)

κ+1+α(κ+2)+ p
2 [κ(α+ 1

2
)+ 1

2 ]
α > κ

2
+ 1

2
.

Proof. Using similar techniques as in Theorem 9 we obtain for the class of functions

Fn,δ :=

{
mθ −mθ0 : ‖θ‖Hσn ≤

δ

λn
, P (mθ −mθ0) < δ2

}
by Theorem 2

E∗P sup
mθ−mθ0∈Fn,δ

|Gn(mθ −mθ0)| . J[](fn(δ),Fn,δ, L2(P ))

(
1 +

J[](fn(δ),Fn,δ, L2(P ))

fn(δ)2
√
n

A

)
with A := L(1+ δ

λn
) as in (3.22) and fn(δ) = δ

3
2/
√
λ+δ

κ
κ+1 . Next we bound the entropy

integral

J[](fn(δ),Fn,δ, L2(P )) =

∫ fn(δ)

0

√
logN[](ε,Fn,δ, L2(P ))dε.

The entropy bound in lemma (7) yields

N

(
ελ

δ
,BHσ , ‖ · ‖∞

)
. σ(1− p

4
)d

(
ελ

δ

)−p
.
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By the same arguments as in Theorem 9 it follows

J[](fn(δ),Fn,δ, L2(P )) .

(
δ

λ

) p
2

σ
1
2

(1− p
4

)d

∫ f(δ)

0

ε−
p
2dε

.

(
δ

λ

) p
2

σ
1
2

(1− p
4

)df(δ)1− p
2 .

We obtain a bound

E∗P sup
mθ−mθ0∈Fn,δ

|Gn(mθ −mθ0)| . J[](fn(δ),Fn,δ, L2(P )) +
J[](fn(δ),Fn,δ, L2(P ))

f 2(δ)
√
n

δ

λ

.

(
δ

λ

) p
2

σ
1
2

(1− p
4

)df(δ)1− p
2 +

(
δ

λ

)p+1

σ(1− p
4)df(δ)−p

1√
n

=: φn(δ).

Again we consider the two cases based on the dominating term in f(δ).

First consider the case when δ
3
2√
λ

dominates. This is the case if and only if δ
κ+3
κ+1 & λ.

Then the solution to φn(δn) .
√
nδ2

n satisfies

(
δn
λn

) p
2

σ
1
2

(1− p
4

)d
n

(
δ

3
2
n√
λn

)1− p
2

.
√
nδ2

n

(
δn
λn

)p+1

σ
(1− p

4)d
n

(
δ

3
2
n√
λn

)−p
1√
n

.
√
nδ2

n.

Algebraic manipulations show that the two equations above are identical and that the
solution δn is given by

δ2
n & σ

2
1− p4
1+

p
2
d

n λ−2
n n

− 2
1+

p
2 .

We use the same approximation error bound as in the previous section and apply
theorem 4. Thus to find the optimal rate with respect to σ and λ we want to minimize
the function of two variables

f : (x, y) 7→ max

{(
2
(

1− p

4

)
dx− 2y − 2

) 1

1 + p
2

, dx+ 2y,−αdx
}
.

The minimum is attained for

(x∗, y∗) =

(
2

d((2 + p)α + 3)
,− 1 + α

(2 + p)α + 3

)
and the value at the point of minimum is f ∗ = − 2α

(2+p)α+3
.

Our initial assumption δ
κ+3
κ+1 & λ then yields

α <
κ

2
+

1

2
.
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Next consider the situation when δ
κ
κ+1 dominates δ

3
2√
λ
, i.e. δ

κ+3
κ+1 . λ. Then the solution

to φn(δn) .
√
nδ2

n satisfies(
δn
λn

) p
2

σ
1
2

(1− p
4

)d
n δ

κ
κ+1(1− p

2)
n .

√
nδ2

n(
δn
λn

)p+1

σ
(1− p

4)d
n δ

− κ
κ+1

p
n

1√
n

.
√
nδ2

n.

This is, equivalently stated, [
σ

(1− p
4)d

n λ−pn n−1

] κ+1

κ+2− p2
. δ2

n[
σ

2(1− p
4)d

n λ−2(p+1)
n n−2

] κ+1
κ+1−p

. δ2
n.

The rate to the Bayes risk is given by the approximation error and the solution to
the last two equations. To find the optimal rate with respect to σ and λ we want to
minimize

f : (x, y) 7→ max{
[(

1− p

4

)
dx− py − 1

] κ+ 1

κ+ 2− p
2

,[
2
(

1− p

4

)
dx− 2(p+ 1)y − 2

] κ+ 1

κ+ 1− p
, dx+ 2y,−αdx}.

We follow the same procedure as in previous parts. If we can find x∗, y∗ such that the
following is satisfied

dx∗ + 2y∗ = −αdx∗ =
[
2
(

1− p

4

)
dx∗ − 2(p+ 1)y∗ − 2

] κ+ 1

κ+ 1− p

≤
[(

1− p

4

)
dx∗ − py∗ − 1

] κ+ 1

κ+ 2− p
2

, (3.33)

then the rate −αdx∗ is optimal, since we cannot attain a better bound from the ap-
proximation error than when σdλ2 ∼ σ−αd, i.e. dx∗ + 2y = −αdx∗. Condition (3.33)
corresponds to the solution

(x∗, y∗) =
2(κ+ 1)

(κ+ 1)(2α + 3) + α(κ+ 2) + p
2

[
κ(α + 1

2
) + 1

2

] (1

d
,−1

2
(1 + α)

)
and the inequality yields α ≤ κ

2
+ 1

2
. The optimal rate is then f ∗ = − 2α

2α+3+ p
2 [κ(α+ 1

2
)+ 1

2 ]
.

However, our initial assumption δ
κ+3
κ+1 . λ yields α ≥ κ

2
+ 1

2
.

If we can find x∗, y∗ such that

dx∗ + 2y∗ = −αdx∗ =
[(

1− p

4

)
dx∗ − py∗ − 1

] κ+ 1

κ+ 2− p
2

≤
[
2
(

1− p

4

)
dx∗ − 2(p+ 1)y∗ − 2

] κ+ 1

κ+ 1− p
, (3.34)
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then the rate −αdx∗ is optimal Condition (3.34) corresponds to a solution

(x∗, y∗) =
κ+ 1

κ+ 1 + α(κ+ 2) + p
2

[
κ(α + 1

2
) + 1

2

] (1

d
,−1

2
(1 + α)

)
and the inequality and initial assumption yield α ≥ κ

2
+ 1

2
.

The optimal rate is then f ∗ = − α(κ+1)
κ+1+α(κ+2)+ p

4
[κ(2α+1)+1]

. This finishes the proof.

In both cases, the optimal value of p ∈ (0, 2) is p → 0 and taking the limit we obtain
for all ε > 0 it holds P (mθ̂n

−mθ0) = O∗P (n−β+ε) where

β =

{
2α

2α+3
α ≤ κ

2
+ 1

2
α(κ+1)

κ+1+α(κ+2)
α > κ

2
+ 1

2
.

We obtained (in limit) the same rates as in the previous section, where we used the
entropy bound in lemma (2).
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3.3.4 Steinwart and Scovel’s Entropy Bound II

Steinwart and Scovel in [9] also present a seemingly “better” bound for covering num-
bers of a unit ball in Gaussian RKHS than we used above. It is given in the following
lemma. By Pn,X we denote here the marginal distribution of the empirical measure Pn
with respect to X.

Lemma 8. Let σ ≥ 1, 0 < p ≤ 2, δ > 0 and X ⊂ Rd be a compact subset with
nonempty interior. Then there is a constant cp,d,δ independent of σ such that for all
ε > 0 we have

sup
Pn,X

logN(ε, BHσ(X), L
2(Pn,X )) ≤ cp,d,δσ

(1− p
2

)(1+δ)dε−p.

Theorem 11. Let X be the closed unit ball of Rd, and P be a distribution on X × Y
with Tsybakov noise exponent κ ∈ [0,∞) and a geometric noise exponent α ∈ (0,∞).
Fix a constant p ∈ (0, 2). Let σn := nβ/(αd) and λn := n−(1+α)/(2α)β. Let Hσn be the
reproducing kernel Hilbert space on X with a Gaussian kernel of width 1/σn. Finally,
let θ̂n be the solution to the minimization problem

θ̂n := arg min
θ∈Hσn (X )

(
Pnmθ + λ2

n‖θ‖2
H
)
.

Then the SVM classifier θ̂n satisfies

P (mθ̂n
−mθ0) = O∗P (n−β (log n)2(d+1)),

where β is given by

β =


2α

2α+3+p[α+ 1
2 ]

α ≤ κ
2

+ 1
2

κ+1
κ+1+α(κ+2)+ p

2
[κ(α+1)+1]

α > κ
2

+ 1
2
.

Proof. Fix n ∈ N, δ > 0. Let

Fn,δ := {mθ −mθ0 : θ ∈ H, ‖θ‖H ≤
δ

λn
, P (mθ −mθ0) < δ2}.

By 3.21 it follows that for all f ∈ Fn,δ it holds |f(x)| ≤
(

1 + δ
λn

)
L for all x ∈ X . If

we define

F ′n,δ :=

 f(
1 + δ

λn

)
L

: f ∈ Fn,δ

 .

then it follows |f ′(x)| ≤ 1 for all f ′ ∈ F ′n,δ and x ∈ X . Provided that for all f ′ ∈ F ′n,δ
it holds Pf ′2 < D2 for some D ∈ (0, 1) then Theorem 1 implies (for F ≡ 1)

E∗P sup
f ′∈F ′n,δ

|Gnf
′| . J(D,F ′n,δ, L2)

(
1 +

J(D,F ′n,δ, L2)

D2
√
n

)
.

It follows that

E∗P sup
f∈Fn,δ

|Gnf | =

(
1 +

δ

λn

)
LE∗P sup

f ′∈F ′n,δ
|Gnf

′|

.

(
1 +

δ

λn

)
LJ(D,F ′n,δ, L2)

(
1 +

J(D,F ′n,δ, L2)

D2
√
n

)
. (3.35)
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By 3.20 for every f ∈ Fn,δ it holds

(
Pf 2

)1/2
<

[
1 +

(
1 +M

δ

λn

)1/2
]
δ + C1/(κ+1)δκ/(κ+1),

which implies

(Pf ′2)1/2 =
1(

1 + δ
λn

)
L

(Pf 2)1/2

<
1(

1 + δ
λn

)
L

([
1 +

(
1 +M

δ

λn

)1/2
]
δ + C1/(κ+1)δκ/(κ+1)

)
.

Again we shall use the bound on approximation error as in theorem 8 thus δ & λ which
implies

D :=
1(

1 + δ
λn

)
L

([
1 +

(
1 +M

δ

λn

)1/2
]
δ + C1/(κ+1)δκ/(κ+1)

)

.
1
δ
λn

(
δ3/2

√
λn

+ δκ/(κ+1)

)
= δ1/2

√
λn + δ−

1
κ+1λn → 0 as n→∞.

Thus eventually (for all n large enough) D ∈ (0, 1) as required.

Next we realize that since the ε-covering number of the set of functions F/c equals cε
covering number of the set of functions F and by similar arguments as have already
been used previously it follows for an arbitrary measure Q on X × Y

N(Lε,F ′n,δ, L2(Q)) . N(Lε,Fn,δ, L2(Q))

. N(ε, {θ ∈ H : ‖θ‖H ≤
δ

λn
}, L2(QX))

= N

(
ελn
δ
, BHσ , L

2(QX)

)
.

By increasingness of the map x 7→
√

1 + x (x > 0), lemma 8 (note here that
supPn N(ε,F , L2(Pn)) tends to supQN(ε,F , L2(Q)) as n→∞, where Q is a discrete
measure), the last observation and the fact that δ & λ it follows

J(D,F ′n,δ, L2) =

∫ D

0

sup
Q

√
1 +N(ε,F ′n,δ, L2(Q))dε

.
∫ D

0

√
1 + σ(1− p

2
)(1+δ)d

(
ελn
δ

)−p
dε

.
∫ D

0

σ(1− p
2

)(1+δ) d
2

(
ελn
δ

)− p
2

dε

. σ(1− p
2

)(1+δ) d
2

(
λn
δ

)− p
2

D1− p
2 .
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We distinguish two cases. For D . δ1/2
√
λn, which is the case if and only if δ

κ+3
κ+1 & λ

we obtain J(D,F ′n,δ, L2) . σ
(1− p

2) d2
n δ

p
4

+ 1
2

n λ
− 3

4
p+ 1

2
n . Plugging this into (3.35) and solving

the corresponding equation φn(δn) .
√
nδ2

n (φn is the bound as usual) yields

δ2
n &

(
σ

(1− p
2)d

n λ
−1− 3

2
p

n n−1

) 2
1− p2

. (3.36)

To obtain the optimal rate to the Bayes risk (given by theorem 4), we want to minimize
the maximum of (

1− p

2

)
dx−

(
1 +

3

2
p

)
y − 1, dx+ 2y,−αdx.

The optimal (x∗, y∗) is given by

(x∗, y∗) =

(
2

d(2α + 3 + p
[
α + 1

2

]
)
,− 1 + α

2α + 3 + p
[
α + 1

2

]) .
Initial condition δ

κ+3
κ+1 & λ yields α ≤ κ

2
+ 1

2
.

If D . δ
κ
κ+1 then J(D,F ′n,δ, L2) . σ

(1− p
2) d2

n δ
κ
κ+1

+ 1
κ+1

p
2

n λ
− p

2
n . Solving φn(δn) .

√
nδ2

n

yields

δ2
n &

[
σ

(1− p
2)d

n λ−2p
n n−1

] κ+1

(1+
p
2 )(κ+2)

δ2
n &

[
σ

2(1− p
2)d

n λ−4p−2
n n−2

] κ+1
κ+1−p(κ+2)

.

To obtain the optimal rate to the Bayes risk, we want to minimize the maximum of[(
1− p

2

)
dx− 2py − 1

] κ+ 1

(κ+ 2)(1 + p
2
)
,[

2
(

1− p

2

)
dx− 2(2p+ 1)y − 2

] κ+ 1

(κ+ 1 + p(κ+ 2)
, dx+ 2y,−αdx.

Calculations similar as in previous sections yield that for α ≥ κ
2

+ 1
2

the optimal (x∗, y∗)
is given by

(x∗, y∗) =
κ+ 1

κ+ 1 + α(κ+ 2) + p
2

[κ(α + 1) + 1]

(
1

d
,−1

2
(1 + α)

)
and the optimal rate is − α(κ+1)

κ+1+α(κ+2)+ p
2

[κ(α+1)+1]
.

We again obtained (in the limit p→ 0) the same rates as in the previous section.
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3.4 Comparison of Results

We compare and summarize the results for the support vector machine with a Gaussian
kernel under the assumption that the underlying distribution P (of the i.i.d. training
set) has a Tsybakov noise exponent κ and a geometric noise exponent α. Define the
SVM classifier θ̂n by

θ̂n := arg min
θ∈Hσn (X )

(
Pnmθ + λ2

n‖θ‖2
Hσn(X )

)
.

Let us first list the rates obtained in [9]. They obtain Plθ̂n−Plθ0 = O∗P (n−β+ε) for any
ε > 0 where

β =

{
α

2α+1
if α ≤ 1

2
+ 1

κ
2α(κ+1)

2α(κ+2)+3κ+4
otherwise.

In our results, we specify rates of convergence of Pmθ̂n
− Pmθ0 , however, in view of

remark 2, our bounds result in a bound on the excess risk Plθ̂n − Plθ0 as well. The
results we obtained following the general approach presented in [2] (and κ =∞), i.e.

Plθ̂n − Plθ0 = O∗P (n−
α
α+2 (log n)d+1)

are not better than those presented in [9]. We see the cause of this in the additional
condition that was imposed on the smoothing parameter λ.
Following the second approach in [11] proved to be more fruitful; we obtained better
bounds for convergence rates than those given in [9] for an arbitrary value of κ and for
α > 1/2. These are given by Plθ̂n − Plθ0 = O∗P (n−β(log n)2(d+1)) where

β =

{
2α

2α+3
if α ≤ κ

2
+ 1

2
α(κ+1)

κ+1+α(κ+2)
if α > κ

2
+ 1

2
.

One may also note that our rates tend to (the limits of) the rates obtained in [9] in
the limiting case α → ∞, i.e. (κ + 1)/(κ + 2). In the limiting case κ → ∞ we obtain
the rate 2α/(2α + 3).

Another interesting observation is that we obtained (in limit) the same convergence
rates also using the entropy bound as suggested in [9] (actually they are slightly worse
since we can only approach the optimal rate arbitrarily close but never reach it). The
rates are given by n−β where

β =


2α

(2+p)α+3

p→0−→ 2α
2α+3

α ≤ κ
2

+ 1
2

α(κ+1)

κ+1+α(κ+2)+ p
2 [κ(α+ 1

2
)+ 1

2 ]
p→0−→ α(κ+1)

κ+1+α(κ+2)
α > κ

2
+ 1

2
.

Summarizing overall results for support vector machines with a Gaussian kernel, we
obtain that for all ε > 0 it holds P (lθ̂n − lθ0) = O∗P (n−β(log n)2(d+1)), where β is given
by

β =


α

2α+1
− ε if α ≤ 1

2
2α

2α+3
if 1

2
< α ≤ κ

2
+ 1

2
α(κ+1)

κ+1+α(κ+2)
if α > κ

2
+ 1

2
.



Conclusion

In the first part of this work we discussed and related some recent results on conver-
gence rates for support vector machines. We presented a general bound on excess risk
derived in [2] that may be applied in particular to SVM and a general result for pe-
nalized empirical contrast procedures derived in [11], noting the link between the two.
Next we specialized to support vector machines with a Gaussian kernel and presented
a bound on the rates obtained in [9]. Consequently, for the Gaussian kernel support
vector machine we derived convergence rates following both approaches [2] and [11]
under Tsybakov noise assumption and a geometric noise assumption on the underlying
distribution. The latter approach resulted in an improvement of the bound obtained
in [9].
Let us briefly remark that to guarantee the optimal rates our techniques produce,
one has to specify the values of the Tsybakov noise exponent and the geometric noise
exponent, which are typically not available. To obtain these values from the data,
techniques such as cross validation might be used to assess for which values of α and
κ the algorithm performs best.
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