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Abstract

BELÁKOVÁ, Katarína: The Cross Sectional Forecasts of the Equity Pre-
mium [Master's Thesis], Comenius University in Bratislava, Faculty of Math-
ematics, Physics and Informatics, Department of Applied Mathematics and
Statistics; Supervisor: Mgr. Juraj Katriak, Bratislava, 2013, 39 s.

The main purpose of the Master's thesis is to reconstruct one of the cross-
sectional measures of the equity premium from the Polk, Thompson and
Vuolteenaho paper and further test its predictive ability against data that
are di�erent (S&P 500 Index). We also select a di�erent period according to
the data availability.
The results can be summarized by the simple �nding that the predictability
of our constructed measure is very low and therefore not signi�cant.

Key words: CAPM model, Expected equity premium, Linear
regression



Abstrakt

BELÁKOVÁ, Katarína: Prierezové prognózy prémie akcií [Diplomová
práca], Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a
informatiky, Katedra aplikovanej matematiky a ²tatistiky; ²kolite©: Mgr. Ju-
raj Katriak, Bratislava, 2013, 39 s.

Hlavným cie©om diplomovej práce je zrekon²truova´ jednu z prierezových
mier prémie akcií z £lánku Polk, Thompson a Vuolteenaho a ¤alej otestova´
jej predik£nú schopnos´ na iných dátach (S&P 500 index). Taktieº vyberieme
odli²nú periódu, pri£om berieme oh©ad na dostupnos´ dát.
Výsledky môºeme zhrnú´ do jednoduchého zistenia, ºe predik£ná schopnos´
nami vytvorenej miery je ve©mi malá a preto nie je signi�kantná.

K©ú£ové slová: CAPM model, o£akávaná prémia akcií, lineárna
regresia
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Introduction

The Capital asset pricing model (CAPM) o�ers intuitive and powerful pre-
dictions about the relation between the equity return and risk. Until lately
it was widely used in evaluating portfolio returns and measuring the risk.
However in the most recent studies it appears that CAPM does a poor job
describing more recent equity return-risk relation.
We challenge CAPM predictive ability using purely cross-sectional data to
predict the equity premium realizations in US stock market during the period
of last 21 years.

In the �rst chapter we derive the e�cient portfolio frontier and continue
to review the main issues in CAPM theory in the second chapter. The pur-
pose of the third chapter is to link the CAPM model and the expected equity
premium. In the last chapter we summarize our empirical results from pre-
dicting the equity premium realizations using our constructed cross-sectional
measure.
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Chapter 1

The E�cient Portfolio Frontier

In this chapter we analyze and derive the e�cient portfolio frontier. In
the �rst section we look at the meaning and main characteristics. The next
section provides an analytical derivation of the e�cient frontier in the matrix
notation.

1.1 Characteristics

According to the model of portfolio choice developed by Harry Markowitz
in 1959, investors that select a portfolio among the set of portfolios are risk
averse and their decision is based exclusively on the value of mean and vari-
ance of the expected return. They minimize the variance of portfolio return,
given expected return and at the same time maximize expected return, given
variance. As a result, investors choose portfolios on the e�cient portfolio
frontier.

The concept of e�cient portfolio frontier implies a boundary of the set of
feasible portfolios that have the highest expected return for a given level of
risk represented by the variance or standard deviation. Any portfolios that
are situated above the e�cient frontier (i.e. portfolios with higher expected
return given variance) cannot be achieved. By contrast, portfolios beyond
the frontier are dominated by those situated on the e�cient frontier.

1.2 Analytical Derivation of the E�cient Fron-
tier

The analytical derivation is based mainly on Merton (1970). He used a sum
notation in his calculations. Here we apply the more modern matrix notation.

10



We use the following notation.

� i, j the subscripts denoting individual securities in a portfolio

� m the number of portfolio securities (i.e. i, j ∈ {1, ...,m})

� γi the expected return on the security i

� σij the covariance of returns between the securities i and j

� σii = σ2
i the variance of the return on the security i

� Ω = [σij] the variance-covariance matrix of returns

� wi the weight of the security i in the portfolio (i.e. the percentage of
the value of the portfolio invested in the security i)

The derivation is based on the following assumptions.

� σ2
i > 0 for all i ∈ {1, ...,m}

Thus all securities in the portfolio are risky.

�

∑m
i=1wi = 1

The total sum of weights assigned to securities in the portfolio is equal
to one.

� wi > 1 or wi < 0 is possible for all i ∈ {1, ...,m}
Borrowing and short-selling of all securities is allowed.

� Ω is a non-singular matrix
That means a vector of return covariances between the security i (i ∈
{1, ...,m}) and all m securities in the portfolio cannot be represented
as a linear combination of other such vectors. Hence these vectors are
linearly independent.

From these m securities we can construct several portfolios di�ering by
the weights of individual securities. The e�cient frontier of all portfolios
following the assumptions (i.e. the feasible portfolios) is de�ned as the lo-
cus of feasible portfolios with the smallest variance given expected return.
Thus the e�cient frontier is a set of portfolios which satisfy the constrained
minimization problem

11



min
1

2
wTΩw

subject to γTw = α

1Tw = 1

(1.1)

where σ2 ≡ wTΩw is the variance of the portfolio on the frontier1 and α
denotes its expected return. γ = [γi], i ∈ {1, ...,m} is the vector of expected
returns of the portfolio securities and w = [wi], i ∈ {1, ...,m} the vector of
weights assigned to each security. Symbol T as a superior index refers to a
transposition (of a vector in this case). The last equation is equivalent to∑m

1 wi = 1. 1 is a vector of ones with a dimension equal to m.
To �nd the minimum of the given function we use Lagrange multipli-

ers. The method of Lagrange multipliers provides a strategy for �nding the
extrema of a multivariate function subject to the constraints. Hence it is
exploited in mathematical optimization. Using Lagrange multipliers, (1.1)
can be rewritten as

min {1

2
wTΩw + λ1[α− γTw] + λ2[1− 1Tw]} (1.2)

where we minimize the Lagrangian of the problem and λ1, λ2 are the mul-
tipliers. A critical point occurs where the partial derivatives of Lagrangian
with respect to w, λ1 and λ2 are equal to zero. Therefore the standard �rst
order conditions for a critical point are

∂L

∂w
= Ωw − λ1γ − λ21 = 0 (1.3)

∂L

∂λ1
= α− γTw = 0 (1.4)

∂L

∂λ2
= 1− 1Tw = 0 (1.5)

The solution of vector w that �gures in equations (1.3), (1.4) and (1.5)
is important to �nd by reason that it minimizes σ2. w is unique by the
assumption on Ω (the variance-covariance matrix of returns is regular, i.e. it
is the square matrix that has an inverse). System of equations (1.3), (1.4)
and (1.5) is linear in w, therefore it is simple to express from (1.3).

1 1
2 can be omitted because the minimization of 1

2w
T Ωw will minimize wT Ωw. Never-

theless, 1
2 is bene�cial during the di�erentiation with respect to w.
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w = λ1Ω
−1γ + λ2Ω

−11 (1.6)

where Ω−1 is the matrix inverse of the variance-covariance matrix Ω. Multi-
plying (1.6) by γT from the left we obtain

γTw = λ1γ
TΩ−1γ + λ2γ

TΩ−11 (1.7)

and analogously multiplying (1.6) by 1T from the left

1Tw = λ11
TΩ−1γ + λ21

TΩ−11 (1.8)

At this point in order to simplify we de�ne

A ≡ γTΩ−11 = 1TΩ−1γ

B ≡ γTΩ−1γ

C ≡ 1TΩ−11

where A, B and C are constants.2

From (1.4), (1.5), (1.7) and (1.8) we obtain a simple system of linear
equations for λ1 and λ2.

α = Bλ1 + Aλ2

1 = Aλ1 + Cλ2
(1.9)

Notice that B > 0 and C > 0, because Ω and Ω−1 are square, non-singular,
symmetric and positive de�nite matrices (the variances of the returns on the
portfolio securities are positive). Seeing that B and C are quadratic forms
of Ω−1, they are strictly positive (with the only exception of γ being a zero
vector).

Solving this simple linear system for λ1 and λ2 we obtain the following
solution.

λ1 =
Cα− A
D

λ2 =
B − Aα
D

(1.10)

2The equality of mathematical terms in A results from the symmetry of Ω and Ω−1. By
the transposition of γT Ω−11 we obtain 1T Ω−1γ. Since a constant transposition is applied,
the expressions are equal.
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where D ≡ BC − A2 is positive.3

We substitute λ1 and λ2 in (1.6) by the value of λ1 and λ2 from (1.10).

w =
Cα− A
D

Ω−1γ +
B − Aα
D

Ω−11

After the exemption of 1
D
, merging components and joining them back to-

gether according to whether they contain α or not, we obtain the following
result.

w =
1

D
[αΩ−1(Cγ − A1) + Ω−1(B1− Aγ)] (1.11)

The equation represents the solution of the proportions of risky assets held
in the frontier portfolio.

We multiply (1.3) by wT from the left to derive

wTΩw = λ1w
Tγ + λ2w

T1 (1.12)

Connecting the de�nition of σ2 and (1.12) with (1.4) and (1.5) we calculate
σ2 = wTΩw = λ1w

Tγ + λ2w
T1 = λ1α + λ21. Fundamental is the fact that

wT1 = 1Tw and also wTγ = γTw and thus

σ2 = λ1α + λ2 (1.13)

Substituting for λ1 and λ2 from (1.10) into (1.13) we obtain the equation
for the variance of a portfolio on the frontier. We can observe that the
variance of a frontier portfolio is a function of its expected return by the
means

σ2 =
1

D
(Cα2 − 2Aα +B) (1.14)

Actual presentation of the frontier is situated in the mean-variance plane.
Obviously, the frontier takes form of a parabola. Through the examination of
the �rst and second derivatives of σ2 with respect to α we capture information
concerning an extreme point and convexity respectively.

3Ω−1 is positive de�nite and because A1−Cγ is a non-zero vector, (A1−Cγ)T Ω−1(A1−
Cγ) > 0. After simple modi�cations we obtain CD > 0. But C > 0, hence D > 0.

14



dσ2

dα
= 2

Cα− A
D

d2σ2

dα2
= 2

C

D

(1.15)

The second derivative of σ2 with respect to α is positive by reason of C and
D being positive as well. Hence, σ2 is a strictly convex function of α. The
�rst derivative of σ2 with respect to α is equal to zero provided that α = A

C
.

Thus, a unique minimum point of the frontier parabola has position data
α = A

C
and σ2 = 1

C
(from substitution of A

C
for α in (1.14)).

We denote ᾱ ≡ A
C
and σ̄2 ≡ 1

C
. ᾱ and σ̄2 represent the expected return

and variance of the minimum-variance portfolio, videlicet the portfolio with
the minimum variance given expected return. Consequently we de�ne w̄ to
be the vector of weights assigned to each security in the minimum-variance
portfolio. In order to express a formula for w̄ we substitute A

C
for α in (1.11).

w =
1

C
Ω−11 (1.16)

Figure 1.1 depicts the frontier in the form of parabola (see equation
(1.14)). The graph is designed in MATLAB using the speci�c values of γ
and Ω for the portfolio composed of two securities. However, to preserve a
generality of the derivation, Figure 1.1 does not contain any speci�c values
except for zero. Notice that the unique minimum point with co-ordinates
[A
C

= ᾱ, 1
C

= σ̄2] represents the minimum-variance portfolio. The point of
vertical axis intersection is [0, B

D
]. This point appertains to a portfolio with

the expected return equal to zero and variance equal to B
D
.4

In comparison with the mean-variance plane, the mean-standard devia-
tion plane is more usual. A formulation of the frontier is slightly di�erent
and we conceive the standard deviation of a frontier portfolio as a function
of its expected return using a simple modi�cation of equation (1.14).

σ =

√
1

D
(Cα2 − 2Aα +B) (1.17)

Further we calculate and review the �rst and second derivatives of σ with
respect to α.

4Foreseeing investors would not even choose a portfolio situated to the left of the
minimum point. For the identical level of variance there always exists a portfolio with a
higher expected return.

15



Figure 1.1: The Frontier Parabola in the Mean-Variance Plane

As regards the input data, suppose there exists a portfolio composed of two securities,

i.e. m = 2. We assign γ =

(
1
2

)
and Ω =

(
0, 5 0, 2
0, 2 1, 5

)
. That means the covariance of

returns between the securities is 0, 2 and the variance of the returns on the securities is
0, 5 and 1, 5. The values of A, B, C and D calculated by MATLAB can be found in the
following overview.

A 2,6761 A/C 1,1875

B 3,8028 1/C 0,4438

C 2,2535 B/D 2,7

D 1,4085

dσ

dα
=

(Cα− A)

Dσ
d2σ

dα2
=

1

Dσ3

(1.18)

The second derivative is positive and hence σ is a strictly convex function of
α. Considering the relation between a variance σ2 and a standard deviation
σ, the minimum-variance portfolio is equivalent to the minimum-standard

16



Figure 1.2: The Frontier in the Mean-Standard Deviation Plane

deviation portfolio.

Figure 1.2 depicts a graph of the frontier in the standard form. Notice the
axes labels: the standard deviation σ on the abscissa axis and the expected
return α on the vertical axis. The input data so as values of A, B, C and
D are identical with the previous values calculated for the parabola in the
mean-variance plane. Another important values are A

C
= 1, 1875, K1 ≡√

1
C

= 0, 6661 and K2 ≡
√

A2

CD
+ 1

C
= 1, 6432. The minimum-variance

portfolio is situated in the point with co-ordinates [K1, A
C

] and the point of
intersection with the abscissa axis is [K2, 0].

The equation for α as a function of σ is obtained from (1.17). It represents
a formula for the expected return of a portfolio on the frontier regarding its
standard deviation.

α =
A

C
± 1

C

√
DC

(
σ2 − 1

C

)
(1.19)
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Substituting ᾱ for A
C
and σ̄2 for 1

C
under the radix we obtain

α = ᾱ± 1

C

√
DC(σ2 − σ̄2) (1.20)

From all feasible portfolios, only those with the highest expected return
for a given standard deviation are of our interest. The set of feasible portfolios
possessing this characteristic is de�ned as the e�cient portfolio frontier. It
is situated in the upper blue part of the frontier in Figure 1.2 starting with
the minimum-variance portfolio. As a consequence we can specify the �nal
form of the equation for the e�cient portfolio frontier as follows.

α = ᾱ +
1

C

√
DC(σ2 − σ̄2) (1.21)
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Chapter 2

The Capital Asset Pricing Model

The capital asset pricing model (CAPM) developed by William Sharpe and
John Lintner was the �rst boundary mark in the theory of asset pricing. The
main idea consists in the expression of the relation between the expected
return and risk (represented as the variance of the expected return) of a
certain portfolio. According to Fama and French (2004), in spite of the
fact that CAPM is still widely used, intuitive and powerful model, it faces
failings in empirical implementation. This can be caused by many simplifying
assumptions or di�culties in implementing valid tests of the model.

We begin by explaining the logic of the CAPM. We distinguish between
the investment opportunities including exclusively risky securities (i.e. the
variance of the return on the securities is positive) and investment opportu-
nities with a risk-free security (risk-free borrowing and lending is allowed).
Applying the assumptions we introduce Sharpe-Lintner CAPM equation.

2.1 The basis and key assumptions

Harry Markowitz's model of portfolio choice introduces and de�nes a con-
cept of mean-variance-e�cient portfolios. A risk averse investor selects a
portfolio that produces a stochastic return at the end of the period. This
model assumes that the investor's decision is based purely on the mean and
the variance of his investment return. Hence he minimizes the variance of
portfolio return, given expected return and at the same time maximizes the
expected return, given variance. The outcome of this optimization process
is that he always chooses a mean-variance-e�cient portfolio, because it sat-
is�es his requirements (there does not exist any portfolio providing higher
expected return, given return variance or lower return variance, given ex-
pected return).

19



The consequent task is to identify the portfolio that must be mean-
variance-e�cient. It cannot be achieved without de�ning assumptions. Sharpe
and Lintner add two key assumptions to the Markowitz model:

� complete agreement
Given market clearing security prices, investors agree on the joint dis-
tribution of security returns during the next period.

� borrowing and lending at a risk-free rate
It applies for all investors and does not depend on the amount borrowed
or lent, i.e. it is unlimited.

2.2 Investment opportunities without a risk-
free security

Investment opportunities including only risky securities are described in Fig-
ure 1.2. The portfolio risk is measured by the standard deviation of portfolio
return (horizontal axis). We derived the equation for the e�cient portfolio
frontier in Chapter 1. It represents the set of combinations of expected re-
turn and risk for portfolios of risky securities. The common characteristics
of these combinations is that they minimize the variance of portfolio returns
at di�erent given levels of expected return.

Regarding investors, they choose the level of expected return they want
and must accept the corresponding volatility of returns (return risk) that is
the lowest possible for this level of return. The higher return he wants, the
higher volatility he must accept. If there is no risk-free borrowing or lending,
only portfolios located in the upper part of the frontier are mean-variance
e�cient (these portfolios maximize expected return given their return vari-
ance).

2.3 Investment opportunities with risk-free bor-
rowing and lending allowed

Adding risk-free borrowing and lending, investors combine risky securities
with a risk-free security. Suppose that proportion x of portfolio p funds is
invested in a risk-free security f and 1 − x in some risky portfolio g. That
means

Rp = xRf + (1− x)Rg, x ≤ 1 (2.1)

20



where Rp denotes the return on the portfolio p, Rf the return on the risk-
free security f and Rg the return on the risky portfolio g. Then the expected
return on the portfolio p and the standard deviation of portfolio return can
be expressed

E(Rp) = xRf + (1− x)E(Rg)

σ(Rp) = (1− x)σ(Rg)
(2.2)

as Rf is known beforehand and therefore σ(Rf ) = 0.
Equations (2.2) imply that the portfolios combining risk-free lending or

borrowing with some risky portfolio g plot along a straight line from Rf

through g.1 The position of the portfolio p depends on the proportion x.

� x = 1
All funds are invested in the risk-free security f (loaned at the risk-free
rate of interest). Then the portfolio p has zero variance, the risk-free
rate of return and is located in the point [0, Rf ].

� x ∈ (0, 1)
Portfolio funds are divided between f (risk-free lending) and g (positive
investment in the risky portfolio). In this case, p is located somewhere
on the straight line between Rf and g.

� 0
This case implies that investors do not use a possibility of risk-free
borrowing or lending (see Section 2.2).

� x < 0
The result is a point to the right of g on the line. These points represent
borrowing at the risk-free rate. The proceeds from the borrowing is
used to increase investment in g.

After this manner, several portfolios p can be obtained by combining
a risk-free security with some risky portfolio. To �nd the mean-variance-
e�cient portfolios we swing a line from Rf through di�erent feasible risky
portfolios. The result of a simple observation is following. With higher
slope comes higher expected return, given variance and lower variance, given
expected return. To obtain the portfolios with the best tradeo� between
expected return and risk, we design a line from Rf through portfolio T ,

1That means from the point with co-ordinates [0, Rf ] through the [σ(Rg), E(Rg)].
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which is the tangency portfolio to the e�cient frontier. Hence mean-variance-
e�cient portfolios are combinations of the risk-free security (either risk-free
borrowing or lending) and a single risky tangency portfolio T (Fama and
French, 2004).

With the assumption of complete agreement, all investors see the same
investment opportunities, combine risk-free borrowing or lending with the
same risky tangency portfolio T and therefore T is the value-weight market
portfolio M (see Figure (2.1)). The weight of each risky security in the
market portfolio is calculated as the total market value of all outstanding
units of the security divided by the total market value of all risky securities.
The prices of risk-free securities and the value of risk-free rate must clear the
market for risk-free borrowing and lending.

Figure 2.1: Investment Opportunities

Since the market portfolio M is located on the e�cient frontier, the re-
lation for any minimum variance portfolio holds for the market portfolio as
well. The minimum variance condition for M is

E(Ri) = E(RZM) + [E(RM)− E(RZM)] βiM , i ∈ {1, ..., N} (2.3)

22



where E(Ri) is the expected return on security i and there are N risky assets.
βiM is the market beta of security i equal to the covariance of its return with
the market return divided by the variance of the market return.

βiM =
cov(Ri, RM)

σ2(RM)
(2.4)

E(RZM) is the expected return on securities that have market betas equal
to zero (their returns are uncorrelated with the market return). The term
[E(RM) − E(RZM)] βiM represents a risk premium and E(RM) − E(RZM)
is a premium per unit of beta. The market beta of security i has more than
one interpretation.

1. βiM measures the sensitivity of the security return to variation in the
market return.

It results from the fact that beta of security i is the slope in the regres-
sion of the security return on the market return.

2. βiM represents the covariance risk of security i in the market portfolio
relative to the average covariance risk of all securities (the variance of
the market return). That means βiM is proportional to the risk each
dollar invested in security i contributes to the market portfolio.

The variance of the market return can be rewritten as follows (with
xiM denotative the weight of security i in the market portfolio).

σ2(RM) = Cov(RM , RM) = Cov

(
N∑
i=1

xiMRi, RM

)
=

N∑
i=1

xiMCov(Ri, RM)

We see that the risk of the market portfolio (the denominator of βiM)
is equal to a weighted average of the covariance risks of the securities
in M (the numerators of βiM).

Equation (2.3) resembles Sharpe-Lintner CAPM. The only di�erence is
related to the term E(RZM). The beta of a security is equal to zero when its
return is uncorrelated with the market return (see equation (2.4))2. Hence

2The average of the covariances between the return on the security i and the return
on other securities in the market portfolio just o�sets the variance of the return on the
security i.
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the security contributes nothing to the variance of the market return and is
riskless in the market portfolio.

Under the opportunity of risk-free borrowing and lending E(RZM) must
equal the risk-free rate Rf . Thus we obtain Sharpe-Lintner CAPM equation.

E(Ri) = Rf + [E(RM)−Rf ] βiM , i ∈ {1, ..., N} (2.5)

The expected return on security i equals the sum of the risk-free interest rate
and a risk premium (premium per unit of beta risk times the market beta of
security i).
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Chapter 3

The Equity Premium

3.1 The link between CAPM and the expected
equity premium

The capital asset pricing model predicts that a level of risk determines the
expected return of a stock - risky stock should have higher expected returns
than less risky stocks. The beta of a stock (the regression coe�cient of a
stock's return on the market return) is speci�ed as the relevant measure
of risk. The expected return premium per one unit of beta is the expected
equity premium and equals to the expected return on the value-weight market
portfolio less the risk-free rate. The Sharpe-Lintner CAPM holds for every
period. After the addition of a time dimension, CAPM can link the time
series and cross-section (Polk, Thompson and Vuolteenaho, 2006).

Et−1(Ri,t) = Rf,t−1 + [Et−1(RM,t)−Rf,t−1] βi,t−1, i ∈ {1, ..., N} (3.1)

where Ri,t is the return on asset i during the period t. Rf,t−1 is the risk-free
rate during the period t. It is known beforehand, at the end of period t− 1.
βi,t−1 is the beta of asset i known at time t−1. Et−1(RM,t)−Rf,t−1 represents
the expected market premium.

The expected return on a stock should be negatively related with its
price. The high expected return can be caused by the high equity premium,
the high beta of stock i or both and should result in the low price of the
stock. According to Gordon (1962), risk premium can be forecasted using a
following stock-valuation model.

Di

Pi

−Rf + E(gi) = E(Ri)−Rf (3.2)
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where Di

Pi
is the dividend yield of stock i and E(gi) the expected dividend

growth of stock i. After the substitution for E(Ri) from CAPM and assuming
that betas and the risk-free rate are constant yields we obtain

Di,t

Pi,t−1

≈ Et−1[RM,t −Rf ]βi − E(gi −Rf ) (3.3)

There exist three reasons for the dividend yield on stock i to be high:

� The expected equity premium Et−1[RM,t −Rf ] is high.

� Stock i has a high beta βi.

� The dividends of stock i are expected to grow slowly.

Regressing the cross-section of dividend yields on betas and expected divi-
dend growth we obtain

Di,t

Pi,t−1

≈ λ0,t−1 + λ1,t−1βi + λ2,t−1E(gi) (3.4)

Polk, Thompson and Vuolteenaho (2006) measure λ1,t−1 for each period us-
ing cross-sectional data and subsequently forecast the next period's equity
premium. They propose a number of cross-sectional risk premium measures
along with the construction and results summary. In the next section we
provide a construction of their λSRC .

3.2 Lambda SRC - λSRC

In this section we introduce our version of λSRC as a proxy for the risk
premium. There is an intention for λSRC to be a valid cross-sectional variable
in regression forecasting the equity premium. Hence we have to be careful
not to include any look-ahead information.

Our proxy is based on the ordinal association measure between a stock's
beta and its valuation ratios. By using the ordinal measure and ranking
procedures during the calculation we avoid an outlier impact leading to ro-
bustness. This pertains not only to the possible outliers in the underlying
data but also to extreme values of the proxy itself. On the other hand there is
a possible loss of information about the magnitude of the spread in valuation
multiples.

The �rst step before implementing λSRC is to obtain required data. Sec-
ondly we transform these row data sets into the eligible condition to serve
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as the input data for further calculations. The construction of λSRC then
consists of three parts.

3.2.1 Data and input summary

For our purposes we select US stock data for �rms included in S&P 500 index
and compute λSRC predictions from June 1991 to May 2012. The data re-
quired in calculations come from Datastream database1 and are summarized
below. The source data are weekly (for Set 1) or monthly (for Set 2) values
of corresponding variables. Index i represents individual �rms of S&P 500
Index (i ∈ 1, ..., 500).

� Di,t

represents the total dividends paid by the �rm i from June year t − 1
to May year t (included)

� BEi,t

represents the book value of the �rm i for �scal year end in year t− 1

� Ei,t

represents the earnings per share of the �rm i for �scal year end in year
t− 1

� Ci,t

represents the cash �ow of the �rm i for �scal year end in year t− 1

� Pi,t

represents the price per share of the �rm i for the end of May year t

� MEi,t

represents the market equity value of the �rm i for the end of May year
t calculated as a product of price and number of shares

Since we do not have the information about the exact date of reporting BE,
E and C values for previous �scal year ends, as a compromise we take these
values from speci�c date - the �scal year ends (of previous year) + 100 days.
For each year we assume these values to be updated within 100 days after
�scal year end.

1Datastream database provides historical �nancial statistics for di�erent securities, in-
cluding stock data and interest rates.

27



� ri,t
represents the monthly return of the individual stock i at time t

� rM,t

represents the monthly market portfolio return at time t, which in our
case is the monthly return of S&P 500 Index

� Rf,t

represents the risk-free rate2 at time t

3.2.2 Construction of λSRC

Lambda SRC construction is a process that contains three steps. The input
data are prepared using Excel. However, in order to e�ectively handle further
calculations within λSRC construction we continue using MATLAB, which is
a perfect tool for our purposes (all functions are enclosed).

Step 1 - V ALRANK

Every year t during the period from 1991 to 2011 we select �rms that
are components of S&P 500 Index at the end of May year t. For these �rms
we construct up to four valuation ratios D/P , BE/ME, E/P and C/P as
follows. We match actual Di,t, MEi,t and Pi,t known at the end of May with
BEi,t, Ei,t and Ci,t for all �scal year ends in calendar year t − 1 that we
assume to be known by this time.
Each year we transform these ratios into a relative percentile rank, which is
the rank divided by the number of �rms for which the data are available.
Subsequently we average the available valuation ratio percentile ranks for
each �rm and re-rank this average across �rms.3

After this manner we calculate V ALRANKi,t as our expected return mea-
sure with the values from interval zero to one. V ALRANKi,t is negatively
correlated with the price level of stocks,i.e. low values of V ALRANKi,t cor-
respond to high prices and also to low expected returns. Since this annual
composite measure is constructed from several considerable �rm-level indi-
cators,we could consider it to be closely connected to �rm valuation.

2As a risk-free rate we take yields on Treasury nominal securities at "constant maturity"
(in this case 1 year) interpolated by the US Treasury from the daily yield curve for non-
in�ation-indexed Treasury securities. This curve relates the yield of a security to its time
to maturity.

3Notice that due to the repeated ranking there is no reason to be concerned about the
units or whether the valuation ratios are per share.
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Step 2 - BETA

At this point we estimate the monthly measure of risk for each stock -
the market beta βi,t by OLS regression of monthly returns ri,t on a constant
and the contemporaneous monthly return on the S&P 500 Index:

ri,t = β0,i + β1,irM,t + εt (3.5)

Each month we use three years of previous monthly returns skipping
months in which a �rm is missing returns.

Step 3 - Spearman rank correlation coe�cient

Our cross-sectional proxy λSRC
t is the Spearman rank correlation coe�-

cient between V ALRANKi,t and βi,t at time t. Notice that the same value
of V ALRANKi,t belongs to twelve values of βi,t. λSRC

t is updated monthly
and the time series begins in June 1991 and ends in May 2012.
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Chapter 4

Empirical results

For the purpose of evaluation the predictive ability of our risk premium mea-
sure Lambda SRC, we estimate descriptive statistics not only for λSRC , but
also for Re

M which is the excess return on the S&P 500 Index. We use Re
M as

a measure of the realized eqity premium and is computed as the di�erence
between the simple return on S&P 500 Index and a risk-free rate rf,t. The
results are following:

λSRC Mean Med SD Min Max
Full period -0,2118 -0,202 0,1307 -0,4958 0,08355
Before -0,2298 -0,2105 0,1183 -0,4958 -0,018
After -0,1289 -0,1577 0,1531 -0,3313 0,0836

Re
M Mean Med SD Min Max

Full period 0,0132 0,0159 0,1286 -0,7214 0,5995
Before 0,0101 0,012 0,0814 -0,3074 0,3083
After 0,0272 0,0564 0,2511 -0,7214 0,5995

where Med denotes median, SD is the standard deviation, Min is a min-
imum and Max a maximum value in the sample.
Notice that we included three rows, each row representing the di�erent sam-
ple range:

1. Full period
- consists of the whole period from June 1991 to May 2012

2. Before
- period from June 1991 to August 2008
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3. After
- period from September 2008 to May 2011

The observation period is divided into two parts. This way we can com-
pare the results for each period. The Before row represents the period before
the �nancial crisis and the After row belongs to the period during and after
the crisis. We can see that the mean and median for both λSRC and Re

M are
signi�cantly higher in the second subsample.

Furthermore we calculate correlations between Re
M,t, λ

SRC
t ,Re

M,t−1 and
λSRC
t−1 in this exact order.

Full period:

1 0,0177 -0,1021 0,034
0,0177 1 0,0046 0,9505
-0,1021 0,0046 1 0,0159
0,034 0,9505 0,0159 1

Before:

1 0,038 0,2047 0,0504
0,038 1 0,0295 0,9623
0,2047 0,0295 1 0,0296
0,0504 0,9623 0,0296 1

After:

1 -0,0404 -0,2577 -0,0144
-0,0404 1 -0,0639 0,8988
-0,2577 -0,0639 1 -0,0367
-0,0144 0,8988 -0,0367 1

We can observe that the correlation of λSRC
t and Re

M,t is weak in the full
sample (only 0,02). In the "before-crisis" subsample this correlation is higher
(0,04). However in "after-crisis" subsample it is surprisingly negative. This
result implies that especially in the "after-crisis subsample" our λSRC

t is a
very poor predictor of the realized equity premium.

The last table containing θ and pvalue represents the results from the
model

Re
M,t = µ1 + θλSRC

t−1 + ut (4.1)
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θ p value
Full period 0,0206 0,1852
Before 0,0185 0,1391
After 0,0227 0,6544

These results reveal that λSRC
t does not forecast the future excess market

returns. Because of the high p values we cannot reject the hypothesis of a
zero coe�cient in favor of a positive coe�cient. The measureλSRC

t is not a
signi�cant predictor in neither of the samples.
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Conclusion

Our empirical results di�er from the results of Polk, Thompson and Vuolteenaho
signi�cantly. Their cross-sectional measure of the equity premium is a good
predictor of the future market returns. However, we discovered that the λSRC

t

does a poor job predicting the future excess market returns.

There are many reasons for the results to be di�erent, although it is dif-
�cult to tell which one is most signi�cant. On the other it is obvious that
some of the factors play an important role in modifying the result to a great
extent. Firstly, it is the result of the data choice - we use the di�erent sam-
ple also selecting S&P 500 Index as our market portfolio instead of choosing
CRSP value-weight Index. Secondly, the period is biased. Polk, Thompson
and Vuolteenaho use period from 1927 to 2002 whereas our period lies be-
tween 1991 to 2012 and has experienced the �nancial instability during the
�nancial crisis.

The opportunities to explore this issue further are wide. One can construct
a number of di�erent variables with a range of techniques and assumptions
trying to construct the equity premium forecasts. However, each variable has
to be subsequently tested against data to reveal the predictive skills.
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Appendix

VALRANK

function [VALRANK] = vypocet valrank (DP,BM,EP,CP)

rozmer=zeros(4,2);
[rozmer(1,1),rozmer(1,2)] =size(DP);
[rozmer(2,1),rozmer(2,2)]=size(BM);
[rozmer(3,1),rozmer(3,2)]=size(EP);
[rozmer(4,1),rozmer(4,2)]=size(CP);

- DIMENSION CONTROL

for i=1:4
if rozmer(i,1) =500
error('The number of �rms is not correct.')
end
if rozmer(i,2) =21
error('The number of years is not correct.')
end end

- RELATIVE PERCENTILE RANKINGS OF FIRMS (EACH YEAR)

for i=1:21
a=isnan(DP(:,i));
b=500-sum(a);
DP(:,i)=tiedrank(DP(:,i))/b;
a=isnan(BM(:,i));
b=500-sum(a);
BM(:,i)=tiedrank(BM(:,i))/b;
a=isnan(EP(:,i));
b=500-sum(a);
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EP(:,i)=tiedrank(EP(:,i))/b;
a=isnan(CP(:,i));
b=500-sum(a);
CP(:,i)=tiedrank(CP(:,i))/b;
end

- THE AVERAGE OF PERCENTILE RANKS FOR EACH FIRM

for i=1:500
for j=1:21
v=[DP(i,j) BM(i,j) EP(i,j) CP(i,j)];
poc=4-sum(isnan(v));
Average(i,j)=nansum(v)/poc;
end
end

- RE-RANK ACROSS FIRMS

for i=1:21
VALRANK(:,i)=tiedrank(Average(:,i))/500;
end
end

BETA

function [BetaRok] = vypocet beta (r,rM)

b=zeros(500,12);

for i=1:500
for j=1:12
Y=r(i,j:(j+35))';
x2=rM(j:(j+35),1);

-MODIFICATION TO INCLUDE ONLY DATA AVAILABLE

a=isnan(Y);
indexy=�nd(a==0);
Y mod=Y( isnan(Y));
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x1=ones(length(Y mod),1);
x2 mod=x2(indexy,1);

-REGRESSION

X=[x1,x2 mod];
pomb=regress(Y mod,X);
b(i,j)=pomb(2,1);
end
end

BetaRok=b;
end

LAMBDA SRC

function [SRC] = lambda SRC (VALRANK,BETA)

-VALRANK EXTENSION

k=0;
for i=1:21
v=VALRANK(:,i);
for j=1:12
pomVALRANK(:,j+k)=v;
end
k=k+12;
end

-SPEARMAN RANK CORRELATION COEFFICIENT

for i=1:252
rankedVALRANK(:,i)=tiedrank(pomVALRANK(:,i));
rankedBETA(:,i)=tiedrank(BETA(:,i));
end

dif=rankedVALRANK-rankedBETA;
d=dif.�2;
dsum=sum(d);
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n=500;

for i=1:252
SRC(1,i)=1-((6*dsum(1,i))/(n*(n�2-1)));
end
end

DESCRIPTIVE STATISTICS

function [DES,COR] = descriptive (rMe,SRC)

DES=zeros(2,5);
DES(1,:)=[mean(rMe),median(rMe),std(rMe),min(rMe),max(rMe)];
DES(2,:)=[mean(SRC),median(SRC),std(SRC),min(SRC),max(SRC)];

if length(rMe) =length(SRC)
error('The dimensions must agree!')
end
n=length(rMe);

rMet=rMe(2:n);
rMet 1=rMe(1:(n-1));
SRCt=SRC(2:n);
SRCt 1=SRC(1:(n-1));
X=[rMet,SRCt,rMet 1,SRCt 1];
COR=corrcoef(X);

end

REGRESSION COEFFICIENTS

function [beta,pval] = predictor (rMe,SRC)

if length(rMe) =length(SRC)
error('The dimensions must agree!')
end
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n=length(rMe);

y=rMe(2:n);
X=SRC(1:(n-1));
stats=regstats(y,X,'linear','beta','tstat');

beta=stats.beta;
tstat=stats.tstat;
pval=tstat.pval;

end
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