
Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Learning in finance
Master’s thesis

2013 Bc. Vladimír Novák



Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Department of Applied Mathematics and Statistics

Learning in finance

Master’s thesis

Bc. Vladimír Novák

Supervisor:
prof. RNDr. Pavel Brunovský, DrSc.

Branch of study: 1114 Applied Mathematics
Study programme: Economic and Financial Mathematics

BRATISLAVA 2013



Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Katedra aplikovanej matematiky a štatistiky

Modely učenia vo financiách

Diplomová práca

Bc. Vladimír Novák

Školiteľ:
prof. RNDr. Pavel Brunovský, DrSc.

Študijný odbor: 1114 Aplikovaná matematika
Študijný program: Ekonomická a finančná matematika

BRATISLAVA 2013



60793109

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT 

Name and Surname: Bc. Vladimír Novák
Study programme: Economic and Financial Mathematics (Single degree study,

master II. deg., full time form)
Field of Study: 9.1.9. Applied Mathematics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Learning in finance

Aim: The goal of the thesis is to explore the possibilities of the application of multi-
armed bandit theory to models of venture capitalists investments with learning.

Supervisor: prof. RNDr. Pavel Brunovský, DrSc.
Department: FMFI.KAMŠ - Department of Applied Mathematics and Statistics
Vedúci katedry: prof. RNDr. Daniel Ševčovič, CSc.

Assigned: 25.01.2012

Approved: 26.01.2012 prof. RNDr. Daniel Ševčovič, CSc.
Guarantor of Study Programme

Student Supervisor



60793109

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE 

Meno a priezvisko študenta: Bc. Vladimír Novák
Študijný program: ekonomická a finančná matematika (Jednoodborové

štúdium, magisterský II. st., denná forma)
Študijný odbor: 9.1.9. aplikovaná matematika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Modely učenia vo financiách

Cieľ: Cieľom práce je preskúmať možnosti aplikácie "multi-armed bandit" teórie
na modely rizikového investovania s učením.

Vedúci: prof. RNDr. Pavel Brunovský, DrSc.
Katedra: FMFI.KAMŠ - Katedra aplikovanej matematiky a štatistiky
Vedúci katedry: prof. RNDr. Daniel Ševčovič, CSc.

Dátum zadania: 25.01.2012

Dátum schválenia: 26.01.2012 prof. RNDr. Daniel Ševčovič, CSc.
garant študijného programu

študent vedúci práce



Learning in finance

Bc. Vladimír Novák
E-mail: novakvlado@gmail.com
Web-page: http://sk.linkedin.com/pub/vladimír-novák/66/638/63a/

prof. RNDr. Pavel Brunovský, DrSc.
E-mail: brunovsky@fmph.uniba.sk
Web-page: http://www.iam.fmph.uniba.sk/institute/brunovsky/

Department of Applied Mathematics and Statistics
Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava
Mlynská dolina, 846 48 Bratislava
Slovakia

c© 2013 Vladimír Novák
Master’s thesis in Applied Mathematics
Compilation date: April 23, 2013
Typeset in LATEX



Abstrakt

Bc. Vladimír Novák: Modely učenia vo financiách [Diplomová práca].
Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky,
Katedra aplikovanej matematiky a štatistiky.
Školitel: prof. RNDr. Pavel Brunovský, DrSc.
Bratislava 2013

V práci sa zaoberáme možnosťami opísať investovanie investorov s rizikovým kapitá-
lom pomocou metódy "multi-armed restless bandits". Použitím klasickej verzie "multi-
armed bandits" na odvodenie učiaceho sa modelu Sorensen (2008) ukázal, že učenie sa
investorov o neistotách spojených s investičnými možnosťami a technológiami je pri
ich investíciách bežné. Okrem toho Sorensen jasne zamietol hypotézu, že individuálne
investície sa robia v izolácii. Formulácia problému pomocou "restless" verzie "multi-
armed bandits" nám umožňuje vyhnúť sa nevyhovujúcim predpokladom zo Sorensen-
ovho článku. V práci predstavujeme tri modely opisujúce investovanie rizikového
kapitálu v spomínanom prostredí a pre všetky z nich odvodzujeme Whittlovu index-
ovú stratégiu.

Na základe jedného z uvedených modelov vytvárame učiaci sa model používajúci
Bayesovské aktualizovanie a formulujeme ho v prostredí čiastočne pozorovateľných
Markovovských rozhodovacích procesov. Numericky počítame Whittlovu indexovú
stratégiu pre tento učiaci sa model. Taktiež uvádzame výsledky reprezentatívnej
vzorky numerických simulácií na ohodnotenie výkonnosti indexu voči zvyčajnej straté-
gii odhadu návratnosti investície. Táto simulačná štúdia ukazuje, že naše riešenie fun-
guje dobre a spravidla prekonáva výkonnosť všeobecne používaného riešenia pomocou
návratnosti investície.

Klúčové slová: Multi-armed restless bandit • Bayesovské učenie • Markovovské
rozhodovacie procesy • Indexové stratégie • Rizikový kapitál



Abstract

Bc. Vladimír Novák: Learning in Finance [Master’s thesis].
Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics,
Department of Applied Mathematics and Statistics.
Supervisor: prof. RNDr. Pavel Brunovský, DrSc.
Bratislava, 2013

In this thesis we investigate possibilities to capture the problem of venture cap-
italists (VCs) investments in entrepreneurial companies by the multi-armed restless
bandits framework. As shown in Sorensen (2008), by adoption of the classical multi-
armed bandits model for deriving the learning model, VCs’ learning about invest-
ment opportunities and technology uncertainties is prevalent for their investments.
Moreover, the hypothesis that individual investments are done in isolation is clearly
rejected by Sorensen. Formulation of the problem by the restless version of the multi-
armed bandits allows us to avoid not fully reasonable assumptions for the financial
applications from the Sorensen’s paper. We provide three different models in this
methodology for describing the VCs investments and we derive the Whittle’s index
policy for all of them.

Based on one of these models we develop a learning model which incorporates
the Bayesian updating and we formulate the model as a partially observable Markov
decision process. We numerically obtain the Whittle’s index policy for the learning
model. We also report on a number of numerical simulations for the index per-
formance evaluation against the usually used return on investment approach. This
simulation study suggests that our solution is well performing and often outperforms
the return on investment generally employed solutions.

Keywords: Multi-armed restless bandit • Bayesian updating • Markov decision
process • Index policies • Venture capital
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Introduction

The most confusing moments in our lives are usually connected to decision making.
In these situations it is scarce to have a full information, therefore we have to deal
with the phenomenon of uncertainty. This is one of the reasons why it is so difficult
to make a rational decision. When we realize that we are able to learn about the
uncertain parameters, we can solve many life problems that appear puzzling at first
sight more easily.

Once we developed our beliefs about the parameters, we can deal with a decision
problem by setting priorities to each alternative and choosing the alternative with
the highest priority. Such tasks arise in all fundamental economic problems where we
have to allocate scarce resources to a number of alternative uses. Therefore, it is of a
great practical interest to develop a methodology for establishing suitable priorities
to different alternatives. In the presence of uncertainty we not only have to sacrifice
the benefits of the unselected alternatives, but also the information provided by the
unselected ones. For instance, we consider several entrepreneurial companies com-
peting for the available investment at the same time. Suppose that independently of
other companies, we can associate a value with each company. This value determines
the efficiency of attaining a joint goal if we allocate resources to it at a given moment.
We refer to this value as an index. In addition, we also need to take into consideration
the consequences of an ubiquitous phenomena: bankruptcy.

From the mathematical point of view, such problems could be formulated as
discrete-timeMarkov decision processes and solved by employing recent developments
of the theory of Multi-armed restless bandits for deriving a simple implementable
scheduling rule (proposed by Whittle (1988)). This scheduling rule is based on as-
signing an index to every company and investing in the company with the highest
priority. In this thesis our objective is to solve an example of such problem in the
presence of uncertainty. More specifically, we focus on financial problems, because
the financial markets are naturally connected with a large amount of randomness
and thus agents have to learn about parameters characterizing financial markets by
observing data. An overview of such problems can be found in the paper from Pas-
tor and Veronesi (2009) that reviews recent work on learning in finance, especially

1



Introduction 2

applications related to the portfolio choice, stock price bubbles, mutual fund flows,
trading volume, etc.

Investing by Venture capitalists (VCs) in entrepreneurial companies is a suitable
example of the above mentioned problem. Investors are uncertain about technolo-
gies and investment opportunities. While there was a surge of papers dealing with
relationship between VCs and their entire portfolios (see for example Hochberg et al.
(2007)), less is known about their particular investments (exception for example:
Kaplan and Stromber (2004)), which were also shown to be filled by uncertainty
(Quindlen (2000)). VCs learning is essential for understanding their investment deci-
sions. Sorensen (2008) by his econometric study showed that VCs investment decision
is based on the expected return from the investment itself and on the potential to
learn from it. He also rejected the hypothesis that VCs’ investments are chosen inde-
pendently to maximize the return from each investment individually, as it is predicted
by standard models.

In order to develop the VCs learning model, Sorensen extended the classical multi-
armed bandit problem (see Gittins (1989)). The latter is a stochastic and dynamic re-
source allocation model with special structure, specifically it is a model of a controller
optimizing her decisions while acquiring knowledge at the same time. Originally it
was inspired by a gambler problem, how to select which slot machine (a.k.a. one-
armed bandit) she should play in casino. Bandits incorporation has two advantages.
Firstly, it allows us to distinguish between the influence of investor’s learning from
the past investments (exploitation) and the option value of future learning (explo-
ration), when making investment decisions. This optimal strategy trades off between
the investments for profit and the investments for learning. This is one of the biggest
contributions of Sorensen’s paper. Exploitation investments have high known payoffs
and exploration investments have uncertain payoffs, but they often provide higher
option value of learning. Sorensen finds that VCs who learn more are more successful
in the long-term.

Secondly, by incorporating the classical multi-armed bandits Sorensen is able to
avoid computationally intensive estimation procedures to capture the intractable dy-
namic programming problem (see for example Crawford and Shum (2005)). Index
result of the model helps to simplify the empirical analysis by allowing the model to
be estimated using standard statistical procedures.

Sorensen (2008) is the cornerstone for this thesis. Incorporation of the classi-
cal multi-armed bandits causes also disadvantages, mostly by requiring additional
assumptions that are not entirely reasonable in the context of entrepreneurial invest-
ing. The model assumes that investors choose between investments at the industry
level. Another assumption is that the environment is stationary. Therefore, investors
only learn from their own past investments and investments in one industry are not
informative about investments in other industries. Moreover Sorensen’s paper does
not describe the dynamics of VCs investments, which is another disadvantage we try
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to take care of.

The main aim of the thesis is to develop a dynamic learning model describing VCs
investment decisions. To avoid previous unreasonable assumptions we use recent
developments of the restless multi-armed bandits (see Whittle (1988)). On the other
hand, it forces us to describe investments dynamics. To the best of our knowledge
this is the first time the VCs investments decision is captured by the multi-armed
restless bandits framework. To summarize, the main goals of the thesis are:

• To design a dynamic model describing VCs investing in entrepreneurial compa-
nies.

• To propose a model based on the multi-armed restless bandits theory incorpo-
rating Bayesian updating.

• To avoid the following assumptions in the proposed models:

– Investors choose between entrepreneurial companies only at the industry
level.

– Investors learn only from their own past investments.
– Investments in one industry are not informative about investments in other

industries.

A contribution of this thesis is also in a unique combination of the mathemati-
cal approaches from different areas. This combination is illustrated by the following
scheme.

Scheduling in
communica-
tion networks

multi-
armed
restless
bandits

partially
observ-

able
Markov
decision
processes

Thesis
Learning
in financial
markets

Bayesian
updating

VCs in-
vestments
models

multi-
armed

classical
bandits

Figure 0.1: Schematic illustration of the mathematical approaches combination

The thesis is organized as follows. The first chapter provides a theoretical back-
ground for the part of the thesis not dealing with learning. Those are the classical
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multi-armed bandits model, the restless multi-armed bandits model, description of a
Markov decision process framework and bandits terminology in the finance environ-
ment. In chapter 2 three different models are proposed describing VCs investment
decisions with their MDP formulation. Moreover, the index values derivation for all
three models is proposed there as well. Chapter 3 provides theoretical background
for the part of the thesis dealing with learning. Thus, it consists of Bayesian up-
dating and description of partially observable Markov decision process (POMDP)
framework. Finally chapter 4 presents the Bayesian venture capitalists model. We
simulate the index solution and show the comparison with other policies.



Chapter 1
Multi-armed bandits and index policies
design methods

This chapter provides an introduction to the theoretical frameworks used through-
out the thesis. We mainly focus on solution methods for stochastic dynamic program-
ming problems. First we introduce the Markov decision process framework, followed
by the evolution from the classical to the restless multi-armed bandits. Next we
provide description how to design index policies and a brief history overview. In
this chapter we do not deal with learning and uncertainty. These ubiquitous phe-
nomena will be introduced later. This survey is based on Jacko (2009b), Niño-Mora
(2010) and Villar (2012). Some parts could also be found in Novak (2011), but in
disparity with these surveys, we try to modify the description to refer more to finance.

1.1 Markov decision process framework
By a Markov decision process (MDP) we understand a sequential decision process
in which information needed to predict the future evolution of a system is contained
in the current state of the system and depends on current action. For example, in
stochastic and dynamic resource allocation problems, future evolution of the under-
lying system depends on scheduler’s chosen action at various time instants. After the
scheduler has selected the action she earns reward and the system evolves in the pre-
scribed way that is action depending. The scheduler wants to minimize the expected
total1 cost or to maximize the expected total reward over a certain time horizon. The
horizon can be finite or infinite. In the infinite case we can use discounting or long-
run averaging in order to have a finite-valued objective (Stidham, 2002). In finance
applications the scheduler could be an investor trying to maximize an expected total
reward over a certain time horizon. His action is to invest or not to invest money in
a particular company and based on this decision she earns or loses the money. Due
to the financial behaviour of our models, it is mainly the discounting approach for

1Throughout the thesis the term total is reserved to mean the sum over all time instants.

5



1.1. MARKOV DECISION PROCESS FRAMEWORK 6

the expected total reward which is used in the thesis.

The major strength of the MDP framework lies within its wide modelling power.
It is used in a variety of applications such as economics, management science, oper-
ations research, applied probability and engineering systems. In this thesis we focus
on discrete-time MDP theory. For VCs investing it is natural to be carried out in
discrete points of time and not continuously.

In decision making moments we do not usually have any information about future
states. Therefore, in MDP decision rules are assumed to be non-anticipative, i.e.
history-dependent, which is defined as a set of rules specifying the action to be taken
for each decision point in time and for each possible state of the system, using only
current and past information (Jacko (2009b)). The term decision rule specifies the
action to be chosen at a particular time and a policy is a sequence of decision rules.
In other words, it tells us what to do at any time if the system is in a given state.
A policy is stationary if it is time-homogeneous, so it is not depending on the time
instant. MDPs are of Markovian nature (future evolution depends only on current
state), thus such policy is appropriate.

Markov decision processes could be studied by dynamic programming developed
by Richard Bellman in the 1950s. The cornerstone for this method is the Principle
of Optimality: "At any point in time, an optimal policy must prescribe an action that
optimizes the sum of immediate reward and expected total reward obtained if an opti-
mal policy is applied from the subsequent point in time on" (see: Jacko (2009b) and
Bellman (1957)). Optimality equations of dynamic programming, known as Bellman
equations, constitute the mathematical framework developed in pursuance of Prin-
ciple of Optimality. From the Bellman equation we can derive theoretical results as
necessary and sufficient condition for optimality of a stationary policy in a variety of
cases. Practically it leads to a recursive solution method for dynamic programming
problems, significantly decreasing the problem complexity. Nevertheless, this reduc-
tion is not sufficient and for many problems the solution is still intractable.

In a number of cases we are confronted with the curse of dimensionality. It
means that dynamic programming formulations grow exponentially with the num-
ber of states variables. This forces us to developed other approaches. One of such
approaches is Lagrangian relaxation, that helps us to decompose complex problems
with special structure to a family of subproblems from which we are able to obtain
well-performing suboptimal solutions. The other one is linear programming (LP) re-
formulation, where an optimization term from each Bellman equation can be relaxed
to a set of linear inequalities, where each represents exactly one action. The LP ap-
proach is suitable to constrained MDPs, in which the optimal policy must satisfy side
constraints (Stidham (2002)). Thus in some cases it is possible to solve such problem
by LP after reformulation, which should also be possible in our models proposed in
the chapter 2. Besides Lagrangian relaxation we use some developments of the LP
reformulation in this thesis.
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1.2 Classical multi-armed bandits
Multi-armed bandits are named after one armed bandit slot machine that one can
find in casinos (see Figure 1.1). Obviously the difference between one-armed bandits
and multi-armed bandits are in the number of levers the gambler can pull, e.g. if
the gambler faces several slot machines, or one slot machine with multitude of levers.
The problem is which arm (exactly one at a time) should the gambler pull and in
which order. After the gambler pulls a lever she receives random reward from the
distribution specific to that particular lever. The objective is to maximize total earned
reward after a sequence of trials.

Figure 1.1: One armed bandit - slot machine that one can find in casinos
Source: www.cashcashpinoy.com

This problem was originally introduced by Robbins (1952a), where he constructed
convergent population selection strategies. In this model the controller optimizes de-
cisions and receiving new informations at the same time. It can be reformulated as
the problem solving dynamic allocation of a single scarce resource amongst several
stochastic alternative projects (Weber (1992)). It was quite a challenging stochastic
dynamic optimization problem, until Gittins and Jones (1974) proposed an optimal
policy for maximizing the expected discounted reward.

In classical multi-armed bandits the played bandit is represented by a random
reward yielding process. If not played it stays frozen, so no state evolution and no
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rewards occur. This is the main difference between classical and restless bandits (in-
troduced later). The problem models balance between getting the highest immediate
reward and learning about the system (information about distribution specific to the
particular lever) and receiving possibly even higher rewards later. Often it is referred
to as trade-off between exploitation and exploration, known in reinforcement learning.

In practice it is used to model the problem of managing research projects in a large
organization, like a science foundation or a pharmaceutical company. For instance,
investigating the impact of different experimental treatments and minimizing patient
losses at the same time.

1.3 Restless multi-armed bandits
The multi-armed restless bandits problem proposed by Whittle (1988) represents a
generalization of the multi-armed bandits. It added two features to the classical ver-
sion. Bandits are no longer frozen when they are not played, so they are allowed to
evolve and yield reward. The second feature is that we can allocate scarce resources
parallely to a fixed number of bandits (Jacko (2009b)). More precisely: "Multi-armed
restless bandits are Markov decision process models for optimal dynamic priority al-
location to a collection of stochastic binary-action (active/passive) projects evolving
over time" (Niño-Mora (2010)). Extensions lead to problems with tractability. It
was proven that the multi-armed restless bandits are P-SPACE hard, even in the
deterministic case (Papadimitriou and Tsitsiklis (1999)) .

1.3.1 Example: Portfolio project

Following Niño-Mora (2010) we introduce here an application to portfolio project
problem. Instead of bandits we can imagine dynamic and stochastic projects. Imag-
ine a collection of N ≥ 2 projects (one-armed bandits) to be labelled by k = 1, . . . , N .
At each time instant the manager can choose M ≤ N projects on which he wants to
work. The projects can be in several states, the state of which we denote by X and
it is same for all the projects.

At the start of each period the manager has an option to work (active) or not to
work (passive) on a particular project. His decision on the project k will be repre-
sented by ak = 1 if he is active on the project and ak = 0 if not. Dependently on
his choice, if the project k is in a state Xk(t) = i ∈ X at the start of the time period
and ak(t) = δ, in the restless bandits version it moves with transition probability
pk(i, j|δ) to state Xk(t + 1) = j ∈ X and it yields an immediate random reward
Rk(i, δ), where δ = {0, 1}. Unlike in the classic bandits version, if ak(t) = 0 the state
does not change, i.e. pn(i, i|0) = 1. We incorporate a scalar parameter λ into the
model, which represents the charge incurred per active period. Thus the net reward
for active action is Rn(i, 1)− λ.
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At the start of each period t the project manager observes the joint state X(t) =
(Xk(t))

N
k=1 and based on the history of joint states and actions satisfying

∑N
k=1 ak(t) ≤

M , he takes a joint action a(t) = (ak(t))
N
k=1. The infinite-horizon λ-charge multi-

armed restless bandit problem is to find an admissible scheduling policy π∗, which
maximizes the expected total discounted net reward. The scheduling policy π∗ is
a sequence of non-anticipative decision rules (joint actions) a(t) that prescribes on
which project we should work at time t and π∗ is chosen from the resulting class
Π(M) of all admissible scheduling policies.

We formulate the above mentioned problem as:

max
π∈Π(M)

Eπ
i0

[
∞∑
t=0

N∑
k=1

{Rk (Xk(t), ak(t))− λak(t)}βt
]
,

where Eπ
i0 denotes expectation for a fixed initial portfolio state X(0) = i0 = (i0k)

N
k=1

and under policy π.

1.4 Index policies
In the early 1970s, Gittins proposed the concept of index priority policy (also called
index rule) for the classical multi-armed bandit problems and proved that it is opti-
mal (see Whittle (1980)). It assigns a dynamic allocation index to each competing
bandit and allocate the scarce resources to a bandit with the highest current index
value. The index solution is important because it could be evaluated separately for
each bandit. This solution for the classical multi-armed bandits is know as the Git-
tins priority index policy and the proposed index is known as Gittins index (Gittins
(1979)). A very elegant proof of optimality could be found in Weber (1992).

To solve the restless multi-armed bandits we use the index based solution pro-
posed by Whittle (1988). To do so we replace a family of sample-paths by a unique
one. In other words, we relax the constraint that we are playing the fixed number of
bandits at each time period to be constraint that we are playing the required number
of bandits only on average. Using Lagrangian relaxation allows us to decompose the
problem into separate subproblems that could be solved separately. The obtained
optimal solution for a unique bandit is then used to develop a heuristic rule for the
original problem. The scarce resources are again allocated to the bandit with the
highest current index value.

In general such index solution to the restless multi-armed bandit problems usu-
ally has only some form of asymptotic optimality as was shown by Weber and Weiss
(1990). It is often nearly-optimal and better than ad hoc solutions. On the other
hand, Whittle (1988) realized that not for all restless bandits an index exists. We
call a bandit indexable if such index exists for that particular bandit. Methods for
analysing bandits indexability were presented in Niño-Mora (2001, 2002) and Niño-
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Mora (2006).

Proposed indices often have an economic interpretation (see Jacko (2009b)). For
instance, the Gittins index satisfies the maximal reward rate. The reason is that it is
the maximal rate of expected rewards per unit of expected time. The index developed
by Whittle is characterized as a fair charge for assigning the scarce resource to the
bandit. The MP index introduced by Niño-Mora (2002, 2006) is a generalization of
all above mentioned indices. From the economic perspective it could be described as
the marginal rate of transformation of employing a scarce resource at a given state
of a bandit.

1.5 Overview of the multi-armed bandits history
Origins of the classical multi-armed bandits could be found in the seminal works
by Thompson (1933) and Robbins (1952b) focused on the area of sequential design
of experiments. These developments found their applications mainly in the optimal
dynamic allocation of patients to clinical treatments with unknown success probabil-
ities. In such cases we can refer to exploitation and exploration. Exploitation is that
for the next patient we can use treatment which is the best one from our historical
data and exploration can be observed in the opportunity to try a treatment which
does not yield such as good immediate improvement, but we have a belief that it
could turn to be the best one. On the other hand, officially the classical multi-armed
bandits problem was formulated during Second World War by Allied scientists. Ac-
cording to statements of Peter Whittle it was proved to be intractable and passed to
German scientists that they also can waste their time by solving this problem.

As we already mentioned these problems are MDPs and thus could be solved by
dynamic programming. Unfortunately, dynamic programming does not provide any
insight to the structure of these problems and for the restless case we have prob-
lems with the curse of dimensionality. This forced researchers to focus on solutions
based on the special structure of these problems. Bradt et al. (1956) was the first
who showed optimality of the index solution for the classic finite-horizon undiscounted
one-armed bandit problem. Extension for infinite-horizon was carried out by Bellman
(1956). His index solution was a function of state only. For a long time researchers
were trying to apply similar ideas to the classical multi-armed bandits but without
any success until Gittins and Jones (1974) proposed their solution known as the
Gittins index. It received a wide attention and became very popular. Nevertheless,
there still was an unsolved important extension were bandits evolve even if not played.

Whittle (1988) realized it and proposed his own heuristic solution for the rest-
less multi-armed bandits. It was based on Lagrangian relaxation and decomposition
approach which resulted in index heuristics. He also found out that it holds only
for bandits with special structure which he calls indexable. There was a surge of
works focused on developing general sufficient conditions for indexability what was
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published in papers: Niño-Mora (2001, 2002) and Niño-Mora (2006). Niño-Mora also
proposed an adaptive-greedy algorithm for indexability verification.

Nowadays bandits are used for various applications as wireless systems, telecom-
munications, etc.; but based on our knowledge the restless multi-armed bandits were
never used for VCs investing.

1.6 Bandits terminology for finance applications
So far we used general informations about multi-armed bandit problems and also
usual notation and terminology. Here we want to introduce a dictionary from the
bandits terminology to the financial terminology.

Table 1.1: Dictionary from the general bandits terminology to the financial terminology

Bandits terminology Financial terminology

scheduler/controller → investor, venture capitalist, angel investor
bandit → industry
lever → entrepreneurial company, company

to play/pull a particular lever → to invest into the company from particular industry
epoch → instant (decision moment)
slot → period (when waiting for outcome)



Chapter 2
Venture capitalists investments into the
entrepreneurial companies

As we already mentioned the dynamics of VCs investments into entrepreneurial
companies was not captured by the multi-armed restless bandits framework before.
Therefore we design three different models describing VCs investing. For simplicity
we do not incorporate learning into these models at this point. Each one of them tries
to capture a different feature and we can observe differences better if the model is not
too complex already. Moreover, the obtained closed-form index solutions could be
very helpful and can provide an insight which factors are important for the solution.
Formulation of the VCs investments as restless bandits is very important, because
restless behaviour allows us to avoid assumption that investments in one company
are not informative about investments in another, so when we invest in one company
nothing is happening with other companies.

The first model is the simplest thus it requires several restrictive assumptions.
We use it mainly to describe the index designing procedure. The second and the
third model are trying to avoid other not fully reasonable assumptions from Sorensen
(2008). In Novak (2011) we can find the solution of one such models. In this thesis
we solve three models the first and the third of which are solved by emulation of AG-
algorithm that is different from the solution used in Novak (2011). At the end of the
chapter we present a summary of the obtained indices and we discuss the applications
of the particular models.

2.1 Venture capitalists investments model 1

2.1.1 Problem description model 1

Investors (VCs) can invest in K − 1 entrepreneurial companies. The opportunity K
describes the possibility not to invest. We refer to it as a alternative investment. We
assume that time is discrete and goes to infinity. At every time instant the investor

12
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chooses exactly one opportunity in which she invests actively. An active investment
is characterized as the action when the investor does not only hold the company in
his portfolio but she actively collaborates with the chosen company and pushes it
to initial public offering (IPO) or acquisition. The same happens when the investor
invests in the company for the first time and has to develop a whole new structure
etc. Thus active investment causes higher costs for the investor as passive investment.
During passive investment she only gives necessary money to the company, but she
does not do anything in addition.

An investment is characterized by a cost of passive investment c0
k ≥ 0 and by a cost

of active investment c1
k ≥ 0, where naturally c1

k ≥ c0
k. Other parameters characterizing

the investment are: success probability µk ≥ 0 (IPO), bankruptcy probability θk ≥ 0
and bankruptcy penalty dk ≥ 0 describing other losses connected with bankruptcy
of the company such as the investor’s reputation loss, waste of prepared processes
and strategies for that particular company etc. If the investment is successful, the
investor gains a reward Rk. We suppose that Rk is a one time payment, so it is re-
ceived by the investor only in a time point when the investment succeeds. In reality,
the investor earns dividends after IPO or acquisition. Therefore we can look at Rk as
at the present value of an annuity of dividend payments. For active investment into
the alternative investment the investor obtains alternative reward κ. We assume that
the time until success (if active) and the time until bankruptcy (if passive) follow the
geometric distribution.

The investor’s goal is to maximize the expected aggregate net reward, i.e. aggre-
gate reward minus aggregate investments costs and bankruptcy costs, over an infinite
horizon. The investor decides at equidistant time instants, in which company (if
any) she should actively invest. In the queueing theory we say that the investor is
preemptive.

In this model we assume that investors have no budget-related constraint. From
the VCs perspective this assumption is suitable. The reason is that VCs usually can
borrow a big loan and entrepreneurial companies as start-ups are small investments
in the comparison with the possible loan. Moreover, the optimization itself will not
allow to go to too big debt positions, since active investment is necessary to get a
success.

2.1.2 MDP formulation model 1

We set our discrete-time model without arrivals into the framework of a dynamic and
stochastic resource allocation problem and follow Jacko (2009a) approach to design
Whittle index policies. The time is partitioned into discrete decision time instants
t ∈ T := {0, 1, 2, . . . }, where t corresponds to the beginning of the time period and
we refer to it as a decision time point (instant). Suppose that at t = 0 there are
K − 1 ≥ 2 entrepreneurial companies waiting for VC investment. The investor at
each time instant chooses (at most) one company in which she invests actively. If no
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company is chosen, then the investor is allocated to the alternative investment, i.e.
there are K competing possibilities, labeled by k ∈ K. Thus, the investor invests in
exactly one option at a time.

Companies and industries model 1

The investor can allocate either zero or full attention to any industry k = 1, 2, . . . , K−
1. We denote by A := {0, 1} the action space. Action a = 0 means that the investor
does not actively invest in the company, and action a = 1 means that the investor
does actively invest in it. This action space is the same for every company k.

Each company/industry k is defined independently of other companies/industries
as the tuple (

Nk, (W a
k)a∈A , (R

a
k)a∈A , (P

a
k)a∈A

)
,

where

• Nk := {∗, 0, 1} is the state space of the company k, where state ∗ represents
a company without any investment, 0 represents a company that had been in
investor’s portfolio but it either succeeded or bankrupted, and state 1 means
that the company is in investor’s portfolio (the investor invested actively in the
company, but it neither succeeded nor bankrupted).

• W a
k :=

(
W a
k,n

)
n∈Nk

, where W a
k,n is the (expected) one-period attention con-

sumption, or work required by company k at state n if action a is decided at
the beginning of a period. In our model it is always the same as the chosen
action a; in particular, for any n ∈ Nk,

W 1
k,n := 1, W 0

k,n := 0;

• Ra
k :=

(
Ra
k,n

)
n∈Nk

, where Ra
k,n is the expected one-period reward earned by the

investor for company k at state n if action a is decided at the beginning of the
period; in particular,

R1
k,∗ := −c1

k, R1
k,0 := 0, R1

k,1 := −c1
k · (1− µk) +Rkµk,

R0
k,∗ := 0, R0

k,0 := 0, R0
k,1 := −c0

k · (1− θk)− dkθk

Where Rk > c1
k ≥ c0

k ≥ 0 , d > c0
k and Rk ≥

c1k
µk
.

• P a
k :=

(
pak,n,m

)
n,m∈Nk

is the kth company stationary one-period state transition
probability matrix if action a is decided at the beginning of a period, i.e., pak,n,m is
the probability of moving to state m from state n under action a; in particular,
we have
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P 1
k :=


∗ 0 1

∗ 0 0 1

0 0 1 0

1 0 µk 1− µk

, P 0
k :=


∗ 0 1

∗ 1 0 0

0 0 1 0

1 0 θk 1− θk

.
The state transition can be illustrated by the following schemes.

∗

0 1

0

0

1

0

0
1

0

θk

1− θk

∗

0 1

0

1

0

0

0
1

0

µk

1− µk

Figure 2.1: State transition of
model 1 for action 0

Figure 2.2: State transition of
model 1 for action 1

The dynamics of company k is thus captured by action process ak(·) and the state
process Xk(·), which correspond to the actions ak(t) ∈ A at all time instants t ∈ T .
As a result of deciding action ak(t) in state Xk(t) at a time instant t, the company k
provide the rewards for the investor, and evolves its state for the time instant t+ 1.
At every state we have the same action space A available, which assures a technically
useful property that W a

k,R
a
k and P a

k are defined in the same dimensions under any
a ∈ A.

2.1.3 Multi-armed bandit problem and solution approach

In this section we introduce the Whittle relaxation for the general version of the multi-
armed restless bandits. It turns out that the relaxation in fact allows to decompose the
problem, and the optimal solution to the relaxed problem can be obtained by solving
the single company subproblems. In the section 2.1.7 we show how the solution of
the relaxed problem can be used to construct a heuristics for the original problem
(P1) in finance.

General optimization problem

Whittle proposed his relaxation for the general case of the multi-armed restless ban-
dits (see Jacko (2009b)). Thus, let us denote by Eπn the expectation conditioned on
the joint initial state n := (nk)k∈K, where Xk(0) = nk. For any initial joint state
n = (nk)k∈K and for any discount factor 0 < β < 1, the discounted problem is to
find an admissible policy π ∈ Π maximizing the objective given by the expected
discounted total reward, i.e.,
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max
π

Eπn

[∑
k∈K

∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
, (P)

subject to the sample path capacity constraint,

∑
k∈K

W
ak(t)
k,Xk(t) ≤ W , for all t = 0, 1, 2, . . . (2.1)

where W is the available capacity to be used in every period. Since∑
k∈K

Rak
k,Xk
≤ K · max

ak,Xk

Rak
k,Xk

the infinite series in (P) converge for 0 ≤ β < 1.

Analogously in the time-average criterion formulation instead of (P) we have

max
π

lim inf
T→∞

1

T
Eπn

[∑
k∈K

T−1∑
t=0

R
ak(t)
k,Xk(t)

]
, (2.2)

subject to the same sample path capacity constraint (2.1).

Relaxations and decomposition

For large values of K the problem is analytically intractable, and therefore we ap-
proach it in different way. The main idea is to solve a modification of the problem
(P) called Whittle’s relaxation.

General Whittle and Lagrangian relaxation

Whittle (1988) proposed to relax the sample path capacity constraint (2.1), so under
the discounted criterion we require this constraint to hold only in "expected total
discounted " terms (Jacko (2009b)). We called it Whittle relaxation,

Eπn

[∑
k∈K

∞∑
t=0

βtW
ak(t)
k,Xk(t)

]
≤ Eπn

[
∞∑
t=0

βtW

]
=

W

1− β
(2.3)

and under the time-average criterion we require the constraint (2.1) to hold only in
"expected time-average" terms,

lim
T→∞

1

T
Eπn

[∑
k∈K

T−1∑
t=0

W
ak(t)
k,Xk(t)

]
≤ lim

T→∞

1

T
Eπn

[
T−1∑
t=0

W

]
= W. (2.4)
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The problems (P) and (2.2) with the relaxed constraints (2.3) and (2.4) respectively
can be solved by Lagrangian relaxation (see, e.g., Guignard (2003) and Visweswaran
(2009)), where we introduce a non-negative Lagrangian multiplier ν, to dualize the
constraint (Jacko (2009b)). That is for the discounted criterion we obtain

max
π

Eπn

[∑
k∈K

∞∑
t=0

βt
(
R
ak(t)
k,Xk(t) − νW

ak(t)
k,Xk(t)

)]
+ ν

W

1− β

and under the time-average criterion

max
π

lim
T→∞

1

T
Eπn

[∑
k∈K

T−1∑
t=0

(
R
ak(t)
k,Xk(t) − νW

ak(t)
k,Xk(t)

)]
+ νW.

Above mentioned methods are applied on our model in the following sections.

A unified optimization criterion

Before describing the problem for model 1 we first define an averaging operator that
allows us to discuss the infinite-horizon problem under the traditional discounted
criterion and the time-average criterion in parallel. Let ΠX,a be the set of all the
policies that at each time instant t decide action a(t) based only on the current state
X(t)1. Let Eπτ denote the expectation over the state process X(·) and over the action
process a(·), conditioned on the X(τ) and on policy π.

In general, consider any expected one-period variable Qa(t)
X(t) that depends on state

X(t) and on action a(t) at any time instant t. For any policy π ∈ ΠX,a, any initial
time instant τ ∈ T , and any discount factor 0 ≤ β ≤ 1 we define the infinite-horizon
β-average quantity of Qa(t)

X(t) as
2

Bπτ
[
Q
a(·)
X(·), β,∞

]
:= lim

T→∞

T−1∑
t=τ

βt−τ Eπτ
[
Q
a(t)
X(t)

]
T−1∑
t=τ

βt−τ

. (2.5)

The β-average quantity recovers the traditionally considered quantities in the fol-
lowing three cases:

• expected time-average quantity when β = 1.

• expected total discounted quantity, scaled by constant 1− β, when 0 < β < 1;
1Note that X(t) and a(t) include the information about the state-process history

X(0), X(1), . . . , X(t−1) and about the action-process history a(0), a(1), . . . , a(t−1), due to Markov
property

2For definiteness, we consider β0 = 1 for β = 0.
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• myopic quantity when β = 0.

Thus, when β = 1, the problem is formulated under the time-average criterion,
whereas when 0 < β < 1 the problem is considered under the discounted criterion.
The remaining case when β = 0 reduces to a static problem and hence is considered
in order to define a myopic policy. In the following we consider the discount factor
β to be fixed and the horizon to be infinite, therefore we omit them in the notation
and write briefly Bπτ

[
Q
a(·)
X(·)

]
.

2.1.4 Optimization problem, relaxation and decomposition model 1

Optimization problem model 1

Based on the section (2.1.3) we now describe in more detail the problem we con-
sider in model 1. Let ΠX,a be the space of non-anticipative policies depending
on the joint state-process X(·) := (Xk(·))k∈K and deciding the joint action-process
a(·) := (ak(·))k∈K, i.e., ΠX,a is the joint policy space. Further we denote Eπt the
expectation over the joint state process X(·) and over the joint action process a(·).

For any discount factor β, the problem is to find a joint policy π maximizing
the objective given by the β-average aggregate reward starting from the initial time
instant 0 subject to the family of sample path action constraints, i.e.

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(P1)

subject to

[∑
k∈K

ak(t)

]
= 1, for all t ∈ T .

Relaxations model 1

We use the fact that W ak(t)
k,Xk(t) = ak(t) (cf. definitions in 2.1.2) and instead of the con-

straints in (P1) we consider the sample path consumption constraints Eπτ
[∑

k∈KW
ak(t)
k,Xk(t)

]
=

1, for all τ ≤ t ∈ T . For τ = 0 we obtain

Eπ0

[∑
k∈K

W
ak(t)
k,Xk(t)

]
= 1, for all t ∈ T (2.6)

requiring that the expected attention be fully allocated at every time instant if con-
ditioned on X(0) only. Finally, we may require this constraint to hold only on
β-average, as the β-average capacity consumption constraint

Bπ0

[∑
k∈K

W
ak(·)
k,Xk(·)

]
= Bπ0 [1] . (2.7)
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Using Bπ0 [1] = 1, we obtain the following Whittle relaxation of problem (P1),

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(PW)

subject to Bπ0

[∑
k∈K

W
ak(·)
k,Xk(·)

]
= 1.

The Whittle relaxation (PW) can be treated by traditional Lagrangian methods,
introducing a Lagrangian parameter, say ν, to dualize the constraint, obtaining thus
the following Lagrangian relaxation,

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·) − ν

∑
k∈K

W
ak(·)
k,Xk(·)

]
+ ν. (PL

ν )

The classic Lagrangian result (Guignard (2003),Visweswaran (2009)) says the fol-
lowing:

Proposition 2.1.1. For every ν, PL
ν provides an upper bound for the optimal value

of both problem PW and problem (P1).

Proof. A proof can be find in Niño-Mora (2001), for instance.

Decomposition into single-company subproblems

We now decompose the optimization problem (PL
ν ) into isolated problems for each

individual k, as it is standard for Lagrangian relaxations, considering ν as a param-
eter. That is, one can decide the action ak(t) independently of Xj(t), j 6= k. Notice
that any joint policy π ∈ ΠX,a defines a set of single-company policies π̃k for all
k ∈ K, where π̃k is a non-anticipative policy deciding the company k action-process
ak(·) depending on the joint state-process X(·). We write π̃k ∈ ΠX,ak . We therefore
study the company k subproblem

max
π̃k∈ΠX,ak

Bπ̃k0

[
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

]
. (2.8)

2.1.5 Solution

In some cases, the problem (2.8) can be solved by assigning a set of index values νk,n
to each state n ∈ Nk. We refer to such cases as indexable. In the following, based on
Jacko (2011), we characterize the index values νk,n to each state n ∈ Nk. To do so
we analytically emulate the AG-algorithm (see appendix (A. 3)), what is one of the
main theoretical results of this thesis.

Optimal solution to single-company subproblem

As we mentioned above, the problem has to be indexable if we want to assign a set of
index values which solve the problem. Therefore, we first define indexability similarly
as in Jacko (2010b). Another definition of indexability can be found in the appendix
(A. 1).
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Definition 2.1.2. (Indexability) We say that the problem (2.8) is indexable, if
there exist values −∞ ≤ νk,n ≤ ∞ for all n ∈ Nk such that the following holds for
every state n ∈ Nk:

i) if ν ≤ νk,1, then ak = 1, i.e. it is optimal to actively invest in the company k
in state 1.

ii) if ν > νk,1, then ak = 0, i.e. it is optimal not to actively invest in the company
k in state 1.

iii) if ν ≤ νk,∗, then ak = 1, i.e. it is optimal to actively invest in the company k
in state ∗.

iv) if ν > νk,∗, then ak = 0, i.e. it is optimal not to actively invest in the company
k in state ∗.

v) if ν ≤ νk,0, then ak = 1, i.e. it is optimal to actively invest in the company k
in state 0.

vi) if ν > νk,0, then ak = 0, i.e. it is optimal not to actively invest in the company
k in state 0.

The function n → νk,n is called (Whittle) index, and νk,n are called the (Whittle)
index values. Note that this definition is a generalization of the definitions introduced
in Whittle (1988) and in Niño-Mora (2007), because we allow index values to be also
equal to −∞ and ∞. We are now ready to characterize the index values in closed
form.

Theorem 2.1.3. Suppose that the problem (2.8) is indexable, then the Whittle index
values for the problem (2.8) are as follows,

• index value for a company k in the state 0 is

νk,0 = 0,

• index value for a company k in the state ∗ is

νk,∗ =
−c1

k + βRkµk
(1 + βµk)

,

• index value for a company k in the state 1 is

νk,1 =− c1
k(1− µk) + c0

k(1− θk)+
+ βc1

k(1− µk − θk + θkµk)− βc0
k(1− µk − θk + θkµk)+

+Rkµk(1− β + βθk) + dkθk(1− β + βµk),

so satisfy the indexability conditions i) - vi) stated in the definition (2.1.2).
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2.1.6 Proof of the theorem (2.1.3)
In the proof we analytically emulate theAG-algorithm proposed by Niño-Mora (2007).
Its whole description and definition can be found in the appendix (A. 3). At this place
we first recall some important concepts defined in appendix (A. 1) and then we briefly
present main steps of this algorithm.

Important concepts from the appendix section (A. 1)

Let S ⊂ {∗, 0, 1} be a subset of the set of states. Denote

aSk = χS(Xk),

where
χS(x) =

{
1 if x ∈ S
0 if x /∈ S

is the characteristic function of S.

By choosing S we fully determine the decision rule for ak for a particular k. We
call S the active set.

The ν-wage problem (see appendix (A.3)) for the problem (2.8) is

max
S∈Nk

BS0
[
R
ak(·)
k,Xk(·)

]
− ν BS0

[
W

ak(·)
k,Xk(·)

]
. (2.9)

AG-algorithm basic description

As we present in the appendix (A. 2), the optimal policies to (2.9) lie on the up-
per boundary of the work-reward region and the parameter ν gives the slope of the
supporting hyperplane defining an optimum point. Based on Niño-Mora (2007) we
can find candidates νSk,n for the index value of company k, if the active set S is as-
sumed. In other words νSk,n are indices νk,n for the particular company k, calculated
under assumption that in the future an action is determined by the active set S.
We assume that the investor does not invest (S0 = ∅) and under this assumption we
compute values ν∅k,n for each state n. Then we arrange index value candidates into
non-decreasing sequence and the largest candidate is proposed to be an index for that
particular state n. This state is then incorporated into the active set. Thus in the
next step l when we compute new candidates, we assume that we do not invest except
for states which are already in the active set Sl and for the states which are not in
the active set Sl we compute values νSlk,n (we denote number of such states as i). The
procedure is same as before. We repeat the same technique until all the states are in
the active set (SN = Nk).
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After adoption of the notation from the appendix (A. 3) the adaptive-greedy algo-
rithm is

Algorithm AG
output: {nl, ν∗nl

}il=1

S0 := ∅
for l := 1 to i do

pick nl ∈ arg max
{
ν
Sl−1
n : n ∈ ∂outF Sl−1

}
;

ν∗nl
:= ν

Sl−1
nl ;Sl := Sl−1 ∪ {nl};

end
Algorithm 1: AG− algorithm

So we proceed in the way just described. Let us denote the optimal value function
by V̂k,n for company k in state n. Then the Bellman equation for company k in states
nk = {0, ∗, 1} respectively are

V̂k,0 = max{R1
k,0 − νW 1

k,0 + βV̂k,0;

R0
k,0 − νW 0

k,0 + βV̂k,0},

V̂k,∗ = max{R1
k,∗ − νW 1

k,∗ + βV̂k,1;

R0
k,∗ − νW 0

k,∗ + βV̂k,∗},

V̂k,1 = max{R1
k,1 − νW 1

k,1 + β[µkV̂k,0 + (1− µk)V̂k,1];

R0
k,1 − νW 0

k,1 + β[θkV̂k,0 + (1− θk)V̂k,1]},

after substitution the formulas for expected rewards and expected one-period atten-
tion consumption, the Bellman equations are

V̂k,0 = βV̂k,0 + max{−ν; 0}, (2.10)

V̂k,∗ = max{−c1
k − ν + βV̂k,1; βV̂k,∗}, (2.11)

V̂k,1 = βV̂k,1 + max{−c1
k(1− µk) +Rkµk − ν − βµk[V̂k,0 − V̂k,1];

−c0
k(1− θk)− dkθk + βθk[V̂k,0 − V̂k,1]}.

(2.12)

In all the Bellman equations the first term in braces correspond to active investing
and the second to not active investing. We stated them before the first step of algo-
rithm, because we use them in all the following steps for deriving balance equations
V Sk,n under policy S. Now we can proceed to the first step of the algorithm.
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1. Step. In the first step S0 = {∅}, i.e. the investor does not invest actively in
any of states. Recall that index value candidates are such values of νS0k,n under
the policy S0 that it does not matter if the investor invests or not. By deriving
the balance equations for each state nk we can prove the following lemma.

Lema 2.1.4. Under policy S0 = {∅}, index value candidates are

νS0k,0 = 0

νS0k,∗ = −c1
k + β

(
−c0

k(1 + θk)− dkθk
1− β + βθk

)

νS0k,1 =− c1
k(1− µk) + c0

k(1− θk)+
+ βc1

k(1− µk − θk + θkµk)− βc0
k(1− µk − θk + θkµk)+

+Rkµk(1− β + βθk) + dkθk(1− β + βµk).

Proof. The equation (2.10) leads us to the index value candidate νS0k,0 = 0 corre-
sponding to state 0. In the other words, if ν = νS0k,0 in (2.10) it does not matter
if the investor invests or not. Because in step 1 the active set is S0 = {∅}, so
the investor does not invest actively in any of states, we can write the balance
equation for state 0

V S0k,0 = βV S0k,0 + 0.

Thus, V S0k,0 = 0 and under S0 = {∅} it has to hold that ν ≥ νSk,0, what can be
observed from equation(2.10).

Based on the equation (2.11) we derive the balance equation for state ∗

V S0k,∗ = βV S0k,∗ ,

what lead us to V S0k,∗ = 0. Moreover, from the equation (2.11) we get the
condition for index value candidate νS0k,∗ that must be satisfied under S0 = {∅}

νS0k,∗ = −c1
k + β(V S0k,1 − V

S0
k,∗) = −c1

k + βV S0k,1 . (2.13)

To continue we now need to compute V S0k,1 . Similarly as before, based on the
equation (2.12) and on the S0 = {∅} we obtain
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V S0k,1 =
−c0

k(1− θk)− dkθk
(1− β + βθk)

. (2.14)

By substituting V S0k,1 into the condition (2.13) we get the index value candidate
corresponding to state ∗

νS0k,∗ = −c1
k + β

(
−c0

k(1− θk)− dkθk
1− β + βθk

)
.

For obtaining the last index value candidate corresponding to state 1 we derive
the index value candidate νS0k,1 from equation (2.12)

νS0k,1 = −c1
k(1− µk) + c0

k(1− θk) +Rkµk + dkθk + βV S0k,1(θk − µk),

and by substitution for V S0k,1 we have

νS0k,1 =− c1
k(1− µk) + c0

k(1− θk)+
+ βc1

k(1− µk − θk + θkµk)− βc0
k(1− µk − θk + θkµk)+

+Rkµk(1− β + βθk) + dkθk(1− β + βµk).

Note that for each state holds ν ≥ νS0k,0, ν ≥ νS0k,∗ and ν ≥ νS0k,1, so that the
investor does not invest actively in any of them.

For identification which of the index value candidates is the index value, we
need to find the largest index value candidate.

Lema 2.1.5. Under policy S0 = {∅} holds that νS0k,1 ≥ νS0k,0 ≥ νS0k,∗.

Proof. Let start from the end and compare νS0k,0 with νS0k,∗. Because 0 < β < 1

we can see that all three terms in νS0k,∗ are negative, what lead us to νS0k,0 ≥ νS0k,∗
because νS0k,0 = 0.

Now we compare larger index value candidate from the previous comparison
with the last one, i.e. νS0k,1 with νS0k,0. Recall that

νS0k,1 =− c1
k(1− µk) + c0

k(1− θk)+
+ βc1

k(1− µk − θk + θkµk)− βc0
k(1− µk − θk + θkµk)+

+Rkµk(1− β + βθk) + dkθk(1− β + βµk).



2.1. VENTURE CAPITALISTS INVESTMENTS MODEL 1 25

We can easily rearrange it to

(1− β + βθk)(c
1
kµk − c1

k +Rkµk) + (1− β + βµk)(c
0
k − c0

kθk + dkθk).

All parentheses containing β are bigger than 0, because 0 < β < 1. The
term c0

k − c0
kθk + dkθk = c0

k(1 − θk) + dkθk is also bigger or equal to zero. The
reason is that all parameters are not negative and 0 ≤ θ ≤ 1. The last term
c1
kµk − c1

k +Rkµk is non-negative under condition Rk ≥
c1k
µk
− c1

k, which hold by

assumption, because Rk ≥
c1k
βµk

always implies Rk ≥
c1k
µk
− c1

k. We just showed
that νS0k,1 ≥ 0, so νS0k,1 ≥ νS0k,0, because ν

S0
k,0 = 0.

We can finally write νS0k,1 ≥ νS0k,0 ≥ νS0k,∗, in other words νS0k,1 is not only the can-
didate for the index value, but it is an index value νk,1 for companies that are
in state 1. Therefore, in the next step state 1 is included into the active set S1.

Note that in this step we proved that statements i) and ii) from definition
(2.1.2) holds. These statements claim that it is optimal to actively invest if
ν ≤ νk,1 and it is optimal not to actively invest if ν ≥ νk,1. This follows directly
from the equation (2.12).

2. Step. In the second step we include state 1 into the active set S1, so state 1 is
the only state in which the investor invests actively and in the other two states
she does not invest actively, i.e. S1 = {1}. Similarly as in the step 1, using the
balance equations based on the Bellman equations we can prove the following
lemma.

Lema 2.1.6. Index candidates for each state nk /∈ S1, where the active set
S1 = {1} are

νS1k,0 = 0

νS1k,∗ =
−c1

k + βRkµk
(1 + βµk)

Proof. In this step we can use previous results for states 0 and ∗. For state 0
the situation is totally the same as in the previous section, because it is not
in S1. For state ∗ the situation is similar, but for computation of the index
value candidate we need to substitute V S1k,1 . This is different to the first step,
because the investor invests actively in state 1. Specifically for state 0 we have
a candidate for an index value νS1k,0 = 0 what directly proves the first part of
the lemma (2.1.6); and for state ∗ we have V S1k,∗ = 0 and that has to be satisfied
νS1k,∗ = −c1

k +βV S1k,1 . Therefore we need to derive V S1k,1 under assumption that the
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investor invests actively in state 1. Straightforwardly from the equation (2.12)
we can write

V S1k,1 = βV S1k,1 − c
1
k(1− µk) +Rkµk − ν + βµk(V

S1
k,0 − V

S1
k,1).

Rearranging of terms lead us to

V S1k,1 =
−c1

k(1− µk) +Rkµk − ν
(1− β + βµk)

Now we can return to state ∗ and continue with computation of the index value
candidate for state ∗. After substitution for V S1k,1 into the equation for νS1k,∗ that
must be satisfied, we obtain the index value candidate for state ∗

νS1k,∗ =
−c1

k + βRkµk
(1 + βµk)

,

for which under S1 holds that ν ≥ νSk,∗.

When we have the index value candidates for states ∗ and 0, we need to find
which one of them is larger. That leads us to the following lemma.

Lema 2.1.7. Index value candidates satisfy νS1k,∗ ≥ νS1k,0 for the active set S1 =
{1}.

Proof. We want to compare two index value candidates νS1k,∗ and ν
S1
k,0. We can

easily observe that νS1k,∗ is always non-negative, because condition

R ≥ c1
k

βµk
,

is satisfied due to assumptions made in the model description (2.1.2). The
index value candidate corresponding to state 0 equals to zero, so we proved the
lemma (2.1.7).

Therefore, we obtained an index value for state νk,∗ =
−c1k+βRkµk

(1+βµk)
. The state-

ments iii) and iv) from definition (2.1.2), which claim that it is optimal to
actively invest in the company k in state ∗ if ν ≤ νk,∗ and that it is optimal not
to actively invest in the company k in state ∗ if ν ≥ νk,∗, hold for this model.

3. Step. In the third and the last step our initial active set is S2 = {∗, 1}, thus
the investor does not invest actively only in the state 0 and it is the only state
for which we do not have an index. Thus we have only one candidate for an
index value, what directly leads us to the conclusion that this candidate is also
an index value. For state 0 we obtain an index value:
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νk,0 = 0

Therefore, after this step the active set is S3 = {∗, 0, 1} so we can end the
algorithm. Similarly as in the previous cases the validity of statements v) and
vi) is a consequence of the equation (2.10).

2.1.7 Optimal solution to relaxations model 1

The vector of policies π∗ := (π̃∗k)k∈K identified in theorem (2.1.3) consists of mutu-
ally independent single-company optimal policies, therefore this vector is an optimal
policy to the Lagrangian relaxation (PL

ν ).

Since a finite-state MDP admits an LP formulation using the standard state-action
frequency variables (as observed in Niño-Mora (2001)), strong LP duality implies that
there exists ν̂ (possibly depending on the joint initial state) such that the Lagrangian
relaxation (PL

ν̂ ) achieves the same objective value as (PW). Further, if ν̂ 6= 0, then
LP complementary slackness ensures that the β-average capacity constraint (2.7) is
satisfied by any optimal solution to (PLν̂ ). (see Jacko (2010a))

Index rule for the original problem model 1

Since the original problem requires to invest money in exactly one company, then at
any time instant t we propose to invest money in the company k̂(t) with the highest
actual index, which correspond to the shadow price of investing in the company k̂(t),
i.e.,

k̂(t) := arg max
k∈K

νk,Xk(t).

Note that the investor invests in the company with the highest work efficiency. In
other words, the investor chooses a company where it would be worth to work even
if she had to pay for it the most.

Let recall the indices. For 0 < β < 1, the index value for company k is one of the
following three depending on the state of company k

νk,0 = 0,

νk,∗ =
−c1

k + βRkµk
(1 + βµk)

,
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νk,1 =− c1
k(1− µk) + c0

k(1− θk)+
+ βc1

k(1− µk − θk + θkµk)− βc0
k(1− µk − θk + θkµk)+

+Rkµk(1− β + βθk) + dkθk(1− β + βµk).

Under β = 1, we obtain the time-average version of the index values

ν̄k,0 = 0,

ν̄k,∗ =
−c1

k +Rkµk
(1 + µk)

,

ν̄k,1 =c1
k(−θk + θµk) + c0

k(µk − θµk) +Rkµkθk + dkθkµk.

Finally, we just remark that β = 0 gives rise to the myopic version of the index
values

ν̃k,0 = 0,

ν̃k,∗ = −c1
k,

ν̃k,1 = −c1
k(1− µk) + c0

k(1− θk) +Rkµk + dkθk.

2.2 Venture capitalists investments model 2
In the following two sections we only point out the differences to model 1. Everything
not stated in these sections is the same as in model 1, if not stated otherwise.

2.2.1 Problem description model 2

In this model the investor can choose M companies where she invests. The difference
from the previous model is that she must continuously be actively investing in order
to keep a company in the portfolio. So, the two actions are "include in the portfo-
lio" and "exclude from the portfolio". Thus, if the company succeeds in that time
period investor does not earn anything from it. In other words, she would have net
loss. When she stops to invest in the company, she can prevent to hold a bankrupted
company. Therefore, we no longer make difference between active and passive invest-
ments, i.e. we have only one cost ck. Another difference from the first model is that
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the penalty cost for the company’s bankruptcy is not the same as in the model 1. The
penalty cost is d1

k if the investor invested in the company before its bankruptcy and
d0
k is the penalty cost if the company succeeds but the investor did not invest in it

before. The idea behind d0
k is that public opinion about the investor is getting worse,

because she has wasted the opportunity to invest in the successful company. The
investor’s action is either to invest or not to invest. This model allows us to simulate
budget constraints by setting the number of possible investments at one time period.

To simulate the real world better, we assume that the investor invests simultane-
ously to M companies on average (W = M in the general case (see equation (2.1)))
in one time period. Therefore, when the market is in a good condition, the investor
can invest in more than toM companies, and to less thanM companies if the market
is in the opposite situation. It was proven by Whittle (1988) that the index policy is
optimal, if the constraint is that the investor invests to M companies only on aver-
age. The rest of the investment characterization is the same as in the previous model.

2.2.2 MDP formulation model 2

Companies and industries model 2

The company k definition differs from the definition in model 1 only in the following
parameters

• Nk := {0, 1} is the state space, where 0 represents a company that has bankrupted
or succeeded; and state 1 means that the company is available for the invest-
ment, i.e. it is still in the market.

• Ra
k :=

(
Ra
k,n

)
n∈Nk

, where Ra
k,n is the expected one-period reward earned by the

investor for company k at state n if action a is decided at the beginning of a
period; in particular,

R1
k,0 := 0, R1

k,1 := −ck(1− µk − θk) +Rµk − d1
kθk,

R0
k,0 := 0, R0

k,1 := 0 · θk − d0
kµk

Where R > ck, d ≥ ck and d1
k > d0

k.

• P a
k :=

(
pak,n,m

)
n,m∈Nk

is the kth company stationary one-period state-transition
probability matrix if action a is decided at the beginning of a time period, i.e.,
pak,n,m is the probability of moving to state m from state n under action a; in
particular, we have

P 1
k = P 0

k :=

( 0 1

0 1 0

1 (µk + θk) (1− µk − θk)

)
.
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The state transition can be illustrated by the scheme in the figure (2.3).

0 1

0

1

µk + θk

1− µk − θk

Figure 2.3: State transition of model 2 for action 1 and also for action 0

Optimization problem model 2

The optimization problem differs from the optimization problem (P1) for the model
1 in the constraint, which states that in every time instant we invest in M companies
only on average. The problem, for any discount factor β, is to find a joint policy π
maximizing the objective given by the β-average aggregate reward starting from the
initial time instant 0 subject to the family of allocation constraints, i.e.,

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(P2)

subject to Bπ0

[∑
k∈K

ak(t)

]
= M.

In this model we do not need to relax the problem, because it is already in the
form which we will obtain by the Whittle relaxation. The consequence of it is that
we obtain the optimal solution for the original problem, not only a nearly-optimal.
Now we can continue with decomposition into the single company subproblems. In
the following we do not need to take care of the fact that we want to invest in M
companies. The solution method is similar as before, the problem after Lagrangian
relaxation and decomposition is the same as in the model 1 (formula (2.8)) , so we
study the company k subproblem

max
π̃k∈ΠX,ak

Bπ̃k0

[
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

]
. (2.15)

2.2.3 Solution model 2

In this section we identify a set of optimal policies π̃∗k to (2.15) for all companies
k ∈ K, and using them we construct a joint policy π optimal for the problem (P2).

Optimal solution to single-company subproblem model 2

Problem (2.15) falls into the framework of restless bandits and can be optimally solved
by assigning a set of index values νk,n to each state n ∈ Nk under certain conditions
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(Niño-Mora (2007)).

Let us denote for company k, νk,0 := 0 and

νk,1 := −ck(1− µk − θk) +Rkµk − d1
kθk + d0

kµk

Then we can prove the following result.

Proposition 2.2.1. (Indexability) For problem (2.15) and company k, the follow-
ing holds:

i) if ν ≤ νk,1, then ak = 1, i.e. it is optimal to invest in company k in state 1;

ii) if ν > νk,1, then ak = 0, i.e. it is optimal not to invest in company k in state 1;

iii) if ν ≤ νk,0, then ak = 1, i.e. it is optimal to invest in company k in state 0;

iv) if ν > νk,0, then ak = 0, i.e. it is optimal not to invest in company k in state 0;

Proof. Similarly to model 1 to prove this proposition we need to establish indexability
of the problem and compute the index values following the survey Niño-Mora (2007).
Indexability is in fact equivalent to existence of the quantities with stated properties,
and is valid because any binary-state MDP is indexable (Niño-Mora (2007)). On the
other hand, in disparity with the model 1 we do not need to use the AG-algorithm,
because we have only two states and one of them corresponds to the company that
has already succeeded or bankrupted. Therefore, we adopt the similar proof from
Novak (2011) to this model.

Let us denote the optimal value function by V̂k,n for company k and state n. The
Bellman equation for state 1 and company k, after substitution of definitions of the
action-dependent parameters, the formulas for expected rewards and expected one-
period attention consumption for a state 1, we obtain

V̂k,1 =β
[
(µk + θk)V̂k,0 + (1− µk − θk)V̂k,1

]
− d0

kµk+

+ max{−ck(1− µk − θk) +Rkµk − d1
kθk + d0

kµk − ν; 0}
(2.16)

where the first term in the braces corresponds to investing into the company and the
second term corresponds to not investing.

The Bellman equation for V̂k,0 is:

V̂k,0 = max{0− ν + βV̂k,0; βV̂k,0}. (2.17)

From the Bellman equation (2.16) we can see that for deciding whether it is optimal
to invest or not to invest in state 1, we do not need to know V̂k,0 and V̂k,1. If we want
to invest the first term in braces should be larger than the second in the equation
(2.16). We can write condition for investing to the company in state 1:
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−ck(1− µk − θk) +Rkµk − d1
k + d0

kµk ≥ ν

We propose the term on left side of the inequality to be νk,1, thus we proved the
statement (2.2.1).

Analogous to above we can show that if

νk,1 ≤ ν,

then the action corresponding to not investing is larger than the action corresponding
to investing. In other words, it is optimal not to invest ( that proves the statement
ii) in proposition (2.2.1)).

Similarly goes the proof for statements iii) and iv) in the proposition 2.2.1. Under
assumption that the investor invests we can derive V̂k,0 = ν

(1−β)
from the Bellman

equation (2.17). In the case, that we assume that the investor does not invest, we
derive that

V̂k,0 = 0.

Therefore, when it is optimal to invest, action 1 is better than or equal to action
2, we obtain condition:

−ν − β
(

ν

1− β

)
≥ −β

(
ν

1− β

)
We have assumed that ν ≤ νk,0 and we know that νk,0 = 0. From the condition,

we can observe that ν ≤ 0, so it is satisfied.

Analogous for the case, when it is optimal not to invest (action 1 is worse than or
equal to action 2), we obtain similar condition that is satisfied when ν ≥ 0. Because
we assumed that ν ≥ νk,0, where νk,0 = 0 it is also true.

Index rule for the problem model 2

The problem requires to invest money inM companies, then at any time instant t we
propose to invest money to the M companies with the highest actual index νk,Xk(t),
for which hold that νk,Xk(t) ≥ 0.

Note that in this case the time-average version of indices, myopic version and
version under discounted criterion are the same. These indices for each state nk ∈ Nk
are

νk,0 = 0



2.3. VENTURE CAPITALISTS INVESTMENTS MODEL 3 33

νk,1 = −ck(1− µk − θk) +Rkµk − d1
kθk + d0

kµk

It is also interesting to note that being myopic is optimal for the long-term, both
discounted and time-average.

2.3 Venture capitalists investments model 3

2.3.1 Problem description model 3

Equivalently as in the model 2, we point out only the differences with the model 1.
Model 3 takes the important features from both model 1 and model 2, now represents
investments in industries rather than in companies. The principal modification from
model 1 is that investments do not leave to state 0, but they come back to state ∗, so
the investor can again invest in them. Contrary to model 2, passive investment does
not exclude the company from the portfolio. This leads us to assumption that we
look on companies from the industry level. Therefore, we assume that each industry
is represented by a typical company for that particular industry.

2.3.2 MDP formulation model 3

Companies and industries model 3

The differences between model 1 and model 3 are only in the following parameters

• Nk := {∗, 1} is the state space, where state ∗ represents a company from a
particular industry without any investment or a company that had already
been in investor’s portfolio, but it either succeeded or bankrupted, and state
1 means that a company is in investors portfolio, (he had invested, but the
company neither succeeded nor bankrupted );

• Ra
k :=

(
Ra
k,n

)
n∈Nk

, where Ra
k,n is the expected one-period reward earned by

investor for company k at state n if action a is decided at the beginning of a
period; in particular,

R1
k,∗ := −c1

k, R1
k,1 := −c1

k · (1− µk) +Rµk,
R0
k,∗ := 0, R0

k,1 := −c0
k · (1− θk)− dkθk

Where R > c1
k > c0

k and d > c0
k.

• P a
k :=

(
pak,n,m

)
n,m∈Nk

is the kth company stationary one-period state-transition
probability matrix if action a is decided at the beginning of a period, i.e., pak,n,m is
the probability of moving to state m from state n under action a; in particular,
we have
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P 1
k :=

( ∗ 1

∗ 0 1

1 µk 1− µk

)
, P 0

k :=

( ∗ 1

∗ 1 0

1 θk 1− θk

)
.

The state transition can be illustrated by the schemes in figures (2.4) and (2.5).

∗ 1

0

1

θk

1− θk ∗ 1

1

0

µk

1− µk

Figure 2.4: State transition of
model 3 for action 0

Figure 2.5: State transition of
model 3 for action 1

Optimization problem VCs investment model 3

The optimization problem is the same as the optimization problem from the model 1,
so it states that in every time instant we invest in exactly one company. The problem,
for any discount factor β, is to find a joint policy π maximizing the objective given
by the β-average aggregate reward starting from the initial time instant 0 subject to
the family of sample path action constraints, i.e.,

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(P3)

subject to

[∑
k∈K

ak(t)

]
= 1, for all t ∈ T .

In this model we again need to relax the problem. Relaxation and decomposition
is the same as in the model 1, so it leads us to the same company k subproblem as
(2.8), so we study the company k subproblem

max
π̃k∈ΠX,ak

Bπ̃k0

[
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

]
. (2.18)

2.3.3 Solution model 3

Similarly as in the previous models we identify in this section a set of optimal policies
π̃∗k to (2.18) for all companies k, and we use them for constructing a joint policy π
which is not necessarily optimal for problem (P3).

Optimal solution to single-company subproblem model 3

Problem (2.18) can be solved by assigning a set of index values νk,n to each state
n ∈ Nk under condition of indexability (Niño-Mora (2007)), because it falls into the
restless bandits framework. Therefore, we first prove the indexability for this problem.
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Proposition 2.3.1. (Indexability) The problem (2.18) is indexable and values
−∞ ≤ νk,n ≤ ∞ exists for all n ∈ Nk such that the following holds for every state
n ∈ Nk:

i) if ν ≤ νk,1, then ak = 1, i.e. it is optimal to actively invest in the company k
in state 1.

ii) if ν > νk,1, then ak = 0, i.e. it is optimal not to actively invest in the company
k in state 1.

iii) if ν ≤ νk,∗, then ak = 1, i.e. it is optimal to actively invest in the company k
in state ∗.

iv) if ν > νk,∗, then ak = 0, i.e. it is optimal not to actively invest in the company
k in state ∗.

Proof. Indexability is valid because in Niño-Mora (2007) was proven that any binary-
state MDP is indexable.

Now we can characterize the index values for problem (2.18).

Theorem 2.3.2. The Whittle index values for the problem (2.18) are as follows,

• index value for a company k in the state ∗ is

νk,∗ =
−c1

k(1− β + βµk)

(1 + βµk)
+ β

(
−c1

k(1− µk) +Rkµk
1 + βµk

)
=
−c1

k + βRkµk
1 + βµk

• index value for a company k in the state 1 is

νk,1 := −c1
k(1− µk) +Rµk +

[
c0
k(1− θk) + dkθk

]
·
(

1− β + βµk
1− β + βθk

)
so satisfy the indexability conditions i) - iv) from the indexability proposition

(2.3.1).

2.3.4 Proof of the theorem (2.3.2)
The proof goes similarly as in the model 1 and we use again the AG-algorithm, but
first we introduce the Bellman equations for both states.

The Bellman equation for state ∗ and company k is

V̂k,∗ = max{R1
k,∗ − νW 1

k,∗ + βV̂k,1;R0
k,∗ − νW 0

k,∗ + βV̂k,∗},

and for state 1 and company k is,
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V̂k,1 = max{R1
k,1 − νW 1

k,1 + β[µkV̂k,∗ + (1− µk)V̂k,1];

R0
k,1 − νW 0

k,1 + β[θkV̂k,∗ + (1− θk)V̂k,1]},

after substitution for expected rewards and expected one-period attention consump-
tion, the Bellman equations for states ∗ and 1 respectively are

V̂k,∗ = max{−c1
k − ν + βV̂k,1; βV̂k,∗}, (2.19)

V̂k,1 = max{−c1
k(1− µk) +Rkµk − ν + β[µkV̂k,∗ + (1− µk)V̂k,1];

−c0
k(1− θk)− dkθk + β[θkV̂k,∗ + (1− θk)V̂k,1]}.

(2.20)

In all the Bellman equations above the first term in braces corresponds to active
investing and the second term corresponds to passive investing (i.e. not active in-
vesting).

1. Step. In the first step the active set is S0 = {∅}, i.e. the investor does not
invest actively in any of states. Firstly we want to find index value candidates.

Lema 2.3.3. Under active set S0 = {∅}, index value candidates are

νS0k,∗ := −c1
k + β

(
−c0

k(1− θk)− dkθk
1− β + βθk

)
,

νS0k,1 := −c1
k(1− µk) + c0

k(1− θk) +Rkµk + dkθk + β(θk − µk)
(
−c0

k(1− θk)− dkθk
1− β + βθk

)
.

Proof. For the active set S0 = {∅}, when we do not actively invest in any of
states, we can straightforward from the Bellman equation (2.19) obtain that
V S0k,∗ = 0, and for not active investment that must be valid is

νS0k,∗ = −c1
k + βV S0k,1 . (2.21)

We need to calculate V S0k,1 . Straightforward from the equation (2.20), we obtain

V S0k,1 =
−c0

k(1− θk)− dkθk
(1− β + βθk)

,
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after substitution for V S0k,1 we get that the equation for not active investment

is satisfied ν ≥ νS0k,∗, where ν
S0
k,∗ = −c1

k + β
(
−c0k(1−θk)−dkθk

1−β+βθk

)
is the index value

candidate for state ∗.

We continue with state 1. From the equation (2.20) we get

νS0k,1 = −c1
k(1− µk) +Rkµk − βµkV Sk,1 + c0

k(1− θk) + dkθk + βθV S0k,1 ,

after substitution for V Sk,1 we can derive

νS0k,1 − c
1
k(1− µk) + c0

k(1− θk) +Rkµk + dkθk + β(θ − µk)
(
−c0

k(1− θk)− dkθk
1− β + βθk

)
.

Now we want to compare νS0k,∗ with ν
S0
k,1 to find which one of them is an index

value.

Lema 2.3.4. Under policy S0 = {∅} holds that νS0k,1 ≥ νS0k,∗.

Proof. If we subtract νS0k,∗ from νS0k,1 we obtain

c1
kµk + c0

k(1− θk) +Rkµk + dkθk + β(θk − µk − 1)

(
−c0

k(1− θk)− dkθk
(1− β + βθk)

)
This is always non-negative because all terms without β are non negative. For
the term β(θk − µk − 1)

(
−c0k(1−θk)−dkθk

(1−β+βθk)

)
holds that 0 < β < 1; (θk − µk − 1)

is negative and −c0k(1−θk)−dkθk
(1−β+βθk)

is also negative, so together it is non-negative.
Therefore, we proved the lemma (2.3.4).

We have shown that νSk,1 is not only the index value candidate, but it is an index
itself. In the next step we include state 1 into the active set S1. Note that in
this step we proved the statements i) and ii) from the proposition (2.3.1), what
can be observed by substitution νk,1 into the equation (2.20).

2. Step. The active set is S1 = {1}, i.e. the investor invests actively in state 1
and does not invest actively in state ∗. We have not got index value only for
state ∗, therefore in this step we have only one index value candidate, which
directly is an index value for state ∗
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Lema 2.3.5. Under policy S1 = {1}, index value for state ∗ is

νk,∗ =
−c1

k(1− β + βµk)

(1 + βµk)
+ β

(
−c1

k(1− µk) +Rkµk
1 + βµk

)
Proof. From the first step we use the equation for not active investment that
must be satisfied

νk,∗ = −c1
k + βV S1k,1 . (2.22)

We need to derive V S1k,1 for S1 = {1}.

Based on the Bellman equation (2.20) and under assumption that the investor
invests in state 1 we derive the balance equation

V S1k,1 = βV S1k,1 − c
1
k(1− µk) +Rkµk − ν − βµkV S1k,1 ,

straightforwardly we obtain

V S1k,1 =
−c1

k(1− µk)Rkµk − ν
1− β + βµk

.

After substitution for V S1k,1 into (2.22) it leads us to

νS1k,∗ =
−c1

k(1− β + βµk)

(1 + βµk)
+ β

(
−c1

k(1− µk) +Rµk
1 + βµk

)

for which the condition ν ≥ νS1k,∗ is valid. Because in this step we have only one
index value candidate, it is the index value νS1k,∗.

Similarly as in the previous step we now proved the statements iii) and iv)
from the proposition (2.3.1), what is the consequence of the obtained index and
equation (2.19).
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2.3.5 Index rule for the original problem model 3

The original problem (P3) requires to invest money to exactly one company at a time
instant t. We propose to invest money in a time instant t, to the industry k̂(t) with
the highest actual index, i.e.,

k̂(t) := arg max
k∈K

νk,Xk(t).

Let us recall the indices. For 0 < β < 1, the index value for industry k is one of
the following three index values depending on state of the industry k

νk,∗ =
−c1

k(1− β + βµk)

(1 + βµk)
+ β

(
−c1

k(1− µk) +Rkµk
1 + βµk

)
,

νk,1 = −c1
k(1− µk) + c0

k(1− θk) +Rkµk + dkθk + β(θk − µk)
(
−c0

k(1− θk)− dkθk
1− β + βθk

)
.

Under β = 1, we obtain the time-average version of the index values for the model 3

ν̄k,∗ =
−c1

k +Rkµk
1 + µk

,

ν̄k,1 = −c1
k(1− µk) +Rkµk + dkµk +

c0
k(1− θk)µk

θk
.

Finally, we just remark that β = 0 gives the myopic version of the index values for
the model 3

ν̃k,∗ = −c1
k,

ν̃k,1 = −c1
k(1− µk) + c0

k(1− θk) +Rkµk + dkθk.

Note that myopic version of the index values is the same as in the model 1.

2.4 Summary of all VCs investments models
In this chapter we proposed three different models in the restless bandits framework
describing VCs investments into entrepreneurial companies. A brief overview of these
models could be found in table (2.1).
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Table 2.1: An overview of VCs investments models

Model 1 Model 2 Model 3

Industry More companies More companies Single company
representation in industry in industry in industry

Active to invest to invest = to invest
action (a=1) actively to include in the portfolio actively

Passive not to invest actively not to invest = not to invest actively
action (a=0) (passive investment) to exclude from the portfolio (passive investment)

Set of states {∗, 0, 1} {0, 1} {∗, 1}
(Nk)

Number of 1 M 1
investor’s investments on average
per time period

It is important to mention that this was not done before, what is also the reason
why we proposed three models and not only one. A particular investor is likely to
focus on a specific goal so he can choose which of the proposed models is the most
suitable. The restless bandits model allowed us to dispose of Sorensen’s restrictive
assumption that investing into the one industry is informative only about this in-
dustry. The reason is that indices for each company/industry change according to
our action and compete against each other. If we invest in one particular company
the index evolution is affected by it and in the following step it is influenced by the
chosen company/industry. In all of the models we can invest on the industry level,
but it is natural mainly for model 3. Model 1 and model 2 can be used for investing
to particular companies. In the third model we replace the assumption that there are
no arrivals, by allowing companies to be available for another investment after they
have succeeded or bankrupted.

The indices for models are different from each other. At first it is hard to find
similarities. But we can observe that the main idea is to evaluate the return from
the investment and combine it with the future evolution by different incorporation
of discount factors. Interesting is the second model, because in the situations which
could be described by it, it is not important to take into account the future evolution
and discount factor. The indices look to be rather complicated. It is caused mainly
by considering different costs for active investments c1

k and inactive investments c0
k;

the same is true for bankruptcy penalties d1
k and d0

k. Thus we finish this chapter by
presentation of the indices in which d1

k = d0
k = 0 and c1

k = c0
k = ck.

Model 1

νM1
k,0 = 0
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νM1
k,∗ =

−ck + βRkµk
(1 + βµk)

νM1
k,1 =ck(µk − θk) +Rkµk(1− β + βθk)

Model 2

νM2
k,0 := 0

νM2
k,1 := −ck(1− µk − θk) +Rkµk

Model 3

νM3
k,∗ =

−c1
k + βRkµk

(1 + βµk)
= νM1

k,∗

νM3
k,1 = Rkµk +

ck(µk − θk)
1− β + βθk



Chapter 3
Partially observable Markov decision
processes and learning methods

The goal of the thesis is to deal with uncertainty in the VCs investments by
adopting learning into the proposed solution. The first two chapters introduced the
multi-armed restless bandits framework and three different models for describing VCs
investments in entrepreneurial companies are introduced there as well. The aim of
this chapter is to describe the most important approaches and frameworks necessary
for the incorporation of learning. To this end we refer to partially observable Markov
decision processes. Their definition is followed by a description of the Bayesian up-
dating and the chapter is finished by a short overview of a behavioural study which
validates the capability of the Bayesian updating in combination with the multi-armed
restless bandits to describe reality adequately.

3.1 Partially observable Markov decision processes
Partially observable Markov decision processes (POMDPs) generalize MDPs (intro-
duced in section (1.1)). The underlying system is an MDP, but we cannot observe the
exact value of the state in a time instant t, which we denote nt. On the other hand,
we observe the noise-corrupted partial information about the system state in each
time instant, which we denote xt. Further by a we denote the chosen action and by
0 : t observations received up to instant t. We can reformulate this problem as a fully
observable MDP in which decision state is the conditional probability distribution of
system state conditioned on previously received observations (see Williams (2007)).

Let us denote,

• Nt = p(nt|x0:t−1; a0:t−1) - the conditional probability distribution of the system
state,

• gt(nt, at) - the reward per period,

• gT (nT ) - the terminal reward.

42
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Given the conditional probability distribution of the system state we can calculate
the expected value of the reward

gt(Nt, at) =
∑
nt

gt(nt, at)p(nt|x0:t−1; a0:t−1),

gT (NT ) =
∑
nT

gT (nT )p(nT |x0:T−1; a0:T−1),

so the reward per state and terminal reward can be expressed as functions of the
underlying system, what is one of the fundamental POMDPs assumptions. POMDP
solution policy prescribes the optimal action for each possible belief state for all pos-
sible states. Optimal policy is the sequence of optimal actions and optimal policy
maximizes the expected reward over an infinite horizon.

POMDPs are P-SPACE hard (i.e. as hard as any problem which is solvable using
an amount memory that is polynomial in the problem size, and unlimited computa-
tion time (Blondel and Tsitsiklis (2000) and Papadimitriou and Tsitsiklis (1987))).
The study by Michael L. Littman and Kaelbling (1995) found the solution times in
order of hours for the problem with fifteen underlying system states and observations
values and four actions.

The POMDP modelling framework is very powerful to model a variety of real-
world situations. Nowdays it is hugely used in artificial inteligence and automated
planning applications. Examples of such applications are robot navigation problems,
sensor management and all planning applications under uncertainty.

3.2 Bayesian updating
In this thesis we would like to optimize our investment selections under uncertainty.
This is often the case in finances. POMDP is a suitable framework for description of
such situations because the state process is not observed directly. Thus we have only
a certain belief that the unobservable system is in state xk. POMDP is Markovian,
therefore after we choose the action we earn a reward and based on them we update
our belief. This belief could be updated by Bayesian updating, which we introduce
in this section following Pastor and Veronesi (2009).

In general, suppose that we are uncertain about an arbitrary parameter µ. At
the beginning we have normally distributed prior beliefs about µ with mean µ0 and
variance σ2

0. After observing T independent signals st about µ, we obtain revised
posterior belief according to the Bayes’ rule. The independent signals are st = µ+ εt,
where εt is normally distributed with zero mean and known variance σ2; by s̄ we
denote the average signal value s̄ = 1

T

∑T
t=1 st. Our posterior belief is then normally

distributed with mean
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µ̄T = µ0 +

1
σ2
0

1
σ2
0

+ T
σ2

+ s̄
T
σ2

1
σ2
0

+ T
σ2

,

and variance

σ̄2
T =

1
1
σ2
0

+ T
σ2

.

This definition fulfils our expectations that learning reduces uncertainty. The
uncertainty about parameter µ is the posterior variance σ̄2

T , which decreases with
increasing number of observations T . An observed signal st that is higher than the
expectation, st > µ̄t−1, is rising our expectations and a signal that is smaller than its
expectation is lowering our expectations.

3.3 Experimental evidence from simulating real world
financial systems

At the end of this chapter we briefly present a study by Payzan-LeNestour (2012) in
which the authors test experimentally the suitability of the representation of real life
financial situations by restless bandits with incorporated Bayesian updating. More
preciously, first they try to examine if investing in financial assets is one of the areas
were humans can achieve Bayesian reasoning. Secondly, they examine it by incor-
poration of the multi-armed restless bandits suitable mainly for description of more
structured financial instruments that trade exclusively in the over-the-counter market.

In the paper they present a six-armed restless bandits board game, where players,
after having chosen an action (investing in investment opportunity) receive reward or
in some situations penalty. The player uses the Bayesian updating for understanding
where she should invest. They carry out their experimental study on sixty-one un-
dergraduate students from École Polytechnique Fédérale in Lausanne.

They empirically prove that humans act in the Bayesian way, so people can be
good learners in sophisticated problems. The result is supported by results from
other papers (Bruguier and Bossaerts (2010)) that humans can extract informations
from financial data better than computers. The paper also shows that economical
performance of agents learning in the Bayesian way is much better than adaptive
learners. An important conclusion for this paper is that, unlike in general, in finan-
cial applications as VCs investing they learn in a sophisticated way. This is described
adequately by incorporation of the Bayesian updating into the multi-armed restless
bandits problems.



Chapter 4
Learning venture capitalists investments
model and simulation study

In this chapter we introduce a learning model for VCs investments in entrepreneurial
companies based on model 3 from the first chapter. We have chosen model number 3,
because we believe that it has the best descriptive power for the real VCs investments.
Recall that in model 3 we solve the problem with the option to invest in the same
industry more than once, on the other hand we assume that we invest in the industry
level. This restriction has the advantage that it helps us to propose a model which
could be confronted with the results in Sorensen (2008).

We incorporate uncertainty about the success probability, because we assume that
it is not observable. Therefore we define the model in the partially observable MDPs
environment (POMDPs) and we use the Bayesian updating for revising our belief
about success probability.

In this chapter we first describe the model and define it as an POMDP. Next we
introduce the theoretical background for the simulation study. We show other refer-
ence strategies and at the end we present results of an extensive simulation study.

4.1 Learning VCs investments model

4.1.1 Problem description learning VCs investments model

At each time period the investor (VC) chooses among K possibilities where to in-
vest, denoted k = 1, 2, ..., K − 1. Each possibility is an industry that is represented
by an entrepreneurial company belonging to this industry. For instance such in-
dustries could be: Health/Biotechnology, Communications/Media, Computer Hard-
ware/Electronics, Software, Consumer/Retail etc. The possibility K represents the
option of not investing in any company.

45
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The outcome of an investment is success (W ) or failure (F ), as indicated by
yk(t) ∈ {W,F}. The success probability µk of each company is unknown and unob-
servable. We assume that this probability is constant over time, but can be different
for various industries. In the case of the known company’s state this probability is
given as µk = Pr[yk(t) = W ]. Not knowing µk, the investor has a prior belief with
distribution Dk(0). The distribution Dk(t) varies with time. We represent investor’s
belief as the empirical mean of the distribution Dk(t) and we denote it xk(t). There-
fore the prior belief is given by xk(0). After each investment, the investor is updating
this belief using the Bayes rule. The support of xk(t) is the interval [0, 1], representing
all possible values of µk.

The binary outcomes help to simplify the Bayesian updating process. We can as-
sume that the investor’s initial beliefs are β-distributed, Dk(0) = Beta(uk(0), vk(0)).
Let jk(t) be the number of past successes and lk(t) be the total number of past in-
vestments in industry k and a time instant t. The updated beliefs are then simply
Beta(uk(t), vk(t)),where uk(t) = uk(0)+ jk(t) and vk(t) = vk(0)+ lk(t)− jk(t). There-
fore we can say that uk(t) corresponds to the number of past successes and vk(t)
corresponds to the number of past failures. As the number of investments increases,
the mass of the distribution becomes concentrated at the empirical success rate,
defined as xk(t) = uk(t)

uk(t)+vk(t)
, which also equals the mean of the Beta(uk(t), vk(t)) dis-

tribution. In other words, given the investor’s beliefs, xk(t) is the expected value of µk.

In the investing process we look only on successes W and failures F . In the
following we incorporate also the possibility that the company hibernates and res-
urrects. We denote it H and R respectively. H can happen when the investor is
active but the company will not succeed in that particular time instant. In such a
case our belief changes and it falls. The reason is that the time delay in becoming
successful cause the investor additional costs, thus it lowers our perspective of the
value of the firm. R can take place when the investor is passive and the company
does not get bankrupt in that particular time instant. In this case our belief rises,
because we experienced that the company is viable. After the company bankrupts
the success probability obviously falls. The success probability rises only when we
are active concerning the company and the time instant ends with company’s success.

To summarize, if the investor invests in the company k, when being in the belief
state xk(t), then at the end of the period the investor receives feedback:

ok,x(t) =

{
W w.p. xk(t)
H w.p. (1− xk(t))

If the investor does not invest in the company k when it is in the belief state xk(t),
then at the end of the same period the investor receives feedback:
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ok,x(t) =

{
F w.p. θk
R w.p. (1− θk)

In the updating process the number of past successes uk(t) and failures vk(t) varies.
Therefore, we update the distribution of our belief Dk(t). Since uk(t) and vk(t) grow
with t and, therefore, take an unbounded number values, we have to bound the maxi-
mum number of events. LetM be the maximum number of past successes and failures.
Then the interval [0, 1] of all possible success probability values is partitioned into a
finite number of intervals. When at least one of the uk(t) or vk(t) is equal toM+1 we
have to round it. We round our belief to the closest lower belief in which the parame-
ter that wasM+1 is now equal toM and the other parameter is lower or equal toM .

Another feature we should be aware of is that after the company’s success (initial
public offering (IPO) or acquisition) or after its bankruptcy we set our new prior
belief to be equal to the last belief for this particular industry.
We do not incorporate arrivals into this model, therefore it falls into the multi-armed
restless bandit framework. By letting the company transition from a success or a
failure to the original state, the model recovers arrivals. Because success probability
is not observable we make a POMDP formulation of this problem.

4.1.2 POMDP formulation of learning VCs investments model

We denote by A := {0, 1} the action space. Here, action a := 0 means that the
investor does not invest actively in the company, and action a := 1 means that the
investor invests actively in the company. This action space is the same for every
company k.

Each company/industry k is defined independently of the other companies/industries
as the tuple (

Nk, (W a
k)a∈A , (R

a
k)a∈A , (P

a
k)a∈A

)
,

where

• Nk := ∗ ∪ Xk is the state space.

State ∗ := [n∗1, n
∗
2] represents the prior belief distribution parameters about

the company without any investments or about the company representing an
industry which already belongs to the investor’s portfolio but it has already
succeeded or bankrupted; and Xk := [n1, n2] is the belief state distribution
(posterior) of the kth company’s success probability. In other words, if the
company is in the state Xk := [n1, n2] it means that the company is in the
current investor’s portfolio. It holds that n∗1, n∗2, n1, n2 ≤ M , where M is the
biggest possible number of past successes and failures.
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When the company is in the state Xk than our belief is represented by xk =
n1

n1+n2
, similarly when the company is in the state ∗ the belief is represented by

xk =
n∗1

n∗1+n∗2
. When the company is going from the state Xk to state ∗ we set

[n∗1, n
∗
2] := [n1, n2].

• W a
k :=

(
W a
k,n

)
n∈Nk

, where W a
k,n is the (expected) one-period attention con-

sumption required by company k at state n if action a is decided at the begin-
ning of a period; in particular, for any n = [n1, n2] ∈ Nk,

W 1
k,n := 1, W 0

k,n := 0;

• Ra
k :=

(
Ra
k,n

)
n∈Nk

, where Ra
k,n is the expected one-period reward earned by the

investor for company k at state n = [n1, n2] ∈ Nk if action a is decided at the
beginning of a period; in particular,

R1
k,[n∗1,n

∗
2] := −c1

k, R
0
k,[n∗1,n

∗
2] := 0,

R1
k,[n1,n2] := −c1

k · (1− xk(t)) +Rkxk(t),

R0
k,[n1,n2] := −c0

k(1− θk)− dkθk

Where Rk > c1
k > c0

k ,d > c0
k, and xk(t) = n1

n1+n2
or xk(t) =

n∗1
n∗1+n∗2

• P a
k :=

(
pak,n,m

)
n,m∈Nk

is the company k stationary one-period state-transition
probability matrix if action a is decided at the beginning of a period, i.e., pak,n,m
is the probability of moving to state m = [m1,m2] from state n = [n1, n2] under
action a; in particular, we have

p0
k,[n∗1,n

∗
2],[n∗1,n

∗
2] = 1

p1
k,[n∗1,n

∗
2],[n1,n2] = 1

p0
k,[n1,n2],m =

{
θk ifm = [m∗1,m

∗
2] ,where [m∗1,m

∗
2] := [n1, n2 + 1]

1− θk ifm = [n1 + 1, n2]

p1
k,[n1,n2],m =

{
xk(t) ifm = [m∗1,m

∗
2] ,where [m∗1,m

∗
2] := [n1 + 1, n2]

(1− xk(t)) ifm = [n1, n2 + 1]

The dynamics of the company k is thus captured by the state process nk(·) and
the action process ak(·), which correspond to state nk(t) ∈ Nk and action ak(t) ∈ A
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at all time instants t ∈ T . As a result of deciding action ak(t) in state nk(t) at a time
instant t, the company k uses the allocated attention, earns the reward, and evolves
its state for the time instant t+ 1. If nk(t) ∈ Nk, then the state evolution is the same
as the belief’s distribution evolution.

To summarize:

• If the investor does not invest in the company k at time t (ak = 0), the evolution
of the investor’s belief has the distribution:

Dk(t+ 1) =

{
Beta(n1(t), n2(t) + 1) for ok,x(t) = F

Beta(n1(t) + 1, n2(t)) for ok,x(t) = R

• If the investor invests in the company k at time t (ak = 1), the evolution of the
investor’s belief has the distribution:

Dk(t+ 1) =

{
Beta(n1(t) + 1, n2(t)) for ok,x(t) = W

Beta(n1(t), n2(t) + 1) for ok,x(t) = H

which reflects the Bayesian updating in the company/industry k after observing
success, failure, hibernation or resurrection.

4.1.3 Optimization problem: learning VCs investments model

After the model definition, we define the optimization problem following the notation
introduced in the chapter 2.

The problem is to find a joint policy π maximizing the objective given by the
discounted aggregate reward starting from the initial time instant 0 subject to the
family of sample path allocation constraints, i.e.,

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(BP)

subject to

[∑
k∈K

ak(t)

]
= 1, for all t ∈ T .

4.1.4 Relaxation and decomposition

Problem (BP) can be relaxed by requiring to invest in one company only on average
as proposed in Whittle (1988), which is further approached by incorporating a La-
grangian multiplier ν and it can be decomposed into a parameterized optimization
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problem below. Notice that any joint policy π ∈ ΠX,a defines a set of single-company
policies π̄k for all k ∈ K, where π̄k is a randomized and non-anticipative policy de-
pending on the joint state-process X(·) and deciding the company-k action process
a(·). We write π̄k ∈ ΠX,ak and we therefore study the company-k subproblem

max
π̃k∈ΠX,ak

Bπ̃k0

[
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

]
. (4.1)

The main idea of our approach is to identify a set of optimal policies π̄∗k for (4.1)
for each k ∈ K, and using them to construct a joint heuristic policy π, feasible though
not necessarily optimal for problem (BP).

4.1.5 Optimal solution to single company subproblem

As we explained in the chapter 2 and in the appendix (A. 1), in certain cases, problem
(4.1) can be optimally solved by assigning a set of index values νk,n to each state
n ∈ Nk (Niño-Mora (2007); Jacko (2010a)). If this is the case, the problem is called
indexable. Therefore we propose following conjecture

Conjecture 4.1.1. (Indexability) The problem (4.1) is indexable.

In contrast with the models presented in the chapter 2, this learning model falls
into the real-state multi-armed restless bandits. Therefore, computation in closed-
form of the Whittle index is ruled out for this model. We exploit the algorithm used in
Villar (2012) for calculating Whittle index. In Villar (2012) they focus mainly on the
applications on elusive targeting and multi-target tracking. To make the algorithm
valid for financial applications we have done several modifications. Below we briefly
introduce the main idea behind the algorithm.

Algorithm for calculating Whittle index for the real-state multi-armed
restless bandits

We use notation that is described more extensively in the appendix (A. 2) and in
(A. 3). For a given active set S, we denote by 〈a,S〉 the policy that choose action
a ∈ {0, 1} in a initial time instant and adopts the S-active policy thereafter. For a
time instant t using the notation n = [n1(t), n2(t)] and ~n = [n1(t + 1), n2(t + 1)], we
define marginal reward measure

R〈1,S〉n −R〈0,S〉n = R1
n −R0

n + β
∑
~n

[p1
n,~n − p0

n,~n]RS
~n ,

and marginal work measure

W 〈1,S〉
n −W 〈0,S〉

n = W 1
n −W 0

n + β
∑
~n

[p1
n,~n − p0

n,~n]W S
~n .
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Then based on Niño-Mora (2002, 2006) for the company k in state nk ∈ Nk we can
calculate the Whittle index by means of the formula (see appendix (A. 2) especially
equation (A.6))

νk,n =
R
〈1,S〉
nk −R〈0,S〉nk

W
〈1,S〉
nk −W 〈0,S〉

nk

, (4.2)

In the simulation algorithm, we use the formula above to calculate the index for
each company k and for every state nk ∈ Nk. Because the equations for marginal
reward measure and marginal work measure is the certain sum through all the possible
future states we have to simulate each index value more than 104 times and as the
index value we select the mean from obtained values.

4.1.6 Heuristic rule for the original problem

The original problem (BP) prescribes to invest exactly in one company at a time
instant t, therefore we need to propose a heuristic rule for it.

Rule 1. At any time instant t the investor has to invest in the company k̂(t) with
the highest actual index

k̂(t) := arg max
k∈K

νk,Xk(t).

4.2 Simulation study
We study the performance of our proposed heuristic rule by a number of different
simulations. In the simulations we first calculate the indices as proposed above. Then
we simulate possible evolutions under our heuristic rule and under alternative rules.
We have carried out simulations for more than one hundred different scenarios and
for each scenario we simulate it 103 times. In the figures we show the average from
the obtained values with confidence intervals. In this part of the thesis, we present
only a representative sample of all simulations. The simulation study is divided into
three sections: alternative rules, β-study and selection from various scenarios.

4.2.1 Alternative rules

Because investment strategies of real VCs are not publicly known, we compare our
heuristic rule mainly against usually assumed strategies, where investor chooses to
invest in the company with the highest return on investment (ROI). Unfortunately,
there is not any official definition of ROI in the multi-armed restless bandits envi-
ronment. Usually ROI is calculated as a ratio of the net return and the cost of an
investment. Thus we propose basic ROI rule for the company k in the multi-armed
restless environment as
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ROI =
(R− c1

k)− (c0
k − dk)

c1
k − c0

k

. (4.3)

The second rule is the ROI in which we try to incorporate also probabilities. The
success probability is unknown and for observability of the improvement caused by
our learning we do not want to incorporate our belief xk(t) into the formula, thus we
incorporate only θk into the stochastic version of ROI

SROI =
(R− c1

k)− (c0
k(1− θk)− dkθk)

c1
k − c0

kθk
. (4.4)

For evaluation of the learning significance we define the unobservable version of ROI
( the UNROI), in which we use the probabilities that are initially unknown for our
index solution. This comparison could show us what is the "price" of the uncertainty.

UNROI =
(Rµk − c1

k(1− µk))− (c0
k(1− θk)− dk(θk))

c1
k(1− µk)− c0

k(1− θk)
. (4.5)

The last alternative rule is the closed-form Whittle index for model 3 in the chapter 2.
This rule also uses the unobservable parameters. The model 3 index value

• for company k in state ∗ is

νk,∗ =
−c1

k(1− β + βµk)

(1 + βµk)
+ β

(
−c1

k(1− µk) +Rkµk
1 + βµk

)
=
−c1

k + βRkµk
1 + βµk

,

• for company k in state 1 is

νk,1 := −c1
k(1− µk) +Rµk +

[
c0
k(1− θk) + dkθk

]
·
(

1− β + βµk
1− β + βθk

)
. (4.6)

In the simulations we consider six different companies by which we try to emulate
real industries. The majority of simulations are based on the parameters setting
which is described in the table (4.1).

The parameters for c1, c0, d and R are in millions of EUR, for instance. Therefore,
the total reward in the figures is also in millions of EUR. We prescribe success prob-
ability and variance with which we generate the investors observations. The discount
factor is assumed to be the same for all companies. In the following figures we vary
success probability of a company 6 from 0.3 to 0.8. Convention is that the left figure
shows total earned reward by the investor and the right figure shows the relative gap
between our rule and the alternative rule.

Return of investments In figures (4.1) and (4.2) we compare the resulting Whit-
tle index rule against ROI (4.3). The proposed rule is significantly better and the
suboptimality gap is between 35% and 65% for different values of the success prob-
ability. Therefore we can claim that the whittle inder rule outperforms ROI in this
setting.
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Table 4.1: Parameters used in the simulation study

c1 c0 d R θ µ σ2 β

Company 1 0.003 0.001 0.01 0.989 0.3 0.6 0.1 0.9
Company 2 0.08 0.009 0.01 0.5 0.7 0.3 0.3 0.9
Company 3 0.01 0.01 0.0001 0.35 0.45 0.45 0.2 0.9
Company 4 0.02 0.02 0.02 0.1 0.5 0.5 0.5 0.9
Company 5 0.001 0.003 0.1 0.5 0.6 0.1 0.35 0.9
Company 6 0.003 0.001 0.01 0.989 0.3 0.6 0.1 0.9

Figure 4.1: ROI - Total re-
ward

Figure 4.2: ROI - Relative
gap between rules

Stochastic return of investments Results are similar as obtained for ROI. In
this example SROI is worse than ROI, but that is not true for all other settings.
Having gone through examples we observed that we can easily outperform ROI, but
with SROI it is much harder. That leads us to use SROI for comparison in the other
sections.

Figure 4.3: SROI - Total re-
ward

Figure 4.4: SROI - Relative
gap between rules

Unobservable version of ROI Following rule is UNROI (figures (4.5) and (4.6))
which includes the unobservable success probability. That is one of the main rea-
sons that our rule is not as good as before. We can say that our rule and UNROI
performance is similar, but we must keep in mind of broad confidence intervals.
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Figure 4.5: UNROI - Total
reward

Figure 4.6: UNROI - Rela-
tive gap between rules

Model 3 index The last alternative rule considered is index for model 3. As in the
previous case the alternative rule has the advantage that it knows the probability. In
the figures (4.7) and (4.8) we can observe that alternative rule is much better than
our proposed rule. On the other hand, situations when the success probability is
high enough our rule suddenly becomes better. It seems that our rule is better in
identifying the company with high probability than index from model 3.

Figure 4.7: Model 3 index -
Total reward

Figure 4.8: Model 3 index -
Relative gap between rules

In the rest of the simulations we use SROI rule, because based on our simulations
we can say that it competed better with our proposed rule than ROI. The results of
comparison with other rules show us that if the rule does not know the probability
we can become much better than alternative rules. On the other hand the result
of the last simulation suggests that our learning can be much better as it is now.
We are aware that we have not sufficient knowledge of investment strategies used by
investors in practice. Neither we know the optimal strategy. Therefore we try to do
as much as we are able, but we must keep in mind that in reality our performance
could be worse in comparison with real strategies.

4.2.2 β-study

Discount factor is very important for financial simulations. Therefore we are inter-
ested how our rule react on different values of β. In the following four pictures we can
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observe performance for four different dicount factor values: 0.6, 0.8, 0.9 and 0, 99
respectively (corresponding figures (4.9),(4.10), (4.11) and (4.12)).

Figure 4.9: β = 0, 6 - Total
reward

Figure 4.10: β = 0, 8 - Total
reward

Figure 4.11: β = 0, 9 - Total
reward

Figure 4.12: β = 0, 99 - To-
tal reward

Results of β-study are interesting. As we can see our rule is becoming better
with rising β, but for small values of β SROI outperforms our rule. As we know β in
finances is often between 0, 9 and 1 therefore it suggests that our rule is more suitable
for financial applications than SROI.

4.2.3 Different parameters selections

In the last simulation section we show a sample of possible changes in parameters.
In the first simulation we vary variance for the company 6.

In the figure for the total reward (4.13) we can observe that the limits of the con-
fidence interval increases. The reasons for this are two. First for the fixed number of
simulations our ability of learning is lowering with an increasing variance. A second
point is that our proposed rule does not include the variance. Therefore, our rule
is not considering rising variance. We think that this is the main weakness of the
proposed rule and it should be our focus in further research.
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Figure 4.13: Variance simulation - Total reward

We have carried out also many other changes in parameters, but we do not present
them here. There is infinite number of possible settings for companies. A majority of
our results suggests that our rule outperforms SROI as in the figure (4.9) or the worse
scenarios are similar to the figure (4.5) or as the figure (4.10). We believe that this
evidence is promising and it should provide an importance for more studies based on
the proposed methodology.



Conclusion

In this work we study mathematical methods for description of venture capitalists
investments in entrepreneurial companies. Such investments are filled by uncertainty
about technologies and investment opportunities. Our work is based on the results ob-
tained in Sorensen (2008). An econometric study based on the classical multi-armed
bandits and Bayesian updating by Sorensen shows that VCs investment decision is
based on expected return from the investment itself and on the potential to learn
from it. Moreover, he rejected the hypothesis that individual investments are made
in isolation. On the other hand, Sorensen was forced to establish several not fully
reasonable restrictions. One of the main improvements of our work is the replace-
ment of the classical multi-armed bandits by the restless bandits. It allows us to
avoid restrictions that investors learn only from their own past investments and that
investments in one industry are not informative about investments in other industries.

Application of the multi-armed restless bandits framework for description of fi-
nancial applications is challenging and also innovative, because up to this moment it
was mainly used only in the communication networks. Therefore we first introduce
the theoretical background and then we propose three different multi-armed restless
bandits models for description of VCs investments. Sorensen (2008) did not describe
dynamics of such investments, thus we try to show various ways of description. To the
best of our knowledge this is the first time VCs investments are captured by multi-
armed restless bandits. For each model we derive the closed-form Whittle index and
we propose a heuristic rule based on the obtained indices. For index derivation we
analytically follow the AG-algorithm proposed by Niño-Mora (2007). Every model
avoids some assumptions from Sorensen (2008). For instance, in model 1 and 2 the
investor does not need to invest in the industry level. Moreover, in the model 2 she
can simultaneously invests in M companies. Model 3 allows to invest in the same
industries more than once.

Based on the model 3 we developed a learning model describing VCs investments.
We formulate the problem as a partially observable Markov decision process, because
the success probability of the company is not observable. Therefore the investor has
only a certain belief of success for the particular company. According to successes
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and failures in investments he updates this belief in the Bayesian way. The combina-
tion of the multi-armed restless bandits and the Bayesian updating was shown to be
promising and suitable for description of real financial situations by the behavioural
study done by Payzan-LeNestour (2012) (see section (3.3)).

The learning VCs investment model falls into the multi-armed restless bandits
with continuum of states, therefore instead of deriving a closed-form Whittle index,
we obtain the index by simulations. We exploit the algorithm used in Villar (2012).
To study the performance for this Whittle index policy we refer to an exhaustive sim-
ulation study. We study more than one hundred different scenarios. In the section
(4.2) dedicated to the simulation study we show representative sample consisting from
three parts. First we show the differences between different rules and also the price
of uncertainty. Second part studies the changes of performance for different discount
factors and the last section study the differences caused by parameter variations.

The simulation study suggests that our rule is well performing in comparison with
other rules. On the other hand we identified several areas for possible improvements
in particular it is difficult to compare our rule with the results of strategies used in
practice. For the further work it is interesting to include into index also variance
of our belief. Moreover, by reformulation of probabilities it seems that it is possi-
ble to connect our index with the table values for the Gittins index (i.e. classical
multi-armed bandits index), which would allowed us to compare ours with Sorensen’s
results by the same econometric study.



Resumé

V práci skúmame metódy vhodné na opis investovania investorov s rizikovým
kapitálom do firiem, menších podnikov a podnikov mimo burzy. Pri takýchto in-
vestíciách investor čelí technologickým neistotám a neistotám ohľadom možných in-
vestičných príležitostí. Táto práca je postavená predovšetkým na výsledkoch článku
Sorensen (2008). Sorensen urobil ekonometrickú štúdiu za použitia "classical multi-
armed bandits" spolu s Bayesovskou aktualizáciou a vďaka nej ukázal, že investori
investujú na základe návratnosti investície a na základe možnosti učiť sa z danej in-
vestície. Inak povedané, investor môže uprednostniť investíciu do firmy, od ktorej
neočakáva ziskovosť, ale ktorá mu poskytne vedomosti o nových technólogiách a in-
formácie o novom odvetví. Okrem toho Sorensen zamietol hypotézu, že investície sú
robené izolovane. Na druhej strane bol Sorensen prinútený predpokladať niekoľko
nie úplne vhodných obmedzení pre finančné aplikácie. Jedným z hlavných zlepšení
dosiahnutých v tejto diplomovej práci je, že sme nahradili "classic bandits" pomocou
"restless bandits". V "restless" verzii sa firmy vyvíjajú do nových stavov aj keď do
nich práve investor neinvestuje. Preto sme nemuseli predpokladať, že investori sa učia
len z vlastných minulých investícií a že investície do jedného odvetvia neposkytujú
informáciu o investovaní do iných odvetví.

"Multi-armed restless bandits" boli doposiaľ používaní predovšetkým v teleko-
munikačných aplikáciách. Preto ich použitie vo financiách bolo inovatívne ale tým
pádom sme museli vyriešiť niekoľko netriviálnych problémov, ktorými sa doposiaľ
nikto nezaoberal. V práci najprv predstavujeme základné princípy a charakteris-
tiky použitých metód. Následne vytvoríme tri rôzne modely popisujúce investovanie
rizikového kapitálu. Pre každý z nich odvodíme Whittlov index, na základe ktorého
vytvoríme heuristické pravidlo pre investovanie. V prvom a treťom modeli Whittlov
index odvodíme pomocou AG-algoritmu, navrhnutého v Niño-Mora (2007). Keďže
Sorensen vďaka ekonometrickej štúdii nebol nútený modelovať dynamiku takýchto
investícií, tri dané modely ukazujú rôzne pohľady, ako takéto investovanie naformulo-
vať. Na základe našich znalostí toto je prvá práca, v ktorej je investovanie rizikového
kapitálu opísané pomocou "multi-armed restless bandits". Okrem toho každý z uve-
dených modelov sa snaží vyhnúť niektorým predpokladom z článku Sorensen (2008).
Napríklad v modeloch jedna a dva neinvestujeme len do odvetví, ale môžeme investo-

59



Resumé 60

vať priamo do firiem, t.j. z jedného odvetvia môžeme mať viacero firiem. V druhom
modeli máme možnosť investovať do M firiem súčasne. Nakoniec v modeli 3 môžeme
do jedného odvetvia/firmy investovať opakovane.

Na základe modelu 3 následne vyvinieme učiaci sa model popisujúci investovanie
rizikového kapitálu. Úlohu sformulujeme ako čiastočne pozorovateľný markovovský
rozhodovací proces, pretože pravdepodobnosť úspechu firmy je neznáma. Investor
má len určité presvedčenie odhadujúce šance na úspech firmy. Následne podľa úspe-
chov a neúspechov pri investovaní bayesovsky upravuje svoje presvedčenie. Payzan-
LeNestour (2012) (pozri sekciu (3.3)) vo svojej behaviorálnej štúdii ukázali, že takéto
spojenie "multi-armed restless bandits" s Bayesovským aktualizovaním dobre opisuje
reálne finančné situácie.

Presvedčenia o pravdepodobnosti úspechu, prislúchajúce stavom v učiacom sa
modeli sú reálne hodnoty, a preto nevieme odvodiť uzavretý Whittlov index, ale
musíme jeho hodnotu simulovať. Použijeme algoritmus z Villar (2012), ktorý up-
ravíme pre finančné aplikácie. Výpovednú silu tohto indexu overíme pomocou ob-
siahlej simulačnej štúdie. Vyskúšali sme viac ako sto rôznych scenárov. V práci
uvádzame len reprezentatívnu vzorku dosiahnutých výsledkov. Simulačná štúdia je
rozdelená do troch častí. V prvej ukazujeme rozdiely medzi jednotlivými porovná-
vacími pravidlami. V druhej poukazujeme na zmeny dosiahnuté pre rôzné diskontné
faktory a v poslednej časti skúmame ako ovplyvňuje zmena parametrov dosiahnutý
výsledok.

Simulácie ukazujú, že naše pravidlo má celkom dobrú úspešnosť. Na druhej sme si
vedomí, že je ťažké porovnať naše pravidlo s reálne používanými stratégiami, keďže
tie si investori držia v tajnosti. Myslíme si, že v budúcnosti by sa bolo dobré zaoberať
zakomponovaním variancie nášho presvedčenia do indexu. Ako zaujímavé sa ukazuje
aj preformulovanie modelu tak, aby sa výsledok dal priradiť k tabuľkovým hodnotám
Gittinsovho indexu (index pre klasických banditov), čo by nám umožnilo porovnať
ho so Sorensenovými výsledkami.
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Appendix

A. 1 Indexability of the multi-armed restless bandits
In this section we want to show a brief introduction of indexability for the multi-
armed restless bandits. We follow the survey Niño-Mora (2007). In the following we
use the notation described in the chapter 2 for the model 1 (see section (2.1.2)). Thus
we focus on a discrete-time single restless bandit model (we want to show indexability
for the decomposed single-company subproblem (equation (2.8))), with a finite state
space N , one-period rewards Ra

n and one-period state-transition probability pan,m if
the company is in state n and after action a is chosen it evolves into state m. We
consider the discounted case with factor 0 < β < 1. The investor invests in the
company under a policy π, drawn from the class Π of history-dependent policies. We
denote by X(t) and a(t) the company state and action processes, respectively.

A policy π can be evaluated by two measures. The first one correspond to the
reward measure and the second correspond to the work measure.

fπτ := Eπτ

[
∞∑
t=τ

R
a(t)
X(t)β

t

]
, (A.1)

gπτ := Eπτ

[
∞∑
t=τ

W
a(t)
X(t)β

t

]
, (A.2)

The reward measure (A.1) is equal to the expected total reward earned over an
infinite horizon starting in a time instant τ . The work measure (A.2) describes the
total discounted associated work (resource) expenditure. Usually, as in our case, we
assume that W 1

n > W 0
n ≥ 0 if the company is in the state n ∈ X(t).

It is further important to identify states in which the work consumption and dy-
namics is identical. We denote such a set as N {0} and call such states uncontrollable

N {0} := {n ∈ N : W 0
n = W 1

n and p0
n,m = p1

n,m,m ∈ N}.
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We call the remaining states N {0,1} := N\N {0} controllable and we denote by
i ≥ 1 the number of such states. Intuitively, the investor does not invest in uncon-
trollable states.

By drawing at random the initial state according to an arbitrary positive mass
function pn > 0, we obtain fπ :=

∑
n∈N pnf

π
n and gπ :=

∑
n∈N png

π
n. Then the

assumption that for work we pay ν-wage rate lead us to ν-wage problem

max
π∈Π

fπ − νgπ (A.3)

where the goal is to find an admissible investment policy that maximize the value of
rewards earned minus costs incurred. We use (A.3) as a calibrating problem aimed at
measuring the marginal work at each company/industry state. The problem (A.3) is
a finite-state and action discounted MDP, it is ensured existence of an optimal policy
which is stationary deterministic and independent of initial state (Puterman (2005)).
Each such a policy can be represented by its active set S ⊆ N {0,1}. The active
set is the subset of states where it is prescribed to invest in company. Therefore
we can write fS and gS for S-active policy. The problem (A.3) is reduced to the
combinatorial optimization problem, where the goal is to find an optimal active set
in the family of all subsets 2N

{0,1} of N {0,1}.

max
S∈2N

{0,1}
fS − νgS (A.4)

Let denote V̂n the optimal value of (A.3) starting in state n. Then for every value
ν, the optimal policies are prescribed by the Bellman equations unique solution

V̂n(ν) = max
a∈{0,1}

Ra
n − νW a

n + β
∑
m∈N

pan,mV̂m(ν), n ∈ N , (A.5)

So, minimal optimal active set Ŝ ⊆ N {0,1} for (A.3) exists and it is characterized
in terms of (A.5) by

Ŝ(ν) :=

{
n ∈ N {0,1} : R1

n − νW 1
n + β

∑
m∈N

p1
n,mV̂m(ν) > R0

n − νW 0
n + β

∑
m∈N

p0
n,mV̂m(ν)

}
.

If in the model the active sets Ŝ(ν) is expanding monotonically from the empty
set ∅ to the full controllable state space N {0,1} with the decreasing ν from∞ to −∞,
then we can connect each controllable state n with a critical value ν̂n below which n
enters Ŝ(ν).

Definition A. 1.1. (Indexability) We say that company is indexable if there exists
an index ν̂n ∈ R for n ∈ N {0,1} such that
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Ŝ(ν) =
{
n ∈ N {0,1} : ν̂n > ν

}
, ν ∈ R.

Then ν̂n is the company’s marginal productivity (MP) index .

The set of MP indices ν̂n for all n ∈ N (if they exist) defines an optimal MP index
policy: "Work if and only if the MP index of the current state is greater than the
wage parameter ν."

Note that as we described in section (1.5) the MP index is a generalization of other
indices.

A. 2 Work-reward view of indexability
Following Niño-Mora (2002, 2006) we introduce work-reward approach to indexability,
which is deeply connected with the multi-objective optimization (see Hernández-
Lerma and Hoyos-Reyes (2001)). Imagine the region of work-reward performance
points in the plane under all admissible policies

H := {(gπ, fπ) : π ∈ Π} .

We refer to this region as achievable work-reward performance region. This region
is given by the convex hull of the finite collection of the performance points (gS , fS),
where S represents the active sets of stationary deterministic policies which generate
the performance points.

H = conv
({

(gS , fS) : S ∈ 2N
{0,1}
})

.

The upper boundary ∂̄H is defined by (g, f) ∈ H if and only if fπ ≤ f for every
π ∈ Π such that gπ = g.

The company is indexable iff ∂̄H is characterized by a nested active-set family

F0 := {S0,S1, . . . ,Sn} ,

where S0 := ∅, Sn := N {0,1} and Sk := {n1, . . . , nk} for 1 ≤ k ≤ i satisfy

gS0 < gS1 < · · · < gSn ,

and n1, . . . , ni is an ordering of the company’s i controllable states. Thus, the MP
index equals to
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ν̂nk
=
fSk − fSk−1

gSk − gSk−1
, 1 ≤ k ≤ i. (A.6)

If depicted in a plane with works on the x-axis and rewards on the y-axis, then
the optimal policies to ((2.9) and (A.3)) lie on the upper boundary of such a region,
since the parameter ν gives the slope of the supporting hyperplane (a line in this
case) defining an optimum point (i.e., an optimal policy). In the figure (A.14) is
an example of achievable work-reward performance region of an indexable company
with three states N = {1, 2, 3} and in the figure (A.15) an example of a nonindexable
company, where both examples are based on the examples from Niño-Mora (2007).

{1}

{1,2} {1,2,3}

{2,3}

gπ

fπ

Ø
{2} {3}

{1,3}

Figure A.14: Work-reward region for indexable company

fπ

gπ

{2}

{1,2}
{1}

{2,3}

{1,2,3}

{1,3}

Ø

{3}

Figure A.15: Work-reward region for nonindexable company
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A. 3 Adaptive-greedy algorithm
Decide about the indexability of the restless bandits in the figures above is easy task,
because it could be done by visual inspection. On the other hand it is of a great prac-
tical interest to establish it analytically that some model is indexable under suitable
parameter range. This task is generally far from trivial. Niño-Mora (2001, 2002) and
Niño-Mora (2006) developed tractable sufficient conditions for indexability that are
widely applicable, together with an index algorithm.

We denote by 〈a,S〉 the policy that choose action a ∈ {0, 1} in the initial instant
and adopts the S-active policy thereafter. Moreover, we define the marginal work
measure

wSn := g〈1,S〉n − g〈0,S〉n = W 1
n −W 0

n + β
∑
m∈N

(
p1
n,m − p0

n,m

)
gSm,

we also define the marginal reward measure

rSn := f 〈1,S〉n − f 〈0,S〉n = R1
n −R0

n + β
∑
m∈N

(
p1
n,m − p0

n,m

)
fSm.

and for the case when wSn 6= 0, we define the marginal productivity measure

νSn :=
rSn
wSn

.

Usually we are not able to identify a priori the nested active-set family F0, unless
the state space is linearly ordered. We can try to guess the structure of optimal poli-
cies for the particular model in the form F ⊆ 2N

{0,1} containing F0. Unfortunately,
F is often much larger than F0. In the terminology of combinatorial optimization,
(N {0,1},F) is a set system on ground set N {0,1} having F as its family of feasible sets.

For developing an algorithm it must be satisfied that we can proceed from the
empty set towards a given set S ∈ F through successive single-state augmentations.
Moreover, we have the symmetric requirement for reaching S through successive
single-state removals from N {0,1}. Thus, we define the inner boundary of S relative
to F , for S ∈ F by

∂inF S := {n ∈ S : S \ {n} ∈ F} ,

and we define the outer boundary of S relative to F by

∂outF S :=
{
n ∈ N {0,1} \ S : S ∪ {n} ∈ F

}
,

so we can set the following assumption.
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Assumption A. 3.1. Set system (N {0,1},F) satisfies the following conditions:

1. ∅,N {0,1} ∈ F

2. For ∅ 6= S ∈ F , ∂outF S 6= ∅

3. For N {0,1} 6= S ∈ F , ∂inF S 6= ∅

Now we can define the adaptive-greedy algorithm AGF in the following way.

Algorithm AGF
output: {nk, ν̂nk

}ik=1

S0 := ∅
for k := 1 to i do

pick nk ∈ arg max
{
ν
Sk−1
n : n ∈ ∂outF Sk−1

}
;

ν̂nk
:= ν

Sk−1
nk ;Sk := Sk−1 ∪ {nk};

end
Algorithm 2: AGF − algorithm

From the geometric view point aim of this algorithm is to traverse the upper
boundary of the achievable work-reward performance region, building up the succe-
sive active sets Sk forming the nested family F0 that determines such a boundary.
The algorithm traverse the upper boundary from left to right and it is a top-down
algorithm, so the successive index values ν̂nk

or slopes in such a frontier are computed
in nonincreasing order.


