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Abstract

In the master’s thesis we focus on finding optimal design of experiments for the

processes described by stochastic differential equations. In the first part we outline

the theory on stochastic processes and finding optimal design for processes with

correlated observations. In the second part we present our stochastic model for

multivariate Ornstein-Uhlenbeck processes and we discuss existence of optimal de-

sign for finding the unknown parameter. As a reference to measure the quality of

design we use asymptotic Fisher information matrix.
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Abstrakt

Diplomová práca sa zaoberá hl’adaním optimálneho návrhu experimentov pre pro-

cesy popísané pomocou stochastických diferenciálnych rovníc. V prvej časti zhrnieme

základy teórie stochastických procesov a optimálneho návrhu experimentov pre

procesy s korelovanými pozorovaniami. V druhej časti predstavíme model popisu-

júci viacrozmerné Ornstein-Uhlenbeckove procesy a zaoberáme sa existenciou op-

timálneho návrhu pre odhad parametrov daného modelu. Na určovanie kvality

návrhov ako referenčnú hodnotu používame asymptotickú Fisherovu informačnú

maticu.

Kl’účové slová: Viacrozmerný Ornstein-Uhlenbeckov proces • Fisherova

informačná matica • Optimálny návrh • Ultimátna efektivita.
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Introduction

After some time, it became my habit, even for finite

dimensional probabilistic phenomena, to look at an

infinite dimensional set-up, the properties of which

may illuminate those of the finite dimensional set-

up considered previously.

Kiyoshi Itō

Almost all processes in the real world can be described by stochastic differen-

tial equations, as randomness is a part of everything. Thanks to Kiyoshi Itō and

his contribution in [3], the theory on solving these equations is on quite advanced

level. We can meet with stochastic processes in physics, medicine, finances and

many other fields of interest. One of the most famous and oldest models in appli-

cations is Gompertz model of tumor growth [1]. Problem that arises from finding

optimal design of experiments for stochastic processes is the fact that observations

within the single process are correlated and therefore it does not help to repeat the

observation twice in the same time. Solution could be to run the process again,

but it is often unreal, since many parameters of processes in pharmacy like tumor

growth depends individually on each patient. From the origin of experimental de-

signs in 1747, when surgeon James Lind carried out the first controlled experiment

to develop a cure for scurvy up the present, medicine is still a field, where design of

experiments can apply as performing medical scans is very costly and each patient

can usually undergo only a few examinations. Unfortunately, most of these experi-

ments are not optimised from the mathematic point of view. As researches suggest,

even with only a few observations we can get quite high efficiency of given design.

Saks and Ylvisaker[12] used asymptotic efficiency to decide, whether performing

another observation is worth its new information gain.

ii



INTRODUCTION iii

In the present thesis we focus on multivariate Ornstein-Uhlenbeck processes,

which covers wide class of real-life processes. Their origins lies in the work of

Ornstein and Uhlenbeck [11], where they studied velocity of the particle. Instead

of determining the optimal design, we focus mainly on existence of optimal design

in this thesis, trying to decide for which parameters of the processes exists such

design. Later we measure the quality of designs through ultimate efficiency, method

originated in [9] and [2]. Key reference in this case is asymptotic Fisher information

matrix, constructed from the observation of the whole trajectory of the process. We

employ the methods suggested by Lacko in [5] for univariate processes and try to

extend it to multivariate case to find practical way to compute this matrix and thus

determite the situations in which ultimate efficiency has reasonable application.



CHAPTER 1

Introduction to stochastic calculus

In this chapter we provide some basic knowledge about stochastic calculus. We

refer the reader to the monograph of Øksendal [8], which is the base for the pre-

sented chapter.

Definition 1. A stochastic process is a parametrized collection of random variables

{Xt}t∈T defined on a probability space (Ω,F , P ) and assuming values in Rn.

The parameter space T is usually the halfline [0,∞), but it may also be interval

[a, b], the non-negative integers and even subsets of Rn for n ≥ 1. For each t ∈ T
fixed we have a random variable ω 7→ Xt(ω); ω ∈ Ω. On the other hand, fixing

ω ∈ Ω we can consider the function t 7→ X(ω); t ∈ T which is called a path of Xt.

We usually think of t as "time" and each ω as individual "particle" or "experiment".

Thus we may also regard the process as a function of two variables (t, ω) 7→ X(t, ω)

from T × Ω 7→ Rn. The (finite dimensional) distributions of the process {Xt}t∈T
are the measures µt1,··· ,tk defined on Rnk by µt1,··· ,tk(F1 × . . . × Fk) = Pr[Xt1 ∈
F1, . . . , Xtk ∈ Fk]; ti ∈ T .

Theorem 2 (Kolmogorov Extension Theorem). For all t1, · · · , tk ∈ T, k ∈ N, let

νt1,··· ,tk be probability measures on Rnk such that

νtσ(1),··· ,tσ(k)(F1 × · · · × Fk) = νt1,··· ,tk(Fσ−1(1) × · · · × Fσ−1(k)) (K1)

for all permutations σ on {1, 2, · · · , k} and

νt1,··· ,tk(F1×· · ·×Fk) = νt1,··· ,tk,tk+1,···tk+m(Fσ−1(1)×· · ·×Fσ−1(k)×Rn×· · ·×Rn) (K2)

for all m ∈ N, where the set on the right hand side has a total of k + m factors.

Then there exists a probability space (Ω,F , P ) and a stochastic process {Xt} on Ω,

Xt : Ω 7→ Rn, such that νt1,··· ,tk(F1 × · · · × Fk) = P [Xt1 ∈ F1, · · · , Xtk ∈ Fk] for all

ti ∈ T , k ∈ N and all Borel sets Fi.

1
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Definition 3. A filtration on (Ω,F) is a familyM = {Mt}t≥0 of σ-algebrasMt ⊂ F
such that

0 ≤ s < t⇒Ms ⊂Mt

(i.e. {Mt} is increasing).

Let us now define the most basic, but very important example of a stochastic

process.

Definition 4 (Wiener process). A one-dimensional Wiener process is a process, de-

fined by the following three properties:

i) Pr[W (0) = 0] = 1.

ii) For any partition t0, . . . , tn, the increments

W (tn)−W (tn−1),W (tn−1)−W (tn−2), . . . ,W (t1)−W (t0) are independent.

iii) For any t, s ≥ 0, W (t+ s)−W (t) ∼ N (0, s).

An n-dimensional Wiener process is a process of which components are independent

one-dimensional Wiener processes.

Figure 1.1: Examples of 2−dimensional Wiener processes
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Definition 5. Suppose that {Xt} and {Yt} are stochastic processes on (Ω,F , P ). Then

we say that {Xt} is a version of {Yt} if Pr [{ω;Xt(ω) = Yt(ω)}] = 1 for all t. Note

that if Xt is a version of Yt, then Xt and Yt have the same finite-dimensional distri-

butions. Thus from the point of view that a stochastic process is a probability law on

(Rn)[0,∞) two such processes are the same, but nevertheless their path properties may

be different.

Theorem 6 (Kolmogorov’s continuity theorem). Suppose that the processX = {Xt}t≥0

satisfies the following condition: For all T > 0 there exist positive constants α, β,D

such that E[|Xt −Xs|α] ≤ D · |t− s|1+β; 0 ≤ s, t ≤ T . Then there exists a continuous

version of X.

As n−dimensional Wiener process satisfies Kolmogorov’s condition with α = 4,

D = n(n + 2) and β = 1, it follows that it has a continuous version. From now on

we will assume that Wt is such a continuous version.

Definition 7. If Xt(.) : Ω 7→ R is a continuous stochastic process, then quadratic

variation of process Xt, 〈X,X〉(2)
t is defined by

〈X,X〉(2)
t (ω) = lim

∆tk→0

∑
tk≤t

|Xtk+1
(ω)−Xtk(ω)|2 (limit in probability)

where 0 = t1 < t2 < · · · < tn = t and ∆tk = tk+1 − tk.

From the properties of Wiener process we obtain that quadratic variation of

Wiener process is finite and for the course of the process during time t it achieves

also value t.

Definition 8. Let Wt(ω) be n-dimensional Wiener process. Then we define Ft = F (n)
t

to be the σ-algebra generated by the random variables Ws(.); s ≤ t. We assume that

all sets of measure zero are included in Ft. A function h(ω) will be Ft-measurable

if and only if h can be written as the pointwise almost everywhere limit of functions

of the form g1(Wt1)g2(Wt2) . . . gk(Wtk), where g1, g2, · · · , gk are bounded continuous

functions and tj ≤ tk for j ≤ k, k = 1, 2, . . . .

Definition 9. Let {F}t≥0 be an increasing family of σ-algebras of subsets of Ω. A

process g(t, ω) : [0,∞) × Ω → Rn is called Ft-adapted if for each t ≥ 0 the function

ω 7→ g(t, ω) is Ft-measurable.

Let us now define very important class of functions.
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Definition 10. A function, say f(t, ω) : [0,∞]× Ω 7→ R, is said to be Itō integrable if

it satisfies the following conditions:

(i) (t, ω) 7→ f(t, ω) is B × F -measurable, where B denotes the Borel σ-algebra on

[0,∞).

(ii) f(t, ω) is Ft-adapted.

(iii) E

[
T∫
S

f(t, ω)2dt

]
<∞.

Now we can move on to consider the theory for integrals with respect to some

stochastic process.

Definition 11. Let f be Itō integrable. Then the Itō integral of f (from S to T ) is

defined by

T∫
S

f(t, ω)dWt(ω) = lim
n→∞

T∫
S

φn(t, ω)dWt(ω) (limit in L2(P ))

where {φn} is a sequence of elementary functions such that

E

 T∫
S

(f(t, ω)− φn(t, ω))2dt

→ 0 as n→∞.

Some key properties of Itō integral are defined in the following propositions.

Proposition 12 (Itō isometry). Let f be Itō integrable. Then

E


 T∫
S

f(t, ω)dWt

2
 = E

 T∫
S

f 2(t, ω)dt

 .
Proposition 13. Let f, g be Itō integrable and let 0 ≤ S < U < T . Then

(i)
T∫
S

fdWt =
U∫
S

fdWt +
T∫
U

fdWt almost surely.

(ii)
T∫
S

(cf + g)dWt = c ·
T∫
S

fdWt +
T∫
S

gdWt almost surely.

(iii) E

[
T∫
S

fdWt

]
= 0.

(iv)
T∫
S

fdWt is Ft-measurable.
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By application of the concept of Itō integral, we can look at stochastic processes

in the new way.

Definition 14 (1-dimensional Itō process). Let Wt be 1-dimensional Wiener process

on (Ω,F , P ). A (1-dimensional) Itô process (or stochastic integral) is a stochastic

process Xt on (Ω,F , P ) of the form

Xt = X0 +

t∫
0

u(s, ω)ds+

t∫
0

v(s, ω)dWs,

where u, v are Ft-adapted, satisfying

Pr

 t∫
0

v(s, ω)2ds <∞ for all t ≥ 0

 = 1.

Pr

 t∫
0

|u(s, ω)|ds <∞ for all t ≥ 0

 = 1.

Itō process is often written in shorter differential form dXt = udt + vdWt. This

concept is analogue to ordinary differential equations considering also randomness

of a process and is referred to as stochastic differential equation. We can generalize

this concept also for higher dimensions.

Definition 15 (Multidimensional Itō process). LetW (t, ω) = (W1(t, ω), · · · ,Wm(t, ω))

denote m-dimensional Wiener process. If each of the processes ui(t, ω) and vij(t, ω) sat-

isfies the conditions for 1-dimensional Itô process then we can form the following n Itō

processes 
dX1 = u1dt+ v11dW1 + · · ·+ v1mdWm

...
...

...

dXn = undt+ vn1dW1 + · · ·+ vnmdWm

Or, in the matrix notation simply dX(t) = udt+ vdW (t), where

X(t) =


X1(t)

...

Xn(t)

 , u =


u1(t)

...

un(t)

 , v =


v11 · · · v1m

... . . . ...

vn1 · · · vnm

 , dW (t) =


dW1(t)

...

dWm(t)

 .

Such a process is called an n-dimensional Itō process.

Basic properties of Itō integral are not very helpful when trying to evaluate its

value. Therefore we need to establish stronger tool for computations, something
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similar to the role of chain rule in evaluation of Riemann integrals. Itō in [3] came

with such a rule, known as Itō formula (or Itō’s lemma).

Proposition 16 (The general Itō formula). Let dX(t) = udt+vdWt be an n-dimensional

Itō process as above. Let g(t, x) : [0,∞)× Rn 7→ Rp be C2 map in x. Then the process

Y (t, ω) = g(t,X(t)) is again an Itō process, whose component Yk is given by

dYk =
∂gk
∂t

(t,X)dt+
∑
i

∂gk
∂xi

(t,X)dXi +
1

2

∂2gk
∂xi∂xj

(t,X)dXi · dXj

where we set dWi · dWj = δijdt and dWi · dt = dt · dWj = 0, and δij is the Kronecker

delta.

At last, we turn to question of existence and uniqueness of the solution of

stochastic differential equations.

Proposition 17 (Existence and uniqueness of solutions). Let T > 0 and b(., .) :

[0, T ] × Rn 7→ Rn, σ(., .) : [0, T ] × Rn 7→ Rn×m be measurable functions satisfying

|b(t, x)| + |σ(t, x)| ≤ C|1 + |x||; x ∈ Rn, t ∈ [0, T ] for some constant C, (where

|σ|2 =
∑
|σij|2) and such that |b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ D|x − y|; x ∈

Rn, t ∈ [0, T ] for some constant D. Let Z be a random variable which is independent

of the σ- algebra F (m)
∞ generated by Ws(.), s ≥ 0 and such that E[|Z|2] < ∞. Then

the stochastic differential equation dXt = b(t,Xt)dt+σ(t,Xt)dWt, 0 ≤ t ≤ T,X0 = Z

has a unique t-continuous solution Xt(ω) with the property that Xt(ω) is adapted to

the filtration FZt generated by Z and Ws(.); s ≤ t and

E

 T∫
0

|Xt|2dt

 <∞.



CHAPTER 2

Information theory

2.1 Statistical inference

The aim of this section is to summarize elements of statistical inference relevant for

the presented thesis. We refer the reader to the traditional monograph of [6] for

the basic theory and article [9] for further topics on regression models.

Definition 18. Let f(x, θ) be a joint density function of a random vector X ob-

tained from the experiment. Then the maximum likelihood estimator(MLE) of θ is

θ̂ ∈ arg maxθ f(X, θ).

Proposition 19. If θ̂ is the MLE of θ, then for any function κ(θ), the MLE of κ(θ) is

κ(θ̂) .

The most used transformation is so-called log-likelihood function and use natu-

ral logarithm of a joint density.

Definition 20. Let f(x, θ) be a joint density function of a random vector X obtained

from an experiment. Then

I(θ) = EX

[
∂ ln f(X, θ)

∂θ

∂ ln f(X, θ)

∂θT

]
(2.1)

is called a Fisher information matrix for the unknown parameter θ with respect to

observation X.

Proposition 21. Let us denote the following regularity conditions:

i) Ω is an open interval (finite, infinite, or semi-infinite).

ii) The distributions Fθ have common support, so that without loss of generality the

set A = {x : f(x, θ) > 0} is independent of θ.

7



2.1. STATISTICAL INFERENCE 8

iii) For any x in A and θ in Ω, the derivative f ′(x, θ) = ∂f(x, θ)/∂θ and the second

derivative f ′′(x, θ) = ∂2f(x, θ)/(∂θ∂θT ) exist and are finite.

iv) ∂
∂θ

∫
f(x, θ)dµ(x) =

∫
∂
∂θ
f(x, θ)dµ(x) and

∂2

∂θ∂θT

∫
f(x, θ)dµ(x) =

∫
∂2

∂θ∂θT
f(x, θ)dµ(x).

Under these conditions, Fisher information matrix can be also evaluated as

I(θ) = −EX
[

∂2

∂θ∂θT
ln f(X, θ)

]
. (2.2)

Fisher information matrix express the quantity of information that X contains

about the parameter θ and has a key value when considering properties of esti-

mation. Variance of the estimation and Fisher information matrix are very closely

related as is confirmed by following proposition.

Proposition 22. Define a parameter column vector θ with probability density function

f(x, θ). Let T (X) be an estimator of any function of parameters and denote its expec-

tation vector E[T (X)] = µ(θ). Let us assume that the Fisher information matrix is

always defined and the operations of integration with respect to x and differentiation

with respect to θ can be interchanged in the expectation of T (X). The Cramér-Rao

bound then states that the covariance matrix of T (X) satisfies

V arθ[T (X)] � ∂µ(θ)

∂θT
[I(θ)]−1∂µ

T (θ)

∂θ
. (2.3)

If T (X) is an unbiased estimator of θ (in other words µ(θ) = θ), then the Cramér-Rao

bound reduces to V arθ[T (X)] � [I(θ)]−1.

The matrix inequality A � B defined on the set of square symmetric matrices

denotes Loewner domination and means that the matrix A − B is non-negative

definite.

Definition 23. A random vector x is said to have the multivariate normal distribution

with the mean µ and the covariance matrix Σ if its density is in the form

f(x, µ,Σ) =
1

(2π)k/2 det1/2(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.4)

This definition holds in the non-degenerate case, when covariance matrix Σ is

positive definite. Vector x can be also labelled as Gaussian vector. Now let us move

to define propositions regarding regression model.
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Proposition 24. We consider a regression model of the form y(xi) = η(θ, xi) + ε(xi)

with an unknown vector parameter θ. Variance-covariance structure of the observed

variables y(xi) is Cov(y(xi), y(xj)) = σ(xI , xj; θ)and ε ∼ N (0,Σ(θ)). We suppose that

the mapping θ ∈ V 7→ η(θ) ∈ RN is one-to-one, and the N × N covariance matrix

C(θ) with entries C(xi, xj, θ) is nonsingular. Suppose also that θ̄, the true value of θ is

from the interior int(Θ). We consider the MLE of the model: θ̂ = arg maxθ∈Θ ln f(y, θ)

where

− ln f(y, θ) =
1

2

{
[y − η(θ)]TΣ−1(θ)[y − η(θ)] +

1

2
ln det[Σ(θ)] +

N

2
ln(2π)

}
. (2.5)

By taking derivatives, we obtain the Fisher information matrix in the form

I(θ) =
∂ηT (θ)

∂θ
Σ−1(θ)

∂η(θ)

∂θT
+

1

2
tr

{
Σ−1(θ)

∂Σ(θ)

∂θ
Σ−1(θ)

∂Σ(θ)

∂θT

}
. (2.6)

Proposition 25. Let us consider the model y(xi) = η(ν, xi) + ε(xi). In case of small

variances of y(xi) we obtain, that the approximate expression for the MLE is

θ̂
.
= θ̄ + I−1(θ̄)

∂γT

∂θ

∣∣∣
θ̄
(t− µ̄).

This gives Eθ̄[θ̂]
.
= θ̄ and V arθ̄[θ̂]

.
= I−1(θ̄).

2.2 Optimal design of experiments

Here we present some key definitions regarding the theory of experimental design.

For more information we refer the reader to the main source of this section, mono-

graph of Pukelsheim [10].

Definition 26. An experimental design for sample size n is given by an n-tuple of

regression vectors τn = (x1, x2, . . . , xn)T .

Design for process described by stochastic differential equation consist of n given

times in which we observe the process. The vectors that appear in the design τ are

called the support of τ .

Definition 27. Let S+
k be a set of all k×k non-negative definite matrices. An optimality

criterion is a function φ : S+
k 7→ R. It can attain the following properties. (I1, I2 ∈

S+
k ).

i) Isotonicity relative to the Loewner ordering, I1 � I2 � 0⇒ φ(I1) ≥ φ(I2).
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ii) Concavity, φ((1−α)I1+αI2) ≥ (1−α)φ(I1)+αφ(I2) for all α ∈ (0, 1), I1, I2 �
0.

iii) Positive homogenity, φ(δI1) = δφ(I1) for all α ∈ (0, 1), δ ≥ 0, I1 � 0.

iv) Superadditivity, φ(I1 + I2) ≥ φ(I1) + φ(I2) for all I1, I2 � 0.

v) Upper semicontinuity, the level sets {φ ≥ α} = {I1 : φ(I1) ≥ α} are closed, for

all α ∈ R.

We require from the optimality criterion to have these properties so it can capture

an idea of whether an information matrix is large or small.

Definition 28. An information function φ on S+
k is a function φ : S+

k 7→ R that

is Loewner isotonic, positively homogenous, superadditive, non-negative, nonconstant

and upper semicontinuous.

Definition 29. The most prominent information functions are the ones corresponding

to the following criteria:

i) D-criterion, the determinant criterion, φD(I) = (detI)1/s.

ii) A-criterion, the average-variance criterion, φA(I) = (1
s
tr{I−1})−1 if I is positive

definite.

iii) E-criterion, the smallest-eigenvalue criterion, φE(I) = λmin(I).

Definition 30. Design τ ∗n is said to be optimal, if it satisfies φ(I(τ ∗n)) = supτn∈Tn φ(I(τn)).

2.2.1 Ultimate efficiency

In the applications, we usually do not require designs to be optimal, it is enough

for them to be in relatively efficient in some way.

Definition 31. Standard approach to measuring efficiency of a given design τ is com-

paring its information function with the information function of an optimal design.

eff(τn|φ, θ) =
φ[I(τn, θ)]

supξn∈Tn φ[I(ξn, θ)]
(2.7)

As Pázman [9] suggested, any reference matrix I∗ can be used in the denomina-

tor:

eff(τn|φ, θ) =
φ[I(τn, θ)]

φ[I∗]
, (2.8)

where the information matrix I∗ use to be the largest possible in given situation.
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Definition 32. The value limn→∞ I(τn, θ), with ‖τn‖ → 0 denotes the maximal possi-

ble information about the parameter θ we can get from the observation of the process

at each time from the experimental domain. If this limit exists and is finite then we

can measure the design efficiency by

ueff(τn|φ, θ) =
φ[I(τn, θ)]

limk→∞ φ[I(τk, θ)]
. (2.9)

The following ratio is known as ultimate efficiency of design(as suggested by Harman

[2]).



CHAPTER 3

Multivariate Ornstein-Uhlenbeck

process

In this chapter we introduce equations describing wide class of multivariate stochas-

tic processes, known as Ornstein-Uhlenbeck processes. Inspiration for this chapter

is work of Lacko [5], currently in press, where this problematic is discussed for

univariate processes. As performing computations for multivatiate processes pro-

duce higher-dimensional mathematic figures, new problems arise and we need to

employ procedures from matrix theory to obtain desired results.

3.1 Formulation of the process

Let us assume a multivariate continuous-time process {X(t)}t≥0, described by linear

Itō stochastic differential equation

dX(t) = [Aυ,β(t)X(t) + bυ,β(t)]dt+ Σβ(t)dWt = fυ,β(t,X(t))dt+ Σβ(t)dWt,

X(0) = X0 ∈ R fixed, (3.1)

where Aυ,β(t) is a known n×n matrix which depends on vector parameters υ and β,

bυ,β(t) is a known n×1 vector which also depends on υ and β, Σβ(t) is known n×n
diffusion matrix dependent only on parameter β and Wt is n-dimensional Wiener

process. For the sake of simplicity, we use the notation θ = (υT , βT )T , dim(θ) = m

and also omit subscriptions from A(t), b(t) and so on. We assume that functions

A(t), b(t) and Σ(t) and their derivates with respect to θ are integrable with respect

to t on the interval [0, T ∗] and Σ(t) is positive definite. Let us denote the primitive

function to A(t) as α(t).

12
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The process governed by (3.1) is often referred to as multivariate Ornstein-

Uhlenbeck process.

In the present setup we can observe the process {X(t)}t≥0 at n strictly increasing

design times τ = (t1, t2, . . . , tn)T from the experimental domain D = [T∗, T
∗]. We

denote the set of all feasible n-point designs by Tn,D = {τ ∈ Rn; T∗ ≤ t1 < t2 <

· · · < tn ≤ T ∗}, and T n,D = {τ ∈ Rn; T∗ ≤ t1 ≤ t2 ≤ · · · < tn ≤ T ∗} be its closure.

We further define ‖τ‖ = max2≤i≤n(ti − ti−1) the norm of the partition generated by

the sampling design τ .

3.2 Properties of the multivariate

Ornstein-Uhlenbeck process

By using the transformation Y (t) = e−α(t)X(t) = g(t, x), Itō’s lemma yields

dY (t) =
∂g

∂t
dt+

∂g

∂X
dX + 0

dY (t) = e−α(t)b(t)dt+ e−α(t)Σ(t)dWt

Y (t)− Y (t0) = e−α(t)X(t)− e−α(t0)X(t0) =

t∫
t0

e−α(s)b(s)ds+

t∫
t0

e−α(s)Σ(s)dWs

X(t)|X(t0) = eα(t)e−α(t0)X(t0) +

t∫
t0

eα(t)e−α(s)b(s)ds+

t∫
t0

eα(t)e−α(s)Σ(s)dWs.

From the basic properties of Itō integral and Itō’s isometry we obtain the expression

for mean and covariance matrix of X(t).

Lemma 33. It holds true that

E[X(t)|X(t0)] = E[t|t0] = eα(t)e−α(t0)X(t0) +

t∫
t0

eα(t)e−α(s)b(s)ds (3.2)

and

V ar[X(t)|X(t0)] = V ar[t|t0] =

t∫
t0

eα(t)e−α(s)Σ(s)ΣT (s)(eα(t)e−α(s))Tds. (3.3)

We use simplified version of the notation for E and Var introduced in this lemma

through the whole chapter.

For further dicsussion on experimental design, it is desirable to write the infor-

mation matrix about the unknown parameter θ in more practical way.
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Lemma 34. Let {X(t)}t≥0 withX(0) fixed be a multivariate θ-parametrised continuous-

time Gaussian Markov process. Then for any τ ∈ Tn,D, the Fisher information matrix

for X(τ) takes the form

I(τ, θ) = IX(t1)|X(0)(θ) +
n∑
i=2

EX(ti−1)

[
IX(ti)|X(ti−1)(θ)

]
, (3.4)

where IX(ti)|X(ti−1) denotes the Fisher information matrix for Xti conditioned on the

value X(ti−1) and EX(ti−1)[.] is the expectation with respect to X(ti−1).

Proof. We refer reader to work of Lacko [5], as the proof is straightforward gener-

alization of the univariate case.

This lemma provides very powerful tool for computing Fisher information matrix

as in the multivariate case if we wanted to compute an information matrix for X(τ)

as a whole we would require to know the covariancne matrix for X(τ), which

could be very challenging as the covariance of one observation is already a matrix

and therefore it would be a matrix of matrices. In this way, we simplified our

task to compute Fisher information matrix for each observation, conditioned in the

previous observation.

Now let us take a closer look on IX(ti+1)|X(ti)(θ).

Definition 35. Fisher information matrix for observation in time ti+1 conditioned in

time ti takes the form

I(ti+1|ti, θ) = EX(ti)

[[
∂E[ti+1|ti]

∂θT

]T
V ar−1[ti+1|ti]

∂E[ti+1|ti]
∂θT

]
+

+
1

2
tr

{
V ar−1[ti+1|ti]

∂V ar[ti+1|ti]
∂θ

V ar−1[ti+1|ti]
∂V ar[ti+1|ti]

∂θT

}
where EX(t) denotes expectation with respect to observation in time t.

We need to take a closer look at the expression inside the trace, as it is the

product of n × n matrix, n ×m × n 3−dimensional tensor, n × n matrix again and

finally another 3−dimensional tensor(m×n×n) . Result is a 4−dimensional tensor

with dimensions n ×m ×m × n. Since the result has to be m ×m matrix, we can

define this trace as

1

2
tr{.} =

1

2

n∑
k=1

(V ar−1[ti+1|ti])k.
∂V ar[ti+1|ti]

∂θ
V ar−1[ti+1|ti]

∂(V ar[ti+1|ti]).k
∂θT

. (3.5)
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3.3 Existence of optimal design

At this point we turn our attention to the existence of feasible optimal design for

the parameter θ. From Lemma 33 is easy to see that E[X(t)|X(t)] = X(t) almost

surely, thus we do not gain additional information about the parameter from repli-

cation of the observation. Therefore if we perform the replicated observation in

the different time and leave original non-replicated observations, from the form

of Fisher information matrix introduced in Lemma 34 is clear that we increase the

amount of information we get from an experiment. It follows that for any design

from the boundary T n,D \ Tn,D there exist a desing from Tn,D which dominates it.

Therefore we can reduce the set of competing designs to Tn,D. The conventional

way to decide, whether an optimal design exists is that it achieves maximum on

the set of competing designs. But as the set of designs Tn,D is not compact, in-

formation function φ[I(X(τ), θ)] does not have to reach its maximum on this set.

Problems may appear in the case, when Fisher information matrix is not continu-

ous on the boundary T n,D \ Tn,D as Lacko suggested in [5]. We use the definition of

existence of an optimal n-point sampling design in the strong sense, which is sat-

isfied, if the following statement holds: for any boundary design τ0 ∈ T n,D \ Tn,D,

there exists a design τ ∈ Tn,D, such that for any sequence of designs {τ (k)} on Tn,D
with limk→∞ τ

(k) = τ0, the Fisher information matrix for τ Loewner dominates the

matrix limk→∞ I(τ (k), θ). Thus the existence of optimal design also does not de-

pend on the choice of the information function φ[I]. For further examination of

the limit properties of Fisher information matrix as the observation times go near

each other we need to express lim∆→0 IX(t+∆)|X(t)(θ). For the asymptotic estimation

of this matrix as ∆ → 0 we use Taylor expansion up to order one given as follow-

ing: f(t + ∆) = f(t) + f ′(t)∆ + o(∆). Let us start with individual components of

IX(t+∆)|X(t)(θ).

For the better understanding of the following computations, let us establish

known Leibniz’s rule for differentiation under the integral sign. For reference re-

garding definitions from calculus we refer the reader to [4].

Proposition 36. Let f(x, θ) be a function such that derivative fθ(x, θ) exists and is

continuous. Then,

d

dθ

 b(θ)∫
a(θ)

f(x, θ)dx

 =

b(θ)∫
a(θ)

fθ(x, θ)dx+ f(b(θ), θ)b′(θ)− f(a(θ), θ)a′(θ).
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Using Taylor expansion as ∆ → 0 for V ar[t + ∆|t] with the help of Proposition

36 we obtain

V ar[t+ ∆|t] .
= 0 + eα(t+∆)e−α(t+∆)Σ(t+ ∆)ΣT (t+ ∆)

(
eα(t+∆)e−α(t+∆)

)T ∣∣∣
∆=0

∆+

+o(∆) = Σ(t)ΣT (t)∆ + o(∆).

It seems to be more difficult with the other element of Fisher information matrix

∂

∂θT
E[t+ ∆|t] =

∂

∂θT

eα(t+∆)e−α(t)X(t) +

t+∆∫
t

eα(t+∆)e−α(s)b(s)ds


If we add a special zero

(
±eα(t+∆)e−α(t)E[X(t)]

)
and realise that X(t) and E[X(t)]

do not depend directly on θ, we can rewrite our formula as following:

∂

∂θT
E[t+ ∆|t] =

∂

∂θT
[
eα(t+∆)e−α(t)

]
(X(t)−E[X(t)]) +

∂

∂θT
[
eα(t+∆)e−α(t)

]
E[X(t)]+

+
∂

∂θT

t+∆∫
t

eα(t+∆)e−α(s)b(s)ds.

Let us now define some important regularity conditions, known also as Schwarz

theorem.

Proposition 37 ([4]). Suppose that f is a function of two variables such that ∂2f(X,Y )
∂XT ∂Y T

and ∂2f(X,Y )
∂Y T ∂XT both exist and are continuous at some point (X0, Y0). Then

∂2f(X, Y )

∂XT∂Y T

∣∣∣
X0,Y0

=
∂2f(X, Y )

∂Y T∂XT

∣∣∣
X0,Y0

.

Under regularity conditions mentioned above we can change the order of partial

derivation and therefore first compute derivation with respect to t coming from

Taylor expansion and then resolve partial derivation with respect to θ. First we

figure out Taylor series of eα(t+∆)e−α(t) as ∆→ 0.

eα(t+∆)e−α(t) .
= I + eα(t+∆)A(t+ ∆)e−α(t)

∣∣∣
∆=0

∆ + o(∆)

= I + eα(t)A(t)e−α(t)∆ + o(∆)

= I + A(t)∆ + o(∆).

As we work everywhere with matrices, which in general do not commuteAB 6= BA,

we have to show the validity of the operation in the last step. First is the well known

identity eA ·e−A = I. For the sake of the other identity let us formulate the following

lemma.
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Lemma 38. If A is a regular matrix, such that its spectral decomposition exists, the

following equation holds: A · eA = eA · A.

Proof. Eigendecomposition of A can be given as A = V ΛV −1, where Λ = diag(λi)

and V is an orthogonal matrix of corresponding eigenvectors. IdentityAk = V ΛkV −1

together with the fact, that matrix exponential can be evaluated as the sum of in-

creasing power functions implies that eA = eV ΛV −1
= V eΛV −1 = V diag(eλi)V −1.

Therefore AeA = V ΛV −1V eΛV −1 = V ΛeΛV −1 = V eΛΛV −1 = eAA. (Since Λ and eΛ

are diagonal matrices, they can be switched)

In the next part we calculate Taylor series for
t+∆∫
t

eα(t+∆)e−α(s)b(s)ds as ∆ → 0.

Using Proposition 36 we get

t+∆∫
t

eα(t+∆)e−α(s)b(s)ds
.
= 0 + eα(t+∆)e−α(t+∆)b(t+ ∆)

∣∣∣
∆=0

∆ + o(∆)

= b(t)∆ + o(∆).

If we sum it up together with the fact that ∂I
∂θT

= 0 we came to the following result:

∂

∂θT
E[t+ ∆|t] =

[(
∂A(t)

∂θT

)
E[X(t)] +

∂b(t)

∂θT

]
∆+

+

(
∂A(t)

∂θT

)
(X(T )− E[X(t)])∆ + o(∆)

Now we are ready to construct asymptotic estimate of Fisher information matrix.

We will refer to the summands of the formula for ∂
∂θT

E[t+ ∆|t] as Summand 1 and

Summand 2. Now let us concentrate on the first part of I(t + ∆|t, θ) which is now

in the form

EX(t)

[[
∂E[t+ ∆|t]

∂θT

]T
V ar−1[t+ ∆|t]∂E[t+ ∆|t]

∂θT

]
=

=

[[(
∂A(t)

∂θT

)
E[X(t)] +

∂b(t)

∂θT

]
∆ + o(∆)

]T
·
[
Σ(t)ΣT (t)∆ + o(∆)

]−1 ·

·
[[(

∂A(t)

∂θT

)
E[X(t)] +

∂b(t)

∂θT

]
∆ + o(∆)

]
+

+EX(t)

[
(X(t)− E[X(t)])T

(
∂A(t)

∂θT

)T
·
[
Σ(t)ΣT (t)∆ + o(∆)

]−1 ·

·
(
∂A(t)

∂θT

)
(X(T )− E[X(t)])∆2 + o(∆2)

]
.
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In the substitution into the formula we used already obtained Taylor expansions

together with the fact that EX(t)[X(t)] = E[X(t)]. It implies that products of type

’Summand1’ ·V ar−1[t+∆|t]· ’Summand2’ equal to zero and therefore can be omitted

from the formula.

Considering asymptotic properties up to order 1, we may regard o(∆)
∆

as 0. We

also recall the formula for the drift of the process A(t)X(t) + b(t) = f(X(t)). See-

ing, that our result is a matrix of dimension m × m. We can write down its ij-th

component as :

∂f(X(t))T

∂θi

∣∣∣
E[X(t)]

[
Σ(t)ΣT (t)

]−1 ∂f(X(t))

∂θj

∣∣∣
E[X(t)]

∆+

+EX(t)

[
(X(t)− E[X(t)])T

(
∂A(t)

∂θi

)T [
Σ(t)ΣT (t)

]−1 ·

·
(
∂A(t)

∂θj

)
(X(T )− E[X(t)])

]
∆ + o(∆).

We would like to find a way to simplify the following expression to more favourable

form. Inside the EX(t)

[
.
]

is a scalar, which means that EX(t)

[
.
]
= EX(t)

[
tr{.}

]
. Using

the known identity of a trace, tr{AB} = tr{BA}, we obtain

EX(t)

[
.
]
= EX(t)

[
tr

{(
∂

∂θi
A(t)

)T [
Σ(t)ΣT (t)

]−1
(
∂

∂θj
A(t)

)
·

·(X(T )− E[X(t)]) (X(t)− E[X(t)])T
}]

=

= tr

{(
∂A(t)

∂θi

)T [
Σ(t)ΣT (t)

]−1
(
∂A(t)

∂θj

)
· V ar[X(t)]

}
.

In the last step we use basic definition for the variation Var[X] = E[(X−E(X))(X−
E(X))T ].

Now we can proceed to the second part of of the conditioned information matrix,

which equals to

1

2
tr

{
V ar−1[ti+∆|ti]

∂V ar[ti+∆|ti]
∂θ

V ar−1[ti+∆|ti]
∂V ar[ti+∆|ti]

∂θT

}
.

From the Taylor expansion we get it simplified as following

1

2
tr

{[
Σ(t)ΣT (t) ·∆ + o(∆)

]−1 · ∂Σ(t)ΣT (t) ·∆ + o(∆)

∂θ
·
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·
[
Σ(t)ΣT (t) ·∆ + o(∆)

]−1 · ∂Σ(t)ΣT (t) ·∆ + o(∆)

∂θT

}
.

We can observe that inside the trace is expression in the form

((.) ·∆ + o(∆))−1 · ((.) ·∆ + o(∆)) · ((.) ·∆ + o(∆))−1 · ((.) ·∆ + o(∆)) ,

which contains members independent to ∆ and therefore this part tends to some

non-zero matrix. Let us now summarize the result of our computations in the

following lemma.

Lemma 39.

lim
∆→0

(
EX(t)

[
It+∆|t(θ)

]
− I1(t, θ)∆− I2(t, θ)

)
= 0m×m, (3.6)

where

I1(t, θ) =
∂fT (X(t))

∂θ

∣∣∣
E[X(t)]

[
Σ(t)ΣT (t)

]−1 ∂f(X(t))

∂θT

∣∣∣
E[X(t)]

+

+tr

{
∂AT (t)

∂θ

[
Σ(t)ΣT (t)

]−1 ∂A(t)

∂θT
· V ar[X(t)]

}
and

I2(t, θ) =
1

2
tr

{[
Σ(t)ΣT (t)

]−1 ∂Σ(t)ΣT (t)

∂θ

[
Σ(t)ΣT (t)

]−1 · ∂Σ(t)ΣT (t)

∂θT

}
.

Inside the traces in the formulas are again 4-dimensional n×m×m×n tensors,

therefore sumation has to be carry out throughout the dimensions with n members.

As I1 is coefficient associated with ∆, this part tends to zero as observations from

τ converges to τ0 and therefore this part is continuous on the boundary T n,D \ Tn,D.

But since I2 does not come with ∆ in the formula, it can cause discontinuity

on the boundary T n,D \ Tn,D. But recalling the fact that Σ does not depend on

the parameter υ, I2 does not influence components of Fisher information matrix

depending on any parameter from υ. Hence discontinuity can be caused only by

the block Iββ of Fisher information matrix. We are now ready to state one of the

biggest achieved results in the thesis.

Theorem 40. If β is known parameter of equation (3.1), describing multivariate

Ornstein-Uhlenbeck process, then an optimal sampling design for υ exists in the strong

sense.

Proof. If β is not an unknown parameter of our stochastic differential equation,

potentional discontinuity is avoided and thus limτ→τ0 I(τ, θ) = I(τ0, θ). Together
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with the fact, that for any design with replications τ0 exists feasible design from

its neighbouhood, such that I(τ, θ) � I(τ0, θ) it yields existence of the achieved

maximum on the set Tn,D and thus also existence of optimal sampling design in the

strong sense.

For better grasp of the problems associated with the parameter β present in the

volatility, we recall the fractal property of Wiener process, which implies that it

keeps exactly the same properties, regardless of the "zoom" we use. Therefore if

we move the observations closer to each other, the amount of information about

the parameters linked to Wiener process and thus present in the volatility does not

decrease and does not tend to zero as observations converge to each other. This

fractal property is also illustrated on Figure 3.1, zoom of the process increases from

upper left subplot to lower right subplot.

Figure 3.1: Fractal property of 2−dimensional Wiener process
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3.4 Ultimate efficiency

As we mentioned earlier, as a reference matrix to measure quality of designs by so-

called ultimate efficiency is Fisher information matrix obtained by the observation

of the trajectory at all times from the experimental domain. This matrix I∞(θ) =

limn→∞ I(τ (n), θ) as ‖τ (n)‖ → 0 is often referred to as asymptotic Fisher information

matrix. Corresponding design τ (n) is said to cover the whole experimental domain

D. Reasonable values of ultimate efficiency can be only obtained in the case when

limn→∞ φ[I(τ (n), θ)] attains finite value. We already know all important facts to

formulate theorem crucial for computing asymptotic information matrix, also being

one of the main results of the thesis.

Theorem 41. Let {X(t)}t≥0 be a process governed by multivariate stochastic differen-

tial equation (3.1), and let τ (n) covers the whole experimental domain D. Then

lim
n→∞

(
I(τ (n), θ)− I∞(θ)−

n∑
i=2

I2(ti, θ)

)
= 0m×m, (3.7)

where

I∞(θ) =
∂ET [T∗]

∂θ
V ar−1[T∗]

∂E[T∗]

∂θT
+

+
1

2
tr

{
V ar−1[T∗]

∂V ar[T∗]

∂θ
V ar−1[T∗]

∂V ar[T∗]

∂θT

}
+

T ∗∫
T∗

I1(t, θ)dt

and I1(t, θ) and I2(t, θ) are defined in Lemma 39.

Proof. Lemma 34 and Lemma 39 together implies the statement of the theorem.

As the Fisher information matrix for the whole design is computed through the

sums for individual observations, let us introduce the following proposition for

better understanding of the summation of multiple matrices.

Proposition 42 ([7]). Let A and B be Hermitian matrices in Mn with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn, respectively. Then, if d1 ≥ d2 ≥ · · · ≥ dn

denote the diagonal entries of A+B, we have that the vector of the diagonal elements

of A + B is majorized by the sum of the vectors of the eigenvalues of A and B. This

means that

d1 + · · ·+ dk ≤ λ1 + µ1 + · · ·+ λk + µk, k = 1, · · · , n− 1

and

d1 + · · ·+ dn = λ1 + µ1 + · · ·+ λn + µn.
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This proposition also includes easier situation, where B = 0 and thus vector

of the diagonal elements of any Hermitian matrix is majorized by the vector of

its eigenvalues. If we want to apply this lemma on I2, first we have to ensure

its symetry. So we demand the following equation to hold: {I2}ij = {I2}ji. By

recalling (3.5) and the identity tr{AB} = tr{AB} we get (in the simplified form)

{I2}ij = ∂Var
∂θi k.

Var−1 ∂Var
∂θj

Var−1
.k and {I2}ji = Var−1

k.
∂Var
∂θj

Var−1 ∂Var
∂θi .k

. As transposition

of scalar is the same scalar value and thanks to symetry of matrices Var−1 and ∂Var
∂θj

we can assume I2 to be symetric. From the form of I2 we can say, that it is also

positive definite. It implies that some eigenvalues and hence also information about

{limn→∞ I(τ (n), θ)}ββ tends to infinity.

Recalling the substitution θ = (υT , βT )T we can write information matrix in

the block form I(θ) =

(
Iυυ Iυβ
Iβυ Iββ

)
. Fisher information matrix corresponding to

subparameter υ can be evaluated as Schur complement for the block Iββ.

Iυ(τ, θ) = Iυυ − Iυβ (Iββ)− Iβυ.

Analogically

Iβ(τ, θ) = Iββ − Iβυ (Iυυ)− Iυβ.

In both cases I− denotes arbitrary pseudo-inverse of I.

As achieved information about β is not bounded, it can be estimated consistently

and therefore the concept of ultimate efficiency is not applicable here.

Now let us focus on subparameter υ. Information about {limn→∞ I(τ (n), θ)}ββ
tend to infinity and thus Iυβ (Iββ)− Iβυ → 0m×m and Iυ(τ (n), υ)→ {I∞(θ)}υυ, which

implies expected property ueff(τ (n)|φ, υ) → 1 as n → ∞. To sum it up, with

I∞(θ) defined in Theorem 41, we can compute ultimate efficiency of design τ for

estimation of subvector υ of the parameter vector θ as

ueff(τ |φ, υ) =
φ[Iυ(τ, θ)]
φ[{I∞(θ)}υυ]

.



Conclusion

In the first two chapters we summarized the theory of stochastic calculus and prob-

ability and information theory used later on. In the main chapter of the thesis we

formulated stochastic model for multivariate Ornstein-Uhlenbeck processes, dis-

cussed some of their properties and using unconventional methods we evaluated

Fisher information matrix. We studied limit case, when two observations approach

each other and with the help of our results we conditioned the existence of opti-

mal sampling design by knowledge of the parameter present in the volatility of the

stochastic process, in our notation presented as β. We also stated that the concept

of ultimate efficiency obtains reasonable outcome when we consider estimation of

parameters that do not contain β. Obtained results can be further applicated, for

example in the field of multi-compartment models, describing wide class of pro-

cesses in pharmacokinetics or biomedicine.
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