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Abstract

KOMADEL, Ján: Numerical Treatment of Optimal Liquidation of a Large Trading Po-

sition [Master’s Thesis], Comenius University in Bratislava, Faculty of Mathematics,

Physics and Informatics, Department of Applied Mathematics and Statistics; Supervi-

sor: prof. RNDr. Pavel Brunovský, DrSc., Bratislava, 2014

The main contribution of this Master’s thesis is an alternative approach to solv-

ing the problem of optimal liquidation of a large trading position. The problem is

formulated in [4] where the author mentions that standard numerical methods fail in

solving it due to instability of solutions. We propose an alternative approach based on

truncating the problem to a finite time horizon and finding the solution to the original

problem as a limit of solutions to the finite horizon problems. We use this approach in

three numerical methods which we demonstrate on numerical examples. We compare

the methods and conclude that the explicit Euler method is the most suitable one for

this problem. The experiments confirm that our suggested procedure leads to good

approximations of the searched solution. We also provide proofs of monotonicity of

the value function for the finite horizon problem with respect to the length of the time

interval.

Keywords: Optimal liquidation, numerical treatment, singular problem,

Hamilton-Jacobi-Bellman equation



Abstrakt

KOMADEL, Ján: Numerické spracovanie úlohy optimálnej likvidácie maśıvnej obchod-

nej poźıcie [Diplomová práca], Univerzita Komenského v Bratislave, Fakulta matem-

atiky, fyziky a informatiky, Katedra aplikovanej matematiky a štatistiky; Vedúci práce:

prof. RNDr. Pavel Brunovský, DrSc., Bratislava, 2014

Hlavným pŕınosom tejto diplomovej práce je alternat́ıvny pŕıstup k riešeniu problému

optimálnej likvidácie vělkej obchodnej poźıcie. Tento problém je formulovaný v [4],

kde autor uvádza, že štandardné metódy zlyhávajú v jeho riešeńı z dôvodu nestability

riešeńı. My navrhujeme alternat́ıvny postup založený na obmedzeńı úlohy na konečný

časový horizont a ȟladańı riešenia pôvodnej úlohy ako limity riešeńı úloh na konečnom

horizonte. Tento pŕıstup použijeme v troch numerických metódach, ktoré predstav́ıme

na numerických pŕıkladoch. Metódy porovnáme a usúdime, že explicitná Eulerova

metóda je najvhodneǰsia pre tento problém. Experimenty potvrdzujú, že nami navrho-

vaný postup vedie k dobrým aproximáciám ȟladaného riešenia. Tiež uvedieme dôkazy

monotónnosti hodnotovej funkcie pre úlohu na konečnom horizonte s oȟladom na d́lžku

časového intervalu.

Kľúčové slová: Optimálna likvidácia, numerické riešenie, singulárna úloha,

Hamilton-Jacobi-Bellmanova rovnica
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INTRODUCTION

One of the many problems which one encounters in finance is the problem of an optimal

liquidation of a trading position. The aim is to sell certain amount of an asset in a way

which maximizes the expected revenue. We consider a model which assumes stochastic

underlying dynamics for the price of the asset and the actual market price is affected

by the amount sold by the investor.

The considered optimal liquidation problem is inspired by [4] where it is applied to a

speculative attack. The relevant part of the attack for our work is when the speculator

already owns a large amount of foreign currency and wishes to convert it optimally

back to domestic currency. The asset in this case is the foreign currency and the price

is the exchange rate.

In the first chapter, we formulate this problem as an optimal control problem and

we derive the Hamilton-Jacobi-Bellman (HJB) equation for its value function w(y, z).

It is a singular second order partial differential equation for a function of two variables

which can be transformed to a one-dimensional problem. The transformed ordinary

differential equation is the area of interest in our work as well as in [3], where the au-

thors prove the existence and uniqueness of the solution u(x) under certain conditions

for the parameters, and they also prove some properties of this solution. We list these

results and we add a proof of the upper bound for the solution.

11



INTRODUCTION

In chapter 2, we present an alternative approach to the problem which leads to solv-

ing a parabolic partial differential equation the solutions to which tend to u(x). We

also describe an alternative initial condition and we show monotonicity of the value

function with respect to the length of the considered time interval.

The third chapter is dedicated to the numerical treatment of the problem. We argue

why standard methods cannot be used and we refer to specific examples from litera-

ture. Then we describe three numerical methods which are based on the alternative

approach, the explicit Euler method, the predictor-corrector and the orthogonal collo-

cation.

In the final chapter, we present the three methods on four numerical examples. The

first example is the non-stochastic case where we compare our results to the analytical

solution presented in [4]. The other three examples are stochastic with different values

of parameters. We include graphical illustrations of the resulting solutions which help

us verify whether the solution has the properties proven in [3] and listed in chapter 1.

We also analyze the approximation error.

The aim of our work is to find a way of solving the formulated problem of optimal

liquidation of a large trading position by treating the corresponding HJB equation

numerically. According to [4], straightforward numerical treatment of the equation

proved problematic which is why we propose an alternative approach. This approach

may be used to solve similar problems with singularities where standard methods fail.

12



CHAPTER 1

THE OPTIMAL LIQUIDATION

PROBLEM

In this chapter we formulate the optimal liquidation problem where the aim is the ex-

pected revenue-maximizing sale of a large trading position. We derive the correspond-

ing Hamilton-Jacobi-Bellman equation and transform this partial differential equation

to an ordinary differential equation. Finally, we describe the properties of the solution

which are proven in [3].

1.1 Problem Formulation

The problem we consider in this work is a generalization of one of the problems formu-

lated in [4]. We consider a major investor who owns a certain amount of an asset z(0)

and wishes to maximize his expected revenue from selling it. We denote by z(t) the

amount of the asset which the investor owns at time t, and by y(t) the so called shadow

price of the asset. It is the price which would prevail if there were no interventions.

The total expected revenue from the sale of the asset is given by

E0

 T (z=0)∫
0

e−ρsf(s)
[
y(s)− ηf

(
y(s), z(s)

)]
ds

 , (1.1)

13



1.1. PROBLEM FORMULATION

where T (z = 0) is the first time t when z(t) = 0, ρ is the discount rate, and f(s) is

the amount of the asset sold at time s. The amount sold f is not multiplied only by

the shadow price y but it is reduced by ηf as well. This takes into account the fact

that the real price which the investor receives by selling, is negatively influenced by the

amount which he decides to sell. The constant η has the role of Kyle’s lambda which

is a measure of market impact named from the well known paper [6] by A. Kyle. It

describes the sensitivity of the price to market interventions which are in this model

represented only by the investor’s actions.

The discount factor ρ in the expected revenue (1.1) can be interpreted in two ways.

The investor either does not have his own funds and ρ is the interest rate at which

he borrows the resources, or he owns the money which could alternatively be invested

with an interest rate of ρ.

With a certain abuse of notation, we will write the amount sold f(s) as f
(
y(s), z(s)

)
to emphasize that it is the the investor’s strategy which he chooses based on the values

of the shadow price y and the owned amount z at time s. The problem which he is

facing can then be formulated as the optimal control problem

w(y(0), z(0)) = max
f

E0

 T (z=0)∫
0

e−ρsf
(
y(s), z(s)

)[
y(s)− ηf

(
y(s), z(s)

)]
ds

 (1.2)

subject to

dy(t) = λy(t)dt+ σy(t)dW (t), (1.3)

dz(t) =
[
r∗z(t)− f

(
y(t), z(t)

)]
dt, (1.4)

with the initial values y(0) a z(0).

The shadow price y(t) follows the geometric Brownian motion (1.3), where W (t) is

the standard Wiener process and σ is a volatility parameter. It is a stochastic process

and the parameter λ represents its expected growth rate. The amount of the asset

owned by the investor follows the dynamics (1.4), where r∗ is the rate at which the

amount of the asset grows. This growth is reduced by the amount f which the investor

sells.

In the speculator’s case, ρ can be thought of as domestic interest rate while r∗ is

foreign interest rate and λ is the average rate of depreciation of domestic currency.

14



1.2. DERIVATION OF THE HJB EQUATION

1.2 Derivation of the HJB Equation

The value function w(y(0), z(0)) defined by (1.2) represents the expected revenue from

the optimal disposal of the amount z(0) of the asset under the current shadow price

y(0). The Hamilton-Jacobi-Bellman (HJB) equation for the value function can be

derived by use of the dynamic programming equation (DPE) which is used for discrete

problems. By the Bellman optimality principle, the value function w(y(t), z(t)) should,

by the transition from time t to time t+ ∆t, satisfy

w
(
y(t), z(t)

)
= max

f
Et

[ t+∆t∫
t

e−ρ(s−t)f
(
y(s)− ηf

)
ds+ e−ρ∆tw

(
y(t+ ∆t), z(t+ ∆t)

)]

= max
f

{
f
(
y(t)− ηf

)
∆t+O(∆t) + Et

[
e−ρ∆tw

(
y(t+ ∆t), z(t+ ∆t)

)]}
.

(1.5)

The second equality comes from the fact that we only consider small values of ∆t as

we will take the limit ∆t→ 0. We replace the term w
(
y(t+ ∆t), z(t+ ∆t)

)
by the first

order Taylor expansion

w
(
y(t+ ∆t), z(t+ ∆t)

)
= w

(
y(t), z(t)

)
+ λy(t)wy

(
y(t), z(t)

)
∆t

+ σy(t)wy
(
y(t), z(t)

)
[W (t+ ∆t)−W (t)]

+ [r∗z(t)− f ]wz
(
y(t), z(t)

)
∆t

+
1

2
σ2y(t)2wyy

(
y(t), z(t)

)
∆t+O(∆t).

(1.6)

Then we substitute this expansion into (1.5) and we use y instead of y(t) a z instead

of z(t)

w(y, z) = max
f

{
f(y − ηf)∆t+ e−ρ∆tw(y, z) +O(∆t)

+ e−ρ∆t

[
λywy(y, z) +

[
r∗z − f

]
wz(y, z) +

1

2
σ2y2wyy(y, z)

]
∆t (1.7)

+ e−ρ∆tσywy(y, z)Et
[
W (t+ ∆t)−W (t)

]}
.

Since the expected value of an increment of the Wiener process is zero, the last term can

be dropped. We subtract e−ρ∆tw(y, z) from both sides and divide the whole equation

15



1.2. DERIVATION OF THE HJB EQUATION

by ∆t

w(y, z)
1− e−ρ∆t

∆t
= max

f

{
f(y − ηf) +

O(∆t)

∆t

+ e−ρ∆t

[
λywy(y, z) +

[
r∗z − f

]
wz(y, z) +

1

2
σ2y2wyy(y, z)

]}
.

(1.8)

By taking the limit for ∆t→ 0 we obtain

ρw(y, z) = max
f

{
f(y− ηf) +λywy(y, z) +

[
r∗z− f

]
wz(y, z) +

1

2
σ2y2wyy(y, z)

}
. (1.9)

An even more clearly arranged form of the optimality condition can be attained by

dropping the arguments y, z of the function w and its derivatives

0 = max
f

{
f(y − ηf) + λywy +

1

2
σ2y2wyy + (r∗z − f)wz

}
− ρw

= max
f

{
f(y − ηf)− fwz

}
+ λywy +

1

2
σ2y2wyy + r∗zwz − ρw. (1.10)

From (1.10) it is clear that the optimal control f is given as

f =
y − wz

2η
. (1.11)

Substituting this back to (1.10) we obtain

0 =
1

2
y2σ2wyy + λywy + r∗zwz − ρw + f (y − wz − ηf)

=
1

2
y2σ2wyy + λywy + r∗zwz − ρw +

y − wz
2η

(
y − wz − η

y − wz
2η

)
0 =

1

2
y2σ2wyy + λywy + r∗zwz − ρw +

(y − wz)2

4η
. (1.12)

Relationship (1.12) with the initial condition

w(y, 0) = 0 (1.13)

is called the Hamilton-Jacobi-Bellman partial differential equation for the value func-

tion w(y, z) defined by (1.2). The condition (1.13) says that the expected revenue from

the optimal disposal of a zero amount of the asset is zero under any arbitrary shadow

price y.

In this work, we assume without proof that the HJB equation is not only a necessary

condition for the value function of the optimal liquidation problem, but that it is also

sufficient. This can also be proven and the proof is included in the article [2] which

has not yet been published.
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1.3. DIMENSION REDUCTION

1.3 Dimension Reduction

The homogeneity of w(y, z) allows us to aggregate the amount of the asset z and the

shadow price y in one variable by use of the substitution

w(y, z) =
y2

η
u(x), x = η

z

y
. (1.14)

The variable x corresponds to the amount z in that sense that if the latter is zero, then

also x = 0, and if z increases, then x increases as well. The derivatives of w given as

wy = 2
y

η
u(x)− zu′(x), (1.15)

wyy =
2

η
u(x)− 2

z

y
u′(x) + η

z2

y2
u′′(x), (1.16)

wz = yu′(x), (1.17)

can be substituted into (1.12) which yields the ordinary differential equation

x2u′′ − 2

σ2

(
σ2 + λ− r∗

)
xu′ − 2

σ2

(
ρ− σ2 − 2λ

)
u+

1

2σ2
(u′ − 1)

2
= 0, (1.18)

for x > 0. The initial condition (1.13) becomes

y2

η
u(0) = 0

or, equivalently,

u(0) = 0. (1.19)

To obtain the investor’s optimal policy g for the reduced problem, we need to change

the unit of measurement of f the same way as we did with the amount z, i.e.

g = η
f

y
. (1.20)

Combining this with (1.11) and (1.17) one obtains

g = η
f

y
=
y − wz

2y
=

1− u′

2
. (1.21)

17



1.4. PROPERTIES OF THE SOLUTION

1.4 Properties of the Solution

Equation (1.18) was examined in [3] and in this section we will list some of the prop-

erties of the solution which were proven there. The authors used the parameters

a =
2

σ2

(
σ2 + λ− r∗

)
, (1.22)

b =
2

σ2

(
ρ− σ2 − 2λ

)
, (1.23)

c =
1

2σ2
. (1.24)

The equation then takes the form

x2u′′ = a x u′ + b u− c (u′ − 1)
2
. (1.25)

It is an ordinary differential equation of second order with a singularity in the point

x = 0. Moreover, the initial condition (1.19) also refers to this singular point. By

a solution to (1.25) on the interval [0, x0] we understand a function u continuous on

[0, x0] and twice continuously differentiable on (0, x0) which satisfies (1.25) for x > 0.

In the beginning of the article the authors list expected properties of the solution

of (1.2)-(1.4) which could in case of multiple solutions help identify the relevant one.

First of all, the solution should be increasing because a higher amount of the asset

should lead to a higher revenue from sale. Moreover, u(x) should be concave to reflect

decreasing return to scale because a greater amount sold leads to a greater decrease in

real price. Also, the solution should be bounded between 0 and x.

Non-negativity is obvious because not selling anything would ensure zero revenue

and the upper bound corresponds to an immediate sale without any negative effect on

price. Since the sale is immediate, the revenue will not be discounted, and because also

the price is not reduced, it is clear that this value is the upper estimate of the revenue

from the sale of the asset.

Let us now now present the proof of the upper bound u(x) ≤ x which is not included

in [3]. First, observe that

T∫
0

e−ρs
[
y(s)− ηf(s)

]
f(s)ds ≤

T∫
0

e−ρsy(s)f(s)ds, (1.26)

because f is non-negative. Now use (1.4) to substitute for f(s)ds in the right-hand

18



1.4. PROPERTIES OF THE SOLUTION

side integral

T∫
0

e−ρsy(s)f(s)ds =

T∫
0

e−ρsy(s)
[
r∗z(s)ds− dz(s)

]

=

T∫
0

e−ρsr∗y(s)z(s)ds−
T∫

0

e−ρsy(s)dz(s).

(1.27)

Integrating the last integral by parts we obtain

T∫
0

e−ρsy(s)dz(s) = e−ρTy(T )z(T )− y(0)z(0) +

T∫
0

e−ρsρ y(s)z(s)ds−
T∫

0

e−ρsz(s)dy(s),

(1.28)

because e−ρsy(s)z(s) = e(−ρ+λ)sz(s)e−λsy(s), where e(−ρ+λ)sz(s) is a process with finite

variation and e−λsy(s) is a local martingale. Therefore, their quadratic variation is

zero and (1.28) holds. Now we substitute (1.28) into (1.27) and, at the same time, we

substitute (1.3) for dy(s) in the last term

T∫
0

e−ρsf(s)y(s)ds =

T∫
0

e−ρsr∗y(s)z(s)ds− e−ρTy(T )z(T ) + y(0)z(0)

−
T∫

0

e−ρsρ y(s)z(s)ds+

T∫
0

e−ρsz(s)
[
λy(s)ds+ σy(s)dW (s)

]

= y(0)z(0)− e−ρTy(T )z(T ) +

T∫
0

e−ρs
[
r∗ + λ− ρ

]
y(s)z(s)ds

+

T∫
0

e−ρsσy(s)z(s)dW (s)

(1.29)

Let us now look at the individual terms in (1.29). The term e−ρTy(T )z(T ) is clearly

non-negative. Furthermore, if ρ ≥ r∗ + λ, then

T∫
0

e−ρs
[
r∗ + λ− ρ

]
y(s)z(s)ds ≤ 0.

Therefore, from (1.29) we obtain

T∫
0

e−ρsf(s)y(s)ds ≤ y(0)z(0) +

T∫
0

e−ρsσy(s)z(s)dW (s). (1.30)
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1.4. PROPERTIES OF THE SOLUTION

Now, taking expectations on both sides

E0

 T∫
0

e−ρsf(s)y(s)ds

 ≤ y(0)z(0) + E0

 T∫
0

e−ρsσy(s)z(s)dW (s)

 = y(0)z(0),

(1.31)

because e−ρsσy(s)z(s) is a continuous process and for φ(s) continuous

E0

 T∫
0

φ(s)dW (s)

 = 0. (1.32)

Combining (1.26) and (1.31)

E0

 T∫
0

e−ρs
[
y(s)− ηf(s)

]
f(s)ds

 ≤ y(0)z(0) (1.33)

and by taking maximum, one obtains the upper bound for w

w(y(0), z(0)) = max
f

E0

 T∫
0

e−ρs
[
y(s)− ηf(s)

]
f(s)ds

 ≤ y(0)z(0). (1.34)

To see the upper bound for u(x), we simply use the substitution (1.14)

u(x) =
η

y2
w(y, z) ≤ η

y2
yz = η

z

y
= x. (1.35)

This proves that the value function u(x) is bounded from above by x (and also w(y, z)

by yz) as we argued at the beginning of this section.

Because of singularity of the HJB equation (1.25) it does not follow from standard

theory that there needs to exist a solution with these properties, which are expected

from the value function. We will now summarize the properties of the solutions to this

equation which were proven by the authors of [3].

1.4.1 Existence

The existence of the solution depends on whether a + b ≥ 0 or a + b < 0. Let us first

examine what this expression means

a+ b =
2

σ2

(
σ2 + λ− r∗ + ρ− σ2 − 2λ

)
=

2

σ2
(ρ− λ− r∗) . (1.36)

Since 2
σ2 is positive, a+b ≥ 0 if and only if ρ ≥ r∗+λ which means that the discounting

is greater than the sum of appreciation of the asset and the average growth of shadow

price.
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1.4. PROPERTIES OF THE SOLUTION

When applied to the speculator’s problem from [4], the interpretation is following.

The discount rate ρ can be interpreted as domestic interest rate or yield from investment

in domestic currency. The sum r∗+λ represents the expected yield from investment in

foreign currency for a domestic investor. The condition a + b ≥ 0 therefore says that,

for a domestic investor, the expected yield from investment abroad is not higher than

in domestic economy.

Now we formulate two propositions which are proven in [3].

Proposition 1.1. Let a + b < 0. Then for all x0 > 0 problem (1.25),(1.19) has no

solution u in [0, x0].

Proposition 1.2. (i) For a + b > 0 and any x0 > 0 there exists a continuum of

solutions to the problem (1.25),(1.19) on [0, x0] which satisfy 0 ≤ u(x) ≤ x.

(ii) For a + b ≥ 0 problem (1.25),(1.19) has at least one solution on [0,∞) which

satisfies 0 ≤ u(x) ≤ x.

Proposition 1.1 says that if the discounting is lower than the expected yield from

investment in foreign currency, then the problem has no solution. This is a situation

when the investor borrows for a lower interest than the expected value of his yields. It

is therefore reasonable that in this case his revenue is unlimited and the solution does

not exist.

In the other case when a+ b ≥ 0, i.e. discounting is at least as big as the expected

yield from investment in foreign currency, according to 1.2(ii) there is at least one

solution, and if a + b > 0, then according to the first part of this proposition there is

are infinitely many solutions. It is this last case, when ρ > r∗ + λ, that we will be

dealing with.

1.4.2 Uniqueness, Monotonicity and Concavity

In this part we assume a+ b > 0 and we state a result about uniqueness of the solution

the existence is claimed in proposition 1.2(i).

Proposition 1.3. There is one, and only one, solution u of the problem (1.25),(1.19)

in [0,∞) which has the additional property 0 ≤ u(x) ≤ x for all x > 0. This solution

necessarily satisfies u > 0, u′ > 0, u′′ < 0 and u′′′ > 0 on (0,∞).
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1.4. PROPERTIES OF THE SOLUTION

Proposition 1.3 ensures uniqueness of the solution u to (1.25) and, in addition, it

also says that this solution is increasing and concave as we demanded.

1.4.3 Properties of the Derivative

So far, we know about the derivative of solution u that it is positive on (0,∞). The

authors have also proven in [3] what happens to u′(x) when x tends to the borders of

this interval.

Lemma 1.4. Let for some x0 > 0 function u ∈ C0
(
[0, x0]

)
∩C2

(
(0, x0)

)
be the solution

of (1.25),(1.19). Then

lim
x↘0

u′(x) = 1. (1.37)

Lemma 1.5. Let u be the solution of (1.25),(1.19) with x0 =∞ such that 0 ≤ u(x) ≤ x

for all x > 0. Then

lim
x→∞

u′(x) = 0. (1.38)

These two lemmas give us more information about the demanded solution. Accord-

ing to lemma 1.4 we know that the slope of the solution tends to 1 for x → 0, and

according to lemma 1.5 we know that as x tends to infinity, the slope goes to zero.

1.4.4 The Limit

Lemma 1.6. Let u be a non-constant solution to (1.25),(1.19) on (0,∞).

(i) If b > 0, u ≥ 0 a u′(x) > 0 for all x, then u(x)→ c
b

as x→∞.

(ii) If b ≤ 0 and u ≥ 0, then u′(x) > 0 for all x and u is unbounded.

This lemma tells us that for positive b we know the limit of u(x) for x going to

infinity and this limit is c
b
. This can be seen from (1.25) when we take into account

(1.38) and assume that the second derivative will also be zero in the limit. What is

left is

0 = bu− c,

from where it is evident that u = c
b
. The second claim of the lemma is that if b ≤ 0,

then the solution u increases without bound with increasing x.
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1.4. PROPERTIES OF THE SOLUTION

1.4.5 Summary of Properties

Based on the findings from [3] we know that if the condition a+b > 0 holds, then there

exists a unique solution u(x) to the problem (1.25),(1.19), such that 0 ≤ u(x) ≤ x,

and hence also to the problem (1.2)-(1.4). Moreover, we know these properties of the

solution u(x)

• u is increasing and concave,

• lim
x↘0

u′(x) = 1,

• lim
x→∞

u′(x) = 0,

• if b > 0, then lim
x→∞

u(x) = c
b
.

The existence and uniqueness allow us to use a suitable numerical scheme to search

for the solution and the remaining properties can be used to verify the correctness of

a found solution.

We only have one initial condition (1.19) for equation (1.25) which is not enough to

find a precise solution of a second order differential equation. As a second condition

one of the properties (1.37) or (1.38) can be used.
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CHAPTER 2

THEORETICAL PRELIMINARIES

This chapter is dedicated to theoretical preliminaries for the alternative approach which

we use for numerical treatment of the optimal liquidation problem. We define the

problem on a finite time horizon and the original problem is then the limit when

increasing the time interval. Then we reduce the problem’s dimension by a similar

substitution as was used in the previous chapter. Finally, we formulate an alternative

initial condition which corresponds to a different scenario, where the investor is allowed

to sell the remaining quantity of the asset at the end of the considered time interval.

We also show monotonicity of the value function with respect to the length of the

time interval. For the original initial condition, the value function is non-decreasing,

whereas for the alternative condition, it is non-increasing.

2.1 Parabolic PDE

We limit time in the original problem (1.2)-(1.4) to a finite interval from t to τ ≥ t

and we define

wτ
(
t, y(0), z(0)

)
= max

f
Et

 T (z=0)∧τ∫
t

e−ρ(s−t)f
(
y(s), z(s)

)[
y(s)− ηf

(
y(s), z(s)

)]
ds

 ,

(2.1)
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2.1. PARABOLIC PDE

with preserved dynamics for y(t) and z(t)

dy(t) = λy(t)dt+ σy(t)dW (t), (1.3)

dz(t) =
[
r∗z(t)− f

(
y(t), z(t)

)]
dt. (1.4)

From (2.1) we obtain (1.2) if we let t = 0 and τ → ∞. Therefore we expect that

the original value function w(y, z) is the limit of wτ (0, y, z)

w(y, z) = lim
τ→∞

wτ (0, y, z). (2.2)

The argument is that wτ is non-decreasing with increasing τ because giving the investor

more time, i.e. relaxing the constraint, cannot make him worse off. This can also be

shown mathematically. Let 0 < τ1 < τ2. Then

wτ1
(

0, y(0), z(0)
)

= max
f

E0

 T (z=0)∧τ1∫
0

e−ρsf
[
y − ηf

]
ds


≤ max

f
E0

 T (z=0)∧τ1∫
0

e−ρsf
[
y − ηf

]
ds+

T (z=0)∧τ2∫
τ1

e−ρsf
[
y − ηf

]
ds


= max

f
E0

 T (z=0)∧τ2∫
0

e−ρsf
[
y − ηf

]
ds

 = wτ2
(

0, y(0), z(0)
)

(2.3)

The inequality in the second line follows from the fact that equality can be achieved

by letting f in the right-hand side be the maximizing control from the left-hand side

for s ∈ [0, τ1] and zero for s ∈ (τ1, τ2].

Moreover, for every p

wτ−p(t− p, y, z) = wτ (t, y, z), (2.4)

since only the length of the considered time interval and the initial values y for y(t)

and z for z(t) are important for the problem and not the actual values which the time

variable takes. It follows

w(y, z) = lim
t→−∞

w0(t, y, z). (2.5)

By assumption, w0(t, y, z) is the value function of the problem

max
f

Et

 T (z=0)∧0∫
t

e−ρ(s−t)f
(
y(s), z(s)

)[
y(s)− ηf

(
y(s), z(s)

)]
ds

 , (2.6)
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2.1. PARABOLIC PDE

with dynamics (1.3),(1.4). We drop the index 0 for simplicity so instead of w0(t, y, z)

we write merely w(t, y, z).

As we did in part 1.2, we will use the dynamic programming equation to derive the

Hamilton-Jacobi-Bellman equation for this problem. By transition from time t to time

t+ ∆t DPE takes the form

w
(
t, y(t), z(t)

)
= max

f
Et

[ t+∆t∫
t

e−ρ(s−t)f
(
y(s)− ηf

)
ds

+ e−ρ∆tw
(
t+ ∆t, y(t+ ∆t), z(t+ ∆t)

)]
= max

f

{
f
(
y(t)− ηf

)
∆t+O(∆t)

+ Et

[
e−ρ∆tw

(
t+ ∆t, y(t+ ∆t), z(t+ ∆t)

)]}
.

(2.7)

Again, we use first order Taylor expansion for the term w
(
t+ ∆t, y(t+ ∆t), z(t+ ∆t)

)
which is given as

w
(
t+ ∆t,y(t+ ∆t), z(t+ ∆t)

)
= w

(
t, y(t), z(t)

)
+ wt

(
t, y(t), z(t)

)
∆t+ λy(t)wy

(
t, y(t), z(t)

)
∆t

+ σy(t)wy
(
t, y(t), z(t)

)
[W (t+ ∆t)−W (t)]

+ [r∗z(t)− f ]wz
(
t, y(t), z(t)

)
∆t

+
1

2
σ2y(t)2wyy

(
t, y(t), z(t)

)
∆t+O(∆t).

(2.8)

Substituting (2.8) into (2.7) the term with the Wiener process increment drops out as

in (1.7). For better readability we drop the argument t of y and z

w(t, y, z)
1− e−ρ∆t

∆t
= max

f

{
f(y − ηf) + e−ρ∆t

[
wt(t, y, z) + λywy(t, y, z)

+
[
r∗z − f

]
wz(t, y, z) +

1

2
σ2y2wyy(t, y, z)

]
+
O(∆t)

∆t

}
. (2.9)

Letting ∆t→ 0 we obtain

ρw = max
f

{
f(y − ηf) + wt + λywy +

[
r∗z − f

]
wz +

1

2
σ2y2wyy

}
(2.10)

which is standardly written as

− wt = max
f

{
f(y − ηf)− fwz

}
+ λywy +

1

2
σ2y2wyy + r∗zwz − ρw. (2.11)
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2.2. DIMENSION REDUCTION

The right-hand side is the same as in (1.10) and hence the optimal control f is again

given by (1.11). Substituting this back into (2.11) we obtain the HJB equation

− wt =
1

2
y2σ2wyy + λywy + r∗zwz − ρw +

(y − wz)2

4η
. (2.12)

The conditions are

w(t, y, 0) = 0, (2.13)

which has a similar meaning as (1.13) and says that the expected revenue from optimal

disposal of a zero amount of the asset is zero for any shadow price y and any length of

the time interval |t|, and

w(0, y, z) = 0, (2.14)

which can be interpreted as the expected revenue from optimal disposal of any amount

of the asset z being zero for any shadow price y as long as the length of the time

interval is zero.

Equation (2.12) is a parabolic partial differential equation with a singularity in the

point y = 0. Note that the right-hand sides of equations (1.12) and (2.12) are the

same.

2.2 Dimension Reduction

Just like in case of equation (1.12) the dimension of (2.12) can be reduced by use of a

substitution which aggregates variables z and y into one new variable x

w(t, y, z) =
y2

η
u(t, x), x = η

z

y
. (2.15)

The derivatives of w(t, y, z) are then given as

wt(t, y, z) =
y2

η
ut(t, x), (2.16)

wy(t, y, z) = 2
y

η
u(t, x)− zux(t, x), (2.17)

wyy(t, y, z) =
2

η
u(t, x)− 2

z

y
ux(t, x) + η

z2

y2
uxx(t, x), (2.18)

wz(t, y, z) = yux(t, x). (2.19)
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2.3. ALTERNATIVE INITIAL CONDITION

Substituting them into (2.12) yields

− 2

σ2
ut = x2 uxx − a x ux − b u+ c(ux − 1)2, (2.20)

where coefficients a, b, c are given by (1.22)-(1.24). Another substitution

τ = −σ
2

2
t (2.21)

simplifies equation (2.20) to

uτ = x2 uxx − a x ux − b u+ c(ux − 1)2, (2.22)

where u = u(τ, x) and τ, x ∈ [0,∞).

Boundary conditions (2.13), (2.14) become

u(τ, 0) = 0, (2.23)

u(0, x) = 0. (2.24)

As was the case for equations (1.12) and (2.12), equations (1.25) and (2.22) only

differ in the presence of the time derivative in the latter equation. The investor’s

optimal policy g for the reduced problem can be calculated, similarly as on the infinite

horizon, as

g = η
f

y
=

1− ux
2

. (2.25)

2.3 Alternative Initial Condition

Initial condition (2.14) says that if the considered time interval is zero, the expected

revenue from the an optimal disposal of any amount z of the asset under any shadow

price y is zero. In other words, it says that once the time runs out, the investor can

no longer sell any of the asset. An alternative scenario at the end of the time interval

would be allowing the speculator to sell everything he has left with no negative effect

on the price, i.e. selling for the shadow price y. The corresponding initial condition is

w(0, y, z) = yz. (2.26)

After substitution (2.15) this condition becomes

u(0, x) =
η

y2
yz = η

z

y
= x (2.27)
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2.3. ALTERNATIVE INITIAL CONDITION

and it can be used instead of (2.24) as the initial condition in numerical treatment.

The use of the original zero initial condition produces a series of solutions to (2.22)

which tend to the solution to (1.25) from below (as (2.3) and numerical experiment

suggest), whereas the use of (2.27) for the initial condition produces a series of solutions

to (2.22) which tend to the solution to (1.25) from above.

It is intuitive that in this case a longer time interval should lead to a lower revenue

for the investor. The reason for that is that it delays the time when he can sell without

the negative effect on the exchange rate. Monotonicity of wτ (0, y, z) can again be

shown mathematically. Let 0 < τ1 < τ2. Then

wτ2
(

0, y(0), z(0)
)

= max
f

E0

 T (z=0)∧τ2∫
0

e−ρsf
[
y − ηf

]
ds+ e−ρτ2y(τ2)z(τ2)


= max

f
E0

( T (z=0)∧τ1∫
0

e−ρsf
[
y − ηf

]
ds+ e−ρτ1y(τ1)z(τ1)− e−ρτ1y(τ1)z(τ1)

+

T (z=0)∧τ2∫
τ1

e−ρsf
[
y − ηf

]
ds+ e−ρτ2y(τ2)z(τ2)

)

≤max
f

E0

( T (z=0)∧τ1∫
0

e−ρsf
[
y − ηf

]
ds+ e−ρτ1y(τ1)z(τ1)

)

+ max
f

E0

( T (z=0)∧τ2∫
τ1

e−ρ(s−τ1)f
[
y − ηf

]
ds+ e−ρτ2y(τ2)z(τ2)− e−ρτ1y(τ1)z(τ1)

)
(2.28)

The inequality is due to the facts that the maximum of a sum is not greater than the

sum of maxima and eρτ1 ≥ 1. Let us now examine the last term. We would like to

show that it is not greater than zero. Analogically to w(y, z) ≤ yz, which is proven by

(1.26)-(1.34), we can write

wτ2(τ1, y, z) ≤ e−ρτ1y(τ1)z(τ1) (2.29)

which is nothing else than

max
f

Eτ1

( T (z=0)∧τ2∫
τ1

e−ρ(s−τ1)f
[
y − ηf

]
ds+ e−ρτ2y(τ2)z(τ2)

)
≤ e−ρτ1y(τ1)z(τ1). (2.30)
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2.3. ALTERNATIVE INITIAL CONDITION

Taking the conditional expectations at the time zero from both sides and using the law

of iterated expectations on the left-hand side we obtain

max
f

E0

( T (z=0)∧τ2∫
τ1

e−ρ(s−τ1)f
[
y − ηf

]
ds+ e−ρτ2y(τ2)z(τ2)

)
≤ E0

(
e−ρτ1y(τ1)z(τ1)

)
.

(2.31)

Expressions (2.28) and (2.31) yield monotonicity of wτ (0, y, z) with respect to τ

wτ2
(

0, y(0), z(0)
)
≤ wτ1

(
0, y(0), z(0)

)
. (2.32)
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CHAPTER 3

NUMERICAL METHODS

In this chapter, we focus on methods of numerical solution of the HJB equations (1.25),

which we have derived in chapter 1, and (2.20), derived in chapter 2. In addition to

the natural conditions, we will use condition (1.38) which is a property of the solution

proven in [3]. First, we mention some methods used to solve singular differential

equations and we state the reasons why they cannot be applied in the treatment of

equation (1.25). Then we describe three methods, the explicit Euler method, the

predictor-corrector method and the orthogonal collocation, based on the alternative

approach presented in chapter 2.

Standard numerical methods fail in solving (1.25) due to the singularity in zero

as stated in [4]. Therefore, we tried to find methods designed for solving singular

differential equations in literature. This has been the area of interest for numerous

authors in the past (examples include [1, 5, 9, 10]) but the assumptions about the

problem imposed in the works have always ruled out our problem.

In [1] the authors apply shooting method to second order problems of the type

u′′(t) =
A1(t)

t
u′(t) +

A0(t)

t2
u(t) + f

(
t, u(t)

)
, t ∈ (0, 1],

g
(
u(0), u′(0), u(1), u′(1)

)
= 0,

u ∈ C([0, 1]),

(3.1)

where u : [0, 1] → Rn and f : [0, 1] × Rn → Rn are n-dimensional functions, A0 and
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3.1. EXPLICIT EULER METHOD

A1 are n × n matrices, and g : Rn × Rn × Rn × Rn → Rp, p ≤ 2n. In our case, the

variable x is from [0,∞) but to solve the problem numerically we have to truncate

this interval to a finite interval [0, L]. Then x could be scaled into [0, 1] by a simple

substitution t = x
L

. The problem is, however, that in (3.1) the first derivative u′(t) is

only present linearly whereas in equation (1.25) it appears also in the quadratic term.

For this reason, our second order equation cannot be transformed to a two-dimensional

system of first order equations as they do in this work. Hence the methods presented

in [1] are not suitable for us and for similar reasons methods from [5] and [9] cannot

be used either.

The problem considered in [10] is of type

u′′(t)− A1

t
u′(t)− A0

t2
u(t) = f

(
t, u(t), u′(t)

)
, t ∈ (0, 1],

B
(
u(0), u(1), u′(1)

)
= 0,

(3.2)

where u and f are n-dimensional functions, A0 and A1 are constant n × n matrices,

and B is an m-dimensional function, m ≤ 2n. It seems that in this formulation the

problem we had with the formulation from (3.1) is no longer present. However, one of

the assumptions about f is that it is continuous on [0, 1] × Rn × Rn. In our case f is

given as

f(t, u, u′) =
c (u′ − 1)2

t2
(3.3)

and so it is not even defined for t = 0. Therefore our problem does not satisfy the

assumptions from [10] either and we again cannot use the methods presented in this

work.

These findings lead us to try an alternative approach which is described in chapter

2 and which we implement in following sections.

3.1 Explicit Euler Method

The first numerical method we use for the HJB equation (2.22) is the explicit Euler

method. We need to approximate the continuous variables τ and x by their discrete

counterparts. The variable x is from the interval [0,∞) which we truncate to a finite

interval [0, L] and we consider its partition

0 = x0 < x1 < x2 · · · < xN = L. (3.4)
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3.1. EXPLICIT EULER METHOD

Since time t is from (−∞, 0], the new time variable τ is from [0,∞). Again, we

approximate this interval by a finite interval [0, T ] and we use the partition points

0 = τ0 < τ1 < τ2 · · · < τM = T, (3.5)

where τi = ih, h = T
M

. To ensure stability of the explicit scheme, the time step h needs

to be sufficiently small. We denote by ui,j the numerical approximation of u(τ, x) at

the point (τi, xj), i.e.

ui,j ≈ u(τi, xj), i = 0, 1, . . . ,M, j = 0, 1, . . . , N. (3.6)

We discretize the right-hand side of (2.22) by approximating the first derivative ux

by the central difference
∂u(τi, xj)

∂x
≈ ui,j+1 − ui,j−1

xj+1 − xj−1

(3.7)

and the second derivative uxx by the difference

∂2u(τi, xj)

∂x2
≈

ui,j+1−ui,j
xj+1−xj −

ui,j−ui,j−1

xj−xj−1

xj+1−xj−1

2

=
2

xj+1 − xj−1

(
ui,j+1 − ui,j
xj+1 − xj

− ui,j − ui,j−1

xj − xj−1

)
.

(3.8)

Equation (2.22) with discretized right-hand side is

uτ (τi, xj) =
2x2

j

xj+1 − xj−1

(
ui,j+1 − ui,j
xj+1 − xj

− ui,j − ui,j−1

xj − xj−1

)
− axj

ui,j+1 − ui,j−1

xj+1 − xj−1

− bui,j + c

(
ui,j+1 − ui,j−1

xj+1 − xj−1

− 1

)2 (3.9)

for i = 1, 2, . . . ,M a j = 1, 2, . . . , N − 1. For i = 0, which corresponds to τ = 0, we

employ the initial condition (2.24) by defining

u(0, xj) = u0,j = 0, j = 0, 1, . . . , N. (3.10)

For j = 0, which corresponds to x = 0, we employ the boundary condition (2.23) by

defining

u(τi, 0) = ui,0 = 0, i = 0, 1, . . . ,M. (3.11)

As the other boundary condition we use property (1.38) which gives information about

the derivative at infinity and which we conjecture to be valid also for u(τ, x). In the

discretized case, the point xN represents an approximation of infinity and so we let the

backward difference at this point to vanish

ui,N − ui,N−1

xN − xN−1

= 0, (3.12)
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3.1. EXPLICIT EULER METHOD

which yields ui,N = ui,N−1. We, therefore, obtain a problem with mixed boundary

conditions, where at x = 0 we have a condition for the function u(τ, x) itself and at

x = L we have a condition for its derivative ux(τ, x).

For better clarity we switch to vector notation which we also use in the predictor-

corrector method. By Vi we denote the profile at the time layer τi consisting only of

the internal points

Vi = (ui,1, ui,2, . . . , ui,N−1)T (3.13)

and by Ui we will understand the complete profile containing all the points at this layer

Ui =
(
ui,0, V

T
i , ui,N

)
= (ui,0, ui,1, . . . , ui,N)T . (3.14)

The linear part of the right side of (3.9) can be written by help of matrix A which

is defined as

A =



A1,0 A1,1 A1,2 0 0 0 0 · · · 0
...

. . . . . . . . .
...

...
...

...
...

0 · · · 0 Aj,j−1 Aj,j Aj,j+1 0 · · · 0
...

...
...

...
. . . . . . . . .

...
...

0 0 0 0 · · · 0 AN−1,N−2 AN−1,N−1 AN−1,N


,

where for j = 1, 2, . . . , N − 1

Aj,j−1 =
2x2

j

(xj+1 − xj−1)(xj − xj−1)
+

a xj
xj+1 − xj−1

, (3.15)

Aj,j = −
2x2

j

xj+1 − xj−1

(
1

xj+1 − xj
+

1

xj − xj−1

)
− b, (3.16)

Aj,j+1 =
2x2

j

(xj+1 − xj−1)(xj+1 − xj)
− a xj
xj+1 − xj−1

. (3.17)

In case of equidistant partition (3.4) the expressions are simpler because then xj+1 −

xj = k for j = 0, 1, . . . , N − 1.

The quadratic term from equation (3.9) will be approximated by the function

F (Ui) =



c
(
ui,2−ui,0
x2−x0 − 1

)2

...

c
(
ui,j+1−ui,j−1

xj+1−xj−1
− 1
)2

...

c
(
ui,N−ui,N−2

xN−xN−2
− 1
)2


. (3.18)
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3.2. PREDICTOR-CORRECTOR

Equations (3.9) for the internal points can be written in vector notation as

∂Vi
∂τ

= AUi + F (Ui). (3.19)

To compute the internal points Vi+1 of the new time layer Ui+1 from the current

layer Ui we will use the explicit Euler method. We approximate the derivative by the

forward difference
∂Vi
∂τ
≈ Vi+1 − Vi

τi+1 − τi
=
Vi+1 − Vi

h
(3.20)

to obtain
Vi+1 − Vi

h
= AUi + F (Ui), (3.21)

or, rearranged,

Vi+1 = Vi + h [AUi + F (Ui)]. (3.22)

The values at the boundary points are given by (3.11), (3.12) as

ui+1,0 = 0, ui+1,N = ui+1,N−1. (3.23)

Using (3.22) and (3.23) we are able to calculate the new layer Ui+1 from the current

known time layer Ui .

We are interested in the profile U∞ which, of course, cannot be actually computed.

Numerical experiments, however, indicate that the profiles settle down to a limit case

after sufficiently many time steps. Therefore we assume that this limit case is a good

approximation of the desired solution u(x) to the problem (1.25).

3.2 Predictor-Corrector

The predictor-corrector method has a similar idea as the explicit Euler method. It

also approximates the solution u(τ, x) on a discrete grid given by points (τi, xj). The

difference from the explicit method is that the predictor-corrector is a two-step method

where the first step, the predictor, is actually an estimate made by the explicit Euler

method, and this estimate is then improved by the second step, the corrector.

This method is a compromise between the explicit and implicit scheme. The implicit

scheme would require to solve a system of nonlinear equations in every step which can

be avoided by use of the predictor-corrector method.
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3.3. ORTHOGONAL COLLOCATION

In the predictor step, we make a first estimate Ũi+1 of the values at the new time

layer. To estimate the internal points Vi+1 we use the explicit scheme

Ṽi+1 = Vi + h [AUi + F (Ui)], (3.24)

with the boundary points are given as ũi+1,0 = 0, resp. ũi+1,N = ũi+1,N−1.

The second step is the corrector where we improve the estimate from the first step

by the use of an augmented trapezoidal rule. The trapezoidal rule combines the explicit

and implicit schemes as

Vi+1 = Vi + 1
2
h [AUi + F (Ui) + AUi+1 + F (Ui+1)] , (3.25)

but in predictor-corrector, the estimate from predictor Ũi+1 is used instead of the profile

Ui+1 on the right-hand side. This makes it an explicit scheme without the need to solve

a system of equations. The rule to compute the internal points of the new time layer

is

Vi+1 = Vi + 1
2
h
[
AUi + F (Ui) + AŨi+1 + F (Ũi+1)

]
= Vi + 1

2
h
[
A(Ui + Ũi+1) + F (Ui) + F (Ũi+1)

]
(3.26)

and the boundary points are again given by (3.11), (3.12) as ui+1,0 = 0 and ui+1,N =

ui+1,N−1.

The predictor-corrector scheme (3.24), (3.26) enables us to use the current known

time layer Ui to calculate the new layer Ui+1.

Similarly as in the explicit Euler method, numerical experiments indicate that the

profiles settle down to a limit case U∞ after sufficiently many time steps.

3.3 Orthogonal Collocation

In this section we explain an ideologically different numerical method which can be

used to calculate the solution of (2.22), (2.23), (2.24). The method is called orthogonal

collocation and it is most widely used in chemical engineering. It was introduced by

Villadsen and Stewart in [8] and the method described and used in this work is inspired

by [7]. Unlike the two previously described methods, orthogonal collocation ultimately
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3.3. ORTHOGONAL COLLOCATION

leads to a system ordinary differential equations which can then be solved by standard

methods.

This method requires the spatial variable, which is in our case x, to be in the interval

[0, 1]. As in the case of predictor-corrector, we use a finite interval [0, L] to approximate

the original interval [0,∞). Then we make the substitution

z =
x

L
(3.27)

so that the new spatial variable z is in [0, 1]. The equation (2.22) then becomes

uτ = z2 uzz − a z uz − b u+ c
(uz
L
− 1
)2

(3.28)

for the function u(τ, z). The conditions (2.23), (2.24) become

u(τ, 0) = 0, (3.29)

u(0, z) = 0. (3.30)

As in the previous section, we also use condition (1.38) which now translates to

∂u

∂z

(
τ, 1
)

= 0. (3.31)

In orthogonal collocation the discretization of the spatial variable z is given by the

so called collocation points. They consist of the two boundary points 0 and 1 and the

N internal points which are given as the roots of an N -th order orthogonal polynomial.

There are different sets of orthogonal polynomials but the most used for this method

are the shifted Legendre polynomials. The N -th order shifted Legendre polynomial

PN(x) can be expressed as

PN(x) = (−1)N
N∑
k=0

(
N

k

)(
N + k

k

)
(−x)k. (3.32)

It has N roots between 0 and 1 and they are symmetric around the point 0.5.That

gives us a total of N + 2 collocation points

0 = z0 < z1 < · · · < zN+1 = 1. (3.33)

For each of these points zj, j = 0, 1, . . . , N + 1, we define a function uj(τ) which

describes the solution u(τ, z) at the collocation point zj for all times τ

uj(τ) = u(τ, zj). (3.34)
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3.3. ORTHOGONAL COLLOCATION

We then approximate the solution u(τ, z) by the expression

u(τ, z) ≈ û(τ, z) =
N+1∑
j=0

`j(z)uj(τ), (3.35)

where `j(z) are the Lagrange basis interpolation polynomials for the collocation points

z0, z1, . . . , zN+1

`j(z) =
(z − z0) · · · (z − zj−1)(z − zj+1) · · · (z − zN+1)

(zj − z0) · · · (zj − zi−1)(zj − zi+1) · · · (zj − zN+1)
=

N+1∏
i=0
i 6=j

z − zi
zj − zi

. (3.36)

The polynomials `j(z) have the property

`j(zi) =

1 if i = j

0 if i 6= j.

(3.37)

Based on (3.35) the first spatial derivatives of u(τ, z) at the collocation points can

be approximated as

∂û

∂z

(
τ, zi

)
=

N+1∑
j=0

`′j(zi)uj(τ) (3.38)

for i = 0, 1, . . . , N + 1 and similarly the second derivatives are

∂2û

∂z2

(
τ, zi

)
=

N+1∑
j=0

`′′j (zi)uj(τ). (3.39)

This means that both the first and the second spatial derivatives can be expressed as

linear combinations of the functions uj(τ). We can write the vector of first derivatives

at the collocation points defined by (3.38) as
∂û
∂z

(
τ, z0

)
∂û
∂z

(
τ, z1

)
...

∂û
∂z

(
τ, zN+1

)

 =


`′0(z0) `′1(z0) · · · `′N+1(z0)

`′0(z1) `′1(z1) · · · `′N+1(z1)
...

...
. . .

...

`′0(zN+1) `′1(zN+1) · · · `′N+1(zN+1)




u0(τ)

u1(τ)
...

uN+1(τ)

 (3.40)

or in a more compact form

ûz(τ) =
∂

∂z
û(τ) = Au(τ), (3.41)

where A is an N + 2×N + 2 matrix with elements Ai,j = `′j(zi). So the derivation ∂
∂z

can be represented by the matrix A.
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3.3. ORTHOGONAL COLLOCATION

The second spatial derivatives from 3.39 can be expressed in a similar way as

ûzz(τ) =
∂2

∂z2
û(τ) =

∂

∂z

∂

∂z
û(τ). (3.42)

Replacing ∂
∂z

by A we obtain

ûzz(τ) = AAu(τ) = A2u(τ) = Bu(τ), (3.43)

where B is defined as A2. The matrix B could alternatively be computed as Bi,j =

`′′j (zi) but having calculated the matrix A already, it is simpler to just square it.

Now we can write equation (3.28) at internal collocation points using functions uj(τ)

defined by (3.34) and replacing the spatial derivatives by matrices A and B

duj
dτ

= z2
j

N+1∑
i=0

Bj,iui − a zj
N+1∑
i=0

Aj,iui − b uj + c

(
1

L

N+1∑
i=0

Aj,iui − 1

)2

, (3.44)

j = 1, 2, . . . , N . Furthermore, condition (3.29) tells us that

u0(τ) ≡ 0 (3.45)

so all the sums in (3.44) can start at i = 1 instead of i = 0. Moreover, from condition

(3.31) we know that

duN+1

dz
=

N+1∑
i=1

AN+1,iui = 0, (3.46)

which allows us to express uN+1 in terms of the other functions

uN+1 = −AN+1,1 u1 + AN+1,2 u2 + · · ·+ AN+1,N uN
AN+1,N+1

. (3.47)

Equations (3.44),(3.47) give us a system of N + 1 ordinary differential equations for

N + 1 unknown functions uj(τ) and (3.30) gives us the initial conditions

uj(0) = 0. (3.48)

This system can be solved by standard numerical methods for ODEs, such as the

Runge-Kutta method. After solving for uj(τ) using some grid points τi the solution

u(τ, z) of (3.28) can be approximated as

u(τi, zj) ≈ ui,j = uj(τi). (3.49)

Again, we are interested in the solution for τ → ∞ and just like in the predictor-

corrector case, according to numerical experiments the solutions appear to converge

to a stationary solution. This solution is assumed to be a good approximation of the

desired solution u(x) to the problem (1.25).
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CHAPTER 4

NUMERICAL EXAMPLES

In this chapter we demonstrate the use of the three numerical methods, described in the

previous chapter, by solving numerical examples with chosen values of the parameters.

We have implemented the methods in Matlab and we include graphical representations

of the solutions in text. We compare our numerical solutions to the analytical solution

for the non-stochastic case which is presented in [4]. Then we compare the solutions

found by the three methods for different cases where we do not know the analytical

solution. Also, we verify whether the proven properties from section 1.4 are satisfied

by the resulting solutions.

We would like to compare how the resulting solutions settle down to the limit for

different methods. For this reason we define a measure of change of value of the

approximation of u(xj) at time τi as

εi,j = |ui,j − ui−1,j| (4.1)

for i = 1, . . . ,M , j = 0, . . . , N . This measure tells us how much the approximate value

of u at the partition point xj changes from τi−1 to τi. Furthermore, we define a measure

of the distance between two succeeding approximations of u(x)

εi = max
j=0,...,N

εi,j = max
j=0,...,N

|ui,j − ui−1,j| (4.2)

for i = 1, . . . ,M . This measure allows us to determine a suitable number of time steps
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4.1. EXAMPLE 1: NON-STOCHASTIC CASE

M as the smallest value for which

εM < ε0 (4.3)

for a given parameter ε0 > 0.

To make use of the fact that the original zero initial condition (2.24) produces lower

approximation of the limit solution u(x) and the alternative initial condition (2.27)

leads to upper approximations, we define the error of approximation at the partition

point xj and time τi as

ei,j = uUi,j − uLi,j, (4.4)

where uUi,j are the numerical solutions for the alternative initial condition and uLi,j the

ones for the zero condition. Again, we also define a measure of the approximation error

of the time profile at τi as

ei = max
j=0,...,N

ei,j = max
j=0,...,N

{
uUi,j − uLi,j

}
. (4.5)

4.1 Example 1: Non-Stochastic Case

The stochasticity of the problem (1.2)-(1.4) is given by the parameter σ in the dynamics

of y(t). A completely non-stochastic case would therefore correspond to letting σ = 0.

That would, however, change the problem significantly as parameters a, b, c could

not be defined by (1.22), (1.23), (1.24) because they have σ2 in the denominator. To

preserve this notation and to be able to use the methods described in the previous

chapter, we will only approximate the non-stochastic case by setting the value of σ

close to zero.

As stated in [4], the parametric solution of

1

4
(u′ − 1)

2 − (λ− r∗)xu′ − (ρ− 2λ)u = 0, (4.6)

which is (1.18) first multiplied by σ2

2
and then σ is being made, is given by

x(s) =
1

2

(
e(λ−r∗)s − 1

λ− r∗
− e(r∗+λ−ρ)s e

(ρ−2r∗)s − 1

ρ− 2r∗

)
, (4.7)

u
(
x(s)

)
=

1

4

(
e(2λ−ρ)s − 1

2λ− ρ
− e2(r∗+λ−ρ)s e

(ρ−2r∗)s − 1

ρ− 2r∗

)
. (4.8)
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For numerical solution, we set the parameters to be σ2 = 0.001, λ = 0.7, r∗ = 0.5,

ρ = 2. The values of a, b and c are

a =
2

σ2

(
σ2 + λ− r∗

)
= 402, (4.9)

b =
2

σ2

(
ρ− σ2 − 2λ

)
= 1 198, (4.10)

c =
1

2σ2
= 500, (4.11)

so the condition a+ b > 0 is satisfied. The analytical solution for σ = 0 is depicted by

the pink color in figure 4.2.

4.1.1 Explicit Euler Method

Now we solve this problem by the explicit Euler method. We set L to be 15, so we

consider values of x form [0, 15]. The number of considered partition points for x is

N + 1 = 31.

We partition the interval [0, 15] by first dividing the interval equidistantly and then

squaring the points so that the points are denser close to zero. This is advantageous

for capturing the increase of u for small values of x. A comparison of solutions for this

partition to the solution for equidistant partition can be seen in figure 4.1. The red

line represents u(x) = x with slope 1, the black curves are the solutions for the non-

equidistant partition, and the blue curves are the ones for the equidistant partition.

It is clear from the picture that non-equidistant partition leads to solutions which are

closer to fulfilling property (1.37) saying that the derivative at zero is one.

Figure 4.1: Comparison of solutions for non-equidistant and equidistant partitions.
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The time step h is set to 10−5 and we also choose ε0 = 10−5 for the parameter of

required precision in (4.3). This leads to the number of time steps M = 487 which

means that the considered values of τ are τ ∈ [0, 0.00487]. To obtain time in years,

we must make an inverse substitution to (2.21) and then we obtain that it takes 9.74

years for the solutions to settle down. This suggests that any considered amount of

the asset can be optimally liquidated in at most 9.74 years.

The resulting explixit Euler method solutions are depicted by the black color in figure

4.2a. For better clarity we only plot 20 iterations. We observe that they indeed appear

to converge to the analytical solution. Table 4.1 shows settling down of the solutions

represented by values of εi,j. We chose partition points xj for j ∈ 1, 8, 15, 23, 30 to

represent the whole interval of vales of x. We used x1 rather than x0 because the

value at 0 is set to zero in every iteration. We show 10 values of τ which are evenly

distributed in [0, T ]. We observe that the order of εi,j decreases with i and in the last

iteration all the shown values are of the order 10−6 or smaller.

(a) Explicit method. (b) Predictor-corrector. (c) Orthogonal collocation.

Figure 4.2: Numerical solutions tend to the analytical solution (pink) in the non-stochastic

case. Black solutions correspond to the original initial condition and the blue ones to the

alternative condition.

To demonstrate the use of the alternative initial condition (2.27) we include the

blue curves in figure 4.2. The black curves are the solutions computed from the initial

condition (2.24) and the blue curves are the solutions from the alternative initial con-

dition (2.27). We observe that these solutions converge to the same stationary solution

from opposite sides as we claimed in section 2.3. Some of the solutions are not con-

cave, which is probably just a numerical artifact, but the resulting limit case has the

required properties. The number of time steps required in case of the alternative initial
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x1 = 0.017 x8 = 1.067 x15 = 3.75 x23 = 8.82 x30 = 15

τ49 = 4.90e-004 1.31e-004 2.79e-003 2.80e-003 2.80e-003 2.80e-003

τ97 = 9.70e-004 2.42e-005 1.19e-003 1.57e-003 1.57e-003 1.57e-003

τ146 = 1.46e-003 1.20e-005 1.82e-005 8.70e-004 8.71e-004 8.71e-004

τ195 = 1.95e-003 9.14e-006 1.03e-004 4.61e-004 4.83e-004 4.83e-004

τ244 = 2.44e-003 8.24e-006 4.58e-005 1.81e-004 2.67e-004 2.67e-004

τ292 = 2.92e-003 7.43e-006 1.08e-005 9.98e-006 1.49e-004 1.50e-004

τ341 = 3.41e-003 5.58e-006 2.28e-006 2.47e-005 7.77e-005 8.30e-005

τ390 = 3.90e-003 3.68e-006 4.34e-006 1.78e-006 3.12e-005 4.56e-005

τ438 = 4.38e-003 1.91e-006 3.00e-006 4.00e-006 3.67e-006 2.40e-005

τ487 = 4.87e-003 6.56e-007 1.26e-006 2.03e-006 4.06e-006 9.80e-006

Table 4.1: Example 1, explicit method: Development of εi,j for the plotted values of τ and

chosen points xj .

condition is 500 which is slightly higher than the 487 steps for the original condition.

4.1.2 Predictor-Corrector

We use the same values of parameters for the predictor-corrector method as we used

in the previous method. This method requires M = 489 time steps for the solutions to

settle down which is only marginally more than 487 steps in the explicit method. The

corresponding time interval is 9.78 years.

x1 = 0.017 x8 = 1.067 x15 = 3.75 x23 = 8.82 x30 = 15

τ49 = 4.90e-004 1.06e-004 2.78e-003 2.80e-003 2.80e-003 2.80e-003

τ98 = 9.80e-004 1.76e-005 1.14e-003 1.55e-003 1.55e-003 1.55e-003

τ147 = 1.47e-003 8.40e-006 7.70e-006 8.62e-004 8.64e-004 8.64e-004

τ196 = 1.96e-003 6.13e-006 8.30e-005 4.55e-004 4.81e-004 4.81e-004

τ245 = 2.45e-003 5.23e-006 3.20e-005 1.78e-004 2.67e-004 2.67e-004

τ293 = 2.93e-003 4.42e-006 5.68e-006 1.65e-005 1.49e-004 1.50e-004

τ342 = 3.42e-003 3.10e-006 2.34e-006 1.90e-005 7.76e-005 8.35e-005

τ391 = 3.91e-003 1.88e-006 2.87e-006 2.30e-008 3.14e-005 4.59e-005

τ440 = 4.40e-003 8.95e-007 1.61e-006 2.86e-006 4.77e-006 2.38e-005

τ489 = 4.89e-003 2.52e-007 5.47e-007 1.10e-006 2.80e-006 9.79e-006

Table 4.2: Example 1, predictor-corrector: Development of εi,j for the plotted values of τ

and chosen points xj .

Predictor-corrector solutions are shown in figure 4.2b together with the analytical

solution. Again, we also present the solutions for the alternative initial condition which

are depicted by the blue curves. In this case, the required M is 507, which is again

a little higher than for the zero condition. We observe that the predictor-corrector
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4.1. EXAMPLE 1: NON-STOCHASTIC CASE

solutions appear practically identical to the explicit Euler solutions. Table 4.2 shows

the development of εi,j with increasing i. The results are similar as in the case of the

explicit method.

4.1.3 Orthogonal Collocation

Now we use orthogonal collocation to solve this problem. We set the number of internal

collocation points N to 24 so the total number of collocation points, including the two

boundary points, is 26. To solve the system of the N+1 = 25 ODEs for the 25 unknown

functions uj(τ) we use the Matlab solver ode45 which implements the Runge-Kutta

method. We consider the time interval 0 ≤ τ ≤ 0.00489 which was required by the

predictor-corrector for the solutions to converge to the stationary solution. In figure

4.2c we observe that the orthogonal collocation solutions also tend to the analytical

solution.

Also for this method we include a table with the development of εi,j (table 4.3).

We observe that the values in the last row are of the order 10−7 or higher which could

suggest that the settling down is higer for this method. However, the table only shows

values for some of the collocation points so it is not conclusive. We offer a more

thorough comparison in the following subsection.

x1 = 0.036 x6 = 1.95 x13 = 7.98 x19 = 13.05 x25 = 15

τ49 = 4.90e-004 6.85e-006 2.88e-003 2.78e-003 2.77e-003 2.77e-003

τ98 = 9.80e-004 2.22e-006 1.57e-003 1.52e-003 1.54e-003 1.65e-003

τ147 = 1.47e-003 7.28e-007 6.43e-004 8.44e-004 8.52e-004 9.65e-004

τ196 = 1.96e-003 1.89e-007 1.14e-005 4.85e-004 4.75e-004 4.34e-004

τ245 = 2.45e-003 5.27e-008 1.48e-006 2.72e-004 2.67e-004 3.25e-004

τ293 = 2.93e-003 9.59e-009 5.69e-007 1.47e-004 1.53e-004 8.57e-005

τ342 = 3.42e-003 8.23e-009 9.39e-008 8.02e-005 8.63e-005 1.39e-004

τ391 = 3.91e-003 9.85e-010 3.14e-008 1.03e-005 4.48e-005 3.74e-005

τ440 = 4.40e-003 8.55e-009 1.41e-007 6.96e-007 3.02e-005 2.55e-005

τ489 = 4.89e-003 2.76e-009 3.38e-008 9.36e-008 2.78e-006 3.34e-006

Table 4.3: Example 1, orthogonal collocation: Development of εi,j for the plotted values of

τ and chosen points xj .
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4.1.4 Comparison for Example 1

Let us now look at the properties from section 1.4. The solution is increasing and

concave and we have already shown in figure 4.1 that the derivative at zero can be 1

as required. Moreover, the function flattens out as x increases and it is reasonable to

believe that the limit of the derivative for x→∞ is zero. This was to be expected as

we used this property as a boundary condition. The last property says that if b > 0,

which is satisfied, then

lim
x→∞

u(x) =
c

b
.
= 0.417.

The limit value is depicted by the red circle in figure 4.2a and we can see that the

solutions also have this property.

From the above facts we conclude that our solutions correspond well to the analytical

solution and they also meet the requirements given by the expected properties of the

solution listed in section 1.4. Hence we believe that the methods give correct results.

(a) Development of εi. (b) Development of ei.

Figure 4.3: Comparison of the development of error for the three methods in ex. 1.

Now we compare the three methods in terms of εi and ei defined by (4.2) and (4.5)

respectively. The former is a measure of settling down of the solutions at given τi

whereas the latter is a measure of precision of approximation at given τi.

Table 4.4 shows the development of εi and ei for the three numerical methods as

the number of time layer i increases. Figure 4.3 illustrates the same values graphically.

We observe that εi decreases monotonically for the explicit method and the predictor-
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εi ei
Explicit Pred-Corr O.Colloc Explicit Pred-Corr O.Colloc

τ49 = 4.90e-004 2.80e-003 2.80e-003 2.96e-003 6.44e+000 6.48e+000 6.67e+000

τ98 = 9.80e-004 1.55e-003 1.55e-003 1.65e-003 2.79e+000 2.83e+000 2.93e+000

τ147 = 1.47e-003 8.61e-004 8.64e-004 9.69e-004 1.21e+000 1.23e+000 1.27e+000

τ196 = 1.96e-003 4.77e-004 4.81e-004 4.98e-004 5.08e-001 5.23e-001 5.41e-001

τ245 = 2.45e-003 2.64e-004 2.67e-004 3.25e-004 2.10e-001 2.18e-001 2.26e-001

τ293 = 2.93e-003 1.48e-004 1.50e-004 1.73e-004 8.50e-002 8.93e-002 9.26e-002

τ342 = 3.42e-003 8.20e-005 8.35e-005 1.75e-004 3.21e-002 3.42e-002 3.59e-002

τ391 = 3.91e-003 4.50e-005 4.59e-005 5.19e-005 1.09e-002 1.19e-002 1.27e-002

τ440 = 4.40e-003 2.33e-005 2.38e-005 6.11e-005 3.01e-003 3.46e-003 3.57e-003

τ489 = 4.89e-003 9.34e-006 9.79e-006 1.57e-005 4.05e-004 6.06e-004 5.89e-004

Table 4.4: Example 1: Development of εi and ei for the plotted values of τ .

corrector while it is not monotonic for orthogonal collocation. The figure shows more

values because it includes also a value of εi between each of the listed τ ’s. The values

are very similar for the first two methods and they are slightly higher for the last

method. The qualitative difference may be related to the fact that, unlike the other

two methods, orthogonal collocation does not work with time layers in computation.

The values of ei are very similar for all three methods. We observe that the precision

of approximation increases with increasing i which corresponds to the fact that the

upper and lower solutions tend to the same limit as we can see in figure 4.2.

(a) Explicit method. (b) Predictor corrector.

Figure 4.4: The optimal policy g for the two initial conditions in example 1.

Figure 4.4 shows approximations of the investor’s optimal strategy g which is related

to the spatial derivative of u and given by (2.25). Solutions for the zero initial condition

are depicted by black color and the ones for the alternative condition are blue.
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For the original initial condition the policy decreases with increasing τ . An intuitive

interpretation could be that the investor wants to sell as much as he can in the allowed

time interval because he cannot sell afterwards. When τ increases, he is given more

time so he does not need to sell so quickly.

The alternative initial condition results in a strategy which increases with τ . This is

again reasonable because this time the investor is allowed to sell the remaining amount

of the asset at the end of the time interval without the negative effect. Therefore, if

the time interval is short, i.e. τ is small, it is beneficial to delay the sale. However,

as the interval gets longer, the situation at the end has less and less influence on the

strategy during the interval. That is the reason why the policies tend to the same limit

for both initial conditions as we can see in the figure.

4.2 Example 2: a > 0, b > 0

In this example we set the parameters to σ2 = 0.2, λ = 1, r∗ = 1, ρ = 3 so we have

a = 2 > 0, b = 8 > 0, c = 2.5. The limit value of u is c
b

= 0.3125. We set the maximal

considered value of x to L = 10.

For the explicit method and the predictor-corrector, we use N + 1 = 31 partition

points for x. We partition the interval in the same way as we did in the non-stochastic

case, i.e. squaring the equidistant points. The time step is set to h = 10−3 and we use

the same ε0 = 10−5 as in example 1.

(a) Explicit method. (b) Predictor-corrector. (c) Orthogonal collocation.

Figure 4.5: Numerical solutions for example 2. Black solutions correspond to the original

initial condition and the blue ones to the alternative condition.
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4.2. EXAMPLE 2: a > 0, b > 0

4.2.1 Explicit Euler Method

The explicit method with the zero initial condition requires M = 597 time steps to

meet (4.3). This means that the time interval needed for the solutions to settle down

is 5.97 years. The explicit method solutions with the zero initial condition are shown

in figure 4.5a.

The same figure also shows solutions for the alternative initial condition (blue

curves). The number of time steps required in this case is 734 which seems signifi-

cantly higher than for the original condition.

Table 4.5 shows the development of the development εi,j with increasing i for chosen

points xj. The numbers confirm that the differences between the approximations of

u(xj) vanish as τ increases.

x1 = 0.011 x8 = 0.71 x15 = 2.5 x23 = 5.88 x30 = 10

τ60 = 6.00e-002 8.64e-005 1.55e-003 1.56e-003 1.56e-003 1.56e-003

τ119 = 1.19e-001 2.80e-005 7.39e-004 9.69e-004 9.69e-004 9.69e-004

τ179 = 1.79e-001 1.31e-005 1.44e-004 5.86e-004 5.98e-004 5.98e-004

τ239 = 2.39e-001 3.16e-006 1.15e-005 3.19e-004 3.68e-004 3.69e-004

τ299 = 2.99e-001 1.54e-006 3.89e-006 1.43e-004 2.21e-004 2.27e-004

τ358 = 3.58e-001 2.07e-006 4.59e-007 5.47e-005 1.26e-004 1.37e-004

τ418 = 4.18e-001 8.20e-007 3.20e-007 1.89e-005 6.59e-005 7.80e-005

τ478 = 4.78e-001 1.60e-008 1.79e-007 6.55e-006 3.21e-005 4.16e-005

τ537 = 5.37e-001 1.92e-007 4.79e-008 2.35e-006 1.50e-005 2.10e-005

τ597 = 5.97e-001 1.01e-007 2.93e-008 8.66e-007 6.70e-006 9.97e-006

Table 4.5: Example 2, explicit method: Development of εi,j for the plotted values of τ and

chosen points xj .

4.2.2 Predictor-Corrector

The number of time steps for the predictor-corrector with the original initial condition

is 601 and for the alternative condition it is M = 738. Just like in example 1, these

values are very similar to the explicit Euler method. The predictor-corrector solutions

are shown in figure 4.5b.

Table 4.6 shows the values of εi,j for this method with zero initial condition and

chosen i and j.
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x1 = 0.011 x8 = 0.71 x15 = 2.5 x23 = 5.88 x30 = 10

τ60 = 6.00e-002 7.66e-005 1.54e-003 1.55e-003 1.55e-003 1.55e-003

τ120 = 1.20e-001 2.48e-005 7.20e-004 9.60e-004 9.61e-004 9.61e-004

τ180 = 1.80e-001 1.10e-005 1.49e-004 5.81e-004 5.95e-004 5.95e-004

τ240 = 2.40e-001 2.42e-006 5.08e-006 3.16e-004 3.66e-004 3.68e-004

τ301 = 3.01e-001 1.25e-006 3.37e-006 1.42e-004 2.18e-004 2.24e-004

τ361 = 3.61e-001 1.55e-006 2.69e-007 5.43e-005 1.23e-004 1.34e-004

τ421 = 4.21e-001 5.72e-007 2.08e-007 1.92e-005 6.48e-005 7.66e-005

τ481 = 4.81e-001 3.87e-008 1.17e-007 6.74e-006 3.18e-005 4.10e-005

τ541 = 5.41e-001 1.33e-007 3.01e-008 2.40e-006 1.48e-005 2.06e-005

τ601 = 6.01e-001 6.12e-008 2.09e-008 8.87e-007 6.68e-006 9.88e-006

Table 4.6: Example 2, predictor-corrector: Development of εi,j for the plotted values of τ

and chosen points xj .

4.2.3 Orthogonal Collocation

Again, we use N = 24 internal collocation points in the orthogonal collocation. This

time the time interval τ ∈ [0, 0.601] is used to match the interval needed by the

predictor-corrector. The resulting solutions for both initial conditions are depicted

in figure 4.5c. The development of εi,j in time is shown in table 4.7

x1 = 0.024 x6 = 1.30 x13 = 5.32 x19 = 8.70 x25 = 10

τ60 = 6.00e-002 1.07e-005 1.56e-003 1.55e-003 1.55e-003 1.53e-003

τ120 = 1.20e-001 1.98e-006 9.48e-004 9.61e-004 9.61e-004 1.03e-003

τ180 = 1.80e-001 5.06e-007 4.33e-004 5.94e-004 5.94e-004 6.80e-004

τ240 = 2.40e-001 1.51e-008 1.33e-004 3.65e-004 3.67e-004 4.05e-004

τ301 = 3.01e-001 3.01e-008 3.28e-005 2.14e-004 2.23e-004 3.67e-004

τ361 = 3.61e-001 1.77e-009 8.22e-006 1.17e-004 1.34e-004 9.75e-005

τ421 = 4.21e-001 3.40e-010 2.14e-006 5.94e-005 7.55e-005 1.98e-004

τ481 = 4.81e-001 3.70e-010 6.00e-007 2.82e-005 4.06e-005 6.94e-005

τ541 = 5.41e-001 2.97e-011 1.78e-007 1.29e-005 2.02e-005 5.13e-005

τ601 = 6.01e-001 2.43e-010 6.01e-008 5.73e-006 1.00e-005 8.98e-005

Table 4.7: Example 2, orthogonal collocation: Development of εi,j for the plotted values of

τ and chosen points xj .

Let us now compare orthogonal collocation solutions for different numbers of colloca-

tion points. In figure 4.6 we present the results for 2, 10, 24 and 30 internal collocation

points or 4, 12, 26 and 32 total collocation points respectively. We observe that 4

points are not sufficient to achieve an increasing and concave stationary solution but

it is interesting that even in this case the limit value of c
b

= 0.3125 is met (red circle in

the graph). The other three cases produce a stationary solution which has the required

50



4.2. EXAMPLE 2: a > 0, b > 0

properties.

(a) 4 points. (b) 12 points.

(c) 26 points. (d) 32 points.

Figure 4.6: Solutions of example 2 for different numbers of collocation points.

Using more points leads to a smoother solution than fewer points but the computa-

tion time is significantly higher (computation time for 26 points was almost 60 times

as long as for 12 points; for 32 points it was more than 170 times longer) due to the

higher dimension of the system of ODEs. We decide to work with 26 collocation points

as this seems to be a good compromise between accuracy and time consumption.

4.2.4 Comparison for Example 2

Let us check whether the resulting limit solutions have the properties listed in section

1.4. Clearly, they are increasing and concave and they flatten out and approach the

limit at infinity c
b

= 0.3125.

Figure 4.7 shows the stationary solutions by the three methods together with the

identity line u(x) = x (red). It is zoomed to show only the interval x ∈ [0, 0.5] and we

can see that for all methods the slope at zero is close to 1.

Now we compare the development of εi and ei for example 2. Figure 4.8 illustrates

the development graphically while table 4.8 lists the numerical values.

For εi we observe a similar development as in example 1. For the explicit method
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Figure 4.7: Stationary solutions of example 2 together with the identity line.

and the predictor-corrector the values are practically the same and they decrease mono-

tonically, while for orthogonal collocation the development is not monotonic and the

values are slightly higher than for the other two methods. The development of ei is

similar for all three methods.

(a) Development of εi. (b) Development of ei.

Figure 4.8: Comparison of the development of error for the three methods in ex. 2.

Figure 4.9 shows approximations of the investor’s optimal policy g where the black

solutions are for the zero initial condition and the blue ones are for the alternative

condition. As it was in example 1, the original condition leads to g decreasing with τ

and the alternative condition to increasing strategies. We reason why this is the case

at the end of section 4.1.4.
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εi ei
Explicit Pred-Corr O.Colloc Explicit Pred-Corr O.Colloc

τ60 = 6.00e-002 1.56e-003 1.55e-003 1.59e-003 4.13e+000 4.14e+000 4.29e+000

τ120 = 1.20e-001 9.61e-004 9.61e-004 1.03e-003 2.04e+000 2.06e+000 2.13e+000

τ180 = 1.80e-001 5.94e-004 5.95e-004 6.80e-004 1.02e+000 1.03e+000 1.07e+000

τ240 = 2.40e-001 3.66e-004 3.68e-004 4.05e-004 5.10e-001 5.18e-001 5.35e-001

τ301 = 3.01e-001 2.23e-004 2.24e-004 3.67e-004 2.48e-001 2.53e-001 2.62e-001

τ361 = 3.61e-001 1.33e-004 1.34e-004 2.47e-004 1.20e-001 1.23e-001 1.28e-001

τ421 = 4.21e-001 7.57e-005 7.66e-005 1.98e-004 5.68e-002 5.86e-002 6.12e-002

τ481 = 4.81e-001 4.02e-005 4.10e-005 9.47e-005 2.61e-002 2.72e-002 2.86e-002

τ541 = 5.41e-001 2.00e-005 2.06e-005 5.13e-005 1.18e-002 1.23e-002 1.30e-002

τ601 = 6.01e-001 9.47e-006 9.88e-006 8.98e-005 5.19e-003 5.48e-003 5.83e-003

Table 4.8: Example 2: Development of εi and ei for the plotted values of τ .

(a) Explicit method. (b) Predictor corrector.

Figure 4.9: The optimal policy g for the two initial conditions in example 2.

4.3 Example 3: a < 0, b > 0

Now we present an example with a negative and b positive. To achieve that we choose

the values of parameters to be σ2 = 0.5, λ = 0.6, r∗ = 1.2, ρ = 1.9 so the considered

equation (2.20) becomes

uτ = x2 uxx + 0.4xux − 0.8u+ (ux − 1)2. (4.12)

The value of a is −0.4 but the condition 0.4 = a + b > 0 is still fulfilled. Parameter

b = 0.8 is positive so, according to lemma 1.6, the limit of u is

lim
x→∞

u(x) =
c

b
= 1.25.

This time we use a higher value of L equal to 50 and we also use more partition
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points for x in the explicit and predictor-corrector methods, N + 1 = 71. The time

step is set to h = 10−4 and ε0 = 10−7.

(a) Explicit method. (b) Predictor-corrector. (c) Orthogonal collocation.

Figure 4.10: Numerical solutions for example 3. Black solutions correspond to the original

initial condition and the blue ones to the alternative condition.

4.3.1 Explicit Euler Method

The number of time steps required by the explicit Euler method is M = 60 088 for the

original initial condition and M = 78 773 for the alternative one. These correspond to

24 and 31.5 years respectively. Once again, the number is higher for the alternative

condition.

(a) Solution approach the limit value. (b) Comparison of solutions for x ∈ [0, 15].

Figure 4.11: Explicit method solutions of example 3 for L = 1 000.

The solutions are plotted in figure 4.10a. It is not clear from the figure whether

the solutions approach the theoretical limit value of 1.25 in infinity (red circle in the
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figure). We include figure 4.11a to demonstrate that for L = 1 000 the explicit method

produces solutions which suggest that the limit is correct. Figure 4.11b compares limit

solutions found by the three methods with L = 50 to the explicit method solution with

L = 1 000 for values of x ∈ [0, 15]. We observe that the higher value of L does not

change the approximation of u(x) significantly. For this reason we believe that it is

sufficient to use lower values of L.

For L = 50 and the original initial condition, table 4.9 shows the development of

εi,j for increasing i and chosen j.

x1 = 0.010 x18 = 3.31 x35 = 12.5 x53 = 28.66 x70 = 50

τ6009 = 6.01e-001 6.14e-007 5.68e-005 6.17e-005 6.18e-005 6.18e-005

τ12018 = 1.20e+000 1.14e-008 2.03e-005 3.45e-005 3.73e-005 3.77e-005

τ18026 = 1.80e+000 1.30e-009 7.08e-006 1.67e-005 2.03e-005 2.10e-005

τ24035 = 2.40e+000 3.12e-011 2.74e-006 7.65e-006 1.00e-005 1.06e-005

τ30044 = 3.00e+000 1.43e-012 1.14e-006 3.48e-006 4.74e-006 5.05e-006

τ36053 = 3.61e+000 5.58e-012 4.96e-007 1.58e-006 2.19e-006 2.34e-006

τ42062 = 4.21e+000 1.04e-012 2.19e-007 7.14e-007 1.00e-006 1.07e-006

τ48070 = 4.81e+000 6.50e-013 9.82e-008 3.23e-007 4.55e-007 4.87e-007

τ54079 = 5.41e+000 2.54e-013 4.42e-008 1.46e-007 2.06e-007 2.21e-007

τ60088 = 6.01e+000 1.17e-013 1.99e-008 6.61e-008 9.33e-008 1.00e-007

Table 4.9: Example 3, explicit method: Development of εi,j for the plotted values of τ and

chosen points xj .

4.3.2 Predictor-Corrector

For the predictor-corrector method the required numbers of time steps were M = 60 092

and M = 78 777 for the zero and alternative initial conditions respectively which mean

24 and 31.5 years. Both values are slightly higher than for the explicit method. The

solutions are shown in figure 4.10b.

4.3.3 Orthogonal Collocation

For orthogonal collocation we again work with 26 collocation points and the time

interval τ ∈ [0, 6.0092] is used. The resulting solutions are shown in figure 4.10c and

they look practically the same as for the other two methods.

The considerably longer time interval, which is in this case necessary for the solutions

to settle down to the stationary solution, caused the computation time for this method
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x1 = 0.010 x18 = 3.31 x35 = 12.5 x53 = 28.66 x70 = 50

τ6009 = 6.01e-001 6.06e-007 5.68e-005 6.17e-005 6.18e-005 6.18e-005

τ12018 = 1.20e+000 9.93e-009 2.03e-005 3.45e-005 3.73e-005 3.77e-005

τ18028 = 1.80e+000 1.40e-009 7.08e-006 1.67e-005 2.03e-005 2.10e-005

τ24037 = 2.40e+000 4.50e-011 2.74e-006 7.65e-006 1.00e-005 1.06e-005

τ30046 = 3.00e+000 5.75e-013 1.14e-006 3.48e-006 4.74e-006 5.05e-006

τ36055 = 3.61e+000 5.35e-012 4.96e-007 1.58e-006 2.19e-006 2.34e-006

τ42064 = 4.21e+000 1.06e-012 2.20e-007 7.14e-007 1.00e-006 1.07e-006

τ48074 = 4.81e+000 6.47e-013 9.82e-008 3.23e-007 4.54e-007 4.87e-007

τ54083 = 5.41e+000 2.54e-013 4.42e-008 1.46e-007 2.06e-007 2.21e-007

τ60092 = 6.01e+000 1.17e-013 1.99e-008 6.61e-008 9.33e-008 1.00e-007

Table 4.10: Example 3, predictor-corrector: Development of εi,j for the plotted values of τ

and chosen points xj .

to be significantly longer than for the other methods. Hence, it seems that in this

case orthogonal collocation is less suitable than the explicit method or the predictor-

corrector.

x1 = 0.12 x6 = 6.50 x13 = 26.60 x19 = 43.50 x25 = 50

τ6009 = 6.01e-001 5.54e-007 6.09e-005 6.18e-005 6.09e-005 3.04e-004

τ12018 = 1.20e+000 8.11e-008 2.91e-005 3.70e-005 3.62e-005 4.43e-004

τ18028 = 1.80e+000 2.12e-008 1.23e-005 2.01e-005 2.20e-005 2.69e-004

τ24037 = 2.40e+000 3.87e-009 5.21e-006 9.96e-006 1.12e-005 1.61e-004

τ30046 = 3.00e+000 7.46e-010 2.27e-006 4.72e-006 5.44e-006 9.39e-005

τ36055 = 3.61e+000 2.34e-010 1.01e-006 2.27e-006 4.52e-006 5.81e-004

τ42064 = 4.21e+000 2.55e-011 4.55e-007 9.62e-007 3.39e-007 2.02e-004

τ48074 = 4.81e+000 7.01e-011 2.11e-007 3.26e-007 2.37e-006 7.73e-004

τ54083 = 5.41e+000 1.16e-010 1.02e-007 2.61e-008 3.82e-006 1.09e-003

τ60092 = 6.01e+000 5.25e-011 3.80e-008 1.67e-007 1.76e-006 4.47e-004

Table 4.11: Example 3, orthogonal collocation: Development of εi,j for the plotted values

of τ and chosen points xj .

Tables 4.10 and 4.11 show the development of εi,j with increasing τ . In both cases

we observe that the differences between the approximations of u(xj) diminish with

increasing time variable.

4.3.4 Comparison for Example 3

The found stationary solutions for all methods are increasing and concave and, as we

argued earlier, they are likely to satisfy the limit property. The zero derivative at

infinity also holds as it was again used as a boundary condition. Figure 4.12 shows a
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4.3. EXAMPLE 3: a < 0, b > 0

close up of the stationary solutions around zero together with the identity line (red).

The derivative of the solutions for all methods is again close to one as expected. Thus

the properties listed in section 1.4 are met also in this example. Figure 4.12 also

includes the limit solution with L = 1 000 and the graph shows that its slope is also

very close to 1.

Figure 4.12: Stationary solutions of example 3 together with the identity line.

Let us now examine the settling down of the solutions for the three methods. The

values of εi are listed in table 4.12 and depicted in figure 4.13a. Progressive settling

down is apparent for the explicit method and the predictor corrector but in case of

orthogonal collocation εi does not seem to decrease any further than to the order 10−4.

The development of the approximation error ei is very similar for all three methods

and the precision in the last iteration is around 10−2.

Figure 4.14 shows the investor’s optimal strategy as it changes with τ and the

results are similar to those from previous examples. For the original initial condition

g decreases to the limit while it increases for the alternative initial condition.
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4.3. EXAMPLE 3: a < 0, b > 0

(a) Development of εi. (b) Development of ei.

Figure 4.13: Comparison of the development of error for the three methods in ex. 3.

εi ei
Explicit Pred-Corr O.Colloc Explicit Pred-Corr O.Colloc

τ6009 = 6.01e-001 6.18e-005 6.18e-005 3.04e-004 1.28e+001 1.28e+001 1.30e+001

τ12018 = 1.20e+000 3.77e-005 3.77e-005 4.43e-004 5.43e+000 5.43e+000 5.52e+000

τ18028 = 1.80e+000 2.10e-005 2.10e-005 2.69e-004 2.43e+000 2.43e+000 2.47e+000

τ24037 = 2.40e+000 1.06e-005 1.06e-005 1.61e-004 1.11e+000 1.11e+000 1.13e+000

τ30046 = 3.00e+000 5.05e-006 5.05e-006 9.39e-005 5.04e-001 5.04e-001 5.14e-001

τ36055 = 3.61e+000 2.34e-006 2.34e-006 5.81e-004 2.29e-001 2.29e-001 2.36e-001

τ42064 = 4.21e+000 1.07e-006 1.07e-006 2.02e-004 1.04e-001 1.04e-001 1.07e-001

τ48074 = 4.81e+000 4.87e-007 4.87e-007 7.73e-004 4.72e-002 4.72e-002 4.85e-002

τ54083 = 5.41e+000 2.21e-007 2.21e-007 1.09e-003 2.14e-002 2.14e-002 2.21e-002

τ60092 = 6.01e+000 9.99e-008 1.00e-007 4.47e-004 9.67e-003 9.68e-003 1.01e-002

Table 4.12: Example 3: Development of εi and ei for the plotted values of τ .

(a) Explicit method. (b) Predictor corrector.

Figure 4.14: The optimal policy g for the two initial conditions in example 3.
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4.4 Example 4: a > 0, b < 0

This time we choose the values of parameters in such a way that a is positive and b

negative. These values are σ2 = 0.8, λ = 0.7, r∗ = 1.2, ρ = 2 and hence a = 0.75,

b = −0.5, c = 0.625. The condition of existence of solution, a + b > 0, holds. This is

the first example where the second part of lemma 1.6 is valid. It says that if b ≤ 0,

then u(x) is unbounded.

(a) Explicit, L = 5. (b) Explicit, L = 50. (c) Explicit, L = 500.

(d) Pred-corr, L = 5. (e) Pred-corr, L = 50. (f) Pred-corr, L = 500.

(g) Collocation, L = 5. (h) Collocation, L = 50. (i) Collocation, L = 500.

Figure 4.15: Numerical solutions for example 4. Black solutions correspond to the original

initial condition and the blue ones to the alternative condition.

We solve this example with three different values of L: 5, 50 and 500. Now we

specify the settings used in the explicit and predictor-corrector methods. For L = 5

we use N + 1 = 16 partition points for x and the time step h = 5 · 10−3. For the other
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4.4. EXAMPLE 4: a > 0, b < 0

two values of L, N + 1 = 61 and h = 5 · 10−4 are used. In all three cases we work with

ε0 = 10−6.

4.4.1 Explicit Euler Method

The numbers of steps M needed for the solutions to stabilize in the explicit Euler

method as well as in the predictor-corrector are listed in table 4.13. As it was in

previous examples, the use of the alternative initial condition leads to a higher number

time steps required. The times in years are shown in the same table. They range for

this method from less than 14 years when L = 5 up to almost 53 years when L = 500.

Number of time steps M

L = 5 L = 50 L = 500

u(0, x) = 0 u(0, x) = x u(0, x) = 0 u(0, x) = x u(0, x) = 0 u(0, x) = x

Explicit 1099 1196 20 423 23 642 35 052 42 156

Pred-Corr 963 1200 20 462 23 646 35 057 42 161

Corresponding time in years

L = 5 L = 50 L = 500

u(0, x) = 0 u(0, x) = x u(0, x) = 0 u(0, x) = x u(0, x) = 0 u(0, x) = x

Explicit 13.74 14.95 25.53 29.55 43.82 52.70

Pred-Corr 12.04 15.00 25.58 29.56 43.82 52.70

Table 4.13: Resulting values of M and the corresponding time in years for example 4.

The resulting solutions for both initial conditions are shown in the first row of

figure 4.15. According to theory (lemma 1.6), the limit solutions should be strictly

increasing for all x and we observe that they do not flatten out as it was the case in

previous examples. They have similar shape for different values of L and they only

stop increasing at the end of the considered intervals which is caused by the boundary

condition (3.12) saying that the derivative at the end point is zero.

Unlike the cases when b > 0, there is no upper bound for values of u(x) and therefore

choosing a higher L allows it to attain higher values. For L = 5 it reaches to around

1.1, for L = 50 it is 3.6, and for L = 500 the values go up to 10.

We include table 4.14 which shows how εi,j decreases with τ for the explicit method

used on example 4 with L = 5 and the zero initial condition.
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x1 = 0.022 x4 = 0.36 x8 = 1.42 x11 = 2.69 x15 = 5

τ110 = 5.50e-001 1.81e-005 7.80e-004 3.17e-003 3.81e-003 3.97e-003

τ220 = 1.10e+000 3.14e-005 5.59e-005 1.27e-003 2.31e-003 2.83e-003

τ330 = 1.65e+000 2.82e-005 2.74e-005 4.24e-004 9.33e-004 1.21e-003

τ440 = 2.20e+000 1.40e-005 3.67e-005 1.19e-004 3.16e-004 4.26e-004

τ550 = 2.75e+000 2.38e-006 2.51e-005 1.34e-005 7.97e-005 1.18e-004

τ659 = 3.29e+000 8.45e-007 9.92e-006 1.15e-005 3.57e-006 1.35e-005

τ769 = 3.85e+000 4.00e-007 1.52e-006 9.18e-006 1.05e-005 1.03e-005

τ879 = 4.40e+000 6.67e-008 3.70e-007 3.54e-006 6.63e-006 8.08e-006

τ989 = 4.95e+000 9.36e-008 1.41e-007 9.24e-007 2.42e-006 3.24e-006

τ1099 = 5.50e+000 2.12e-008 7.11e-008 2.93e-007 7.30e-007 9.91e-007

Table 4.14: Example 4, explicit method: Development of εi,j for the plotted values of τ and

chosen points xj .

4.4.2 Predictor-Corrector

The values of M and the corresponding times in years for the predictor-corrector

method are included in table 4.13. In previous examples this method required a slightly

higher number of time steps than the explicit Euler method and that is also true for

all variations of example 4 except the first one with L = 5 and the original initial

condition. In this one case the predictor-corrector requires only 963 time steps while

M = 1099 for the explicit method.

The resulting predictor-corrector solutions for both initial conditions are depicted

in the middle row of figure 4.15. We observe that these solutions are very much the

same as the ones from the explicit method.

The approximations of u(xj) settle down to their limits as τ increases, cf. table 4.15.

x1 = 0.022 x4 = 0.36 x8 = 1.42 x11 = 2.69 x15 = 5

τ96 = 4.80e-001 2.33e-005 1.06e-003 3.34e-003 3.80e-003 3.90e-003

τ193 = 9.65e-001 3.13e-005 1.20e-004 1.63e-003 2.75e-003 3.26e-003

τ289 = 1.45e+000 2.81e-005 1.34e-005 6.46e-004 1.34e-003 1.70e-003

τ385 = 1.93e+000 1.54e-005 3.44e-005 2.34e-004 5.57e-004 7.35e-004

τ482 = 2.41e+000 3.88e-006 2.78e-005 6.71e-005 2.00e-004 2.75e-004

τ578 = 2.89e+000 5.96e-007 1.41e-005 9.01e-006 5.64e-005 8.42e-005

τ674 = 3.37e+000 7.52e-007 3.97e-006 4.21e-006 7.87e-006 1.58e-005

τ770 = 3.85e+000 1.33e-007 4.44e-008 3.32e-006 2.60e-006 1.61e-006

τ867 = 4.34e+000 1.10e-007 4.33e-007 1.02e-006 2.11e-006 2.57e-006

τ963 = 4.82e+000 8.26e-008 1.05e-007 1.20e-007 6.77e-007 9.95e-007

Table 4.15: Example 4, predictor-corrector: Development of εi,j for the plotted values of τ

and chosen points xj .
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4.4.3 Orthogonal Collocation

We solve this problem by orthogonal collocation with 26 collocation points as well.

The results can be seen in the last row of figure 4.15. The considered intervals for τ

are [0, 4.82], [0, 10.23] and [0, 17.53] for L = 5, L = 50 and L = 500 respectively. This

again means very long computation times compared to the other two methods. The

resulting orthogonal collocation solutions are very similar to the ones from the other

methods for L = 5 and L = 50.

For the last case, L = 500, the solutions also look similar at first sight but the limit

solution only achieves values up to around 9 while for the other two methods it reaches

10. The reason for this is a significantly finer partition of the interval used in the

first two methods. The explicit method and the predictor-corrector solutions increase

rapidly from zero whereas the orthogonal collocation solution needs to cover a wider

interval there and therefore the slope is not quite as steep. A finer partition in the last

method would mean solving a higher dimension system of ODEs which would make

the computation even longer.

We believe the explicit method and the predictor-corrector solutions to be better

approximations of the true solution u(x) and for the reasons explained we favor this

methods over orthogonal collocation.

Table 4.16 shows the decreasing values of εi,j with increasing i for chosen j.

x1 = 0.012 x6 = 0.65 x13 = 2.66 x19 = 4.35 x25 = 5

τ96 = 4.80e-001 5.06e-007 1.83e-003 3.83e-003 3.94e-003 3.91e-003

τ193 = 9.65e-001 4.53e-008 4.62e-004 2.57e-003 3.20e-003 3.22e-003

τ289 = 1.45e+000 2.13e-008 1.60e-004 1.25e-003 1.66e-003 2.02e-003

τ385 = 1.93e+000 3.40e-009 6.57e-005 5.66e-004 7.63e-004 7.01e-004

τ482 = 2.41e+000 7.65e-010 2.85e-005 2.51e-004 3.40e-004 2.81e-004

τ578 = 2.89e+000 2.70e-010 1.27e-005 1.12e-004 1.52e-004 1.59e-004

τ674 = 3.37e+000 4.22e-010 5.73e-006 5.03e-005 6.46e-005 1.17e-003

τ770 = 3.85e+000 1.04e-011 2.58e-006 2.26e-005 3.12e-005 1.77e-004

τ867 = 4.34e+000 3.19e-011 1.15e-006 1.01e-005 1.42e-005 1.76e-004

τ963 = 4.82e+000 3.45e-010 5.15e-007 4.45e-006 2.60e-006 1.12e-003

Table 4.16: Example 4, orthogonal collocation: Development of εi,j for the plotted values

of τ and chosen points xj .
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4.4.4 Comparison for Example 4

The resulting limit solutions found by the three methods, shown in figure 4.15, are all

increasing and concave with zero slope on at x = L. In this example b is negative so

there is no limit for u(x). The only property from section 1.4 which remains to be

verified is the derivative at zero. Figure 4.16 shows a close up of the neighborhood of

zero for the stationary solutions for all methods with L = 5 together with the identity

line. We observe that the slope is again close to 1 as it was in the other examples.

Figure 4.16: Stationary solutions of example 4 together with the identity line.

The rate of settling down εi is depicted in figure 4.17a and the numerical values are

listed in table 4.17. In this part L = 5 and the original initial condition are used. We

observe similar results as in previous examples. For orthogonal collocation the process

is not monotonic like it is for the other two methods.

εi ei
Explicit Pred-Corr O.Colloc Explicit Pred-Corr O.Colloc

τ96 = 4.80e-001 3.91e-003 3.90e-003 3.96e-003 1.85e+000 1.85e+000 1.99e+000

τ193 = 9.65e-001 3.29e-003 3.26e-003 3.26e-003 9.36e-001 9.39e-001 1.03e+000

τ289 = 1.45e+000 1.71e-003 1.70e-003 2.02e-003 4.32e-001 4.37e-001 5.08e-001

τ385 = 1.93e+000 7.32e-004 7.35e-004 8.16e-004 1.83e-001 1.88e-001 2.41e-001

τ482 = 2.41e+000 2.71e-004 2.75e-004 3.78e-004 7.00e-002 7.42e-002 1.11e-001

τ578 = 2.89e+000 7.84e-005 8.42e-005 1.59e-004 2.49e-002 2.84e-002 5.05e-002

τ674 = 3.37e+000 1.41e-005 1.58e-005 1.17e-003 8.40e-003 1.10e-002 2.34e-002

τ770 = 3.85e+000 1.05e-005 3.32e-006 1.77e-004 2.92e-003 4.53e-003 1.04e-002

τ867 = 4.34e+000 8.67e-006 2.57e-006 1.76e-004 1.15e-003 1.98e-003 5.12e-003

τ963 = 4.82e+000 4.17e-006 9.95e-007 1.12e-003 5.04e-004 8.74e-004 2.08e-003

Table 4.17: Example 4: Development of εi and ei for the plotted values of τ .
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(a) Development of εi. (b) Development of ei.

Figure 4.17: Comparison of the development of error for the three methods in ex. 4.

The imprecision of approximation at time τi, denoted by ei and shown in figure

4.17b and table 4.17, decreases monotonically for all methods and we observe that the

values for orthogonal collocation are slightly higher than for the other two methods

but they are of the same order.

Figure 4.18 shows numerical approximations of the investor’s optimal strategy for

example 4 with the three different values of L. The policies are again increasing w.r.t.

τ for the alternative initial condition (blue curves) while they are decreasing for the

original initial condition (black curves) and they tend to the same limit.

4.5 Comparison of the Methods

Based on numerical examples we conclude that the explicit Euler method, the predictor-

corrector and orthogonal collocation all produce similar results. In all cases, the limit

solution satisfies the properties of the solution u(x) proven in [3] and listed in section

1.4 of this work. Therefore we believe that the solution u(x) suggested by the methods

is a good approximation of the solution to the HJB equation (1.25) and that the

value function w(y, z) of problem (1.2)-(1.4) can be approximated by use of u(x) and

substitution (1.14).

The explicit Euler method and the predictor-corrector produce very similar results.

In fact, the corrector step of the latter method does not seem to be an improvement
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4.5. COMPARISON OF THE METHODS

(a) Explicit, L = 5. (b) Explicit, L = 50. (c) Explicit, L = 500.

(d) Pred-corr, L = 5. (e) Pred-corr, L = 50. (f) Pred-corr, L = 500.

Figure 4.18: The optimal policy g for the two initial conditions in example 4.

to the predictor step, which is an estimate from the explicit Euler method. With the

exception of one case in example 4, the predictor-corrector needed slightly more time

steps for the solutions to settle down. Even though the differences were minimal, it is

a reason to favor the explicit method over the predictor-corrector because the former

is simpler which means that its computation times are lower.

The orthogonal collocation method proved to be significantly more time-consuming

than the other two methods. As we argued earlier, this is due to the fact that it requires

to solve a system of N + 1 ordinary differential equations, where N is the number of

internal collocation points. It clearly limits the number of collocation points which can

lead to a poor approximation of the solution especially when a longer interval for x is

considered, i.e. higher value of L is used. Also, working with a longer time interval

proved to lead to a significantly longer computation time for orthogonal collocation

than for the other methods.

These reasons lead us to the conclusion that even though all three methods pro-

duce similar results, the explicit method is to be favored over predictor-corrector and

orthogonal collocation for this problem.
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CONCLUSION

The aim of this work was to find a suitable numerical method for the Hamilton-Jacobi-

Bellman (HJB) equation corresponding to the problem of optimal liquidation of a large

trading position. We have not found a method which would allow to find the solution

directly but we have been successful in developing an alternative approach to the prob-

lem which leads to the searched solution. The approach was based on truncating the

problem to a finite time horizon. The outcome was a series of lower solutions (or upper

solutions if the alternative initial condition is used) to the original problem which tend

monotonically to the solution. We presented and compared three methods based on

this approach all of which proved successful in finding the searched solution

In chapter 1, we introduce the problem and derive the HJB equation. Except listing

known results about the problem and its solution, we also add a proof for the upper

bound of the solution u(x) ≤ x.

In the second chapter, we deal with theoretical preliminaries for the alternative ap-

proach which we use for numerical treatment of the optimal liquidation problem. We

present an alternative initial condition which corresponds to a scenario where, at the

end of the considered time interval, the speculator can sell the remaining amount of

foreign currency with no negative effect on the exchange rate, as opposed to the origi-

nal scenario, where no selling after the time time interval is allowed. Finally, we show
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monotonicity of the value function with respect to the length of the considered time

interval for the original and the alternative initial conditions.

We present in the third chapter three numerical methods based on the alternative

approach. The explicit Euler and the predictor-corrector methods both work with dis-

cretized time and spatial variables and a new time layer is computed from a previous

one. In orthogonal collocation only the spatial variable is discretized and one even-

tually arrives at a system of N + 2 ordinary differential equations. The solution to

this system are functions describing the solution u(τ, x) at the collocation points for

different values of the time variable. The system of ODEs can be solved by standard

numerical methods.

In the final chapter, we present four numerical examples where we demonstrate the

use of the three methods described in the previous chapter. The first example is a non-

stochastic case for which there is an analytical solution and we confirm graphically

that the solutions suggested by both of our methods are very close to the analytical

one. The other three examples are for different feasible combinations of the signs of

parameters a and b. In all examples we find that the solutions to the parabolic PDE

settle down to a stationary solution which we believe to be the solution to the original

equation.

We also analyze the development of the approximation error with increasing τ . Fi-

nally, we compare the three methods and conclude that the explicit Euler method is the

most suitable for numerical treatment of this kind of problems. It is computationally

simpler than the other two methods and produces good approximations of the searched

solution.
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APPENDIX

Appendix A - Source Code for the Explicit Euler

Method

1 function [x,u,g,M,eps] = explicit(sigma2,lambda,rStar,rho,L,N,h,Mmax,eps0,alt)

2 % explicit euler with non−equidistant partition of [0,Xmax]

3 % we consider the equation u t = xˆ2 u {xx} − a x u x − b u + c(u x−1)ˆ2

4

5 tic

6 a = 2/sigma2*(sigma2 + lambda − rStar);

7 b = 2/sigma2*(rho − sigma2 − 2*lambda);

8 c = 1/(2*sigma2);

9

10 x = linspace(0,sqrt(L),N+1);

11 x = x.ˆ(2);

12

13 u = zeros(Mmax+1,N+1); % solution

14 g = zeros(Mmax+1,N+1); % policy

15 F = zeros(N−1,1);

16 eps = zeros(Mmax,1);

17

18 % alternative initial condition

19 if(alt==1)

20 u(1,:) = x;

21 end

22

23 A = zeros(N−1,N+1);

24 for j=2:N
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25 A(j−1,j−1) = 2*x(j)ˆ2/((x(j+1)−x(j−1))*(x(j)−x(j−1))) + a*x(j)/(x(j+1)−x(j−1));

26 A(j−1,j) = −2*x(j)ˆ2/(x(j+1)−x(j−1))*(1/(x(j)−x(j−1))+1/(x(j+1)−x(j))) − b;

27 A(j−1,j+1) = 2*x(j)ˆ2/((x(j+1)−x(j−1))*(x(j+1)−x(j))) − a*x(j)/(x(j+1)−x(j−1));

28 end

29

30 M = 1;

31 err = 1;

32 while(err>eps0 && M<Mmax)

33 % solution

34 for j=2:N

35 F(j−1) = c*( (u(M,j+1)−u(M,j−1))/(x(j+1)−x(j−1)) −1 )ˆ2;

36 end

37 u(M+1,2:N) = u(M,2:N) + h*(A*u(M,:)' + F)';

38 u(M+1,N+1) = u(M+1,N);

39 % policy

40 for j=2:N

41 g(M+1,j) = (1−(u(M+1,j+1)−u(M+1,j−1))/(x(j+1)−x(j−1)))/2;

42 end

43 g(M+1,1) = (1−(u(M+1,2)−u(M+1,1))/(x(2)−x(1)))/2;

44 g(M+1,N+1) = 1/2;

45

46 err = norm(u(M+1,:)−u(M,:),Inf);

47 eps(M) = err;

48 M = M+1;

49 end

50 u = u(1:M,:);

51 g = g(1:M,:);

52 eps = eps(1:M−1);

53 toc

54 fprintf('The number of time steps is %d.\n',M−1);

55 fprintf('Tau is from [0, %g].\n',(M−1)*h);

56 fprintf('The considered time is %g years.\n',(M−1)*h*2/sigma2);
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Appendix B - Source Code for the Predictor-Corrector

1 function [x,u,g,M,eps] = pred corr(sigma2,lambda,rStar,rho,L,N,h,Mmax,eps0,alt)

2 % predictor−corrector with non−equidistant partition of [0,Xmax]

3 % we consider the equation u t = xˆ2 u {xx} − a x u x − b u + c(u x−1)ˆ2

4

5 tic

6 a = 2/sigma2*(sigma2 + lambda − rStar);

7 b = 2/sigma2*(rho − sigma2 − 2*lambda);

8 c = 1/(2*sigma2);

9

10 x = linspace(0,Lˆ(1/2),N+1);

11 x = x.ˆ(2);

12

13 u = zeros(Mmax+1,N+1); % solution

14 g = zeros(Mmax+1,N+1); % policy

15 F = zeros(N−1,1);

16 F2 = zeros(N−1,1);

17 uTilde = zeros(N+1,1);

18 eps = zeros(Mmax,1);

19

20 % alternative initial condition

21 if(alt==1)

22 u(1,:) = x;

23 end

24

25 A = zeros(N−1,N+1);

26 for j=2:N

27 A(j−1,j−1) = 2*x(j)ˆ2/((x(j+1)−x(j−1))*(x(j)−x(j−1))) + a*x(j)/(x(j+1)−x(j−1));

28 A(j−1,j) = −2*x(j)ˆ2/(x(j+1)−x(j−1))*(1/(x(j)−x(j−1))+1/(x(j+1)−x(j))) − b;

29 A(j−1,j+1) = 2*x(j)ˆ2/((x(j+1)−x(j−1))*(x(j+1)−x(j))) − a*x(j)/(x(j+1)−x(j−1));

30 end

31

32 M = 1;

33 err = 1;

34 while(err>eps0 && M<Mmax)

35 % predictor:

36 for j=2:N

37 F(j−1) = c*( (u(M,j+1)−u(M,j−1))/(x(j+1)−x(j−1)) −1 )ˆ2;

38 end

39 uTilde(2:N) = u(M,2:N)' + h*(A*u(M,:)' + F);

40 uTilde(N+1) = uTilde(N);

41 % corrector:

42 for j=2:N

43 F2(j−1) = c*( (uTilde(j+1)−uTilde(j−1))/(x(j+1)−x(j−1)) −1 )ˆ2;
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44 end

45 u(M+1,2:N) = u(M,2:N) + h/2*( A*(u(M,:)'+uTilde) + F + F2 )';

46 u(M+1,N+1) = u(M+1,N);

47 % policy

48 for j=2:N

49 g(M+1,j) = (1−(u(M+1,j+1)−u(M+1,j−1))/(x(j+1)−x(j−1)))/2;

50 end

51 g(M+1,1) = (1−(u(M+1,2)−u(M+1,1))/(x(2)−x(1)))/2;

52 g(M+1,N+1) = 1/2;

53

54 err = norm(u(M+1,:)−u(M,:),Inf);

55 eps(M) = err;

56 M = M+1;

57 end

58 u = u(1:M,:);

59 g = g(1:M,:);

60 eps = eps(1:M−1);

61 toc

62 fprintf('The number of time steps is %d.\n',M−1);

63 fprintf('Tau is from [0, %g].\n',(M−1)*h);

64 fprintf('The considered time is %g years.\n',(M−1)*h*2/sigma2);
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Appendix C - Source Code for Orthogonal Colloca-

tion

We include a script for orthogonal collocation with two internal collocation points. The

reason is that the matrices A and B have a low dimension (4 × 4) in this case which

makes the code easier to read. Scripts for more collocation points are analogical.

1 function [x,u,M,eps] = collocation2(sigma2,lambda,rStar,rho,L,Tmax,M,alt)

2 % orthogonal collocation with 24 internal points

3 % we consider the equation u t = xˆ2 u {xx} − a x u x − b u + c(u x−1)ˆ2

4

5 a = 2/sigma2*(sigma2 + lambda − rStar);

6 b = 2/sigma2*(rho − sigma2 − 2*lambda);

7 c = 1/(2*sigma2);

8

9 param = [a,b,c,L];

10 % pre−calculated collocation points

11 z = [0.000000 0.211325 0.788675 1.000000];

12 % pre−calculated matrix of collocation weights

13 A = [−7.0000000 8.1961524 −2.1961524 1.0000000

14 −2.7320508 1.7320508 1.7320508 −0.7320508

15 0.7320508 −1.7320508 −1.7320508 2.7320508

16 −1.0000000 2.1961524 −8.1961524 7.0000000];

17

18 x = L*z;

19 if alt==0

20 init = zeros(1,2);

21 else

22 init = x(2:3);

23 end

24 % solving the system of ODEs

25 tic

26 [T,U] = ode45(@derivatives2,linspace(0,Tmax,M),init,[],param);

27 toc

28

29 % M = length(T);

30 u = [zeros(M,1),U,−(A(4,2)*U(:,1) + A(4,3)*U(:,2))/A(4,4)];

31

32 eps = zeros(M−1,1);

33 for i=1:(M−1)

34 eps(i) = norm(u(i+1,:)−u(i,:),Inf);

35 end
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1 function du = derivatives2(t,u,param)

2 a = param(1);

3 b = param(2);

4 c = param(3);

5 L = param(4);

6 % pre−calculated collocation points

7 z = [0.000000 0.211325 0.788675 1.000000];

8 % pre−calculated collocation weights for first derivatives

9 A = [−7.0000000 8.1961524 −2.1961524 1.0000000

10 −2.7320508 1.7320508 1.7320508 −0.7320508

11 0.7320508 −1.7320508 −1.7320508 2.7320508

12 −1.0000000 2.1961524 −8.1961524 7.0000000];

13 % pre−calculated collocation weights for second derivatives

14 B = [24.0000000 −37.1769145 25.1769145 −12.0000000

15 16.3923048 −24.0000000 12.0000000 −4.3923048

16 −4.3923048 12.0000000 −24.0000000 16.3923048

17 −12.0000000 25.1769145 −37.1769145 24.0000000];

18

19 du = zeros(2,1);

20 for i=1:2

21 du(i) = z(i+1)ˆ2 * B(i+1,:)*[0;u;−(A(4,2:3)*u)/A(4,4)]...

22 − a*z(i+1)* A(i+1,:)*[0;u;−(A(4,2:3)*u)/A(4,4)] − b*u(i)...

23 + c*(1/L*A(i+1,:)*[0;u;−(A(4,2:3)*u)/A(4,4)] − 1)ˆ2;

24 end
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