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Abstract

Bc. Samuel Rosa: Trend resistant experimental designs [Diploma thesis], Comenius

University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department

of Applied Mathematics and Statistics; Supervisor: doc. Mgr. Radoslav Harman,

PhD., Bratislava, 2014, 75 pg.

Suppose that we intend to perform a sequence of independent trials, each with one of

v treatments. Let the first treatment be a control and let the effects of the treatments

be denoted by τ1, ..., τv. The mean value of the response of each trial is assumed to be

equal to the sum of the effect of the treatment selected for the trial, and the effect of

a nuisance time trend. In the thesis, we give a class of optimal approximate designs

for the estimation of the set of contrasts τ2 − τ1, ..., τv − τ1, with respect to any of

the Kiefer’s φp-optimality criteria, p ∈ [−∞, 0]. These criteria include the widely used

criteria of D-, A- and E-optimality. We demonstrate that the results can be used to

generate efficient exact designs. Furthermore, we show that our results hold in a model

with general nuisance effect.

Keywords: Design of experiments, Trend resistant design, Optimal designs



Abstrakt

Bc. Samuel Rosa: Návrhy experimentov odolné voči trendu [Diplomová práca], Uni-

verzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky, Katedra

aplikovanej matematiky a štatistiky; vedúci práce: doc. Mgr. Radoslav Harman, PhD.,

Bratislava, 2014, 75 str.

Uvažujme experiment, v ktorom chceme vykonať sériu nezávislých pokusov, každý

s jedným z v ošetrení. Predpokladajme, že prvé ošetrenie je kontrolné a označme

vplyvy ošetrení ako τ1, ..., τv. Predpokladajme tiež, že stredná hodnota pozorovania v

každom pokuse je rovná súčtu vplyvu zvoleného ošetrenia a rušivého vplyvu časového

trendu. V diplomovej práci sme odvodili triedu optimálnych približných návrhov na

štatistický odhad množiny kontrastov τ2 − τ1, ..., τv − τ1, vzhľadom na ľubovoľné

z Kieferových kritérií φp-optimality pre p ∈ [−∞, 0]. Tieto kritéria zahŕňajú bežne

používané kritéria D-, A- a E-optimality. Ukážeme, že tieto výsledky môžu byť použité

na tvorbu exaktných dizajnov. Navyše ukážeme, že naše výsledky platia aj pre model

so všeobecným rušivým vplyvom.

Kľúčové slová: Navrhovanie experimentov, Návrhy experimentov odolné voči

trendu, Optimálne návrhy
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NOTATION

Notation

S(A) the column space of matrix A, i.e. the linear space generated by the

columns of A

Sk
+ the set of all k × k symmetric nonnegative definite matrices

� the Loewner ordering; A � B ⇔ A−B ∈ Sk
+

1n the n× 1 vector of ones

0n the n× 1 vector of zeros

et the t-th standard unit vector, i.e. a vector with the t-th element equal

to one, and all others equal to zero

In the n× n identity matrix

Jn the n× n matrix of ones

Jm×n the m× n matrix of ones

0m×n the m× n matrix of zeros

11



INTRODUCTION

Introduction

The statisticians are often consulted when the researchers wish to analyse results of an

experiment. One might think that this is the only role of statistics in performing an

experiment: processing the data after the experiment took place. But that is not the

case. The statistics may be used, and often should be used even before an experiment

is performed, in designing of the experiment. It is possible to significantly improve the

amount of information we get from an experiment just by properly choosing how it

will be carried out. This process is studied by a discipline of statistics called design of

experiments or experimental design.

Even in a simple task of weighing multiple objects, we may significantly reduce the

uncertainty about the results. Suppose a chemist wishes to weigh eight light objects

on a two pan scale. The traditional method of estimating the weights of these objects

in eight weighings would be to weigh each object separately. However, by placing

each of the objects in one of the two pans in every weighing in a particular way, one

may reduce the standard error of the results to a quarter of the value given by the

traditional method. This observation was provided in 1944 by Hotelling ([13]). The

oldest papers considering experimental design date back to the beginning of the 20th

century, e.g. [23], a paper by the famous ’Student’; as one might learn from [3]. Since

then, the design of experiments has experienced a steady progress with fundamental

contributions by R. Fisher (see [8]).

A design of an experiment determines how many trials are to be performed under

which experimental conditions. However, to work with designs more easily, the statis-

ticians came up with the notion of approximate design, which is a relaxation of the

original concept. The original concept came to be known as an exact design. There is

a large amount of literature on the subject of design of experiments, including many

textbooks, e.g. [19], [20] and [2]. The reader may find a summary of the history of the

experimental design in the work [3], although the paper focuses on the papers published

in Biometrika.

Any experiment that consists of multiple trials performed in a time sequence may

be subject to a nuisance time trend. In this paper we will focus on such experiments.

The effect of a time trend might come from ageing of the material (for example in agri-

12



INTRODUCTION

cultural experiments), heating or wearing down of the experimental devices, changes in

the temperature of the environment or even fatigue of the researchers, or many other

possible influences. Thus, it is important to be able to provide designs that perform

well under the presence of a time trend - designs that are trend-resistant. The trend-

resistant designs have been a subject of the design literature for a long time, e.g. in

the publications [6], [5], [4] or [14].

The aim of this thesis was to study a model which describes the experiments under

the presence of a nuisance time trend. Then we aimed to provide optimal designs

for estimating effects of the treatments with comparison to a control treatment, using

the modern approximate theory. Finally, we wished to apply our results to construct

efficient exact designs for the studied model. That is, we aimed at providing efficient

trend-resistant designs for estimating the treatment contrasts.

The motivation for the model that we will study came from the manuscript [10].

Unlike our work, this manuscript did not aim to provide optimal approximate designs.

Instead, it provided an algorithm (branch-and-bound) for computing optimal exact

designs. The algorithm was then demonstrated on a model very similar to ours.

In the first chapter, we will introduce the reader to design of experiments, following

the monograph [20]. Using a linear regression model, we will formalize the difference

between an exact and an approximate design and analyse the latter further. Some

basic definitions and properties of the designs will be provided. Then we will examine

how the quality of the designs is measured: we will introduce the optimality criteria,

namely the Kiefer’s φp-optimality criteria (see [16]).

We will provide the main results of this work in the second chapter. In this chapter,

we will introduce the model that will be studied. Then we will examine how the ap-

proximate designs behave in the model. We will define some classes of designs and we

will analyse them in detail. Finally, using the defined designs and their examined prop-

erties, we will provide a class of designs optimal with respect to the Kiefer’s optimality

criteria.

In the third chapter, we will propose a method for generating exact designs employ-

13



INTRODUCTION

ing the results given in Chapter 2. We will show that these generated designs tend

to be efficient. Following our observations, we will demonstrate that a highly efficient

(nearly optimal) design may be quickly obtained using the proposed method. More-

over, we will show that our results can be applied to measure the efficiency of a given

exact design with respect to any of the φp-optimality criteria.

In the fourth chapter, we will note that our results can be easily generalized. We

will show that the same results hold for a model with a general nuisance effect, e.g.

the effect of a space trend.

To our knowledge, there are no general results in the literature regarding optimal

approximate designs for the model we studied. Therefore we opine that the main

contribution of our work is in the results we provided and proved in the second chapter,

and generalized in the fourth chapter. That is, we consider the key results of our work

to be the obtained class of φp-optimal approximate designs for the model in question

and for the model with a general nuisance trend.

14



1 DESIGN OF EXPERIMENTS

1 Design of Experiments

1.1 Basic Definitions

When we are about to perform an experiment with a given number of trials and a given

set of possible experimental conditions, we use design of experiments to choose the

’best’ experimental conditions for the trials. The ’best’ experimental conditions mean

the ones that together produce the most information on the parameters of interest. In

this chapter we will formalize this vague definition.

In this work, we will examine designs of experiments for linear regression models.

Consider an experiment of N trials with real-valued observations Y1, . . . , YN , which

depend on experimental conditions x1, . . . , xN . We may model this experiment using

a linear regression of the form

Yi = fT (xi)β + εi, i = 1, . . . , N. (1.1)

Let X be the set of all permissible experimental conditions for the experiment, i.e.

the experimental conditions x1, . . . , xN need to be the elements of X. The vector

β ∈ Rm represents unknown parameters of the model and the mapping f : X →

Rm assigns regressors to the experimental conditions; ε1, . . . , εN are independent and

identically distributed random errors with E(εi) = 0 and Var(εi) = σ2 < ∞ for every

i ∈ {1, . . . , N}.

We can express the model (1.1) in the vector form

Y = Fβ + ε, (1.2)

where Y =
(
Y1, . . . , YN

)T , F =
(
f(x1), . . . , f(xN)

)T and ε =
(
ε1, . . . , εN

)T .
We assume that the objective of the experiment is to estimate some system ATβ

of unknown parameters β, where A is an m × s matrix, s ≤ m. That is, we aim to

estimate s given linear combinations of the unknown parameters of the model. Often

we are interested in a specific type of linear combinations, called contrasts.

Definition 1.1. A contrast is a linear combination aTβ, such that 1Ta = 0, i.e. the

sum of the coefficients of the combination is zero.

Before we choose the design of an experiment, we do not know the exact experimental

conditions xi for all trials; we know only that they are to be chosen from the set X.

15



1 DESIGN OF EXPERIMENTS

Then the design of experiment determines which experimental conditions x from the

set X we will choose. Because of this nature of the design of experiments, we call the

experimental conditions the design points.

Note that the numbering of trials is arbitrary, it does not contain any information -

all the information about a particular trial i is included in the experimental condition xi,

e.g. if we want to consider time dependence, we need to include it in the experimental

conditions. That is, only the number of trials under a specific experimental condition is

of interest, not the actual indices of the trials under the experimental condition. This

brings up a natural definition of the experimental design as a function which specifies

how many trials we are to perform under particular experimental conditions.

Definition 1.2. An exact design of experiment is a function ξ : X→ {0, 1, 2 . . .}. The

value ξ(x) denotes the number of trials to be performed under experimental conditions

x.

As the attribute ’exact’ suggests, it is not a unique definition of experimental de-

signs. Kiefer introduced another view on designs of experiments (see [15]). He con-

sidered approximate designs, which represent real-valued weights for the experimental

conditions.

Definition 1.3. An approximate design of experiment is a function ξ : X → [0,∞)

that satisfies
∑

x∈X ξ(x) = 1. The value ξ(x) represents the relative proportion of trials

to be performed under the experimental conditions x. The value ξ(x) is called the weight

of the design point x.

The notion of the approximate designs is a generalization of the notion of the exact

designs. That is, any exact design may be represented by an approximate one by

choosing the suitable weights. Moreover, the approximate designs allow for any weights

of the design points, not only non-negative integers.

Similarly to the definition of X as the set of all permissible experimental conditions

for the experiment, let Ξ be the set of all approximate designs ξ permissible for the

experiment.

In this work we will mostly use the approximate designs and therefore, by a design

of experiment we will mean the approximate design. Only in the parts where both

16



1 DESIGN OF EXPERIMENTS

approximate and exact designs are used, we will use the full terminology, in order to

differentiate between these two types of designs.

To provide some characterization of approximate designs, we will follow the book

[20].

1.2 Information Matrix

Now that we have established what design of experiments is, we need to determine how

to choose the ’best’ design for a given experiment. In order to do so, we will introduce

the notion of information matrix as a measure of the amount of information a design

provides. But let us first define a moment matrix.

Definition 1.4. Moment matrix of a design ξ is a matrix

M(ξ) =
∑
x∈X

ξ(x)f(x)fT (x).

Remark 1.5. We may observe the following properties of moment matrices:

(i) The mapping ξ 7→M(ξ) is linear, i.e. M(aξ1 + bξ2) = aM(ξ1) + bM(ξ2) for designs

ξ1, ξ2 and constants a, b.

(ii) Given any design ξ, the moment matrix M(ξ) is a nonnegative definite symmetric

matrix.

Definition 1.6 (by [9]). Information matrix for a nonnegative definite matrix M and

for estimating the system ATβ, where A is an m × s matrix of full column rank s, is

the matrix NA(M) that satisfies

NA(M) = minL∈Rs×m:LA=IsLMLT , (1.3)

where the minimum is taken with respect to the Loewner ordering.

The definition of Loewner ordering is provided in Appendix, Definition A.6.

The justification of this definition of the information matrix can be found in [20].

For proper statistical inference, we usually need the system of parameters of interest

to be estimable. We will show in Lemma 1.12 that in such situations we get a closed

form expression of the information matrix. This closed form is closely related to the

Fisher information matrix and it is proportional to the inverse of the dispersion matrix

17



1 DESIGN OF EXPERIMENTS

for the least-square estimators of the system of interest (see [18] or [20]). It follows

that it indeed is meaningful to say that the information matrix measures the amount

of information the experiment provides on the parameters of interest.

We are usually interested in NA(M(ξ)), i.e. the information matrix for a moment

matrix of a design ξ. For brevity we will use a shorter notation NA(ξ) instead of

NA(M(ξ)). To simplify the notations we will even often omit the argument (ξ) where

it is not necessary to preserve.

We note that the definition of the information matrix is correct, although the in-

formation matrix is defined by minimizing some matrix expression with respect to a

partial ordering (the Loewner ordering is not total). That is, there exists a unique

solution L̃ of the minimization problem (1.3), as shown in Proposition 1.7.

Throughout this work, we will use the generalized inverse matrices. Given any

matrix X, the symbol X− denotes a generalized inverse of X. For the definition of the

generalized inverses and their basic properties, see the Appendix.

Proposition 1.7 (from [20]). For any nonnegative definite matrix M and any full

column rank matrix A there exists a unique solution of (1.3), i.e. there exist a unique

NA(M). Moreover, the information matrix may be represented as

NA(M) = LMLT − LMP T (PMP T )−PMLT ,

where L is a left inverse of A and P = I − AL. The representation does not depend

on the choice of the left and the generalized inverse.

Proof. See [20].

Proposition 1.8. Given any nonnegative definite matrix M , and any matrix A of

full column rank, the information matrix NA(M) is a nonnegative definite symmetric

matrix.

Proof. The proof is quite straightforward. Since the information matrix is defined by

minimizing LMLT it can be written as L̃ML̃T for some matrix L̃. Then it is symmetric,

because M is symmetric.

Let x be a vector, then xTNA(M)x = xT L̃ML̃Tx = yTMy, where we denoted

y := L̃Tx. Then xTNA(M)x ≥ 0, because it is equal to yTMy for some y and M is

nonnegative definite.

18



1 DESIGN OF EXPERIMENTS

We note that in many publications (e.g. [18]) the information matrix is defined as the

moment matrix, i.e. N(ξ) =
∑

x∈X ξ(x)f(x)fT (x). That is because these publications

examine the experiments, where we aim to estimate the vector β of all parameters, i.e.

A = Im. The following Lemma will show that in such experiments the moment matrix

and the information matrix are indeed the same.

Proposition 1.9. Let A = Im. Then NA(M) = M for any nonnegative definite M .

Proof. This proposition follows directly from Definition 1.6

NA(M) = minL∈Rs×m:LA=IsLMLT .

Once we set A = Im we get NA(M) = minL∈Rm×m:L=ImLMLT = ImMIm = M.

The information mapping M 7→ NA(M) enjoys many properties (see [20]), we will

make use of its concavity.

Lemma 1.10. Let A be an m×s matrix with rank s. Then the mapping M 7→ NA(M)

is matrix concave, i.e. NA

(
(1 − α)M1 + αM2

)
� (1 − α)NA(M1) + αNA(M2) for

α ∈ (0, 1), where � denotes the Loewner ordering.

Proof. See [20].

In this work, we will be interested in designs under which the vectorATβ is estimable.

Definition 1.11 (by [20]). The system ATβ is said to be estimable under the design

ξ if there exists an unbiased linear estimator of ATβ under ξ, i.e. if there exists an

s×N matrix L such that Eξ(LY ) = ATβ.

The book [20] provides us with an estimability condition as well as a closed form

expression of the information matrix in such case. The estimability condition makes

use of the column space of a matrix. Given any matrix B, its column space S(B) is

the set of all linear combinations of the columns of B.

Lemma 1.12. (i) The system ATβ is estimable under a design ξ if and only if it

satisfies the estimability condition S(A) ⊆ S(M(ξ)).

(ii) The information matrix NA(ξ) is non-singular if and only if ATβ is estimable. In

that case we can provide an explicit form of NA(ξ) :

NA(ξ) = (ATM(ξ)−A)−1,

19



1 DESIGN OF EXPERIMENTS

where M(ξ)− is a generalized inverse of M(ξ).

Proof. For entire proof, see [20]. Here we will only clarify one aspect of the formula

NA(ξ) = (ATM(ξ)−A)−1. We know that in general the generalized inverse M(ξ)− is

not uniquely determined, therefore it seems that neither the information matrix is

uniquely determined. That is not the case. Once ATβ is estimable, from (i) we get

S(A) ⊆ S(M(ξ)), and since M(ξ) is symmetric we get S(A) ⊆ S(MT (ξ)). Therefore

we may use Lemma A.8 and we obtain that NA(ξ) = (ATM(ξ)−A)−1 is invariant to

the choice of the generalized inverse M(ξ)−.

We note that in the case that the system ATβ is estimable, the information matrix

NA(ξ) is positive definite (because it is nonnegative definite and nonsingular).

We may define the set of all matrices (or designs) that satisfy the estimability

condition.

Definition 1.13 (by [20]). Let A be an m×s matrix. The feasibility cone C(A) for the

system ATβ is the set of all nonnegative definite matricesM that satisfy S(A) ⊆ S(M),

i.e.

C(A) = {M ∈ Sm
+ |S(A) ⊆ S(M)}.

We say that a matrix M is feasible for ATβ if M ∈ C(A) and we say that a design

ξ is feasible for ATβ if its moment matrix M(ξ) is feasible.

The book [20] provides some basic properties of the feasibility cone.

Proposition 1.14 (by [20]). The feasibility cone is a convex cone, i.e. it satisfies

(i) for any α > 0 if M ∈ C(A), then αM ∈ C(A);

(ii) for any α ∈ (0, 1) if M1,M2 ∈ C(A), then αM1 + (1− α)M2 ∈ C(A).

Following [18] we define the ellipsoid of concentration.

Definition 1.15 (by [18]). Let A be an m× s matrix. The ellipsoid of concentration

for the parameter system ATβ under the design ξ is the set {x ∈ Rs|xTNA(ξ)x ≤ 1}.

We note that the ellipsoid of concentration is an actual ellipsoid only when the

system ATβ is estimable. Otherwise it becomes a cylinder.

20



1 DESIGN OF EXPERIMENTS

The ellipsoid of concentration directly relates to the confidence region (or con-

fidence ellipsoid) for an estimable system ATβ. Under the normality assumption

ε ∼ N(0, σ2IN), the least-square estimator AT β̂ has the normal distribution with vari-

ance σ2/N ·N−1A (ξ) (see [18] or [20]). Thus the confidence region for ATβ attains the

form {x ∈ Rs|(x − AT β̂)TNA(ξ)(x − AT β̂) ≤ K}, where K ∈ R is some constant

chosen such that the confidence ellipsoid has the required confidence level. Then by

normalizing and shifting the confidence region to the origin, we get the ellipsoid of

concentration. That means that the ellipsoid of concentration represents how accurate

the experiment is under a given design. The smaller the ellipsoid is, the more confident

we may be about the results.

1.3 Optimality Criteria

Although we know that the information matrix represents the amount of information

we get from an experiment, we still do not know how to compare different information

matrices. To do so, statisticians introduced some real-valued optimality criteria, with

D-, A- and E- optimality being ones of the most widely used.

Given an s×s information matrix NA(ξ) we denote its eigenvalues λ1, . . . , λs, where

every eigenvalue is repeated in the sequence according to its multiplicity.

We note that the proper notation would be λ1(NA(ξ)) etc., but that would result in

confusing expressions, therefore we will often omit the argument (NA(ξ)). We will use

this notation for eigenvalues of information matrices throughout the entire work.

Definition 1.16 (by [20]). Let φ be a function φ : Ss
+ → R. Then a design ξ∗ is said

to be φ-optimal if it maximizes the function φ
(
NA(ξ)

)
of a s × s information matrix,

among all designs ξ ∈ Ξ.

Moreover a design ξ∗ is said to be

D-optimal, if it maximizes the determinant
(

det
(
NA(ξ)

))1/s
A-optimal, if it maximizes the harmonic mean of the eigenvalues of the informa-

tion matrix s
1/λ1+...+1/λs

E-optimal, if it maximizes the smallest eigenvalue λmin(NA(ξ))
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among all designs ξ ∈ Ξ.

We note that the expression
(

det
(
NA(ξ)

))1/s
may be written as

(∏
i λi

)1/s
and

hence the D-optimal design maximizes the geometric mean of the eigenvalues of the in-

formation matrix. MoreoverA-optimality criterion can be expressed as s/trace(N−1A (ξ)).

The D-, A- and E-optimality criteria each have some statistical meaning under

the normality assumption, provided in [20] and [18]. The D-optimality criterion is

inversely proportional to the volume of the ellipsoid of concentration; the A-optimality

criterion represents the average variance of the estimators for the contrasts of interest;

and the E-optimality criterion represents the worst possible variance among all linear

combinations of the system of interest xTAT β̂ with ||x|| ≤ 1.

LetATβ be estimable and let the normality condition be satisfied, i.e. ε ∼ N(0, σ2IN).

Then, as we stated earlier, the least-square estimator AT β̂ has variance σ2/N ·N−1A (ξ),

which is equal to σ2/N · ATM−(ξ)A. Therefore we may observe the following:

1. The concentration ellipsoid for ATβ has volume proportional to det−1/2(NA(ξ))

(see [18], [20]). Since the value of the D-optimality criterion is proportional to

det(NA(ξ)), a high value of the criterion implies a small volume of the ellipsoid of

concentration for ATβ. Thus a high value of the D-optimality criterion implies

a high confidence in the results.

2. Let us denote the columns of the matrix A as A =
(
a1, . . . , as

)
. Then the inverse

of the A-optimality criterion may be expressed as

1

φ−1(NA(ξ))
=

1

s
trace(N−1A (ξ)) =

1

s
traceATM−(ξ)A =

1

s

s∑
i=1

aTi M
−(ξ)ai. (1.4)

Since the least-squares estimator AT β̂ has variance σ2/N ·ATM−(ξ)A, it follows

that (1.4) is the average of the standardized variances of the least-square estima-

tors for the linear combinations aT1 β, . . . , aTs β. That means, high A-optimality

criterion implies low average variance of the estimators for the contrasts of inter-

est.

3. The inverse of the smallest eigenvalue of the information matrix may be expressed

as

1

λmin(NA(ξ))
= λmax(N

−1
A (ξ)) = λmax(A

TM−(ξ)A) = max
x∈Rs,||x||=1

xTATM−(ξ)Ax.
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Apparently, xTATM−(ξ)Ax is the normalized variance of the linear combination

xTAT β̂. Therefore high E-optimality criterion guarantees low maximum vari-

ance among all possible linear combination of the estimators for the contrasts of

interest xTATβ such that ||x|| = 1.

For the results to be sensible, we usually demand for the function φ to satisfy some

properties. We call such functions the information functions.

Definition 1.17 (by [20]). A function φ : Ss
+ → R is said to be

isotonic with respect to the Loewner ordering if it satisfies A � B � 0⇒ φ(A) ≥

φ(B),

concave when it satisfies φ
(
(1 − α)A + αB

)
≥ (1 − α)φ(A) + αφ(B) for all

α ∈ (0, 1), and A,B ∈ Ss
+

positively homogenous when it satisfies φ(αA) = αφ(A) for all α > 0, A ∈ Ss
+,

superadditive when it satisfies φ(A+B) ≥ φ(A) + φ(B) for all A,B ∈ Ss
+,

nonnegative when it satisfies φ(A) ≥ 0 for all A ∈ Ss
+,

nonconstant when there exist A,B ∈ Ss
+ such that φ(A) 6= φ(B),

upper semicontinuous when the upper level sets {A ∈ Ss
+|φ(A) ≥ α} are closed

for all α ∈ R

A function φ : Ss
+ → R is called an information function if it is positively homogenous,

superadditive, nonnegative, nonconstant and upper semicontinuous.

The book [20] provides many additional properties of the information functions, we

will make use of one of them, stated in the following lemma.

Lemma 1.18. Let φ be a positively homogenous function from Ss
+ to R. Then φ is

superadditive if and only if φ is concave.

Proof. In [20].

A generalization of the D-, A- and E- optimality criteria are the Kiefer’s φp-

optimality criteria.
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Definition 1.19 (by [20]). Let p ∈ [−∞, 0]. Then a design ξ∗ is said to be φp-

optimal if it maximizes the value of Kiefer’s optimality criterion φp(NA(ξ)). Let N

be a nonnegative definite s × s matrix with eigenvalues λ1, . . . , λs, where λmin is the

smallest eigenvalue of N . Then the φp criterion is defined as

φp(N) =



(
1
s

s∑
j=1

λpj

)1/p
, p ∈ (−∞, 0)( s∏

j=1

λj

)1/s
, p = 0

λmin, p = −∞

Remark 1.20. With p = 0, −1 and −∞ in φp-criterion we get the D-, A- and E-

optimality criterion, respectively.

We remark that there exists a definition of Kiefer’s optimality criteria for p ∈ (0, 1]

but these criteria are seldom used and therefore we will not investigate them in this

work.

The φp criteria not only satisfy the properties of information functions, but for

p > −∞ they are also strictly concave on the set of positive definite matrices.

Lemma 1.21. The φp criterial functions are information functions in the sense of

Definition 1.17. Furthermore, for p ∈ (−∞, 0] the functions φp are strictly concave on

the set of positive definite matrices.

Proof. In [20].

We note that the technical definitions of the φ-optimality criteria are different

throughout the experimental design literature. However they always provide the same

ordering of designs with respect to the particular criteria. The main difference is usu-

ally that they define φ-optimal design as one that minimizes the value of φ(NA), where

the functions φ are ’inverse’ to the ones we use in the sense that they provide inverse

ordering of matrices.

For example in the publication [18], a D-optimal design is a design that minimizes the

function − ln det(NA(ξ)). It is obvious that given two positive definite s × s matrices

N1, N2, (det(N1))
1/s > (det(N2))

1/s if and only if − ln det(N1) < − ln det(N2). Thus

this definition is equivalent to the one we provided, with respect to the ordering of the

information matrices.
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2 TREND-RESISTANT OPTIMAL DESIGNS

2 Trend-resistant optimal designs

2.1 Introduction

In this chapter we will study the experiments that are performed in a time sequence,

where the effect of a time trend is a nuisance. We will provide optimal designs for esti-

mating a particular system of parameters in such experiments. Such designs are called

trend-resistant designs, because they aim to provide experiments that are resistant to

the nuisance trend. The interest in such designs dates back to the mid-20th century,

e.g. in paper [6].

The paper [6] studies experiments for ordering the treatments under the presence of

a time trend modelled by low-order polynomials. These experiments are represented by

an experiment of determining the best method of processing wool. We have a certain

number of bulks of wool and in each week one bulk is processed with a chosen treatment

applied. Since the experiment takes multiple weeks to perform, the wool ages and thus

it affects the results of the particular trials. The effect of the degradation of the wool

is assumed to be a nuisance effect.

The authors provide designs that are orthogonal, or nearly orthogonal, to the time

trend (represented by the low-order polynomials). The orthogonality means that the

scalar product of the designs and a polynomial is zero for all the treatments. It can

be represented by
∑

u ξ(t, u)pk(u) = 0, where ξ(t, u) is the design value for the t-th

treatment and the u-th time, pk is a k-th level polynomial and the sum is through all

times u. The designs orthogonal to the time trend may be called trend-free designs,

because they eliminate the effect of the trend. We will further examine the orthogonal

designs in Subsection 2.3.

The approach of providing designs (nearly) orthogonal to the time trend, repre-

sented by low-order polynomials, was later studied in many publications, mostly for

factorial experiments, e.g. [5], [4], [14]. We note that in the factorial experiments the

experimental conditions are determined by multiple variables that attain only a limited

number of values. These variables are called factors and their values are called levels.

For example, the factors might be agricultural varieties or brands of fertilizers. More
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2 TREND-RESISTANT OPTIMAL DESIGNS

information on factorial experiments can be found in many publications, e.g. [12], [7],

[21] or [17].

The paper [5] reviews two methods for constructing trend-resistant factorial designs.

The paper [4] provides a method for constructing trend-resistant designs for factorial

experiments as a generalization of some earlier results. In the paper [14], some factorial

experiments with two or three levels under the presence of a linear or quadratic trend

are examined.

But nuisance time trend was not studied only in factorial experiments. The paper

[22] gives a nearly orthogonal design in the presence of a linear trend for experiment of

particle size estimation. Here, they follow the approach of [6] for ordering of treatments.

A different method of obtaining trend-resistant designs may be found in the paper [1].

The paper provides an algorithm for constructing trend-resistant D-optimal designs.

This approach is especially useful in situations where the methods of constructing

designs orthogonal to time trend cannot be used. For example, the theoretical results

on orthogonal designs require the number of design points to be a multiple of the

number of treatments, the time points to be evenly spaced and the time trend needs

to be represented by a polynomial. These conditions may not hold. As an example,

the authors of the paper [1] argue, that the ageing of wool in the example given by [6]

may be an exponential decay rather than a low-order polynomial decay.

The reader may find a survey of the literature on the trend-resistant experimental

designs in the papers [3], [5] or [1].

In this work we will consider an experiment similar to the one in [6], i.e. we will con-

sider an experiment consisting of a time sequence of treatments and we will determine

which treatments to choose in which times.

Unlike [6] and other papers mentioned earlier, we will not examine combinatorial

methods for constructing exact trend-resistant methods. Neither will we provide an

algorithm for constructing such designs, like [1] or [10]. Instead, we will use the theory

of approximate designs and provide φp-optimal approximate designs for the model

specified in the following subsection.
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2 TREND-RESISTANT OPTIMAL DESIGNS

2.2 Model

Let us consider an industrial experiment of improving the quality of the aluminium

foam. We note that the aluminium foam is a material made of aluminium which has

the structure of a foam, i.e. high fraction of the material’s volume consists of pores.

The experimenters wish to develop a component made of aluminium foam, which is

more resistant to pressure than the original component. They developed two new

components - one with added magnesium and one with added silicon.

The researchers aim to determine whether these new components are more resistant

to pressure than the original one. They will test 150 components by using a device,

which applies pressure to a component and then they will measure the deformation

of the component. However, the device allows to test only one component at a time.

Moreover, the experimenters suspect that the device may heat up or even become

deformed in time, thus introducing a nuisance time trend to the experiment.

To sum up, the researchers need to choose which components to test in which times

to provide the best result (estimate whether the new components have better quality

than the original one) under the presence of a nuisance time trend.

We may describe the aforementioned experiment (and many other experiments of

similar form) by a model, which is a special case of the model (1.1). We consider

an experiment of N trials with v treatments (v ≥ 2) in n time moments under the

presence of a time trend. For each trial i ∈ {1, . . . , N} we will select in which time

u(i) ∈ {1, . . . , n} will this trial be performed, and we select which treatment t(i) ∈

{1, . . . , v} to apply. The effect of the treatment t(i) is denoted τt(i) ∈ R. We are

interested only in the treatment effects, the effect of the time trend is considered to be

a nuisance. The model may be expressed as

Yi = τt(i) + θ1h1(u(i)) + . . .+ θdhd(u(i)) + εi, i = 1, . . . , N, (2.1)

where θ1, . . . , θd are the parameters of the trend and h1, . . . , hd are given regressors of

the time trend hk : R→ R, and ε1, . . . , εN are independent and identically distributed

random errors with zero mean and the same variance σ2 ∈ (0,∞).

The set of all permissible experimental conditions is X = {1, . . . , v} × {1, . . . , n}

and an (approximate) design ξ is a function ξ : {1, . . . , v} × {1, . . . , n} → [0, 1], where

ξ(t, u), t ∈ {1, . . . , v}, u ∈ {1, . . . , n}, is the relative proportion (weight) of the trials
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to be performed in time u under the treatment t. Similarly an exact design ξ is any

function ξ : X→ {0, 1, 2, . . .}.

The model (2.1) can be written as a special case of the general regression model

(1.1), where f(t, u) =
(
eTt , h1(u), . . . , hd(u)

)T and β =
(
τ1, . . . , τv, θ1, . . . , θd

)T . We

remind the reader that the general model has the form

Yi = fT (xi)β + εi, i = 1, . . . , N.

We suppose that only the contrasts τ2− τ1, . . . , τv− τ1 are of interest, i.e. we choose

the first treatment to be the control treatment and we aim to estimate the effects of

the other treatments compared to the effect of the control. We can express this system

of contrasts as QT τ , where Q is a v × (v − 1) matrix

Q = (−1v−1, Iv−1)
T

and τ = (τ1, . . . , τv)
T . In the terms of Section 1, we aim to estimate the system ATβ,

where A =
(
QT , 0v−1×d

)T is a (v + d)× (v − 1) matrix.

From now on, we will examine the model (2.1).

When considering the experiment of improving the aluminium foam, we have N =

150 trials in n = 150 time moments and consider v = 3 treatments: the original com-

ponent and the two newly developed components. The original component represents

the control treatment and therefore it is labelled as the first treatment. The set of

the permissible experimental conditions is X = {1, 2, 3} × {1, . . . , 150}. The effects

of the treatments τ1, τ2 and τ3 are the measures of deformations of the three types

of components. We are interested in estimating the improvement in the resistance to

pressure for the new components, i.e. we wish to estimate τ2 − τ1 and τ3 − τ1.

We may express the model (2.1) as

Yi = τt(i) + fTθ (u(i))θ + εi, i = 1, . . . , N, (2.2)

where fθ(u) :=
(
h1(u), . . . , hd(u)

)T and θ =
(
θ1, . . . , θd

)T . Then we can calculate the

moment matrix for this model.

Lemma 2.1. Let ξ be a design for the model (2.2), then its moment matrix is

M(ξ) =

M11(ξ) M12(ξ)

MT
12(ξ) M22(ξ)

 ,
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where

M11(ξ) = diag

(
n∑
u=1

ξ(1, u), . . . ,
n∑
u=1

ξ(v, u)

)
,

M12(ξ) =

(
n∑
u=1

ξ(1, u)fθ(u), . . . ,
n∑
u=1

ξ(v, u)fθ(u)

)T

,

M22(ξ) =
n∑
u=1

(
v∑
t=1

ξ(t, u)

)
fθ(u)fTθ (u).

Proof. The moment matrix is defined as M(ξ) =
∑

x∈X ξ(x)f(x)fT (x), which is in our

case M(ξ) =
∑

t,u ξ(t, u)
(
eTt , f

T
θ (u)

)T (
eTt , f

T
θ (u)

)
. We can express the moment matrix

in block form

M(ξ) =

M11(ξ) M12(ξ)

MT
12(ξ) M22(ξ)

 ,
where M11(ξ) is a v × v matrix and M22(ξ) is a d× d matrix. Now all we need to do,

is to calculate the blocks:

M11(ξ) =
∑
t,u

ξ(t, u)ete
T
t = diag

(
n∑
u=1

ξ(1, u), . . . ,
n∑
u=1

ξ(v, u)

)
,

M12(ξ) =
∑
t,u

ξ(t, u)etf
T
θ (u) =


∑n

u=1 ξ(1, u)fTθ (u)
...∑n

u=1 ξ(v, u)fTθ (u)


and

M22(ξ) =
∑
t,u

ξ(t, u)fθ(u)fTθ (u) =
n∑
u=1

(
v∑
t=1

ξ(t, u)

)
fθ(u)fTθ (u).

2.3 Properties of the Experimental Designs in the Model

We will provide some results that will allow us to better comprehend and work with

the model (2.1). First, we will characterize the estimability of ATβ, using the notion of

the Schur complement Mτ = M11 −M12M
−
22M21 for the moment matrix M . For more

information on the Schur complement see the Appendix.

Lemma 2.2 (from [10]). Let A =
(
QT , 0s×d

)T . Then ATβ is estimable in the model

(2.1) if and only if S(Mτ ) ⊆ S(Q).
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Proof. We need to prove that the condition S(A) ⊆ S(M) from Lemma 1.12 is equiv-

alent to S(Mτ ) ⊆ S(Q).

First we will prove that (I − M22M
−
22)M21 = 0. We denote X := I − M22M

−
22,

then XM22 = M22 −M22M
−
22M22 = M22 −M22 = 0. From Lemma A.4 we know that

S(M21) ⊆ S(M22) and thus there exists a matrix Y , such thatM21 = M22Y . Therefore

(I −M22M
−
22)M21 = (I −M22M

−
22)M22Y = 0Y = 0.

Let us consider the generalized inverse G of M from Lemma A.13.

G =

 M−
τ −M−

τ M12M
−
22

−M−
22M21M

−
τ M−

22 +M−
22M21M

−
τ M12M

−
22

 .
The condition S(A) ⊆ S(M) can be written as: there exists a matrix X such that

A = MX. From Lemma A.9 we know that the matrix X exists if and only if A

satisfies A = MGA. Given A =
(
QT , 0

)T we may express A = MGA asQ
0

 =

M11 M12

M21 M22

 M−
τ −M−

τ M12M
−
22

−M−
22M21M

−
τ M−

22 +M−
22M21M

−
τ M12M

−
22

Q
0


which is equivalent to Q

0

 =

M11 M12

M21 M22

 M−
τ Q

−M−
22M21M

−
τ Q

 .
Thus we have two matrix equations. The first one is

Q = (M11 −M12M
−
22M21)M

−
τ Q,

i.e. Q = MτM
−
τ Q and that is equivalent to: there exist a matrix Y such that Q = MτY .

The second equation is

0 = M21M
−
τ Q−M22M

−
22M21M

−
τ Q. (2.3)

The right-hand side of the equation (2.3) is equal to (I −M22M
−
22)M21M

−
τ Q, which

is equal to 0 as we proved in the first part of this proof. Hence the second equation

always holds.

The condition S(A) ⊆ S(M) is equivalent to Q = MτY for some Y , therefore it is

equivalent to S(Mτ ) ⊆ S(Q), which was to be demonstrated.
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Once we know which designs are feasible, we may provide their information matrices.

Lemma 2.3 (from [10]). Let A =
(
QT , 0v−1×d

)T and let ATβ be estimable under a

given design ξ. Then the information matrix NA(ξ) can be expressed as NA(ξ) =

(QTM−
τ (ξ)Q)−1, where Mτ (ξ) = M11(ξ) −M12(ξ)M

−
22(ξ)M21(ξ) is the Schur comple-

ment for M(ξ).

Proof. From Lemma 1.12 we know that when ATβ is estimable, the information matrix

can be written as NA(ξ) = (ATM(ξ)−A)−1. That is in our case

NA(ξ) =
((
QT , 0v−1×d

)
M(ξ)−

(
QT , 0v−1×d

)T)−1
= (QT (M−)11Q)−1,

where (M−)11 is the top left block of M− expressed in block form. Now we need to

prove, that there exists a generalized inverseM−, such that the Schur complementM−
τ

is its top left block. But we know that from Lemma A.13.

Using Lemma 2.3 we may better understand the emphasis on the orthogonality of

the designs in many publications. In model (2.1), a design ξ is orthogonal to the time

trend if it satisfies
∑n

u=1 ξ(t, u)hk(u) = 0 for any t ∈ {1, . . . , v} and k ∈ {1, . . . , d}. In

other words, the design needs to satisfy
∑n

u=1 ξ(t, u)fθ(u) = 0d for any t. Note that

the results on orthogonality require for the time regressors hk to be polynomials.

Following the reasoning of [20], we will examine the orthogonal designs in the

most basic situation, where we aim to estimate all treatment effects on their own,

i.e. A =
(
Q, 0

)T and Q = Iv. Let ξ be a feasible design. Then it must sat-

isfy S(Q) ⊆ S(Mτ (ξ)). Since Q = Iv is a nonsingular matrix, the Schur com-

plement Mτ needs to be nonsingular too. Therefore the information matrix NA is

NA = (IvM
−
τ Iv)

−1 = Mτ , because M−
τ = M−1

τ for a nonsingular Mτ . Now the form

of the Schur complement gives us an interesting statistical interpretation. The Schur

complement Mτ = M11 − M12M
−
22M21 consists of two terms: M11 and M12M

−
22M21.

The term M11 expresses the information matrix for estimating the treatment effects

in the absence of the nuisance time trend (see Proposition 1.9). The second term,

M12M
−
22M21, represents the loss of information due to the presence of the nuisance

time trend.
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Recall that the block M12 has the following form

M12 =


∑n

u=1 ξ(1, u)fTθ (u)
...∑n

u=1 ξ(v, u)fTθ (u)

 .
Therefore, once we obtain an orthogonal design, we get M12 = 0. This has some useful

consequences.

Firstly, such design eliminates the loss of information caused by the nuisance time

trend. Thus we get more information on the parameters of interest. Consequently, it

can be expected that the designs orthogonal to the time trend will perform well with

respect to optimality criteria.

Secondly, calculating the information matrix for such designs is much easier. Instead

of having to calculate a generalized inverse of M22 and then working with a general

matrix Mτ , using an orthogonal design, we get Mτ = M11 − 0 = M11. The second

advantage was especially useful historically, when the computer capabilities did not

allow us to work with matrices as easily as now.

The drawback of using the orthogonal designs is clear from the above analysis: they

eliminate the loss of information by removing M12M
−
22M21, but they might not provide

enough information represented by the term M11. Naturally, the researchers studied

the overall amount of information given by the orthogonal designs and they showed that

these designs enjoy useful statistical properties. Namely, in the paper [6] the authors

showed that in the experiment they considered, the orthogonal designs are A-optimal.

Later, we will use the regular reparametrization of the nuisance factors, to make the

computations easier.

Lemma 2.4 (from [10]). Let A =
(
QT , 0

)T , where Q is a v × s matrix of full column

rank s. Then a regular reparametrization of nuisance parameters by changing fθ to

f̃θ = Rfθ in model (2.1) does not change the information matrix NA(ξ) for any design

ξ.

Proof. After the reparametrization, the blocks of the moment matrix given by Lemma
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2.1, for a fixed design ξ change to M̃11 = M11,

M̃12 =

(
n∑
i=1

ξ(1, i)Rfθ(i), . . . ,
n∑
u=1

ξ(v, i)Rfθ(i)

)T

=

(
n∑
i=1

ξ(1, i)fθ(i), . . . ,
n∑
u=1

ξ(v, i)fθ(i)

)T

RT

=

(
R

(
n∑
i=1

ξ(1, i)fθ(i), . . . ,
n∑
u=1

ξ(v, i)fθ(i)

))T

= M12R
T

and

M̃22 =
n∑
i=1

(
v∑
t=1

ξ(t, i)

)
Rfθ(i)f

T
θ (i)RT = RM22R

T .

From Proposition 1.7 we know that the information matrix may be expressed as

NA(M) = LMLT − LMP T (PMP T )−PMLT

for P = I−AL where L is any left inverse of A. Given A =
(
QT , 0

)T , we set L =
(
K, 0

)
,

where K is some left inverse of Q. Since Q has full column rank, there indeed exists a

left inverse K. We show that L is a left inverse matrix of A by checking LA = I:

LA =
(
K, 0

)(
QT , 0

)T
= KQ = I.

For our choice of L we get

P = I − AL =

I −QK 0

0 I

 .
Then

LMLT =
[
K 0

]M11 M12

MT
12 M22

KT

0

 = KM11K
T ,

LMP T =
[
K 0

]M11 M12

MT
12 M22

I −KTQT 0

0 I


=
[
KM11 KM12

]I −KTQT 0

0 I


=
[
KM11(I −KTQT ), KM12

]

33



2 TREND-RESISTANT OPTIMAL DESIGNS

and

PMP T =

I −QK 0

0 I

M11 M12

MT
12 M22

I −KTQT 0

0 I


=

(I −QK)M11(I −KTQT ) (I −QK)M12

MT
12(I −KTQT ) M22

 .
Similarly, LM̃LT = KM̃11K

T = KM11K
T = LMLT ,

LM̃P T =
[
KM̃11(I −KTQT ), KM̃12

]
=
[
KM11(I −KTQT ), KM12R

T

]
=
[
KM11(I −KTQT ), KM12

]I 0

0 RT


= LMP T

I 0

0 RT


and

PM̃P T =

(I −QK)M̃11(I −KTQT ) (I −QK)M̃12

M̃T
12(I −KTQT ) M̃22


=

(I −QK)M11(I −KTQT ) (I −QK)M12R
T

RMT
12(I −KTQT ) RM22R

T


=

I 0

0 R

(I −QK)M11(I −KTQT ) (I −QK)M12

MT
12(I −KTQT ) M22

I 0

0 RT


=

I 0

0 R

PMP T

I 0

0 RT

 .
Using Lemma A.11 we get

(PM̃P T )− =

I 0

0 (RT )−1

(PMP T
)− I 0

0 R−1

 .
Hence
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NA(M̃) = LMLT − LMP T

I 0

0 RT

I 0

0 (RT )−1

(PMP T
)− I 0

0 R−1

I 0

0 R

PMLT

= LMLT − LMP T (PMP T )−PMLT = NA(M),

which we needed to prove.

2.4 Elementary Designs and γ-designs

In this subsection we will introduce two notions, elementary designs and γ-designs,

which we will use extensively later.

Definition 2.5. Let γ ∈ (0, 1). Then γ-design is any design ξγ that satisfies

ξγ(1, u) = γ
v∑
t=1

ξγ(t, u) for any u ∈ {1, . . . , n} (2.4)

ξγ(2, u) = . . . = ξγ(v, u) for any u ∈ {1, . . . , n} (2.5)

Definition 2.6. Elementary design is any design that for some j ∈ {1, . . . , n} satisfies

ξ(t, j) > 0 for all t ∈ {1, . . . , v}, (2.6)

ξ(t, u) = 0 for all u 6= j and for all t ∈ {1, . . . , v}. (2.7)

Hence γ-designs are designs, which in each time u assign to the first (control) treat-

ment proportion γ of the total weight assigned to the time u. The rest of the weight

is distributed uniformly among the rest of the treatments. Therefore γ represents the

total proportion of the trials assigned to the control treatment. Elementary designs

are such designs that assign all weight to only one time and furthermore they assign

non-zero weight to each treatment.

We note that an elementary γ-design is a design, which is both an elementary design

and a γ-design. For a fixed γ we may number the elementary γ-designs as follows: let

j ∈ {1, . . . , n}, then the j-th elementary γ-design is the one that assigns all its weight

to time j. Since γ is fixed, this notation uniquely determines the elementary γ-design.
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Proposition 2.7. Let γ ∈ (0, 1). Then the j-th elementary γ-design ξ attains the

values
ξ(1, j) = γ, ξ(2, j) = . . . = ξ(v, j) =

1− γ
v − 1

and

ξ(t, u) = 0 for u 6= j and t ∈ {1, . . . , v}.
(2.8)

Proof. The last part is a natural consequence of ξ being an elementary design.

The j-th elementary γ-design must satisfy ξ(2, j) = . . . = ξ(v, j) =: wj and

ξ(1, j) = γ
∑

t ξ(t, j). Since it is a design with non-zero values only in time j, it

satisfies
∑

t ξ(t, j) = 1 and therefore

ξ(1, j) = γ and wj =
1− γ
v − 1

.

Any γ-design can be constructed as a convex combination of elementary γ-designs.

That is why we call them elementary.

Proposition 2.8. Let γ ∈ (0, 1) and let ξγ be a γ-design. Then there exists a set of

elementary γ-designs such that ξγ can be expressed as their convex combination.

Proof. The total weight of ξγ in time u is the weight of u-th elementary γ-design in

the convex combination.

In the following Lemma we provide the form of the Schur complement Mτ (ξ) for

any elementary design ξ.

Lemma 2.9. Let fθ(j) 6= 0d and let ξ be an elementary design that assigns all its

weight to a time j, then the Schur complement for its moment matrix is

Mτ (ξ) = diag
(
ξ(1, j), . . . , ξ(v, j)

)
−
(
ξ(1, j), . . . , ξ(v, j)

)T(
ξ(1, j), . . . , ξ(v, j)

)
.

Proof. First, we will calculate the moment matrix of the elementary design using their

form given in Lemma 2.1.

M11 = diag (ξ(1, j), . . . , ξ(v, j)) ,

M12 =


ξ(1, j)fTθ (j)

...

ξ(v, j)fTθ (j)
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and M22 =
∑

t ξ(t, j)fθ(j)f
T
θ (j) = fθ(j)f

T
θ (j), because

∑
t ξ(t, j) = 1. We note that

rank(M22) = 1 and since ξ(t, j) > 0 for all t, the matrix M11 is nonsingular.

There exists k ∈ {1, . . . , d} such that fθ(j)k 6= 0 (we use fθ(j)k to denote the k-th

element of fθ(j)). We may use Lemma A.10 to get a generalized inverse of a matrix with

rank 1 with a nonzero element on position (1, 1); and Lemma A.11 to permute the rows

and columns of the matrix, to obtain a generalized inverse of a matrix with rank 1 with

a nonzero element on the position (k, k). Therefore the matrix diag
(
0Tk−1, fθ(j)

−1
k , 0Td−k

)
is a generalized inverse of M22. Here the notation is correct only if 1 < k < d, but in

the cases of k = 1 and k = d, the situation is analogous.

Now we may compute

M12M
−
22M

T
12 =


ξ(1, j)fTθ (j)

...

ξ(v, j)fTθ (j)

 diag
(
0Tk−1, fθ(j)

−1
k , 0Td−k

) [
ξ(1, j)fθ(j) . . . ξ(v, j)fθ(j)

]

=


0 . . . 0 ξ(1, j)/fθ(j)k 0 . . . 0
...

...
...

...
...

0 . . . 0 ξ(v, j)/fθ(j)k 0 . . . 0

[ξ(1, j)fθ(j) . . . ξ(v, j)fθ(j)
]

=


ξ(1, j)2 ξ(1, j)ξ(2, j) . . . ξ(1, j)ξ(v, j)

... . . . ...

ξ(v, j)ξ(1, j) ξ(v, j)ξ(2, j) . . . ξ(v, j)2

 .
From this we directly get the Schur complement

Mτ = M11−M12M
−
22M

T
12 =


ξ(1, j)− ξ(1, j)2 −ξ(1, j)ξ(2, j) . . . −ξ(1, j)ξ(v, j)

... . . . ...

−ξ(v, j)ξ(1, j) −ξ(v, j)ξ(2, j) . . . ξ(v, j)− ξ(v, j)2

 .

Note that the Schur complements Mτ for elementary designs do not depend on

the time regressors h1, . . . , hd and thus (if elementary designs are feasible for A) the

information matrices for elementary designs do not depend on time regressors.

We will prove that all the elementary designs are feasible for our A.

Theorem 2.10. Let A =
(
QT , 0v−1×d

)T , where Q = (−1v−1, Iv−1)
T and let ξ be an

elementary design. Then the system ATβ is estimable under ξ.
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Proof. We consider two alternatives:

a) fθ(j) = 0d. Then

M =

M11 0

0 0

 .
Since ξ is an elementary design, M11 is nonsingular. Then there exists a matrix X11

such that M11X11 = Q. Let X be X =
(
XT

11, 0
)T

. Then MX = A, which means that

S(A) ⊆ S(M).

b) fθ(j) 6= 0d. We will prove that S(Mτ ) ⊆ S(Q). From Lemma 2.9 we know the

form of the Schur complement Mτ

Mτ =


ξ(1, j)− ξ(1, j)2 −ξ(1, j)ξ(2, j) . . . −ξ(1, j)ξ(v, j)

... . . . ...

−ξ(v, j)ξ(1, j) −ξ(v, j)ξ(2, j) . . . ξ(v, j)− ξ(v, j)2

 .
The condition S(Mτ ) ⊆ S(Q) is equivalent to: there exists a matrix X such that

Q = MτX. Using Lemma A.9 we get that we need to prove MτGQ = Q, where G is a

generalized inverse of Mτ . In order to do so, we first need a generalized inverse G. We

propose that G := diag
(
1/ξ(1, j), . . . , 1/ξ(v, j)

)
is a generalized inverse matrix of Mτ .

It is easy to verify that by computing MτGMτ .

Let us denote w :=
(
ξ(1, j), . . . , ξ(v, j)

)T . Then Mτ = diag(w) − wwT and G =(
diag(w)

)−1, which we will denote as G = diag−1(w). Thus

MτGMτ =
(

diag(w)− wwT
)

diag−1(w)
(

diag(w)− wwT
)

= diag(w) diag−1(w) diag(w)− diag(w) diag−1(w)wwT−

− wwT diag−1(w) diag(w) + wwT diag−1(w)wwT

= diag(w)− 2wwT + wwT diag−1(w)wwT .

Furthermore, wwT diag−1(w)wwT = w1Tvww
T = wwT , because 1Tvw =

∑v
t=1 ξ(t, j) = 1

for an elementary design. Therefore MτGMτ = diag(w)− 2wwT + wwT = Mτ .
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Now we may calculate

MτGQ =
(

diag(w)− wwT
)

diag−1(w)

−1Tv−1

Iv−1


=
(
Iv − w1Tv

)−1Tv−1

Iv−1


=

−1Tv−1

Iv−1

− w0Tv−1 = Q.

From Theorem 2.10 it follows that all γ-designs are feasible.

Corollary 2.11. Let γ ∈ (0, 1) and let A =
(
QT , 0v−1×d

)T , where Q = (−1v−1, Iv−1)
T .

Then any γ-design is feasible for the system ATβ.

Proof. Let ξγ be a γ-design. From Proposition 2.8 we know that any γ-design can be

constructed as a convex combination of elementary γ-designs. Since the relationship

between ξ and M(ξ) is linear, the moment matrix of any γ-designs can be expressed

as a convex combinations of some moment matrices of elementary γ-designs.

Formally, we may express this as: there exist α1, . . . , αn ∈ [0, 1] such that

ξγ =
∑
i

αiξ
(e)
i ,

∑
i

αi = 1

where ξ(e)i is the i-th elementary γ-design. Since M(ξ) is linear in ξ, it follows that

M(ξγ) =
∑
i

αiM(ξ
(e)
i ).

Moreover, from Theorem 2.10 we get that all elementary γ-designs are feasible for

ATβ. We know from Proposition 1.14 that the set of all feasible matrices is convex.

Therefore, M(ξγ) lies in the feasibility cone, i.e. ξγ is feasible.

Since we know that the elementary γ-designs are feasible, we may compute their

information matrices NA(ξ) = (QTMτ (ξ)
−Q)−1.

Lemma 2.12. Let γ ∈ (0, 1) and let ξ be an elementary γ-design. Then its information

matrix is NA(ξ) = 1−γ
v−1Iv−1 −

(
1−γ
v−1

)2
Jv−1 with eigenvalues

λ1 =
1− γ
v − 1

with multiplicity v − 1 (2.9)
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and

λ2 =
1− γ
v − 1

− (1− γ)2

v − 1
=
γ(1− γ)

v − 1
with multiplicity 1. (2.10)

Proof. From Proposition 2.7 we know that

ξ(1, j) = γ and ξ(2, j) = . . . = ξ(v, j) =
1− γ
v − 1

.

We will consider two cases:

a) fθ(j) 6= 0. Then from Lemma 2.9 it follows that

Mτ = diag
(
ξ(1, j), . . . , ξ(v, j)

)
−
(
ξ(1, j), . . . , ξ(v, j)

)T(
ξ(1, j), . . . , ξ(v, j)

)
.

We know the values of ξ(t, j) and therefore

Mτ =

 γ − γ2 −γ(1−γ)
v−1 1Tv−1

−γ(1−γ)
v−1 1v−1

1−γ
v−1Iv−1 −

(
1−γ
v−1

)2
Jv−1

 .
In order to calculate the information matrix NA we need to find a generalized inverse

M−
τ . Let us denote the bottom right block of Mτ as D := 1−γ

v−1Iv−1 −
(
1−γ
v−1

)2
Jv−1. The

generalized inverse can be calculated directly by using Lemma A.10(ii), provided that

Mτ has rank v − 1 and D has full rank. That is quite straightforward to prove. When

we take the sum of all elements of any column of Mτ , we get

γ − γ2 − (v − 1)
γ(1− γ)

v − 1
= 0

or

−γ(1− γ)

v − 1
+

1− γ
v − 1

− (v − 1)

(
1− γ
v − 1

)2

=
(1− γ)2

v − 1
− (1− γ)2

v − 1
= 0,

which is zero in either case. Thus the sum of all rows ofMτ is a row full of zeros, which

means that the rows are linearly dependent, i.e. Mτ is singular. Furthermore using

Lemma A.5, D has eigenvalues λ1 = 1−γ
v−1 with multiplicity v−1 and λ2 = 1−γ

v−1−
(1−γ)2
v−1 =

γ(1−γ)
v−1 with multiplicity 1. Neither of these eigenvalues is zero, i.e. D has rank v − 1,

and therefore Mτ has rank at least v − 1. Since we proved that Mτ is nonsingular, it

has rank v − 1. That means, we have satisfied the assumptions of Lemma A.10 and

the matrix  0 0Tv−1

0v−1 D−1
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is a generalized inverse of Mτ . Now we can calculate QTM−
τ Q:

QTM−
τ Q =

(
− 1v−1, Iv−1

) 0 0Tv−1

0v−1 D−1

(− 1v−1, Iv−1

)T

=
[
0v−1 D−1

]−1Tv−1

Iv−1


= D−1.

Then

NA = (QTM−
τ Q)−1 = D =

1− γ
v − 1

Iv−1 −
(

1− γ
v − 1

)2

Jv−1.

b) fθ(j) = 0. Then the blocks of the moment matrix of the j-th elementary γ-

design are: M12 = 0, M22 = 0 and M11 = diag
(
γ, 1−γ

v−1 , . . . ,
1−γ
v−1

)
. Thus Mτ = M11

and M−
τ = (M11)

−1 = diag
(
γ−1, v−1

1−γ , . . . ,
v−1
1−γ

)
. Then

QTM−
τ Q =

(
− 1v−1, Iv−1

)
diag

(
γ−1,

v − 1

1− γ
, . . . ,

v − 1

1− γ

)(
− 1v−1, Iv−1

)T
=
(
− 1v−1, Iv−1

)(
− 1

γ
1v−1,

v − 1

1− γ
Iv−1

)T
=
v − 1

1− γ
Iv−1 +

1

γ
Jv−1.

By using the special form of QTM−
τ Q we can easily calculate NA = (QTM−

τ Q)−1. Let

us assume that NA has form aIv−1 + bJv−1, then it must satisfy(
aIv−1 + bJv−1

)(v − 1

1− γ
Iv−1 +

1

γ
Jv−1

)
= Iv−1,

resulting in

a
v − 1

1− γ
= 1 and a

1

γ
+ b

v − 1

1− γ
+ b(v − 1)

1

γ
= 0.

Thus

a =
1− γ
v − 1

, b = −
(

1− γ
v − 1

)2

, hence NA =
1− γ
v − 1

Iv−1 −
(

1− γ
v − 1

)2

Jv−1.

Earlier in this proof, we defined D and noted that using Lemma A.5, D has eigen-

values

λ1 =
1− γ
v − 1

with multiplicity v − 1

and

λ2 =
γ(1− γ)

v − 1
with multiplicity 1.

Furthermore, we proved that NA = D. Therefore NA has the aforementioned eigenval-

ues.

41



2 TREND-RESISTANT OPTIMAL DESIGNS

2.5 φp-optimal designs

The aim of this section is to provide φp-optimal designs for the experiment defined by

model (2.2). We will show that for a suitably chosen γ, the γ-designs are φp-optimal.

Before formulating the main results, we examine a particular equation.

Lemma 2.13. For any p ∈ (−∞, 0] and v > 2 there exists a unique solution γ of the

equation

(v − 2)γ1−p + 2γ − 1 = 0 (2.11)

in the interval (0, 1/2). Furthermore the solution satisfies limp→−∞ γ(p) = 1/2.

For v = 2, the unique solution satisfies γ(p) = 1/2 for any p ∈ (−∞, 0].

Proof. Let g(γ) be the function of the left-hand side of the equation (2.11), i.e. g(γ) =

(v − 2)γ1−p + 2γ − 1. The solution of the equation is then the root of g(γ). Let us

calculate the derivative

g′(γ) = (1− p)(v − 2)γ−p + 2,

which is positive on γ ∈ (0, 1/2). Thus there exists at most one solution in (0, 1/2).

The values of g(γ) on the boundaries of the interval in consideration are g(0) = −1 < 0

and g(1/2) = (v − 2)2p−1 + 1− 1 = (v − 2)2p−1 > 0. Hence there exists a solution on

(0, 1/2).

Together this means that there always exists a unique solution of (2.11) on the

interval (0, 1/2).

Let {pn}∞n=1 be any sequence such that pn → −∞. Then limn→∞(v − 2)γ1−pn = 0

for any γ ∈ (0, 1/2). Thus the sequence of solutions {γ(pn)}∞n=1 implied by (2.11)

converges to 1/2, because it must satisfy 0 + 2γ − 1 = 0.

When v = 2, we get 2γ − 1 = 0 and hence the solution is γ(p) = 1/2 for any p.

We examine further the function given by the left-hand side of the equation (2.11).

If the function has ’nice’ properties, it will be easy to numerically find its root.

Lemma 2.14. The function g(γ) := (v − 2)γ1−p + 2γ − 1 is an increasing convex

function for γ ∈ (0, 1/2).

Proof. In the proof of Lemma 2.13 we already calculated the first derivative of g(γ)

g′(γ) = (1− p)(v − 2)γ−p + 2.
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Hence, g′(γ) > 0 for γ ∈ (0, 1/2) and therefore g(γ) is increasing in (0, 1/2). We can

easily calculate the second derivative

g′′(γ) = −p(1− p)(v − 2)γ−p for p < 0

and g′′(γ) = 0 for p = 0. Thus g′′(γ) ≤ 0 for γ ∈ (0, 1/2) and we get that g(γ) is

convex in (0, 1/2).

The main theorem we will use to prove the optimality of the chosen designs, is the

Equivalence Theorem, as stated in [20].

Theorem 2.15 (from [20]). (i) For p ∈ (−∞, 0] a design ξ∗ is φp-optimal if and only

if there exists a generalized inverse G of M(ξ∗) that satisfies the normality inequality

fT (x)GANp+1
A (ξ∗)ATGTf(x) ≤ traceNp

A(ξ∗) for all x ∈ X . (2.12)

Furthermore in case of optimality, in (2.12) we get equality if for x we insert any

support point xi of any design that is φp-optimal.

(ii) A design ξ∗ is φ−∞-optimal if and only if there exists a generalized inverse G of

the moment matrix M(ξ∗) and a nonnegative definite matrix E with trace(E) = 1 such

that they satisfy the normality inequality

fT (x)GANA(ξ∗)ENT
A (ξ∗)GTf(x) ≤ λmin(NA(ξ∗)) for all x ∈ X . (2.13)

Furthermore, in case of optimality, in (2.13) we get equality if for x we insert any

support point of any φ−∞-optimal design.

Proof. See [20].

Now we may formulate the main theorem which summarizes the key results of this

work.

Theorem 2.16. Let A =
(
QT , 0v−1×d

)T , where Q =
(
− 1v−1, Iv−1

)T . Let p ∈ [−∞, 0].

If p > −∞, let γ be the unique solution of the equation (2.11)

(v − 2)γ1−p + 2γ − 1 = 0

in the interval (0, 1/2]. If p = −∞, let γ = 1/2. Then any γ-design is φp-optimal for

the estimation of the system ATβ in model (2.1).
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Proof. Let p ∈ [−∞, 0]. For p < 0 we set γ as the solution of (2.11). We note that

from Lemma 2.13 it follows that γ is well defined. For p = 0 we set γ = 1/2.

In this proof we will follow these steps:

1. We will reparametrize the nuisance time trend, so that the computations will be

easier.

2. For p ∈ (−∞, 0] we will prove that one of the elementary γ-designs is φp-optimal.

3. We will prove that from the step 2. it follows that all γ-designs are φp-optimal.

4. We will repeat the steps 2. and 3. for p = −∞.

5. Finally, we will prove optimality of γ-designs in a ’degenerate’ situation with no

time trend present.

1. Let there be j such that fθ(j) 6= 0. From now on, this j will be fixed. Then there

exists a non-singular matrix R such that Rfθ(j) = e1, where e1 is a d × 1 elementary

unit vector.

Let us consider a new model created by a regular reparametrization of nuisance

parameters of the original model fθ(u) = Rfθ(u) for u ∈ {1, . . . , n}. As we proved in

Lemma 2.4, the information matrix does not change under a regular reparametrization

of the nuisance parameters fθ 7→ Rfθ. Thus when we consider the new nuisance vectors,

all the designs have the same information matrices as previously. Since the criterial

values φp depend only on the information matrices, the new model has for any p the

same set of φp-optimal designs as the original one. This allows us to use the new model

where f̃θ(j) = e1 without any loss of information.

2. Let us denote the j-th elementary γ-design as ξ∗. Now we will prove that ξ∗ is

φp-optimal, using Theorem 2.15(i). That is, we will prove that ξ∗ satisfies the normality

inequality (2.12)

f(x)TGANp+1
A (ξ∗)ATGTf(x) ≤ traceNp

A(ξ∗) for all x ∈ X ,

where G is some generalized inverse of M(ξ∗).

For that we will need to know the moment matrix M for ξ∗. So let us calculate the

blocks of M .
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M11 = diag (ξ(1, j), . . . , ξ(v, j)) ,

M12 =


ξ(1, j) 0 . . . 0

...
...

...

ξ(v, j) 0 . . . 0

 ,
M22 =

(
1, 0 . . . , 0)T

(
1, 0, . . . , 0

)
= diag(1, 0, . . . , 0)

Using Gaussian elimination we easily get from M to a matrixM11 M12

0d×v 0d×d


by subtracting the first v rows from the (v + 1)-st row. Note that we used the fact

that
∑

t ξ(t, j) = 1. This means that M has rank v. M11 is a nonsingular matrix,

because none of the values ξ(t, j) is equal to zero. Thus, we can use Lemma A.10(i)

and therefore the matrix

G = diag
( 1

ξ(1, j)
, . . . ,

1

ξ(v, j)
, 0, . . . , 0

)
is a generalized inverse of M .

From Proposition 2.7 it follows that ξ(1, j) = γ and ξ(r, j) = 1−γ
v−1 for r > 1. Hence

the matrix G may be expressed as

G = diag
(1

γ
,
v − 1

1− γ
. . . ,

v − 1

1− γ
, 0, . . . , 0

)
. (2.14)

Using Lemma 2.12 we get that ξ has the information matrix NA = 1−γ
v−1Iv−1 −(

1−γ
v−1

)2
Jv−1 with eigenvalues λ1 = 1−γ

v−1 with multiplicity v − 2 and λ2 = γ(1−γ)
v−1 with

multiplicity 1.

A set of eigenvectors corresponding to λ1 is

q1 =

−1

e1

 , q2 =

−1

e2

 , . . . , qv−2 =

 −1

ev−2

 .

An eigenvector corresponding to λ2 is qv−1 = 1v−1.

We can easily check that by calculating:

NA − λ1I = −
(

1− γ
v − 1

)2

Jv−1, NA − λ2I =
(1− γ)2

v − 1
Iv−1 −

(
1− γ
v − 1

)2

Jv−1
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and

(NA − λ1I)qk = −
(

1− γ
v − 1

)2

Jv−1

−1

ek

 = 0v−1.

Furthermore, the vectors q1, . . . , qv−2 are obviously linearly independent. Thus they

indeed are a set of eigenvectors corresponding to λ1. To prove that qv−1 = 1v−1 is an

eigenvector corresponding to λ2, we calculate

(NA − λ2I)qv−1 =

(
(1− γ)2

v − 1
Iv−1 −

(
1− γ
v − 1

)2

Jv−1

)
1v−1

=
(1− γ)2

v − 1
1v−1 − (v − 1)

(
1− γ
v − 1

)2

1v−1 = 0v−1.

Then NA may be expressed as NA = SΛS−1, where S and Λ are (v − 1) × (v − 1)

matrices, Λ = diag
(
λ11

T
v−2, λ2

)
and S =

(
q1, . . . , qv−1

)
. We can express S as

S =

−1Tv−2 1

Iv−2 1v−2

 .
Now we may easily calculate S−1

S−1 =

− 1
v−11v−2 Iv−2 − 1

v−1Jv−2

1
v−1

1
v−11Tv−2

 .
We verify that SS−1 = I

SS−1 =

 v−2
v−1 + 1

v−1 −1Tv−2 + v−2
v−11Tv−2 + 1

v−11Tv−2

− 1
v−11v−2 + 1

v−11v−2 Iv−2 − 1
v−1Jv−2 + 1

v−1Jv−2

 = Iv−1

From NA = SΛS−1 it follows that for any r ∈ R : N r
A = SΛrS−1, where Λr =

diag
(
λr11

T
v−2, λ

r
2

)
. Hence Np+1

A may be calculated as

Np+1
A =

−1Tv−2 1

Iv−2 1v−2

λp+1
1 Iv−2 0

0 λp+1
2

− 1
v−11v−2 Iv−2 − 1

v−1Jv−2

1
v−1

1
v−11Tv−2


=

−λp+1
1 1Tv−2 λp+1

2

λp+1
1 Iv−2 λp+1

2 1v−2

− 1
v−11v−2 Iv−2 − 1

v−1Jv−2

1
v−1

1
v−11Tv−2


=

 (v−2)λp+1
1 +λp+1

2

v−1
−λp+1

1 +λp+1
2

v−1 1Tv−2
−λp+1

1 +λp+1
2

v−1 1v−2 λp+1
1 Iv−2 +

−λp+1
1 +λp+1

2

v−1 Jv−2

 ,
which can be written as

NA = λp+1
1 Iv−1 +

−λp+1
1 + λp+1

2

v − 1
Jv−1 (2.15)
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We know that A =
(
QT , 0v−1×d+1

)T , where Q =
(
− 1v−1, Iv−1

)T and we can finally

calculate the matrix product on the left-hand side of (2.12).

ANp+1
A AT =

QNp+1
A QT 0

0 0

 , (2.16)

QNp+1
A QT =

1Tv−1N
p+1
A 1v−1 −1Tv−1N

p+1
A

−Np+1
A 1v−1 Np+1

A

 . (2.17)

Moreover

Np+1
A 1v−1 =

(
λp+1
1 + (v − 1)

−λp+1
1 + λp+1

2

v − 1

)
1v−1 = λp+1

2 1v−1 =
(γ(1− γ)

v − 1

)p+1

1v−1

(2.18)

and

1Tv−1N
p+1
A 1v−1 = (v − 1)λp+1

2 = (v − 1)
(γ(1− γ)

v − 1

)p+1

. (2.19)

Let us express G in the block form

G =

G11 G12

G21 G22

 ,
where G11 is a v × v matrix and G22 is a d × d matrix. Then, because G is diagonal

(see (2.14)), the following holds

GANp+1
A ATGT =

G11 0

0 G22

QNp+1
A QT 0

0 0

G11 0

0 G22


=

G11QN
p+1
A QTG11 0

0 0


and, because f(x) = f(t, u) =

(
eTt , h1(u), . . . , hd(u)

)T ,
fT (x)GANp+1

A ATGTf(x) = eTt G11QN
p+1
A QTG11et

for t ∈ {1, . . . , v} and for any u ∈ {1, . . . , n}. We denote B := G11QN
p+1
A QTG11.

Then the left-hand side of (2.12) is equal to the t−th diagonal element of B, i.e. Bt,t.

Because of the diagonal form of G11, the elements Bt,t can be expressed as

Bt,t = (G11(t, t))
2 (QNp+1

A QT )(t, t), (2.20)
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where the argument (t, t) denotes the t-th diagonal element.

We remind the reader that from (2.14), (2.17), (2.18), (2.19) and (2.15), we get

G11 = diag
(

1
γ
, v−1

1−γ . . . ,
v−1
1−γ

)
,

QNp+1
A QT =

1Tv−1N
p+1
A 1v−1 −1Tv−1N

p+1
A

−Np+1
A 1v−1 Np+1

A


and where 1Tv−1N

p+1
A 1v−1 = (v − 1)λp+1

2 = (v − 1)
(
γ(1−γ)
v−1

)p+1

and

Np+1
A (t, t) = λp+1

1 +
−λp+1

1 + λp+1
2

v − 1
=

(v − 2)λp+1
1 + λp+1

2

v − 1

=
1

v − 1

(
(v − 2)

(1− γ
v − 1

)p+1

+
(γ(1− γ)

v − 1

)p+1)
Therefore the elements Bt,t (2.20) attain two distinct values: one for t = 1 and

another one for t > 1. They are

B1,1 =
1

γ2
(v − 1)

(γ(1− γ)

v − 1

)p+1

= γp−1(1− γ)
(1− γ
v − 1

)p
and

Bt,t =

(
v − 1

1− γ

)2
1

v − 1

(
(v − 2)

(1− γ
v − 1

)p+1

+
(γ(1− γ)

v − 1

)p+1
)

=
v − 1

(1− γ)2

(
1− γ
v − 1

)p+1 (
v − 2 + γp+1

)
=

1

1− γ

(
1− γ
v − 1

)p (
v − 2 + γp+1

)
for t > 1.

We need to prove that Bt,t ≤ trace(Np
A), knowing that

trace(Np
A) = (v − 2)λp1 + λp2 = (v − 2)

(1− γ
v − 1

)p
+

(
γ(1− γ)

v − 1

)p
=
(1− γ
v − 1

)p(
v − 2 + γp

)
.

We will show that when γ satisfies (2.11), the inequality we want to prove is equivalent

to a simple inequality which always holds. First, let us consider v > 2. Hence, when γ

satisfies (2.11)

(v − 2)γ1−p + 2γ − 1 = 0
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it also satisfies

γp−1 =
v − 2

1− 2γ
, (2.21)

γp =
(
v − 2

) γ

1− 2γ
(2.22)

and

γp+1 =
(
v − 2

) γ2

1− 2γ
(2.23)

Moreover, we note that since γ ∈ (0, 1/2), the expressions (1− γ) and (1− 2γ) are

both positive. Therefore we may multiply or divide an equation by these expressions,

without changing its solutions.

a) When t = 1, the inequality to prove is

γp−1(1− γ)
(1− γ
v − 1

)p
≤
(1− γ
v − 1

)p(
v − 2 + γp

)
, (2.24)

which is equivalent to

γp−1(1− γ) ≤ v − 2 + γp.

Using (2.21) and (2.22) we get

v − 2

1− 2γ
(1− γ) ≤ v − 2 + (v − 2)

γ

1− 2γ
,

which is equivalent to

1− γ ≤ 1− 2γ + γ

and that is equivalent to 1 ≤ 1, which always holds.

b) When t > 1, the inequality to prove is

1

1− γ

(
1− γ
v − 1

)p (
v − 2 + γp+1

)
≤
(

1− γ
v − 1

)p (
v − 2 + γp

)
, (2.25)

which is equivalent to

1

1− γ

(
v − 2 + γp+1

)
≤ v − 2 + γp.

Using (2.22) and (2.23) we get

1

1− γ

(
v − 2 +

(
v − 2

) γ2

1− 2γ

)
≤ v − 2 +

(
v − 2

) γ

1− 2γ
.,

which is equivalent to
1− 2γ + γ2

1− γ
≤ 1− 2γ + γ
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and that is equivalent to (1− γ)2 ≤ (1− γ)2, which always holds.

Now we need to return to the case, where v = 2. Thus γ = 1/2 and the inequalities

to prove are (2.24) and (2.25), i.e.

(1/2)p−1(1/2)
( 1

2(2− 1)

)p
≤
( 1

2(2− 1)

)p(
0 + (1/2)p

)
for t = 1 and

(2− 1)22

(
1

2(2− 1)

)p+1 (
0 + (1/2)p+1

)
≤
( 1

2(2− 1)

)p(
0 + (1/2)p

)
for t > 1. Both of these inequalities apparently hold, because they are equivalent to

(1/2)2p ≤ (1/2)2p.

This proves that the j-th elementary γ-design is φp-optimal. We may observe, that

in the normality inequality we always attained equality. That is in accordance with

the second part of Theorem 2.15(i), because we claim that every γ-design is φp-optimal

(for the fixed γ). For every design point x ∈ X there is a γ-design which has x as its

support point, therefore for every x an equality shall be attained.

3. We note that the value of the criterion φp for a design ξ depends only on its

information matrix NA(ξ). Since the j-th elementary γ-design is φp-optimal and all

the elementary γ-designs have the same information matrix (we denote it N∗A), all the

elementary γ-designs are φp-optimal.

Furthermore, from Proposition 2.8 we know that any γ-design ξγ can be expressed

as a convex combination of the elementary γ-designs. From Remark 1.5 and Lemma

1.10 we know that the function ξ 7→ NA(ξ) is a matrix concave function and thus any

γ-design ξ satisfies NA(ξ) � N∗A.

We recall that the real-valued function φp from the space of s× s nonnegative definite

matrices N 7→ φp(N) is Loewner isotonic, because it is an information function (see

Lemma 1.21). Thus φp(NA(ξγ)) ≥ φp(N
∗
A) for any γ-design ξγ. But φp attains its

maximum in N∗A and therefore φp(NA(ξγ)) = φp(N
∗
A) and any γ-design is φp-optimal.

We can make an additional observation. From Lemma 1.21 we also know that for p >

−∞, the function φp is strictly concave on the set of positive definite matrices. Since

we are considering only designs feasible for ATβ (see Corollary 2.11), the information
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matrices NA = (ATM−A)−1 are non-singular.

Thus on the subspace of matrices we are considering, the optimality criterion is strictly

concave. Hence there is only a single information matrix which attains the maximum

value of φp. We proved that N∗A is the matrix that attains the optimal value and that

all the γ-designs are φp-optimal. Thus all the γ-designs have the same information

matrix N∗A
4. What remains to prove, is the E-optimality. In this case, the steps are the same

up to the point when we started using the equivalence theorem. When considering

E-optimality,we will make use of the part (ii) of Theorem 2.15, i.e. we will provide a

generalized inverse G ofM and a nonnegative definite matrix E with trace trace(E) = 1

such that they satisfy the normality inequality

fT (x)GANA(ξ∗)ENT
A (ξ∗)GTf(x) ≤ λmin(NA(ξ∗)) for all x ∈ X .

We remind the reader that ξ∗ is the j-th elementary γ-design. ξ∗ has the information

matrix N∗A = 1−γ
v−1Iv−1 −

(
1−γ
v−1

)2
Jv−1 with its smallest eigenvalue λ2 = γ(1−γ)

v−1 and we

may use the same generalized inverse of M(ξ∗), G = diag
(

1
γ
, v−1

1−γ . . . ,
v−1
1−γ , 0, . . . , 0

)
.

Finally, we set

E =
1

v − 1
Jv−1, (2.26)

which is obviously nonnegative definite and has trace equal to 1. We recall that A =(
QT , 0v−1×d+1

)T , whereQ =
(
−1v−1, Iv−1

)T and f(x) = f(t, i) =
(
eTt , h1(i), . . . , hd(i)

)T .
We will prove that these matrices satisfy the normality inequality for E-optimality.

Using γ = 1/2, we get NA = 1
2(v−1)Iv−1 −

1
4(v−1)2Jv−1, λ2 = 1

4(v−1) and

G = diag
(

2, 2(v − 1) . . . , 2(v − 1), 0, . . . , 0
)
represented as

G =

G11 0

0 0

 .
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Let us start by calculating fT (x)GANA

fT (x)GANA =
[
eTt G11 0

]QNA

0

 = eTt G11QNA =

= eTt G11

−1Tv−1

Iv−1

( 1

2(v − 1)
Iv−1 −

1

4(v − 1)2
Jv−1

)

= eTt G11

− 1
2(v−1)1

T
v−1 + (v − 1) 1

4(v−1)2 1Tv−1
1

2(v−1)Iv−1 −
1

4(v−1)2Jv−1


= gtte

T
t

− 1
2(v−1)1

T
v−1 + 1

4(v−1)1
T
v−1

1
2(v−1)Iv−1 −

1
4(v−1)2Jv−1

 ,
where we denoted gtt the t-th diagonal element of G11. Let us also denote dTt the t-th

row of the matrix − 1
2(v−1)1

T
v−1 + 1

4(v−1)1
T
v−1

1
2(v−1)Iv−1 −

1
4(v−1)2Jv−1

 .
Then fT (x)GANA = gttd

T
t . Then, using (2.26), the left-hand side of (2.13) is equal to

gttd
T
t Edgtt = g2tt

1

v − 1
dTJv−1d.

Again, we have two distinct cases - for t = 1 and for t > 1.

a) For t = 1 the left-hand side of (2.13) is equal to

LHS =
4

v − 1

(
− 1

2(v − 1)
+

1

4(v − 1)

)
1Tv−1Jv−1

(
− 1

2(v − 1)
+

1

4(v − 1)

)
1v−1

=
1

4(v − 1)3
1Tv−1Jv−11v−1 =

1

4(v − 1)3
(v − 1)2

=
1

4(v − 1)

and that is equal to the right-hand side of (2.13), i.e. λ2. Thus the inequality holds.

b) For t > 1 the left-hand side of (2.13) is equal to

LHS = 4
(
v − 1

)( 1

2(v − 1)
et−1 −

1

4(v − 1)2
1v−1

)T
Jv−1

( 1

2(v − 1)
et−1 −

1

4(v − 1)2
1v−1

)
=

1

(v − 1)

(
eTt−1 −

1

2(v − 1)
1Tv−1

)
Jv−1

(
et−1 −

1

2(v − 1)
1v−1

)
=

1

(v − 1)

(
eTt−1Jv−1et−1 −

2

2(v − 1)
eTt−1Jv−11v−1 +

1

4(v − 1)2
1Tv−1Jv−11v−1

)
=

1

(v − 1)

(
1− 1 +

1

4

)
=

1

4(v − 1)
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and that is again equal to the right-hand side of (2.13).

Therefore the inequality always holds and moreover it is always attained as an

equality. Like the situation with p ∈ (0,∞), that is in accordance with the second part

of the equivalence theorem.

We can follow the same reasoning as in the case where p ∈ (0,∞) (see step 4),

because the function φ−∞ is Loewner isotonic too. Thus for γ = 1/2, all the γ-designs

are φ−∞-optimal.

6. Finally, we will consider the situation where hk(u) = 0 for each k and for each u,

i.e. there is no time trend present. Let us consider any elementary γ-design ξ. Even

in this case we may use Lemma 2.12 and we get that NA = 1−γ
v−1Iv−1 −

(
1−γ
v−1

)2
Jv−1.

The blocks of the moment matrix of ξ are: M12 = 0, M22 = 0 and M11 =

diag
(
γ, 1−γ

v−1 , . . . ,
1−γ
v−1

)
. Then

G = diag
( 1

ξ(1, j)
, . . . ,

1

ξ(v, j)
, 0, . . . , 0

)
= diag

(1

γ
,
v − 1

1− γ
. . . ,

v − 1

1− γ
, 0, . . . , 0

)
is a generalized inverse of M . In the case of φ−∞-optimality we may again set E =

1
v−1Jv−1. Thus all matrices in normality equations of Equivalence Theorem are the

same as previously and following the same reasoning we get that the γ-designs are

φp-optimal.

We may observe some interesting properties of the results given by Theorem 2.16.

The theorem gives us an optimal proportion γ of the trials assigned to the first

treatment relative to the total number of trials. To better understand the dependence

between p and the optimal γ we provide a chart of this dependence for some chosen v

(see Figure 1 below).

The designs we provide are invariant to the nuisance time trend present: their

optimality does not depend on the degree d of the nuisance time trend nor on the

regressors h1, . . . , hd. For example, the optimal designs that we give are the same for

the linear time trend, the quadratic time trend or even an exponential trend.

The optimality of the designs we provided depends neither on the weights these

designs assign to the particular times 1, . . . , n. Thus a γ-design is φp-optimal as long
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Figure 1: Dependence between p and the optimal γ given by (2.11). Note that, in accordance

with Lemma 2.13, with p decreasing from 0 to −∞ the optimal γ increases from 1/v to 1/2.

As we decrease p, we increase the weight of the first treatment and proportionally decrease

the weight of the rest of the treatments. In D-optimal designs we assign the same weight 1/v

to all treatments and in E-optimal designs we assign 1/2 of all trials to the first treatment

and the rest of the trials is distributed uniformly among the rest of the treatments.

as it satisfies the equation (2.11) (respectively γ = 1/2 for p = −∞), even if it assigns

all trials to only one time u. Hence, Theorem 2.16 provides an infinite number of

φp-optimal designs for any p ∈ [−∞, 0], as we may choose from an infinite number of

possible weights for the time moments 1, . . . , n.

Directly from Theorem 2.16 we can calculate the optimal values of φp criterion. For

certain p we will provide an explicit formula for the optimal γ and for the optimal value

of the φp criterion.

We note that from Lemma 2.14 we know that the function g(γ) of the left-hand side

of the equation (2.11) is increasing and convex. Therefore the function is very simple

from the numerical point of view and it is easy to numerically calculate its root in

(0, 1/2) for any p ∈ (−∞, 0].

Corollary 2.17. For p ∈ (−∞, 0) the criterial value φp(ξ∗) of any φp-optimal design

ξ∗ is given by the equation

φp(ξ
∗) =

1− γp
v − 1

(
1−

1− γpp
v − 1

)1/p

, (2.27)

where γp is the solution of (2.11).

Furthermore for v > 2, the values of γp and the optimal criterial values for D-, A-
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and E- optimality are

γ0 = 1/v, φ0(ξ
∗) = v−v/(v−1) (D-optimality),

γ−1 =

√
v − 1− 1

v − 2
, φ−1(ξ

∗) =
(√v − 1− 1

v − 2

)2 (A-optimality),

γ−∞ = 1/2, φ−∞(ξ∗) =
1

4(v − 1)
(E-optimality).

Proof. From Theorem 2.16 we know that elementary γ-designs are φp-optimal as long

as γp satisfies (2.11)

(v − 2)γ1−pp + 2γp − 1 = 0

for p ∈ (−∞, 0] or γp = 1/2 for p = −∞. Furthermore, from Lemma 2.12 we get that

they have information matrix NA = 1−γp
v−1 Iv−1−

(
1−γp
v−1

)2
Jv−1 with eigenvalues λ1 = 1−γp

v−1

with multiplicity v − 2 and λ2 = γp(1−γp)
v−1 with multiplicity 1. Thus for p ∈ (−∞, 0),

the value of φp criterion for such designs is

φp(NA) =

[
1

v − 1

∑
j

λpj

]1/p
=

[
1

v − 1

(
(v − 2)

(1− γp
v − 1

)p
+
(γp(1− γp)

v − 1

)p)]1/p
=

=

[
1

v − 1

(1− γp
v − 1

)p(
v − 2 + γpp

)]1/p
=

1− γp
v − 1

(
1−

1− γpp
v − 1

)1/p

.

For p = 0 we have (v − 2)γ0 + 2γ0 − 1 = 0, thus γ0 = 1/v and we get

φ0(NA) =

(∏
j

λj

) 1
v−1

=

((1− γ0
v − 1

)v−2γ0(1− γ0)
v − 1

) 1
v−1

=

=

((1− γ0
v − 1

)v−1
γ0

) 1
v−1

=
1− 1

v

v − 1

(1

v

) 1
v−1 =

1

v

(1

v

) 1
v−1

= v−
v

v−1 .

For p = −∞ we have γ−∞ = 1/2 and we get

φ−∞(NA) = λ2 =
γ−∞(1− γ−∞)

v − 1
=

1

4(v − 1)
.

Finally, we will calculate the optimal value of A-optimality criterion, i.e. we set p =

−1. We note that this is not a special case, we only need to set p = −1 in the general

formula for p ∈ (−∞, 0). First, we will calculate γ−1. We have (v−2)γ2−1+2γ−1−1 = 0.

For v > 2, this quadratic equality has two roots

γ1,2 =
−1±

√
v − 1

v − 2
,
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where one of them is obviously negative and thus not permissible. Therefore we get

γ−1 =

√
v − 1− 1

v − 2
.

Then we substitute in the general formula:

φ−1(NA) =
1− γ−1
v − 1

(
1−

1− γ−1−1
v − 1

)−1
=

1− γ−1
v − 2 + γ−1−1

=

=
1−

√
v−1−1
v−2

v − 2 + v−2√
v−1−1

=
v−1−

√
v−1

v−2

(v − 2)
√
v−1√
v−1−1

=

=
(v − 1−

√
v − 1)(

√
v − 1− 1)

(v − 2)2
√
v − 1

=

(√
v − 1− 1

v − 2

)2

.

Since for a given p the elementary γ-designs are φp-optimal, every φp-optimal design

needs to have the previously calculated value of φp criterion.

To demonstrate the behavior of the function of the optimal criterial values, we

display the optimal values of φp criterion for some chosen values of v.
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Figure 2: The optimal values φp(ξ∗) for v = 3, 4 and 5 treatments.
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3 Applications

3.1 Direct Approach

In the previous chapter we provided a class of φp-optimal approximate designs for

model (2.1). However, in order to design a real experiment, the experimenters need

an exact design. This limits the application of approximate designs. But although

we cannot use them directly to design an experiment, they can still be very useful in

practice. In this chapter we will investigate how it is possible to apply the results we

provided.

If we were lucky enough, the weights we calculated for different experimental condi-

tions could be directly transformed to the number of trials under each condition; bear

in mind that we assume that we have a given total number of trials. Then we can

use a direct approach and simply transform the approximate design to the exact one

(by multiplying its every value with the same number). Then, since the approximate

designs generalize the exact designs, once the approximate design is optimal, so is the

exact one. This can be better represented using an example.

Example 3.1. Consider an experiment described by model (2.1): we have N = 20

trials with the choice of v = 3 treatments, where the first treatment is the control. We

aim to perform these trials in a time sequence of length n = 5, where in each time we

perform 4 trials. The experimenters wish to use an E-optimal design.

By using Theorem 2.16 we get an E-optimal approximate design ξa which assigns

in each time weight 1/2 to the first treatment and weights 1/4 to each of the other two

treatments. This design can be transformed to an exact design ξe, where in each time

we perform 2 treatments with the first treatment and 1 treatment with the second and

third treatment, respectively. Since ξa is an E-optimal approximate design, ξe is an

E-optimal exact design.

This example not only shows how optimal exact designs can be directly created

from optimal exact designs, but also how rare these situations are. If we had v = 4

treatments or a longer time sequence with up to 3 trials in each time, we could not

get an E-optimal exact design using the direct approach. Especially in a standard

situation, where in each time we perform exactly one trial, the direct approach cannot
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be used. Thus we need to use this approximation in other ways.

3.2 Efficiency

Efficiency of a design is a measure of how good a design is with respect to a given

criterion. It compares its criterial value with the criterial value of an optimal design.

The optimal design can be an exact or an approximate one and with either of them we

would get a different value of efficiency. In this work we will consider efficiency with

respect to an optimal approximate design.

Definition 3.2. Let ξ be a design and ξ∗ be φ-optimal approximate design of a given

experiment. Then

(i) if ξ is an approximate design, then the φ-efficiency of ξ is

effφ(ξ) =
φ(ξ)

φ(ξ∗)
.

(ii) if ξ is an exact design, then the φ-efficiency of ξ is

effφ(ξ) =
φ(ξa)

φ(ξ∗)
,

where ξa is an approximate design given by ξ, i.e. ξa(x) = ξ(x)/
∑

z∈X ξ(z) for all

x ∈ X. That is, efficiency of ξ is equal to the efficiency of the approximate design ξa

given by ξ.

Often finding an optimal exact design is very time consuming. In such cases it is

usually sufficient to find an exact design, which has efficiency high enough, e.g. 95%.

This is where we may use approximate designs. Knowing the optimal value of φp-

criterion, we can immediately calculate φp-efficiency of any given design. Therefore

we can use some level of efficiency as a stopping rule for calculating nearly φp-optimal

exact designs and thus reducing computation time of algorithms.

We can use optimal approximate designs not only to find efficient exact designs,

but also to evaluate the quality of a given exact design. This is especially useful for

accepting some candidate exact design. Suppose that a heuristic algorithm has pro-

vided us with an exact design which should attain high value of A-optimality criterion.
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It is sensible to check whether the candidate design is good enough. Using Corollary

2.17, we may calculate its A-efficiency with respect to the optimal approximate design.

Then if the A-efficiency is high enough, we may accept the candidate design.

Moreover, our results may be used for comparing multiple candidates for the ’best’

exact design. Often, we choose a criterion of optimality φ and execute an algorithm

to find a (near-)optimal design with respect to the criterion φ. The drawback of such

method is that we do not know how good is the design with respect to other optimality

criteria. This drawback is emphasized by the fact that none of the optimality criteria

is superior to the others, they all represent in some way the amount of information we

get from the experiment.

From Theorem 2.16 we know φp-optimal approximate designs for any p and thus we

can for any p calculate φp-efficiency, i.e. the quality of a design with respect to the φp

criterion, without the need to find optimal exact designs for multiple p. This allows

us to choose the candidate that performs the best with respect to other φp criteria; or

even reject the optimal candidate and accept a near-optimal candidate which performs

significantly better with respect to other φp criteria.

Suppose that we were given three competing designs of an experiment given by

model (2.1) with a cubic time trend and N = n = 18 trials. They might be outputs of

a heuristic algorithm performed in order to find D-, A- and E-optimal exact designs.

Using Corollary 2.17 we calculated their efficiencies, see Table 1.

ξ effD(ξ) effA(ξ) effE(ξ)

231131232232131132 0.9992 0.9703 0.8875

123311221133112231 0.9613 0.9955 0.9870

213111223123111312 0.8951 0.9508 0.9876

Table 1: Table of D-, A- and E-efficiencies for a model with a cubic time trend and N = n =

18. The sequence of numbers in the first column determines the time sequence of treatments

(e.g. 23... means that in time 1 the treatment 2 is chosen, in time 2 the treatment 3 is chosen,

etc.).

Employing our results, we can guarantee a very high efficiency of the second design

with respect to the common optimality criteria (D-, A- and E-optimality). Therefore
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it allows us to accept this design without knowing the D-, A- and E-optimal exact

designs.

We note that these three designs are in fact D-, A- and E-optimal exact designs,

respectively. They were computed using the branch-and-bound algorithm provided by

[10]. Notice that the D-optimal design chooses each of the three treatments 6 times;

the A-optimal design chooses the first treatment 8 times and the other treatments

each 5 times; and the E-optimal design chooses the first treatment 9 times, the second

treatment 5 times and the third treatment 4 times. This means that these exact

designs (nearly) satisfy the conditions given by Theorem 2.16 and explicitly formulated

in Corollary 2.17.

The D-optimal approximate design should allocate the same weight to each treatment

(i.e. 6 trials). The A-optimal approximate design should give the first treatment the

weight γ−1 = (
√
v − 1−1)/(v−2) ∼= 0.41. That represents approximately 18·γ−1 ∼= 7.5

trials under the first treatment. The other two treatments should have the same weight.

The E-optimal design should assign the first treatment to half of the trials and the

other two treatments should be chosen in a quarter of the trials each. Notice that the

optimal exact designs approximately satisfy these conditions.

This observation suggests that we may use the weights given by Theorem 2.16 to

obtain efficient exact designs. We will examine this hypothesis in the following subsec-

tion.

3.3 Randomly Generated Designs

We showed previously that direct approach can be used only rarely. But that is not

the only method of obtaining exact designs from our results on approximate designs.

We may get an exact design with high value of φp-efficiency by generating exact

designs that nearly satisfy the conditions of Theorem 2.16. That is, we generate exact

designs, that assign (nearly) the same number of trials to treatments 2, . . . , v and the

relative number of trials performed under control treatment is given by (2.11). We will

show on some examples that these designs tend to have high φp-efficiency, especially

for a higher number of trials.
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Let us demonstrate this method on an example. Consider an experiment described

by model (2.1), where we have v = 3 treatments and in each time u we choose exactly

one treatment. The effect of time trend is assumed to be cubic. Thus we may model

this effect by a series of polynomials p0, p1, p2, p3, where pi is of degree i. We will choose

discrete orthogonal polynomials, i.e.
∑n

u=1 pi(u)pj(u) = 0 for i 6= j. Furthermore we

set pi(1) = 1 for each i. These conditions fully determine the polynomials p0, . . . , p3.

For N = n = 20 and N = n = 150 trials we generate exact designs using Theorem

2.16 in order to get high D-efficiency. The weights given by Theorem 2.16 are 1/3

for each treatment. That translates to 20/3 ≈ 6.7 for N = 20 and 150/3 = 50 trials

for N = 150 performed under each treatment. In the first case we generated designs

that assign 7 trials to two treatments and 6 trials to the remaining treatment (chosen

at random). In the second case we generated designs that assign 50 trials to each

treatment.

We plotted the histograms of 104 randomly generated designs for each case to de-

termine the quality of these designs.
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Figure 3: Histograms of efficiencies of 104 randomly generated designs using Theorem 2.16,

for N = 20 and N = 150 trials. The designs tend to have high efficiency, especially in the

case of N = 150 trials.

We observe that in both cases the designs tend to have high efficiency. Moreover the

efficiencies of the randomly generated designs in the experiment with N = 150 trials

are considerably higher than in the former one. This suggests that with the increasing

number of trials the designs generated by our method tend to have increasing efficiency.
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To support this hypothesis we used our method to generate designs for experiments

with number of trials ranging from N = 10 to N = 150, aiming for high E-efficiency.

For each N we used our method to generate 1 000 designs and we calculated their mean

E-efficiencies. We used the same model as previously, i.e. we considered cubic time

trend modelled by the discrete orthogonal polynomials. The results of these numerical

experiments are summarized in Figure 4.
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Figure 4: Mean E-efficiency of randomly generated designs using Theorem 2.16 (blue) with

calculated confidence belt (red). For each N = 10, . . . , 150 we generated 1000 designs. We

note that the mean efficiency of generated designs is increasing with the increasing number

of trials N .

In order to better represent the obtained data, we calculated confidence intervals

for the mean efficiencies. We considered the confidence intervals for normal data, i.e.

for each N the interval was calculated as(
ēff − uS√

M
, ēff +

uS√
M

)
,

where ēff is the mean efficiency, S2 is the sample variance, M = 1000 is the num-

ber of generated designs and u is the 1 − 0.025/141 quantile of the standard normal

distribution. We estimated 141 efficiencies in total, therefore the value 1 − 0.025/141

was chosen, so that we would get a 95% simultaneous confidence intervals (using the

Bonferroni correction).

We clearly see that the mean efficiency is increasing with the number of trials.

Moreover, in experiments with number of trials higher than 50 we obtained mean

efficiency higher than 90%.

62



3 APPLICATIONS

To summarize, we observed that the designs generated using our method tend to

have high efficiency, especially in experiments with a higher number of trials.

This is a useful observation, because in experiments with a higher number of trials

the algorithms providing exact optimal designs become time consuming. Using our

results we may, in a time-frame of seconds or minutes, generate random designs until

we get one with a reasonably high efficiency instead of running algorithms for a con-

siderably higher amount of time.

Another approach would be using heuristics, but they too provide only nearly-optimal

results. Moreover they may provide designs not efficient enough or they may be time

consuming too.

We used these results to demonstrate the proposed method. We aimed to get efficient

designs with respect to the A-optimality criterion (p = −1) in experiments with v = 5

treatments and exponential time trend. We set h1 ≡ 1, h2(u) = u − 1 and h3(u) =

1 + eu/N . For multiple choices of N we generated exact designs, until we got one with

at least 95% A-efficiency. For each N we calculated the time it took to generate a

design efficient enough.

To compare our method we generated random designs from the entire set X without

using our knowledge on γ-designs, i.e. we generated the designs entirely at random.

Table 2 summarizes the results of these two approaches.

We see that our method is considerably faster and as a by-product it provides higher

efficiencies for higher number of trials.
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using Theorem 2.16 without Theorem 2.16

N time effA time effA

15 1.5720 0.9512 51.8680 0.9577

20 0.0590 0.9690 0.3720 0.9637

25 0.0090 0.9735 1.9080 0.9582

30 0.0040 0.9564 1.6010 0.9584

40 0.0090 0.9730 1.1120 0.9516

50 0.0080 0.9621 0.0540 0.9640

60 0.0030 0.9823 0.1180 0.9536

70 0.0070 0.9722 0.0420 0.9549

80 0.0040 0.9940 0.3030 0.9606

90 0.0040 0.9771 0.1030 0.9532

100 0.0060 0.9935 0.1700 0.9711

125 0.0050 0.9619 0.0860 0.9545

150 0.0050 0.9895 0.3500 0.9520

175 0.0070 0.9873 0.2900 0.9772

200 0.0070 0.9933 0.8680 0.9523

Table 2: Generating 95% A-efficient designs: comparison of our method and the direct

method. The first column contains the number of trials of the experiment we considered in

the particular run. The next two columns consist of results from generating random designs

using Theorem 2.16 and the last two columns contain results of generating random designs

without using Theorem 2.16. The column time represents the total time (in seconds) it took

to find a design at least 95% efficient and the column effA consists of the actual efficiencies

of the found designs.

If we aimed for 99% efficiency, the quality of our method would become even more

visible as can be seen in Table 3. It is analogous to Table 2, except we demanded to

get a design with efficiency 99%.

Here it takes our method to provide a results less than a second and without using

Theorem 2.16 it takes even hundreds of seconds.
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using Theorem 2.16 without Theorem 2.16

N time effA time effA

50 0.2440 0.9917 667.8070 0.9935

75 0.0040 0.9925 5.8240 0.9914

100 0.0270 0.9908 207.4280 0.9906

125 0.0190 0.9969 8.3070 0.9914

150 0.0170 0.9906 140.4930 0.9917

Table 3: Generating 99% A-efficient designs: comparison of our method and the direct

method. The notation is the same as in the Table 2.
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4 Model With a General Nuisance Effect

4.1 Model

In Chapter 2 we examined a model with a nuisance time trend. We will show that our

results hold in a more general model with a multidimensional nuisance effect, i.e. we

will show that γ-designs that satisfy conditions analogous to the ones of Theorem 2.16

are φp-optimal for such model.

First, we will provide an example, where a multidimensional nuisance trend is present

to show a motivation for the generalized model. Consider an agricultural experiment,

where the researchers wish to improve the yields of maize by genetic modifications.

From an original crop they created two varieties and they need to determine, whether

it is reasonable to introduce these new varieties to the market. Thus they want to

determine how much is their yield improved in comparison to the original crop.

The researchers wish to perform the experiment in a large field, which they split to

smaller parts by a 8× 4 grid. In each of the 32 smaller fields they will sow one of the

three varieties: the original, or one of the genetically modified ones. However, the field

is not perfectly flat and the experimenters suspect that the skewness of the field might

have some unknown impact on the yields. Therefore they consider the effect of the

skewness of the field to be a two-dimensional nuisance effect.

To formalize, the model is analogous to the one in Chapter 2, only instead of a time

trend u ∈ R we have some r-dimensional trend u ∈ Rr, r ≥ 1, i.e. we have

Yi = τt(i)+θ1h1(u1(i), . . . , ur(i))+. . .+θdhd(u1(i), . . . , ur(i))+εi, i = 1, . . . , N. (4.1)

All the assumptions and notations are the same as in model (2.1), except that in

addition to the treatment t(i) we also choose other r experimental conditions u(i) :=(
u1(i), . . . , ur(i)

)T , where the vectors u are assumed to belong to a finite set of all

possible nuisance conditions U ⊆ Rr. Then h1, . . . , hd are any regressors of the trend

hk : U → R.

Therefore, the set of all permissible experimental conditions is X = {1, . . . , v} × U

and an (approximate) design ξ is a function ξ : {1, . . . , v} × U → [0, 1], such that
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∑
t,u ξ(t, u) = 1. The value ξ(t, u), t ∈ {1, . . . , v}, u ∈ U, is the relative weight of trials

to be performed under the conditions u and with the treatment t. For brevity, we will

sometimes call u ∈ U nuisance points, or simply points, instead of nuisance conditions.

In our example with genetically modified corn we would have v = 3 treatments t

as the possible varieties of maize with their yields τt. The 32 experimental conditions

u = (u1, u2)
T would be the 32 smaller fields, labelled by their grid row and column

number, thus we would have U = {1, . . . , 8} × {1, . . . , 4}. The nuisance trend would

be the skewness of the large field, approximated by some low-order polynomials.

The model (4.1) can be written as a special case of the general regression model

(1.1), where f(t, u) =
(
eTt , h1(u), . . . , hd(u)

)T and β =
(
τ1, . . . , τv, θ1, . . . , θd

)T . We

remind the reader that the general model has the form

Yi = fT (xi)β + εi, i = 1, . . . , N.

We note that the notation f(t, u) with r-dimensional u is not a correct one, it should

be f(t, uT ) instead. But the latter notation does not provide a better understanding

of the situation, it is only needlessly complicated. Therefore we will use f(t, u) even in

case of multidimensional u.

Again, we assume the first treatment to be a control and we are interested in com-

parison of other treatments to the control, i.e. we aim to estimate the contrasts

τ2 − τ1, . . . , τv − τ1. Thus we have the same system of contrasts QT τ , where Q is

a v × (v − 1) matrix

Q = (−1v−1, Iv−1)
T

and τ = (τ1, . . . , τv)
T . In the terms of Chapter 1, we aim to estimate the system ATβ,

where A =
(
QT , 0v−1×d

)T is a (v + d)× (v − 1) matrix.

We may express the model (4.1) as

Yi = τt(i) + fθ(u(i)) + εi, i = 1, . . . , N, (4.2)

where t ∈ {1, . . . , v}, u ∈ U ⊆ Rr and fθ(u) :=
(
h1(u), . . . , hd(u)

)T .
4.2 Results

The reader may observe that the model (4.2) is in its notation very similar to the

original model (2.2). We will use this fact to provide all the auxiliary results without
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proofs, because the proofs are analogous to the ones in Chapter 2: they did not depend

on the fact that u ∈ R; for a general u ∈ U we get the same results.

Lemma 4.1. Let ξ be a design for the model (4.2), then its moment matrix is

M(ξ) =

M11(ξ) M12(ξ)

MT
12(ξ) M22(ξ)

 ,
where

M11(ξ) = diag

(∑
u∈U

ξ(1, u), . . . ,
∑
u∈U

ξ(v, u)

)
,

M12(ξ) =

(∑
u∈U

ξ(1, u)fθ(u), . . . ,
∑
u∈U

ξ(v, u)fθ(u)

)T

,

M22(ξ) =
∑
u∈U

(
v∑
t=1

ξ(t, u)

)
fθ(u)fTθ (u).

We provide a similar characterization of the feasible designs, as in Chapter 2.

Lemma 4.2. Let A =
(
QT , 0s×d

)T . Then ATβ is estimable in the model (4.2) if and

only if S(Mτ ) ⊆ S(Q).

Lemma 4.3. Let A =
(
QT , 0v−1×d

)T and let ATβ be estimable under a given design

ξ. Then the information matrix NA(ξ) can be expressed as NA(ξ) = (QTM−
τ (ξ)Q)−1,

where Mτ (ξ) = M11(ξ)−M12(ξ)M
−
22(ξ)M21(ξ) is the Schur complement for M(ξ).

Lemma 4.4. Let A =
(
QT , 0

)T , where Q is a v × s matrix of full column rank s.

Then a regular reparametrization of nuisance parameters by changing fθ to f̃θ = Rfθ

in model (4.2) does not change the information matrix NA(ξ) for any design ξ.

Again, we define elementary designs and γ-designs.

Definition 4.5. For any γ ∈ (0, 1) let γ-design be any design ξγ that satisfies

ξγ(1, u) = γ
∑
t

ξγ(t, u) for any u ∈ U (4.3)

ξγ(2, u) = . . . = ξγ(v, u) for any u ∈ U (4.4)

Definition 4.6. Elementary design is any design that for some j ∈ U satisfies

ξ(t, j) > 0 for all t ∈ {1, . . . , v}, (4.5)

ξ(t, u) = 0 for all u 6= j and for all t ∈ {1, . . . , v}. (4.6)
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Hence γ-designs are designs, which under each nuisance condition u assign to the

first (control) treatment proportion γ of the total weight assigned to the particular

nuisance condition u. The rest of the weight is distributed uniformly among the rest of

the treatments. Elementary designs are such designs that assign all weight to only one

nuisance condition and furthermore they assign non-zero weight to each treatment.

We note that an elementary γ-design is a design, which is both an elementary design

and a γ-design.

Similar characterizations of elementary and γ-designs hold for the model (4.2) as for

the model (2.1).

Proposition 4.7. Let γ ∈ (0, 1). Then the elementary γ-design ξ that assigns all trials

to a nuisance condition j attains the values

ξ(1, j) = γ, ξ(2, j) = . . . = ξ(v, j) =
1− γ
v − 1

and

ξ(t, u) = 0 for u 6= j and t ∈ {1, . . . , v}.
(4.7)

Proposition 4.8. Let γ ∈ (0, 1) and let ξγ be a γ-design. Then there exists a set of

elementary γ-designs such that ξγ can be expressed as their convex combination.

Lemma 4.9. Let fθ(j) 6= 0d and let ξ be an elementary design that assigns all its

weight to a nuisance point j. Then the Schur complement for its moment matrix is

Mτ (ξ) = diag
(
ξ(1, j), . . . , ξ(v, j)

)
−
(
ξ(1, j), . . . , ξ(v, j)

)T(
ξ(1, j), . . . , ξ(v, j)

)
.

Theorem 4.10. Let A =
(
QT , 0v−1×d

)T , where Q = (−1v−1, Iv−1)
T and let ξ be an

elementary design. Then the system ATβ is estimable under ξ.

Corollary 4.11. Let γ ∈ (0, 1) and let A =
(
QT , 0v−1×d

)T , where Q = (−1v−1, Iv−1)
T .

Then any γ-design is feasible for the system ATβ.

Lemma 4.12. Let γ ∈ (0, 1) and let ξ be an elementary γ-design. Then its information

matrix is NA(ξ) = 1−γ
v−1Iv−1 −

(
1−γ
v−1

)2
Jv−1 with eigenvalues

λ1 =
1− γ
v − 1

with multiplicity v − 1 (4.8)

and

λ2 =
1− γ
v − 1

− (1− γ)2

v − 1
=
γ(1− γ)

v − 1
with multiplicity 1. (4.9)
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Using the Equivalence Theorem 2.15 we will prove that these designs are φp-optimal

for a suitably chosen γ.

Theorem 4.13. Let A =
(
QT , 0v−1×d

)T , where Q =
(
− 1v−1, Iv−1

)T . Let p ∈ [−∞, 0].

If p > −∞, let γ be the unique solution of the equation (2.11)

(v − 2)γ1−p + 2γ − 1 = 0

in the interval (0, 1/2]. If p = −∞, let γ = 1/2. Then any γ-design is φp-optimal for

the estimation of the system ATβ in model (4.2).

Proof. The proof is in fact the same as the proof of Theorem 2.16, only instead of

considering times u ∈ {1, . . . , n}, we consider nuisance conditions u ∈ U .

Let p ∈ [−∞, 0]. For p < 0 we set γ as the solution of (2.11) and for p = 0 we set

γ = 1/2.

The proof consists of the same steps as the proof of Theorem 2.16:

1. We will reparametrize the nuisance time trend, so that the computations will be

easier.

2. For p ∈ (−∞, 0] we will prove that one of the elementary γ-designs is φp-optimal.

3. We will prove that from the step 2. it follows, that all the γ-designs are φp-optimal.

4. We will repeat the steps 2. and 3. for p = −∞.

5. Finally, we will prove optimality of γ-designs in a ’degenerate’ situation with no

time trend present.

For brevity, we will refer to proof of Theorem 2.16 simply as P2.16.

We will not provide the full proof, only emphasize that it works the same as P2.16.

1. Let there be j such that fθ(j) 6= 0. From now on, this j will be fixed. We will

prove that the elementary γ-design that assigns all its trials to the nuisance condition j

is φp-optimal. The reparametrization is possible without a loss of information, because

of Lemma 4.4.

2. Now there exists an elementary γ-designs for any u ∈ U , |U | in total, instead

of n elementary γ-designs. However this obviously does not affect their properties:

they have the same moment and information matrix as in P2.16, given by Lemma 4.1

and Lemma 4.12. We will use the same generalized inverse G as in P2.16 and the

matrix A is obviously the same as before. Although the mapping f(x) = f(t, u) has
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different domain, it still attains the same values as previously. Thus all elements of the

normality equality

f(x)TGANp+1
A (ξ∗)ATGTf(x) ≤ traceNp

A(ξ∗) for all x ∈ X ,

are the same as in P2.16 and therefore it holds.

3. All elementary γ-designs for the fixed γ are φp-optimal, because they have the

same information matrix and we proved that one of them is φp-optimal. Similarly

as in P2.16, since any γ-design ξγ can be expressed as a convex combination of the

elementary γ-designs, it is φp-optimal too.

4. The case of E-optimality is analogous to steps 2 and 3.

5. In the situation where hk(u) = 0 for each k and for each u, i.e. there is no

nuisance effect present, we get for any elementary γ-design again the same information

matrix from Lemma 4.12. The moment matrix is the same as in the step 5 of P2.16

and following the same reasoning as therein, we get that even in this case, the γ-designs

are φp-optimal.
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Conclusion

In this work, we studied experimental design for a model of choosing treatments under

the presence of a nuisance time trend. We considered a design of experiments for esti-

mating treatment effects compared to the effect of a control treatment. For the studied

model we provided a class of φp-optimal approximate designs for any p ∈ [−∞, 0].

In the first chapter, we introduced the theory of experimental design for a linear

regression model so that even a reader not familiar with the statistical discipline of

experimental design may understand the results that follow in the next chapters. We

distinguished between an approximate and an exact design and further examined the

former. We studied how the amount of information a design provides is measured: using

the optimality criteria, where we have focused on the Kiefer’s φp-optimality criteria. A

further aim of this chapter was to clarify the notation that will be used later.

The main results of the work were stated in the second chapter. In this chapter,

we examined the model (2.1) with the presence of a nuisance time trend. Then the

experimental designs for such model were studied in detail. In Definitions 2.5 and

2.6, we defined two classes of designs - elementary and γ-designs. We used these two

defined design classes and some additional lemmas to give a class of φp-optimal designs

for any p ∈ [−∞, 0]. The results are provided in Theorem 2.16. The key theorem that

was used to prove the optimality of the obtained designs was the Equivalence Theorem

(Theorem 2.15) as stated in [20].

In the following chapter, we demonstrated how an exact design may be constructed

using our results. We showed that exact designs that approximately satisfy the pro-

portions given by Theorem 2.15 tend to be efficient with respect to the φp-optimality

criteria. Therefore we proposed that an efficient exact design may be obtained by

generating random designs that approximately satisfy the given proportions, until a

design efficient enough is found. We demonstrated on some examples that using such

method a highly efficient exact design may be found rapidly. Furthermore, we noted

that using the calculated optimal criterial values in Corollary 2.17, we may calculate

the φp-efficiency of any given exact design. This allows us to accept an exact design

that is efficient enough without the need to know an optimal exact design.
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In the fourth chapter, we showed that our results hold for a generalization of the

model (2.1), which allows for a general nuisance effect, e.g. a two-dimensional (space)

trend, instead of simply a time trend. The results were summarized in Theorem 4.13

which is an analogy to Theorem 2.16.

The main contribution of this work were the results given by Theorem 2.16 and

Theorem 4.13. We found out that designs belonging to a wide class may be φp-optimal

(we denoted them as γ-designs). Then we provided an equation, which the optimal γ

must satisfy for the γ-designs to be φp-optimal. Therefore, for any p ∈ [−∞, 0] we pro-

vided a class of φp-optimal approximate designs for estimating the studied treatment

contrasts. Unlike designs orthogonal to time trend, our results hold for any nuisance

time trend, not only for polynomials of particular degrees. Moreover, we showed that

our results may be used to evaluate the quality of given exact designs or to obtain

efficient exact designs.

In this thesis, we considered only experiments, where we were interested in compar-

ing treatments to a control treatment. Hence, a possible extension of our work would

be to examine φp-optimal approximate designs for estimating some other treatment

contrasts. It would be interesting to know whether some similar results hold in such

case.

Even designs for the set of contrasts that we considered may be analysed further. It

is possible to extend our results by examining optimal approximate designs with respect

to other optimality criteria. The possible future work includes determining whether

the set of optimal designs that we provided is complete, i.e. whether there are other

φp-optimal designs for estimating the considered contrasts. Furthermore, additional

applications of our results in constructing exact designs may be studied.
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APPENDIX: SOME SELECTED PARTS OF MATRIX THEORY

Appendix: Some Selected Parts of Matrix Theory

In this work we use some concepts and results from Matrix Theory, which the reader

does not have to be familiar with or which may need to be properly defined. We will

introduce these concepts here.

A.1 Basic Matrix Properties

Definition A.1. Let A be an n×n matrix. Then A is symmetric if it satisfies AT = A.

Furthermore if A is a symmetric n×n matrix, then it is nonnegative definite if xTAx ≥

0 for any x ∈ Rn, and is positive definitie if xTAx > 0 for any x ∈ Rn, x 6= 0n.

Proposition A.2. Let A be a symmetric matrix. Then A is nonnegative definite if

and only if its eigenvalues are nonnegative, and is positive definite if and only if its

eigenvalues are positive.

Proof. See [11].

Lemma A.3. Let A, B be two m × n matrices. Then S(A) ⊆ S(B) if and only if

there exists an n× n matrix X, such that A = BX.

Proof. Let us denote the columns of A and B as A =
(
a1, . . . , an), B =

(
b1, . . . , bn).

Then S(A) ⊆ S(B) can be written as: for any i = 1, . . . , n there exist x(i)1 , . . . , x
(i)
n ∈ R,

such that ai = x
(i)
1 b1 + . . . + x

(i)
n bn. That is equivalent to: for any i = 1, . . . , n there

exists x(i) ∈ Rn, such that ai = Bx(i). Therefore we get S(A) ⊆ S(B) if and only if

there exists X, such that A = BX.

Lemma A.4 (by [20]). Let A be a symmetric matrix partitioned as

A =

A11 A12

AT12 A22

 .
If A is nonnegative definite, then S(AT12) ⊆ S(A22).

Proof. See [20].

Lemma A.5. Let A = aIn + bJn for some a, b ∈ R. Then A has eigenvalues λ1 = a

with multiplicty n− 1 and λ2 = a+ nb with multiplicty 1.
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Proof. Matrix B = A − aIn = bJn has rank 1 and thus has eigenvalue µ1 = 0 with

multiplicity n− 1. Then A has eignevalue λ1 = µ1 + a = a with multiplicty n− 1. To

find the last eigenvalue, with multiplicity 1, we observe that every column of A has the

same sum of its elements: a+nb. Therefore the sum of all rows of matrix A−(a+nb)In

is a row full of zeros. That means, A− (a+nb)In is a singular matrix, i.e. λ2 = a+nb

is the last eigenvalue of A.

A.2 Loewner ordering

Definition A.6 (by [20]). We define the Loewner ordering as the partial ordering �

of symmetric matrices

A � B ⇔ A−B is a nonnegative definite matrix.

We emphasize that the Loewner ordering is a partial (as opposed to a total) ordering,

i.e. there exist symmetric matrices A, B, which satisfy neither A � B nor B � A. The

book [20] provides a trivial example of such matrices

A =

1 0

0 0

 B =

0 0

0 1

 .
A.3 Generalized Inverse Matrices

Definition A.7 (by [11]). Generalized inverse matrix of an m × n matrix A is any

n×m matrix A− that satisfies

AA−A = A.

We note that in general the generalized inverse of a given matrix is not uniquely

defined. The reader may find more information on generalized inverse matrices in the

book [11]. We will use some of their properties listed in [11].

Lemma A.8. Let A be an m × n matrix, B a k ×m matrix and C a n × p matrix.

If S(BT ) ⊆ S(AT ) and S(C) ⊆ S(A), then BA−C does not depend on the choice of

generalized inverse A−.

Proof (by [11]). If S(BT ) ⊆ S(AT ) and S(C) ⊆ S(A), then B = XA and C = AY for

some matrices X, Y . Then BA−C = XAA−AY = XAY and thus it is invariant to the

choice of A−.
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Lemma A.9. Let A be an m × n matrix and G be its generalized inverse; let B be

an m × p matrix. Then there exists an n × p matrix X which satisfies the equation

AX = B if and only if AGB = B.

Proof. Let there exist a solution X of AX = B. Multiplying the equation by AG we

get AGAX = AGB, and thus AX = AGB. Since AX = B, we have B = AGB.

Now let AGB = B. By setting X = GB we get AX = B.

Lemma A.10. Let A be an n× n matrix expressed in the block form

A =

A11 A12

A21 A22

 ,
where A11 is an q × q matrix and A22 is a r × r matrix, q + r = n. Then

(i) if rank(A) = rank(A11) = q, then

G1 :=

A−111 0

0 0


is a generalized inverse of A.

(ii) if rank(A) = rank(A22) = r, then

G2 :=

0 0

0 A−122


is a generalized inverse of A.

Proof. The lemma is a special case of Theorem 9.2.3 in the textbook [11].

We may state a simple lemma concerning a generalized inverse of a matrix product.

Lemma A.11. Let A be an n×n matrix and X and Y be n×n nonsingular matrices.

Then the matrix Y −1A−X−1 is a generalized inverse of XAY .

Proof. Both Y −1 and X−1 exist, because X and Y are nonsingular. Let us denote

G := Y −1A−X−1, then

XAY GXAY = XAY Y −1A−X−1XAY = XAA−AY = XAY,

thus Y −1A−X−1 is a generalized inverse of XAY .
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A.4 Schur Complement

Definition A.12 (by [20]). Let A be an arbitrary m× n matrix partitioned as

A =

A11 A12

A21 A22

 .
Then we call the matrix Aτ := A11 − A12A

−
22A21 the Schur complement of A22 in A.

For brevity, we will use the notation Schur complement for A, instead of Schur

complement of A22 in A. A detailed analysis of the Schur complement can be found in

[24]. The Schur complement does not depend on the choice of generalized inverse A−22
(see [20]).

Later, we will use the following lemma, which provides us with a generalized inverse

of partitioned matrix, using Schur complement.

Lemma A.13 (by [11]). Let A be an m× n matrix partitioned as

A =

A11 A12

A21 A22

 .
Then the matrix  A−τ −A−τ A12A

−
22

−A−22A21A
−
τ A−22 + A−22A21A

−
τ A12A

−
22


is a generalized inverse of A

Proof. In [11].
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