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Abstrakt

�IMO, Martin: Fong-Va²í£kov model úrokových mier so stochastickou volatilitou [Dip-

lomová práca], Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a in-

formatiky, Katedra aplikovanej matematiky a ²tatistiky; vedúci práce: RNDr. Mgr.

Beáta Stehlíková, PhD., Bratislava, 2014, 54s.

Táto práca sa venuje modelom okamºitej úrokovej miery. V práci predstavujeme

ich základné my²lienky a skúmame dva takéto modely. Menovite skúmame jednofakto-

rový Va²í£kov model a dvojfaktorový Fong-Va²í£kov model so stochastickou volatilitou.

Predstavujeme aj my²lienku rýchlej ²kály volatility a na nej zaloºenú asymptotickú ap-

roximáciu Fong-Va²íkovho modelu. V práci de�nujeme algoritmus, ktorým odhadneme

parametre tejto aproximácie z výnosových kriviek. Tento algoritmus potom testujeme

na náhodne generovaných aj reálnych dátach a skúmame jeho správnos´ a uºito£nos´.

K©ú£ové slová: Oce¬ovanie dlhopisov, Modely okamºitej úrokovej miery, Va²í£kov

model, Fong-Va²í£kov model, Stochastická volatilita, Rýchla ²kála volatility,

Kalibrácia modelov okamºitej úrokovej miery



Abstract

�IMO, Martin: Fong-Vasicek model of interest rates with stochastic volatility [Diploma

Thesis], Comenius University in Bratislava, Faculty of Mathematics, Physics and Infor-

matics, Department of Applied Mathematics and Statistics; Supervisor: RNDr. Mgr.

Beáta Stehlíková, PhD., Bratislava, 2014, 54p.

This thesis focuses on the study of short rate models. It describes their basic notions

and de�nes two such models, namely the one factor Vasicek model and the two factor

Fong-Vasicek model with stochastic volatility. An idea of fast scaling volatility is

introduced and an asymptotic approximation of Fong-Vasicek model that is based on

this notion is described. We devise an algorithm to estimate the parameters of this

approximation from yield curve data. This algorithm is then then tested on both

randomly generated and real world data and its validity and usefulness is assessed.

Keywords: Bond pricing, Short rate model, Vasicek model, Fong-Vasicek model,

Stochastic volatility, Fast scaling volatility, Short rate model calibration
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INTRODUCTION

Introduction

This work focuses on short rate models. These models became increasingly important

with the rapid growth of the interest rate derivatives markets. The increased popularity

of these markets called for a way of pricing these derivatives. The short rate models

were de�ned for this purpose. They build upon the often used framework for pricing

continous time derivatives de�ned by Black and Scholes in [3].

One of the earliest short rate models was described by Vasicek in [27]. The one

factor Vasicek model is based on a stochastic di�erential equation that governs the

stochastic behaviour of the short rate. We describe this model in the �rst section of

this work. Later on it became apparent that a one factor model cannot satisfyingly

describe the behaviour of the markets. To allow for more information to be captured

by a model two factor models were de�ned. In this thesis we work with one such model,

namely the Fong-Vasicek model with stochastic volatility �rst described in [13]. This

model takes the volatility, which is a constant in Vasicek model and assumes that it is

also a stochastic process. Some motivation for picking volatility as the second factor

along with the description of this model can also be found in the �rst section.

We introduce an asymptotic approximation for bond pricing function of the Fong-

Vasicek model, described in [9] and [20]. This approximation is based on the idea of fast

scaling volatility, which assumes that the short rate process and the volatility process

operate on di�erent time scales. These notions along with the implications and results

of this idea are contained in the second section.

We also de�ne a data generating process that allows us to generate observations of

short rate and volatility that follow the Fong-Vasicek model. This idea is based on

a straightforward discretization of the stochastic di�erential equations de�ning these

models. This data generating process along with the parameters we use is described in

the third section.

The fourth section is the most important section of this work. In it we de�ne an

algorithm that estimates the parameters of the Vasicek model and the asymptotic

approximation of Fong-Vasicek model. The idea behind the algorithm is based on
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INTRODUCTION

�tting the observed yield curves. The section also contains some general ideas about

the estimation of short rate models.

The last section contains the results of the estimation algorithm de�ned in fourth

section. The models are �rst �tted onto generated data to assess whether the estimation

algorithm is valid. This is done by �tting models that were used to generate the data

in the �rst place, where we expect an almost exact �t. The second part of the section

details the results obtained by employing the estimation algorithms on real world data

about German yield curves.
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1 SHORT RATE MODELS

1 Short rate models

In this section we de�ne the basic concepts and terms we will use throughout the work,

the main resources for this part are textbooks [18] and [22]. We then introduce the

notion of short rate models and the motivations for their study. We also formally

introduce the two short rate models that we use in this work.

1.1 Basic concepts

A bond represents a contract between two parties, the issuer and the holder of the

bond. The issuer takes up an obligation to pay an amount F , called the face value, to

the holder of the bond at a set time in the future, called the maturity of a bond. He

is also obliged to pay periodic amounts C, called the coupon, at predetermined dates

leading up to the maturity. A bond which pays no coupons is called a zero-coupon

bond. The ownership of the bond is in general transferable giving rise to a market of

bonds.

In this thesis we work with discount bonds, these are zero-coupon bonds with face

value equal to 1. On the market for bonds a price of a discount bond, with various

maturities can be observed. Each of these prices P (T0, T ) implies an interest rate

R(T0, T ) and if we consider continuously compounded interest, the relationship between

the price of the bond and the interest rate it implies is captured by the formula

P (T0, T ) = e−R(T0,T )(T−T0). (1.1)

The individual interest rates R(T0, T ) are called the spot rates of a bond and they

depend on the di�erence τ = T0−T , called time to maturity. The relationship between

time to maturity τ and the interest rate of a discount bond is called the zero-coupon

yield curve or the term structure of interest rates. For the remained of this thesis we

call zero-coupon yield curves simply yield curves.

The short rate rt is a term used for the beginning of the yield curve R(T, T ). We

know from equation (1.1), that

R(T0, T ) = − 1

T0 − T
lnP (T0, T ). (1.2)

10



1 SHORT RATE MODELS

Considering a bond with a time to maturity τ we arrive at

R(t, t+ τ) = −1

τ
lnP (t, t+ τ) = −1

τ
(lnP (t, t+ τ)− lnP (t, t)) ,

where we used the fact that lnP (t, t) = 0 since P (t, t) = 1 must obviously be true. If

we now consider a limit for τ → 0 we arrive at

rt = R(t, t) = lim
τ→0
−1

τ
(lnP (t, t+ τ)− lnP (t, t)) = − ∂

∂T
lnP (t, t). (1.3)

Knowledge of the short rate does not automatically imply the knowledge of the

whole yield curve, as the short rate is only its beginning. However there are models

which assume this to be the case. After this property such models are called short rate

models.

1.2 Short rate models

Figure 1.1: The interest rate implied by German bonds with maturity 3 months.

To illustrate the behaviour of the short rate we refer to the Figure 1.1, which shows

the development of the interest rate implied by German bonds with maturity of 3

months. This is the shortest maturity we use in this work and we consider it an

appropriate approximation of the short rate, similar approach was adopted in [1]. We

can clearly see the erratic behaviour of the short rate. In short rate models this fact is

dealt with by assuming that the short rate rt follows a stochastic process de�ned by a

stochastic di�erential equation. Based on the speci�cs of the equation the models are

then divided.

11



1 SHORT RATE MODELS

These models could come into being because of the surge in interest caused by Black

and Scholes and their, to this day, very popular work [3]. Their approach allowed for

simplicity and parsimony in de�ning contionuous time models. These continous time

models were extremely appealing in theory, because they are much easier to work with

than discrete time models. This attractive feature leads to the fact that many solutions

of models based on this framework are analytical in nature, meaning that the results

of the models can be captured by formulas.

The �rst and simplest class of short rate models is the class of one factor models.

In one factor models the short rate process rt is said to be a solution of a stochastic

di�erential equation of the form

dr = µ(t, r)dt+ σ(t, r)dW. (1.4)

The process consists of two parts. The deterministic drift factor is captured by the

term µ(t, r)dt. This term is responsible for the trends in the behaviour of the short

rate. The second term σ(t, r)dW , where dW is an increment of a Wiener process W , is

the volatility factor. This factor is responsible for the random deviations of the short

rate around the direction de�ned by drift. For a detailed list of di�erent one factor

short rate models and their properties we refer the reader to the works [5] and [15].

The second class of models we use touch on in this work is the class of two factor

models. These models postulate that the short rate r = r(x, y) is a function of two

factors x, y. Both x and y are governed by a stochastic di�erential equation. Their

joint behaviour is captured by the system

dx = µx(x, y)dt+ σx(x, y)dW1, (1.5)

dy = µy(x, y)dt+ σy(x, y)dW2, (1.6)

where the correlation of increments dW1 and dW2 of the Wiener processes W1 and W2

is a constant ρ, i.e. E(dW1dW2) = ρdt. The function joining the factors into the short

rate can be of di�erent forms. For example the short rate r can be a sum of x and

y. Another example is a model that postulates that a national short rate process is

in some way a�ected by a short rate process of a di�erent country, e.g. the stochastic

12



1 SHORT RATE MODELS

short rate in France is probably a�ected by the again stochastic short rate for EU

bonds. The last example, the type of two factor model we use in this work, is a model

in which one of the parameters of the one factor model is assumed to be stochastic in

nature, e.g. a one factor model where we consider the volatility to be stochastic, thus

making it the second factor.

1.3 Vasicek Model

First described by Oldrich Vasicek in [27], the Vasicek model is one of the earliest

models of short rate. It is a one factor short rate model implying that the yield curve

R depends solely on the short rate. The short rate is a random process de�ned by a

stochastic di�erential equation

dr = κ(θ − r)dt+ σdW, (1.7)

where dW are increments in a Wiener process W . Being one of the earliest models

it is very simple, with all parameters deterministic. The drift term in this model has

a mean-reverting property, where θ is the long term average short rate and κ the

speed of reversion towards it. The processes with the mean-reverting property are also

known as Ornstein-Uhlbeck type processes. Over time this model has been found to

be insu�cient to capture the behaviour observed in practice, where the assumption of

one factor has proven to be too strong, as evidenced in works [10] and [19]. It also

has theoretical problems, namely it can lead to negative interest rates with non-trivial

probability, which is something that should not be possible, at least not for nominal

interest rates. The model's simplicity however means that we can easily use it as a

reference model to be compared with other more complex models.

The pricing function P (τ, r) for a discount bond, depending on time to maturity τ

and the value of short rate r, is a solution to a stochastic di�erential equation

− ∂P

∂τ
+ (µ(t, r)− λ(t, r)σ(t, r))

∂P

∂r
+
σ2(t, r)

2

∂2P

∂r2
− rP = 0, (1.8)

with the initial condition P (0, r) = 1. For the proof of the previous statement we refer

the reader to [24]. The proof uses the no-arbitrage approach and Ito lemma to arrive

13



1 SHORT RATE MODELS

at this result. In the proof λ(t, r) arises as function de�ning the market value of risk.

This function provides an expected rise of the bond return for the unit rise of risk, for

more details see [15].

If the short rate follows the process de�ned by (1.7) and we assume a constant

market value of risk λ(t, r) = λ the solution to (1.8) is of the form

P (τ, r) = A(τ)e−B(τ)r. (1.9)

The particular functions A(τ) and B(τ) are found by substituting a solution of this

form into (1.8). This yields a system of ODE

dA(τ)

dτ
= (λσ − κθ)A(τ)B(τ) +

1

2
σ2A(τ)B2(τ),

dA(τ)

dτ
= −κB(τ) + 1,

with initial conditions A(0) = 1 and B(0) = 0. The solution to this system is given by

A(τ) = exp

[
(−θ +

σ2

2κ2
+
σλ

κ
)(−1

κ
(1− e−κτ ) + τ)− σ2

4κ3
(1− e−κτ )2

]
, (1.10)

B(τ) = −(1− e−κτ )
κ

. (1.11)

To give an idea about how the short rate process de�ned by Vasicek model might

look in time we provide Figure 1.2. In this �gure we can see the property of mean-

reversion typical for Vasicek model.

1.4 Stochastic Volatility

One of the assumptions of the Black Scholes framework de�ned in [3] was the assump-

tion of constant volatility. This was an assumption even the authors considered violated

in practice, noting this fact in [2]. They urge for more work to be done in the �eld

of predicting volatility from available data. The fact that volatility is not constant

has also been evidenced in other empirical work, see e.g. [16]. Another example of

changing volatility is the volatility smile. An observation arising from prices of some

�nancial derivatives, that the relashionship between implied volatility and strike price

has a shape of a smile, for more details see [12].

14



1 SHORT RATE MODELS

Figure 1.2: A simulated development of short rate r that follows Vasicek model.

For these reasons many models have adopted volatility as an additional stochastic

factor. In short rate models these include a two factor Cox-Ingersoll-Ross model, see

[16], stochastic Vasicek model or Brenner model [4]. Longsta� and Schwarts in [16]

also argue that stochastic volatility allows for more shapes of yield curves, such that

seem to occur in practical observations.

Calculating the estimations of volatility in short rate data a number of stylized facts

have been observed over and over again. One of the most often found patters is the

so called volatility clustering. This pattern, described as early as 1963 in [17], can

be desribed by changing periods of high volatility alternating with periods with low

probability. Thus the volatility seems to be persistent to some extent, a change from

low volatility to high will typically last for more than one observation.

This type of behaviour can be modeled by a stochastic process with the mean-

reverting property, i.e. process with drift of the form µ(x, t) = κ(θ − x). In this

representation the parameter κ represents a measure of persistence and the parameter

θ represents the long term mean.

An important property of volatility is that it is always positive. This is because neg-

ative volality makes no practical sense. The Bessel process has both of these properties

which makes it a good candidate for modeling stochastic volatility. A Bessel process is
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1 SHORT RATE MODELS

de�ned as a solution to stochastic di�erential equation

dx = κ(θ − x)dx+ σ
√
xdW. (1.12)

1.5 Fong-Vasicek Model with Stochastic Volatility

The Fong-Vasicek model with stochastic volatility, �rst de�ned in [13], belongs to a

class of two factor interest rate models, meaning the yield curve R(τ, r) is determined by

it's origin, i.e. the short rate r. The stochastic process behind the short rate r depends

on itself but also on a second factor, in this case volatility y. The second process is

de�ned in line with the notes made in previous section, describing the character of

volatility observed on empirical data. As a two-factor model, it o�ers more variety in

terms of possible outcomes than one-factor models and as such is expected be a better

�t for empirical data. The Fong-Vasicek model with stochastic volatility is speci�ed

by two stochastic di�erential equations that govern the behaviour of short rate r and

volatility y, they are

dr = κ1(θ1 − r)dt+
√
ydW1

dy = κ2(θ2 − y)dt+ v
√
ydW2.

(1.13)

The model allows for constant correlation ρ between the increments dW1 and dW2, i.e.

E(dW1, dW2) = ρdt. If the market prices of risk are λ1
√
y and λ2

√
y then the discount

bond price function P (τ, r, y), where τ is time to maturity of the bond, solves a partial

di�erential equation

−∂P
∂τ

+ (κ1(θ1 − r)− λ1y)
∂P

∂r
+ (κ2(θ2 − y)λ2vy)

∂P

∂y

+
y

2

∂2P

∂r2
+
v2y

2

∂2P

∂y2
+ ρvy

∂2P

∂r∂y
− rP = 0,

(1.14)

with the initial condition P (0, r, y) = 1. This PDE is known to have a solution of the

form

P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y (1.15)
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1 SHORT RATE MODELS

see e.g. [24] or [13]. Functions A,B and C are solutions to a system of ODE obtained

from (1.14) by plugging in a solution of this form. The system of ODE reads as follows

A′ = −A(κ1θ1B + κ2θ2C),

B′ = −κ1B + 1,

C ′ = −λ1B − κ2C − λ2vC −
B2

2
− v2C2

2
− vρBC,

(1.16)

with initial conditions A(0) = 1, B(0) = 0 and C(0) = 0, which correspond to the

condition P (0, r, y) = 1. This system can be solved in steps. First B can be found

analytically. This solution is then inserted into ODE for C, which is solved numerically,

using the Runge-Kutta method. Both solutions are inserted into the integrated version

of ODE for A to �nd the values of A. This scheme can be summarized by equations

B =
1

κ1
(1− e−κ1τ ), (1.17)

C ′ = −λ1B − κ2C − λ2vC −
B2

2
− v2C2

2
− vρBC,C(0) = 0, (1.18)

A = exp
(
−θ1τ + θ1B − κ2θ2

∫ τ

0

C(s)ds

)
. (1.19)

Knowing how to numerically evaluate functions A,B and C we take the values of

parameters used in [20], which can be found in Table 1.1, to compare our results. These

parameters are estimated from empirical data in work [10]. The functions A,B,C for

these values of parameters are plotted, with large maturities that allow us to observe

their limit behaviour, in Figure 1.3.

κ1 θ1 κ2 θ2 v ρ λ1 λ2

0.109 0.0652 1.482 0.000264 0.01934 0 −11 −6

Table 1.1: Baseline parameter values, previously used in [20]

We also know that the function A,B,C have well de�ned limits for τ → ∞, given

that a structural condition
1 + 2λ1κ1

2κ1
< 0 (1.20)

is satis�ed. For our values of parameters this in this case. We know that the domain

of function A is the interval (0, 1), function B has a limit equal to 1/κ1 = 9.17 in

17



1 SHORT RATE MODELS

this case, this limit can be observed directly from 1.17. In [20] it is established that

if function C has a limit CL ≥ 0, then CL is the single positive root of the quadratic

equation

0 =
v2

2
C2
L + (κ2 + λ2v +

vρ

κ1
)CL +

1 + 2κ1
2κ21

,

given that the structural condition (1.20) is satis�ed. For our parameters this is the

case and the positive root of this equation is approximately CL = 42.82. Figure 1.3

con�rms the derived limit behaviour for all three functions.

Figure 1.3: Functions A,B,C, with parameters taken from Table 1.1
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2 ASYMPTOTIC APPROXIMATION OF BOND PRICE IN FONG-VASICEK

MODEL

2 Asymptotic Approximation of Bond Price in Fong-

Vasicek Model

2.1 The fast scale of volatility

In empirical work, see e.g. [9] or [14], it has been observed that the volatility process

y operates on a di�erent time scale than the short term process r. Namely the scale of

the volatility process is much faster. Fast scale volatility can be incorporated into the

model with stochastic volatility. We present two di�erent approaches of doing so, while

assuming that the volatility process y is a Bessel process de�ned by equation (1.12).

The �rst approach, used in [25], is to rewrite the de�ning equation into

dy =
κ(θ − y)

ε
dt+

σ
√
y√
ε
dW. (2.1)

This is a result of considering the volatility process y in scale of tε instead of the usual

t. Here the parameter ε should be a positive number in the neighbourhood of zero.

The second approach, de�ned in [14] and used in [9] and [20], is to say that the fast

scale implies a large value of κ in the equation (1.12) and de�ne the unit of fast scale

ε = 1/κ. Making this substitution into equation (1.12) to obtain

dy =
(θ − y)

ε
dt+

σ
√
y√
ε
dW. (2.2)

The term de�ning the volatility of y changes by a factor depending on ε to keep the

variance of the limit distribtion of y constant, for more details see [20].

Cotton et. al. in [9] utilize the fast scale of volatility to approximate two factor

short rate models by a one factor model plus a correction term. The main result of

their paper is a theorem proving that the discount bond pricing function P can be

approximated by a function P ε with an error in O(ε). The remarkable thing about

this approximation is the fact that it does not depend on the value of volatility y.

This is a very attractive feature as the value of y is not directly observable in practice.

Not only that but in terms of �tting the function P ε has less parameters to �t. The

proposed idea is to utilize the correction term to provide additional space for better
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MODEL

�tting, while keeping the number of parameters to be estimated lower than in a two

factor model. This method of asymptotic approximation for two factor Fong-Vasicek

model was derived in [20].

2.2 Asymptotic approximation of the bond price in Fong-Vasicek

model

In this section we present the results of [20] concerning the approximation of bond

pricing function P by a function P ε. This approximation is based on the idea of fast

scaling volatility.

The model we work with is the Fong-Vasicek model with stochastic volatility de-

scribed previously in section 1.5. We take the second approach to incorporating fast

scaling volatility. In this approach the fast scale of volatility is translated into the

parameters in the form of assuming a large value of κ2, which inverted becomes the

unit of fast scale, the parameter ε = 1/κ2. The original de�ning equations for Fong-

Vasicek model (2.3), are adapted to keep the variance of the asymptotic distribution

of y process constant and change into

dr = κ1(θ1 − r)dt+
√
ydW1

dy =
1

ε
(θ2 − y)dt+

v
√
y√
ε
dW2,

(2.3)

where W1 and W2 are Wiener processes and E(dW1, dW2) = ρ.

We assume that the market prices of risk can be written as λ1
√
y and λ2

√
y, with

λ1 and λ2 constant. Then in this model the bond pricing function P ε is a solution to

the PDR
∂P ε

∂t
+ (κ1(θ1 − r)− λ1y)

∂P ε

∂r
+

(
1

ε
(θ2 − y)− 1√

ε
λ2vy

)
∂P ε

∂y

+
y

2

∂2P ε

∂r2
+

1

ε

v2y

2

∂2P ε

∂y2
+

1√
ε
ρvy

∂2P ε

∂r∂y
− rP ε = 0,

(2.4)

with the end condition P ε(T, r, y) = 1.

The pricing function P ε can be rewritten as an in�nite sum, an asymptotic series

based on powers of
√
ε,

P ε = P0 +
√
εP1 + εP2 + ε

√
εP3 + ..., (2.5)
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where Pi are functions of t, r and y and they are subject to conditions P0(T, r, y) = 1

and Pi(T, r, y) = 0 ∀i ≥ 1. In this series a cut-o� point is chosen. The terms left

before the cut-o� point, are then the asymptotic approximation of P ε. Seleceniova

in [20] shows this by implementing a clever use of operator functions, also used in

[9], which make the calculations possible. Subsequently the individual terms of the

asymptotic series are calculated and conditions for them formulated. Ultimately the

result is that the price of the discount bond can be approximated as

P ε(τ, r, y) ≈ P0(τ, r) +
√
εP1(τ, r), (2.6)

where

P0(τ, r) = A(τ)e−B(τ)r,

P1(τ, r) = D(τ)A(τ)e−B(τ)r,

and the functions B,A and D are de�ned as

B(τ) =
1

κ1
(1− e−κ1τ ),

A(τ) = exp [(B(τ)− τ)( θ1 −
λ1θ2
κ1
− θ2

2κ21

)
− θ2

4κ1
B(τ)2

]
,

D(τ) =
V1
κ1

(−B(τ) + τ)− V2
κ21

(−B(τ)− κ1
2
B(τ)2 + τ)

+
V3
κ31

(−B(τ)− κ1
2
B(τ)2 − κ21

3
B(τ)3 + τ).

(2.7)

The group parameters V1, V2 and V3 arise during the process of deriving the approxi-

mation. They can be expressed, in terms of model parameters, as

V1 = −λ1λ2vθ2,

V2 =
1

2
λ2vθ2 + λ1ρvθ2,

V3 = −1

2
ρvθ2.

The main di�erence between this approach and the original Fong-Vasicek model

with stochastic volatility is in the fact that the functions P0 and P1 do not depend on

y. This is a desirable property, because in practice the current value of volatility is

unknown and cannot be directly observed.
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Another attractive feature of this is approximation is the decreased number of pa-

rameter that need to be estimated to �t this model. In the original Fong-Vasicek model

we have parameters v and ρ and also the parameters λ1, λ2 tied with the market value

of risk, which would need to be estimated. In the approximation these are replaced by

group parameters V1, V2, V3. These are closely linked to the parameters of the original

model, but are fewer in number. Moreover [9] show that they can be estimated from

yield curves. This gives us an advantage when estimating all parameters needed for

pricing of bonds.

To illustrate the feasibility of this approximation of the exact bond price function

P , de�ned by 1.15 we plot the functions P and P ε together for values of r = 0.04,

r = 0.08 and �ve values of volatility from range y = [0.00001, 0.00011]. The results can

be seen in Figure 2.1 and indicate that P ε is a good aproximation of P as the plots

are close in both cases. To elucidate the di�erence we give their relative di�erence

de�ned as (P (τ, r, y)−P ε(τ, r))/(P (τ, r, y) in Figure 2.2. We can see that this relative

di�erence increases with time to maturity τ , at least in the time frame considered, but

they remain well within accepted range.

Figure 2.1: Comparison of bond pricing function P and it's approximation P ε for r =

0.04 on the left and r = 0.08 on the right. Volatility is taken from range [0.0001, 0.0011]

in both cases.

In our work we will not be interested directly in the price of the bonds but rather
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Figure 2.2: Relative di�erence between the bond pricing function P and it's approx-

imation P ε, de�ned as (P (τ, r, y) − P ε(τ, r))/(P (τ, r, y), for r = 0.04 on the left and

r = 0.08 on the right. Volatility is taken from range [0.0001, 0.0011] in both cases.

we will be working with yield curves, de�ned by

R(τ, r, y) = − ln(P (τ, r, y))

τ
. (2.8)

We will approximate the yield curves by

Rε(τ, r) = − ln(P ε(τ, r))

τ
. (2.9)

Figure 2.3 shows the exact yield curves R for two di�erent values of short rate r and a

range of di�erent values of volatility y. These are compared to the approximation Rε,

in red. The approximation is the same for all the di�erent values of volatility y, since

it does not depend on the its current value.

23
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Figure 2.3: Yield curves R, in black, and their approximation Rε, in red, for r = 0.0652

on the left and r = 0.08 on the right. Volatility y is taken from range [0.0001, 0.0011]

in both cases.
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3 Generating yield curve data following Fong-Vasicek

model

3.1 Generating short rate and volatility trajectories

In Fong-Vasicek model with stochastic volatility the short rate r and volatility y follow

a stochastic process speci�ed by a set of di�erential equations

dr = κ1(θ1 − r)dt+
√
ydW1

dy = κ2(θ2 − y)dt+ v
√
ydW2,

(3.1)

where we allow for correlation ρ between the random terms dW1 and dW2. To generate

trajectories we discretize these continuous di�erential equations in the following way.

Considering the de�nition of dr it is the change in short rate r that happens with an

in�nitesimal change in time t. We choose to approximate this change by

dr ≈ r(t+ ∆)− r(t), (3.2)

where ∆ should be small and use this de�nition as the basis of the discretization. We

pick a time step ∆ = 0.01, which we deem to be su�ciently small. With value of ∆

de�ned we have the ability rewrite the equations (3.1) into

r(t+ ∆) = r(t) + κ1(θ1 − r)∆ +
√
yW1,

y(t+ ∆) = y(t) + κ2(θ2 − y)∆ + v
√
yW2,

(3.3)

where the terms W1 and W2 have a distribution

(W1,W2)
T ∼ N




 0

0


 ,∆


 1 ρ

ρ 1




 . (3.4)

The data generating process starts by picking suitable starting values. In this work

the starting values of process r and y are taken to be their long term averages, i.e.

r(0) = θ1 and y(0) = θ2. Then we generate a �xed number of observations from the

distribution of W = (W1W2)
T . We do this by generating two independ samples from

standard normal distribution and multiplying the by the square root of the covariance
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matrix to obtain a randomly generated vector with distribution (3.4). We then generate

observations of processes r and y iteratively utilizing equations (3.3). We generate a

sample of predetermined length N , which varies by application. Because it would not

random enough for our purposes to have all trajectories starting from the same starting

points we set a lower limit l, usualy l = 100, and consider only the sample strating

from (r(l), y(l).

3.2 Parameter sets used to generate data in this work

The question of what parameters to use for generating data from Fong-Vasicek model

is an important one. Authors in [23] show that certain intuitive conditions imposed on

the bond price P are satis�ed if the following structural condition holds true

λ1 ≤ −
1

2κ1
. (3.5)

This is a condition that the parameter sets we use all satisfy.

The work [11] deals with the estimation of parameters of the Fong-Vasicek model

from empirical data. In [20] the parameters estimated in [11] are revisited and re�ned.

The �rst parameter set we use are the parameters described in [20] as the realisticly

best �t. These parameters were already mentioned and can be found in Table 1.1. In

our work we consider more than a single set of parameters. In the second parameter set

we consider, parameter set 2, we introduce positive correlation between the increments

dW1 and dW2 in 3.1. The third and fourth parameter sets are the same as the �rst with

change in parameter κ2. We know that κ2 is a parameter that is very closely related to

the approximation described in section 2.2. The inverted value of this paramter is the

unit of the fast scaling volatility ε = 1/κ2. For reasons explained in the said section the

approximation should be more precise for large values of κ2. This is the reason why we

take κ2 ten times larger in the second pair of parameter sets. The last parameter set

is used to generate data from one factor Vasicek model. Notice that for these values

of parameters the volatility process y has zero increments dy and is thus always equal

to its starting value θ2. Table 3.1 is a summary of all parameter sets used to generate

the data from Fong-Vasicek model throughout this work.
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κ1 θ1 κ2 θ2 v ρ λ1 λ2

Parameter set 1 0.109 0.0652 1.482 0.000264 0.01934 0 −11 −6

Parameter set 2 0.109 0.0652 1.482 0.000264 0.01934 0.7 −11 −6

Parameter set 3 0.109 0.0652 14.82 0.000264 0.01934 0 −11 −6

Parameter set 4 0.109 0.0652 14.82 0.000264 0.01934 0.7 −11 −6

Parameter set 5 0.109 0.0652 0 0.000264 0 0 0 0

Table 3.1: Parameter sets used in this work to generate data from Fong-Vasicek model,

the �rst parameter set is taken from [20]. The others are its derivations.

A note should be made here about measures. The data generating process uses the

parameters under risk neutral measure. The estimation procedure de�ned in the next

section estimates the parameters under real measure. The di�erence is that under the

real measure the parameters λ1 and λ2 are implicit and are part of the other parameters,

which change values under di�erent measures. For more information see e.g. [18].

To illustrate the impact of the changes in parameters we include Figures 3.1, gen-

erated using parameter set 1, and 3.2, generated using parameter set 4. Both �gures

exhibit the mean-reversion property in both factors. This is the property of the under-

lying model and should come as no surprise. Notice however that the trajectories of

volatility are dramatically di�erent. These �gures illustrate very clearly the meaning

of fast scaling volatility. The unit of fast scaling volatility, de�ned as

ε =
1

κ2
,

is 10 times lower in parameter set 4. This results in much shorter periods away from

the mean.

3.3 Generating yield curve data

In section 3.1 we derived a method of generating trajectories of short rate r and volatil-

ity y that follow the Fong-Vasicek model. These processes de�ne the yield curves

R(t, r, y). For the purposes of this work we need to generate these yield curves. We

will use the generated data as observations onto which we will �t the Vasicek model

27



3 GENERATING YIELD CURVE DATA FOLLOWING FONG-VASICEK MODEL

Figure 3.1: A generated trajectory for the two factors of Fong-Vasicek model, the short

rate r and volatility y. This �gure was generated using parameter set 1.

and the asymptotic approximation of Fong-Vasicek model. We know that in the Fong-

Vasicek model, the price of a bond P is de�ned by the equation

P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y,

where the functions A,B and C solve the system of ODE (1.16). This system depends

on the value of parameters of the Fong-Vasicek model. We solve this system numericaly,

employing the Runge-Kutta method, for a given set of parameters. The yield curves

R are de�ned, in terms of prices P , as

R(τ, r, y) = − lnP (τ, r, y)

τ
.
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Figure 3.2: A generated trajectory for the two factors of Fong-Vasicek model, the short

rate r and volatility y. This �gure was generated using parameter set 4.

We generate the yield curves for consecutive days by using the numericaly solved func-

tions A,B,C and the observations of r and y generated as speci�ed in section 3.1. The

generated yield curves are then stored in a variable if they are used immediately or in

a text �le, with a reasonably de�ned structure, for later use in numerical experiments.

Below are the �rst few lines of a text �le generated by this procedure. To give an

idea about the shape of the yield curves using this data generating process we include

Figure 3.3, which contains a few yield curves generated using parameter set 4.

Following is a table of generated daily yield curves with maturities in years defined on the first row.

0.25, 0.50, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30

0.06035, 0.06071, 0.06145, 0.06290, 0.06425, 0.06548, 0.06659, 0.06759, 0.06850, 0.06932, 0.07002, 0.07069, 0.07502, 0.07708

0.06050, 0.06087, 0.06161, 0.06306, 0.06441, 0.06563, 0.06673, 0.06773, 0.06863, 0.06944, 0.07013, 0.07080, 0.07510, 0.07713

0.06119, 0.06156, 0.06230, 0.06372, 0.06504, 0.06623, 0.06731, 0.06828, 0.06915, 0.06994, 0.07061, 0.07125, 0.07539, 0.07735

0.06130, 0.06167, 0.06241, 0.06384, 0.06516, 0.06635, 0.06742, 0.06838, 0.06925, 0.07003, 0.07070, 0.07134, 0.07545, 0.07739
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0.06219, 0.06256, 0.06329, 0.06468, 0.06596, 0.06711, 0.06814, 0.06907, 0.06990, 0.07066, 0.07129, 0.07191, 0.07583, 0.07766

0.06169, 0.06206, 0.06280, 0.06421, 0.06551, 0.06668, 0.06774, 0.06868, 0.06954, 0.07030, 0.07096, 0.07159, 0.07562, 0.07751

0.06138, 0.06174, 0.06247, 0.06389, 0.06520, 0.06638, 0.06745, 0.06841, 0.06928, 0.07006, 0.07072, 0.07137, 0.07547, 0.07740

0.06204, 0.06239, 0.06311, 0.06449, 0.06577, 0.06693, 0.06797, 0.06890, 0.06975, 0.07051, 0.07115, 0.07178, 0.07574, 0.07760

0.06147, 0.06183, 0.06255, 0.06395, 0.06525, 0.06644, 0.06750, 0.06846, 0.06932, 0.07010, 0.07077, 0.07141, 0.07550, 0.07742

Figure 3.3: A few examples of the di�erent shapes of yield curves generated by the

data generating process de�ned in this section. Parameter set 4 from Table 3.1 was

used to generate these data.
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4 Estimating short rate models

The main goal of this work is to provide means of �tting the models de�ned in previous

chapters onto data. In this section we describe a general framework we use to �t all

models used in this work. The subsequent sections deal with issues of estimating the

individual models.

4.1 General approach

In general there are two di�erent approaches that can be used to �t a short rate model.

The �rst option is �tting the stochastic process of the short rate. The data with a small

enough maturity, e.g. 3 months, can be used as observations from the random process

governing the short rate. Using for example the method of maximum likelihood one can

�nd the ML estimators of the model parameters and �t the model onto data. In work

[6], the authors employ the generalized method of moments applied on observations of

the short rate to determine the properties of volatility. In this work we choose not to

take this path. We could take the data with a small enough maturity as observations of

the short rate process, however we have would have employ some means of construction

observations of the volatility process y from available data.

The main focus of this work is to estimate the asymptotic approximation of Fong-

Vasicek model which does not depend directly on the values of volatility process y. This

brings us to the second approach, the one we will adopt. The idea behind it is that

instead of �tting observations of the short rate r we �t the observed yield curves. This

idea is used in the work [21]. The short rate models we use have a relatively simply

de�ned discount bond price function PM , with subscript M for modeled. This being

the case it is very straightforward to calculate, given some values of model parameters

and the short rate, what the yield curves RM would be by a similar logic as was used

in section 3.3. The �tting procedure we use to �t the model is minimizing the square

di�erence between these calculated, or theoretical, yield curves

RM = − lnPM(τj, ri)

τj
,
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and the observed data R. More explicitly, we de�ne a cost function

F =
1

mn

n∑

i=1

m∑

j=1

w(i, j)

[
lnPM(τj, ri)

τj
+Ri,j

]2
, (4.1)

where we also allow for a function of weights w(i, j). The parameters that minimize

function F are our estimators of the model parameters governing the underlying pro-

cess.

Numerical optimization of the function F is done in steps. The parameters are di-

vided into two groups. The inner group, optimized in inner iteration, can be calculated

based on the �xed values of parameters in the outer group. Their optimal values are

calculated as solutions to �rst order conditions, FOC, minimizing the cost function F ,

considering the outer parameters as �xed constants. The values of the outer parameters

are optimized using Newton's method, see e.g. [26]. The standard Newton's method

starts with a parameter vector θn in each step and de�nes the next parameter vector

as

θn+1 = θn −H(F )−1(∇F ),

where H(F ) is the Hessian matrix of function F and ∇F is its gradient, both evaluated

at θn. We approximate the Hessian matrix and the gradient by using the following logic.

We approximate the individual elements of the gradient vector using

∂F

∂xi
(x) = lim

h→0

F (x+ eih)− F (x)

h
,

≈ F (x+ eih)− F (x)

h
evaluated at h small enough,

where ei denotes a vector of zeros with a single one in i-th position and what small

enough means for the value of h is determined case by case. We use a very similar
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notion to approximate the elements of H(F ) by taking

∂

∂xj

∂F

∂xi
(x) =

∂

∂xj
lim
h→0

F (x+ eih)− F (x)

h
,

= lim
h→0

∂

∂xj

F (x+ eih)− F (x)

h
,

= lim
h→0

F (x+ejh+eih)−F (x+ejh)

h
− F (x+eih)−F (x)

h

h
,

= lim
h→0

F (x+ ejh+ eih)− F (x)

h2
− 1

h

(
∂F

∂xi
(x) +

∂F

∂xj
(x)

)
,

≈ F (x+ ejh+ eih)− F (x)

h2
− 1

h

(
∂F

∂xi
(x) +

∂F

∂xj
(x)

)
,

evaluated at h small enough,

as before the value of h is determined case by case, but is taken the same for both

approximations. To make the method computationaly e�cient we reuse the elements

of gradient already approximated in the calculation of the H(F ).

4.2 One Factor Vasicek Model

In this section we derive the estimation of a one factor Vasicek model. We will compare

the �t of this model with the results from the asymptotic approximation of Fong-Vasicek

model, de�ned in the next section. It can also serve to ilustrate the ideas of parameter

estimation on a simpler model, as less space is taken up by technicalities.

As outlined in the beginning of the section we estimate the parameters of the process

by minimizing the square distance between the observed and theoretical yield curves.

Our data are yield curves from n days, each having m observations coresponding to

di�erent maturities. We denote the data Ri,j for an interest rate from day i corre-

sponding to j-th maturity. From (1.9) we know how to calculate the theoretical price

of the discount bond P (τ, r), which de�nes the yield curve as

R(τ, r) = −(lnP (τ, r))/τ.
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Plugging what we know about P (τ, r), from section 1.3, into the equation we obtain

R(τ, r) = −1

τ
ln
(
A(τ)e−B(τ)r

)

= −1

τ
[(lnA(τ))−B(τ)r]

= −1

τ

[
(−θ +

σ2

2κ2
)(−1

κ
(1− e−κτ ) + τ)− σ2

4κ3
(1− e−κτ )2 − r (1− e−κτ )

κ

]
.

While this expression is far from simple it can be rearanged, as shown in [7], into

a simpler form if we �x the value of parameter κ. We can then obtain the following

expression

R(τ, r) = −(c0(τ, r) + c1(τ, r)θ + c2(τ, r)σ
2), (4.2)

where the coe�cient functions ci are

c0(τ, r) = −r (1− e−κτ )
κτ

c1(τ, r) =
1

τ
(τ − 1

κ
(1− e−κτ ))

c2(τ, r) =
1

2κ2τ

(
τ − 1

κ
(1− e−κτ )− 1

2κ
(1− e−κτ )2

)
.

It is important to notice that all these coe�cient functions also depend on the �xed

value of κ.

Having a managable expression for the theoretical yield curves R(τ, r) we can de�ne

cost function F , measuring the square di�erence between the observed and theoretical

yield curves,

F =
1

mn

n∑

i=1

m∑

j=1

w(i, j)
(
Ri,j + c0(τj, ri) + c1(τj, ri)θ + c2(τj, ri)σ

2
)2
. (4.3)

In our work we use w(i, j) = τ 2j , where τj is the j-th maturity observed in the data,

these values are taken the same as in [7]. Note that function F depends on values of

three parameters, namely θ, σ2 and κ. In the inner step we consider κ to be a �xed

value. Observing the �rst order conditions with respect to θ and σ2 we �nd that we

can eliminate these from optimization as their optimal values can be calculated from

34



4 ESTIMATING SHORT RATE MODELS

FOC. Consider the FOC for the inner problem:

∂F

∂θ
= 0,

∂F

∂σ2
= 0.

If we substitute for F its de�nition from (4.3), these conditions become

θ̂

(∑

i,j

c1(τj, ri)
2wi,j

)
+ σ̂2

(∑

i,j

c1(τj, ri)c2(τj, ri)wi,j

)

= −
(∑

i,j

c1(τj, ri)wi,j(c0(τj, ri) +Ri,j)

)
,

θ̂

(∑

i,j

c1(τj, ri)c2(τj, ri)wi,j

)
+ σ̂2

(∑

i,j

c2(τj, ri)
2wi,j

)

= −
(∑

i,j

c2(τj, ri)wi,j(c0(τj, ri) +Ri,j)

)
.

Notice that the terms in from of the parameter estimators and the factors on the right

hand side of these equations do not depend on them. To simplify the looks of this

system of linear equations we rewrite them as

θ̂a1 + σ̂2a2 = a3

θ̂a4 + σ̂2a5 = a6.

Thus we have a system of two equations from which we can calculate values θ̂ and σ̂2

as

θ̂ =
a2a6 − a3a5
a2a4 − a1a5

,

σ̂2 =
a1a6 − a3a4
a1a5 − a2a4

.

These equations give us a way to calculate the optimal values of parameters given the

�xed value of κ.
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The outer optimization problem, is the one of �nding the optimal value κ. This is

a one dimensional optimization problem

min
κ
F =

1

mn

n∑

i=1

m∑

j=1

w(i, j)
(
Ri,j + c0(τj, ri) + c1(τj, ri)θ̂ + c2(τj, ri)σ̂2

)2
. (4.4)

We solve this problem using the modi�cation of Newton's method outlined in the

beginning of this section. We use the method until a desired prescision in the value

of parameter κ is obtained. In our work the desired precision was almost exclusively

10−4.

We con�rm the validity of this procedure by �tting data generated using the param-

eter set 5, as de�ned in Table 3.1. In the Table 4.1 we present the comparison of the

parameters, translated into the notation of Vasicek model, used to generate the data

and the estimates of these parameters. We can see that the �t is almost perfect. We

attribute the slight discrepancy simply to a limited number of observations. In this

case 250 observations were generated as a sample and �tted. To illustrate the goodness

of this we also include Figure 4.1 in which we present the �t of three particular yield

curves, each representing one day out of n = 250, with dots denoting the generated

data and blue line denoting the �tted yield curve.

κ θ σ2

used to generate 0.109 0.06520 0.0002460

estimated 0.10678 0.06488 0.0002476

Table 4.1: Vasicek Model Parameter Fitting

4.3 Asymptotic approximation of the Fong-Vasicek model

This section is focused on �tting the parameters of the asymptotic approximation of

Fong-Vasicek model bond price P described in section 2.2. We again aim to minimize

the distance between the observed yield curves and the theoretical ones in terms of the

cost function

F =
1

mn

n∑

i=1

m∑

j=1

w(i, j)

[
lnP (τj, ri)

τj
+Ri,j

]2
.
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Figure 4.1: Fit of three particular yield curves, i.e. three days out of n, with dots

denoting data and lines denoting the �tted yield curves.

The price of the discount bond under the assumptions of the approximation is de�ned

in (2.6). Here we derive how this can be linearized as a function of inner group of

parameters, while taking the outer parameters �xed.

Starting from the equation (2.6) consider the following

lnP (τ, r) = ln
(
P0(τ, r) +

√
εP1(τ, r)

)

= ln
[
A(τ)e−B(τ)r +

√
εD(τ)A(τ)e−B(τ)r

]

= ln
[
A(τ)e−B(τ)r

(
1 +
√
εD(τ)

)]

= ln(A(τ))−B(τ)r + ln
(
1 +
√
εD(τ)

)
.

As a next step we approximate

ln
(
1 +
√
εD(τ)

)
≈ √εD(τ),

which is the �rst term in the Taylor series of the left hand side. We consider this

approximation good enough as all other terms of the Taylor series contain ε in power

of at least 1 and the accuracy of the original approximation is O(ε), meaning this

approximation does not make it much less acurate. Thus we arrive at

lnP (τ, r) = ln(A(τ))−B(τ)r +
√
εD(τ). (4.5)
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Functions B,A and D are de�ned in (2.7) as

B(τ) =
1

κ1
(1− e−κ1τ ),

A(τ) = exp [(B(τ)− τ)( θ1 −
λ1θ2
κ1
− θ2

2κ21

)
− θ2

4κ1
B(τ)2

]
,

D(τ) =
V1
κ1

(−B(τ) + τ)− V2
κ21

(−B(τ)− κ1
2
B(τ)2 + τ)

+
V3
κ31

(−B(τ)− κ1
2
B(τ)2 − κ21

3
B(τ)3 + τ).

If we take parameters κ1, θ2 and ε as �xed then (lnP (τ, r))/τ can be expressed as a

linear function of the remaining parameters, i.e.

lnP (τ, r)

τ
= c0(τ, r) + c1(τ)V1 + c2(τ)V2 + c3(τ)V3 + c4(τ)θ1 + c5(τ)λ1. (4.6)

Using the de�nitions of functions B,A,D and the equation (4.5) we can determine the

coe�cient functions to be

c0(τ, r) =
1

τ

(
−B(τ)r − θ2

2κ21
(B(τ)− τ)− θ2

4κ1
B(τ)2

)
,

c1(τ) =

√
ε

τκ1
(−B(τ) + τ),

c2(τ) =

√
ε

τκ21

(
−B(τ)− κ1

2
B(τ)2 + τ

)
,

c3(τ) =

√
ε

τκ31

(
−B(τ)− κ1

2
B(τ)2 − κ21

3
B(τ)3 + τ

)
,

c4(τ) =
1

τ
(B(τ)− τ),

c5(τ) = −1

τ

θ2
κ1

(B(τ)− τ).

Using this linearization of (lnP (τ, r))/τ we could de�ne the cost function F , mea-

suring the di�erence between theoretical and observed yield curves. Notice however

that the coe�cient functions c1, c4 and c5 are all constant linear transformations of the

term 1
τ
(B(τ) − τ). Constant in this case meaning with respect to �xed parameters

√
ε, θ2 and κ1. As a direct result of this linear dependance the system of FOC is singu-

lar implying that the problem is overidenti�ed, i.e. we have too many equations given

the information contained in our data. We work around this problem by grouping all

the colinear parameters into only one, i.e. we de�ne

V̄1 = − 1

κ1
+
θ1√
ε
− θ2√

εκ1
λ1. (4.7)
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Using the new parameter V̄1, the linearization of (lnP (τ, r))/τ changes accordingly

into
lnP (τ, r)

τ
= γ0(τ, r) + γ1(τ)V̄1 + γ2(τ)V2 + γ3(τ)V3, (4.8)

where

γ0(τ, r) =
1

τ

(
−B(τ)r − θ2

2κ21
(B(τ)− τ)− θ2

4κ1
B(τ)2

)
,

γ1(τ) =

√
ε

τκ1
(B(τ)− τ),

γ2(τ) =

√
ε

τκ21

(
−B(τ)− κ1

2
B(τ)2 + τ

)
,

γ3(τ) =

√
ε

τκ31

(
−B(τ)− κ1

2
B(τ)2 − κ21

3
B(τ)3 + τ

)
.

This allows to de�ne the cost function F for this estimation problem as

F =
1

mn

n∑

i=1

m∑

j=1

w(i, j)
(
Ri,j + γ0(τ, r) + γ1(τ)V̄1 + γ2(τ)V2 + γ3(τ)V3

)2
, (4.9)

where w(i, j) are weight functions. We use the same weights as in the case of Vasicek

model w(i, j) = τ 2j . The de�nition of the new group parameter V̄1 makes the FOC of

the inner problem, the one in which
√
ε, θ2 and κ1 are �xed, regular thus allowing us to

solve it. This means that just as in previous model, we can concetrate on optimizing

the outer problem as the values of parameters V̄1, V2 and V3 are uniquely determined

by them as the solutions of FOC of the inner problem.

The unfortunate sidee�ect of introducing the new group parameter V̄1 into the inner

problem is that the outer problem, where we optimize the values of parameters
√
ε, θ2

and κ1 now becomes singular. This is caused by the fact that γ1, γ2 and γ3 are all linear

multiples of
√
ε. As such any change in

√
ε simply translates as scaling in parameters

V̄1, V2 and V3. This means that changing the value of parameter
√
ε never brings about

a better �t in terms of lowering F . For this reason we pick an arbitrary value of
√
ε

that we use throughout the optimization procedure, e.g. in the simulation studies

conducted in the following section we use
√
ε = 0.2. We have only requirement for

this value and that is the numerical stability of the whole estimation process. We have

found that for some values of
√
ε the optimization problem is ill behaved in terms of
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numerical stability. If we happen to choose a value of
√
ε for which this is the case

we pick a new one until the problem is numericaly stable. This value should also

be su�ciently small as the assumption of small ε is the basis of the idea behind the

asymptotic approximation.

This process allows us to �t the approximation of Fong-Vasicek two factor model

very con�dently, in terms of cost function F . It does however come with a downside.

The group parameters we estimate lose explanatory value. While we can calculate their

theoretical values from the parameters used to generate the simulated data, there is no

way to go back to the original parameters from the ones we estimate.

40



5 MODEL FIT COMPARISON

5 Model Fit comparison

We choose to evaluate the added value of using the approximation of two factor Fong-

Vasicek model over the simpler one factor Vasicek model in two ways. First we conduct

a simulation study to compare how well the models we estimate �t yield curves gen-

erated using the two factor Fong-Vasicek model. In the second part of this section we

look at how well can the models �t real data. In this part we use data about annualized

daily interest rates on German zero-coupon bonds, the empirical yield curves, from the

period of 10th January 1995 to 30th April 2009.

5.1 Model comparison on simulated data

The point of this section is to assess whether the asymptotic approximation of two

factor Fong-Vasicek model, AFVM, is a signi�cant improvement over using the simpler

one factor Vasicek model, VM. We measure improvement of �t in terms of the cost

function F de�ned in equation (4.1).

The method we propose for comparing these models is as follows. We choose a

reasonably high number of experiments B = 1000. We generate B samples of yield

curve data that follow the two factor Fong-Vasicek model using the data generating

process described in section 3.3. The parameters of the model are taken from Table

3.1. We only present the results for parameter sets 1 and 4 as these contain the most

important results. In each sample we employ the algorithms de�ned in section 4 to

estimate the three models that we take into consideration.

For the �rst model the estimation algorithm is straightforward, the only input needed

for the estimation algorithm is a starting value of parameter κ, which we use through-

out all experimets κ0 = 0.1. In the case of the AFVM the algorithm needs more

starting points. The starting values of parameters κ1 and θ2 are taken as optimal val-

ues of corresponding parameters from the estimated VM. An arbitrary value for the

parameter
√
ε is take to be

√
ε = 0.2 in all samples. We choose a single value for

all samples, because changing it for di�erent samples would be needlessly complicated

for our purposes. The price for this approach is that in some samples the estimation
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algorithm does not reach a stable solution for the last model, or the solution it arrives

at makes no sense, e.g. parameters are complex numbers. For the purpose of further

study we choose to ignore these samples, noting that there is only a handful, approx-

imately 3%, of them. After omitting these samples we are left with 971 samples that

give reasonable results for parameter set 1. For parameter set 4, all the samples were

estimated without unreasonable results and we take the full 1000 into consideration.

We compare the quality of the �t by looking at cost function F as de�ned in (4.1).

Figure 5.1 shows the values of the cost function F for our three models with an index

of the generated sample on the x axis.

The �rst thing to notice is that the cost function F for VM is very similar to that

of AFVM for parameter set 1. On average the relative improvement of using AFVM

over VM, calculated as

1− FAFVM/FVM , (5.1)

is 8.18%. It is important to note that using AFVM we arrive at smallest value of F in

every observed sample. This should be the case as AFVM has more parameters than

VM and should thus be a better �t. Table 5.1 shows a few descriptive statistics about

the values of cost function F for the three examined models in parameter set 1.

Vasicek Model Approximation

of Fong-Vasicek

Model

Mean 7.87E-06 7.48E-06

Median 5.88E-06 5.62E-06

Worst �t 6.89E-05 6.84E-05

Table 5.1: Some descriptive statistics of values of cost function F for the two compared

models �tted onto data generated using the parameter set 1 from Table 3.1.

The results for AFVM in parameter set 1 seem underwhelming. The improvement

over VM, while being present in every considered sample, is only minor. The relative

improvement ranges from negligeble, i.e. practically 0, to very signi�cant 70% in the
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Figure 5.1: The values of cost function F for the estimated �ts of one factor Vasicek

model and approximation of two factor Fong-Vasicek model in 971 generated samples

following the two factor Fong-Vasicek model using the parameter set 1 from Table 3.1.

most extreme case. The average relative improvement is 8.18%, while the median

relative improvement is 3.50%.

In order to explain the underwhelming results in parameter set 1 we experimented

with changing the parameter values of the generated samples. We found that the

comparative performance of VM and AFVM is not signi�cantly impacted by positive

correlation ρ using the parameter set 2. The results of the study on this parameter

set were almost identical to those of parameter set 1 and their detailed analys is thus

omitted.

However, we found that changing the parameter κ2 changes the results profoundly.

Intuitively this should make sense. The unit of fast scale ε that de�nes the accuracy

of the asymptotic approximation de�ning the AFVM is directly linked to the value of
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parameter κ2 by

ε =
1

κ2
.

While the �tting procedure we use does not estimate the value of ε, remember that

its value is �xed, its underlying value clearly plays an important role. Consider Figure

5.2, which shows the values of cost functions F for the two models when we generate

the data using parameter set 4. In this �gure we can see that the VM and AFVM do

not share the scale of the vertical axis anymore. The �t of AFVM in terms of the cost

function F is signi�cantly better that that of VM.

Figure 5.2: The values of cost function F for the estimated �ts of constant model,

one factor Vasicek model and approximation of two factor Fong-Vasicek model in 1000

generated samples following the two factor Fong-Vasicek model using the parameter

set 4 from Table 3.1.

In results on data generated from parameter set 4, the AFVM is still the best

approximation every sample. In strong contrast to the results observed using parameter
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set 1, the AFVM is in this case a signi�cant improvement. The relative improvement of

�t, de�ned by equation (5.1), averages at 40.36% in samples generated using parameter

set 4. The median value of the relative improvement is even higher at 45.23%.

Based on the results of the simulation study we conclude that the AFVM is an

improvement over the simpler VM. It outperforms VM in terms of cost function F in

every sample generated based on the two factor Fong-Vasicek model with parameter

sets 1 through 4 from Table 3.1. The magnitude of the improvement is closely tied with

the value of parameter κ2. With the increasing value of parameter κ2 the improvement

that AFVM brings over VM increases as well. This is because it leads to faster scaling

volatility making AFVM a more accurate approximation of the two factor Fong-Vasicek

model.

5.2 Model comparison on real data

This section presents the results of �tting VM and AFVM onto real data. The data

we are �tting in this section consists of daily yield curves implied by German bonds

in the period from January 10th 1995 to April 30th 2009. The observations do not

include weekends and there are sometimes days missing from the week as well. Overall

we have data about 3735 observed yield curves. To illustrate this data we refer the

reader to Figure 1.1, which contains the development of the rate on 3 month bonds,

the shortest maturity available.

To compare the estimation techniques derived in section 4 on more than a single

sample we divide our observations into blocks. We de�ne periods 1 through 10 as

blocks of 250 observation. Period 1 is the most recent, thus ending with the last day of

available data, i.e. April 30th 2009. Period 2 is de�ned as 250 observations before the

�rst observation of period 1, and so on. For each of these periods we �t the VM and

AFVM. The optimal value of cost function F for all periods is contained the �rst two

columns of Table 5.2. The last column of this table contains the relative improvement

of �t, de�ned by equation (5.1).

We see that the AFVM is not a vast improvement over the simpler VM. As was
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Values of cost function F One factor Va-

sicek model

Approximation of two

factor Fong-Vasicek

model

Relative Im-

provement

Period 1 8.88E-08 8.28E-08 6.754%

Period 2 3.05E-08 3.05E-08 0.008%

Period 3 3.72E-08 3.70E-08 0.413%

Period 4 1.31E-07 1.31E-07 0.001%

Period 5 1.25E-08 1.25E-08 0.271%

Period 6 3.27E-08 2.39E-08 26.858%

Period 7 5.62E-08 5.61E-08 0.301%

Period 8 4.39E-08 4.22E-08 3.819%

Period 9 6.54E-08 6.41E-08 1.932%

Period 10 2.17E-07 2.12E-07 2.519%

Table 5.2: The optimal values of cost function F for the �ts of the Vasicek model and

the approximated Fong-Vasicek model. Each row represents a 250 day period.

the case in simulated data, the �t is improved in each period by estimating AFVM in

comparison to estimating VM. However the added value of the more complex model

seems only minimal. The only period in which the improvent seems signi�cant is

period 6 with improvent of almost 27%. On the other hand in half of the periods the

improvement is less than 1%. Figure 5.3 illustrates the �tted models on an example of

6 yield curves from period 3. For a better comparison of numerical values we provide

Table 5.3. This table contains the numerical values for two yield curves, number 3019

and 3185, both included in Figure 5.3. One thing we noticed is that the �tted AFVM

o�eres a much larger variation in the shapes of possible yield curves. Notice that the

dashed lines, representing the �tted VM, are almost exactly the same in terms of shape.

In contrast the solid lines representing the �tted AFVM produce a much wider range

of shapes, which seems, at least visually, to be closer to the shape of the observed data.

However as evidenced by the yield curve number 3185 sometimes both models seem far
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from the observations. The result represented by yield curve number 3185 is perhaps

the most frequent one seen in the data. The models both seem to not completely grasp

the underlying process and as a result they end up far further from the observations.

Figure 5.3: The resulting �ts of the Vasicek model and the approximation of Fong-

Vasicek model on 6 yield curves from period 3. The data are represented by dots, the

�tted Vasicek model is represend by a dashed a line and the �tted approximation of

Fong-Vasicek model is represented by a solid line.

The results however are not only negative. The optimal values of cost function

F are very low, meaning that the models are actually a pretty good �t for the data

even though the visual evidence does not seem to indicate so. We conclude that these

models, while they are not perfect are at least reasonable representations of the data

we analyzed.

We propose, that the fact that AFVM is not a signi�cant improvement over the VM

can be explained by a relatively large value of ε, the unit of fast scaling volatility. We
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τ O (3019) VM (3019) AFVM (3019) O (3185) VM (3185) AFVM (3185)

0.25 0.0300% 0.0306% 0.0310% 0.0377% 0.0379% 0.0384%

0.5 0.0314% 0.0311% 0.0319% 0.0385% 0.0382% 0.0389%

1 0.0341% 0.0320% 0.0331% 0.0404% 0.0386% 0.0397%

2 0.0355% 0.0335% 0.0346% 0.0396% 0.0393% 0.0403%

3 0.0360% 0.0347% 0.0355% 0.0395% 0.0398% 0.0405%

4 0.0367% 0.0357% 0.0362% 0.0395% 0.0401% 0.0406%

5 0.0371% 0.0364% 0.0367% 0.0396% 0.0404% 0.0406%

6 0.0378% 0.0371% 0.0372% 0.0397% 0.0406% 0.0406%

7 0.0381% 0.0376% 0.0376% 0.0398% 0.0408% 0.0407%

8 0.0385% 0.0380% 0.0380% 0.0398% 0.0410% 0.0408%

9 0.0387% 0.0384% 0.0383% 0.0398% 0.0411% 0.0409%

10 0.0391% 0.0387% 0.0386% 0.0400% 0.0412% 0.0410%

20 0.0415% 0.0404% 0.0404% 0.0421% 0.0417% 0.0416%

30 0.0416% 0.0410% 0.0410% 0.0418% 0.0418% 0.0418%

Table 5.3: The numerical values of observed yield curves, denoted by O, number 3019

and 3185 along with their estimates by VM and AFVM.

have observed similar results in the simulated samples generated using parameter set 1

in the previous section. If the unit of the fast scale is not small enough the AFVM does

not a add substential amount of insight into the workings of the underlying process

governing the short rate and the yield curves.

More work could be done in order to determine a priori whether the sample ex-

hibits the evidence of fast scaling volatility. A screening method could then be devised

which would allow us to assess whether an asymptotic approximation using fast scaling

volatility brings a signi�cant bene�t over using other models. A step in this direction

is hinted at in [9], where the authors mention using variograms to determine the period

of mean-reversion in the unobserved volatility process. If this period of mean-reversion

is deemed su�ciently short, the assumption of fast scaling volatility should hold.
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Conclusion

This diploma thesis focused on the models of the short rate. We introduced the one

factor Vasicek model and the two factor Fong-Vasicek model with stochastic volatility.

An asymptotic approximation of Fong-Vasicek model was also described as a middle

ground between these two models. The theoretical usefulness of this approximations

is that it allows for more shapes of the yield curves than the one factor model. More-

over it has less parameters than the two factor model, and perhaps most importantly,

the pricing function does not depend on the value of unobservable volatility. These

properties make this approximation very attractive from a modeling point of view.

The main goal of this diploma thesis was to come up with an algorithm that estimates

the parameters of this approximation. This algorithm was de�ned in the fourth section.

We have also successfully tested the validity of this algorithm by using it to �t randomly

generated yield curves with known parameters. Because the nature of the algorithm

does not allow us to directly compare the estimated parameters, we de�ne a di�erent

measure of success using a cost function F de�ned in equation (4.1). This cost function

punishes the di�erence between a yield curve proposed by the �tted model and the

observed data.

We �nd that both Vasicek model and the asymptotic approximation of Fong-Vasicek

model are reasonable models for data generated following the Fong-Vasicek model. The

added value of the approximation depends strongly on the underlying value of the unit

of fast scaling volatility ε. We illustrate this in the last section by comparing resulting

optimal values of the cost function F for two di�erent parameter sets where the main

di�erence is in the parameter ε.

We also �nd that both models are reasonable when �tting the real world data about

German yield curves. In terms of the optimal values of cost function F the �t obtained

in real data is comparable to that observed in the generated data, which we consider

a very good result. Dividing our sample into blocks we �nd that the added value of

the approximation is not very large in many blocks of observations. From a qualita-

tive point of view however, we observe that the shapes of yield curves o�ered by the

49



CONCLUSION

approximation are much more diverse than those o�ered by the Vasicek model. Fur-

thermore the approximation was a superior model in every observed sample in terms

of the smaller optimal value of cost function F . We thus conclude that the aims of this

diploma thesis were met. Our estimation procedures �ts the approximation of Fong-

Vasicek model with stochastic volatility onto yield curve data and has very encouraging

results in doing so for both generated and real world data.
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