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Abstrakt

ČÁRSKY, Peter: Modelovanie Slovenskej výnosovej krivky pred a po zavedení Eura. [Diplomová

práca], Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky, Kat-

edra aplikovanej matematiky a štatistiky; školitel’: Pavol Povala, PhD., Bratislava, 2017,

91 s.

Slovenská výnosová krivka je podstatný ekonomický ukazovatel’, špeciálne pre investorov.

Predikovanie pohybu tejto krivky s dostatočnou presnost’ou je preto jedna zo základných

úloh. V našej práci predstavíme viacero predikčných modelov založených na teórii časových

radov. Podstatnou súčast’ou našej práce je obsiahnutie informácie o štrukturálnej zmene

výnosovej krivky, ktorá sa udiala počas prijatia Eura. Navrhneme dve možné riešenia to-

hto problému. Nakoniec vyhodnotíme kvalitu predikcií produkovaných každým modelom

spolu s popisom ich silných a slabých stránok.

Klúčové slová: Výnosová krivka • Časové rady • autoregresia • PCA •Diebold-Li.
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Abstract

ČÁRSKY, Peter: Modelling the term structure of Slovak government bond yields before and

after the euro adoption. [Master thesis], Comenius University in Bratislava, Faculty of

Mathematics, Physics and Informatics, Department of Applied Mathematics and Statis-

tics; Supervisor: Pavol Povala, PhD., Bratislava: FMFI UK, 2017, 91 p.

The yield curve is an important economic indicator especially for investors. To predict the

movement of yield curve to sufficient extent is then key task. In our thesis we introduce

several predictive models based on theory of time series. Essential task in our thesis is to

find a way to use the information of structural change of yield curve caused by euro adop-

tion. We propose two different solutions to this problem in our thesis. Finally we evaluate

quality of forecasts provided by each technique as well as their overall strengths and weak-

nesses.

Keywords: Yield curve • Time series • Autoregression • PCA •Diebold-Li.
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Introduction

The yield curve is a graphed line that expresses yields as a function of time to maturity.

Fixed income investors monitor the yield curve closely because significant interest rate

changes, affecting financing costs and therefore expenditure decisions of businesses across

all market sectors, are a major driving force of the market and the economy. Modelling

the yield curve is therefore an important task in every economy. Two popular approaches

to term structure modelling are no-arbitrage models and equilibrium models. The no-

arbitrage tradition focuses on perfectly fitting the term structure at a point in time to en-

sure that no arbitrage possibilities exist, which is important for pricing derivatives. The

equilibrium tradition focuses on modelling the dynamics of the instantaneous rate, typi-

cally using affine models, after which yields at other maturities can be derived under var-

ious assumptions about the risk premium. As Diebold and Li state in [4] many theoretical

improvements have been made in this area. However the main goal of this thesis is to

model the yield curve in time. This is the reason why in our thesis, we introduce several

predictive methods based on theory of time series and evaluate them according to their

forecasting power. The basic idea is to take time series of yields with different maturities

and either use autoregressive techniques for modelling them or at first use various tech-

niques to reduce the dimensionality of the problem and then model this lower number of

time series.

We will work with data consisting of zero coupon yields on Slovak government bonds

with maturities of 1 to 15 years. The very first thing we evaluate is presence of a structural

break caused by euro adoption in January 2009. We gather insights on this change by com-

paring descriptive statistics for these two time periods in chapter 1. Further insight into

this problem is provided in chapter 2 where we look also on the stationarity of univariate

time series, formally testing presence of unit root. Decrease of dimensionality is done in

chapter 3, where we use principal components analysis to find a 3-dimensional space that

1



covers most of the variation present in the original 15-dimensional space. In chapter 4

we use Nelson-Siegel’s strictly defined functional form to model the yield curve in time by

performing an autoregressive analysis on factors from this model. In chapter 5 we use a

theoretical framework that allows us to explain the structural change by exogenous time

series. In chapter 6 a vector autoregression model is defined and two such models are

specified and fitted on the data. Final evaluation of predictive power takes place in chap-

ter 7 where we use several evaluation techniques, one of them developed by us specially

for this problem.

2



CHAPTER 1

DESCRIPTIVE STATISTICS

In this chapter, we take a look at properties of time series of yields from Slovak Govern-

ment Zero Coupon Bonds. This data can be found on

http://www.finance.gov.sk/Default.aspx?CatID=10501 and they cover period from 7.1.2003

to 31.10.2016 for bonds with maturities up to 10 years. We have data for bonds with matu-

rities of 11 to 15 years starting from 11.5.2006 up to 31.10.2016.

1.1 Whole time period

In the figure 1.1 we can observe time series of yields for maturities from 1 to 10 years. Same

time series but for maturities from 11 to 15 years can be seen in figure 1.2. We can see

that time series of yields from bonds with similar maturities tend to follow approximately

same pattern. This can be also seen in table 1.1 of we can see sample correlations between

yields from bonds with different maturities. For similar maturities close to diagonal of the

variance matrix 1.1, sample correlation is close to 1. Another observation is that especially

for short maturities the time series changes drastically during years 2008 and 2009. The

most probable cause for this structural break is adoption of euro in Slovakia which became

national currency on 1.1.2009.

Table 1.1: Sample correlations between yields with different maturities rounded to two
decimal numbers

Maturity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1.00 0.98 0.94 0.90 0.86 0.83 0.79 0.77 0.74 0.71 0.69 0.67 0.66 0.65 0.64
2 0.98 1.00 0.99 0.97 0.94 0.92 0.89 0.87 0.85 0.83 0.81 0.79 0.78 0.77 0.76
3 0.94 0.99 1.00 0.99 0.98 0.96 0.95 0.93 0.91 0.89 0.88 0.86 0.85 0.84 0.83
4 0.90 0.97 0.99 1.00 1.00 0.99 0.98 0.96 0.95 0.93 0.92 0.91 0.90 0.89 0.88
5 0.86 0.94 0.98 1.00 1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.92
6 0.83 0.92 0.96 0.99 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.95 0.95 0.94
7 0.79 0.89 0.95 0.98 0.99 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.96
8 0.77 0.87 0.93 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.97
9 0.74 0.85 0.91 0.95 0.97 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98

10 0.71 0.83 0.89 0.93 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99
11 0.69 0.81 0.88 0.92 0.95 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99
12 0.67 0.79 0.86 0.91 0.94 0.96 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
13 0.66 0.78 0.85 0.90 0.93 0.95 0.97 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00
14 0.65 0.77 0.84 0.89 0.92 0.95 0.96 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00
15 0.64 0.76 0.83 0.88 0.92 0.94 0.96 0.97 0.98 0.99 0.99 1.00 1.00 1.00 1.00

In figure 1.3 we can see histograms of yields for all observed maturities. Here we can

also see similarities among yields with maturities close to each other. In the case of longer
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CHAPTER 1. DESCRIPTIVE STATISTICS

Figure 1.1: Behaviour of yields from Slovak government zero coupon bonds with maturity
1 to 10 years

maturities we can observe a peak at approximately 1 percentage point lower than respec-

tive maximum for that time series. For short maturities we can see two peaks, one similar

to that observed in case of longer maturities, while second is close to the minimum value

of the time series across whole time period. This corresponds to the decline of yields with

short maturities during the euro adoption period.

In table 1.2 we can find for each time series some descriptive statistics. We can see that

the minimum value is close to zero and is smallest for the maturity of 5 years. The largest

value is obtained for the longest maturity of 15 years. All of these values are from recent

time period in year 2016 as we can see in figure 1.1 and 1.2. Second statistics computed for

each maturity is the maximum. We can see a rising trend which however is not strict for

short maturities. The average value follows same rising pattern which is not strict because

of maturities of 11 and 12 years. The last statistic is standard deviation. We can see that

these values are declining with increasing maturities which means that time series of long

maturities are slightly more stable than their short-term counterparts.

Table 1.2: Basic descriptive statistics of yields from Slovak bonds for the whole time period
Maturity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Min -0.30 -0.45 -0.54 -0.56 -0.53 -0.42 -0.26 -0.09 0.08 0.23 0.36 0.49 0.60 0.70 0.79
Max 5.64 5.34 5.42 5.45 5.45 5.42 5.42 5.70 6.02 6.25 6.41 6.52 6.58 6.64 6.69

Average 2.30 2.45 2.62 2.80 2.98 3.14 3.30 3.45 3.58 3.69 3.57 3.68 3.77 3.85 3.92
SD 1.83 1.74 1.71 1.69 1.65 1.61 1.57 1.53 1.49 1.45 1.52 1.49 1.47 1.45 1.43
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CHAPTER 1. DESCRIPTIVE STATISTICS

Figure 1.2: Behaviour of yields from Slovak government zero coupon bonds with maturity
11 to 15 years

1.2 The euro adoption

In this section we separate the time series into two parts. The first one covering time period

before euro adoption starts at 7.1.2003 for maturities of 1 to 10 years and at 11.5.2006 for

maturities of 11 to 15 years. This time period ends at the end of year 2007 for all maturities.

We exclude years 2008 and 2009 to eliminate the transition phase of euro adoption. Second

time period after euro adoption therefore starts at 1.1.2010 and ends at 31.10.2016. For

each time period we compute similar statistics as in section 1.1.

In figures 1.4, 1.5 and 1.6 we can see comparison of histograms of yields for two con-

sidered time periods. First difference between time period before euro adoption and after

euro adoption is lower overall level of yields in case of period after euro adoption which is

significant mostly for short maturities. Another difference is that we can observe usually

only one peak in time period before euro adoption while during latter time period there are

more peaks. This means that yield distribution during time period before euro adoption is

more stable and therefore is easier to model and potentially forecast. This observation is

confirmed and further elaborated in section 2.6.1.

Concerning comparisons of basic statistics that can be seen in table 1.3 we can observe

main pattern consisting of overall decline of level of yield curve that can be seen particu-

larly in values of minimum and average that are significantly lower for time period after

euro adoption. Exception to this pattern is slightly higher values of maximum for time pe-

riod after euro adoption in case of long maturities. However maximal values are indeed

5



CHAPTER 1. DESCRIPTIVE STATISTICS

Figure 1.3: Histograms of yields from different maturities

lower for short maturities. This means that with euro adoption the yield curve did not

experience just parallel shift but also change in slope. Standard deviations are decreas-

ing with increasing maturities for time period before euro adoption. For time period after

euro adoption we can see increase of standard deviation with higher maturities which in-

dicates also structural change in nature of time series. Interesting observation is special

case of short maturities where standard deviation for time periods before and also after

euro adoption is lower than standard deviation of whole time period. This is mainly due

to the significant decrease of level of yields from bonds with these maturities. We can also

see overall higher standard deviations in case of time period after euro adoption. This

observation was also observed and commented in histograms 1.4, 1.5 and 1.6.

All this evidence in descriptive statistics point out that Slovak yield curve experienced

a structural break with euro adoption. We will take this fact into account in our following

work and we will aim at finding a good way to overcome this modelling issue.

Table 1.3: Basic descriptive statistics of yields from Slovak bonds where BEA represents
time period before euro adoption and AEA represents time period after euro adoption

Period Statistic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BEA Min 2.25 2.42 2.52 2.66 2.79 2.91 3.03 3.12 3.17 3.21 4.04 4.05 4.07 4.08 4.10
AEA Min -0.30 -0.45 -0.54 -0.56 -0.53 -0.42 -0.26 -0.09 0.08 0.23 0.36 0.49 0.60 0.70 0.79
BEA Max 5.64 5.34 5.42 5.45 5.45 5.42 5.42 5.44 5.46 5.47 5.40 5.40 5.40 5.40 5.41
AEA Max 2.85 3.15 3.61 4.04 4.42 4.86 5.32 5.70 6.02 6.25 6.41 6.52 6.58 6.64 6.69
BEA Average 4.15 4.10 4.12 4.17 4.23 4.29 4.34 4.39 4.43 4.48 4.53 4.55 4.57 4.59 4.60
AEA Average 0.75 0.98 1.21 1.45 1.71 1.96 2.20 2.42 2.63 2.81 2.98 3.12 3.25 3.36 3.45
BEA SD 0.90 0.80 0.74 0.69 0.65 0.62 0.60 0.58 0.57 0.56 0.28 0.28 0.28 0.28 0.28
AEA SD 0.75 1.00 1.18 1.31 1.40 1.46 1.50 1.53 1.54 1.55 1.56 1.56 1.56 1.56 1.56
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CHAPTER 1. DESCRIPTIVE STATISTICS

Figure 1.4: Comparison of histograms of yields for maturities of 1 to 5 years for time period
before and after euro adoption

Figure 1.5: Comparison of histograms of yields for maturities of 6 to 10 years for time pe-
riod before and after euro adoption
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CHAPTER 1. DESCRIPTIVE STATISTICS

Figure 1.6: Comparison of histograms of yields for maturities of 11 to 15 years for time
period before and after euro adoption

8



CHAPTER 2

UNIVARIATE TIME SERIES APPROACH

In this chapter, we want to look at time series of yields from Slovak Government Zero

Coupon Bonds separately for each maturity. Great disadvantage of this approach is that

we ignore mutual dependence of yields of different maturities. However we take this fact

into account in other modelling techniques so we can evaluate importance of these de-

pendencies on the underlying process.

At first, we model yields from Zero Coupon bond with maturity of 1 year describing all

the steps. Next, we use the same procedure to model also yields with longer maturities.

Theoretical backround of framework used to analyse this time series can be found in 2.1.

2.1 Theory of time series

In this section, we briefly introduce the framework we use for analysing the time series.

2.1.1 ARIMA

ARMA modelling, defined in 2.2 is used to analyse and model behaviour of so called sta-

tionary time series. ARIMA(p, k, q) modelling is used, when we work with differences of

order k from the original time series. It is necessary to take differences if the process is not

stationary or there is a unit root present. We define stationary process same way as it is

defined in [8].

Definition 2.1 (White noise). Random process ut is called white noise if and only if:

(1) E[ut] = 0 ∀t

(2) V ar[ut] = σ2 ∀t

(3) Cov[ut, us] = 0 ∀t 6= s

Definition 2.2 (ARMA model). Let ut be white noise. Then an ARMA(p,q) process is a process

that contains p autoregressive components and q moving average components. This process

can be expressed as following: xt = δ + α1xt−1 + ...+ αpxt−p + ut − β1ut−1 − ...− βqut−q.

Definition 2.3 (Stationary process, from [8]). Process xt is stationary, if and only if it fulfills

following conditions.

9



CHAPTER 2. UNIVARIATE TIME SERIES APPROACH

(1) E[xt] = µ ∀t

(2) Cov[xt, xs] = γ(|t− s|) ∀t, s

Statistical test 2.1 (Ljung-Box test). Ljung-Box test is used to test the hypothesis, whether

all autocorrelations up to lag m are simultaneously equal to zero.

The test statistic is defined as Q = T (T + 2)
∑m

j=1
ρ(j)2

T−j ∼
T→∞

χ2
m. If this test is used for

testing autocorrelation of residuals in an ARIMA(p, i, q) model, degrees of freedom of the

Chi-squared distribution is set to m− p− q instead of m.

Definition 2.4 (Spectrum of a time series). For a stationary time series Y with autocovari-

ances {γj}∞j=−∞ , we define its spectrum as sY (ω) = 1
2π

∑∞
j=−∞ γje

−iωj ,where i is imaginary

unit.

2.2 Unit root

For finding a good model, it is necesarry to check, whether there is unit root in our time

series or the process is stationary1. In the figure 2.1 we can see behaviour of the process in

time.

Figure 2.1: Time series of yields from zero coupon bond with maturity 1 year

To test the hypothesis that we have no unit root in the time series, we use three statis-

tical tests as done in [3].

The first one is Adjusted Dickey-Fuller test, for further explanation of how this test

works, please see [9] or [6]. The null hypothesis of this test is that there is a unit root in

1By stationarity we mean so called weak stationarity defined in 2.3.

10



CHAPTER 2. UNIVARIATE TIME SERIES APPROACH

Table 2.1: Results of ADF and KPSS tests applied on time series of yields from zero coupon
bonds with maturity 1 year consisting of values of test statistics for each test as well as
three critical values

Type of test Test statistic 1% crit. v. 5% crit. v. 10% crit. v.
ADF with drift -0.9411 -3.43 -2.86 -2.57

ADF with drift and trend -1.4348 -3.96 -3.41 -3.12
KPSS with drift 29.0651 0.347 0.463 0.739

KPSS with drift and trend 1.1224 0.119 0.146 0.216

the observed process. As input parameter for this test, we have to specify, whether there is

a drift, drift and trend or none of them. From the figure 2.1 we can not say, whether there

really is a trend or just couple of jumps that change behaviour of the process significantly.

However, presence of a drift is evident, therefore we try running the test twice with two

different input options. Results of these tests can be seen in table 2.1. With the trend op-

tion we get test statistic equal to −1.4348, while 10 percent critical value is equal to −3.12.

If we change the input option to drift, we get test statistic equal to −0.9411, while 10 per-

cent critical value is equal to −2.57. We reject the null hypothesis if the test statistic value

is lower that chosen critical value. In both cases, test statistic is higher than 10 percent

critical value, so we don’t refuse the null hypothesis.

Second test used is Kwiatkowski-Phillips-Schmidt-Shin test further explained in [11].

In this method, two models can be considered. One with a drift and one with a linear

trend. The null hypothesis is stationarity of observed process in time. Similarly to ADF

test, we consider both options observable in table 2.1. Model with drift has test statistic of

value 29.0651 and the most strict quoted 1 percent critical value is 0.739. Specifying model

with trend, we get value of test statistic 1.1113. 1 percent critical value is equal to 0.216.

Conclusion is that we refuse the null hypothesis and therefore stationarity of the process.

This result is in accord with the ADF test.

The last method we use is Phillips-Perron unit root test, which is non-parametric and

robust technique introduced in [7]. Null hypothesis in this case is presence of unit root.

P-value is equal to 0.695, so we have no reason to not refuse the null hypothesis. Again,

we have obtained same result that there is not enough evidence to declare that there is no

unit root in the observed time series.

The final result of this analysis is that we have strong evidence that there is a unit root

in the time series and that time series is not stationary. We run same tests for the first

differences of original time series. Results are in all cases opposite to the results of tests

used on original time series as you can see in table 2.2 where we chose type of test as none

since there is no significant drift nor trend present. P-value of Phillips-Perron test in this

11



CHAPTER 2. UNIVARIATE TIME SERIES APPROACH

case was equal to 0.01. According to these results, we should use first differences for further

analysis.

Table 2.2: Results of ADF and KPSS tests applied on first differences of time series of yields
from zero coupon bonds with maturity 1 year consisting of values of test statistics for each
test as well as three critical values

Type of test Test statistic 1% crit. v. 5% crit. v. 10% crit. v.
ADF without drift -43.6256 -2.58 -1.95 -1.62
KPSS without drift 0.0928 0.347 0.463 0.739

2.3 ARIMA modelling

We want to find a suitable ARIMA model for the observed time series. The theoretical

background can be found in 2.1.1.

Figure 2.2: Sample autocorrelation and partial autocorrelation functions

In the figure 2.2 we can see autocorrelation function of the differenced time series,

further explained in [1] and partial autocorrelation function of the differenced time series,

further explained in [13]. If we look at PACF, we might suggest an AR(3) model because of

the first three lags being significantly non-null. But the ACF lags don’t look like they are

converging to 0, having values of quite large lags significantly non-null. If we look at first

at ACF, we see that the first lag is significantly bigger than all the other lags, wich are more

or less close to zero. This observation might lead to choosing MA(1) model, but as we can

see, also PACF doesn’t look like converging to zero with bigger lags.

12



CHAPTER 2. UNIVARIATE TIME SERIES APPROACH

The fact, that ACF and PACF terms of bigger lags are significantly different from zero

might make finding appropriate model difficult. We tried all combinations ofARIMA(p, 1, q)

models up to p < 15 and q < 15. We looked at quality of residuals of fitted models, more

precisely to their sample autocorrelations. We used Ljung-Box test, further described in

2.1, testing whether all autocorrelations up to certain lag are different from zero. We also

looked at ACF of residuals compared to approximate 95% interval of certainty±2/
√
T . The

last criterium was BIC. Using this approach, we have chosen ARIMA(3, 1, 0) model.

Figure 2.3: Behaviour of residuals in time, autocorrelation of residuals, QQ plot and p-
values of Ljung-Box test for ARIMA(3, 1, 0) model

As we can see in figure 2.3, even the best model doesn’t describe behaviour of the time

series perfectly. The fitted model is: 4xt = −0.0014 − 0.4334 4 xt−1 − 0.1907 4 xt−2 −

0.06614 xt−3, where4xt = xt+1 − xt.

In figure 2.4 we can see that modules of all roots of characteristic polynome 1+0.4334L+

0.1907L2 + 0.0661L3 are bigger than 1, so the process is stationary.

Final conclusion may be that we can find a model that is not that bad, but it just can

not describe the whole complex movements of yields in time. The reason can be that the

estimated parameters are constant in time so the model can not describe when the process

changes nature at some point. This idea is used for analysis in section 2.6.

2.4 Spectral analysis

Spectral analysis searches for hidden periodicity in a time series. From the spectrum, de-

fined in 2.4 we can see, which frequencies have the biggest impact on variance of the pro-
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Figure 2.4: Roots of ARIMA(3, 1, 0) process together with unit root

cess. In figure 2.5 we can see that there is a peak around frequency = 4. Since two previ-

ous frequencies and one consecutive frequency have values of spectrum not significantly

lower than the maximum one, we compute weighted average of four frequencies with max-

imal values of spectrum. We compute final frequency as freq = w2freq2 + w3freq3 +

w4freq4 + w5freq5, where wi = spectrumi∑5
j=2 spectrumj

. This way, we get freq = 0.2447651. Final

step is to compute the period: P = 1/freq = 1/0.2447651 = 4.08555. We see, that spectral

analysis has found a periodic movement in the yields of 1 year zero coupon bonds with

period of approximately 4 years.

2.5 Yields with longer maturities

We perform same analysis on time series of yields from Slovak government zero coupon

bonds with higher maturities. At first, we try to find unit root using Phillips-Perron test.

P-values of this test can be found in table 2.3. All p-values are bigger than 0.5 so we don’t

refuse the null hypothesis of unit root in any of these cases. This means that we work with

at least first differences. Applying same test to first differences results in p-values equal to

0.01 so we refuse the null hypothesis. First differences are then used for further analysis.

We try to find the best model for time series of yields for each maturity. Detailed steps

14



CHAPTER 2. UNIVARIATE TIME SERIES APPROACH

Figure 2.5: Full sample spectrum and first 20 frequencies of sample spectrum of yields
from Slovak government bonds with maturity of 1 year

Table 2.3: P-values of Phillips-Perron test
Maturity of bond 1 2 3 4 5

P-value 0.6848862 0.6458403 0.6348452 0.6692528 0.7081263

Maturity of bond 6 7 8 9 10
P-value 0.7381668 0.7598119 0.7773977 0.7923337 0.8005964

Maturity of bond 11 12 13 14 15
P-value 0.5739533 0.6027349 0.6236036 0.6337487 0.6311513

can be found in 7. Final orders of estimated models can be found in table 2.4. All the

models have been tested for stationarity and invertability.

2.6 Split time series

2.6.1 Period before the euro adoption

We have seen that constancy of parameters in ARIMA model is a great disadvantage, be-

cause yields from government bonds are influenced by number of external factors. Influ-

ence of such factor can be complete change of nature of process in time, or even substan-

tial change of the whole yield curve. One such event can be euro adoption in Slovakia on

1.1.2009. This can be seen in figure 2.6 as the biggest decline in observed period.

This observation leads us to splitting the time series into two parts: before euro adop-

tion and after euro adoption. At first we take time window up to the start of year 2008 so

we minimize the influence of euro adoption on the time series. Behaviour of time series

15
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Table 2.4: Models that fit the best for time series of yields from bonds with each maturity.
First number contains number of autoregressive components, second number describes
differences of which order has been taken and the last number for each maturity is number
of moving average components.

Maturity of bond 1 2 3 4 5
ARIMA process (3, 1, 0) (8, 1, 1) (2, 1, 3) (0, 1, 3) (0, 1, 3)

Maturity of bond 6 7 8 9 10
ARIMA process (3, 1, 3) (0, 1, 7) (0, 1, 7) (0, 1, 8) (0, 1, 9)

Maturity of bond 11 12 13 14 15
ARIMA process (0, 1, 8) (0, 1, 8) (0, 1, 8) (0, 1, 1) (5, 1, 2)

Figure 2.6: Behaviour of yields from Slovak government zero coupon bonds with maturity
of 1 year and with highlighted date of euro adoption

during this period can be seen in figure 2.7.

We run same three tests for unit root as in section 2.2. All three tests provide strong

evidence of unit root in the time series so we have to take differences. Testing differenced

time series, we get same result as with the whole time period, that there is no unit root

present.

We have found ARIMA(5, 1, 3) stationary and invertible model with substantially bet-

ter residuals than in case of the best model for the whole time series. This fact is illustrated

in figures 2.8 and 2.9 where we can see p-values for Ljung-Box test on residuals. In the first

case, p-values for lags 15 and higher are bellow critical line of 5%. In the case of shorter ob-

served period, we can see that all p-values are significantly above 5%.We can conclude that

we have found better model that describes well movement of yields in the period before

euro adoption than the whole period. The reason behind this may be that the underlying

process did not change nature during the observed period and therefore it is possible to
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Figure 2.7: Behaviour of yields from Slovak government zero coupon bonds with maturity
of 1 year before euro adoption

model it using autoregressive approach.

Figure 2.8: Ljung-Box test for maximum of 20 lags for the original time series

Concerning other maturities, we worked with first differences because p-values of Phillips-

Perron test were higher than 0.6.We have found substantially better models for the period

before euro adoption than for the whole period as you can see in results from code in the

Attachments. This may be due to a simple fact that we have less data to be fitted so it is

expected to model it more easily, however we think that the main reason is that during pe-

riod before euro adoption there was not an influential event that would change the nature

of process. We conclude that using ARIMA modelling on this period is a good way of mod-

elling the process and that we can describe behaviour of yields in time quite well using this

approach.

Figure 2.9: Ljung-Box test for maximum of 20 lags for the time series before euro adoption

17
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We tried to find some periodic movements in time series of yields using spectral anal-

ysis but as expected, the time period was too small to detect any such movement.

2.6.2 Period after the euro adoption

In the figure 2.10 we can see behaviour of yields from 1 year zero coupon bond. Observed

period starts at 1.1.2010 so one year after euro adoption.

Figure 2.10: Behaviour of yields from Slovak government zero coupon bonds with maturity
of 1 year after euro adoption

We use same steps as in the case of period before euro adoption. All of these steps

can be found in the Attachments. At first, we use Phillips-Perron test to find out, whether

we should work with differences. As all p-values are higher than 0.35 we conclude that

differencing is necessary. Applying same test to first differences gives us p-values of 0.01

for all maturities so we proceed with first differences to ARIMA modelling.

Concerning residuals, we have found better models than for the whole time period,

but globally worse than in the case of period before euro adoption. This may be due to the

fact, that in this period, there was debt crisis in eurozone which influenced to some extent

behaviour of yields in the whole Europe. As the debt crisis lasted for a longer period of

time which is not clearly defined, we can not split this time series to get better results. Also

the time horizon would be quite small so fitted models might be noisy.

Spectral analysis has not found any periodic pattern in the time series. This result is in

accord with previous results in this field.

18
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2.7 Conclusion

There is a wide discussion in the literature concerning stationarity of interest rates. In

[14], authors suggest that not refusing the null hypothesis of unit root by ADF and PP tests

might be caused by small sample size. This is probably not our case, because we have daily

data from multiple years and KPSS test refused the null hypothesis so there is enough evi-

dence that sample size is not an issue here. Another possible cause of unit root is suggested

in [12] where they find significant influence of structural breaks or regime switches con-

cluding into unit root. Several regime switches has been observed in the time series of

yields from Slovak government bonds so this could be the reason for not refusing the unit

root hypothesis. However we obtained same results after splitting the time series. More

structural breaks can be present during the observed period that we did not include in our

analysis that could possibly cause the non-stationarity of the time series. As we can not

perfectly distinguish such events, we can not conclude that this is the main reason. Also

after further splitting we could have issues with sample size and the tests being not power-

ful enough. In [12], authors suggest that reason why interest rates are not stationary might

be volatility of inflation which is due to exogenous shocks in the economy that have a long

memory. Therefore mean-reversion of nominal interest rates is not observed even on a

longer time span. This might be also reason why we observe presence of unit root in the

time series as there were multiple such shocks that could influence inflation and therefore

also behaviour of yields on a larger scale.

Conclusion from ARIMA modelling is that for the whole time period, it is very hard to

model behaviour of yields using parameters constant in time. Main reason behind this

is that government bonds are influenced by many factors like monetary policy, which are

time-varying in general. Autoregressive approach could capture this behaviour if these

input factors follow same pattern. What can not be captured are structural changes in

nature of time series. One such change occured with euro adoption. Other is probably

connected with eurozone debt crisis. This means that if we want to model time period

across these changes we should allow models with time-varying parameters or at least

using some dummy explanatory variables that would indicate structural switch in yield

curve.

By using spectral analysis, we have found that yields from zero coupon bond with ma-

turity of 1 year are periodic with period of approximately 4 years. No such result was found

for longer maturities or for split time series. This result may be due to the fact that the

short end of yield curve is controlled mainly by cyclical variation of monetary policy and

inflation trend. Long end of yield curve is composed mainly by inflation trend and risk pre-
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mium. Spectral analysis captured this cyclical variation which is not present for maturities

of 2 years or more.
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CHAPTER 3

PRINCIPAL COMPONENTS ANALYSIS

3.1 Theory of principal components

We briefly introduce definition of principal components. For further explanation of theory

behind principal components analysis, please see [2].

Definition 3.1 (Principal components, from [2]). If X is any random vector having finite

variance, let

V ar(X) = ODOT

be the spectral decomposition of its variance matrix. Consider the random vector

Y = OTX.

(We are using a linear transformation that is derived from the spectral decomposition, O

being the same matrix in both places.) Then

V ar(Y ) = OTV ar(X)O = OTODOTO = D,

where we used the defining property of orthogonal matrices

(OT = O−1).

Thus Y has a diagonal variance matrix. Hence, since the off-diagonal elements of the

variance matrix are covariances, the components of Y are uncorrelated. And, since the di-

agonal elements of the variance matrix are variances and the diagonal elements of D are

the eigenvalues of V ar(X), the variances of the components of Y are the eigenvalues of the

variance matrix ofX. The components of Y are called the principal components ofX. Since

an orthogonal matrix is invertible, we also have

X = OY.

This expresses an arbitrary random vector X as a linear combination of uncorrelated ran-

dom variables (its principal components).
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3.2 Application of PCA

When estimating ARIMA models for time series of yields from bonds with different maturi-

ties, we noticed that a model which suits the best for a certain maturity offered often quite

good fit for time series of yields from bonds with maturities close to the original one. This

means that yields from bonds with similar maturities tend to follow the same pattern. This

observation can be seen in figure 1.1 but even better in figure 1.2. However we can see that

with euro adoption, the whole yield curve changed its shape with short-term yields de-

creasing significantly and long-term yields even rising slightly. From this moment, we can

see bigger spread between maturities than before. This spread stays stable for relatively

long period, but lowers around year 2015 getting into similar form as in year 2005 but with

paralel decline of the whole curve. In table 1.1 we can see sample correlations between

yields from bonds with different maturities. For similar maturities close to diagonal of

the variance matrix 1.1, sample correlation is close to 1. This observation supports our

hypothesis about similarity of time series of yields with maturities close to each other.

It is therefore useful to take advantage of similarities between yields from bonds with

different maturities to capture movement of the yield curve as whole. To detect by how

many hidden factors we can model the behaviour of yields with all 15 maturities, we use

principal components analysis. The key part of theory used can be found in 3.1. For more

detailed theoretical approach, please see [2]. One disadvantage of PCA is time invariance

so if we randomly shuffle the index of yields, output of PCA remains the same.

We proceed with taking same three time periods into account as in time series analysis:

whole time period, period before euro adoption and period after euro adoption. Script

used for this analysis can be found in the Attachments.

Proportion of explained variance by principal components for three time periods can

be found in table 3.1. We can see that almost 100% of variance of yields can be explained

with 5 first principal components in case of the whole time period and the time period

after euro adoption. Almost 100% of variance for time period before euro adoption is ex-

plained with 6 principal components. More than 99% of variance in cases of all three time

periods can be explained using just two principal components. These values can be seen

graphically displayed in figures 3.1, 3.2 and 3.3 in a cumulative way.

The ability to capture main movements of yields curve using only small number of

dimensions can be seen in amount of information that is lost when considering only the

space given by some of the first principal components. We can do a transformation of
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Table 3.1: Proportion of variance explained by principal components for three considered
time windows

Principal component Whole period Before euro After euro
1 0.9304 0.8538 0.9878
2 0.06545 0.1411 0.00935
3 0.00345 0.00290 0.00209
4 0.00068 0.00209 0.0007
5 0.00004 0.00015 0.00005
6 0.00000 0.000010 0.00000
7 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00000
9 0.00000 0.00000 0.00000

10 0.00000 0.00000 0.00000
11 0.00000 0.00000 0.00000
12 0.00000 0.00000 0.00000
13 0.00000 0.00000 0.00000
14 0.00000 0.00000 0.00000
15 0.00000 0.00000 0.00000

original yield data into base given by 1, 2 and 3 principal components in following way.

Yi = OTi (X − µ) i = 1, 2, 3,

where Yi is a matrix with i rows and n columns representing transformed yields into base

given by i first principal components. Oi is a i× 15 transformation matrix with i eigenvec-

tors belonging to i largest eigenvalues of V AR(X) as rows. X and µ are 15 × n matrices

where X contains original yield data for 15 maturities and n days. µ is formed by average

yield across time for each maturity, therefore contains n identical columns. Thanks to this

operation, we have centered data around 0.

In the next step, we transform these yields back into original base, loosing some portion

of information in the process.

Xi = Oi × Yi + µ.

The last step is to plot these data together with the original time series to graphically

see if we can obtain satisfying results using reduced number of dimensions.

In the figures 3.4, 3.5, 3.6 we can see that a great portion of yield movements can be

described using small number of principal components. Especially using 3 principal com-

ponents transformation which is plotted in green often coincides with original time series

plotted in black color. For yields from bonds with longer maturities it may seem that only

two first principal components can explain a lot of information, but are too inaccurate in

case of yields with maturity of 1 year. First principal component describes suprisingly well
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Figure 3.1: Cumulative explanatory power of principal components for the whole time
period

Figure 3.2: Cumulative explanatory power of principal components for time period before
euro adoption

yields movements in case of longer maturities but the shorter the maturity gets, it lacks

variability seen in the original time series.

We can also take a look at eigenvectors corresponding to the largest three eigenvalues

to get an idea what movements they capture. This information can be seen in table 3.2.

First principal component has very similar values for each maturity therefore we can say

that it depends equally on yield with each maturity. This may be interpreted as level of

yield curve. Second principal component depends positively on yields with short maturi-

ties the components of eigenvector declines monotonically with larger maturities becom-

ing negative from maturity of 7 years. This monotonical dependance can be explained as

slope of yield curve controlling how flat the yield curve is. Third principal component de-

pends negatively on short and long maturities, on the other side it depends positively on

mid-term maturities with maximum for 5 years. The interpretation of this observation can
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Figure 3.3: Cumulative explanatory power of principal components for time period after
euro adoption

Figure 3.4: Original time series of yields from bonds with maturity of 1 year in black color
together with transformed yields into base given by 1,2 and 3 principal components and
backwards.

be that third principal component governs curvature of the yield curve.

3.3 Conclusion

We can conclude that using the transformation into base given by first three principal

components, we loose only little amount of information which can be considered as noise.

In addition to that we can interpret first three components quite intuitively as level, slope

and curvature. This idea of reducing dimension of yields, then modelling this small amount

of time series and finally transforming it back into original base can be used to predict fu-

ture movements of yield curve. We use this approach and evaluate it in chapter 7. The
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Figure 3.5: Original time series of yields from bonds with maturity of 7 years in black color
together with transformed yields into base given by 1,2 and 3 principal components and
backwards.

second conclusion from this chapter is that we can describe yield curve in time by using

only three factors. Such a factor model is also Diebold-Li model, introduced in chapter 4.
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Figure 3.6: Original time series of yields from bonds with maturity of 13 years in black color
together with transformed yields into base given by 1,2 and 3 principal components and
backwards.

Table 3.2: Eigenvectors corresponding to first three principal components
Yields PC1 PC2 PC3
ZCY1Y -0.2308411 0.57837043 -0.58014036
ZCY2Y -0.2568372 0.42742090 -0.10414491
ZCY3Y -0.2733832 0.29562798 0.17600945
ZCY4Y -0.2812168 0.18527438 0.29856641
ZCY5Y -0.2827637 0.09336351 0.32249771
ZCY6Y -0.2802764 0.01682650 0.28915806
ZCY7Y -0.2753683 -0.04670181 0.22490058
ZCY8Y -0.2692292 -0.09923263 0.14605878
ZCY9Y -0.2626083 -0.14233037 0.06277998

ZCY10Y -0.2559710 -0.17728665 -0.01882720
ZCY11Y -0.2496335 -0.20524295 -0.09518049
ZCY12Y -0.2437205 -0.22709972 -0.16430207
ZCY13Y -0.2383532 -0.24375814 -0.22540855
ZCY14Y -0.2335250 -0.25588037 -0.27824721
ZCY15Y -0.2292519 -0.26413677 -0.32304544
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CHAPTER 4

DIEBOLD-LI

In this chapter, we at first introduce main technical points from article [4] and then we use

their approach to model our data. We also higlight theoretical parts which can be done

differently and we suggest some improvements, apply and evaluate them in chapter 7.

4.1 Theory

Main motivation for Diebold and Li to introduce their model is, as they state, that surpris-

ingly little attention has been paid to the key practical problem of yield curve forecasting.

The goal of this model is therefore to forecast yield curve movements with sufficient pre-

cision and time ahead.

As input data we have for each time moment yields for different maturities, in our case

15 yields with maturities from 1 to 15 years. Basic model to fit yield curve in one point of

time is Nelson-Siegel model, which is three-component exponential approximation. Cor-

responding functional form can be seen in 4.1.

yt(τ) = β1t + β2t

(1− e−λtτ
λtτ

)
+ β3t

(1− e−λtτ
λtτ

− e−λtτ
)

(4.1)

Parameter λt governs the exponential decay rate. Smaller the λt is, slower the decay

rate gets. λt also governs where the loading on β3t achieves its maximum. Traditional in-

terpretation of parameters β is that β1t may be viewed as long-term factor since the load-

ing is equal to 1 which is a constant that does not decay with bigger τ. The loading on β2t

is a function that starts at 1 but decays monotonically and quickly to 0, hence it may be

viewed as a short-term factor. The loading on β3t starts at 0 (and is thus not short-term),

increases, and then decays to zero (and thus is not long-term), hence it may be viewed as

a medium-term factor.

However Diebold and Li propose another interpretation of factors β as level, slope and

curvature. The long-term factor β1t governs the level of yield curve. The argument for this

interpretation is that increase in β1t increases all yields equally and therefore the level of

yield curve rises. The short-term factor β2t can be interpreted as yield curve slope. This

can be seen in the fact that the loading on β2t decays with τ which means that the loading
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Figure 4.1: Loadings on parameters β in Nelson-Siegel model for λt = 0.7173231 and ma-
turity given in years.

is the biggest for τ = 0 and close to 0 for τ big enough. Parameter β3t can be seen as yield

curve curvature because its loading at first increases, then achieves a maximum for some

τ̂ , and declines to 0. Therefore the factor β3t affects mainly yields with maturities close to

τ̂ .

To model fitted yield curve by Nelson-Siegel in time we can either perform nonlinear

least squares estimation of parameters {β1t, β2t, β3t, λt} for each point in time or we can

fix λt in time and perform ordinary least squares estimation of parameters {β1t, β2t, β3t}.

Diebold and Li suggest second approach because of its numerical triviality and simplicity

of modelling. The question arises, of course, as to an appropriate value for λt. As this value

directly influences the maximum of the third factor loading, they suggest to fix it on a value

that maximizes the factor loading for maturity of 30 months. Then they come up with an

estimate of λ̂t = 0.0609, where maturity is given in months. However our results for this

optimization problem are slightly different with λ̂t = 0.0598. In our future work, we use

our estimate of λ̂t instead of the value given by Diebold and Li.

As the choice of λt is to large extent heuristic, we suggest our own approach where we

at first perform nonlinear least squares estimation of {β1t, β2t, β3t, λt}, calculate average

value of λt across time. We fix this value as λ̂t and perform linear least squares estimation

of {β1t, β2t, β3t}.

Next step is to model the behaviour of factors β in time. Diebold and Li uses basic AR(1)
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process. The yield forecasts in this case are:

ŷt+h/t(τ) = β̂1,t+h/t + β̂2,t+h/t

(1− e−λτ
λτ

)
+ β̂3,t+h/t

(1− e−λτ
λτ

− e−λτ
)
,

where

β̂i,t+h/t = ĉi + γ̂iβ̂it, i = 1, 2, 3.

We can see some space for different approach in this step as well. As authors suggest,

vector autoregression model can be used instead of AR(1) processes for capturing mutual

dependence of factors. However the authors suggest that this approach does not show

better results mainly because of two reasons. Firstly, correlations between factors are not

really significant and secondly in practice, forecasting with VAR often suffer from overfit-

ting and estimation errors due to large number of parameters.

We suggest our own approach by going through same steps as in chapter 2 in order to

find suitable ARIMA(p, i, q) process to model the time series.

4.2 Application

We use original approach from the article [4] together with our changes, both illustrated in

section 4.1 to model yield curve in time in order to get predictions. As we already pointed

out, choice of λt is quite subjective so we not only use value of λt gained by maximization

of loading on β3t but we at first estimate independently parameters {β1t, β2t, β3t, λt} for

each time and then calculate its average. The distribution of λt obtained can be seen in

histogram 4.2.

Apparently the distribution is not centered around value λt = 0.7173231,which is value

of λt given by Diebold-Li approach for maturity expressed in years. The average value is

equal to 0.3504465 so more than two times lower than the original one. This is significantly

different and therefore we also use this average value of λt in the next steps because it may

provide us with different results.

After we choose the value of fixedλwe proceed to at first estimate parameters {β1t, β2t, β3t}.

Second step is to model these parameters by AR(1) model. We get theoretically poor quality

of residuals because of very significant autocorrelation for the first lags. Since we evaluate

the quality of models in out-of-sample forecasting results, we can not refuse this model

only because of quality of residuals.

However we also use our classic approach on ARIMA modelling. At first we take param-

eters {β1t, β2t, β3t} estimated with λt = 0.7173231 and we look at the stationarity of these
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Figure 4.2: Distribution of λt calculated by nonlinear least squares optimization across
time.

time series. Using same three tests as in chapter 2, we don’t refuse the null hypothesis of

unit root using Adjusted Dickey-Fuller test and Phillips-Perron test for all three time series

besides the β3t where we get p− value = 0.01.We refuse the null hypothesis of stationarity

using KPSS test in all cases. Because of simplicity and better results of differentiated time

series we choose to get first differences of the time series and perform same tests on this

data. In this case we refuse the hypothesis of unit root and don’t refuse the stationarity

hypothesis. The significance level for all these tests on all time series was α = 0.05.

The next step is to find the best possible ARIMA(p,1,q) model by looking especially

at residuals. The chosen models are for β1t ARIMA(0,1,1), for β2t ARIMA(0,1,1) and for

β3t ARIMA(2,1,4). We also examine fitted processes for stationarity and invertibility with

positive results.

For the fixed value of λt = 0.3504465 we get very similar results. Concerning refusal of

hypotheses at significance level α = 0.05 we get even exactly same results. We therefore

work with first differences. Fitted models are in this case ARIMA(2,1,6) for β1t,ARIMA(7,1,2)

for β2t and ARIMA(3,1,3) for β3t. All these processes were tested positively on stationarity

and invertibility.

One argument for modelling univariate time series rather than using vector autoregres-

sion was that the factors βit are not significantlly dependent. Their respective correlation

matrices for both fixations of parameter λt can be found in tables 4.1 and 4.2.

We can see that their respective correlation matrices are quite similar and that only β1t

is correlated somehow significantly with other parameters. Interesting result is negative
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Table 4.1: Correlation matrix of βit, i = 1, 2, 3, where λt = 0.7173231.
Parameter β1t β2t β3t

β1t 1.0000000 -0.67187469 0.25330191
β2t -0.6718747 1.00000000 0.01104823
β3t 0.2533019 0.01104823 1.00000000

Table 4.2: Correlation matrix of βit, i = 1, 2, 3, where λt = 0.3504465.
Parameter β1t β2t β3t

β1t 1.0000000 -0.57534245 0.27301238
β2t -0.5753425 1.00000000 0.04519802
β3t 0.2730124 0.04519802 1.00000000

sign of correlation between factors of level and slope which means that when level of yield

curve rises, in most cases slope of yield curve decreases. In other words with parallel shift

of all yields upwards, the yield curve usually flattens and vice versa.

In chapter 3, we have interpreted first three principal components in similar way as

Diebold and Li. One may ask, whether the time series of parameters βit are similar to

transformed yields into base given by first three principal components. As a first insight

we can calculate their respective correlations. This can be seen in tables 4.3, 4.4 and 4.5.

Table 4.3: Correlation matrix between different level factors
Parameter βmean1t βDL1t PC1

βmean1t 1.0000000 0.9447136 0.6782265
βDL1t 0.9447136 1.0000000 0.8538158
PC1 0.6782265 0.8538158 1.0000000

What one could expect is the fact that parameters βit, i = 1, 2, 3 are strongly correlated

as they are calculated in the same manner but with different parameter λt. Concerning

correlations between parameters βit and transformed yields using principal components

we can see that in all cases the correlations are positive, somehow smaller in the case of

level factor and λt given by average than in the case of its fixation at value given by Diebold-

Li approach. However for the slope factor the correlation between parameters βit and the

second principal component is even higher than between themselves. Sample correla-

tions for the curvature factor are around 0.6. This can be explained by the fact that the

third component captured only little portion of variance so it can be capturing random

noise to some extent and therefore we can not expect it to correspond perfectly to a cer-

tain curvature factor given by Diebold-Li approach.

Another way to look at the similarities between different essential factor approaches is

to normalize the time series of transformed yields by principal components. This can be
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Table 4.4: Correlation matrix between different slope factors
Parameter βmean2t βDL2t PC2

βmean2t 1.0000000 0.8533396 0.9968706
βDL2t 0.8533396 1.0000000 0.8849532
PC2 0.9968706 0.8849532 1.0000000

Table 4.5: Correlation matrix between different curvature factors
Parameter βmean3t βDL3t PC3

βmean3t 1.0000000 0.8653481 0.6549803
βDL3t 0.8653481 1.0000000 0.5712361
PC3 0.6549803 0.5712361 1.0000000

done by basic operations assuring that the transformed yields has same average as average

of time series of parameters βit calculated by using two different λt parameters. Also we

transform the time series so it has the same variance as average variance of parameters βit.

Then we plot these three triples in the figures 4.3, 4.4 and 4.5. We can see that behaviour

of these time series is indeed similar for each factor. We can conclude that modelling these

three factors is essential for the problem of yield curve modelling as we found it in two

different approaches.

Figure 4.3: Time series of level factors calculated by different approaches.

4.3 Conclusion

We have seen that Diebold-Li approach shows some similarities with our PCA based trans-

formation approach. However the biggest difference lies in the functional Nelson-Siegel
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Figure 4.4: Time series of slope factors calculated by different approaches.

description of yield curve. This can be a great advantage if actual Slovak yield curve can be

succesfully described by this function because we get value of yield to maturity for each

chosen τ. On the other hand if Slovak yield curve has more complicated form that can not

be modelled using this type of function we can end up with very bad estimates. In chapter

7 we will see that latter is the case probably because of complicated nature of Slovak yield

curve during observed and predicted time period.
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Figure 4.5: Time series of curvature factors calculated by different approaches.
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CHAPTER 5

REGRESSION WITH ARMA ERRORS

As we may have seen in chapter 2, adoption of euro changed substantially the nature of

Slovak yield curve. We can take this observation into account using extention of ARIMA

modelling with another time series that has impact on the time series of yields. Such ex-

tention is provided by adding a regressor term to the original ARIMA process. This model

is defined in 5.1 in similar way as in [5].

Definition 5.1 (Regression with ARMA errors). Regression model with ARMA errors is de-

fined by following equalities:

yt = β0 + β1x1,t + ...+ βkxk,t + nt,

nt = α1nt−1 + ...+ αpnt−p + ut − γ1ut−1 − ...− γqut−q,

where yt is time series we want to model, xt is time series that has non-zero correlation with

yt, nt is an ARMA process without intercept and ut is white noise.

In practice, there is often confusion between proper use of regression models with

ARMA errors and so called ARMAX models. In ARMAX models, the explanatory time series

is added directly into ARMA equation so we get yt = β0+β1x1,t+ ...+βkxk,t+α1yt−1+ ...+

αpyt−p + ut − γ1ut−1 − ...− γqut−q, where ut is white noise. Using this kind of definition, it

is harder to interpret the fitted parameters as they may capture some effects only partially

and for example parameters β can not be intrepreted as direct effects of xt on yt since we

have also lagged values of yt and lagged values of ut that model the value of yt.

This is the reason we choose the regression model with ARMA errors for modelling

univariate time series of yields. The question arises how to choose a suitable time series

xt. We want this time series to capture the effect of euro adoption which became Slovak

currency on 1.1.2008. First idea is to create a dummy variable that has value 0 for dates

before euro adoption and 1 for dates after euro adoption. Disadvantage of this approach

is the observation that especially for yields with lower maturities, the change of time series

did not come in an instant but was observed during longer period of time which can be

seen in figure 2.6.

Therefore we can create another time series that has value 0 during time period before
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year 2007, increases linearly during years 2007 and 2008, reaching value 1 on 1.1.2009 and

staying there for the time period afterwards. This approach captures the non-instantaneous

nature of shock caused by euro adoption.

We described two possible choices of time series xt. Now we must choose also orders

of ARIMA(p,i,q) process for modelling residuals. Our first choice is closely related to uni-

variate ARIMA modelling. If we want to eliminate the factor of chosen orders (p, i, q) on

evaluation, we have to choose same orders for each maturity as in the case of ARIMA mod-

els without external regressor. As we modelled first differences, we take first differences

4xt = xt+1 − xt and also first differences 4yt = yt+1 − yt so it is in accord with the defi-

nition 5.1. Second choice of orders of ARIMA modelling for original univariate time series

is basic AR(1) model because we will evaluate also this the most basic approach to model

the original time series. However regression with ARMA errors can be used also in case of

PCA and Diebold-Li approach. In these cases we model three time series of transformed

yields for PCA and factors for Diebold-Li. We have seen in chapter 1 that euro adoption

had impact mainly on the slope of the yield curve, which is specifically modelled using

second principal component and second factor. This is the reason why we add exogenous

time series to model these time series. Evaluation of these models can be seen in chapter

7.
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VECTOR AUTOREGRESSION

In chapter 2 we modelled each time series separately. If we want to take advantage of

knowledge of mutual dependences between yields with different maturities, we can use

so called vector autoregression. This approach consists of modelling whole vector in time.

Mathematically we define this process in 6.1.

Definition 6.1 (Vector autoregression). A n−dimensional vector yt follows a VAR(p) process

described as follows.

yt = A1yt−1 + ...+Apyt−p + CDt + ut,

where Ai, i ∈ {1, 2, ..., p} are n × n matrices of coefficients describing influence of i − th

lagged state yt−i on the actual state of yt. n × k coefficient matrix C describes influence of

contamporenous exogenous variable k×1 matrixDt on yt. n×1 vector ut assigns a spherical

disturbance.

We consider two possible vector autoregression models in order to model the yield

curve. In both cases we choose p = 1 as the number of parameters to be fitted rises with

each added lag by factor ofn×nwhich in our case is equal to 225. In both cases we consider

an intercept as part of descriptive equation and in one case we add also exogenous variable

decribing euro adoption. We choose same approach as in chapter 5, where we defined the

explanatory time series that was equal to 0 during time period before year 2007, increased

linearly during years 2007 and 2008, reaching value 1 on 1.1.2009 and staying there for the

time period afterwards.

In table 6.1 we can see fitted Â1 matrix. Since we have strongly autocorrelated time

series one could expect that diagonal components would dominate others which is not

really the case here. This observation might mean that we overfitted the model but it may

also mean that yields with other maturities have higher impact on time series of yields with

some maturity than the time series itself. This idea is supported by the fact that individual

time series are strongly cross-correlated. However we can see that most of the parameters

are not statistically significant which supports the idea of overfitting. In table 6.2 we can

see fitted intercept vector Ĉ. In most cases, elements of Ĉ are significantly different from

zero so adding also the intercept term seems to be good choice.

In table 6.3 we can see fitted Â1 matrix of VAR(1) model with explanatory time series
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Table 6.1: Matrix Â1 of estimated parameters from VAR(1) model
τ 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 11Y 12Y 13Y 14Y 15Y

1Y 0.93 0.16 -0.44 0.95 -0.91 0.41 -0.22 0.16 0.05 0.96 -2.44 0.50 1.39 0.12 -0.63
2Y 0.03 1.47 -2.06 2.19 0.79 -1.46 -1.63 1.76 -0.35 1.67 -1.75 0.38 0.28 -0.88 0.56
3Y 0.01 0.28 -0.13 1.31 -0.14 -0.11 -1.20 0.95 -0.12 0.85 -0.71 -0.01 0.17 -0.55 0.37
4Y 0.05 -0.34 0.87 0.42 -0.67 1.10 -0.61 0.15 0.14 -0.01 -0.08 -0.21 0.16 0.14 -0.12
5Y 0.07 -0.54 1.17 -0.13 -0.77 1.40 -0.14 -0.08 0.29 -0.44 0.15 -0.27 0.31 0.20 -0.22
6Y 0.07 -0.56 1.14 -0.36 -0.68 1.33 -0.17 0.04 0.64 -0.70 0.27 -0.16 0.20 0.03 -0.08
7Y 0.06 -0.46 0.85 -0.19 -0.56 0.92 -0.37 0.42 0.70 -0.53 0.30 -0.12 0.14 -0.32 0.18
8Y 0.05 -0.32 0.45 0.03 -0.23 0.55 -1.01 0.76 0.93 -0.30 0.29 0.10 -0.18 -0.58 0.45
9Y 0.04 -0.19 0.11 0.20 0.11 0.15 -1.30 0.93 0.90 -0.14 0.40 0.23 -0.25 -0.85 0.66

10Y 0.03 -0.01 -0.36 0.54 0.32 -0.07 -1.59 0.91 0.83 0.17 0.47 0.27 -0.48 -0.74 0.72
11Y 0.01 0.13 -0.68 0.65 0.50 -0.04 -1.80 0.82 0.62 0.24 0.73 0.32 -0.61 -0.72 0.81
12Y -0.01 0.28 -0.97 0.77 0.64 -0.12 -1.68 0.63 0.45 0.37 0.60 0.39 -0.68 -0.42 0.77
13Y -0.04 0.43 -1.17 0.67 0.86 -0.04 -1.68 0.51 0.37 0.23 0.55 0.42 -0.78 -0.07 0.74
14Y -0.06 0.52 -1.23 0.54 0.80 0.27 -1.49 0.18 0.21 0.34 0.51 0.10 -0.76 0.26 0.79
15Y -0.09 0.64 -1.34 0.44 0.83 0.37 -1.31 0.06 0.14 0.55 0.09 -0.11 -0.78 0.58 0.92

Table 6.2: Matrix Ĉ of estimated intercept parameters from VAR(1) model
τ Intercept

1Y 0.01
2Y 0.01
3Y -0.01
4Y -0.02
5Y -0.03
6Y -0.04
7Y -0.03
8Y -0.03
9Y -0.02

10Y -0.01
11Y 0.00
12Y 0.01
13Y 0.02
14Y 0.03
15Y 0.04

for euro adoption. This matrix is similar to that for classic VAR(1) model in table 6.1. Main

similarity consists in the fact that Â1 is not diagonally dominant nor estimated parameters

are significant. Adding intercept and exogenous term signalling euro adoption seems to

be good step because of their significance especially for equations describing short matu-

rities. Estimated matrix Ĉ can be seen in table 6.4. However in overall we might also suffer

from overfitting as we have too many parameters to estimate.
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Table 6.3: Matrix Â1 of estimated parameters from VAR(1) model with exogenous variable
signalling euro adoption
τ 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 11Y 12Y 13Y 14Y 15Y

1Y 0.90 0.26 -0.62 1.11 -0.74 -0.07 -0.18 0.41 0.16 1.22 -2.71 0.51 1.04 0.02 -0.31
2Y 0.05 1.38 -1.90 2.06 0.65 -1.05 -1.67 1.55 -0.45 1.44 -1.52 0.37 0.59 -0.79 0.28
3Y 0.06 0.14 0.12 1.09 -0.37 0.57 -1.26 0.60 -0.28 0.47 -0.32 -0.02 0.68 -0.40 -0.09
4Y 0.10 -0.49 1.13 0.18 -0.92 1.81 -0.67 -0.21 -0.02 -0.41 0.32 -0.22 0.70 0.29 -0.60
5Y 0.11 -0.67 1.39 -0.33 -0.98 2.01 -0.19 -0.39 0.15 -0.78 0.50 -0.28 0.77 0.33 -0.64
6Y 0.10 -0.65 1.31 -0.52 -0.84 1.79 -0.21 -0.20 0.53 -0.96 0.53 -0.17 0.55 0.13 -0.40
7Y 0.08 -0.52 0.95 -0.29 -0.66 1.20 -0.40 0.27 0.63 -0.69 0.47 -0.12 0.35 -0.26 -0.02
8Y 0.06 -0.35 0.50 -0.01 -0.27 0.68 -1.02 0.69 0.90 -0.37 0.36 0.10 -0.09 -0.55 0.37
9Y 0.04 -0.18 0.10 0.21 0.11 0.13 -1.30 0.95 0.91 -0.13 0.39 0.23 -0.27 -0.85 0.67

10Y 0.02 0.01 -0.41 0.58 0.36 -0.20 -1.58 0.98 0.86 0.24 0.40 0.27 -0.58 -0.77 0.81
11Y 0.00 0.18 -0.75 0.72 0.57 -0.23 -1.78 0.92 0.67 0.35 0.63 0.32 -0.75 -0.76 0.94
12Y -0.02 0.33 -1.05 0.84 0.70 -0.32 -1.66 0.73 0.49 0.48 0.48 0.39 -0.83 -0.47 0.90
13Y -0.05 0.46 -1.23 0.72 0.92 -0.20 -1.67 0.59 0.41 0.32 0.46 0.42 -0.89 -0.10 0.84
14Y -0.06 0.53 -1.25 0.56 0.82 0.21 -1.48 0.21 0.23 0.38 0.48 0.10 -0.80 0.25 0.83
15Y -0.08 0.62 -1.30 0.42 0.80 0.46 -1.32 0.02 0.12 0.50 0.14 -0.11 -0.71 0.60 0.86

Table 6.4: Matrix Ĉ of estimated intercept and explanatory time series for euro adoption
parameters from VAR(1) model with exogenous variable signalling euro adoption

τ Intercept euro adoption

1Y -0.04 0.05
2Y 0.05 -0.04
3Y 0.06 -0.07
4Y 0.05 -0.08
5Y 0.03 -0.07
6Y 0.01 -0.05
7Y 0.00 -0.03
8Y -0.01 -0.01
9Y -0.02 0.00

10Y -0.02 0.01
11Y -0.02 0.02
12Y -0.01 0.02
13Y 0.00 0.02
14Y 0.02 0.01
15Y 0.05 -0.01
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PREDICTIONS

In this chapter we evaluate fitted models by looking at the quality of their forecasts. First

model we used in chapter 2 consisted of finding suitable ARIMA(p,i,q) process to model

yields of each maturity separatelly. Since the data for maturities 1-10 are available from

7.1.2003 but data for maturities 11-15 are available only from 11.5.2006, in order to ensure

that input data are the same for each model so there is no assymetric information present,

we trained new ARIMA processes for maturities 1-10 with starting point of 11.5.2006. How-

ever the orders (p,i,q) were very close or even the same as for the processes for longer time

period. ARIMA models for maturities 11-15 are the same as in chapter 2 because of iden-

tical time window. Fitted models together with the whole procedure of finding suitable

models can be found in the results of code in the Attachments.

To evaluate the quality of predictions we use sum of squared errors defined as follows:

SSEτ =

N∑
i=1

(yti,τ − ŷti,τ )2,

where τ ∈ {1, 2, ..., 15} represents maturity of yield, N is number of observations in pre-

dicted period, yti,τ stands for true value of yield and ŷti,τ is predicted value of yield.

In table 7.1 you can find sum ofSSEτ for each considered model and forN = 10, 20, ..., 70.

We have 6 different models each with two possible approaches to ARIMA time series mod-

elling. The first one consisting of series of steps further explained in chapter 2 resulting

in certain ARIMA(p,i,q) process with desired properties. Using the second approach, we

model each time series only by simple AR(1) process without any differentiations. In addi-

tion to these models, we specified another five models that either combine some features

of already mentioned 6 models or are not based on ARIMA modelling but on VAR mod-

elling.

Similar information as in table 7.1 can be found also in figure 7.1 where on the horizon-

tal axis we have different choices of N and on the vertical axis there is cumulative sum of

errors for each model. In this case, the arbitrarily chosen ARIMA(p,i,q) models are consid-

ered. In figure 7.2 you can find the same information as in 7.1 but for time series modelled

with AR(1) processes. Cumulative sum of errors is plotted also for the last 5 models in

figure 7.3.
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Table 7.1: Cumulative errors for every 10th observation, where DL with λ = 0.7173231
represents Diebold-Li approach with the value of λ chosen as argmax of the third factor
loading for τ = 2.5. DL with λ = 0.3504465 represents Diebold-Li approach with value of λ
chosen as the average value of non-dependent fits of Nelson-Siegel models for each point
of time. PCA model represents approach with transformation of 15-dimensional time se-
ries of yields into 3-dimensional base given by first three PC. Univariate model represents
approach where we model each 1-dimensional time series separatelly. Univariate dummy
reg represents regression model with ARMA errors where the external time series regres-
sors is dummy variable having values 0 and 1. Univariate linear reg represents similar
approach but with explanatory time series of zeros for time period before year 2008, lin-
early increasing during years 2008 and 2009 and finally stays on value 1 for the time period
after year 2009. Optimized ARIMA stands for the approach where we have chosen orders
(p,i,q) of ARIMA process. AR(1) stands for the approach where the time series is modelled
by AR(1) process. VAR(1) means vector autoregression process of order p = 1 while VAR(1)
with linear reg stands for the vector autoregression model of order p = 1 and exogenous
non-dummy time series signalling euro adoption.

Number of steps ahead considered 10 20 30 40 50 60 70

DL with λ = 0.7173231 and optimized ARIMA 4.68 15.21 36.27 57.52 77.94 105.69 145.96
DL with λ = 0.7173231 and AR(1) 3.75 9.37 18.74 33.71 55.24 80.94 109.43

DL with λ = 0.3504465 and optimized ARIMA 2.31 12.01 33.40 54.74 74.89 103.26 145.20
DL with λ = 0.3504465 and AR(1) 6.05 38.05 111.65 261.33 495.32 792.45 1137.81

PCA with optimized ARIMA 1.39 7.61 22.93 38.01 51.74 71.93 103.30
PCA with AR(1) 1.39 7.52 21.89 34.96 45.71 60.75 83.82

Univariate optimized ARIMA 1.42 8.44 25.88 43.37 59.76 83.57 119.84
Univariate AR(1) 1.06 5.70 16.63 25.74 32.20 41.18 55.20

Univariate dummy reg with optimized ARIMA 1.23 7.06 21.48 35.16 46.94 63.82 89.66
Univariate dummy reg with AR(1) 1.06 5.67 16.53 25.54 31.89 40.73 54.55

Univariate linear reg with optimized ARIMA 1.24 7.10 21.56 35.29 47.10 64.03 89.95
Univariate linear reg with AR(1) 0.78 3.91 11.18 16.86 20.65 25.23 31.96

DL with λ = 0.7173231, AR(1) and linear reg 3.79 9.66 19.70 36.43 61.05 91.12 125.06
DL with λ = 0.3504465, opt. ARIMA and lin. reg 2.27 11.74 32.61 53.28 72.60 99.79 140.02

PCA with AR(1) and linear reg 1.38 7.45 21.66 34.51 45.00 59.63 82.12
VAR(1) 1.77 9.88 28.00 45.16 60.23 81.33 112.93

VAR(1) with linear reg 1.65 8.92 24.13 37.53 47.90 61.30 80.85

Very interesting observation is that besides Diebold-Li model with λ chosen as average,

all other models show better forecasting power in the case of simple AR(1) processes. This

may be caused by various factors but we assume that the main one is that in the training

dataset, we have data for 2625 days. During this quite long period, several shocks occured

and changed behaviour of time series. Modelling all these changes with autoregressive ap-

proach and limited number of AR and MA terms is very hard task. As we can see, probably

better approach is to model only the main autoregressive trend with only one autoregres-

sive term because adding more terms might just model some terminal parts of history with

no impact on distant future.

Concerning different models, we see that the worst approach seems to be the Diebold-

Li model with both choices of λ, especially for λ = 0.3504465 and AR(1) process. This may
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Figure 7.1: Cumulative errors of different approaches modelled by optimized ARIMA pro-
cesses, where NS_DL in black represents Diebold-Li approach with the value of λ chosen
as argmax of the third factor loading for τ = 2.5.NS_mean in red color represents Diebold-
Li approach with value of λ chosen as the average value of non-dependent fits of Nelson-
Siegel models for each point of time. PCA in blue represents approach with transforma-
tion of 15-dimensional time series of yields into 3-dimensional base given by first three PC.
ARIMA in seagreen represents approach where we model each 1-dimensional time series
separatelly. Dummy reg in violet represents regression model with ARMA errors where the
external time series regressors is dummy variable having values 0 and 1. Linear reg in or-
ange represents similar approach but with explanatory time series of zeros for time period
before year 2008, linearly increasing during years 2008 and 2009 and finally stays on value
1 for the time period after year 2009.

be caused by incapability of Nelson-Siegel framework to capture the shape of Slovak yield

curve with parameter λ constant in time. In the case of AR(1) processes, the PCA approach

provided better results than Diebold-Li but worse than univariate time series approaches.

Advantage of PCA over Diebold-Li is that it does not impose functional form on the yield

curve but it tries to capture main directions of variance and then linearly transformes the

original data into this space. The reason why PCA got weaker results than univariate time

series may be our choice of number of principal components taken into account. If we

took more principal components than 3, the results might be better. Another result we can

see here is that the reduction of dimensions was not really succesful in terms of elimination

random noises present in 1-dimensional data and capturing only main movements. This

means that the 15-dimensional time series is more complex with some behaviour specific

for each maturity. Interesting comparison is between the univariate time series approach

and approach consisting of regression with ARMA errors. We can see that only by adding

one external regressor, we can improve the quality of predictions. However we can not
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Figure 7.2: Cumulative errors of different approaches modelled by AR(1) processes, where
NS_DL in black represents Diebold-Li approach with the value of λ chosen as argmax of
the third factor loading for τ = 2.5. NS_mean in red color represents Diebold-Li approach
with value of λ chosen as the average value of non-dependent fits of Nelson-Siegel mod-
els for each point of time. PCA in blue represents approach with transformation of 15-
dimensional time series of yields into 3-dimensional base given by first three PC. ARIMA
in seagreen represents approach where we model each 1-dimensional time series sepa-
ratelly. Dummy reg in violet represents regression model with ARMA errors where the ex-
ternal time series regressors is dummy variable having values 0 and 1. Linear reg in orange
represents similar approach but with explanatory time series of zeros for time period be-
fore year 2008, linearly increasing during years 2008 and 2009 and finally stays on value 1
for the time period after year 2009.

forget the fact that if we want to use explanatory time series, we have to predict them as

well, which can bring us another source of forecasting errors. Fortunately in this case it is

quite simple to predict whether euro will be the currency in Slovakia for the upcoming time

period. As we can see in the case of ARIMA(p,i,q) approach there is very little difference

between our two proposed time series. However in the case of AR(1) modelling, approach

with linear change between zero and one during the period around euro adoption per-

forms the best. It is actually the best model according to sum of SSEτ . When we compare

VAR(1) model with univariate AR(1) models for each time series, we can see that the lat-

ter perfoms better. This supports our hypothesis of overfitting VAR(1) model because of

large number of parameters. Both approaches get better results after introducing exoge-

nous euro adoption time series but also in this case the AR(1) models deliver lower sum of

SSEτ . Adding explanatory time series when modelling slope factors or second principal

component does not significantly change results of concerned models.

In table 7.2 we can take a look from another perspective onto SSEτ of different models.
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Figure 7.3: Cumulative errors of different approaches modelled by different models, where
NS_DL with linear reg in black represents Diebold-Li approach with the value of λ chosen
as argmax of the third factor loading for τ = 2.5, factors modelled in time by AR(1) pro-
cesses with the extension of exogenous time series for euro adoption in case of the slope
factor. NS_mean with linear reg in red color represents Diebold-Li approach with value
of λ chosen as the average value of non-dependent fits of Nelson-Siegel models for each
point of time, factors modelled by optimized ARIMA processes with the extension of ex-
ogenous time series for euro adoption in case of the slope factor. PCA with linear reg in
blue represents approach with transformation of 15-dimensional time series of yields into
3-dimensional base given by first three PC modelled by AR(1) processes in time with ad-
dition of an exogenous time series for euro adoption in case of second PC. VAR(1) in sea-
green represents vector autoregression model with order p = 1. VAR(1) with linear reg in
violet represents vector autoregression model with order p = 1 and exogenous time series
signalling euro adoption.

We have SSEτ for each model and each method of ARIMA modelling for N = 70 and for

τ = 1, 3, ..., 15. This can provide us with insight on which maturities affected the sum of

SSEτ of each model. We can see that in overall, the optimized ARIMA processes were able

to predict movement of yields with short maturities approximately just as well or even bet-

ter than their AR(1) counterparts. Where AR(1) processes achieved better results were long

maturities. The reason why after summing all the SSEτ the AR(1) processes had signifi-

cantly better results may be that the errors in case of long maturities were in overall higher

than in case of short maturities so the long maturities had higher impact on the total sum

of SSEτ resulting in weaker overall results of optimized ARIMA processes. To evaluate im-

pact of this observation, we should use some evaluation methods that are more robust.

One such approach is to take median value of SSEτ for each model instead of their sum.

However we also define our own evaluation method, further described in 7.1. Great ad-

vantage of this method is its robustness to increase of absolute values of yields in case of
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Table 7.2: Cumulative errors for every second maturity starting with maturity of 1 year,
where DL with λ = 0.7173231 represents Diebold-Li approach with the value of λ chosen as
argmax of the third factor loading for τ = 2.5.DL with λ = 0.3504465 represents Diebold-Li
approach with value of λ chosen as the average value of non-dependent fits of Nelson-
Siegel models for each point of time. PCA model represents approach with transformation
of 15-dimensional time series of yields into 3-dimensional base given by first three PC.
Univariate model represents approach where we model each 1-dimensional time series
separatelly. Univariate dummy reg represents regression model with ARMA errors where
the external time series regressors is dummy variable having values 0 and 1. Univariate
linear reg represents similar approach but with explanatory time series of zeros for time
period before year 2008, linearly increasing during years 2008 and 2009 and finally stays
on value 1 for the time period after year 2009. Optimized ARIMA stands for the approach
where we have chosen orders (p,i,q) of ARIMA process. AR(1) stands for the approach
where the time series is modelled by AR(1) process. VAR(1) means vector autoregression
process of order p = 1 while VAR(1) with linear reg stands for the vector autoregression
model of order p = 1 and exogenous non-dummy time series signalling euro adoption.

Maturity 1 3 5 7 9 11 13 15

DL with λ = 0.7173231 and optimized ARIMA 0.8 2.1 0.3 1.7 6.6 14.4 22.9 30.7
DL with λ = 0.7173231 and AR(1) 6.9 11.6 19.7 10.6 2.7 0.6 2.0 4.9

DL with λ = 0.3504465 and optimized ARIMA 0.8 0.2 1.1 7.1 14.1 17.8 18.3 17.3
DL with λ = 0.3504465 and AR(1) 61.3 124.4 125.0 89.3 63.2 49.1 41.8 38.0

PCA with optimized ARIMA 0.5 0.5 0.3 4.8 10.4 13.0 13.1 12.3
PCA with AR(1) 1.3 0.3 0.3 4.1 8.7 10.5 10.3 9.3

Univariate optimized ARIMA 1.0 0.1 1.2 5.6 10.1 13.7 15.5 17.6
Univariate AR(1) 0.5 1.3 0.2 2.1 4.5 6.7 7.3 6.8

Univariate dummy reg with optimized ARIMA 0.5 0.6 0.3 3.3 7.2 10.5 12.2 14.0
Univariate dummy reg with AR(1) 0.5 1.3 0.2 2.2 4.4 6.5 7.1 6.7

Univariate linear reg with optimized ARIMA 0.5 0.5 0.3 3.3 7.2 10.5 12.2 14.0
Univariate linear reg with AR(1) 0.7 2.3 1.1 0.4 1.7 3.4 4.1 3.4

DL with λ = 0.7173231, AR(1) and linear reg 10.4 14.0 21.8 11.7 3.1 0.6 1.9 4.7
DL with λ = 0.3504465, opt. ARIMA and lin. reg 0.6 0.2 0.9 6.7 13.6 17.3 17.9 16.9

PCA with AR(1) and linear reg 1.6 0.2 0.3 4.0 8.5 10.2 10.0 9.0
VAR(1) 1.1 0.1 0.7 5.9 11.6 13.9 13.8 12.9

VAR(1) with linear reg 1.7 1.4 0.2 2.6 7.6 10.3 10.5 9.3

longer maturities which causes also bigger errors.

Definition 7.1 (Sum of ranked errors). We define sum of ranked errors1 as value, assigned

to a forecasting method, describing predictive power of that method. The computation of

SRE is done in following steps.

(1) Compute SSEτ for each prediction method and τ ∈ {1, 2, ..., 15}.

(2) For each τ, arrange SSEτ in ascending order.

(3) Add rank to each predictive method and fixed τ starting with 1,2,...,15. This way, method

with the smallest SSEτ gets rank 1 and so on.

(4) If a tie2 occurs, add average rank to each of concerning models.

1further described with abbreviation SRE
2Tie is defined as specific case where SSEτ,i = SSEτ,j ,where i and j represents different predictive meth-
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(5) For each method, compute sum of their ranks. We describe this number as SRE, sum of

ranked errors.

Perhaps better insight is provided when we divideSRE by number of maturities, which

is in our case equal to 15, obtaining average rank per method. All four mentioned evalua-

tion methods with N = 70 can be seen in table 7.3.

Table 7.3: Cumulative errors for every second maturity starting with maturity of 1 year,
where DL with λ = 0.7173231 represents Diebold-Li approach with the value of λ chosen as
argmax of the third factor loading for τ = 2.5.DL with λ = 0.3504465 represents Diebold-Li
approach with value of λ chosen as the average value of non-dependent fits of Nelson-
Siegel models for each point of time. PCA model represents approach with transformation
of 15-dimensional time series of yields into 3-dimensional base given by first three PC.
Univariate model represents approach where we model each 1-dimensional time series
separatelly. Univariate dummy reg represents regression model with ARMA errors where
the external time series regressors is dummy variable having values 0 and 1. Univariate
linear reg represents similar approach but with explanatory time series of zeros for time
period before year 2008, linearly increasing during years 2008 and 2009 and finally stays
on value 1 for the time period after year 2009. Optimized ARIMA stands for the approach
where we have chosen orders (p,i,q) of ARIMA process. AR(1) stands for the approach
where the time series is modelled by AR(1) process. VAR(1) means vector autoregression
process of order p = 1 while VAR(1) with linear reg stands for the vector autoregression
model of order p = 1 and exogenous non-dummy time series signalling euro adoption.

Evaluation method
∑15
τ=1 SSEτ median(SSEτ ) SRE ARE

DL with λ = 0.7173231 and optimized ARIMA 145.96 5.79 154 10.27
DL with λ = 0.7173231 and AR(1) 109.43 4.95 125 8.33

DL with λ = 0.3504465 and optimized ARIMA 145.20 10.9 198 13.20
DL with λ = 0.3504465 and AR(1) 1137.81 63.18 255 17.00

PCA with optimized ARIMA 103.30 7.86 140 9.33
PCA with AR(1) 83.82 6.64 118 7.87

Univariate optimized ARIMA 119.84 8.12 158 10.53
Univariate AR(1) 55.20 3.38 80 5.33

Univariate dummy reg with optimized ARIMA 89.66 5.4 110 7.33
Univariate dummy reg with AR(1) 54.55 3.39 79 5.27

Univariate linear reg with optimized ARIMA 89.95 5.42 117 7.80
Univariate linear reg with AR(1) 31.96 2.2 78 5.20

DL with λ = 0.7173231, AR(1) and linear reg 125.06 6.43 134 8.93
DL with λ = 0.3504465, opt. ARIMA and lin. reg 140.02 10.41 175 11.67

PCA with AR(1) and linear reg 82.12 6.54 110 7.33
VAR(1) 112.93 9.07 152 10.13

VAR(1) with linear reg 80.85 5.22 112 7.47

We can see that quality of predictions evaluated by more robust techniques is similar

to previously used sum of SSEτ . This observation supports our previously stated argu-

ments and denies the hypothesis about abnormal impact of higher errors in case of long

maturities. However we can see that the smallest ARE is higher than 5 so we can not say

that one particular method really dominates the others. It means that if we combine sev-

ods.
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eral prediction methods in particular way, we could obtain substantially better forecasting

power. However this is just a theoretical option since we have no evident indication of how

to combine the best models according to our evaluation methods.
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Conclusion

In our work we introduced several models all based on autoregression theory in order to

find the best way to predict future movements of yield curve. We can say that our main goal

was achieved since we have found a suitable way to include the information of structural

break caused by the euro adoption. In overall models that included this exogenous time

series performed better regarding quality of forecasting. Perhaps surprising observation

was better predictive power of simple AR(1) processes than of optimized arbitrarily cho-

sen processes ARIMA(p,i,q). We contributed the evaluation methodology by introducing

our own robust evaluation metrics SRE and ARE. Another interesting finding of our the-

sis was the one-to-one similarity of factors from Diebold-Li model and first three principal

components. All variations of Diebold-Li approach disappointed comparing their pre-

dictive power to other methods. This is probably caused by incapability of Nelson-Siegel

framework to describe whole yield curve. However this property defines yield to maturity

for any given τ while every other modelling technique can model only given 15 points of

actual yield curve. If we need to estimate some other yield besides these 15 points, ques-

tion arises how to perform this task. One idea could be to make simple linear interpolation

which should work for long maturities where there is no significant difference between two

yield values. However for short maturities this method could cause significant deviations.

For τ higher than 15 or lower than 1 this method even can not calculate any value. In these

cases well known Nelson-Siegel functional form can be fitted to solve this problem but

as we already mentioned, Nelson-Siegel framework may not be capable of capturing the

form of yield curve to satisfying extent. In this case we propose Nelson-Siegel-Svensson

framework that is similar to Nelson-Siegel’s but with additional curvature factor. It defines

yield curve in following functional form.

y(τ) = β1 + β2

(1− e−λ1τ
λ1τ

)
+ β3

(1− e−λ1τ
λ1τ

− e−λ1τ
)
+ β4

(1− e−λ2τ
λ2τ

− e−λ2τ
)
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This way we eliminate the great disadvantage of modelling only some points of yield curve

and in the end, we get yield to maturity for any desired τ.

One of further improvements of our work could be also based on Diebold-Li idea to

model factors of a term structure model in time. Nelson-Siegel-Svensson is such model

that could better fit on Slovak yield curve but in this case, question of how to fix parameter

λ would be even harder because we have two of these parameters present here. Another

option is to use Bayesian techniques such as Kalman filter to model state-space system in

time.

Another improvement might be derived from our observation of significance of ex-

planatory time series for euro adoption by introducing more such time series capturing

main movements of yield curve. However by this approach we relocate part of predictive

uncertainty to another process. Essential property of such exogenous process thus should

be its easy predictability to same extent we want to predict movement of yield curve. To

find such time series unfortunately is not that easy so suitability of this approach is ques-

tionable.

When we know that underlying process is unstable because of several shocks or regime

shifts, an interesting idea is to take only the last portion of time series that is enough stable.

We tried this idea taking only ARIMA processes fitted on time period after euro adoption

but with weaker results than in case of taking whole time period with explanatory time

series for euro adoption. This result emphasis the importance of use of every data available

because it has some influence on the process even in distant future.

Other improvement could be done also in case of evaluation of predictions from dif-

ferent models. We could use stepwise evaluation where we at first specify length of time

period T we want our models to forecast. Then we separate the data into test set contain-

ing T × n observations where T is length of predicted time period and n is the number

of times we want to evaluate quality of predictions. In the first step we train considered

models on remaining data and calculate predictions on time period of length T. Compu-

tation of specific evaluation metrics follows and is saved for each model. In next step we

add previously predicted values into training set and fit parameters of models on these

data. Another computation of evaluation metrics follows and this procedure is repeated

together n times. Final examination of results is then derived from all of these partial re-

sults. Advantage of such procedure is elimination of random noise effects which would

implicate higher credibility of our conclusions.
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Attachments

Codes used for time series analysis

In this section we attach codes used for our analysis. All of them are written in R 3.3.1 and

should be run separately if not stated otherwise.

Descriptive statistics

setwd ( "C: \ \ Users \\ Peter Carsky \\Documents\\ Diplomovka " )

mydata = read . csv ( " input . csv " , na . s t r i n g = " " , sep = " ; " )

# Creating time s e r i e s of y i e l d s f o r whole time period

y i e l d s <− mydata [ 1 : 3 4 6 1 , 1 : 1 8 ]

frequencies <− rep ( 0 , length ( unique ( yields$YYYY ) ) )

f o r ( i in 1 : length ( frequencies ) ) {

frequencies [ i ] <− length ( yields$YYYY [ which ( yields$YYYY ==( unique ( yields$YYYY ) [ i ] ) ) ] )

}

f r e q <− mean( frequencies [ 2 : ( length ( frequencies ) −1)])

s t <− 13 − f requencies [ 1 ] / f r e q *12

y i e l d s <− t s ( y i e l d s [ , 4 : 1 8 ] , frequency= freq , s t a r t =c ( min ( yields$YYYY ) , s t ) )

# Creating time s e r i e s of y i e l d s f o r time period before Euro adoption

mydata_aea = mydata [ mydata$YYYY > 2 0 0 9 , 4 : 1 8 ] [ 1 : 1 7 1 6 , ]

y i e l d s _ a e a <− t s ( mydata_aea , frequency =252 , s t a r t =c ( 2 0 1 0 , 1 , 1 ) )

# Creating time s e r i e s of y i e l d s f o r time period a f t e r Euro adoption

y i e l d s _ b ea <− mydata [ mydata$YYYY < 2 0 0 8 , 1 : 1 8 ]

frequencies <− rep ( 0 , length ( unique ( yields_bea$YYYY ) ) )

f o r ( i in 1 : length ( frequencies ) ) {

frequencies [ i ] <− length ( yields_bea$YYYY [ which ( yields_bea$YYYY ==( unique ( yields_bea$YYYY ) [ i ] ) ) ] )

}

f r e q <− mean( frequencies [ 2 : ( length ( frequencies ) −1)])

s t <− 13 − f requencies [ 1 ] / f r e q *12

y i e l d s _ b ea <− t s ( y ie l d s _ be a [ , 4 : 1 8 ] , frequency= freq , s t a r t =c ( min ( yields_bea$YYYY ) , s t ) )

#Histograms f o r each maturity

par ( mfrow=c ( 3 , 5 ) )

f o r ( i in 1 : 1 5 ) {

h i s t ( y i e l d s [ , i ] , main=paste ( " Y i e l d s from ZCY" , i , "Y " , sep = " " ) , xlab = "" )

}

# D e s c r i p t i v e s t a t i s t i c s f o r whole time period

round ( c ( apply ( y i e l d s [ , 1 : 1 0 ] ,FUN=min , 2 ) , apply ( na . omit ( y i e l d s [ , 1 1 : 1 5 ] ) ,FUN=min , 2 ) ) , 2 )

round ( c ( apply ( y i e l d s [ , 1 : 1 0 ] ,FUN=max, 2 ) , apply ( na . omit ( y i e l d s [ , 1 1 : 1 5 ] ) ,FUN=max , 2 ) ) , 2 )
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round ( c ( apply ( y i e l d s [ , 1 : 1 0 ] ,FUN=mean, 2 ) , apply ( na . omit ( y i e l d s [ , 1 1 : 1 5 ] ) ,FUN=mean , 2 ) ) , 2 )

round ( c ( apply ( y i e l d s [ , 1 : 1 0 ] ,FUN=sd , 2 ) , apply ( na . omit ( y i e l d s [ , 1 1 : 1 5 ] ) ,FUN=sd , 2 ) ) , 2 )

#Comparing data before Euro adoption and a f t e r Euro adoption

#Histograms f o r each maturity

par ( mfrow=c ( 2 , 5 ) )

f o r ( i in 1 : 5 ) {

h i s t ( y i e l ds _ b e a [ , i ] , main=paste ( " Y i e l d s from ZCY" , i , "Y " , sep = " " ) , xlab =" Before Euro adoption " )

}

f o r ( i in 1 : 5 ) {

h i s t ( y i e l d s _ a e a [ , i ] , main=paste ( " Y i e l d s from ZCY" , i , "Y " , sep = " " ) , xlab =" A f t e r Euro adoption " )

}

f o r ( i in 6 : 1 0 ) {

h i s t ( y i e l ds _ b e a [ , i ] , main=paste ( " Y i e l d s from ZCY" , i , "Y " , sep = " " ) , xlab =" Before Euro adoption " )

}

f o r ( i in 6 : 1 0 ) {

h i s t ( y i e l d s _ a e a [ , i ] , main=paste ( " Y i e l d s from ZCY" , i , "Y " , sep = " " ) , xlab =" A f t e r Euro adoption " )

}

f o r ( i in 1 1 : 1 5 ) {

h i s t ( y i e l ds _ b e a [ , i ] , main=paste ( " Y i e l d s from ZCY" , i , "Y " , sep = " " ) , xlab =" Before Euro adoption " )

}

f o r ( i in 1 1 : 1 5 ) {

h i s t ( y i e l d s _ a e a [ , i ] , main=paste ( " Y i e l d s from ZCY" , i , "Y " , sep = " " ) , xlab =" A f t e r Euro adoption " )

}

# D e s c r i p t i v e s t a t i s t i c s f o r time periods before and a f t e r Euro adoption

round ( c ( apply ( y ie l d s _b e a [ , 1 : 1 0 ] ,FUN=min , 2 ) , apply ( na . omit ( y i e l d s _ b ea [ , 1 1 : 1 5 ] ) ,FUN=min , 2 ) ) , 2 )

round ( apply ( yie lds_aea ,FUN=min , 2 ) , 2 )

round ( c ( apply ( y ie l d s _b e a [ , 1 : 1 0 ] ,FUN=max, 2 ) , apply ( na . omit ( y i e l d s _ b ea [ , 1 1 : 1 5 ] ) ,FUN=max , 2 ) ) , 2 )

round ( apply ( yie lds_aea ,FUN=max, 2 ) , 2 )

round ( c ( apply ( y ie l d s _b e a [ , 1 : 1 0 ] ,FUN=mean, 2 ) , apply ( na . omit ( y i e l d s _ b ea [ , 1 1 : 1 5 ] ) ,FUN=mean , 2 ) ) , 2 )

round ( apply ( yie lds_aea ,FUN=mean, 2 ) , 2 )

round ( c ( apply ( y ie l d s _b e a [ , 1 : 1 0 ] ,FUN=sd , 2 ) , apply ( na . omit ( y i e l d s _ b ea [ , 1 1 : 1 5 ] ) ,FUN=sd , 2 ) ) , 2 )

round ( apply ( yie lds_aea ,FUN=sd , 2 ) , 2 )

ARIMA

# s e t the path to the input f i l e

setwd ( "C: \ \ Users \\ Peter Carsky \\Documents\\ Diplomovka " )

mydata = read . csv ( " input . csv " , na . s t r i n g = " " , sep = " ; " ) [ 1 : 3 4 6 1 , ]

attach ( mydata )

# reading in l i b r a r i e s

l i b r a r y ( a s t s a )

l i b r a r y ( fArma )

l i b r a r y (WDI)

l i b r a r y ( urca )

# c r e a t i n g time s e r i e s from our d a t a s e t

y i e l d s <− mydata [ 1 : 3 4 6 1 , 1 : 1 8 ]

frequencies <− rep ( 0 , length ( unique ( yields$YYYY ) ) )

f o r ( i in 1 : length ( frequencies ) ) {

frequencies [ i ] <− length ( yields$YYYY [ which ( yields$YYYY ==( unique ( yields$YYYY ) [ i ] ) ) ] )

}

f r e q <− mean( frequencies [ 2 : ( length ( frequencies ) −1)])

s t <− 13 − f requencies [ 1 ] / f r e q *12

y i e l d s <− t s ( y i e l d s [ , 4 : 1 8 ] , frequency= freq , s t a r t =c ( min ( yields$YYYY ) , s t ) )
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#ZCY1Y

# i s there unit root in the time s e r i e s ?

p l o t ( y i e l d s [ , 1 ] , type = " l " , ylab =" Y i e l d " )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df ( ZCY1Y , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

summary( ur . df ( ZCY1Y , type =" trend " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss ( ZCY1Y , type ="mu" ) )

summary( ur . kpss ( ZCY1Y , type =" tau " ) )

# P h i l l i p s−Perron t e s t

PP . t e s t ( ZCY1Y )

#There i s an unit root in the o r i g i n a l time s e r i e s , we need to take d i f f e r e n c e s

p l o t ( d i f f ( ZCY1Y ) , type = " l " )

mean( d i f f ( ZCY1Y ) )

#mean i s c l o s e to zero and there i s no s i g n i f i c a n t d r i f t so the type of t e s t i s none

summary( ur . df ( d i f f ( ZCY1Y ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#we r e f u s e the H0 t h a t there i s an unit root in d i f f e r e n t i a t e d time s e r i e s

summary( ur . kpss ( d i f f ( ZCY1Y ) , type ="mu" ) )

#we dont r e f u s e the H0 t h a t the process i s s t a t i o n a r y

PP . t e s t ( d i f f ( ZCY1Y ) )

#we work with f i r s t d i f f e r e n c e s of the o r i g i n a l time s e r i e s

acf2 ( d i f f ( ZCY1Y ) )

#We choose ARIMA( 3 , 1 , 0 ) process

# I t i s impossible to f i n d r e a l l y good model f o r t h i s time s e r i e s ,

#because there i s s i g n i f i c a n t a u t o c o r r e l a t i o n f o r quite l a r g e l a g s ( more than 20)

sarima ( ZCY1Y , 3 , 1 , 0 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c (−0.4334 , −0.1907 , −0.0661))

# process i s s t a c i o n a r y

# s p e c t r a l a n a l y s i s

sp = spectrum ( y i e l d s [ , 1 ] , kernel ( " d a n i e l l " ) , log ="no " )

p l o t ( sp$spec [ 1 : 2 0 ] , type = " l " , xlab =" frequency " , ylab ="spectrum " )

#we take weighted average of 4 frequencies as the peak value i s not s i g n i f i c a n t l y bigger than other three values

weights = sp$spec [ ( which . max( sp$spec ) −2):( which . max( sp$spec ) + 1 ) ]

weights = weights /sum( weights )

frequency = t ( weights)%*%sp$freq [ ( which . max( sp$spec ) −2):( which . max( sp$spec ) + 1 ) ]

period = 1/ frequency

period

# period / length ( mydata [ YYYY ==2004 ,1])

# period of approximately 4 years in 1 year ZC bond

# t e s t i n g unit root f o r a l l m a t u r i t i e s

p_values <− rep ( 1 0 0 , 1 5 )

f o r ( i in 1 : 1 5 ) {

p_values [ i ] <− PP . t e s t ( na . omit ( y i e l d s [ , i ] ) ) $p . value }

# in a l l cases p−value > 50% => we take d i f f e r e n c e s and t e s t them

p _ v a l u e s _ d i f f <− rep ( 1 0 0 , 1 5 )

f o r ( i in 1 : 1 5 ) {

p _ v a l u e s _ d i f f [ i ] <− PP . t e s t ( na . omit ( d i f f ( y i e l d s [ , i ] ) ) ) $p . value }

#p−values = 0.01 => we work with 1 s t d i f f e r e n c e s

#ZCY2Y

acf2 ( d i f f ( ZCY2Y ) )

sarima ( ZCY2Y , 8 , 1 , 1 , d e t a i l s = FALSE )
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armaRoots ( c ( 0 . 6 8 2 2 , 0 . 1 6 8 9 , 0 . 0 6 1 3 , 0 . 0 4 4 8 , 0 . 0 2 0 7 , −0.0598 , −0.0005 , 0 . 0 4 3 8 ) )

# process i s s t a t i o n a r y

armaRoots ( c (−0.9501))

# process i s i n v e r t i b l e

#ZCY3Y

acf2 ( d i f f ( ZCY3Y ) )

sarima ( ZCY3Y , 2 , 1 , 3 , d e t a i l s = FALSE )

armaRoots ( c (0.5384 , −0.8043))

# process i s s t a t i o n a r y

armaRoots ( c (0 .8002 , −0.9223 ,0 .1615))

# process i s i n v e r t i b l e

#ZCY4Y

acf2 ( d i f f ( ZCY4Y ) )

sarima ( ZCY4Y , 0 , 1 , 3 , d e t a i l s = FALSE )

armaRoots ( c (0 .2657 ,0 .0540 , −0.0816))

# process i s i n v e r t i b l e

#ZCY5Y

acf2 ( d i f f ( ZCY5Y ) )

sarima ( ZCY5Y , 0 , 1 , 3 , d e t a i l s = FALSE )

armaRoots ( c (0 .2586 ,0 .0750 , −0.1045))

# process i s i n v e r t i b l e

#ZCY6Y

acf2 ( d i f f ( ZCY6Y ) )

sarima ( ZCY6Y , 3 , 1 , 3 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 2 6 1 4 , 0 . 5 7 6 3 , 0 . 0 7 8 5 ) )

# process i s s t a t i o n a r y

armaRoots ( c (0 .5174 ,0 .5759 , −0.1820))

# process i s i n v e r t i b l e

#ZCY7Y

acf2 ( d i f f ( ZCY7Y ) )

sarima ( ZCY7Y , 0 , 1 , 7 , d e t a i l s = FALSE )

armaRoots ( c (0.2578 ,0.0390 , −0.0769 ,0.0200 , −0.0268 , −0.0018 , −0.0560))

# process i s i n v e r t i b l e

#ZCY8Y

acf2 ( d i f f ( ZCY8Y ) )

sarima ( ZCY8Y , 0 , 1 , 7 , d e t a i l s = FALSE )

armaRoots ( c (0.2678 ,0.0088 , −0.0472 ,0.0121 , −0.0207 , −0.0066 , −0.0572))

# process i s i n v e r t i b l e

#ZCY9Y

acf2 ( d i f f ( ZCY9Y ) )

sarima ( ZCY9Y , 0 , 1 , 8 , d e t a i l s = FALSE )

armaRoots ( c (0.2823 ,−0.0123 ,−0.0184 ,0.0005 ,−0.0155 ,−0.0102 ,−0.0401 ,−0.0240))

# process i s i n v e r t i b l e
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#ZCY10Y

acf2 ( d i f f ( ZCY10Y ) )

sarima ( ZCY10Y , 0 , 1 , 9 , d e t a i l s = FALSE )

armaRoots ( c (0.3042 ,−0.0203 ,0.0091 ,−0.0129 ,−0.0122 ,−0.0131 ,−0.0197 ,−0.0397 ,0.0084))

# process i s i n v e r t i b l e

#ZCY11Y

acf2 ( d i f f ( na . omit ( ZCY11Y ) ) )

sarima ( na . omit ( ZCY11Y ) , 0 , 1 , 8 , d e t a i l s = FALSE )

armaRoots ( c (0.2938 ,−0.0233 ,−0.0008 ,−0.0117 ,−0.0024 ,0.0038 ,−0.0294 ,−0.0560))

# process i s i n v e r t i b l e

#ZCY12Y

acf2 ( d i f f ( na . omit ( ZCY12Y ) ) )

sarima ( na . omit ( ZCY12Y ) , 0 , 1 , 8 , d e t a i l s = FALSE )

armaRoots ( c (0.2940 , −0.0209 ,0.0017 , −0.0111 ,0.0001 ,0.0085 , −0.0199 , −0.0647))

# process i s i n v e r t i b l e

#ZCY13Y

acf2 ( d i f f ( na . omit ( ZCY13Y ) ) )

sarima ( na . omit ( ZCY13Y ) , 0 , 1 , 8 , d e t a i l s = FALSE )

armaRoots ( c (0.2974 ,−0.0114 ,−0.0001 ,−0.0047 ,0.0043 ,0.0114 ,−0.0144 ,−0.0636))

# process i s i n v e r t i b l e

#ZCY14Y

acf2 ( d i f f ( na . omit ( ZCY14Y ) ) )

sarima ( na . omit ( ZCY14Y ) , 0 , 1 , 1 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 3 0 6 0 ) )

# process i s i n v e r t i b l e

#ZCY15Y

acf2 ( d i f f ( na . omit ( ZCY15Y ) ) )

sarima ( na . omit ( ZCY15Y ) , 5 , 1 , 2 , d e t a i l s = FALSE )

armaRoots ( c (1.1847 ,−0.5909 ,−0.1642 ,−0.0926 ,−0.0257))

# process i s s t a t i o n a r y

armaRoots ( c (1.5202 , −0.9712))

# process i s i n v e r t i b l e

# s p e c t r a l a n a l y s i s f o r a l l m a t u r i t i e s

period = rep ( 0 , 1 5 )

f o r ( i in 1 : 1 5 ) {

sp = spectrum ( na . omit ( y i e l d s [ , i ] ) , kernel ( " d a n i e l l " ) , log ="no " )

frequency = sp$freq [ which . max( sp$spec ) ]

period [ i ] = 1/ frequency

}

#no s i g n i f i c a n t p e r i o d i c movements found f o r longer m a t u r i t i e s

ARIMA applied to period before euro adoption

# s e t the path to the input f i l e

setwd ( "C: \ \ Users \\ Peter Carsky \\Documents\\ Diplomovka " )

mydata = read . csv ( " input . csv " , na . s t r i n g = " " , sep = " ; " )

attach ( mydata )
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# reading in l i b r a r i e s

l i b r a r y ( a s t s a )

l i b r a r y ( fArma )

l i b r a r y (WDI)

l i b r a r y ( urca )

y i e l d s <− mydata [ 1 : 2 6 2 5 , 1 : 1 8 ]

frequencies <− rep ( 0 , length ( unique ( yields$YYYY ) ) )

f o r ( i in 1 : length ( frequencies ) ) {

frequencies [ i ] <− length ( yields$YYYY [ which ( yields$YYYY ==( unique ( yields$YYYY ) [ i ] ) ) ] )

}

f r e q <− mean( frequencies [ 2 : ( length ( frequencies ) −1)])

s t <− 13 − f requencies [ 1 ] / f r e q *12

y i e l d s <− t s ( y i e l d s [ , 4 : 1 8 ] , frequency= freq , s t a r t =c ( min ( yields$YYYY ) , s t ) )

#graph with l a b e l f o r Euro adoption

p l o t ( y i e l d s [ , 1 ] , type = " l " , ylab =" Y i e l d s in percentage " , ylim=c ( −0.5 ,6))

x t i c k <−2009

a x i s ( s ide =1 , at = x t i c k , l a b e l s = FALSE )

t e x t ( x= x t i c k , par ( " usr " ) [ 3 ] ,

l a b e l s = " Euro adoption " , col =" red " , pos = 1 , xpd = TRUE, cex = 0 . 8 5 )

abl ine ( v =2009 , col =" red " , l t y =2 , lwd =2)

# c r e a t i n g time s e r i e s of y i e l d s from time period before Euro adoption

y i e l d s _ b ea <− mydata [ mydata$YYYY < 2 0 0 8 , 1 : 1 8 ]

frequencies <− rep ( 0 , length ( unique ( yields_bea$YYYY ) ) )

f o r ( i in 1 : length ( frequencies ) ) {

frequencies [ i ] <− length ( yields_bea$YYYY [ which ( yields_bea$YYYY ==( unique ( yields_bea$YYYY ) [ i ] ) ) ] )

}

f r e q <− mean( frequencies [ 2 : ( length ( frequencies ) −1)])

s t <− 13 − f requencies [ 1 ] / f r e q *12

y i e l d s _ b ea <− t s ( y ie l d s _ be a [ , 4 : 1 8 ] , frequency= freq , s t a r t =c ( min ( yields_bea$YYYY ) , s t ) )

p l o t ( y i e l d s_ b e a [ , 1 ] , type = " l " , ylab =" Y i e l d s in percentage " )

# y i e l d s of 1Y ZC Bond before year 2008 ( euro adoption in 2009)

bea1y <− mydata [ YYYY <2008 ,4]

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df ( bea1y , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

summary( ur . df ( bea1y , type =" trend " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss ( bea1y , type ="mu" ) )

summary( ur . kpss ( bea1y , type =" tau " ) )

# P h i l l i p s−Perron t e s t

PP . t e s t ( bea1y )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df ( d i f f ( bea1y ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss ( d i f f ( bea1y ) , type ="mu" ) )

# P h i l l i p s−Perron t e s t

PP . t e s t ( d i f f ( bea1y ) )

acf2 ( d i f f ( bea1y ) )

sarima ( bea1y , 5 , 1 , 3 , d e t a i l s = FALSE )

armaRoots ( c ( −0.1670 , −0.0895 ,0.6875 ,0.3155 ,0.1435))

# process i s s t a t i o n a r y

armaRoots ( c (0 .2357 , −0.0625 ,0 .6766))

# process i s i n v e r t i b l e
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# t e s t i n g unit root f o r a l l m a t u r i t i e s

p_values <− rep ( 1 0 0 , 1 5 )

f o r ( i in 1 : 1 5 ) {

p_values [ i ] <− PP . t e s t ( na . omit ( y i e l d s _ b ea [ , i ] ) ) $p . value }

# in a l l cases p−value > 60% => we take d i f f e r e n c e s and t e s t them

p _ v a l u e s _ d i f f <− rep ( 1 0 0 , 1 5 )

f o r ( i in 1 : 1 5 ) {

p _ v a l u e s _ d i f f [ i ] <− PP . t e s t ( na . omit ( d i f f ( y i e l d s _ b ea [ , i ] ) ) ) $p . value }

#p−values = 0.01 => we work with 1 s t d i f f e r e n c e s

#ZCY2Y

acf2 ( d i f f ( y i e l d s_ b e a [ , 2 ] ) )

sarima ( y i e ld s _ b e a [ , 2 ] , 8 , 1 , 1 , d e t a i l s = FALSE )

armaRoots ( c (0.7573 ,0.1757 ,0.0626 ,0.0398 , −0.0177 , −0.1073 ,0.0732 , −0.0133))

# process i s s t a t i o n a r y

armaRoots ( c (−0.9495))

# process i s i n v e r t i b l e

#ZCY3Y

acf2 ( d i f f ( y i e l d s_ b e a [ , 3 ] ) )

sarima ( y i e ld s _ b e a [ , 3 ] , 5 , 1 , 7 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 9 8 8 2 , −1.253 , 1 . 1 3 5 8 , −0.6662 , 0 . 7 4 1 4 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 1 . 1 3 7 9 , −1.4359 , 1 . 3 3 1 6 , −0.9426 , 0 . 9 4 8 1 , −0.1801 , 0 . 0 3 4 7 ) )

# process i s i n v e r t i b l e

#ZCY4Y

acf2 ( d i f f ( y i e l d s_ b e a [ , 4 ] ) )

sarima ( y i e ld s _ b e a [ , 4 ] , 0 , 1 , 8 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 0 7 9 2 , −0.0027 , −0.0642 , −0.1368 , 0 . 0 1 0 8 , 0 . 0 5 3 1 , −0.0655 , −0.0795))

# process i s i n v e r t i b l e

#ZCY5Y

acf2 ( d i f f ( y i e l d s_ b e a [ , 5 ] ) )

sarima ( y i e ld s _ b e a [ , 5 ] , 7 , 1 , 1 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 3 8 8 9 , 0 . 0 0 0 0 , 0 . 0 7 7 3 , 0 . 1 1 3 0 , −0.0594 , −0.0388 , 0 . 0 9 2 4 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 0 . 4 2 2 0 ) )

# process i s i n v e r t i b l e

#ZCY6Y

acf2 ( d i f f ( y i e l d s_ b e a [ , 6 ] ) )

sarima ( y i e ld s _ b e a [ , 6 ] , 1 , 1 , 8 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 1 6 8 8 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 0 . 1 9 4 5 , −0.0166 , −0.0701 , −0.1320 , 0 . 0 3 2 0 , 0 . 0 3 7 6 , −0.1081 , −0.0488))

# process i s i n v e r t i b l e

#ZCY7Y

acf2 ( d i f f ( y i e l d s_ b e a [ , 7 ] ) )

sarima ( y i e l ds _ b e a [ , 7 ] , 8 , 1 , 0 , d e t a i l s = FALSE )
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armaRoots ( c (−0.0454 , 0 . 0 5 3 9 , 0 . 0 5 6 9 , 0 . 1 2 8 5 , −0.0030 , −0.0305 , 0 . 0 7 6 4 , 0 . 0 5 0 1 ) )

# process i s s t a t i o n a r y

#ZCY8Y

acf2 ( d i f f ( y i e l d s_ b e a [ , 8 ] ) )

sarima ( y i e l ds _ b e a [ , 8 ] , 7 , 1 , 1 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 4 8 7 1 , 0 . 1 3 7 4 , −0.0026 , 0 . 0 7 6 6 , −0.0502 , −0.0007 , 0 . 0 4 8 6 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 0 . 5 9 2 5 ) )

# process i s i n v e r t i b l e

#ZCY9Y

acf2 ( d i f f ( y i e l d s_ b e a [ , 9 ] ) )

sarima ( y i e ld s _ b e a [ , 9 ] , 4 , 1 , 1 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 5 6 5 4 , 0 . 1 9 5 9 , −0.0253 , 0 . 0 6 4 8 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 0 . 7 7 3 2 ) )

# process i s i n v e r t i b l e

#ZCY10Y

acf2 ( d i f f ( y i e l d s_ b e a [ , 1 0 ] ) )

sarima ( y i e l ds _ b e a [ , 1 0 ] , 8 , 1 , 0 , d e t a i l s = FALSE )

armaRoots ( c (−0.3113 , −0.0533 , −0.0559 , 0 . 0 4 2 6 , 0 . 0 4 6 7 , 0 . 0 6 7 4 , 0 . 0 0 7 0 , 0 . 0 3 0 6 ) )

# process i s s t a t i o n a r y

#ZCY11Y

acf2 ( d i f f ( na . omit ( y i e l d s_ b e a [ , 1 1 ] ) ) )

sarima ( na . omit ( y i e l ds _ b e a [ , 1 1 ] ) , 2 , 1 , 6 , d e t a i l s = FALSE )

armaRoots ( c ( 1 . 3 8 0 6 , −0.6886))

# process i s s t a t i o n a r y

armaRoots ( c ( 1 . 6 6 9 3 , −1.1390 , 0 . 2 6 4 8 , −0.2015 , 0 . 3 2 0 2 , −0.2496))

# process i s i n v e r t i b l e

#ZCY12Y

acf2 ( d i f f ( na . omit ( y i e l d s_ b e a [ , 1 2 ] ) ) )

sarima ( na . omit ( y i e l ds _ b e a [ , 1 2 ] ) , 2 , 1 , 6 , d e t a i l s = FALSE )

armaRoots ( c ( 1 . 3 7 6 7 , −0.6780))

# process i s s t a t i o n a r y

armaRoots ( c ( 1 . 7 0 2 7 , −1.1787 , 0 . 2 9 3 5 , −0.1984 , 0 . 3 0 2 2 , −0.2339))

# process i s i n v e r t i b l e

#ZCY13Y

acf2 ( d i f f ( na . omit ( y i e l d s_ b e a [ , 1 3 ] ) ) )

sarima ( na . omit ( y i e l ds _ b e a [ , 1 3 ] ) , 2 , 1 , 6 , d e t a i l s = FALSE )

armaRoots ( c ( 1 . 3 6 7 7 , −0.6616))

# process i s s t a t i o n a r y

armaRoots ( c ( 1 . 7 2 2 3 , −1.2001 , 0 . 3 1 8 0 , −0.2005 , 0 . 2 8 7 0 , −0.2190))

# process i s i n v e r t i b l e

#ZCY14Y

acf2 ( d i f f ( na . omit ( y i e l d s_ b e a [ , 1 4 ] ) ) )

sarima ( na . omit ( y i e l ds _ b e a [ , 1 4 ] ) , 2 , 1 , 6 , d e t a i l s = FALSE )

armaRoots ( c ( 1 . 3 5 6 1 , −0.6411))

# process i s s t a t i o n a r y
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armaRoots ( c ( 1 . 7 3 4 6 , −1.2090 , 0 . 3 3 2 1 , −0.1944 , 0 . 2 6 5 8 , −0.2024))

# process i s i n v e r t i b l e

#ZCY15Y

acf2 ( d i f f ( na . omit ( y i e l d s_ b e a [ , 1 5 ] ) ) )

sarima ( na . omit ( y i e l d s_ b e a [ , 1 5 ] ) , 2 , 1 , 6 , d e t a i l s = FALSE )

armaRoots ( c ( 1 . 3 3 5 5 , −0.6182))

# process i s s t a t i o n a r y

armaRoots ( c ( 1 . 7 3 7 8 , −1.2114 , 0 . 3 4 0 3 , −0.1820 , 0 . 2 4 1 8 , −0.1868))

# process i s i n v e r t i b l e

# s p e c t r a l a n a l y s i s f o r a l l m a t u r i t i e s

period = rep ( 0 , 1 5 )

f o r ( i in 1 : 1 5 ) {

sp = spectrum ( na . omit ( y i e l d s _ b ea [ , i ] ) , kernel ( " d a n i e l l " ) , log ="no " )

frequency = sp$freq [ which . max( sp$spec ) ]

period [ i ] = 1/ frequency

}

#( length of period = length of the whole observed time window ) => no s i g n i f i c a n t p e r i o d i c movements found

ARIMA applied to period after euro adoption

# s e t the path to the input f i l e

setwd ( "C: \ \ Users \\ Peter Carsky \\Documents\\ Diplomovka " )

mydata = read . csv ( " input . csv " , na . s t r i n g = " " , sep = " ; " )

mydata_aea = mydata [ mydata$YYYY > 2 0 0 9 , 4 : 1 8 ] [ 1 : 1 7 1 6 , ]

# reading in l i b r a r i e s

l i b r a r y ( a s t s a )

l i b r a r y ( fArma )

l i b r a r y (WDI)

l i b r a r y ( urca )

# c r e a t i n g time s e r i e s of y i e l d s from time period before Euro adoption

y i e l d s _ a e a <− t s ( mydata_aea , frequency =252 , s t a r t =c ( 2 0 1 0 , 1 , 1 ) )

# y i e l d s of 1Y ZC Bond a f t e r year 2009 ( euro adoption in 2009)

p l o t ( y i e l d s _ a e a [ , 1 ] , type =" l " , ylab =" Y i e l d s in percentage " )

summary( ur . df ( y i e l d s _ a e a [ , 1 ] , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

summary( ur . df ( y i e l d s _ a e a [ , 1 ] , type =" trend " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss ( y i e l d s _ a e a [ , 1 ] , type ="mu" ) )

summary( ur . kpss ( y i e l d s _ a e a [ , 1 ] , type =" tau " ) )

# P h i l l i p s−Perron t e s t

PP . t e s t ( y i e l d s _ a e a [ , 1 ] )

# t e s t i n g unit root f o r a l l m a t u r i t i e s

p_values <− rep ( 1 0 0 , 1 5 )

f o r ( i in 1 : 1 5 ) {

p_values [ i ] <− PP . t e s t ( na . omit ( y i e l d s _ a e a [ , i ] ) ) $p . value }

# in a l l cases p−value > 35% => we take d i f f e r e n c e s and t e s t them

p _ v a l u e s _ d i f f <− rep ( 1 0 0 , 1 5 )

f o r ( i in 1 : 1 5 ) {

p _ v a l u e s _ d i f f [ i ] <− PP . t e s t ( na . omit ( d i f f ( y i e l d s _ a e a [ , i ] ) ) ) $p . value }

#p−values = 0.01 => we work with 1 s t d i f f e r e n c e s

#ZCY1Y

acf2 ( d i f f ( y i e l d s _ a e a [ , 1 ] ) )

sarima ( y i e l d s _ a e a [ , 1 ] , 1 5 , 1 , 1 , d e t a i l s = FALSE )
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armaRoots ( c ( 0 . 3 4 3 3 , 0 . 1 5 0 7 , 0 . 0 9 8 3 , 0 . 0 9 5 0 , −0.0546 , 0 . 0 5 2 3 , 0 . 0 1 6 5 ,

0 . 0 3 3 1 , 0 . 0 3 8 1 , −0.0683 , 0 . 0 1 2 7 , 0 . 0 2 1 0 , −0.0254 , 0 . 0 5 0 2 , 0.0642 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 0 . 8 8 9 9 ) )

# process i s i n v e r t i b l e

#ZCY2Y

acf2 ( d i f f ( y i e l d s _ a e a [ , 2 ] ) )

sarima ( y i e l d s _ a e a [ , 2 ] , 1 , 1 , 8 , d e t a i l s = FALSE )

armaRoots ( c (−0.4713))

# process i s s t a t i o n a r y

armaRoots ( c (−0.0835 , 0 . 2 3 1 9 , 0 . 0 4 1 4 , 0 . 0 0 6 8 , −0.0308 , 0 . 0 2 9 1 , 0 . 0 3 8 4 , −0.0589))

# process i s i n v e r t i b l e

#ZCY3Y

acf2 ( d i f f ( y i e l d s _ a e a [ , 3 ] ) )

sarima ( y i e l d s _ a e a [ , 3 ] , 0 , 1 , 8 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 4 0 4 7 , 0 . 0 4 8 1 , −0.0295 , 0 . 0 0 9 4 , 0 . 0 0 5 8 , 0 . 0 5 3 0 , 0 . 0 1 7 6 , −0.0762))

# process i s i n v e r t i b l e

#ZCY4Y

acf2 ( d i f f ( y i e l d s _ a e a [ , 4 ] ) )

sarima ( y i e l d s _ a e a [ , 4 ] , 1 , 1 , 3 , d e t a i l s = FALSE )

armaRoots ( c (−0.4778))

# process i s s t a t i o n a r y

armaRoots ( c (−0.0677 , 0 . 2 5 7 9 , −0.0450))

# process i s i n v e r t i b l e

#ZCY5Y

acf2 ( d i f f ( y i e l d s _ a e a [ , 5 ] ) )

sarima ( y i e l d s _ a e a [ , 5 ] , 2 , 1 , 2 , d e t a i l s = FALSE )

armaRoots ( c (−0.6563 , −0.1728))

# process i s s t a t i o n a r y

armaRoots ( c (−0.2678 , 0 . 1 5 2 4 ) )

# process i s i n v e r t i b l e

#ZCY6Y

acf2 ( d i f f ( y i e l d s _ a e a [ , 6 ] ) )

sarima ( y i e l d s _ a e a [ , 6 ] , 1 , 1 , 5 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 7 1 6 0 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 1 . 0 7 0 4 , −0.1829 , −0.1719 , 0 . 1 4 9 9 , −0.0837))

# process i s i n v e r t i b l e

#ZCY7Y

acf2 ( d i f f ( y i e l d s _ a e a [ , 7 ] ) )

sarima ( y i e l d s _ a e a [ , 7 ] , 1 1 , 1 , 1 , d e t a i l s = FALSE )

armaRoots ( c (−1.1354 , −0.4156 , −0.0931 , 0 . 0 1 6 6 , 0 . 0 3 4 3 , 0 . 0 7 6 4 ,

0 . 1 1 6 0 , 0 . 0 9 4 2 , 0 . 0 4 0 5 , 0 . 0 8 4 2 , 0 . 0 8 4 9 ) )

# process i s s t a t i o n a r y

armaRoots ( c (−0.8129))

# process i s i n v e r t i b l e

#ZCY8Y

acf2 ( d i f f ( y i e l d s _ a e a [ , 8 ] ) )

sarima ( y i e l d s _ a e a [ , 8 ] , 1 0 , 1 , 0 , d e t a i l s = FALSE )

armaRoots ( c (−0.3063 , −0.1156 , 0 . 0 2 4 3 , 0 . 0 1 3 5 , 0 . 0 4 1 4 ,

0 . 0 4 9 1 , 0 . 0 8 7 7 , 0 . 0 3 8 9 , 0 . 0 1 9 6 , 0 . 0 5 4 8 ) )

# process i s s t a t i o n a r y
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#ZCY9Y

acf2 ( d i f f ( y i e l d s _ a e a [ , 9 ] ) )

sarima ( y i e l d s _ a e a [ , 9 ] , 1 0 , 1 , 0 , d e t a i l s = FALSE )

armaRoots ( c (−0.2952 , −0.0838 , 0 . 0 1 4 7 , 0 . 0 3 5 3 , 0 . 0 4 1 6 ,

0 . 0 4 8 0 , 0 . 0 8 4 3 , 0 . 0 4 9 3 , 0 . 0 2 6 8 , 0 . 0 4 1 7 ) )

# process i s s t a t i o n a r y

#ZCY10Y

acf2 ( d i f f ( y i e l d s _ a e a [ , 1 0 ] ) )

sarima ( y i e l d s _ a e a [ , 1 0 ] , 1 0 , 1 , 0 , d e t a i l s = FALSE )

armaRoots ( c (−0.2843 , −0.0592 , 0 . 0 1 0 4 , 0 . 0 5 3 9 , 0 . 0 4 4 2 ,

0 . 0 4 3 4 , 0 . 0 7 5 3 , 0 . 0 6 0 3 , 0 . 0 3 0 6 , 0 . 0 2 8 2 ) )

# process i s s t a t i o n a r y

#ZCY11Y

acf2 ( d i f f ( na . omit ( y i e l d s _ a e a [ , 1 1 ] ) ) )

sarima ( na . omit ( y i e l d s _ a e a [ , 1 1 ] ) , 8 , 1 , 1 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 1 7 2 7 , 0 . 0 7 7 2 , 0 . 0 3 1 6 , 0 . 0 5 8 3 , 0 . 0 1 8 4 , 0 . 0 1 5 2 , 0 . 0 4 6 7 , 0 . 0 4 3 9 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 0 . 4 4 3 1 ) )

# process i s i n v e r t i b l e

#ZCY12Y

acf2 ( d i f f ( na . omit ( y i e l d s _ a e a [ , 1 2 ] ) ) )

sarima ( na . omit ( y i e l d s _ a e a [ , 1 2 ] ) , 1 1 , 1 , 0 , d e t a i l s = FALSE )

armaRoots ( c (−0.2534 , −0.0377 , 0 . 0 1 8 3 , 0 . 0 6 2 1 , 0 . 0 4 5 1 ,

0 . 0 2 5 9 , 0 . 0 4 8 9 , 0 . 0 7 7 9 , 0 . 0 2 4 2 , 0 . 0 2 3 , 0 . 0 3 7 3 ) )

# process i s s t a t i o n a r y

#ZCY13Y

acf2 ( d i f f ( na . omit ( y i e l d s _ a e a [ , 1 3 ] ) ) )

sarima ( na . omit ( y i e l d s _ a e a [ , 1 3 ] ) , 0 , 1 , 8 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 2 4 0 5 , −0.0078 , −0.0317 , −0.0354 , −0.0210 , −0.0103 , −0.0391 , −0.0605))

# process i s i n v e r t i b l e

#ZCY14Y

acf2 ( d i f f ( na . omit ( y i e l d s _ a e a [ , 1 4 ] ) ) )

sarima ( na . omit ( y i e l d s _ a e a [ , 1 4 ] ) , 1 4 , 1 , 0 , d e t a i l s = FALSE )

armaRoots ( c (−0.2396 , −0.0672 , 0 . 0 3 1 8 , 0 . 0 2 9 4 , 0 . 0 2 3 4 , 0 . 0 1 1 8 ,

0 . 0 4 6 5 , 0 . 0 6 7 2 , 0 . 0 1 3 5 , 0 . 0 3 7 0 , 0 . 0 5 6 1 , 0 . 0 0 0 9 , −0.0239 , −0.0997))

# process i s s t a t i o n a r y

#ZCY15Y

acf2 ( d i f f ( na . omit ( y i e l d s _ a e a [ , 1 5 ] ) ) )

sarima ( na . omit ( y i e l d s _ a e a [ , 1 5 ] ) , 1 4 , 1 , 0 , d e t a i l s = FALSE )

armaRoots ( c (−0.2583 , −0.0952 , 0 . 0 1 6 5 , 0 . 0 0 7 2 , 0 . 0 0 0 2 , −0.0030 ,

0 . 0 4 7 9 , 0 . 0 4 8 6 , 0 . 0 0 7 3 , 0 . 0 3 5 1 , 0 . 0 5 7 6 , 0 . 0 1 1 8 , −0.0151 , −0.1082))

# process i s s t a t i o n a r y

# s p e c t r a l a n a l y s i s f o r a l l m a t u r i t i e s

period = rep ( 0 , 1 5 )

f o r ( i in 1 : 1 5 ) {

sp = spectrum ( na . omit ( y i e l d s _ a e a [ , i ] ) , kernel ( " d a n i e l l " ) , log ="no " )

frequency = sp$freq [ which . max( sp$spec ) ]

period [ i ] = 1/ frequency

}

#( length of period = length of the whole observed time window ) => no s i g n i f i c a n t p e r i o d i c movements found
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Principal components analysis

setwd ( "C: \ \ Users \\ Peter Carsky \\Documents\\ Diplomovka " )

mydata = read . csv ( " input . csv " , na . s t r i n g = " " , sep = " ; " )

attach ( mydata )

# c r e a t i n g time s e r i e s from our d a t a s e t

y i e l d s <− mydata [ 1 : 3 4 6 1 , 1 : 1 8 ]

frequencies <− rep ( 0 , length ( unique ( yields$YYYY ) ) )

f o r ( i in 1 : length ( frequencies ) ) {

frequencies [ i ] <− length ( yields$YYYY [ which ( yields$YYYY ==( unique ( yields$YYYY ) [ i ] ) ) ] )

}

f r e q <− mean( frequencies [ 2 : ( length ( frequencies ) −1)])

s t <− 13 − f requencies [ 1 ] / f r e q *12

y i e l d s <− t s ( y i e l d s [ , 4 : 1 8 ] , frequency= freq , s t a r t =c ( min ( yields$YYYY ) , s t ) )

#some graphs

# p l o t t i n g time s e r i e s of bonds of m a t u r i t i e s 1−10 years

p l o t ( y i e l d s [ , 1 ] , type = " l " , ylab =" Y i e l d s " , ylim=c ( −0 . 7 , 6 . 2 ) )

l i n e s ( y i e l d s [ , 2 ] , type = " l " , col = " red " )

l i n e s ( y i e l d s [ , 3 ] , type = " l " , col = " blue " )

l i n e s ( y i e l d s [ , 4 ] , type = " l " , col = " tan " )

l i n e s ( y i e l d s [ , 5 ] , type = " l " , col = " yellow " )

l i n e s ( y i e l d s [ , 6 ] , type = " l " , col = " springgreen " )

l i n e s ( y i e l d s [ , 7 ] , type = " l " , col = " s l a t e b l u e " )

l i n e s ( y i e l d s [ , 8 ] , type = " l " , col = " v i o l e t " )

l i n e s ( y i e l d s [ , 9 ] , type = " l " , col = " turquoise " )

l i n e s ( y i e l d s [ , 1 0 ] , type = " l " , col = " sienna1 " )

legend ( ’ topright ’ , names ( mydata ) [ 4 : 1 3 ] , l t y =1 ,

col =c ( ’ black ’ , ’ red ’ , ’ blue ’ , ’ tan ’ , ’ yellow ’ , ’ springgreen ’ , ’ s l a t e b l u e ’ , ’ v i o l e t ’ , ’ turquoise ’ , ’ sienna1 ’ ) ,

bty = ’n ’ , cex = . 7 5 )

# p l o t t i n g time s e r i e s of bonds of m a t u r i t i e s 11−15 years

p l o t ( na . omit ( y i e l d s [ , 1 1 ] ) , type = " l " , col = " seagreen " , ylab =" Y i e l d s " , ylim=c ( −0 . 2 , 6 . 6 ) )

l i n e s ( na . omit ( y i e l d s [ , 1 2 ] ) , type = " l " , col = " orangered " )

l i n e s ( na . omit ( y i e l d s [ , 1 3 ] ) , type = " l " , col = " green " )

l i n e s ( na . omit ( y i e l d s [ , 1 4 ] ) , type = " l " , col = " f i r e b r i c k " )

l i n e s ( na . omit ( y i e l d s [ , 1 5 ] ) , type = " l " , col = " orange " )

legend ( ’ topright ’ , names ( mydata ) [ 1 4 : 1 8 ] , l t y =1 ,

col =c ( ’ seagreen ’ , ’ orangered ’ , ’ green ’ , ’ f i r e b r i c k ’ , ’ orange ’ ) ,

bty = ’n ’ , cex =1)

#PCA f o r whole observed period

#computing sample variance matrix

yields_nao <− na . omit ( mydata [ , 1 : 1 8 ] ) [ 1 : 2 6 2 5 , ]

frequencies <− rep ( 0 , length ( unique ( yields_nao$YYYY ) ) )

f o r ( i in 1 : length ( frequencies ) ) {

frequencies [ i ] <− length ( yields_nao$YYYY [ which ( yields_nao$YYYY ==( unique ( yields_nao$YYYY ) [ i ] ) ) ] )

}

f r e q <− mean( frequencies [ 2 : ( length ( frequencies ) −1)])

s t <− 13 − f requencies [ 1 ] / f r e q *12

yields_nao <− t s ( yields_nao [ , 4 : 1 8 ] , frequency= freq , s t a r t =c ( min ( yields_nao$YYYY ) , s t ) )

round ( cor ( yields_nao ) , d i g i t s = 2)

ZC_pca<−prcomp ( yields_nao , s c a l e =FALSE )

summary( ZC_pca )

ZC_pca

alpha <− rep ( 0 , 15)

f o r ( i in 1 : 1 5 ) alpha [ i ] <− sum ( ( ZC_pca$sdev ^ 2 ) [ 1 : i ] ) / sum( ZC_pca$sdev ^2)

p l o t ( alpha , type ="b " )
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# transformation of o r i g i n a l y i e l d time s e r i e s i n t o 3−dimensional base defined by the f i r s t three PC

means <− t ( r e p l i c a t e ( dim ( yields_nao ) [ 1 ] , apply ( yields_nao , 2 ,mean ) ) )

t r _ y i e l d s <− ( yields_nao−means)%*%ZC_pca$rotation [ , 1 : 3 ]

t r _ y i e l d s 1 <− ( yields_nao−means)%*%ZC_pca$rotation [ , 1 ]

t r _ y i e l d s 2 <− ( yields_nao−means)%*%ZC_pca$rotation [ , 1 : 2 ]

#Backward transformation

y i e l d s _ b 1 <− t r _ y i e l d s 1%*%t ( ZC_pca$rotation [ , 1 ] ) + means

y i e l d s _ b 2 <− t r _ y i e l d s 2%*%t ( ZC_pca$rotation [ , 1 : 2 ] ) + means

y i e l d s _ b 3 <− t r _ y i e l d s%*%t ( ZC_pca$rotation [ , 1 : 3 ] ) + means

y i e l d s _ b 1 t s <− t s ( yields_b1 , frequency= freq , s t a r t =c ( min ( na . omit ( mydata [ , 1 : 1 8 ] ) [ 1 : 2 6 2 5 , ] $YYYY ) , s t ) )

y i e l d s _ b 2 t s <− t s ( yields_b2 , frequency= freq , s t a r t =c ( min ( na . omit ( mydata [ , 1 : 1 8 ] ) [ 1 : 2 6 2 5 , ] $YYYY ) , s t ) )

y i e l d s _ b 3 t s <− t s ( yields_b3 , frequency= freq , s t a r t =c ( min ( na . omit ( mydata [ , 1 : 1 8 ] ) [ 1 : 2 6 2 5 , ] $YYYY ) , s t ) )

#Graphs with transformed y i e l d s with 1 ,2 ,3 p r i n c i p a l components

p l o t ( yields_nao [ , 1 ] , type = " l " , ylab =" Y i e l d s " , ylim=c ( −1 . 2 , 5 . 3 ) )

l i n e s ( y i e l d s _ b 1 t s [ , 1 ] , type = " l " , col = " red " )

l i n e s ( y i e l d s _ b 2 t s [ , 1 ] , type = " l " , col = " blue " )

l i n e s ( y i e l d s _ b 3 t s [ , 1 ] , type = " l " , col = " green " )

legend ( ’ topright ’ , c ( " O r i g i n a l time s e r i e s " , " 1 p r i n c i p a l component " ,

"2 p r i n c i p a l components " , " 3 p r i n c i p a l components " ) , l t y =1 ,

col =c ( ’ black ’ , ’ red ’ , ’ blue ’ , ’ green ’ ) ,

bty = ’n ’ , cex = 0 . 9 )

p l o t ( yields_nao [ , 7 ] , type = " l " , ylab =" Y i e l d s " , ylim=c ( −0 . 5 , 5 . 5 ) )

l i n e s ( y i e l d s _ b 1 t s [ , 7 ] , type = " l " , col = " red " )

l i n e s ( y i e l d s _ b 2 t s [ , 7 ] , type = " l " , col = " blue " )

l i n e s ( y i e l d s _ b 3 t s [ , 7 ] , type = " l " , col = " green " )

legend ( ’ topright ’ , c ( " O r i g i n a l time s e r i e s " , " 1 p r i n c i p a l component " ,

"2 p r i n c i p a l components " , " 3 p r i n c i p a l components " ) , l t y =1 ,

col =c ( ’ black ’ , ’ red ’ , ’ blue ’ , ’ green ’ ) ,

bty = ’n ’ , cex = 0 . 8 )

p l o t ( yields_nao [ , 1 3 ] , type = " l " , ylab =" Y i e l d s " , ylim=c ( 0 . 3 , 6 . 7 ) )

l i n e s ( y i e l d s _ b 1 t s [ , 1 3 ] , type = " l " , col = " red " )

l i n e s ( y i e l d s _ b 2 t s [ , 1 3 ] , type = " l " , col = " blue " )

l i n e s ( y i e l d s _ b 3 t s [ , 1 3 ] , type = " l " , col = " green " )

legend ( ’ topright ’ , c ( " O r i g i n a l time s e r i e s " , " 1 p r i n c i p a l component " ,

"2 p r i n c i p a l components " , " 3 p r i n c i p a l components " ) , l t y =1 ,

col =c ( ’ black ’ , ’ red ’ , ’ blue ’ , ’ green ’ ) ,

bty = ’n ’ , cex = 0 . 8 )

#ARIMA modelling

l i b r a r y ( a s t s a )

l i b r a r y ( fArma )

l i b r a r y (WDI)

l i b r a r y ( urca )

#Diebold−L i approach => AR ( 1 ) processes

sarima ( t r _ y i e l d s [ , 1 ] , 1 , 0 , 0 , d e t a i l s = FALSE )

sarima ( t r _ y i e l d s [ , 2 ] , 1 , 0 , 0 , d e t a i l s = FALSE )

sarima ( t r _ y i e l d s [ , 3 ] , 1 , 0 , 0 , d e t a i l s = FALSE )

#Our approach => Finding the best ARIMA process

# i s there unit root in the time s e r i e s ?

p l o t ( t r _ y i e l d s [ , 1 ] , type = " l " )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df ( t r _ y i e l d s [ , 1 ] , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

summary( ur . df ( t r _ y i e l d s [ , 1 ] , type =" trend " , l a g s =20 , s e l e c t l a g s ="BIC " ) )
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#KPSS t e s t

summary( ur . kpss ( t r _ y i e l d s [ , 1 ] , type ="mu" ) )

summary( ur . kpss ( t r _ y i e l d s [ , 1 ] , type =" tau " ) )

# P h i l l i p s−Perron t e s t

PP . t e s t ( t r _ y i e l d s [ , 1 ] )

#There i s an unit root in the o r i g i n a l time s e r i e s , we need to take d i f f e r e n c e s

p l o t ( d i f f ( t r _ y i e l d s [ , 1 ] ) , type = " l " )

mean( d i f f ( t r _ y i e l d s [ , 1 ] ) )

#mean i s c l o s e to zero and there i s no s i g n i f i c a n t d r i f t so the type of t e s t i s none

summary( ur . df ( d i f f ( t r _ y i e l d s [ , 1 ] ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#we r e f u s e the H0 t h a t there i s an unit root in d i f f e r e n t i a t e d time s e r i e s

summary( ur . kpss ( d i f f ( t r _ y i e l d s [ , 1 ] ) , type ="mu" ) )

#we dont r e f u s e the H0 t h a t the process i s s t a t i o n a r y

PP . t e s t ( d i f f ( t r _ y i e l d s [ , 1 ] ) )

#we work with f i r s t d i f f e r e n c e s of the o r i g i n a l time s e r i e s

acf2 ( d i f f ( t r _ y i e l d s [ , 1 ] ) )

sarima ( t r _ y i e l d s [ , 1 ] , 1 , 1 , 2 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c ( 0 . 9 4 7 9 ) )

# process i s s t a t i o n a r y

# t e s t i n g i n v e r t i b i l i t y of the process

armaRoots ( c ( 1 . 1 5 2 4 , −0.2139))

# process i s i n v e r t i b l e

# i s there unit root in the time s e r i e s ?

p l o t ( t r _ y i e l d s [ , 2 ] , type = " l " )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df ( t r _ y i e l d s [ , 2 ] , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

summary( ur . df ( t r _ y i e l d s [ , 2 ] , type =" trend " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss ( t r _ y i e l d s [ , 2 ] , type ="mu" ) )

summary( ur . kpss ( t r _ y i e l d s [ , 2 ] , type =" tau " ) )

# P h i l l i p s−Perron t e s t

PP . t e s t ( t r _ y i e l d s [ , 2 ] )

#There i s an unit root in the o r i g i n a l time s e r i e s , we need to take d i f f e r e n c e s

p l o t ( d i f f ( t r _ y i e l d s [ , 2 ] ) , type = " l " )

mean( d i f f ( t r _ y i e l d s [ , 2 ] ) )

#mean i s c l o s e to zero and there i s no s i g n i f i c a n t d r i f t so the type of t e s t i s none

summary( ur . df ( d i f f ( t r _ y i e l d s [ , 2 ] ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#we r e f u s e the H0 t h a t there i s an unit root in d i f f e r e n t i a t e d time s e r i e s

summary( ur . kpss ( d i f f ( t r _ y i e l d s [ , 2 ] ) , type ="mu" ) )

#we dont r e f u s e the H0 t h a t the process i s s t a t i o n a r y

PP . t e s t ( d i f f ( t r _ y i e l d s [ , 2 ] ) )

#we work with f i r s t d i f f e r e n c e s of the o r i g i n a l time s e r i e s

acf2 ( d i f f ( t r _ y i e l d s [ , 2 ] ) )

sarima ( t r _ y i e l d s [ , 2 ] , 8 , 1 , 0 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c (−0.3454 , −0.1256 , −0.0794 , −0.0425 , −0.0244 , −0.0350 , −0.0137 , 0 . 0 6 2 5 ) )

# process i s s t a t i o n a r y

# i s there unit root in the time s e r i e s ?

p l o t ( t r _ y i e l d s [ , 3 ] , type = " l " )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df ( t r _ y i e l d s [ , 3 ] , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss ( t r _ y i e l d s [ , 3 ] , type ="mu" ) )

# P h i l l i p s−Perron t e s t
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PP . t e s t ( t r _ y i e l d s [ , 3 ] )

#There i s an unit root in the o r i g i n a l time s e r i e s , we need to take d i f f e r e n c e s

p l o t ( d i f f ( t r _ y i e l d s [ , 3 ] ) , type = " l " )

mean( d i f f ( t r _ y i e l d s [ , 3 ] ) )

#mean i s c l o s e to zero and there i s no s i g n i f i c a n t d r i f t so the type of t e s t i s none

summary( ur . df ( d i f f ( t r _ y i e l d s [ , 3 ] ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#we r e f u s e the H0 t h a t there i s an unit root in d i f f e r e n t i a t e d time s e r i e s

summary( ur . kpss ( d i f f ( t r _ y i e l d s [ , 3 ] ) , type ="mu" ) )

#we dont r e f u s e the H0 t h a t the process i s s t a t i o n a r y

PP . t e s t ( d i f f ( t r _ y i e l d s [ , 3 ] ) )

#we work with f i r s t d i f f e r e n c e s of the o r i g i n a l time s e r i e s

acf2 ( t r _ y i e l d s [ , 3 ] )

sarima ( t r _ y i e l d s [ , 3 ] , 1 , 0 , 6 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c ( 0 . 9 9 5 2 ) )

# process i s s t a t i o n a r y

# t e s t i n g i n v e r t i b i l i t y of the process

armaRoots ( c ( 0 . 5 2 4 4 , 0 . 1 1 9 , −0.0704 , 0 . 0 6 9 2 , 0 . 0 5 3 7 , −0.0233))

# process i s i n v e r t i b l e

acf2 ( d i f f ( t r _ y i e l d s [ , 3 ] ) )

sarima ( t r _ y i e l d s [ , 3 ] , 5 , 1 , 1 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c ( 0 . 2 0 6 6 , −0.0116 , 0 . 0 8 7 0 , −0.0414 , −0.0567 ) )

# process i s s t a t i o n a r y

# t e s t i n g i n v e r t i b i l i t y of the process

armaRoots ( c ( 0 . 7 3 2 6 ) )

# process i s i n v e r t i b l e

#PCA f o r time period before Euro adoption

# c r e a t i n g time s e r i e s of y i e l d s from time period before Euro adoption

y i e l d s _ b ea <− t s ( mydata [ YYYY < 2 0 0 8 , 4 : 1 8 ] , frequency =252 , s t a r t =c ( 2 0 0 3 , 1 , 7 ) )

#computing sample variance matrix

round ( cor ( na . omit ( y ie l d s _ be a ) ) , d i g i t s = 2)

ZC_BEA_pca<−prcomp ( na . omit ( y i e l d s _ b ea ) , s c a l e =FALSE )

summary( ZC_BEA_pca )

ZC_BEA_pca

alpha <− rep ( 0 , 15)

f o r ( i in 1 : 1 5 ) alpha [ i ] <− sum ( ( ZC_BEA_pca$sdev ^ 2 ) [ 1 : i ] ) / sum( ZC_BEA_pca$sdev ^2)

p l o t ( alpha , type ="b " )

#PCA f o r time period a f t e r Euro adoption

# c r e a t i n g time s e r i e s of y i e l d s from time period a f t e r Euro adoption

y i e l d s _ a e a <− t s ( mydata [ YYYY > 2 0 0 9 , 4 : 1 8 ] , frequency =252 , s t a r t =c ( 2 0 0 3 , 1 , 7 ) )

#computing sample variance matrix

round ( cor ( na . omit ( y i e l d s _ a e a ) ) , d i g i t s = 2)

ZC_AEA_pca<−prcomp ( na . omit ( y i e l d s _ a e a ) , s c a l e =FALSE )

summary( ZC_AEA_pca )

ZC_AEA_pca

alpha <− rep ( 0 , 15)

f o r ( i in 1 : 1 5 ) alpha [ i ] <− sum ( ( ZC_AEA_pca$sdev ^ 2 ) [ 1 : i ] ) / sum( ZC_AEA_pca$sdev ^2)

p l o t ( alpha , type ="b " )
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ARIMA for forecasting

# s e t the path to the input f i l e

setwd ( "C: \ \ Users \\ Peter Carsky \\Documents\\ Diplomovka " )

mydata = read . csv ( " input . csv " , na . s t r i n g = " " , sep = " ; " )

# reading in l i b r a r i e s

l i b r a r y ( a s t s a )

l i b r a r y ( fArma )

l i b r a r y (WDI)

l i b r a r y ( urca )

# c r e a t i n g time s e r i e s from our d a t a s e t

y i e l d s <− na . omit ( mydata [ , 1 : 1 8 ] ) [ 1 : 2 6 2 5 , ]

frequencies <− rep ( 0 , length ( unique ( yields$YYYY ) ) )

f o r ( i in 1 : length ( frequencies ) ) {

frequencies [ i ] <− length ( yields$YYYY [ which ( yields$YYYY ==( unique ( yields$YYYY ) [ i ] ) ) ] )

}

f r e q <− mean( frequencies [ 2 : ( length ( frequencies ) −1)])

s t <− 13 − f requencies [ 1 ] / f r e q *12

y i e l d s <− t s ( y i e l d s [ , 4 : 1 8 ] , frequency= freq , s t a r t =c (2006 , s t ) )

#ZCY1Y

# i s there unit root in the time s e r i e s ?

p l o t ( y i e l d s [ , 1 ] , type = " l " , ylab =" Y i e l d " )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df ( y i e l d s [ , 1 ] , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

summary( ur . df ( y i e l d s [ , 1 ] , type =" trend " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss ( y i e l d s [ , 1 ] , type ="mu" ) )

summary( ur . kpss ( y i e l d s [ , 1 ] , type =" tau " ) )

# P h i l l i p s−Perron t e s t

PP . t e s t ( y i e l d s [ , 1 ] )

#There i s an unit root in the o r i g i n a l time s e r i e s , we need to take d i f f e r e n c e s

p l o t ( d i f f ( y i e l d s [ , 1 ] ) , type = " l " )

mean( d i f f ( y i e l d s [ , 1 ] ) )

#mean i s c l o s e to zero and there i s no s i g n i f i c a n t d r i f t so the type of t e s t i s none

summary( ur . df ( d i f f ( y i e l d s [ , 1 ] ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#we r e f u s e the H0 t h a t there i s an unit root in d i f f e r e n t i a t e d time s e r i e s

summary( ur . kpss ( d i f f ( y i e l d s [ , 1 ] ) , type ="mu" ) )

#we dont r e f u s e the H0 t h a t the process i s s t a t i o n a r y

PP . t e s t ( d i f f ( y i e l d s [ , 1 ] ) )

#we work with f i r s t d i f f e r e n c e s of the o r i g i n a l time s e r i e s

acf2 ( d i f f ( y i e l d s [ , 1 ] ) )

#We choose ARIMA( 3 , 1 , 0 ) process

# I t i s impossible to f i n d r e a l l y good model f o r t h i s time s e r i e s ,

#because there i s s i g n i f i c a n t a u t o c o r r e l a t i o n f o r quite l a r g e l a g s ( more than 20)

sarima ( y i e l d s [ , 1 ] , 3 , 1 , 0 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c (−0.4334 , −0.2034 , −0.0801))

# process i s s t a c i o n a r y

# t e s t i n g unit root f o r a l l m a t u r i t i e s

p_values <− rep ( 1 0 0 , 1 5 )

f o r ( i in 1 : 1 5 ) {

p_values [ i ] <− PP . t e s t ( y i e l d s [ , i ] ) $p . value }

# in a l l cases p−value > 50% => we take d i f f e r e n c e s and t e s t them

p _ v a l u e s _ d i f f <− rep ( 1 0 0 , 1 5 )
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f o r ( i in 1 : 1 5 ) {

p _ v a l u e s _ d i f f [ i ] <− PP . t e s t ( d i f f ( y i e l d s [ , i ] ) ) $p . value }

#p−values = 0.01 => we work with 1 s t d i f f e r e n c e s

#ZCY2Y

acf2 ( d i f f ( y i e l d s [ , 2 ] ) )

sarima ( y i e l d s [ , 2 ] , 3 , 1 , 5 , d e t a i l s = FALSE )

armaRoots ( c ( −0.0029 , 0 . 0 7 6 , 0 . 8 4 3 0 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 0 . 2 6 3 0 , 0 . 1 0 2 5 , 0 . 8 3 9 6 , −0.2356 , −0.0604))

# process i s i n v e r t i b l e

#ZCY3Y

acf2 ( d i f f ( y i e l d s [ , 3 ] ) )

sarima ( y i e l d s [ , 3 ] , 1 2 , 1 , 0 , d e t a i l s = FALSE )

armaRoots ( c (−0.2713 , −0.1093 , −0.0100 , 0 . 0 1 2 2 , 0 . 0 2 0 3 , −0.0277 , −0.0354 , 0 . 0 4 9 3 ,

0 . 0 4 8 6 , 0 . 0 2 0 8 , 0 . 0 3 9 3 , −0.0478))

# process i s s t a t i o n a r y

#ZCY4Y

acf2 ( d i f f ( y i e l d s [ , 4 ] ) )

sarima ( y i e l d s [ , 4 ] , 1 2 , 1 , 0 , d e t a i l s = FALSE )

armaRoots ( c (−0.2853 , −0.1421 , 0 . 0 1 6 1 , 0 . 0 0 5 9 , 0 . 0 2 4 7 , −0.0190 , −0.0135 , 0 . 0 2 7 1 ,

0 . 0 3 8 5 , 0 . 0 4 0 3 , 0 . 0 4 9 4 , −0.0476))

# process i s i n v e r t i b l e

#ZCY5Y

acf2 ( d i f f ( y i e l d s [ , 5 ] ) )

sarima ( y i e l d s [ , 5 ] , 2 , 1 , 3 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 1 2 7 8 , 0 . 7 8 0 2 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 0 . 4 1 0 2 , 0 . 8 1 0 0 , −0.3062))

# process i s i n v e r t i b l e

#ZCY6Y

acf2 ( d i f f ( y i e l d s [ , 6 ] ) )

sarima ( y i e l d s [ , 6 ] , 2 , 1 , 3 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 1 3 5 1 , 0 . 7 5 4 0 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 0 . 4 0 7 0 , 0 . 7 8 2 2 , −0.2931))

# process i s i n v e r t i b l e

#ZCY7Y

acf2 ( d i f f ( y i e l d s [ , 7 ] ) )

sarima ( y i e l d s [ , 7 ] , 0 , 1 , 7 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 2 7 2 7 , 0 . 0 4 6 7 , −0.0723 , 0 . 0 2 8 1 , −0.0272 , −0.0043 , −0.0534))

# process i s i n v e r t i b l e

#ZCY8Y

acf2 ( d i f f ( y i e l d s [ , 8 ] ) )

sarima ( y i e l d s [ , 8 ] , 0 , 1 , 7 , d e t a i l s = FALSE )
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armaRoots ( c ( 0 . 2 8 0 6 , 0 . 0 1 9 0 , −0.0453 , 0 . 0 1 5 3 , −0.0184 , −0.0063 , −0.0593))

# process i s i n v e r t i b l e

#ZCY9Y

acf2 ( d i f f ( y i e l d s [ , 9 ] ) )

sarima ( y i e l d s [ , 9 ] , 0 , 1 , 7 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 2 8 9 0 , −0.0032 , −0.0230 , 0 . 0 0 3 3 , −0.0107 , −0.0045 , −0.0594))

# process i s i n v e r t i b l e

#ZCY10Y

acf2 ( d i f f ( y i e l d s [ , 1 0 ] ) )

sarima ( y i e l d s [ , 1 0 ] , 0 , 1 , 8 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 2 9 2 4 , −0.0171 , −0.0094 , −0.0068 , −0.0051 , −0.0016 , −0.0399 , −0.0418))

# process i s i n v e r t i b l e

#ZCY11Y

acf2 ( d i f f ( y i e l d s [ , 1 1 ] ) )

sarima ( y i e l d s [ , 1 1 ] , 0 , 1 , 8 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 2 9 3 8 , −0.0233 , −0.0008 , −0.0117 , −0.0024 , 0 . 0 0 3 8 , −0.0294 , −0.0560))

# process i s i n v e r t i b l e

#ZCY12Y

acf2 ( d i f f ( y i e l d s [ , 1 2 ] ) )

sarima ( y i e l d s [ , 1 2 ] , 8 , 1 , 0 , d e t a i l s = FALSE )

armaRoots ( c (−0.2915 , −0.0619 , −0.0122 , 0 . 0 0 3 0 , 0 . 0 0 0 0 , −0.0090 , 0 . 0 2 1 5 , 0 . 0 7 2 9 ) )

# process i s s t a t i o n a r y

#ZCY13Y

acf2 ( d i f f ( y i e l d s [ , 1 3 ] ) )

sarima ( y i e l d s [ , 1 3 ] , 8 , 1 , 1 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 2 0 7 6 , 0 . 0 7 5 7 , 0 . 0 2 1 6 , 0 . 0 0 2 9 , −0.0071 , −0.0123 , 0 . 0 2 3 3 , 0 . 0 6 9 6 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 0 . 5 0 5 4 ) )

# process i s i n v e r t i b l e

#ZCY14Y

acf2 ( d i f f ( y i e l d s [ , 1 4 ] ) )

sarima ( y i e l d s [ , 1 4 ] , 8 , 1 , 1 , d e t a i l s = FALSE )

armaRoots ( c ( 0 . 2 7 1 8 , 0 . 0 8 2 7 , 0 . 0 3 1 6 , −0.0043 , −0.0141 , −0.0137 , 0 . 0 2 4 6 , 0 . 0 6 1 5 ) )

# process i s s t a t i o n a r y

armaRoots ( c ( 0 . 5 7 9 8 ) )

# process i s i n v e r t i b l e

#ZCY15Y

acf2 ( d i f f ( y i e l d s [ , 1 5 ] ) )

sarima ( y i e l d s [ , 1 5 ] , 5 , 1 , 2 , d e t a i l s = FALSE )

armaRoots ( c ( 1 . 1 8 4 7 , −0.5909 , −0.1642 , −0.0926 , −0.0257))

# process i s s t a t i o n a r y

armaRoots ( c ( 1 . 5 2 0 2 , −0.9712))

# process i s i n v e r t i b l e

Diebold-Li
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#Run a f t e r PCA code

l i b r a r y ( YieldCurve )

setwd ( "C: \ \ Users \\ Peter Carsky \\Documents\\ Diplomovka " )

mydata = read . csv ( " input . csv " , na . s t r i n g = " " , sep = " ; " )

attach ( mydata )

y i e l d s <− na . omit ( mydata [ , 1 : 1 8 ] ) [ 1 : 2 6 2 5 , ]

frequencies <− rep ( 0 , length ( unique ( yields$YYYY ) ) )

f o r ( i in 1 : length ( frequencies ) ) {

frequencies [ i ] <− length ( yields$YYYY [ which ( yields$YYYY ==( unique ( yields$YYYY ) [ i ] ) ) ] )

}

f r e q <− mean( frequencies [ 2 : ( length ( frequencies ) −1)])

s t <− 13 − f requencies [ 1 ] / f r e q *12

y i e l d s <− t s ( y i e l d s [ , 4 : 1 8 ] , frequency= freq , s t a r t =c (2006 , s t ) )

maturity_SK <− seq ( from = 1 , to = 15 , by = 1)

# Finding lambda t h a t maximizes mid_term f a c t o r loading

mid_term <− function ( lambda ) { (1−exp(−30/12*lambda ) ) / ( 3 0 / 1 2 * lambda)−exp(−30/12*lambda ) }

lambda_opt <− optimize ( mid_term , i n t e r v a l =c ( 0 , 1 ) , maximum=TRUE)$maximum

# P l o t t i n g 3 loadings in DL model

tau <− seq ( from = 0 , to = 15 , by = 0 . 0 1 )

p l o t ( tau , rep ( 1 , times= length ( tau ) ) , type =" l " , ylim=c ( 0 , 1 . 3 ) , ylab =" Beta loadings " , xlab =" Maturity " )

l i n e s ( tau ,(1−exp(−lambda_opt * tau ) ) / ( lambda_opt * tau ) , col =" red " )

l i n e s ( tau ,(1−exp(−lambda_opt * tau ) ) / ( lambda_opt * tau)−exp(−lambda_opt * tau ) , col =" blue " )

legend ( ’ topright ’ , c ( " Level loading " , " Slope loading " , " Curvature loading " ) , l t y =1 ,

col =c ( ’ black ’ , ’ red ’ , ’ blue ’ ) ,

bty = ’n ’ , cex = 1 . 1 )

f a c t o r _ l o a d i n g s <− function ( lambda ) {

a <− rep ( 0 , 1 5 )

b <− rep ( 0 , 1 5 )

f o r ( i in 1 : 1 5 ) {

a [ i ] <− (1−exp(− i * lambda ) ) / ( i * lambda )

b [ i ] <− (1−exp(− i * lambda ) ) / ( i * lambda)−exp(− i * lambda )

}

cbind ( a , b )

}

NS_opt <− Nelson . S i e g e l ( r a t e = y i e l d s , maturity=maturity_SK )

NS_DL <− matrix ( data =0 , ncol =3 ,nrow=dim ( y i e l d s ) [ 1 ] )

NS_mean <− matrix ( data =0 , ncol =3 ,nrow=dim ( y i e l d s ) [ 1 ] )

# C a l c u l a t i n g average lambda of f i t t e d NS models

lambda_mean <− mean( NS_opt [ , 4 ] )

# Creating histogram of lambdas from f i t t e d NS models

h i s t ( NS_opt [ , 4 ] , x lab ="lambda " , main=" D i s t r i b u t i o n of lambda " )

a x i s ( s ide =1 , at =lambda_opt , l a b e l s = FALSE )

t e x t ( x=lambda_opt , par ( " usr " ) [ 3 ] ,

l a b e l s = " Diebold−L i " , col =" black " , pos = 1 , xpd = TRUE, cex =1)

a x i s ( s ide =1 , at =lambda_mean , l a b e l s = FALSE )

t e x t ( x=lambda_mean , par ( " usr " ) [ 3 ] ,

l a b e l s = " Average " , col =" black " , pos = 1 , xpd = TRUE, cex =1)

# F i t t i n g l i n e a r models with f i x e d lambda

f o r ( i in 1 : dim (NS_DL ) [ 1 ] ) {

NS_DL[ i , ] <− lm ( y i e l d s [ i , ] ~ f a c t o r _ l o a d i n g s ( lambda_opt ) ) $ c o e f f

NS_mean[ i , ] <− lm ( y i e l d s [ i , ] ~ f a c t o r _ l o a d i n g s ( lambda_mean ) ) $ c o e f f

}
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l i b r a r y ( a s t s a )

l i b r a r y ( fArma )

l i b r a r y (WDI)

l i b r a r y ( urca )

#Diebold−L i approach => AR ( 1 ) processes

sarima (NS_DL [ , 1 ] , 1 , 0 , 0 , d e t a i l s = FALSE )

sarima (NS_DL [ , 2 ] , 1 , 0 , 0 , d e t a i l s = FALSE )

sarima (NS_DL [ , 3 ] , 1 , 0 , 0 , d e t a i l s = FALSE )

sarima (NS_mean [ , 1 ] , 1 , 0 , 0 , d e t a i l s = FALSE )

sarima (NS_mean [ , 2 ] , 1 , 0 , 0 , d e t a i l s = FALSE )

sarima (NS_mean [ , 3 ] , 1 , 0 , 0 , d e t a i l s = FALSE )

#Our approach => Finding the best ARIMA process

# i s there unit root in the time s e r i e s ?

p l o t (NS_DL [ , 1 ] , type = " l " )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df (NS_DL [ , 1 ] , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

summary( ur . df (NS_DL [ , 1 ] , type =" trend " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss (NS_DL [ , 1 ] , type ="mu" ) )

summary( ur . kpss (NS_DL [ , 1 ] , type =" tau " ) )

# P h i l l i p s−Perron t e s t

PP . t e s t (NS_DL [ , 1 ] )

#There i s an unit root in the o r i g i n a l time s e r i e s , we need to take d i f f e r e n c e s

p l o t ( d i f f (NS_DL [ , 1 ] ) , type = " l " )

mean( d i f f (NS_DL [ , 1 ] ) )

#mean i s c l o s e to zero and there i s no s i g n i f i c a n t d r i f t so the type of t e s t i s none

summary( ur . df ( d i f f (NS_DL [ , 1 ] ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#we r e f u s e the H0 t h a t there i s an unit root in d i f f e r e n t i a t e d time s e r i e s

summary( ur . kpss ( d i f f (NS_DL [ , 1 ] ) , type ="mu" ) )

#we dont r e f u s e the H0 t h a t the process i s s t a t i o n a r y

PP . t e s t ( d i f f (NS_DL [ , 1 ] ) )

#we work with f i r s t d i f f e r e n c e s of the o r i g i n a l time s e r i e s

acf2 ( d i f f (NS_DL [ , 1 ] ) )

sarima (NS_DL [ , 1 ] , 0 , 1 , 1 , d e t a i l s = FALSE )

# t e s t i n g i n v e r t i b i l i t y of the process

armaRoots ( c ( 0 . 3 7 9 9 ) )

# process i s i n v e r t i b l e

# i s there unit root in the time s e r i e s ?

p l o t (NS_DL [ , 2 ] , type = " l " )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df (NS_DL [ , 2 ] , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

summary( ur . df (NS_DL [ , 2 ] , type =" trend " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss (NS_DL [ , 2 ] , type ="mu" ) )

summary( ur . kpss (NS_DL [ , 2 ] , type =" tau " ) )

# P h i l l i p s−Perron t e s t

PP . t e s t (NS_DL [ , 2 ] )

#There i s an unit root in the o r i g i n a l time s e r i e s , we need to take d i f f e r e n c e s

p l o t ( d i f f (NS_DL [ , 2 ] ) , type = " l " )

mean( d i f f (NS_DL [ , 2 ] ) )

#mean i s c l o s e to zero and there i s no s i g n i f i c a n t d r i f t so the type of t e s t i s none

summary( ur . df ( d i f f (NS_DL [ , 2 ] ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#we r e f u s e the H0 t h a t there i s an unit root in d i f f e r e n t i a t e d time s e r i e s

summary( ur . kpss ( d i f f (NS_DL [ , 2 ] ) , type ="mu" ) )

#we dont r e f u s e the H0 t h a t the process i s s t a t i o n a r y
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PP . t e s t ( d i f f (NS_DL [ , 2 ] ) )

#we work with f i r s t d i f f e r e n c e s of the o r i g i n a l time s e r i e s

acf2 ( d i f f (NS_DL [ , 2 ] ) )

sarima (NS_DL [ , 2 ] , 3 , 1 , 1 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c ( 0 . 2 7 2 6 , 0 . 0 3 8 9 , 0 . 0 9 1 9 ) )

# process i s s t a t i o n a r y

# t e s t i n g i n v e r t i b i l i t y of the process

armaRoots ( c ( 0 . 7 4 7 2 ) )

# process i s i n v e r t i b l e

# i s there unit root in the time s e r i e s ?

p l o t (NS_DL [ , 3 ] , type = " l " )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df (NS_DL [ , 3 ] , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

summary( ur . df (NS_DL [ , 3 ] , type =" trend " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss (NS_DL [ , 3 ] , type ="mu" ) )

summary( ur . kpss (NS_DL [ , 3 ] , type =" tau " ) )

# P h i l l i p s−Perron t e s t

PP . t e s t (NS_DL [ , 3 ] )

#There i s an unit root in the o r i g i n a l time s e r i e s , we need to take d i f f e r e n c e s

p l o t ( d i f f (NS_DL [ , 3 ] ) , type = " l " )

mean( d i f f (NS_DL [ , 3 ] ) )

#mean i s c l o s e to zero and there i s no s i g n i f i c a n t d r i f t so the type of t e s t i s none

summary( ur . df ( d i f f (NS_DL [ , 3 ] ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#we r e f u s e the H0 t h a t there i s an unit root in d i f f e r e n t i a t e d time s e r i e s

summary( ur . kpss ( d i f f (NS_DL [ , 3 ] ) , type ="mu" ) )

#we dont r e f u s e the H0 t h a t the process i s s t a t i o n a r y

PP . t e s t ( d i f f (NS_DL [ , 3 ] ) )

#we work with f i r s t d i f f e r e n c e s of the o r i g i n a l time s e r i e s

acf2 (NS_DL [ , 3 ] )

sarima (NS_DL [ , 3 ] , 1 , 0 , 5 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c ( 0 . 9 9 8 4 ) )

# process i s s t a t i o n a r y

# t e s t i n g i n v e r t i b i l i t y of the process

armaRoots ( c ( 0 . 5 2 3 1 , 0 . 0 8 8 9 , −0.0585 , 0 . 0 5 9 5 , 0 . 0 4 7 7 ) )

# process i s i n v e r t i b l e

acf2 ( d i f f (NS_DL [ , 3 ] ) )

sarima (NS_DL [ , 3 ] , 2 , 1 , 4 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c ( 0 . 9 4 3 8 , −0.6173))

# process i s s t a t i o n a r y

# t e s t i n g i n v e r t i b i l i t y of the process

armaRoots ( c ( 1 . 4 6 7 8 , −1.0269 , 0 . 2 0 7 2 , 0 . 1 2 0 5 ) )

# process i s i n v e r t i b l e

#Lambda = mean approach

# i s there unit root in the time s e r i e s ?

p l o t (NS_mean [ , 1 ] , type = " l " )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df (NS_mean [ , 1 ] , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

summary( ur . df (NS_mean [ , 1 ] , type =" trend " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss (NS_mean [ , 1 ] , type ="mu" ) )

summary( ur . kpss (NS_mean [ , 1 ] , type =" tau " ) )

# P h i l l i p s−Perron t e s t
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PP . t e s t (NS_mean [ , 1 ] )

#There i s an unit root in the o r i g i n a l time s e r i e s , we need to take d i f f e r e n c e s

p l o t ( d i f f (NS_mean [ , 1 ] ) , type = " l " )

mean( d i f f (NS_mean [ , 1 ] ) )

#mean i s c l o s e to zero and there i s no s i g n i f i c a n t d r i f t so the type of t e s t i s none

summary( ur . df ( d i f f (NS_mean [ , 1 ] ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#we r e f u s e the H0 t h a t there i s an unit root in d i f f e r e n t i a t e d time s e r i e s

summary( ur . kpss ( d i f f (NS_mean [ , 1 ] ) , type ="mu" ) )

#we dont r e f u s e the H0 t h a t the process i s s t a t i o n a r y

PP . t e s t ( d i f f (NS_mean [ , 1 ] ) )

#we work with f i r s t d i f f e r e n c e s of the o r i g i n a l time s e r i e s

acf2 ( d i f f (NS_mean [ , 1 ] ) )

sarima (NS_mean [ , 1 ] , 2 , 1 , 6 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c ( 1 . 2 6 6 4 , −0.7329))

# process i s s t a t i o n a r y

# t e s t i n g i n v e r t i b i l i t y of the process

armaRoots ( c ( 1 . 7 2 6 3 , −1.2431 , 0 . 1 9 9 6 , 0 . 1 7 0 7 , −0.0697 , 0 . 0 0 4 7 ) )

# process i s i n v e r t i b l e

# i s there unit root in the time s e r i e s ?

p l o t (NS_mean [ , 2 ] , type = " l " )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df (NS_mean [ , 2 ] , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss (NS_mean [ , 2 ] , type ="mu" ) )

# P h i l l i p s−Perron t e s t

PP . t e s t (NS_mean [ , 2 ] )

#There i s an unit root in the o r i g i n a l time s e r i e s , we need to take d i f f e r e n c e s

p l o t ( d i f f (NS_mean [ , 2 ] ) , type = " l " )

mean( d i f f (NS_mean [ , 2 ] ) )

#mean i s c l o s e to zero and there i s no s i g n i f i c a n t d r i f t so the type of t e s t i s none

summary( ur . df ( d i f f (NS_mean [ , 2 ] ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#we r e f u s e the H0 t h a t there i s an unit root in d i f f e r e n t i a t e d time s e r i e s

summary( ur . kpss ( d i f f (NS_mean [ , 2 ] ) , type ="mu" ) )

#we dont r e f u s e the H0 t h a t the process i s s t a t i o n a r y

PP . t e s t ( d i f f (NS_mean [ , 2 ] ) )

#we work with f i r s t d i f f e r e n c e s of the o r i g i n a l time s e r i e s

acf2 ( d i f f (NS_mean [ , 2 ] ) )

sarima (NS_mean [ , 2 ] , 7 , 1 , 2 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c (−1.0038 , −0.9751 , −0.3831 , −0.1829 , −0.1129 , −0.0975 , −0.0794))

# process i s s t a t i o n a r y

# t e s t i n g i n v e r t i b i l i t y of the process

armaRoots ( c (−0.6550 , −0.6184))

# process i s i n v e r t i b l e

# i s there unit root in the time s e r i e s ?

p l o t (NS_mean [ , 3 ] , type = " l " )

# Adjusted Dickey−F u l l e r t e s t

summary( ur . df (NS_mean [ , 3 ] , type =" d r i f t " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

summary( ur . df (NS_mean [ , 3 ] , type =" trend " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#KPSS t e s t

summary( ur . kpss (NS_mean [ , 3 ] , type ="mu" ) )

summary( ur . kpss (NS_mean [ , 3 ] , type =" tau " ) )

# P h i l l i p s−Perron t e s t

PP . t e s t (NS_mean [ , 3 ] )
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#There i s an unit root in the o r i g i n a l time s e r i e s , we need to take d i f f e r e n c e s

p l o t ( d i f f (NS_mean [ , 3 ] ) , type = " l " )

mean( d i f f (NS_mean [ , 3 ] ) )

#mean i s c l o s e to zero and there i s no s i g n i f i c a n t d r i f t so the type of t e s t i s none

summary( ur . df ( d i f f (NS_mean [ , 3 ] ) , type ="none " , l a g s =20 , s e l e c t l a g s ="BIC " ) )

#we r e f u s e the H0 t h a t there i s an unit root in d i f f e r e n t i a t e d time s e r i e s

summary( ur . kpss ( d i f f (NS_mean [ , 3 ] ) , type ="mu" ) )

#we dont r e f u s e the H0 t h a t the process i s s t a t i o n a r y

PP . t e s t ( d i f f (NS_mean [ , 3 ] ) )

acf2 (NS_mean [ , 3 ] )

sarima (NS_mean [ , 3 ] , 1 , 0 , 5 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c ( 0 . 9 9 8 2 ) )

# process i s s t a t i o n a r y

# t e s t i n g i n v e r t i b i l i t y of the process

armaRoots ( c ( 0 . 5 0 8 1 , 0 . 1 3 1 8 , −0.0809 , 0 . 0 7 4 8 , 0 . 0 4 0 2 ) )

# process i s i n v e r t i b l e

acf2 ( d i f f (NS_mean [ , 3 ] ) )

sarima (NS_mean [ , 3 ] , 3 , 1 , 3 , d e t a i l s = FALSE )

# t e s t i n g s t a t i o n a r i t y of the process

armaRoots ( c ( 0 . 1 2 1 8 , −0.3501 , 0 . 2 3 8 4 ) )

# process i s s t a t i o n a r y

# t e s t i n g i n v e r t i b i l i t y of the process

armaRoots ( c ( 0 . 6 3 2 4 , −0.2825 , 0 . 3 2 8 0 ) )

# process i s i n v e r t i b l e

# C o r r e l a t i o n matrices f o r two d i f f e r e n t choices of lambda

cor (NS_mean)

cor (NS_DL)

#graphs

#At f i r s t we c r e a t e time s e r i e s of PCA y i e l d s

PCA_yields <− matrix ( data =0 ,nrow=dim ( t r _ y i e l d s ) [ 1 ] , ncol=dim ( t r _ y i e l d s ) [ 2 ] )

PCA_yields [ , 1 ] <− −1* t r _ y i e l d s [ , 1 ]

PCA_yields [ , 2 ] <− t r _ y i e l d s [ , 2 ]

PCA_yields [ , 3 ] <− t r _ y i e l d s [ , 3 ]

f o r ( i in 1 : 3 ) {

PCA_yields [ , i ] <− PCA_yields [ , i ] / stdev ( PCA_yields [ , i ] ) * ( stdev (NS_DL [ , i ] ) + stdev (NS_mean [ , i ] ) ) / 2

PCA_yields [ , i ] <− PCA_yields [ , i ] + ( rep (mean(NS_DL [ , i ] ) , dim (NS_DL ) [ 1 ] ) + rep (mean(NS_mean [ , i ] ) , dim (NS_mean ) [ 1 ] ) ) / 2

}

# l e v e l f a c t o r

cor ( cbind (NS_mean [ , 1 ] , NS_DL[ ,1] , −1* t r _ y i e l d s [ , 1 ] ) )

p l o t (NS_DL [ , 1 ] , type =" l " , ylab =" Level f a c t o r " , ylim=c ( 0 , 9 ) )

l i n e s (NS_mean [ , 1 ] , col =" red " )

l i n e s ( PCA_yields [ , 1 ] , col =" blue " )

legend ( ’ topright ’ , c ( "NS_DL" , "NS_mean" , "PCA" ) , l t y =1 ,

col =c ( ’ black ’ , ’ red ’ , ’ blue ’ ) ,

bty = ’n ’ , cex = 1 . 1 )

# slope f a c t o r

cor ( cbind (NS_mean [ , 2 ] , NS_DL [ , 2 ] , PCA_yields [ , 2 ] ) )

p l o t (NS_DL [ , 2 ] , type =" l " , ylab =" Slope f a c t o r " , ylim=c (−8 ,2))

l i n e s (NS_mean [ , 2 ] , col =" red " )

l i n e s ( PCA_yields [ , 2 ] , col =" blue " )

legend ( ’ bottomright ’ , c ( "NS_DL" , "NS_mean" , "PCA" ) , l t y =1 ,
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col =c ( ’ black ’ , ’ red ’ , ’ blue ’ ) ,

bty = ’n ’ , cex = 1 . 1 )

# curvature f a c t o r

cor ( cbind (NS_mean [ , 3 ] , NS_DL [ , 3 ] , PCA_yields [ , 3 ] ) )

p l o t (NS_DL [ , 3 ] , type =" l " , ylab =" Curvature f a c t o r " , ylim=c (−15 ,9))

l i n e s (NS_mean [ , 3 ] , col =" red " )

l i n e s ( PCA_yields [ , 3 ] , col =" blue " )

legend ( ’ topright ’ , c ( "NS_DL" , "NS_mean" , "PCA" ) , l t y =1 ,

col =c ( ’ black ’ , ’ red ’ , ’ blue ’ ) ,

bty = ’n ’ , cex = 1 . 1 )

Predictions

#Run a f t e r PCA , Diebold−L i and ar im a_ be fo re _f or ec as t i ng

setwd ( "C: \ \ Users \\ Peter Carsky \\Documents\\ Diplomovka " )

y i e l d s _ a l l = na . omit ( read . csv ( " input . csv " , na . s t r i n g = " " , sep = " ; " ) )

#Number of time periods we want to p r e d i c t

n_pred <− 70

# Y i e l d s before f o r e c a s t s , common f o r each dataframe

y i e l d s _ b f <− y i e l d s _ a l l [ 1 : 2 6 2 5 , 1 : 1 8 ]

# Y i e l d s t h a t w i l l be compared with f o r e c a s t s ( true values of time s e r i e s )

y i e l d s _ t f <− y i e l d s _ a l l [2626:(2625+ n_pred ) , 1 : 1 8 ]

########################## DEFINING FORECASTING MODELS #######################

# Forecasts from ARIMA processes s p e c i f i c f o r each maturity

ARIMA <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

ARIMA [ , 1 ] <− sarima . f o r ( y i e l d s [ , 1 ] , n_pred , 3 , 1 , 0 ) $pred

ARIMA [ , 2 ] <− sarima . f o r ( y i e l d s [ , 2 ] , n_pred , 8 , 1 , 1 ) $pred

ARIMA [ , 3 ] <− sarima . f o r ( y i e l d s [ , 3 ] , n_pred , 2 , 1 , 3 ) $pred

ARIMA [ , 4 ] <− sarima . f o r ( y i e l d s [ , 4 ] , n_pred , 0 , 1 , 3 ) $pred

ARIMA [ , 5 ] <− sarima . f o r ( y i e l d s [ , 5 ] , n_pred , 0 , 1 , 3 ) $pred

ARIMA [ , 6 ] <− sarima . f o r ( y i e l d s [ , 6 ] , n_pred , 3 , 1 , 3 ) $pred

ARIMA [ , 7 ] <− sarima . f o r ( y i e l d s [ , 7 ] , n_pred , 0 , 1 , 7 ) $pred

ARIMA [ , 8 ] <− sarima . f o r ( y i e l d s [ , 8 ] , n_pred , 0 , 1 , 7 ) $pred

ARIMA [ , 9 ] <− sarima . f o r ( y i e l d s [ , 9 ] , n_pred , 0 , 1 , 8 ) $pred

ARIMA[ , 1 0 ] <− sarima . f o r ( y i e l d s [ , 1 0 ] , n_pred , 0 , 1 , 9 ) $pred

ARIMA[ , 1 1 ] <− sarima . f o r ( y i e l d s [ , 1 1 ] , n_pred , 0 , 1 , 8 ) $pred

ARIMA[ , 1 2 ] <− sarima . f o r ( y i e l d s [ , 1 2 ] , n_pred , 0 , 1 , 8 ) $pred

ARIMA[ , 1 3 ] <− sarima . f o r ( y i e l d s [ , 1 3 ] , n_pred , 0 , 1 , 8 ) $pred

ARIMA[ , 1 4 ] <− sarima . f o r ( y i e l d s [ , 1 4 ] , n_pred , 0 , 1 , 1 ) $pred

ARIMA[ , 1 5 ] <− sarima . f o r ( y i e l d s [ , 1 5 ] , n_pred , 5 , 1 , 2 ) $pred

# Creating time s e r i e s with merged h i s t o r i c data with p r e d i c t i o n s

colnames (ARIMA) <− colnames ( y i e l d s _ b f [ , 4 : 1 8 ] )

ARIMA_ts <− t s ( rbind ( y i e l d s _ b f [ , 4 : 1 8 ] , ARIMA) , frequency= freq , s t a r t =c (2006 , s t ) )

# Defining explanatory time s e r i e s f o r Euro adoption

# c r e a t i n g dummy r e g r e s s o r

ea <− rep ( 1 , dim ( y i e l d s ) [ 1 ] )

ea [ 1 : length ( YYYY [ YYYY < 2 0 0 9 ] ) ] <− 0

# c r e a t i n g r e g r e s s o r f o r Euro adoption which slowly turns from 0 to 1

eac <− rep ( 1 , dim ( y i e l d s ) [ 1 ] )

eac [ 1 : length ( YYYY [ YYYY < 2 0 0 8 ] ) ] <− 0

f o r ( i in 1 : length ( YYYY [ YYYY>2007 & YYYY < 2 0 1 0 ] ) ) {

eac [ length ( YYYY [ YYYY<2008])+ i ] <− i / ( length ( YYYY [ YYYY>2007 & YYYY <2010])+1)

}

# Forecasts from ARIMA processes with dummy r e g r e s s i o n term

l i b r a r y ( f o r e c a s t )

ARIMAXd <− matrix ( data =0 , ncol =15 ,nrow=n_pred )
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ARIMAXd [ , 1 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 ] , c ( 3 , 1 , 0 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 2 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 2 ] , c ( 8 , 1 , 1 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 3 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 3 ] , c ( 2 , 1 , 3 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 4 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 4 ] , c ( 0 , 1 , 3 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 5 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 5 ] , c ( 0 , 1 , 3 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 6 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 6 ] , c ( 3 , 1 , 3 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 7 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 7 ] , c ( 0 , 1 , 7 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 8 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 8 ] , c ( 0 , 1 , 7 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 9 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 9 ] , c ( 0 , 1 , 8 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 1 0 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 0 ] , c ( 0 , 1 , 9 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 1 1 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 1 ] , c ( 0 , 1 , 8 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 1 2 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 2 ] , c ( 0 , 1 , 8 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 1 3 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 3 ] , c ( 0 , 1 , 8 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 1 4 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 4 ] , c ( 0 , 1 , 1 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXd [ , 1 5 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 5 ] , c ( 5 , 1 , 2 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

# Forecasts from ARIMA processes with l i n e a r r e g r e s s i o n term during years 2008−2009

ARIMAXl <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

ARIMAXl [ , 1 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 ] , c ( 3 , 1 , 0 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 2 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 2 ] , c ( 8 , 1 , 1 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 3 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 3 ] , c ( 2 , 1 , 3 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 4 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 4 ] , c ( 0 , 1 , 3 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 5 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 5 ] , c ( 0 , 1 , 3 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 6 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 6 ] , c ( 3 , 1 , 3 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 7 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 7 ] , c ( 0 , 1 , 7 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 8 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 8 ] , c ( 0 , 1 , 7 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 9 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 9 ] , c ( 0 , 1 , 8 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 1 0 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 0 ] , c ( 0 , 1 , 9 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 1 1 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 1 ] , c ( 0 , 1 , 8 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 1 2 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 2 ] , c ( 0 , 1 , 8 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 1 3 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 3 ] , c ( 0 , 1 , 8 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 1 4 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 4 ] , c ( 0 , 1 , 1 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl [ , 1 5 ] <− f o r e c a s t ( Arima ( y i e l d s [ , 1 5 ] , c ( 5 , 1 , 2 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

# Forecast ing f i r s t three p r i n c i p a l components

PCA_for <− matrix ( data =0 , ncol =3 ,nrow=n_pred )

PCA_for [ , 1 ] <− sarima . f o r ( t r _ y i e l d s [ , 1 ] , n_pred , 1 , 1 , 2 ) $pred

PCA_for [ , 2 ] <− sarima . f o r ( t r _ y i e l d s [ , 2 ] , n_pred , 8 , 1 , 0 ) $pred

PCA_for [ , 3 ] <− sarima . f o r ( t r _ y i e l d s [ , 3 ] , n_pred , 5 , 1 , 1 ) $pred

#Transforming p r e d i c t i o n s from PC base to o r i g i n a l base

PCA <− PCA_for%*%t ( ZC_pca$rotation [ , 1 : 3 ] ) + means [ 1 : n_pred , ]

# Forecast ing Betas from Nelson−S i e g e l

NS_DL_for <− matrix ( data =0 , ncol =3 ,nrow=n_pred )

NS_DL_for [ , 1 ] <− sarima . f o r (NS_DL [ , 1 ] , n_pred , 0 , 1 , 1 ) $pred

NS_DL_for [ , 2 ] <− sarima . f o r (NS_DL [ , 2 ] , n_pred , 3 , 1 , 1 ) $pred

NS_DL_for [ , 3 ] <− sarima . f o r (NS_DL [ , 3 ] , n_pred , 2 , 1 , 4 ) $pred

NS_mean_for <− matrix ( data =0 , ncol =3 ,nrow=n_pred )

NS_mean_for [ , 1 ] <− sarima . f o r (NS_mean [ , 1 ] , n_pred , 2 , 1 , 6 ) $pred

NS_mean_for [ , 2 ] <− sarima . f o r (NS_mean [ , 2 ] , n_pred , 7 , 1 , 2 ) $pred

NS_mean_for [ , 3 ] <− sarima . f o r (NS_mean [ , 3 ] , n_pred , 3 , 1 , 3 ) $pred

#Computing y i e l d s implied by f o r e c a s t e d betas

NS_DL_pred <− t ( cbind ( rep ( 1 , 1 5 ) , f a c t o r _ l o a d i n g s ( lambda_opt))%*% t ( NS_DL_for ) )

NS_mean_pred <− t ( cbind ( rep ( 1 , 1 5 ) , f a c t o r _ l o a d i n g s ( lambda_mean))%*% t ( NS_mean_for ) )

# Modelling a l l processes only by d e f a u l t AR ( 1 ) as suggested by Diebold and L i

# Forecasts from ARIMA processes s p e c i f i c f o r each maturity

# Forecasts from Regression models with AR ( 1 ) e r r o r s
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ARIMA1 <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

ARIMAXd1 <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

ARIMAXl1 <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

f o r ( i in 1 : 1 5 ) {

ARIMA1 [ , i ] <− sarima . f o r ( y i e l d s [ , i ] , n_pred , 1 , 0 , 0 ) $pred

ARIMAXd1 [ , i ] <− f o r e c a s t ( Arima ( y i e l d s [ , i ] , c ( 1 , 0 , 0 ) , xreg =ea ) , xreg =rep ( 1 , n_pred ) ) $mean

ARIMAXl1 [ , i ] <− f o r e c a s t ( Arima ( y i e l d s [ , i ] , c ( 1 , 0 , 0 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

}

# Forecast ing f i r s t three p r i n c i p a l components

PCA1_for <− matrix ( data =0 , ncol =3 ,nrow=n_pred )

f o r ( i in 1 : 3 ) {

PCA1_for [ , i ] <− sarima . f o r ( t r _ y i e l d s [ , i ] , n_pred , 1 , 0 , 0 ) $pred

}

#Transforming p r e d i c t i o n s from PC base to o r i g i n a l base

PCA1 <− PCA1_for%*%t ( ZC_pca$rotation [ , 1 : 3 ] ) + means [ 1 : n_pred , ]

# Forecast ing f i r s t three p r i n c i p a l components , while second one i s modelled a l s o using exogenous time s e r i e s

PCA1_forx <− matrix ( data =0 , ncol =3 ,nrow=n_pred )

PCA1_forx [ , 1 ] <− sarima . f o r ( t r _ y i e l d s [ , 1 ] , n_pred , 1 , 0 , 0 ) $pred

PCA1_forx [ , 2 ] <− f o r e c a s t ( Arima ( t r _ y i e l d s [ , 2 ] , c ( 1 , 0 , 0 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

PCA1_forx [ , 3 ] <− sarima . f o r ( t r _ y i e l d s [ , 3 ] , n_pred , 1 , 0 , 0 ) $pred

#Transforming p r e d i c t i o n s from PC base to o r i g i n a l base

PCA1x <− PCA1_forx%*%t ( ZC_pca$rotation [ , 1 : 3 ] ) + means [ 1 : n_pred , ]

# Forecast ing Betas from Nelson−S i e g e l

NS_DL1_for <− matrix ( data =0 , ncol =3 ,nrow=n_pred )

NS_mean1_for <− matrix ( data =0 , ncol =3 ,nrow=n_pred )

f o r ( i in 1 : 3 ) {

NS_DL1_for [ , i ] <− sarima . f o r (NS_DL [ , i ] , n_pred , 1 , 0 , 0 ) $pred

NS_mean1_for [ , i ] <− sarima . f o r (NS_mean [ , i ] , n_pred , 1 , 0 , 0 ) $pred

}

#Computing y i e l d s implied by f o r e c a s t e d betas

NS_DL1_pred <− t ( cbind ( rep ( 1 , 1 5 ) , f a c t o r _ l o a d i n g s ( lambda_opt))%*% t ( NS_DL1_for ) )

NS_mean1_pred <− t ( cbind ( rep ( 1 , 1 5 ) , f a c t o r _ l o a d i n g s ( lambda_mean))%*% t ( NS_mean1_for ) )

# Forecast ing Betas from Nelson−S i e g e l with slope modelled by eac r e g r e s s o r

NS_DL1_forx <− matrix ( data =0 , ncol =3 ,nrow=n_pred )

NS_DL1_forx [ , 1 ] <− sarima . f o r (NS_DL [ , 1 ] , n_pred , 1 , 0 , 0 ) $pred

NS_DL1_forx [ , 2 ] <− f o r e c a s t ( Arima (NS_DL [ , 2 ] , c ( 1 , 0 , 0 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

NS_DL1_forx [ , 3 ] <− sarima . f o r (NS_DL [ , 3 ] , n_pred , 1 , 0 , 0 ) $pred

NS_mean_forx <− matrix ( data =0 , ncol =3 ,nrow=n_pred )

NS_mean_forx [ , 1 ] <− sarima . f o r (NS_mean [ , 1 ] , n_pred , 2 , 1 , 6 ) $pred

NS_mean_forx [ , 2 ] <− f o r e c a s t ( Arima (NS_mean [ , 2 ] , c ( 7 , 1 , 2 ) , xreg =eac ) , xreg =rep ( 1 , n_pred ) ) $mean

NS_mean_forx [ , 3 ] <− sarima . f o r (NS_mean [ , 3 ] , n_pred , 3 , 1 , 3 ) $pred

#Computing y i e l d s implied by f o r e c a s t e d betas

NS_DL1x_pred <− t ( cbind ( rep ( 1 , 1 5 ) , f a c t o r _ l o a d i n g s ( lambda_opt))%*% t ( NS_DL1_forx ) )

NS_meanx_pred <− t ( cbind ( rep ( 1 , 1 5 ) , f a c t o r _ l o a d i n g s ( lambda_mean))%*% t ( NS_mean_forx ) )

# Modelling y i e l d curve by vector autoregress ion

l i b r a r y ( vars )

var <− VAR( y i e l d s , p=1 , type =" const " )
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summary( var )

# Creating matrix of estimated c o e f f i c i e n t s

v a r _ c o e f f <− matrix ( data =0 ,nrow=15 , ncol =16)

v a r _ c o e f f [ 1 , ] <− v a r $ v a r r e s u l t $ Z C Y 1 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 2 , ] <− v a r $ v a r r e s u l t $ Z C Y 2 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 3 , ] <− v a r $ v a r r e s u l t $ Z C Y 3 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 4 , ] <− v a r $ v a r r e s u l t $ Z C Y 4 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 5 , ] <− v a r $ v a r r e s u l t $ Z C Y 5 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 6 , ] <− v a r $ v a r r e s u l t $ Z C Y 6 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 7 , ] <− v a r $ v a r r e s u l t $ Z C Y 7 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 8 , ] <− v a r $ v a r r e s u l t $ Z C Y 8 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 9 , ] <− v a r $ v a r r e s u l t $ Z C Y 9 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 1 0 , ] <− v a r $ v a r r e s u l t $ Z C Y 1 0 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 1 1 , ] <− v a r $ v a r r e s u l t $ Z C Y 1 1 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 1 2 , ] <− v a r $ v a r r e s u l t $ Z C Y 1 2 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 1 3 , ] <− v a r $ v a r r e s u l t $ Z C Y 1 3 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 1 4 , ] <− v a r $ v a r r e s u l t $ Z C Y 1 4 Y $ c o e f f i c i e n t s

v a r _ c o e f f [ 1 5 , ] <− v a r $ v a r r e s u l t $ Z C Y 1 5 Y $ c o e f f i c i e n t s

names <− rep ( " " , 1 5 )

f o r ( i in 1 : 1 5 ) {

names [ i ] <− paste ( i , "Y " , sep = " ")

}

rownames ( v a r _ c o e f f ) <− names

colnames ( v a r _ c o e f f ) <− c ( names , " I n t e r c e p t " )

round ( v a r _ c o e f f , 2 ) [ , 1 : 1 5 ]

round ( v a r _ c o e f f , 2 ) [ , 1 6 ]

# Forecast ing y i e l d curve by f i t t e d VAR

f c s t <− f o r e c a s t ( var , h = n_pred )

var_pred <− matrix ( data = 0 , nrow = n_pred , ncol = 15)

f o r ( i in 1 : 1 5 ) {

var_pred [ , i ] <− as . data . frame ( f c s t ) [ ( 1 + ( i −1)*70) : ( i * 7 0 ) , 3 ]

}

#Using VAR with exogenous time s e r i e s d e s c r i b i n g Euro adoption

eav <− as . matrix ( eac )

colnames ( eav ) <− " euro_adoption "

varx <− VAR( y i e l d s , p=1 , type =" const " , exogen = eav )

summary( varx )

# Creating matrix of estimated c o e f f i c i e n t s

v a r x _ c o e f f <− matrix ( data =0 ,nrow=15 , ncol =17)

v a r x _ c o e f f [ 1 , ] <− v a r x $ v a r r e s u l t $ Z C Y 1 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 2 , ] <− v a r x $ v a r r e s u l t $ Z C Y 2 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 3 , ] <− v a r x $ v a r r e s u l t $ Z C Y 3 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 4 , ] <− v a r x $ v a r r e s u l t $ Z C Y 4 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 5 , ] <− v a r x $ v a r r e s u l t $ Z C Y 5 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 6 , ] <− v a r x $ v a r r e s u l t $ Z C Y 6 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 7 , ] <− v a r x $ v a r r e s u l t $ Z C Y 7 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 8 , ] <− v a r x $ v a r r e s u l t $ Z C Y 8 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 9 , ] <− v a r x $ v a r r e s u l t $ Z C Y 9 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 1 0 , ] <− v a r x $ v a r r e s u l t $ Z C Y 1 0 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 1 1 , ] <− v a r x $ v a r r e s u l t $ Z C Y 1 1 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 1 2 , ] <− v a r x $ v a r r e s u l t $ Z C Y 1 2 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 1 3 , ] <− v a r x $ v a r r e s u l t $ Z C Y 1 3 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 1 4 , ] <− v a r x $ v a r r e s u l t $ Z C Y 1 4 Y $ c o e f f i c i e n t s

v a r x _ c o e f f [ 1 5 , ] <− v a r x $ v a r r e s u l t $ Z C Y 1 5 Y $ c o e f f i c i e n t s

rownames ( v a r x _ c o e f f ) <− names

colnames ( v a r x _ c o e f f ) <− c ( names , " I n t e r c e p t " , " Euro adoption " )

round ( v a r x _ c o e f f , 2 ) [ , 1 : 1 5 ]
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round ( v a r x _ c o e f f , 2 ) [ , 1 6 : 1 7 ]

# Forecast ing y i e l d curve by f i t t e d VARX

f c s t x <− f o r e c a s t ( varx , h=n_pred , dumvar=as . matrix ( rep ( 1 , n_pred ) ) )

varx_pred <− matrix ( data = 0 , nrow = n_pred , ncol = 15)

f o r ( i in 1 : 1 5 ) {

varx_pred [ , i ] <− as . data . frame ( f c s t x ) [ ( 1 + ( i −1)*70) : ( i * 7 0 ) , 3 ]

}

################### EVALUATION #######################################

#Counting cumulative sum of squared e r r o r s

cumsum_NS_DL <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_NS_mean <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_PCA <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_ARIMA <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_ARIMAXd <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_ARIMAXl <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_NS_DL1 <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_NS_mean1 <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_PCA1 <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_ARIMA1 <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_ARIMAXd1 <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_ARIMAXl1 <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_PCA1x <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_NS_DL1x <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_NS_meanx <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_var1 <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

cumsum_var1x <− matrix ( data =0 , ncol =15 ,nrow=n_pred )

f o r ( i in 1 : n_pred ) {

cumsum_NS_DL[ i , ] <− apply ( ( NS_DL_pred [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_NS_mean[ i , ] <− apply ( ( NS_mean_pred [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_PCA[ i , ] <− apply ( ( PCA [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_ARIMA[ i , ] <− apply ( ( ARIMA [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_ARIMAXd[ i , ] <− apply ( ( ARIMAXd [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_ARIMAXl [ i , ] <− apply ( ( ARIMAXl [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_NS_DL1[ i , ] <− apply ( ( NS_DL1_pred [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_NS_mean1[ i , ] <− apply ( ( NS_mean1_pred [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_PCA1[ i , ] <− apply ( ( PCA1 [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_ARIMA1[ i , ] <− apply ( ( ARIMA1 [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_ARIMAXd1[ i , ] <− apply ( ( ARIMAXd1 [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_ARIMAXl1 [ i , ] <− apply ( ( ARIMAXl1 [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_NS_DL1x [ i , ] <− apply ( ( NS_DL1x_pred [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_NS_meanx[ i , ] <− apply ( ( NS_meanx_pred [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_PCA1x [ i , ] <− apply ( ( PCA1x [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_var1 [ i , ] <− apply ( ( var_pred [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

cumsum_var1x [ i , ] <− apply ( ( varx_pred [ 1 : i ,]− y i e l d s _ t f [ 1 : i , 4 : 1 8 ] ) ^ 2 , 2 ,sum)

}

#Counting cumulative e r r o r s f o r each method and d i f f e r e n t time periods

round ( apply (cumsum_NS_DL, 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_NS_DL1, 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_NS_mean, 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_NS_mean1, 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_PCA, 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_PCA1, 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_ARIMA, 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_ARIMA1, 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_ARIMAXd, 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_ARIMAXd1, 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )
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round ( apply (cumsum_ARIMAXl , 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply ( cumsum_ARIMAXl1 , 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_NS_DL1x , 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_NS_meanx, 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply (cumsum_PCA1x , 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply ( cumsum_var1 , 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

round ( apply ( cumsum_var1x , 1 ,sum ) [ seq ( from =10 , to =70 , by = 1 0 ) ] , 2 )

#Counting cumulative e r r o r s f o r each method and d i f f e r e n t m a t u r i t i e s

round (cumsum_NS_DL[ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_NS_DL1[ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_NS_mean[ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_NS_mean1[ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_PCA[ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_PCA1[ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_ARIMA[ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_ARIMA1[ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_ARIMAXd[ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_ARIMAXd1[ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_ARIMAXl [ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round ( cumsum_ARIMAXl1 [ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_NS_DL1x [ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_NS_meanx[ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round (cumsum_PCA1x [ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round ( cumsum_var1 [ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

round ( cumsum_var1x [ n_pred , seq ( from =1 , to =15 , by = 2 ) ] , 1 )

#Counting median sum of squared e r r o r s

round ( median (cumsum_NS_DL[ n_pred , ] ) , 2 )

round ( median (cumsum_NS_DL1[ n_pred , ] ) , 2 )

round ( median (cumsum_NS_mean[ n_pred , ] ) , 2 )

round ( median (cumsum_NS_mean1[ n_pred , ] ) , 2 )

round ( median (cumsum_PCA[ n_pred , ] ) , 2 )

round ( median (cumsum_PCA1[ n_pred , ] ) , 2 )

round ( median (cumsum_ARIMA[ n_pred , ] ) , 2 )

round ( median (cumsum_ARIMA1[ n_pred , ] ) , 2 )

round ( median (cumsum_ARIMAXd[ n_pred , ] ) , 2 )

round ( median (cumsum_ARIMAXd1[ n_pred , ] ) , 2 )

round ( median (cumsum_ARIMAXl [ n_pred , ] ) , 2 )

round ( median ( cumsum_ARIMAXl1 [ n_pred , ] ) , 2 )

round ( median (cumsum_NS_DL1x [ n_pred , ] ) , 2 )

round ( median (cumsum_NS_meanx[ n_pred , ] ) , 2 )

round ( median (cumsum_PCA1x [ n_pred , ] ) , 2 )

round ( median ( cumsum_var1 [ n_pred , ] ) , 2 )

round ( median ( cumsum_var1x [ n_pred , ] ) , 2 )

#Counting sum of ranked e r r o r s

# Creating matrix of SSEs

SSE <− matrix ( data =0 , ncol =15 ,nrow=17)

SSE [ 1 , ] <− cumsum_NS_DL[ n_pred , ]

SSE [ 2 , ] <− cumsum_NS_DL1[ n_pred , ]

SSE [ 3 , ] <− cumsum_NS_mean[ n_pred , ]

SSE [ 4 , ] <− cumsum_NS_mean1[ n_pred , ]

SSE [ 5 , ] <− cumsum_PCA[ n_pred , ]

SSE [ 6 , ] <− cumsum_PCA1[ n_pred , ]

SSE [ 7 , ] <− cumsum_ARIMA[ n_pred , ]

SSE [ 8 , ] <− cumsum_ARIMA1[ n_pred , ]

SSE [ 9 , ] <− cumsum_ARIMAXd[ n_pred , ]

SSE [ 1 0 , ] <− cumsum_ARIMAXd1[ n_pred , ]

SSE [ 1 1 , ] <− cumsum_ARIMAXl [ n_pred , ]

SSE [ 1 2 , ] <− cumsum_ARIMAXl1 [ n_pred , ]

SSE [ 1 3 , ] <− cumsum_NS_DL1x [ n_pred , ]

SSE [ 1 4 , ] <− cumsum_NS_meanx[ n_pred , ]

SSE [ 1 5 , ] <− cumsum_PCA1x [ n_pred , ]

SSE [ 1 6 , ] <− cumsum_var1 [ n_pred , ]

SSE [ 1 7 , ] <− cumsum_var1x [ n_pred , ]
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# Creating vector of sum of ranked e r r o r s

SRE <− rep ( 0 , 1 7 )

f o r ( i in 1 : 1 5 ) {

f o r ( j in 1 : 1 7 ) {

f o r ( k in 1 : 1 7 ) {

i f ( SSE [ j , i ] >= SSE [ k , i ] ) {

SRE [ j ] <− SRE [ j ] + 1

}

}

}

}

# Creating average rank per method

round ( SRE / 1 5 , 2 )

############################ GRAPHS #####################################

# P l o t t i n g cumulative e r r o r s of d i f f e r e n t f o r e c a s t i n g methods

p l o t ( apply (cumsum_NS_DL, 1 ,sum) , type =" l " , ylim=c ( 0 , 1 5 0 ) , ylab =" Cumulative e r r o r " )

l i n e s ( apply (cumsum_NS_mean, 1 ,sum) , col =" red " )

l i n e s ( apply (cumsum_PCA, 1 ,sum) , col =" blue " )

l i n e s ( apply (cumsum_ARIMA, 1 ,sum) , col =" seagreen " )

l i n e s ( apply (cumsum_ARIMAXd, 1 ,sum) , col =" v i o l e t " )

l i n e s ( apply ( cumsum_ARIMAXl , 1 ,sum) , col =" orange " )

legend ( ’ t o p l e f t ’ , c ( "NS_DL" , "NS_mean" , "PCA" , "ARIMA" , "Dummy reg " , " Linear reg " ) , l t y =1 ,

col =c ( ’ black ’ , ’ red ’ , ’ blue ’ , " seagreen " , " v i o l e t " , " orange " ) ,

bty = ’n ’ , cex = 1 . 1 )

# P l o t t i n g cumulative e r r o r s of methods modelled by AR ( 1 ) processes

p l o t ( apply (cumsum_NS_DL1, 1 ,sum) , type =" l " , ylim=c ( 0 , 1 5 0 ) , ylab =" Cumulative e r r o r " )

l i n e s ( apply (cumsum_NS_mean1, 1 ,sum) , col =" red " )

l i n e s ( apply (cumsum_PCA1, 1 ,sum) , col =" blue " )

l i n e s ( apply (cumsum_ARIMA1, 1 ,sum) , col =" seagreen " )

l i n e s ( apply (cumsum_ARIMAXd1, 1 ,sum) , col =" v i o l e t " )

l i n e s ( apply ( cumsum_ARIMAXl1 , 1 ,sum) , col =" orange " )

legend ( ’ t o p l e f t ’ , c ( "NS_DL" , "NS_mean" , "PCA" , "ARIMA" , "Dummy reg " , " Linear reg " ) , l t y =1 ,

col =c ( ’ black ’ , ’ red ’ , ’ blue ’ , " seagreen " , " v i o l e t " , " orange " ) ,

bty = ’n ’ , cex = 1 . 1 )

# P l o t t i n g cumulative e r r o r s of methods modelled by other methods

p l o t ( apply (cumsum_NS_DL1x , 1 ,sum) , type =" l " , ylim=c ( 0 , 1 5 0 ) , ylab =" Cumulative e r r o r " )

l i n e s ( apply (cumsum_NS_meanx, 1 ,sum) , col =" red " )

l i n e s ( apply (cumsum_PCA1x , 1 ,sum) , col =" blue " )

l i n e s ( apply ( cumsum_var1 , 1 ,sum) , col =" seagreen " )

l i n e s ( apply ( cumsum_var1x , 1 ,sum) , col =" v i o l e t " )

legend ( ’ t o p l e f t ’ , c ( "NS_DL with l i n e a r reg " , "NS_mean with l i n e a r reg " , "PCA with l i n e a r reg " , "VAR ( 1 ) " , " VAR ( 1 ) with l i n e a r reg " ) , l t y =1 ,

col =c ( ’ black ’ , ’ red ’ , ’ blue ’ , " seagreen " , " v i o l e t " ) ,

bty = ’n ’ , cex = 1 . 1 )
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