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10122834

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT 

Name and Surname: Bc. Martin Krátky
Study programme: Mathematical Economics, Finance and Modelling (Single

degree study, master II. deg., full time form)
Field of Study: Applied Mathematics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Dynamics of deformable porous materials.

Aim: The thesis is focused on the study of Newtonian flows in deformable porous
media.
The aim is to obtain and interpret the numerical solutions that include the effects
of gravity, capillarity and background solid-fraction distribution.

Supervisor: doc. RNDr. Peter Guba, PhD.
Department: FMFI.KAMŠ - Department of Applied Mathematics and Statistics
Head of
department:

prof. RNDr. Daniel Ševčovič, DrSc.

Assigned: 21.01.2016

Approved: 25.01.2016 prof. RNDr. Daniel Ševčovič, DrSc.
Guarantor of Study Programme

Student Supervisor



Acknowledgements I would like to express my sincere gratitude to my supervisor

doc. RNDr. Peter Guba, PhD. for his guidance, insightful comments and patience.



Abstrakt v štátnom jazyku

KRÁTKY, Martin: Dynamika deformovatělných pórovitých materiálov [Diplomová

práca], Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky,

Katedra aplikovanej matematiky a štatistiky; školitěl: doc. RNDr. Peter Guba, PhD.,

Bratislava, 2017, 58 s.

V práci skúmame dynamiku kapilárneho nasiakavania kvapaliny do deformovatělného

pórovitého materiálu. Uvažujeme jednorozmerný pŕıpad, kedy kvapalina samovǒlne

infiltruje do homogénneho pórovitého materiálu vplyvom kapilárnych śıl, ktoré sú ori-

entované v opačnom smere ako gravitácia. Model je založený na teórii zmeśı, v ktorej

je každý objemový element pońımaný ako dokonalá zmes pevnej a kvapalnej fázy.

V jednorozmernom pŕıpade sa problém redukuje na parciálnu diferenciálnu rovnicu s

dvoma vǒlnými hranicami, ktoré sú riadené dvojicou obyčajných diferenciálnych rovńıc.

Predchádzajúca analýza problému (Siddique et al., 2009) sa zaoberala pŕıpadom lineárnej

funkcie napätia pevnej fázy a lineárnej lomenej funkcie pre permeabilitu pórovitého

prostredia. V našej práci analyzujeme pŕıpady nelineárnych funkcíı napätia a perme-

ability, ktoré sú konzistentné s existujúcimi experimentálnymi meraniami (Sommer and

Mortensen, 1996). Numerické riešenie modelu je založené na metóde čiar s využit́ım

pseudospektrálnej a konečno diferenčnej diskretizácie priestorovej premennej. Identi-

fikujeme 3 kvalitat́ıvne odlǐsné módy dynamiky pevnej fázy: permanentná kompre-

sia, počiatočná kompresia a následná relaxácia a permanentná relaxácia pórovitého

materiálu. Źıskané riešenia porovnávame s experimentom (Siddique et al., 2009).

Výsledky práce nájdu aplikáciu v kontexte fázovej premeny viaczložkových zmeśı.

Kľúčové slová: Deformovatělný pórovitý materiál, Nasiakavanie, Kapilárny tlak,

Pseudospektrálna metóda



Abstract

KRÁTKY, Martin: Dynamics of deformable porous materials [Master’s Thesis], Come-

nius University in Bratislava, Faculty of Mathematics, Physics and Informatics, De-

partment of Applied Mathematics and Statistics; Supervisor: doc. RNDr. Peter Guba,

PhD., Bratislava, 2017, 58 p.

We investigate the capillary imbibition of a liquid into a deformable porous mate-

rial. We consider a one-dimensional case when the liquid infiltrates into a homogenous

porous material due to capillary forces oriented in a direction opposite to the gravity

force. The mathematical model is based on mixture theory, which considers each vol-

ume element as a perfect mixture of the solid and liquid phases. The one-dimensional

reduction results in a free boundary problem with boundary positions being governed

by two ordinary differential equations. Previous analysis of the problem (Siddique et

al., 2009) considered a linear stress function and a linear rational permeability function.

Our work analyzes the effects of nonlinear stress and permeability functions that are

consistent with existing experimental measurements (Sommer and Mortensen, 1996).

Numerical implementation employs the method of lines using pseudospectral and fi-

nite difference discretizations of the spatial variable. We identify three qualitatively

different modes of solid phase behavior: permanent shrinkage; initial shrinkage and

final relaxation and permanent relaxation of the porous material. We compare the

results with existing experiment (Siddique et al., 2009). The results find application

in studying phase changes of multiphase systems.

Keywords: Deformable Porous Material, Imbibition, Capillary Pressure,

Pseudospectral Method
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INTRODUCTION

Introduction

Modeling fluid flow in porous materials is a problem interesting from both the theo-

retical and practical perspective. One encounters such problems in various engineering

and scientific fields such as groundwater flow, oil recovery, studying phase changes

or flows in biological tissues. On microscopic level, classical approaches from fluid

dynamics can be used considering single pores and the microscopic structure of the

material. On a larger scale; however, it becomes infeasible to both describe the ge-

ometry of the problem in detail and to numerically model the flow. Mixture theory

overcomes such difficulties by averaging the material properties over each volume ele-

ment. Considering each volume element as a continuum consisting of the liquid and

solid phase simultaneously allows us to apply approaches from continuum mechanics.

Henry Darcy’s pioneering experiments concerning the flow of water through beds of

sand related the fluid velocity to the pressure gradient and sand permeability [6]. It

was later shown that this relation can be obtained from the microscopic level approach

by the method of averaging [11].

If one allows the solid material to deform, the problems become even more interest-

ing. In such situations, the fluid flow deforms the porous material, which affects the

material porosity and thus it’s resistance to flow. Such problems arise in areas includ-

ing oil recovery, textile engineering or flows in biological tissues. The constituents in

our model undergo no phase changes, i.e. no mass transfer between the phases occurs.

Situations involving phase changes are discussed in [4].

In section 1, we derive the general model using mixture theory framework by ap-

plying mass and momentum balances, following [5]. We proceed to a one-dimensional

reduction of the governing equations, which results in a free boundary problem. We

consider a setup similar to those in [7], [9], i.e. the liquid spontaneously infiltrates into

the porous material due to capillary forces acting in a direction opposite to the gravity

force. Our main contribution is that we propose a physically realistic class of stress

and permeability functions motivated by experimental measurements in [10].

In section 2, we present a further reduction, namely the zero-gravity case. Using

similarity transformation, the problem is transformed into a boundary value problem

with unknown parameters. We employ a numerical scheme based on pseudospectral and
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INTRODUCTION

finite difference spatial discretizations. The resulting system of nonlinear equations is

solved in Matlab using nested fsolve routines. We analyze the effect of the stress and

permeability functions on the solutions as well as the effect of the remaining parameters

in the model.

In section 3, equations governing the steady state are derived. We make an assump-

tion that a steady state exists, which is later justified by numerical simulations. Again,

the effects of stress and permeability functions as well as the remaining parameters are

analyzed.

Section 4 focuses on the general time-dependent problem with present gravity field.

The resulting nonlinear free boundary problem involving a PDE for the solid volume

fraction φ(z, t) with 2 ODEs governing the boundary positions is solved using the

method of lines. Again, pseudospectral and finite difference methods are used for

discretization of the spatial variable. The early-time dynamics follows the zero-gravity

case from section 2 and the system reaches a steady state described in section 3. We

compare our results for various configurations of stress and permeability functions with

the experiments in [9]. In dependence on material parameters representing the capillary

pressure and the solid volume fraction of the unsaturated porous material, we identify

three qualitatively different modes of the solid phase evolution.

9



1. MATHEMATICAL MODEL

1 Mathematical model

We start by deriving the equations governing fluid imbibition and solid deformation [5].

These equations will be based on so-called mixture theory framework, which considers

each volume element to be a continuum consisting of several (perfectly blended) phases.

In this thesis, we will be considering two phases – solid (porous material) and liquid;

however, the number of phases can be arbitrary. The final equations will be transformed

into dimensionless form. To distinguish between the dimensional and dimensionless

quantities, the dimensional will be marked with an asterisk.

We assume that each infinitesimal elementary volume δV ∗ (representing a point in

space) contains enough material of both phases that the solid and liquid volumes δV ∗s

and δV ∗l contained in δV ∗ can be defined. One of the quantities of interest will be the

solid volume fraction φ defined as

φ =
δV ∗s
δV ∗

∈ [0, 1],

for each elementary volume δV ∗. Since δV ∗ = δV ∗s +δV ∗l , liquid volume fraction equals

1− φ and we will not define this quantity separately. If we denote the masses of each

phase contained in the elementary volume as δm∗s and δm∗l , the local densities of each

phase can be defined

ρ∗s =
δm∗s
δV ∗

, ρ∗l =
δm∗l
δV ∗

.

The local density of the mixture is then defined as

ρ∗m =
δm∗

δV ∗
=
δm∗s + δm∗l

δV ∗
= ρ∗s + ρ∗l .

The last needed quantities will be the local speed of the solid and liquid phases v∗s and

v∗l respectively.

We arrived at local quantities defined in each point of space, representing averaged

properties of the mixture in each infinitesimally small elementary volume, regardless

of their macroscopic structure. This lets us apply the approaches from continuum

mechanics based on principles of mass and momentum conservation. Since we assume

no phase changes and therefore no mass transport between the solid and liquid phase,

the mass conservation equations will be independent. The coupling of the equations

occurs in the momentum equations, since mutual forces acting between the phases are

10



1. MATHEMATICAL MODEL

assumed. Situations involving phase changes and mass transfer between the solid and

liquid phases are discussed in [4].

1.1 Mass and momentum conservation

Let us consider an arbitrary finite control volume V ∗ with smooth boundary ∂V ∗ and

outward pointing unit normal n̂∗. The change of liquid mass contained in V ∗ should

be equal to the mass of the influx/outflux through the boundary, i.e.

d

dt∗

∫
V ∗

ρ∗sdV
∗ +

∫
∂V ∗

ρ∗s(v
∗
s · n̂∗)dA∗ = 0. (1.1)

The same applies to the solid phase

d

dt∗

∫
V ∗

ρ∗l dV
∗ +

∫
∂V ∗

ρ∗l (v
∗
l · n̂∗)dA∗ = 0. (1.2)

By applying the divergence theorem, equations 1.1 and 1.2 can be transformed into

differential form
∂ρ∗s
∂t∗

+∇∗ · (ρ∗sv∗s) = 0, (1.3)

∂ρ∗l
∂t∗

+∇∗ · (ρ∗l v∗l ) = 0. (1.4)

In each finite control volume, momentum must be conserved, which is enforced by

the following equations

d

dt∗

∫
V ∗

ρ∗sv
∗
sdV

∗ +

∫
∂V ∗

ρ∗sv
∗
s(v
∗
s · n̂∗)dA∗ =

∫
V ∗

(ρ∗sg
∗ + π∗s)dV

∗ +

∫
∂V ∗

(T∗s · n̂∗)dA∗, (1.5)

d

dt∗

∫
V ∗

ρ∗l v
∗
l dV

∗ +

∫
∂V ∗

ρ∗l v
∗
l (v
∗
l · n̂∗)dA∗ =

∫
V ∗

(ρ∗l g
∗ + π∗l )dV

∗ +

∫
∂V ∗

(T∗l · n̂∗)dA∗. (1.6)

The right-hand side represents the total change of momentum in the control volume,

where the first term accounts for the change of momentum inside the control volume.

The second term accounts for the change of momentum due to mass influx/outflux.

This change of momentum is caused by forces acting on the control volume, represented

by the right-hand side fo equations (1.5), (1.6). Here g∗ is the gravity acceleration, π∗s

and π∗l are the momentum transfers due to friction forces acting between the phases.

Note that from Newton’s second law π∗s = −π∗l , which couples the equations (1.5)

11



1. MATHEMATICAL MODEL

and (1.6). T ∗s and T ∗l are the stress tensors of the solid and liquid phase respectively.

These stress tensors take into account the presence of both phases and are different

from those when only one phase is considered. Following [5], both stress tensors can be

decomposed into their normal (given by pressure field p∗) and tangential components

T ∗s = −φp∗I + σ∗s, (1.7)

T ∗l = −(1− φ)p∗I + σ∗l . (1.8)

More on defining and measuring stress tensors in mixtures can be found in [7]. We will

skip this discussion and return to it in the one-dimensional model where stress tensors

take form of scalar functions.

Applying the divergence theorem results in the differential form of equations (1.5)

and (1.6)

ρ∗s

(
∂v∗s
∂t∗

+ (v∗s · ∇)v∗s

)
= ∇∗ ·T∗s + ρ∗sg

∗ + π∗s, (1.9)

ρ∗l

(
∂v∗l
∂t∗

+ (v∗l · ∇)v∗l

)
= ∇∗ ·T∗l + ρ∗l g

∗ + π∗l . (1.10)

Adding these two equations together, using the mutually opposite friction forces π∗s =

−π∗l and defining mixture velocity ρ∗mv
∗
m = ρ∗sv

∗
s + ρ∗l v

∗
l , after some manipulation,

momentum balance for the mixture can be obtained

ρ∗m

(
∂v∗m
∂t∗

+ (v∗m · ∇∗)v∗m
)

= ∇∗ ·T∗m + ρ∗mg
∗, (1.11)

where T∗m is the stress tensor of the mixture in the form

T∗m = −p∗I + σ∗s + σ∗l − ρ∗s(v∗s − v∗m)⊗ (v∗s − v∗m)− ρ∗l (v∗l − v∗m)⊗ (v∗l − v∗m). (1.12)

Here, ⊗ is the vector outer product, in a more mathematical way for a column vector

v given by vvT . Following [2], we set the friction force terms to be

π∗l = −π∗s =
µ∗(1− φ)2

k∗(φ)
(v∗l − v∗s)− p∗∇∗φ, (1.13)

where µ∗ is the fluid viscosity and k∗(φ) the permeability of the porous material as a

function of the solid volume fraction φ.

12



1. MATHEMATICAL MODEL

1.1.1 Resulting model

Since the actual solid and liquid velocities are to be of small magnitude, velocity gradi-

ents contained in the left-hand sides of equations (1.9)–(1.11) as well as the tangential

component of liquid stress σ∗l in (1.8) can be neglected [5], [6]. Furthermore, we replace

the spatially dependent solid and liquid densities ρ∗s, ρ
∗
l with constant true densities of

the respective phases ρ∗s
T , ρ∗l

T . As a result, we obtain the equation representing the

hydrostatic balance of liquid phase

0 = ∇∗ ·
(
− (1− φ)p∗I

)
+ ρ∗l

Tg∗ +
µ∗(1− φ)2

k∗(φ)

(
v∗s − v∗l

)
− p∗∇∗φ (1.14)

and balance of the mixture

0 = ∇∗ ·
(
− p∗I + σ∗s

)
+ ρ∗mg

∗. (1.15)

After rearrangement, we arrive at the final system of equations governing fluid flow

and solid deformation

v∗l − v∗s =
k∗(φ)

µ∗(1− φ)

[
−∇∗p∗ + ρTl g

∗], (1.16)

0 = −∇∗p∗ +∇∗ · σ∗s + ρ∗mg
∗, (1.17)

0 =
∂φ

∂t∗
+∇∗ · (φv∗s), (1.18)

0 =
∂φ

∂t∗
−∇∗ · ((1− φ)v∗l ). (1.19)

Note, that the first two equations are vector equations while the other two are scalar.

The unknown variables are the solid and fluid velocities v∗s, v
∗
l , pressure field p∗ and

the field representing spatially-dependent solid volume fraction φ. We leave the speci-

fication of σ∗s together with k∗(φ) to the one dimensional case, where they attain the

form of scalar functions.

1.2 One-dimensional reduction

This thesis focuses on the one-dimensional reduction of the equations (1.16)–(1.19)

with single spatial variable z∗ oriented parallel to the direction of gravity acceleration

g∗. We consider a deformable porous material fixed at its upper side. The material is

homogenous and its dimension in the xy plane are large enough, so that the flow is also

13



1. MATHEMATICAL MODEL

liquid bath

saturated 
porous 
material

unsaturated 
porous 
material

z*=0

z*=h*
l (t

*)

z*=h*
s (t*)

z*

Figure 1: h∗s = h∗s(t
∗) - time-dependent position of the interface between liquid and saturated

solid (solid front), h∗l = h∗l (t
∗) - time-dependent position of the interface between unsaturated

and saturated solid (liquid front), z∗ = 0 - surface of the liquid bath.

homogenous and we can restrict our attention to a single spatial variable z∗. At t∗ = 0,

the lower side of the porous material gets into contact with the surface of the liquid at

z∗ = 0. The liquid then spontaneously starts to infiltrate into the porous material due

to capillary suction. The presence of liquid in the porous material releases its inner

stress and the material relaxes, resulting (in most cases) in submerging of the lower

parts of the porous material. This solid deformation changes the volume fraction of

the saturated solid affecting its permeability to the fluid flow. Imbibition thus changes

mechanical properties of the porous material, which in turn change the dynamics of

the imbibition. To avoid movement of the fluid surface (i.e. movement of the origin

z∗ = 0) due to part of the fluid being imbibed into the material, we assume the fluid

bath to be infinite. We will denote the interface between liquid and the saturated

porous material h∗s(t
∗) (solid front) and the interface between the unsaturated and

saturated porous material h∗l (t
∗) (liquid front), as shown in the schematic figure 1. At

t∗ = 0, h∗s = h∗l = 0.

The whole system is subject to atmospheric pressure p∗A. At the solid interface

14



1. MATHEMATICAL MODEL

h∗s(t
∗), we assume hydrostatic pressure together with the so-called zero stress condition

p∗(h∗s, t
∗) = p∗A − ρ∗l

Tg∗h∗s, σ∗(h∗s, t
∗) = 0. (1.20)

Note that due to only the gradient of the stress function appearing in equations (1.16)–

(1.19), we could set the stress to be arbitrary number. The important fact is that we

assume the stress to be constant at the solid interface and zero was chosen for simplicity.

At the liquid interface, atmospheric and constant capillary (which actually drives the

flow) pressures are present

p∗(h∗l , t
∗) = p∗A + p∗c . (1.21)

1.2.1 Nondimensionalized system

We now introduce dimensionless quantities which will be used throughout the rest of

this thesis

z =
z∗

L∗
, t =

t∗

T ∗
, p =

p∗

Σ∗0
, k(φ) =

k∗(φ)

K∗0
, σ(φ) =

σ∗(φ)

Σ∗0
, (1.22)

where Σ∗0 is a representative stress scale and K∗0 a representative permeability scale.

The representative length and time scales are then given by L∗ = Σ∗0/ρ
∗
l
Tg∗, T ∗ =

L∗2µ∗/K∗0Σ∗0. As a corollary, the remaining quantities are nondimensionalized accord-

ingly

vs =
v∗s

L∗/T ∗
, vl =

v∗l
L∗/T ∗

, hs =
h∗s
L∗
, hl =

h∗l
L∗
. (1.23)

By nondimensionalizing the one-dimensional equivalent of equations (1.16)-(1.19),

we arrive at the system
∂φ

∂t
+

∂

∂z
(φvs) = 0, (1.24)

∂φ

∂t
− ∂

∂z
((1− φ)vl) = 0, (1.25)

vl − vs = − k(φ)

(1− φ)

(
∂p

∂z
+ 1

)
, (1.26)

0 = −∂p
∂z

+
∂σ

∂z
− (ρφ+ 1), (1.27)

where ρ = ρ∗s
T/ρ∗l

T − 1. Note that we have naturally arrived at a generalized form

of Darcy’s law in equation (1.26). It puts the relative velocity of fluid into relation

with the pressure gradient and gravity, that are driving the flow. The relative fluid

15



1. MATHEMATICAL MODEL

velocity is also proportional to the permeability of the material. In the one-dimensional

reduction, we naturally expect the permeability to be directly dependent on the solid

volume fraction φ, which determines how much of the volume is occupied by solid.

As we already suggested, the stress function σ is going to be a scalar function also

depending on the solid volume fraction σ = σ(φ).

If we denote the dimensionless atmospheric pressure pA := p∗A/Σ
∗
0 and the dimen-

sionless capillary pressure pc := p∗c/Σ
∗
0, the dimensionless form of boundary conditions

(1.20) and (1.21) takes form

p(hs, t) = pA − hs, σ(hs, t) = 0. (1.28)

p(hl, t) = pA + pc. (1.29)

Note that the constant atmospheric pressure pA can be left out.

We now eliminate the pressure field from the equations and obtain a single par-

tial differential equation for solid volume fraction φ(z, t) together with two ordinary

differential equations governing the evolution of solid and liquid front positions.

Subtracting (1.25) from (1.24) and integrating with respect to z gives a term valid

for all z

− φ(vl − vs) + vl = c(t), (1.30)

where c(t) is a constant of integration allowing for dependence on time t. Plugging this

into (1.26) gives us a formula for vl

vl = c(t)− φ k(φ)

1− φ

(
∂p

∂z
+ 1

)
. (1.31)

Formula for solid phase velocity can be obtained by plugging (1.31) into (1.30)

vs = c(t) + k(φ)

(
∂p

∂z
+ 1

)
. (1.32)

Using the direct dependence of the stress function σ on φ and rearranging equation

(1.27) yields
∂p

∂z
+ 1 = σ′(φ)

∂φ

∂z
− ρφ, (1.33)

which can be in turn used in the equations (1.31), (1.32) to eliminate pressure

vl = c(t)− φ k(φ)

1− φ

(
σ′(φ)

∂φ

∂z
− ρφ

)
, (1.34)

16



1. MATHEMATICAL MODEL

vs = c(t) + k(φ)

(
σ′(φ)

∂φ

∂z
− ρφ

)
. (1.35)

Finally, substituting equation (1.34) into equation (1.24) results in a partial differ-

ential equation
∂φ

∂t
+ c(t)

∂φ

∂z
= − ∂

∂z

[
φk(φ)

{
σ′(φ)

∂φ

∂z
− ρφ

}]
. (1.36)

The equation for c(t) can be derived from the following assumptions, discussed in

detail in [1], [7]: φ(h+
l ) = φ0, vs(h

+
l ) = 0 and vl(h

+
l ) = vl(h

−
l ). φ0 is the solid volume

fraction of the unsaturated (rigid) porous material. The second equation tells us, that

the porous material right above the liquid front is rigid. The third equation equates

the liquid velocities below and above the liquid front. The liquid velocity above the

liquid front can be viewed as the vapor velocity. Evaluating equation (1.30) at both

sides of the interface hl and using these assumption gives us a system of equations

c(t) = (1− φ0)vl(h
−
l ), (1.37)

c(t) = φ(h−l )vs(h
−
l ) + (1− φ(h−l ))vl(h

−
l ), (1.38)

which by combining yields

c(t) =

(
1− φ0

φ− φ0

φvs

)∣∣∣∣
h−l

. (1.39)

However, we do not expect the velocity of the solid below the liquid front vs(h
−
l ) to

be of simple form, thus we use the equation (1.35) to obtain the final form of the

time-dependent constant c(t)

c(t) = −(1− φ0)

φ0

[
φk(φ)

(1− φ)

(
σ′(φ)

∂φ

∂z
− ρφ

)]∣∣∣∣
h−l

. (1.40)

Evaluating equation (1.34) at h−l and equation (1.35) at h+
s yields ordinary differ-

ential equations governing the evolution of interface positions

vs(h
+
s ) =

dhs
dt

= c(t) + k(φ)

(
σ′(φ)

∂φ

∂z
− ρφ

)∣∣∣∣
h+s

(1.41)

vl(h
−
l ) =

dhl
dt

= c(t) +
φk(φ)

(1− φ)

(
σ′(φ)

∂φ

∂z
− ρφ

)∣∣∣∣
h−l

. (1.42)

From a practical viewpoint, the actual interface positions can be directly measured and

are therefore of greater interest than the overall solid and liquid velocity fields or the

solid volume fraction.
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1. MATHEMATICAL MODEL

1.2.2 Final one-dimensional model

For the sake of clarity, we restate the final set of equations to be solved in the following

sections
∂φ

∂t
+ c(t)

∂φ

∂z
= − ∂

∂z

[
φk(φ)

{
σ′(φ)

∂φ

∂z
− ρφ

}]
, (1.43)

where

c(t) = −(1− φ0)

φ0

[
φk(φ)

(1− φ)

(
σ′(φ)

∂φ

∂z
− ρφ

)]∣∣∣∣
h−l

. (1.44)

dhs
dt

= c(t) + k(φ)

(
σ′(φ)

∂φ

∂z
− ρφ

)∣∣∣∣
h+s

, (1.45)

dhl
dt

= c(t) +
φk(φ)

(1− φ)

(
σ′(φ)

∂φ

∂z
− ρφ

)∣∣∣∣
h−l

. (1.46)

Note that the equation (1.43) is a highly nonlinear partial differential equation. It is in

fact a free boundary problem with boundaries evolving in time, following the equations

(1.45) and (1.46). Furthermore, the coefficient c(t) is also dependent on the interface

position hl. Thus, none of these equations can be solved separately, which poses a

challenging and careful numerical implementation.

The initial positions of the interfaces are

hs(t = 0) = hl(t = 0) = 0. (1.47)

Boundary condition for φ(hs, t) is derived from the the dimensionless boundary con-

dition (1.28) using the direct dependence of the stress function on φ. We denote this

value φr

φ(hs, t) = σ−1(0) =: φr. (1.48)

Boundary condition for φ(hl, t) can be obtained by integrating the equation (1.27) from

hs to hl and applying boundary conditions for pressure

σ(φ(hl, t)) = pc + hs +

hl(t)∫
hs(t)

(ρφ+ 1)dz. (1.49)

For an initial profile for φ(z, t0), t0 � 1, we use self-similar profile derived in section 2

representing zero-gravity case. Since p(hl, t)− p(hs, t) is O(1) for t→ 0, dp/dz → −∞

as t→ 0. Thus, neglecting constant gravity force for early times is reasonable.
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1. MATHEMATICAL MODEL

1.3 Stress and permeability functions

For the model to be complete, we need to define physically realistic forms of stress and

permeability functions. Since we have focused our attention on the one-dimensional

case, these will be scalar functions. The main difference between rigid and deformable

porous materials rests in the space-(and time-) dependent solid volume fraction φ.

Thus, it is natural to model these functions as being directly dependent on φ.

We expect the permeability to be a decreasing function of φ, i.e. higher fraction of

the total volume being occupied by solid results in its higher resistance to the flow and

therefore lower permeability. For φ = 1, the permeability should be zero. However,

we will not demand our functions to have these global properties. As we shall see, the

solid volume fraction varies within a relatively small interval. We will therefore aim to

best fit experimental measurements in [10] within the interval of interest.

Note that in the final set of equations (1.43)-(1.46) we are only dealing with the

derivative of the stress function. In a similar way to pressure (since we are now in one

spatial dimension, so the stress does not have a tangential component), the gradient,

rather than the absolute magnitude of stress plays a role. The important message here

is that we expect σ to be a decreasing function of φ. In other words, for φ < φr, we

will be speaking of relative expansion of the porous material and for φ > φr we will be

speaking of relative compression of the porous material.

In [1], [9], the authors study in detail the linear stress function σSAB(φ) = φr−φ and

permeability function of the form kSAB(φ) = φr/φ. This choice significantly simplifies

the governing equations and leads to a closed-form solution in the case with no gravity.

A more realistic choice of stress and permeability functions based on experimental

measurements can be found in [10]. Even though the experimental setup in [10] is

slightly different from ours – the liquid is wetting the porous material under external

pressure – this is one of a few direct measurements of the dependence of stress on solid

volume fraction. The authors then fitted their experimental measurements with the

following polynomial of seventh degree (in dimensional terms)

σ∗SM(φ) = a+ bφ+ cφ2 + dφ3 + eφ4 + fφ5 + gφ6 + hφ7, (1.50)

with a = −2.33× 107 Pa, b = 7.13× 108 Pa, c = −9.26× 109 Pa, d = 6.60× 1010 Pa,

e = −2.79× 1011 Pa, f = 7.02× 1011 Pa, g = −9.70× 1011 Pa and h = 5.70× 1011 Pa.
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Figure 2: (left) Linear stress function σSAB and the 7th degree polynomial stress function

σSM . (right) Parametric class of stress functions considered in this thesis.

Figure 2 compares this function to the linear case. Following [5], we nondimension-

alized σ∗SM with Σ∗0 = 5× 105 Pa.

Another experimental measurement in [10] regards the permeability function. The

authors fitted their four measurements with an exponentially decreasing function kSM =

106.9654(φr−φ). We nondimensionalized this function to have a unit value at φr. Figure

3 displays the linear rational permeability function kSAB, the exponential permeability

function kSM and the four data points.

In this thesis, we would like to focus on a broader class of stress and permeability

functions and examine their effect on the solutions. Based on [10] a suitable class for

permeability functions seems to be of the form

k(φ) = 10β(φr−φ), β > 0. (1.51)

As we shall see, φ effectively varies in a range close to φr, so we nondimensionalized

these functions to obtain a unit value at φr.

A class of polynomials of 7th degree is too broad. Furthermore, as we already

mentioned, φ varies from a relatively small range, thus we chose the stress function to

be linear with a quadratic correction

σ(φ) = (φr − φ) + α(φr − φ)2. (1.52)
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Figure 3: (left) Linear rational permeability function kSAB (solid line) versus exponen-

tial permeability function σSM (dashed line) together with four experimental measurements.

(right) Parametric class of permeability functions examined in this thesis.

Both function classes are displayed in the right plots of figures 2 and 3.
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2. ZERO-GRAVITY

2 Zero-gravity

We begin our analysis with a further reduction when there is no gravity acting on

the system. Investigating such a problem might seem of little practical importance;

however, solutions to this problem are consistent with early-time dynamics of experi-

mental measurements [9]. Furthermore, we will use these solutions as an asymptotic

approximation of the initial condition for the general case with gravity field present.

Omitting all terms ivolving g∗ in the dimensional set of equations and following the

consequent derivation, we arrive at the same equations as in (1.43)-(1.46) only without

the terms involving ρ. In equations (1.48), (1.49) the absence of gravity causes no

hydrostatic and atmospheric pressure resulting in p(hs, t) = 0, p(hl, t) = pc. By intro-

ducing a similarity transformation, we will be able to transform the partial differential

equation (1.43) to an ordinary differential equation.

This differential equation has an analytic solution for simple stress and permeability

functions proposed in [9]. With the parametric class of stress and permeability func-

tions (1.51), (1.52) considered in this thesis we will need to rely solely on numerical

solution.

The introduction of a similarity variable and following transformation to an ordinary

differential equation might seem as a felicitously chosen substitution from a mathemat-

ical viewpoint. However, it is a manifestation of thermodynamical laws that determine

the form of such a transformation.

2.1 Similarity transformation

We start by introducing a similarity variable η = z/(2
√
t). The corresponding differ-

ential operators transform to

∂

∂t
= − η

2t

d

dη
,

∂

∂z
=

1

2
√
t

d

dη
. (2.1)

Omitting the terms ρφ, the equations (1.43)–(1.46) transform to

− η 1

2t

dφ

dη
+ c(t)

1

2
√
t

dφ

dη
= − 1

4t

d

dη

[
φk(φ)σ′(φ)

dφ

dη

]
, (2.2)

c(t) = −1− φ0

φ0

1

2
√
t

[
φk(φ)

(1− φ)
σ′(φ)

dφ

dη

]∣∣∣∣
η=

hl(t)
−

2
√
t

, (2.3)
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dhs
dt

= c(t) +
1

2
√
t

[
k(φ)σ′(φ)

dφ

dη
φ

]∣∣∣∣
η=

hs(t)+

2
√
t

, (2.4)

dhl
dt

= c(t) +
1

2
√
t

[
φk(φ)

(1− φ)
σ′(φ)

dφ̄

dη

]∣∣∣∣
η=

hl(t)
−

2
√
t

. (2.5)

If we guessed the form of hs(t), hl(t) to be

hs(t) = 2λs
√
t, hl(t) = 2λl

√
t, (2.6)

where λs, λl are unknown constants, the values η = h+s
2
√
t
, η =

h+l
2
√
t

would become λs, λl.

In other words, η is now from a fixed interval [λs, λl]. With this choice c(t) becomes

c(t) = −(1− φ0)

φ0

1

2
√
t

[
φk(φ)

(1− φ)
σ′(φ)

dφ

dη

]∣∣∣∣
η=λ−l

, (2.7)

which does not contradict the t−1/2 nature of dhs/dt, dhl/dt. Furthermore, we are now

able to eliminate t from the equation (2.2) and obtain an ordinary differential equation

2η
dφ

dη
+

1− φ0

φ0

[
φk(φ)

(1− φ)
σ′(φ)

dφ

dη

]∣∣∣∣
λ−l

dφ

dη
=

d

dη

[
φk(φ)σ′(φ)

dφ

dη

]
. (2.8)

We got a nonlinear boundary value problem with unknown parameters λs, λl. The

values of these parameters can be computed by plugging (2.6) into (2.4), (2.5)

λs =
1

2

(
− 1− φ0

φ0

[
φk(φ)σ′(φ)

1− φ
dφ

dη

]∣∣∣∣
λ−l

+

[
k(φ)σ′(φ)

dφ

dη

]∣∣∣∣
λ+s

)
, (2.9)

λl = − 1

2φ0

[
φk(φ)σ′(φ)

1− φ
dφ

dη

]∣∣∣∣
λ−l

. (2.10)

To sum up, our task is to solve the boundary value problem (2.8) (the boundary

values yet to be specified) on an unknown domain [λs, λl] while simultaneously sat-

isfying equations (2.9) and (2.10). A quick analysis suggests that our problem could

be well-posed, since we have a second order ODE with 4 equations for 4 constants

(boundary conditions together with (2.9) and (2.10)). Section 5 describes in detail the

numerical scheme used to solve these equations.

For both boundaries λs and λl, Dirichlet boundary conditions can be obtained. At

η = λs the boundary condition follows from the zero-stress condition (1.28)

φ(hs, t) = φ(λs) = φr. (2.11)
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2. ZERO-GRAVITY

The boundary conditions for η = λl can be obtained by integrating the zero-gravity

form of equation (1.27) (obtained by omitting the term ρφ + 1) and using the corre-

sponding boundary conditions for pressure outlined in the beginning of this section.

We denote this value φl.

φ(hl, t) = φ(λl) = σ−1(pc) =: φl. (2.12)

For the case of stress function with quadratic correction (1.52), this leads to a simple

quadratic equation.

2.2 Solutions

We first illustrate the obtained solutions on three fundamental configurations of stress

and permeability functions

1. σ linear, k linear rational (following [9]),

2. σ linear, k exponential (representing classes (1.52) with α = 0 and (1.51) with

β = 6.9654),

3. σ 7th degree polynomial, k exponential (following [10]).

These configurations and the numbers assigned to them will be used throughout this

thesis.

Figure 4 depicts the corresponding solutions together with the evolution of interface

positions. The domain of each profile φ(η) is given by the parameter values [λs, λl].

These parameters also determine the speed of propagation of the interfaces. All profiles

are increasing (given by the boundary conditions). The nonlinear stress function results

in highly convex profile for φ. The liquid front positions for configurations (2) and (3)

are almost identical (they share the same permeability function), the solid deformation

for the case of nonlinear stress function is greater.

2.2.1 Parametric class of stress and permeability functions

This section analyzes the effect of varying parameters of the stress and permeability

functions on the solutions. The right limit of the range for constant α was chosen so,

that the derivative of the stress function is nonzero for φ ∈ [φr, φl].
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Figure 4: Profiles φ(η) for the three configurations of stress and permeability functions

(left) and the evolution of interface positions in time (right). In all configurations φ0 = 0.33,

φr = 0.135 and pc = −0.065.

The stress function governing the solid deformation mainly affects the position of the

solid front, determined by constant λs, while having only minor effect on the liquid front

position. The profile φ(η) is mainly determined by the boundary value φl = σ−1(pc)

(figure 5). Note that for higher values of α, a boundary layer at λl with high gradients

of φ begins to form.

The permeability function, representing the resistance of the porous material to

liquid infiltration, affects the speed of propagation of both interfaces almost equally

(figure 6). With increasing β, the absolute values of both λs and λl decrease. This has

a simple reason. Despite the whole class of permeability function having unit value at

φr, with increasing β, the permeability function decays more rapidly and the effective

(averaged) permeability is lower. As a result, the liquid propagates slower having also

a slower response in the solid deformation.

2.2.2 Effects of the parameters φ0 and pc

As we shall see, the remaining parameters φ0 and pc strongly determine the behavior

of the system. Note that in the absence of gravity, the solutions do not depend on the
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Figure 5: Profiles φ(η̄) (η rescaled to [−1, 1]) as dependent on the stress function parameter

α (left) and the corresponding values of λs and λl (right). λs is displayed in absolute value

for better visualization. In all three configurations φ0 = 0.33, φr = 0.135 and pc = −0.065.
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absolute value for better visualization. In all three configurations φ0 = 0.33, φr = 0.135 and
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Figure 7: Dependence of the interface positions on pc (left) and on φ0 (right). The three

configurations displayed. φ0 = 0.33, φr = 0.135 and pc = −0.065 - if not varying in the plot.

relative density ρ. In this section, we analyze their effect using the configuration (2),

which we pay the strongest attention to.

First (figure 7, left), we took a closer look at the dependence of λs, λl on the

dimensionless capillary pressure pc. For zero capillary pressure, no imbibition takes

place. Increasing the capillary pressure results initially in faster separation of the

interfaces. For high capillary pressures however, the effect of the permeability function

is significant, resulting in qualitatively different behavior. We would like to note, that

the solid volume fraction of the unsaturated porous material φ0 was held constant. For

high capillary pressures, this results in φ0 < σ−1(pc) = φl, i.e. the saturated porous

material at the interface λl is more dense than the unsaturated porous material.

Increasing the parameter φ0 (figure 7, right) has almost identical effect in all three

configurations. For low values of φ0, propagation of the solid front in the positive z

direction is observed in all three cases. This however again corresponds to very low

(relatively to φl) unsaturated porous material densities.

To see the whole picture, we further investigated the whole parameter space of pc

and φ0 and their effect on λs. In general, low values of φ0 can result in propagation

of the solid front in positive z direction. In other words, materials with high porosity
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Contour lines of the left plot. φr = 0.135.

tend to shrink. To make this physically realistic, we assume that in such cases the

liquid stays in contact with the porous material.
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3 Steady state

The simplest, yet fundamental case is the steady state. These solutions play an im-

portant role in studying the effect of the stress and permeability functions (i.e. the

physical properties of the elastic material) on the long-term equilibrium. Furthermore,

they provide a useful way of verifying the accuracy and stability of a numerical scheme

devised for the nonzero gravity problem.

This whole section will be based on an assumption that a steady state exists. We

do not attempt to prove the existence of the steady state to justify this assumption;

however, as we shall see in the numerical simulations of the nonzero gravity problem

a steady state is always reached and this assumption is reasonable. From a physical

viewpoint, it is reasonable to expect that at some point gravity will get into balance

with pressure gradient driving the flow.

3.1 Governing equations

Assuming existence of a steady state, we set all terms containing time-derivative to

zero, which results in a significant simplification of the governing equations. Equation

(1.26) reduces to
∂p

∂z
+ 1 = 0, (3.1)

which can be in turn used in (1.27) to obtain an ODE for steady-state solid volume

fraction

σ′(φ)
dφ

dz
− ρφ = 0, h∞s ≤ z ≤ h∞l . (3.2)

However, we need to determine the interface positions h∞s and h∞l together with some

initial or terminal condition. We begin by noting that φ(h∞s ) = φr, since this value is

constant at all times. By integrating (3.1) and using boundary conditions (1.21), (1.28),

we find h∞l at which the pressure gradient is in balance with the nondimensionalized

gravity force

h∞l = −pc. (3.3)

To determine boundary value φ∞l = φ(h∞l ), we employ a simple assumption, that the

mass of the porous material remains the same throughout the imbibition. At t = 0,

the mass of the dry porous material that will eventually be wetted through the process
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equals φ0ρ
∗
s
Th∞l (φ0 and ρ∗s

T are the solid fraction and true densities of the dry porous

material respectively). At steady state, this mass is given by the spatial integral of the

solid volume fraction ρ∗s
T
∫ h∞l
h∞s

φ(z)dz. In other words

h∞l φ0 =

h∞l∫
h∞s

φ(z)dz. (3.4)

Integrating (3.2) and comparing with (3.4) gives an implicit equation for φ∞l

h∞l φ0 =

h∞l∫
h∞s

φ(z)dz =
1

ρ

φ∞l∫
φr

σ′(φ)dφ =
σ(φ∞l )

ρ
. (3.5)

Having obtained the position of h∞l and the function value at this point φ∞l , we can

numerically integrate the ordinary differential equation (3.2) to determine the steady-

state profile φ(z) as well as the (not yet determined) solid interface position h∞s

ρ(h∞l − h∞s ) =

h∞l∫
h∞s

σ′(φ)

φ

dφ

dz
dz =

φ∞l∫
φr

σ′(φ)

φ
dφ. (3.6)

Note that the steady-state solution is independent of the choice of the permeability

function k(φ). This means that the permeability function has an effect only on the

temporal distribution of the solid and liquid phases by governing the speed of imbibition

at various solid volume fractions. In the long run however, the equilibrium is reached

by balancing the pressure, stress and gravity.

Another qualitative conclusion about the steady-state solid–liquid distribution can

be drawn from equation (3.2)
dφ

dz
= ρ

φ

σ′(φ)
. (3.7)

Since φ > 0 and σ′ is assumed to be negative throughout the wetted region, the

increasing/decreasing character of φ depends entirely on ρ. Recall, that ρ =
(
ρ∗s
T/ρ∗l

T−

1
)
, implying that ρ > 0 for ρ∗s

T > ρ∗l
T and ρ < 0 for ρ∗s

T < ρ∗l
T . For ρ∗s

T > ρ∗l
T , dφ

dz
< 0,

meaning that at steady state, the more dense solid phase tends to accumulate at the

bottom. The converse holds for ρ∗s
T < ρ∗l

T .

The position of liquid front interface h∞l is linearly dependent on the capillary pres-

sure pc. The apparent dependence on the representative scale Σ0 and thus on the stress
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Figure 9: Steady-state profiles φ(z) for configuration (2) and (3) for denser solid phase (ρ¿0)

and denser liquid phase ρ < 0.

function is not observed in the dimensional world, since L∗ = Σ∗0/ρ
∗
l
Tg∗, resulting in

h∗l
∞ = L∗h∞l = − p∗c

ρ∗l
Tg∗

. (3.8)

The dimensional position of the liquid front h∗l
∞ therefore depends only on the capillary

pressure and density of the liquid. Multiplying both sides by ρ∗l
T (and some averaged

liquid volume fraction) gives us a simplified interpretation of this equation: the total

gravity force exerted on the liquid imbibed is in balance with the capillary pressure

acting on the boundary.

3.2 Solutions

Similarly to the previous section, we first show sample plots of the φ profile. However,

only for two configurations, since the different permeability functions in configurations

(1) and (2) do not play a role.

Figure 9 displays the steady-state solutions for the linear stress function (solid line)

and 7th degree polynomial stress function (dashed line). In both cases, the steady-state

solutions are fairly linear, with φ(h∞s ) = φr. The character of the function is mainly

influenced by φ(h∞l ) = σ−1(−ρφ0pc). As expected, in the case of relatively denser solid

31



3. STEADY STATE

-0.1 -0.05 0 0.05 0.1
z

0.133

0.1335

0.134

0.1345

0.135

0.1355
?

-4 -3 -2 -1 0 1 2 3
,

-0.094694

-0.094692

-0.09469

-0.094688

-0.094686

-0.094684

-0.094682

-0.09468

-0.094678

h
1 s

,

Figure 10: Dependence of the steady-state solid deformation given by h∞s on the parameter

α. φ0 = 0.33, φr = 0.135, pc = −0.065 and ρ = 0.1.

phase (ρ > 0), the solid phase accumulates near the bottom, in the case of relatively

denser liquid phase (ρ < 0), the solid phase accumulates near the top. The steady-

state interface positions are given by the domain of the respective profiles, i.e. little

difference between the stress functions is observed.

3.2.1 Parametric class of stress and permeability functions

The permeability function has no effect on the steady state. The effect of the parameter

α of the quadratic stress function on the solid front position h∞s can be easily expressed

analytically

h∞s = −(1 + 2αφr) ln

(
1 +

1−
√

1− 4αρφ0pc
2αφr

)
+ 2α

(
1−
√

1− 4αρφ0pc
2αφr

)
(3.9)

and is of order 10−5, which is practically unobservable. The reason of such a small

dependence can be seen in the equation (3.6), where the upper bound of integration is

φl = σ−1(−ρφ0pc) ≈ σ−1(0.002), which is a value very close to φr. In this region, the

contribution of the quadratic correction is negligible.
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Figure 11: Dependence on the remaining parameters. φ0 = 0.33, φr = 0.135, pc = −0.065

and ρ = 0.1 (unless one of the parameters is changing in the plot).

3.2.2 Dependence on parameters φ0, pc and ρ

Figure 11 (left) shows the dependence of the solid and liquid front positions on the

nondimensionalized capillary pressure pc. For pc = 0, no imbibition or solid deformation

takes place. For increasing capillary pressure, both interfaces evolve in a relatively

linear way (h∞l = −pc). The middle plot shows the relative deformation as a function

of the density parameter ρ. Increasing this parameter, i.e. the relative solid density,

results in a higher relative solid deformation. Finally, the solid front interface h∞s also

depends on φ0 (right). Again, for low values of φ0, shrinkage of the solid material is

observed.

Figure 12 shows the parameter space of pc and φ0 in a similar way as figure 10.
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4 Nonzero gravity

We now turn to the problem of solving the time-dependent problem with gravity field

present as described in section 1. The numerical implementation employs the method

of lines with pseudospectral and finite difference spatial discretizations. The resulting

nonlinear system of initial value problems is solved using the Matlab built-in solver

ode23s. For the initial profile φ(z, t0) for t0 << 1, we use the correspondingly rescaled

self-similar solution described in section 2.

Before we can employ the method of lines; however, we need to formulate the

boundary conditions in form of time-dependent ODEs. From the zero-stress condi-

tion, φ(hs(t), t) = φr, i.e. the material at the solid/liquid interface is relaxed at all

times. At hl(t) however, φ is not expected to be constant and we denote this quantity

ψ(t) := φ(hl(t), t). We would like to derive an ODE governing the dynamics of ψ in

order to implement it in the method of lines. We restate here the boundary condition

(1.49)

pc + hs(t) = σ(hl(t), t)−
hl(t)∫

hs(t)

(ρφ+ 1)dz, (4.1)

which holds for every t > 0. By differentiating this equation with respect to time and

noting that σ(hl(t), t) = σ(ψ(t)) we obtain

ḣs(t) = σ′(ψ(t))ψ̇(t)− d

dt

hl(t)∫
hs(t)

(ρφ− 1)dz. (4.2)

We use the following theorem from elementary calculus to differentiate parametric

integral with time-dependent bounds

d

dt

β(t)∫
α(t)

f(x, t)dx =

β(t)∫
α(t)

∂

∂t
f(x, t)dx+ α̇(t)f(α(t), t)− β̇(t)f(β(t), t). (4.3)

Applying this to our equation (4.2) and rearranging gives

σ′(ψ(t))ψ̇(t) = ρ

hl(t)∫
hs(t)

∂φ

∂t
dz + ḣs(t) + ḣl(t)(ρψ(t)− 1)− ḣs(t)(ρφr − 1) (4.4)

∂φ
∂t

can be substituted from the partial differential equation (1.43) or equivalently from

the equation for mass conversation of solid phase (1.24), which requires less equation
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manipulation
hl(t)∫

hs(t)

∂φ

∂t
dz =

hl(t)∫
hs(t)

∂

∂z

(
φvs
)
dz =

(
φvs
)∣∣hl
hs
. (4.5)

To evaluate vs at hl, we use equation (1.30)

vs =
1

φ

(
c− vl(1− φ)

)
, (4.6)

which results in
hl(t)∫

hs(t)

∂φ

∂t
dz =

hl(t)∫
hs(t)

∂

∂z

(
φvs
)
dz =

(
c−vl(1−φ)

)∣∣
hl
−
(
φvs
)∣∣
hs

= φrḣs−c+ḣl(1−ψ). (4.7)

Putting equations (4.6) and (4.9) together after some manipulation results in a simple

equation governing the evolution of the solid volume fraction at boundary hl

ψ̇ =
1

σ′(ψ)

[
ḣl
(
1 + ρ

)
− ρc

]
. (4.8)

The numerical scheme is described in detail in section 5.

For early times when gravity effects are negligible compared to the pressure gradient,

we expect the solution to follow the zero-gravity case. For later times; however, the

solution should reach the steady state described in section 3. Note that for ρ > 0,

the initially increasing profile φ evolves into slowly decreasing, as shown in the figure

13 for the 7th degree polynomial stress function. The initially highly convex zero-

gravity profile also steadies very fast. For t > 2, the difference between φ(z, t) and the

steady-state profile was of order 10−5.

4.1 Space of parameters pc and φ0

In sections 2 and 3, we analyzed the dependence of the solid front position on material

parameters pc and φ0. Putting together this information, three qualitatively different

modes of solid front evolution can be expected

1. hs(t) < 0 for t > 0,

2. hs(t) > 0 for t ∈ (0, t∗), hs(t) < 0 for t ∈ [tc,∞) for some tc > 0,

3. hs(t) > 0 for t > 0.

Figure 14 shows the space of parameters φ0 and pc with the three modes and corre-

sponding sample plots of front evolution.
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Figure 13: Evolution of the profile φ(z, t) for the 7th degree polynomial stress function.

Initial zero-gravity profile and steady-state profile depicted in red. φ0 = 0.33, φr = 0.135,

pc = −0.065 and ρ = 0.1.
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Figure 14: Three modes identified in the space of parameters pc and φ0 (left) and corre-

sponding time-dependent interface positions together (right) with steady-state positions in

the very right. The stress and permeability functions correspond to configuration (2) from

subsection 2.2. Mode I: pc = −0.2, φ0 = 0.3; Mode II: pc = −0.2, φ0 = 0.18 a Mode III:

pc = −0.2, φ0 = 0.1. ρ = 0.1 and φr = 0.135 in all modes.
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Figure 15: Front positions for the original and adjusted boundary condition. Left: φ0 = 0.1,

resulting in permanently positive hs and a greater difference. Right: φ0 = 0.18 resulting in

negative final hs and a smaller difference. φr = 0.135, pc = −0.2 and ρ = 0.1.

4.2 Adjusted boundary condition

As we already noted, for hs > 0 to be physically realistic, we expect the surface of the

liquid bath to remain in contact with the porous material. For such cases; however,

the hydrostatic boundary condition in (1.28) is still not very realistic, since it allows

for negative hydrostatic pressures. A more realistic boundary condition would be of

the form

p(h+
s , t) = pA −min(hs(t), 0). (4.9)

Using this in the derivation of the boundary condition for ψ(t) gives

ψ̇(t) =
1

σ′(ψ)

[
ḣl
(
1 + ρ

)
− ρc− ḣs +H(ḣs, hs)

]
, (4.10)

where H is given by

H(ẋ, x) =

0, x > 0,

ẋ, x ≤ 0.

(4.11)

For hs > 0, this results in slightly higher pressure gradient across the wetted region

and thus higher rise of the liquid as displayed in figure 15. The longer the front position

hs is positive, the greater the effect of the adjusted boundary condition.
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4.3 Comparison with experimental data

Finally, we compared the theory with the experimental data reported in [9]. As we

already mentioned, the authors here investigated a problem with the same setup as

described in section 1.2, but used a linear stress function and a linear rational perme-

ability function. They observed an initial dynamics in agreement with the zero-gravity

problem, when the fronts follow a t1/2 power law. After about 10 s a transition to a

power law of about t0.22 for the liquid front and t0.20 for the solid front was observed.

Even afer 103 s, no equilibrium was reached.

To transform into dimensional terms, one needs the typical stress and permeability

scales Σ∗0 and K∗0 , together with gravity acceleration g∗, liquid density ρ∗l
T and fluid

viscosity µ∗. The latter parameters g∗, ρ∗l
T , µ∗ can be easily obtained. To obtain Σ∗0

and K∗0 , one would need to directly measure the stress and permeability functions (as

done in [10] for a different setup). The authors in [9] used an inverse approach, which

we briefly describe below.

� They experimentally estimated φ0 = 0.1, φr = 0.073 and assumed that there is

no jump in the solid volume fraction at the saturated/unsaturated solid interface

for the zero-gravity case. In other words φl = σ−1(pc) = 0.1. As a corollary, the

dimensionless capillary pressure is pc = −0.027.

� Using these values, the zero-gravity solution was computed, resulting in λl =

0.3675 and λs = −0.0590. The dimensional zero-gravity liquid front position is

then given by h∗l (t
∗) = 2λl

√
L∗2

T ∗
t∗.

� The early-time dynamics from experiments was then fitted by h∗(t∗) = 0.0063
√
t∗

1. For this to be in agreement with the theoretical prediction from the previous

point, the scale ratio L∗2/T ∗2 needs to equal L∗2/T ∗ = 0.00632/4λ2
l .

� The length scale L∗ = 0.7 m was selected so that the theoretically predicted

equilibrium occurs at approximately the time of transition between the power

laws.

1From several measurements we chose sponge 3 and measurement (7-17), since this measurement

was the easiest to resolve from the figures.
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Figure 16: Configurations (1), (2) and (3), experimental measurements from [9] and zero

gravity solution for configuration (2).

� As a corollary2, T ∗ = 6.67 × 103 s, Σ∗0 = 6.87 × 103 Pa and K∗0 = 1.07 × 10−11

m2.

Figure 16 displays front positions for the three configurations from the subsection

2.2 against the measurements in [9]. The configuration (1) is the configuration used

in [9]. The zero gravity position of h∗l was used to fit the scale ratio L∗2/T ∗. The

length scale L∗ was chosen so that the time of transition between the power laws in

the measurements approximately corresponds to the time of transition to the steady

state in our model.

Since the stress and permeability scales were not measured directly but fitted to

best represent the measurements, it is questionable how to compare the three config-

urations. We could follow the whole procedure described above and fit the scales for

each configuration separately. However, we only assumed that there is no jump in the

solid volume fraction at the saturated/unsaturated solid interface as in the first point of

the above described procedure. Therefore, L∗, T ∗ were the same in all configurations.

Furthermore, we would like to note that the results are very sensitive to the pa-

rameters considered (figure 17). For instance, a pressure scale Σ∗0 = 2.32× 103 Pa (or

2Other constants used: g∗ = 9.81 ms−1, ρ∗l
T = 103 kgm−1, µ∗ = 10−3 kgs−1m−1.
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Figure 17: Slight variations of the parameters resulting in qualitatively different bahaviours.

equivalently φl = 0.18) could lead to an initial compression of the porous material.

Alternatively, a slightly more porous material with φ0 = 0.06 would lead to perma-

nent compression of the porous material. Thus, such predictions have to be taken

conservatively, especially since no direct measurements of stress and permeability were

performed.
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5 Numerical schemes

In this section, we describe in detail the numerical schemes used to solve the equations

in sections 1 through 4.

The equations regarding the steady state in section 3 involve simple, first-order ordi-

nary differential equations and definite integral evaluation. Thus, no special numerical

scheme needed to be employed and Matlab solvers ode45 and integral were used.

In the remaining parts, Chebyshev pseudospectral method was mainly used to nu-

merically approximate the differential operators. This method is known for exponential

convergence for smooth functions [12]. The downside is that it involves full differenti-

ation matrices that require longer computation times. Moreover, we encountered that

for highly nonlinear stress functions (considered in [10]) and high capillary pressures,

the Chebyshev grid (clustered at the endpoints of the domain) seemed to be too coarse

in the middle of the domain and high spectral resolutions were required to capture

the solution. In such situations, a simpler second-order finite difference scheme worked

comparably well.

The Chebyshev pseudospectral approach is most commonly defined on interval

[−1, 1], thus the differential equations need to be rescaled to this interval by linear

transformation. The solution is a polynomial of N + 1st degree represented by a vector

of function values φCH = (φCH0 , φCH1 , . . . , φCHN+1) corresponding to the function values

in so-called Chebyshev nodes zj = cos(πj/(N + 1)), j = 0, . . . , N + 1. These nodes

are quadratically clustered towards the ends of the interval [−1, 1] to avoid effects like

the Runge’s phenomenon [3]. The solution could be equivalently represented by the

coefficients of the polynomial (which would make it a spectral method); however, this

approach is more straightforward to implement and is more similar to other gridpoint

methods.

Having the function values φCH = (φCH0 , φCH1 , . . . , φCHN+1), the polynomial interpolant

is of the form

φ(z) =
N+1∑
i=0

φCHi `i(z), (5.1)

where `i is the Lagrange basis polynomial satisfying `i(zj) = δij. Differentiating such

an interpolant can be represented by multiplication of the vector of function values

42



5. NUMERICAL SCHEMES

φCH by so-called differentiation matrix D, whose elements are given by

Dj
i = `′j(zi). (5.2)

This is in fact a (N + 2) × (N + 2) matrix, where the first row and the first column

have index 0.

This is similar to the finite difference method, where differentiation is also repre-

sented by multiplication by a sparse matrix with only a few (depending on the order

of the method) nonzero diagonals. For the finite difference method of 2nd order, this

matrix is given by 
Di−1
i = −1/(2h) i = 1, . . . , N

Di+1
i = 1/(2h) i = 1, . . . , N

Dj
i = 0 otherwise,

(5.3)

where h = zi+1 − zi = const. is the grid spacing. In the 0th and N + 1st row, we

use one-sided second-order derivative approximation. Similarly to the pseudospectral

method, we denote the vector of function values φFD = (φFD0 , φFD1 , . . . , φFDN+1).

5.1 Zero-gravity case

To solve the equations (2.8)-(2.12) using Chebyshev pseudospectral approach, we first

rearrange the equations to a clearer form involving conditions for derivatives on the

boundaries and obtain

2η
dφ

dη
− 2(1− φ0)

dφ

dη
=

d

dη

[
φk(φ)σ′(φ)

dφ

dη

]
. (5.4)

dφ

dη

∣∣∣∣
λs

= 2
φ0λl − (λl − λs)
k(φr)σ′(φr)

(5.5)

dφ

dη

∣∣∣∣
λl

= − λlφ0(1− φl)
φlk(φl)σ′(φl)

, (5.6)

together with boundary conditions φ(λs) = φr and φ(λl) = φl.

Next, we rescale the independent variable η ∈ [λs, λl] to a fixed interval [−1, 1] by

linear transformation η̄ = (2η − λl − λs)/(λl − λs). The set of nonlinear equations
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corresponding to a rescaled version of (5.4) has the form(
(λl − λs)(η̄i − 1)

2
+ φ0λl

)N+1∑
j=0

Dj
iφ

CH
j

=
1

λl − λs

N+1∑
j=0

Dj
i

(
φCHj k(φCHj )σ′(φCHj )

N+1∑
k=0

Dk
jφ

CH
k

)
, (5.7)

for i = 1, . . . , N , together with boundary conditions φCHN+1 = φr and φCH0 = φl (the

N + 1st node corresponds to η̄ = −1 and vice versa).

We first solve the system of nonlinear equations (5.7) using Matlab built-in solver

fsolve for an initial guess of parameter values λs0 , λl0 . Next, we compute the difference

of right-hand and left-hands sides of equations (5.5), (5.6), which are after rescaling

and numerical approximation of the form

N+1∑
j=0

Dj
0φ

CH
j +

λl0φ0(λl0 − λs0)(1− φl)
φlk(φl)σ′(φl)

, (5.8)

N+1∑
j=0

Dj
N+1φ

CH
j − (λs0 − λl0 + φ0)(λl0 − λs0)

k(φr)σ′(φr)
. (5.9)

In an outer fsolve routine, we attempt to solve for λ∗s, λ
∗
l , which corresponds to the

roots of these equations. This could be in fact simplified into a single system of nonlin-

ear equations (5.7), (5.8) and (5.9). However, as we noted, the former approach using

two nested fsolve routines turned out to be more stable for nontrivial choices of stress

and permeability functions, since it separates two qualitatively different problems. The

slight decrease in accuracy or longer computational time of the nested approach does

not play an important role here.

Another option is to use Matlab adaptive solver for boundary value problems bvp4c

based on finite difference method [8]. This solver can also handle unknown parameters

in both the equation as well as boundary conditions. However, for nontrivial stress

functions and high capillary pressures, the routine did not converge.

5.1.1 Closed-form solution

To analyze the convergence of the proposed pseudospectral approach and compare it to

2nd order finite difference, we took a closer look at the simple stress a and permeability

functions studied in [9]. Except for them being the simplest form of these functions
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satisfying the basic properties outlined in subsection 1.3, they also allow us to express

the solution in closed-form. The reason can be easily seen in the RHS of equation

(5.4), where all the nonlinear terms cancel out and leave a simple second derivative of

φ. After a little effort [1], the solution can be shown to have the following form

φ(η) =
erf(λs −B)− erf(η −B)

erf(λs −B)− erf(λl −B)
(φl − φr) + φr, (5.10)

where B = (1 − φ0)λl. Equations (5.5), (5.6) can also be simplified and result in a

system of two nonlinear equations, that can be solved separately from the differential

equation. Thus, the nested fsolve approach is not necessary here.

We used this problem with known analytic solution to verify the accuracy of earlier

proposed numerical schemes. As we wanted to analyze the accuracy of the pseu-

dospectral method, we first obtained (numerically) exact values λs, λl and solved only

the equation (5.7) for increasing number of grid points. In these grid points, we then

computed the maximum absolute error as shown in figure 18 (left). As expected,

the pseudospectral method exhibits exponential convergence while the finite difference

method only polynomial.

In figure 19 we took a closer look at the two-dimensional parameter space of param-

eters (λs, λl) ∈ [−1, 0]× [0, 1]. For each such pair, we solved the equation 5.7 and then

computed the corresponding form of (5.8), (5.9) to obtain two surfaces. These two

surfaces are the functions we wish to find the root of in the outer fsolve routine. Their

intersection forms a one-dimensional manifold, where the residuals are equal (to the

corresponding vertical-axis value). At the marked blue point, both residuals are zero,

meaning we found the right values λ∗s, λ
∗
l . The purpose of this plot is to show that the

differences of RHS and LHS in the equations (5.5), (5.6), numerically approximated

by (5.8), (5.9), as functions of parameters λs, λl form a smooth intersecting surfaces.

It is therefore reasonable to expect exactly one solution in terms of λl, λs from an

appropriate parameter space.

We would also like to note that for a different choice of stress and permeability

functions, a closed-form solution is hard to be expected. If the RHS of eqation (5.4) is

nontrivial, it will contain nonlinear functions of φ as well as (dφ/dη)2 which is a form

not often studied in the theory of ordinary differential equations.
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Figure 18: Left: Maximal absolute difference between the analytic solution and solution

obtained with N gridpoints for the Chebyshev and finite-difference approach, configuration

(1). Right: Absolute difference in the midpoint for two successive resolutions, configuration

(3).
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Figure 19: Parameter space (λs, λl) and the corresponding difference of right-hand and

left-hand sides in equations 3.7, 3.8
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5.1.2 7th degree polynomial stress function

The case of stress and permeability functions found in [10] results in highly nolinear

profiles of φ(η) for high capillary pressures. Here, the Chebyshev grid seemed to be

too coarse at the midsection of the interval [−1, 1] for low spectral resolutions.

Figure 18 (right) compares the pseudospectral to the finite difference method. Since

an explicit solution to this problem is not known, we had to analyze the relative

convergence of the solutions for two successive resolutions N . Another problem we

were facing was, that for different resolutions N , the corresponding grids are different

and the solutions cannot be directly compared. We tried to interpolate each solution

by a cubic spline and compare them on a unified set of points. However, the error of

the spline interpolation was of the order comparable to the actual error of the solutions

and biased the results. Thus, we used only odd resolutions N = 2k + 1 so that the

grid (both Chebyshev and finite difference) always includes the point η̄(N+3)/2 = 0 and

the absolute difference of function values at this point for two successive values of k

was computed. Even though the pseudospectral method converges faster, a qualitative

difference, such as in figure 18 (left) is not observed. However, the exponential and

polynomial rate of convergence might be present, discernible only at at even higher

resolutions.

5.2 Nonzero gravity

To solve the time-dependent problem with gravity field present, we employed the

method of lines. In this approach, the partial differential equation (1.43) was trans-

formed into a system of initial value problems. The spatial differential opperator were

again discretized using Chebyshev pseudospectral method.

First, the spatial variable z needs to be rescaled to a fixed domain [−1, 1] using linear

transformation z̄ = (2z − hl(t)− hs(t))/(hl(t)− hs(t)). Note that this transformation

is time-dependent, which nontrivially transforms the time derivative to

∂φ

∂t
=
∂φ̄

∂t
+

[
z̄ − 1

hl − hs
dhs
dt
− z̄ + 1

hl − hs
dhl
dt

]
∂φ̄

∂z̄
. (5.11)

In the next step, we discretize the spatial variable to discrete Chebyshev nodes

z̄j = cos(πj/(N + 1)), j = 0, . . . , N + 1 and introduce new functions dependent solely
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on time

ϕi(t) := φ(z̄i, t), i = 0, . . . , N + 1. (5.12)

The derivative with respect to z̄ is now approximated using the differentiation matrix

D as
dφ

dz̄

∣∣∣∣
z̄i

=
N+1∑
j=0

Dj
iϕj. (5.13)

Thus, the rescaled and discretized system of equations (1.43)-(1.46) ammounts to a

system of ordinary differential equations

˙ϕi(t) = − 1

hl − hs

(
(z̄i − 1)ḣs + (z̄i + 1)ḣl + 2c

)N+1∑
j=0

Dj
iϕj (5.14)

− 2

hl − hs

N+1∑
j=0

Dj
i

[
ϕjk(ϕj)

2σ′(ϕj)

hl − hs

(
− ρϕj +

N+1∑
k=0

Dk
jϕk

)]
, (5.15)

i = 1, . . . , N where

c(t) = −1− φ0

φ0

[
ϕ0k(ϕ0)

1− ϕ0

(
2σ′(ϕ0)

hl − hs

(
− ρϕ0 +

N+1∑
j=0

Dj
0ϕj

))]
. (5.16)

Boundary values are given by equations

ϕ̇N+1(t) = 0, (5.17)

ϕ̇0(t) =
1

σ′(ϕ0)

[
ḣl(1 + ρ)− ρc

]
. (5.18)

Finally, the interface position are governed by

ḣs(t) = c+ k(ϕN+1)

[
2σ′(ϕN+1)

hl − hs

(
− ρϕN+1 +

N+1∑
j=0

Dj
N+1ϕj

)]
, (5.19)

ḣl(t) = c− ϕ0k(ϕ0)

1− ϕ0

[
2σ′(ϕ0)

hl − hs

(
− ρϕ0 +

N+1∑
j=0

Dj
0ϕj

)]
. (5.20)

For initial condition, we use the self-similar profile obtained in the zero-gravity case

ϕi(t0) = φCHi , i = 0, 1, . . . , N + 1, (5.21)

where t0 << 1, together with the initial interface positions

hs(t0) = 2λs
√
t0, hl(t0) = 2λl

√
t0. (5.22)
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Figure 20: Convergence of hs(2) and hl(2) (effective steady states) to the real steady-state

values h∞s and h∞l for decreasing initial time t0. The apparently worse convergence of hs

rests in numerically computed value h∞s , whereas h∞l = −pc.

To solve this nonlinear system of initial value problems, we employed the built-in

Matlab solver ode23s.

For well resolved self-similar profile φ(η), acting as an initial profile for the method

of lines, the convergence to the steady state is largely dependent on the initial time t0

(the method still converges even for different initial times t0, but to a different solution).

The following figure 20 displays this dependence for the simple stress and permeability

functions. Following this result, in most of the plots regarding the nonzero gravity

problem in this thesis, we used t0 = 10−8.
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Conclusion

In our thesis we have studied a model for imbibition of a liquid into deformable porous

material. We have used mixture theory approach described in [5]. Previous existing

studies of this problem considered a linear stress function governing deformation of the

porous material and a linear rational permeability function dictating the dynamics of

imbibition [9]. Experimental work of Sommer and Mortensen [10] indicates a more com-

plex dependence of these quantities on the solid volume fraction of the porous material.

Using the experimentally motivated constitutive relations for solid stress and perme-

ability functions, we have investigated a parametric class of exponentially decreasing

permeability functions and linear stress functions with a quadratic correction.

In the first section, we have derived a mathematical model using mixture theory and

mass and momentum balances following [5]. After reducing to one spatial dimension, we

have introduced physically realistic class of stress and permeability functions directly

depending on the solid volume fraction φ.

In the second section, we have taken a closer look at a further reduction, namely the

case with absent gravity field. For the resulting boundary value problem with unknown

parameters determining the boundaries, we have developed a numerical scheme based

on Chebyshev pseudospectral as well as finite difference discretizations. The resulting

nonlinear system of equations was solved using the nested fsolve routines. We have

investigated the effect of the parameters of stress and permeability functions on the

solutions. In addition, we have investigated the effects of other parameters such as the

dimensionless capillary pressure pc and solid volume fraction of the dry porous material

φ0. We have found that for certain combination of these parameters, shrinkage, instead

of expansion of the porous material occurs.

The third section was devoted to the study of the steady state. Again, we have

studied the effect of the parameter of the stress function, which was negligible. The

permeability function was found to have no effect on the steady state, since it dictates

only temporal speed of liquid infiltration. In the space of material parameters pc and

φ0, again both shrinkage as well as expansion are possible.

In the fourth section, we have studied the general time-dependent problem with

gravity present. It connects the early-time dynamics, which is asymptotically equiv-
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alent to the zero-gravity case, with the steady-state solution. Based on this, we have

identified three qualitatively different modes of the solid phase behavior: initial shrink-

age and final expansion of the porous material, permanent shrinkage of the porous

material and permanent expansion of the porous material. To make the case when

the porous material shrinks more realistic, we have made a slight adjustment to the

condition of hydrostatic pressure at one boundary. This adjustment has led to both

greater shrinkage and higher liquid rise. Numerically, this problem was implemented

using the method of lines with the Chebyshev pseudospectral as well as finite difference

spatial discretizations.

In [9], experimental measurements of imbibition of a liquid into a sponge were re-

ported. The main shortcoming of the current model is that even after thousands of

seconds, no steady state predicted by the model is observed. Wider and more physically

realistic class of stress and permeability functions did not eliminate this problem. One

of the main reasons of the discrepancy between the experimental data and the theory

might rest in not considering a gas phase in the model. The current model considers

the liquid volume to be a full complement to the solid volume in the saturated re-

gion. According to [9], the actual liquid volume in the saturated region is considerably

smaller than the void pore space, i.e. air and liquid vapor are present. Including a gas

phase in the model might be an interesting direction of future research.
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APPENDIX A

Appendix A Code listing

In this appendix, we list the Matlab codes used to solve the zero-gravity, steady-state

and nonzero-gravity problems. To construct the Chebyshev differentiation matrix, we

have used a very terse function cheb introduced [12]. The functions SelfSimilar and

TimeDependent can optionally accept input arguments for initial guess of parameters

λs, λl and initial profile φ. If no optional input arguments are passed, initial guess for

parameters is λs = −0.5, λl = 0.5 and the initial profile is linear satisfying boundary

conditions.

Listing 1: Matlab source code for the zero-gravity problem

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function sol = SelfSimilar(s, N, approach, lambda init, phi init)

% solves eqns (2.7)-(2.10) using nested fsolve routines

% s...structure of problem settings (s.phi0, s.phir, s.rho, s.pcs, anonymous functions s.K, s.Sigma, s.Sigmap ...)

% N...number of (inner) grid points

% approach...'cheb' - Chebyshev differentiantion matrix

% ...'fd' - finite difference differentiation amtrix

% lambda init...(optional) initial guess for parameters, [0.5,-0.5] if not specified

% phi init...(optional) anonymous function for initial profile of phi, linear function

% satisfying the BCs if not specified

% pseudespectral OR finite difference approach, see fcns cheb and fd

global D ksi % differentiation matrix, nodes as global

switch approach

case 'cheb'

[D,ksi] = cheb(N+1); % N+2 - length incl. boundary values

ksi = wrev(ksi); % revert order of cheb. nodes for clarity

D = -D; % revert diff. matrix for the same reason

case 'fd'

[D,ksi] = fd(N+1);

otherwise

disp('wrong method chosen')

return

end

% compute value at boundary ksi=+1 (condition (2.12))

bvplus = @(x) s.pcs - s.Sigma(x);

s.phil = fsolve(bvplus, (s.phir-s.pcs));

% initial guesses for phi and lambda

switch nargin

case 3

linear guess = @(t) (s.phil-s.phir)/2*t + (s.phir+s.phil)/2;

init guess = linear guess(ksi(2:N+1));

lambda init = [0.5,-0.5];

case 4

linear guess = @(t) (s.phil-s.phir)/2*t + (s.phir+s.phil)/2;

init guess = linear guess(ksi(2:N+1));

case 5

init guess = phi init(ksi(2:N+1));

otherwise

disp('incorrect number of input arguments to the function SelfSimilar');
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return

end

% objective function for solving equations (2.9), (2.10)

obj fun = @(lambda) FixedLambdas(lambda(1), lambda(2), s, N, init guess);

[lambda] = fsolve(obj fun, lambda init);

% construct output structure

l l = lambda(1);

l s = lambda(2);

[ders diff, phi sol] = FixedLambdas(l l, l s, s, N, init guess);

sol = struct('lambda s', l s, 'lambda l', l l, 'phi', phi sol, 'grid', ksi, 'ders diff', ders diff);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ders diff, phi sol] = FixedLambdas(l l, l s, s, N, init guess)

% solves equation (2.8) given (fixed) values of lambda s (l s), lambda l

% (l l)

% init guess is the initial profile phi for fsolve

global D ksi

% fsolve for root of equations () specified in function diff opp

fun = @(phi) diff opp(phi, l l, l s, N, s);

phi sol = fsolve(fun, init guess);

% computes derivatives using first and last row of diff. matrices

phi sol = [s.phir; phi sol; s.phil];

ders = [D(1,:)*phi sol; D(N+2,:)*phi sol];

% compute differences corresponding to eqns

ders diff = [];

ders diff(1) = ders(1)-(l s-l l+s.phi0*l l)*(l l-l s)/ (s.K(s.phir)*s.Sigmap(s.phir));

ders diff(2) = ders(2)+l l*s.phi0*(l l-l s)*(1-s.phil)/ (s.phil*s.K(s.phil)*s.Sigmap(s.phil));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function f = diff opp(phi, l l, l s, N, s)

% given vector of function values phi, parameters l s, l l, number of grid

% points N and problem settings s, computes the value given by () to be

% found root of

global D ksi

phif = [s.phir; phi; s.phil]; % adding boundary values

a=1/2*(l l-l s);

b=-1/2*(l l-l s)+s.phi0*l l;

c=1/(l l-l s);

dphi = D*phif; % numerical derivative of vector phi

dphi2 = dphi.*dphi; % derivative squared

int = a*ksi.*dphi + b*dphi - c*D*(phif.*s.K(phif).*s.Sigmap(phif).*dphi);

f=int(2:N+1); % omit boundary values for the problem to be square

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [D,x] = cheb(N)

% Trefethens construction of differentiation matrix

if N==0, D=0; x=1; return, end

x = cos(pi*(0:N)/N)';

c = [2; ones(N-1,1); 2].*(-1).ˆ(0:N)';

X = repmat(x,1,N+1);

dX = X-X';

D = (c*(1./c)')./(dX+(eye(N+1))); % off-diagonal entries

D = D - diag(sum(D')); % diagonal entries

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [D,x] = fd(N)

% construction of finite difference matrix

if N==0, D=0; x=1; return, end

x = linspace(-1,1,N+1)';

D = sparse(N+1, N+1);

B = [-1/2*ones(N+1,1), zeros(N+1,1),1/2* ones(N+1,1)];

D = spdiags(B, -1:1, N+1, N+1);

D(1,1:3) = [-3/2, 2, -1/2];

D(end, (end-2):end) = [1/2, -2, 3/2];

D = N/2*D; % h=2/N, 1/h=N/2

end
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Listing 2: Matlab source code for the steady state

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out = SteadyState(s, N, approach)

% computes the steady-state solution given by eqns (3.3)-(3.7) rescaled to

% [-1,1]

% values with no computation needed

phisinf = s.phir;

hlinf = -s.pcs;

% compute the value at h l

F = @(phi) s.rho*s.phi0*hlinf-s.Sigma(phi);

philinf = fsolve(F, s.phir);

% solid front position

underint = @(phi) s.Sigmap(phi)./phi;

int = integral(underint, phisinf, philinf);

hsinf = hlinf - int/s.rho;

% computing full profile phi steady rescaled to [-1,1]

odefun= @(t, y) s.rho*(hlinf-hsinf)*y/(2*s.Sigmap(y));

sol = ode45(odefun, [-1, 1], s.phir);

% construct grid

switch approach

case 'cheb'

x = cos(pi*(0:N)/N)';

x = wrev(x);

case 'fd'

x = linspace(-1,1,N+1)';

otherwise

disp('wrong approach chosen')

end

% evaluate solution on grid

phi inf = deval(sol, x)';

% output structure

out = struct('h s', hsinf, 'h l', hlinf, 'phi s', phisinf, 'phi l', philinf, 'phi', phi inf, 'grid', x);

% if rho==0 => individual approach

if s.rho == 0

hsinf = -s.pcs/s.phir*(s.phir-s.phi0);

philinf = s.phir;

phi inf = s.phir*ones(size(x));

out = struct('h s', hsinf, 'h l', hlinf, 'phi s', phisinf, 'phi l', philinf,'phi', phi inf, 'grid', x);

end

end
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Listing 3: Matlab source code for the nonzero-gravity problem

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function sol = TimeDependent(s, N, t0, tfin, approach, lambda init, phi init)

% solves system of ODEs given by equations ()-()

% t0...initial time for zero gravity profile to be used

% tfin...final time for numerical integration

% lambda init, phi init optional, SelfSimilar deals with it accordingly

% pseudespectral OR finite difference approach, see fcns cheb and fd

global D ksi % differentiation matrix, nodes as global

switch approach

case 'cheb'

[D,ksi] = cheb(N+1); % N+2 - length incl. boundary values

ksi = wrev(ksi); % revert order of cheb. nodes for clarity

D = -D; % revert diff. matrix for the same reason

case 'fd'

[D,ksi] = fd(N+1);

otherwise

disp('wrong method chosen')

return

end

% construct initial value for system of ODEs from zero gravity case

switch nargin

case 5

sol init = SelfSimilar(s, N, approach);

case 6

sol init = SelfSimilar(s, N, approach, lambda init);

case 7

sol init = SelfSimilar(s, N, approach, lambda init, phi init);

otherwise

disp('Incorrect number of input arguments to the function TimeDependent')

end

h s = 2*sol init.lambda s*sqrt(t0); % initial front position

h l = 2*sol init.lambda l*sqrt(t0); % initial front position

v0 = [sol init.phi(2:N+2);h s;h l]; % resulting initial values: first value corresponding to constant phir

% omitted; h s, h l added

% use built-in solver for stiff systems of ODEs ode23s

odefun = @(t,v) ODEfun(t,v,N,s); % anonymous function to be passed to solver

[t,y] = ode23s(odefun, [t0,tfin], v0);

% construct output structure

phi = [s.phir*ones(length(t),1), y(:,1:N+1)]; % add BV phir at all times

sol = struct('phi', phi, 'h l', y(:, N+3), 'h s', y(:, N+2), 't', t, 'grid', ksi, 'init', sol init);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ w ] = ODEfun(t, v, N, s)

% system of ordinary differential equations given by ()

global D ksi

phi = [s.phir; v(1:N+1)]; % full profile phi

psi = v(N+1); % extract time dependent BV psi

h s = v(N+2); % extract solid fornt position

h l = v(N+3); % extract liquid front position

jedn = ones(N+2,1); % vector of ones

dphi = D*phi; % vector of first spatial derivatives

dphip1 = dphi(N+2); % spatial derivative at 1

dphin1 = dphi(1); % spatial derivative at -1

% approximate time derivative of phi, hs, hl, psi

c = -(1-s.phi0)/s.phi0*(psi*s.K(psi)/(1-psi)*(s.Sigmap(psi)*2*dphip1/ (h l-h s)-s.rho*psi));
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dhs = c + s.K(s.phir)*(s.Sigmap(s.phir)*2*dphin1/ (h l-h s)-s.rho*s.phir);

dhl = c - psi*s.K(psi)/(1-psi)*(s.Sigmap(psi)*2*dphip1/ (h l-h s)-s.rho*psi);

phiop = -((ksi-jedn)/(h l-h s)*dhs-(ksi+jedn)/(h l-h s)*dhl).*dphi - 2*c/(h l-h s)*dphi - 2/(h l-h s)*D*(phi.*s.K(phi)....

*(s.Sigmap(phi)*2/(h l-h s).*dphi-s.rho*phi));

dpsi = 1/s.Sigmap(psi)*( dhl*(1+s.rho)-s.rho*c );

phiop = phiop(2:N+1); % exclude constant BV phir

w = [phiop; dpsi; dhs; dhl]; % bind together as output

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [D,x] = cheb(N)

% Trefethens construction of differentiation matrix

if N==0, D=0; x=1; return, end

x = cos(pi*(0:N)/N)';

c = [2; ones(N-1,1); 2].*(-1).ˆ(0:N)';

X = repmat(x,1,N+1);

dX = X-X';

D = (c*(1./c)')./(dX+(eye(N+1))); % off-diagonal entries

D = D - diag(sum(D')); % diagonal entries

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [D,x] = fd(N)

% construction of finite difference matrix

if N==0, D=0; x=1; return, end

x = linspace(-1,1,N+1)';

D = sparse(N+1, N+1);

B = [-1/2*ones(N+1,1), zeros(N+1,1),1/2* ones(N+1,1)];

D = spdiags(B, -1:1, N+1, N+1);

D(1,1:3) = [-3/2, 2, -1/2];

D(end, (end-2):end) = [1/2, -2, 3/2];

D = N/2*D; % h=2/N, 1/h=N/2

end
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