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Abstract

MARE�ÁKOVÁ, Barbora: Two-period model for consumption - investment decision

with a prospect theory household [Master Thesis], Comenius University in Bratislava,

Faculty of Mathematics, Physics and Informatics, Department of Applied Mathemat-

ics and Statistics; Supervisor: RNDr. Jaroslava Hlou²ková, PhD., Bratislava, 2017, 70

pages.

This study examines the choices of a su�ciently loss averse household described by

the two-period consumption model with an uncertain income in the second period.

Household is maximizing its utility by optimization of the �rst period consumption.

The utility function is reference based with quadratic loss averse form. The optimal

solution primarily depends on the magnitude of the �rst period reference level of con-

sumption. There are eight di�erent optimal values of the �rst period consumption

according to the parameter set-up. If the optimal solution is in the feasibility interval,

then the changes of the risk aversion parameter in�uence the optimal values. If the

reference level of the �rst period consumption is low, then the avoidance of losses in

the �rst period depends on the relation between risk free rate and discount factor. If

the �rst period reference level of consumption is larger than in the previous cases, the

solution again depends on the risk free rate and discount factor, which de�nes the will-

ingness to avoid the domain of losses in the �rst period. A self-improving household,

which is characterized by su�ciently large �rst period reference level, experiences loss

in the �rst period and in the bad state of nature in the second period.

Keywords: prospect theory, loss aversion, utility function



Abstrakt

MARE�ÁKOVÁ, Barbora: Dvojperiódový model spotreby - investi£né rozhodovanie

domácnosti pomocou prospektovej teórie [Diplomová práca], Univerzita Komenského v

Bratislave, Fakulta matematiky, fyziky a informatiky, Katedra aplikovanej matematiky

a ²tatistiky; ²kolite©: RNDr. Jaroslava Hlou²ková, PhD., Bratislava, 2017, 70 strán.

Práca skúma správanie sa dostato£ne stratovo averznej domácnosti popísanej dvoj-

periódovým modelom spotreby s neur£itým príjmom v druhej perióde. Domácnos´

maximalizuje svoju uºito£nos´ pomocou optimalizácie spotreby v prvej perióde. Funk-

cia uºito£nosti závisí od ve©kosti referen£ných hladín a má kvadratickú formu averzie

vo£i stratám. Optimálne rie²enie primárne závisí od ve©kosti referen£nej hladiny spotreby

v prvej perióde. Je uvedených osem optimálnych hodnôt spotreby v prvej perióde na

základe usporiadania vz´ahov medzi parametrami. Ak je optimálne rie²enie vo vnútri

oblasti prípustných rie²ení, tak zmeny parametra averzie vo£i stratám ovplyv¬ujú op-

timálne hodnoty. Ak je referen£ná hladina spotreby v prvej perióde nízka, tak sa

domácnos´ snaºí vyhýba´ stratám v prvej perióde na základe vz´ahu medzi bezrizikovou

mierou a diskontným faktorom. Ak je referen£ná hladina spotreby v prvej perióde

vä£²ia ako v predo²lom prípade, tak rie²enia znova závisia od bezrizikovej úrokovej

miery a diskontného faktora, ktoré de�nujú snahu domácnosti vyhnú´ sa stratám v

prvej perióde. Domácnos´ s vysokými a²piráciami, ktorá je charakteristická dosta-

to£ne vysokou hodnotou referen£nej hladiny v prvej perióde, je v strate po£as prvej

periódy a aj v zlom prirodzenom stave druhej periódy.

K©ú£ové slová: prospektová teória, averzia vo£i starte, úºitková funkcia
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INTRODUCTION

Introduction

How do people make decisions? What are the important factors which in�uence their

consumption? These questions and many more are asked by the economist since the

introduction of prospect theory by Kahnemann and Tversky in 1979 in [11].

In this thesis we explore the behaviour of a household during two periods. Every

household has some expectations about standard of living, which is represented by

consumption reference levels in both periods. In the �rst period the household has

labour income, which can be consumed immediately or saved for the next period. The

amount of consumed income depends on the willingness of the household to live in the

loss compared to it's reference level. Second period is characterized by the uncertainty

of exogenous income.

We study the optimal consumption with aim to maximize the happiness of the

household. Happiness is given by the utility function, which has similar properties

as the one in the prospect theory. Our motivation is to describe the behaviour of the

household which has large loss aversion parameter. Thus the utility function is concave

in the domain of losses and linear in the domain of gains.

First chapter explains theories of decision making and contribution of our work.

Following one focuses on the detailed explanation of our problem set-up. The last

chapter contains economical interpretation of the results along with the sensitivity

analysis. Results are presented according to the parameter set-up of the �rst period

reference level.

11



1. THEORETICAL BACKGROUND OF DECISION MAKING

1 Theoretical Background of Decision Making

1.1 Expected Utility Theory

The term expected utility was �rst used by Daniel Bernoulli in 1738 in [3]. Shortly, it

states, that if an individual is making a decision under uncertainty then he maximizes

his expected utility. The function of the expected utility is the sum of products of

probability (pi) and utility over all possible outcomes (xi) for m losses and n gains.

U(x, p) =
n∑

i=−m

pi · xi

John von Neumann and Oskar Morgenstern proved the hypothesis in study [13], that

under four axioms any individual has the utility function. Those axioms are de�ned

as:

1. Completeness - an individual has well de�ned preferences between any two alter-

natives, i.e. with two alternatives A and B - he either prefers A to B, or prefers

B to A or is indi�erent between them.

2. Transitivity - if for every alternatives A, B and C holds that A is preferred to B

and B is preferred to C, then A is preferred to C. It means that the individual

decides consistently.

3. Independence - alternatives A and B maintain the same order of preference in-

dependently of the third irrelevant alternative C.

4. Continuity - for three alternatives where A is preferred to B and B is preferred

to C exists a mixed combination of A and C, which is indi�erent to B.

This theory is an abstraction and simpli�cation of rationally acting agents. The

main limits were discussed in Kahneman and Tversky analysis [11].

1.2 Prospect Theory

Prospect theory was introduced by Daniel Kahneman and Amos Tversky in the journal

Econometrica in 1979 [11]. The study - Prospect Theory: An Analysis of Decision under

Risk demonstrates that in laboratory settings people under risk aren't rational players

12



1. THEORETICAL BACKGROUND OF DECISION MAKING

according to the predictions of the expected utility theory. Expected utility theory was

the normative model of rational choice and descriptive model of economic behaviour

before prospect theory was introduced.

Irrational behaviour occurs especially when people are making decisions under risk.

They tend not to decide by maximizing the sum of probabilities times utility rather

decide by comparing the losses and gains with the reference levels. Furthermore, sen-

sitivity to losses is greater than to gains. These speci�cations are presented by the

results of the experiment in study [11].

The experiment consisting of a dozen hypothetical choice questions was performed on

students at the Israeli university, University of Stockholm and University of Michigan.

For example respondents had to choose between two options:

PROBLEM 1

A: gain 2500 with probability 0.33

gain 2400 with probability 0.66

gain 0 with probability 0.01

B: gain 2400 for sure

The stated example demonstrates certainty e�ect, �rstly described in 1953 in Al-

lais [1]. Following the expected utility theory respondents should choose option A.

Expected utility of A exceeds the expected utility of B. However, 82% of them chose

option B. More experiments with similar questions showed that people prefer outcomes

that are considered certain, relative to outcomes which are merely probable.

Answers to the pair of the questions below violated utility theory from a di�erent

angle.

PROBLEM 2

A: gain 6000 with probability 0.45

B: gain 3000 with probability 0.90

13



1. THEORETICAL BACKGROUND OF DECISION MAKING

PROBLEM 3

A: gain 6000 with probability 0.001

B: gain 3000 with probability 0.002

In the mentioned experiment the majority of respondents chose B in Problem 2

(86%) but A in Problem 3 (73%). The answers describe possibility e�ect, when the

probabilities of winning are high, the person chooses the more probable option, however,

in Problem 3 the probabilities are low and the person chooses higher gain.

Re�ection e�ect means that the preferences between two options of losses are the

mirror image of the preferences in the domain of gains. The percentage of the pref-

erences from the respondents in the experiment is shown in the following pair of the

questions.

PROBLEM 4 - gains

A: 4000 with probability 0.80 - chosen by 20% respondents,

B: 3000 for sure - chosen by 80%.

PROBLEM 5 - losses

A: −4000 with probability 0.80 - chosen by 92% respondents,

B: −3000 for sure - chosen by 8%.

Isolation e�ect occurs when people are choosing between two alternatives and their

focus is aimed only on the di�erences between them, more described in Tversky [18].

Inconsistent preferences appear because identi�cation of the features can be done in

di�erent ways followed by di�erent preferences.

Kahneman and Tversky [11] described the process of choice by two phases. The �rst

phase is editing. It is characterized by several operations:

14



1. THEORETICAL BACKGROUND OF DECISION MAKING

� Coding - de�ning the outcomes as gains or losses according to the neutral refer-

ence point. Reference point can be either current asset position or expectations.

� Combination - simplifying the probabilities with the same outcomes. For example

option A contains two parts of gaining 200 with 25% probability, it is simpli�ed

to gain 200 with 50% probability.

� Segregation - another type of simpli�cation. If there is probability 40% of loss

400 and 60% of loss 100, it can be simpli�ed to loss of 300 with 40% probability

and sure loss of 100.

� Cancellation - ignoring the same output in both options. Let option A be gaining

200 with probability 20%, 100 with probability 50% and losing 50 with probability

30%. Option B is gaining 200 with probability 20%, 150 with probability 50%

and losing 100 with probability 30%. It can be cancelled to choice between A,

gain 100 by 50%, lose 50 by 30%, and B, gain 150 by 50%, lose 100 by 30%.

� Rounding - numbers in choices are rounded.

� Detection of dominance - dominated options are rejected.

Note that di�erent order of editing results in di�erent �nal options.

The second part is evaluation. Every respondent assigns decision weights to the

outputs. Decision weights are associated with probability, however, they are rarely

equal. Then to the outputs are assigned values according to the reference point - gains

and losses. Following the work of Kahneman and Tversky, the basic equation of theory

can be de�ned such that:

De�nition 1.1. If (x, p; y, q) is a regular prospect (option), where x and y are the

amounts of gains and losses respectively, p and q are the assigned probabilities and

either p+ q < 1 or x ≥ 0 ≥ y or x ≤ 0 ≤ y then the value of regular prospect is de�ned

as

V (x, p; y, q) = π(p)v(x) + π(q)v(y), (1)

where π is the function of decision weights and v is the function of values according to

the reference point and v(0) = 0, π(0) = 0 and π(1) = 1

15



1. THEORETICAL BACKGROUND OF DECISION MAKING

1.2.1 The Utility Function

According to the adaptation level theory �rstly introduced by Helson in [9], our per-

ception is attuned to evaluate changes rather than the absolute magnitudes. Prospect

theory value (utility) function depends only on one variable - change, which is as-

sumed to be satisfactory approximation. However, more realistic value function has

two variables - initial wealth and change in the wealth.

The important feature of the function is concavity in the domain of gains (v′′(x) < 0

for x > 0) and convexity in the domain of losses (v′′(x) > 0 for x < 0). People

evaluate the di�erence between gaining 100 and 200 to be greater than the di�erence

between 1100 and 1200. Similar evaluation is in the domain of losses, unless the

loss is intolerable. The assumption is based on the choices of the respondents in the

experiment. Note that in special cases this feature may change. Especially, when

someone's decision is accompanied by the changes in lifestyle.

Another feature re�ects the di�erence between perception of losses and gains of the

same amount. The experiment shows that if x > y ≥ 0, then the option to gain y or lose

−y with 50% probability is preferred to gain x or lose −x with the same probabilities.

It leads to the conclusion that v′(x) < v′(−x), which means that the value function is

steeper in the domain of losses than in the domain of gains.

Kahneman and Tversky introduced the hypothetical utility function displayed in

Figure 1.

Figure 1: Hypothetical utility function according to the Kahneman and Tversky [11].

16



1. THEORETICAL BACKGROUND OF DECISION MAKING

1.2.2 The Weight Function

In prospect theory decision weights measure the impact of events on the desirability

of options. Function of weights is the same as the probabilities when one decides by

the expected utility theory. Weight function depends only on stated probabilities in

the prospect theory approximation, however, it might be in�uenced by other factors

as well.

The weight function π is an increasing function of probability p, with π(0) = 0 and

π(1) = 1. First equation describes ignorance of impossible events. Second equation

means that the weights associated with probabilities are normalized.

Based on the answers in the experiment Kahneman and Tversky assume that the

weight function behaves di�erently with small p than large p. It overvalues low prob-

abilities and undervalues high probabilities. It is based on the fact that people like

lotteries and also insurance.

The �gure of hypothetical weight function was presented in the article [11] according

to the features described above, see �gure 2.

Figure 2: Hypothetical weight function according to the Kahneman and Tversky [11].

1.2.3 Cumulative Prospect Theory

Cumulative prospect theory resolves some limitations of the theory explained above.

It applies to uncertain and risky options with any number of outcomes. It means that

17



1. THEORETICAL BACKGROUND OF DECISION MAKING

for a gamble with m losses, n gains and one zero output the value function is de�ned

as

U(x,p) =
n∑

i=−m

π(pi)v(xi).

It also allows di�erent weight function for losses and for gains. The focus of the study

aims on the explanation of the curvature of the value function and weight functions.

In the study [19] of cumulative prospect theory Kahneman and Tversky discussed the

experimental evidence of both - risk-averse respondents for losses, risk seeking for gains

and risk-seeking respondents for losses, risk averse for gains.

1.2.4 Disadvantages

The prospect theory was introduced by the experiment in the laboratory conditions.

One may question whether the accuracy of this theory holds even in the real world.

Barberis [2] describes situations when the theory holds with su�ciently large �nancial

incentives. However, results of experiments provided in the �eld of �nancial trading are

not that clear - List [12] found prospect theory insu�cient. On the other hand, study

[14] of experienced professional golfers (instead of traders) shows, that they follow the

theory in gambles on their performance, prospect theory was su�cient. Also decision

weights may be sensitive to the formulation of the questions.

Another obstacle is in de�ning gains and losses. For a portfolio investor it might be

a change in overall wealth, a change in the value of stock market holdings or di�erence

of the real value and reference level. Di�erent de�nitions give di�erent utility.

People tend to employ heuristics procedures. These procedures were mostly de-

scribed above as editing phase. As mentioned before, di�erent order of operations

gives di�erent value.

1.3 Other Theories

Most other theories di�er from the prospect theory in the assumptions for utility func-

tion. The simplest di�erence is to have marginal utility of gains and losses �xed.

It means, that the loss aversion is linear. Studies following this assumption are, for

example, [5], [7] and [17].

18



1. THEORETICAL BACKGROUND OF DECISION MAKING

Another assumption is that people are more averse to large losses than the small

ones and that the gains have constant marginal utility. That is quadratic form of loss

aversion. Function is concave in the domain of losses and linear in the domain of gains.

It was precisely studied in Fortin and Hlouskova [4].

1.4 Our Model

Our work focuses on the model where the loss aversion is the main feature of the utility

function. We expect that the penalty in the domain of losses is increasing with larger

losses. In the domain of gains the marginal utility is �xed, which is the simplest form

of aversion. Gains and losses are de�ned relative to a given reference point. Our utility

function has quadratic form of loss aversion.

The utility function is displayed in the �gure 3.

Figure 3: Hypothetical utility function with quadratic form of loss aversion.

Quadratic form of loss aversion is mostly used in the �elds with downside risk and

portfolio management [10] and in statistical decision theory [8], [20]. Large losses are

punished more severely than small losses, it is referred as quadratic shortfall in the

studies [16], [17].

Another important assumption is that the future income is uncertain. Thus the con-

sumption is in�uenced by exogenous income with two possible amounts. The consumer

has to make the choice between saving income for later and immediate consumption.

The e�ect of uncertain future income (continuous case) on savings decision is described

by Sandmo in article [15]. The role of accumulated savings is being a bu�er for future

consumption.

19



2. PROBLEM SET-UP

2 Problem Set-up

A household is living for two periods - productive period and retirement. During the

productive period it receives an income that is non-stochastic and exogenous - Y1. It

might be labor income or endowment income. Household allocates the income to the

current consumption and savings. Consumption in the �rst period is C1 and risk-free

investment is notated as S. The following equation describes the �rst period :

Y1 = C1 + S. (2)

The second period is characterized by stochastic income Y2i. The exogenous income

might be for example government pension. It is de�ned according to the state of nature,

which can be good or bad, as follows:

Y2i =

 Y2g with probability p

Y2b with probability 1− p
(3)

with p ∈ (0, 1). Where lower index b stands for the bad state of nature and g stands

for the good state of nature. We assume that Y2g > Y2b ≥ 0. C2 is the second period

consumption and rf is a net of the dollar return of the risk-free asset. The second

period is modeled as follows:

C2i = Y2i + (1 + rf ) S, (4)

= Y2i + (1 + rf )(Y1 − C1), (5)

where i ∈ {b, g}. Consumption can not be negative, but we don't assume any

liquidity constraints for consuming Y2 in the �rst period. This means that the household

is allowed to borrow money.

According to the prospect theory, every household sets it's reference levels of con-

sumptions for both periods. Note that C̄1 is the �rst period reference level of consump-

tion and the second period consumption reference level is noted as C̄2. Consumptions

in both periods are greater than some minimum consumption C1L and C2L, so we as-

sume C1 > C1L ≥ 0, C2g > C2b > C2L ≥ 0 and reference levels C̄1, C̄2 are such that

0 ≤ C1L ≤ C̄1, 0 ≤ C2L ≤ C̄2.

20



2. PROBLEM SET-UP

Household's preferences are described by the following reference based utility func-

tion

U(C1) = V (C1 − C̄1) + δV (C2 − C̄2), (6)

where δ ∈ (0, 1) is a discount factor and the quadratic loss averse value function V (·)

is such that

V (Ci − C̄i) =


γ1(Ci − C̄i) if Ci ≥ C̄i

γ1(Ci − C̄i)− λγ22 (C̄i − Ci)2 if Ci < C̄i and λ > 0

for i = 1, 2. Parameter λ > 0 is the loss aversion parameter and γ1, γ2 > 0

are coe�cients. The function refers to relative gains when reference level is below

actual consumption and similarly to relative losses when reference level is above actual

consumption. As discussed in the previous chapter the function has following features:

� values are steeper in the domain of losses than gains,

� below the reference point function is concave.

The common features with the prospect theory are reference based utility and loss

aversion principle. The same amount of loss has higher absolute utility value than the

amount of gain, i.e. household is more penalized by the loss than awarded by the same

amount of gain. We also assume that household is risk averse in the domain of losses

and risk neutral in the domain of gains. The marginal utility is constant in the domain

of gains.

In general, the household maximizes the following quadratic loss aversion based

expected utility

MaxC1 : E(U(C1)) = V (C1 − C̄1) + δ EV (C2 − C̄2)

such that : C1 ≥ C1L and C2b ≥ C2L

Based on this and (5) the maximization problem can be reformulated as follows

MaxC1 : E(U(C1)) = V (C1 − C̄1) + δ EV
(
(1 + rf )(Y1 − C1) + Y2i − C̄2

)
such that : C1L ≤ C1 ≤ Y1 + Y2b−C2L

1+rf

 (7)
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2. PROBLEM SET-UP

where we assume that

C1L +
C2L

1 + rf
≤ Y1 +

Y2b

1 + rf
or C1L ≤ Y1 +

Y2b − C2L

1 + rf
(8)

We use following notation to simplify the expressions:

γ ≡ γ1
γ2

Ω ≡ (1 + rf )(Y1 − C̄1) + Y2b − C̄2

k ≡ γ[1−δ(1+rf )]

δ(1−p)(1+rf )2

Solving (7) breaks down to solving the following eight maximization problems as-

suming (8) holds and that C1L ≤ C̄1 and C2L ≤ C̄2.

(P1): C1 ≥ C̄1 and C̄2 ≤ C2b < C2g

MaxC1 : 1
γ2
E(U(C1)) = γ(C1 − C̄1) + δp γ

[
(1 + rf )(Y1 − C1) + Y2g − C̄2

]
+δ(1− p) γ

[
(1 + rf )(Y1 − C1) + Y2b − C̄2

]
such that : C̄1 ≤ C1 ≤ Y1 + Y2b−C̄2

1+rf

 (P1)

Note that (P1) has a feasible solution only if

C̄1 ≤ Y1 +
Y2b − C̄2

1 + rf
(A-P1)

(P2): C1 ≥ C̄1 and C2L ≤ C2b < C̄2 ≤ C2g

MaxC1 : 1
γ2
E(U(C1)) = γ(C1 − C̄1) + δp γ

[
(1 + rf )(Y1 − C1) + Y2g − C̄2

]
+δ(1− p)

[
γ
(
(1 + rf )(Y1 − C1) + Y2b − C̄2

)]
+δ(1− p)

[
−λ1

2

(
C̄2 − (1 + rf )(Y1 − C1)− Y2b

)2
]

such that : max
{
C̄1, Y1 + Y2b−C̄2

1+rf

}
≤ C1 ≤ min

{
Y1 + Y2b−C2L

1+rf
, Y1 + Y2g−C̄2

1+rf

}


(P2)

Note that (P2) has a feasible solution only if

C̄1 ≤ min

{
Y1 +

Y2b − C2L

1 + rf
, Y1 +

Y2g − C̄2

1 + rf

}
(A-P2)

Note in addition that if (A-P1) holds then (A-P2) boils down to C̄1 ≤ Y1 + Y2g−C̄2

1+rf
.
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(P3): C1 ≥ C̄1 and C2L ≤ C2g < C̄2 ≤ C2b - the problem has no feasible solu-

tions since C2b < C2g.

(P4): C1 ≥ C̄1 and C2L ≤ C2b < C2g < C̄2

MaxC1 : 1
γ2
E(U(C1)) = γ(C1 − C̄1)

+δp
[
γ
(
(1 + rf )(Y1 − C1) + Y2g − C̄2

)]
+δp

[
−λ1

2

(
C̄2 − (1 + rf )(Y1 − C1)− Y2g

)2
]

+δ(1− p)
[
γ
(
(1 + rf )(Y1 − C1) + Y2b − C̄2

)]
+δ(1− p)

[
−λ1

2

(
C̄2 − (1 + rf )(Y1 − C1)− Y2b

)2
]

such that : max
{
C̄1, Y1 + Y2g−C̄2

1+rf

}
≤ C1 ≤ Y1 + Y2b−C2L

1+rf


(P4)

Note that (P4) has a feasible solution only if

C̄1 ≤ Y1 +
Y2b − C2L

1 + rf
and C̄2 ≥ C2L + Y2g − Y2b (A-P4)

Note in addition that if (A-P1) holds then (A-P4) boils down to

C2L + Y2g − Y2b ≤ C̄2 ≤ (1 + rf )(Y1 − C̄1) + Y2b

(P5): C1L ≤ C1 < C̄1 and C̄2 ≤ C2b < C2g

MaxC1 : 1
γ2
E(U(C1)) = γ(C1 − C̄1)− λ1

2
(C̄1 − C1)2

+δp γ
[
(1 + rf )(Y1 − C1) + Y2g − C̄2

]
+δ(1− p)γ

[
(1 + rf )(Y1 − C1) + Y2b − C̄2

]
such that : C1L ≤ C1 ≤ min

{
C̄1, Y1 + Y2b−C̄2

1+rf

}


(P5)

Note that (P5) has a feasible solution only if

C1L ≤ Y1 +
Y2b − C̄2

1 + rf
(A-P5)

Note in addition that if (A-P1) holds then (A-P5) holds as well.

(P6): C1L ≤ C1 < C̄1 and C2L ≤ C2b < C̄2 ≤ C2g

MaxC1 : 1
γ2
E(U(C1)) = γ(C1 − C̄1)− λ1

2
(C̄1 − C1)2

+δp γ
[
(1 + rf )(Y1 − C1) + Y2g − C̄2

]
+δ(1− p)

[
γ
(
(1 + rf )(Y1 − C1) + Y2b − C̄2

)]
+δ(1− p)

[
−λ1

2

(
C̄2 − (1 + rf )(Y1 − C1)− Y2b

)2
]

such that : max
{
C1L, Y1 + Y2b−C̄2

1+rf

}
≤ C1 ≤ min

{
C̄1, Y1 + Y2b−C2L

1+rf
, Y1 + Y2g−C̄2

1+rf

}


(P6)
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Note that (P6) has a feasible solution only if

C1L ≤ Y1 +
1

1 + rf
min

{
Y2b − C2L, Y2g − C̄2

}
and C̄1 ≥ Y1 +

Y2b − C̄2

1 + rf
(A-P6)

Note in addition that if (A-P5) holds then (A-P6) boils down to C̄1 ≥ Y1 + Y2b−C̄2

1+rf
. If

even stronger assumption (A-P1) holds then (P6) has no feasible solution if the strong

inequality in (A-P1) takes place. However, if C̄1 = Y1 + Y2b−C̄2

1+rf
then the only feasible

(and thus optimal) solution of (P6) is C∗1 = C̄1 = Y1 + Y2b−C̄2

1+rf
.

Note �nally that as the set of feasible solutions of (P6) is the sub-set of the set of feasible

solutions of (P2) then for any C1 feasible for (P6) will E(U(C1))P2 ≥ E(U(C1))P6 as
1
γ2
E(U(C1))P6 = 1

γ2
E(U(C1))P2 − λ1

2
(C̄1 − C1)2.

(P7): C1L ≤ C1 < C̄1 and C2L ≤ C2g < C̄2 ≤ C2b - the problem has no feasible

solutions since C2b < C2g.

(P8): C1L ≤ C1 < C̄1 and C2L ≤ C2b < C2g ≤ C̄2

MaxC1 : 1
γ2
E(U(C1)) = γ(C1 − C̄1)− λ1

2
(C̄1 − C1)2

+δp
[
γ
(
(1 + rf )(Y1 − C1) + Y2g − C̄2

)]
+δp

[
−λ1

2

(
C̄2 − (1 + rf )(Y1 − C1)− Y2g

)2
]

+δ(1− p)
[
γ
(
(1 + rf )(Y1 − C1) + Y2b − C̄2

)]
+δ(1− p)

[
−λ1

2

(
C̄2 − (1 + rf )(Y1 − C1)− Y2b

)2
]

such that : max
{
C1L, Y1 + Y2g−C̄2

1+rf

}
≤ C1 ≤ min

{
C̄1, Y1 + Y2b−C2L

1+rf

}


(P8)

Note that (P8) has a feasible solution only if

C̄1 ≥ Y1 +
Y2g − C̄2

1 + rf
and C̄2 ≥ C2L + Y2g − Y2b (A-P8)

Note in addition that if the �rst inequality in (A-P8) holds then also (A-P5) holds and

that the second inequality in (A-P8) coincides with the second inequality in (A-P4).

Note �nally that if (A-P1) holds then (A-P8) boils down to the same constrains as in

(P4), namely

C2L + Y2g − Y2b ≤ C̄2 ≤ (1 + rf )(Y1 − C̄1) + Y2b
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3 Results and Economic Interpretation

Formal analysis of the problem leads to solving the eight problems mentioned in the

previous chapter. Each problem has speci�c solutions for di�erent parameter set-up,

see Appendix A. The solution can be either inner point or the border point of the

feasibility interval. Firstly note that the objective function is concave for all problems.

We determine the stationary points. Considering the feasibility conditions - if the

stationary point is in the feasibility interval then it is also its point of maxima. If it is

not in the interval then the point of maxima is one of the end points of the interval of

feasible solutions. For each problem we de�ne the points of its maxima and detailed

parameter conditions under which it is maximum.

Ten di�erent parameter set-ups of C̄1, mentioned in Appendix B, lead to the so-

lutions of the maximization problem (7). We obtain solution for each of the set-up

by comparing the values of objective functions in the points of maxima. Overall we

present eight optimal values for C1.

Note that we focus only on (su�ciently) loss averse households, i.e. on largest pos-

sible λ. Their objective functions have high "penalty" in the domain of losses. Penalty

depends on loss aversion parameter λ and the amount of loss, i.e. it is the amount of

happiness decrease. In the domain of gains the household experiences reward, depend-

ing on the amount of gain. In the following subsections we present the solutions for

optimal �rst period consumption.

3.1 C∗1 = Y1 + Y2b−C̄2

1+rf
+ k

λ

Firstly let's assume parameter set-up, when household consumption reference level is

su�ciently low, namely C̄1 ≤ Y1 + Y2b−C̄2

1+rf
. The household with low reference levels can

be viewed as the ones driven by the self-enhancement motive (the need to feel good

and maintain self-esteem, as described in [6]). In addition we assume that the discount

factor is lower than discounting by risk free rate. The optimal values for consumptions

in the �rst and second period are stated in the following proposition.

Proposition 1. Let C̄1 ≤ Y1 + Y2b−C̄2

1+rf
and δ < 1

1+rf
. Then the following holds for
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3. RESULTS AND ECONOMIC INTERPRETATION

λ ≥ (1+rf )k

min{C̄2−C2L,Y2g−Y2b}

C∗1 =
k

λ
+ Y1 +

Y2b − C̄2

1 + rf
> C̄1 (9)

C∗2g = C̄2 + Y2g − Y2b −
(1 + rf )k

λ
≥ C̄2 (10)

C2L ≤ C∗2b = C̄2 −
(1 + rf )k

λ
< C̄2 (11)

1

γ2

E(U(C∗1)) =

[
Ω

1 + rf
+ δp (Y2g − Y2b) +

(1− δ(1 + rf )) k

2λ

]
γ (12)

Proof. Proof follows directly from Lemma C.1.

The optimal consumption in the �rst period is strictly higher than its reference level,

so household tries to avoid losses. In the second period the optimal consumption in

the good state of nature is higher than the corresponding reference level, however, in

the bad state of nature the reference level exceeds the optimal consumption. Thus,

the household's optimal solution according to the relationship between reference levels

and actual consumption is reached in (P2), see in the previous section where problems

(P1)-(P8) are de�ned. For increasing loss-aversion parameter λ, the consumption in

the bad state of nature, C2b, is increasing as well and thus the gap between the second

period reference level and C2b is decreasing. Thus, the loss averse household wants to

have as small losses as possible.

Table 1 captures sensitivity of the optimal solutions for consumptions, relative con-

sumption, amount of savings and �happiness� with respect to changes in loss-averse

parameter and reference levels. Relative consumption is the distance between the op-

timal level of consumption and the corresponding reference consumption, |C∗i − C̄i|,

i = 1, 2; savings are the di�erence between �rst period income and actual consumption

in the �rst period, S∗ = Y1 − C∗1 , and happiness is the value of the objective function

(expected utility) at its optimal level of the �rst period consumption (indirect utility).

If savings are negative, i.e. Y1−C∗1 < 0, then the household is a borrower, otherwise

a lender. Speci�cally for this case if the second period reference level is su�ciently

large the household is a lender, i.e. Y2b − k(1+rf )

λ
< C̄2.

Table 1 on sensitivity analysis shows, that the more loss averse is the household,

the lower consumption is in the �rst period and higher are the second period optimal

consumptions. The household is lowering its losses in the bad state of nature in the

26



3. RESULTS AND ECONOMIC INTERPRETATION

dC∗1 dC∗2g dC∗2b d(C∗1 − C̄1) d(C∗2g − C̄2) d(C̄2 − C∗2b) dS∗ d(E(U(C∗1)))

dλ < 0 > 0 > 0 < 0 > 0 < 0 > 0 < 0

dC̄1 = 0 = 0 = 0 < 0 = 0 = 0 = 0 < 0

dC̄2 < 0 > 0 > 0 < 0 = 0 = 0 > 0 < 0

Table 1: Sensitivity analysis for Y1 + Y2b−C̄2
1+rf

+ k
λ

second period, when the penalization, λ increases. When the optimal consumption in

the �rst period decreases, the savings have to increase. Household is saving to minimize

the losses in the bad state of nature in the second period. The indirect utility is also

decreasing when the loss averse parameter increases, since the penalty in the losses is

larger and the reward in gains is linear.

Household is always in the domain of gains in the �rst period, where the objective

function is linear. Thus, changes in the �rst period reference level don't in�uence the

optimal values of the consumptions. However, the happiness decreases because the

relative gain also decreases.

Second period reference level in�uences more values. Both second period optimal

consumptions increase by increasing the reference level. On the other hand, the optimal

consumption in the �rst period decreases. It simulates the situation when households

are saving for retirement because they want to enjoy earned value. Savings increases

but happiness decreases because in the bad state of nature the penalty increases.

3.2 C∗1 = C̄1 + γ
λ [1− δ(1 + rf)]

This case di�ers from the previous one in the condition for relation between the discount

factor and risk-free rate. Household can be described as driven by self-enhancement

motive, as its �rst period reference level is relatively low, i.e. C̄1 ≤ Y1+ Y2b−C̄2

1+rf
. Optimal

values are stated in the following proposition.

Proposition 2. Let C̄1 ≤ Y1 + Y2b−C̄2

1+rf
and δ > 1

1+rf
. Then the following holds for
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3. RESULTS AND ECONOMIC INTERPRETATION

λ > λP5
L =

γ[δ(1+rf )−1]

C̄1−C1L

C1L < C∗1 = C̄1 +
γ

λ
[1− δ(1 + rf )] < C̄1 (13)

C∗2g = Y2g + (1 + rf )(Y1 − C̄1) +
γ

λ

(
δ − 1

1 + rf

)
> C̄2 (14)

C∗2b = Y2b + (1 + rf )(Y1 − C̄1) +
γ

λ

(
δ − 1

1 + rf

)
≥ C̄2 (15)

1

γ2

E(U(C∗1)) = δ [Ω + p(Y2g − Y2b)] γ +
γ2

2λ
[1− δ(1 + rf )]

2 (16)

Proof. Proof follows directly from Lemma C.2.

Optimal consumption in the �rst period is lower than the corresponding reference

level. The loss is decreasing by larger loss aversion. However, second period optimal

consumption levels for both periods are larger than the corresponding reference level.

It means that household is in the domain of losses in the �rst period, so it can be in

the domain of gains in the second period. From the previous optimal solution stated in

Proposition 1 the change in sensitivity appears due to the change in the relationship of

discount factor and risk-free rate. The solution is part of the set of feasible solutions of

problem (P5) based on the condition on C̄1. In general, we can say, that the household

is living in losses to have gains in the future. Savings can be either positive or negative,

depending on the reference level of consumption in the second period. If S > 0 then

C̄1 ≤ Y1 +
γ[δ(1+rf )−1]

λ
, which holds for C̄2 ≥ Y2b − γ(1+rf )[δ(1+rf )−1]

λ
. Household is a

lender when the second period reference level is su�ciently large.

Table 2 is the sensitivity analysis with the same focus as in the previous case.

dC∗1 dC∗2g dC∗2b d(C̄1 − C∗1) d(C∗2g − C̄2) d(C∗2b − C̄2) dS∗ d(E(U(C∗1)))

dλ > 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0

dC̄1 > 0 < 0 < 0 = 0 < 0 < 0 < 0 < 0

dC̄2 = 0 = 0 = 0 = 0 < 0 < 0 = 0 < 0

Table 2: Sensitivity analysis for C̄1 + γ
λ [1− δ(1 + rf )]

Household is avoiding the losses (C̄1 − C∗1) in the �rst period with increasing loss-

aversion parameter. On the other hand, the second period optimal consumption is

decreasing when λ increases. This case might represent the household, which needs

to decrease savings in order to decrease the penalty in the �rst period, so the optimal
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3. RESULTS AND ECONOMIC INTERPRETATION

consumption in the second period is lower. Change in happiness is also negative, since

the �rst period penalty gets larger and second period reward gets smaller.

Change of the �rst period reference level C̄1 has impact similar to change of loss-

aversion parameter. Household experiences higher optimal value of consumption in the

�rst period and smaller gains in the second period with increasing C̄1. It means that

savings decrease and also optimal values of the second period consumptions decrease.

But there is no in�uence on relative consumption in the �rst period - loss remains the

same.

Second period optimal consumptions in both states of the nature are higher than

the reference level. If there is an increase of the second period reference level, it only

has impact on relative gains in the second period and happiness. The gains get smaller

so the happiness also decreases.

3.3 C∗1 = C̄1

Let C̄1 ≥ Y1 + Y2b−C̄2

1+rf
. The household is more driven by the self-improvement motive,

with high aspirations, than in the previous cases, due to the C̄1 being above the thresh-

old. In general, the more thresholds are below the value of the �rst period reference

level, the more household is self-improvement and it is comparing itself to household

with higher economic status - upward comparison.

The following proposition states the conditions when the optimal value of consump-

tion equals C̄1.

Proposition 3. Let Y1 + Y2b−C̄2

1+rf
≤ C̄1 ≤ min

{
Y1 + Y2g−C̄2

1+rf
, Y1 + Y2b−C2L

1+rf

}
, then for

(i) δ < min
{

1
(1+rf )

, 1
(1−p)(1+rf )2

}
and λ ≥ (1+rf )k

−Ω
and Y1 + Y2b−C̄2

1+rf
< C1L or

(ii) 1
(1+rf )

< δ ≤ 1
(1−p)(1+rf )2

and λ ≥
2γ

(
1

1+rf
−δ

)
(−Ω)

[
δ(1−p)− 1

(1+rf )2

] = λP2−P5 or

(iii) δ = 1
(1+rf )

and p ≥ rf
1+rf
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holds that

C1L ≤ C∗1 = C̄1 (17)

C∗2g = Y2g + (1 + rf )(Y1 − C̄1) ≥ C̄2 (18)

C2L ≤ C∗2b = Y2b + (1 + rf )(Y1 − C̄1) < C̄2 (19)
1

γ2

E(U(C∗1)) = δ
[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
γ − δ(1− p)λ

2
(−Ω)2 (20)

Proof. Proof for (i) follows directly from Lemma C.4, (ii) follows directly from

Lemma C.5 and �nally (iii) follows from Lemma C.4, C.5 and also C.6.

Another important assumption is C̄1 ≤ Y1 + min{Y2b−C2L,Y2b−C2L}
1+rf

. It means that the

�rst period consumption reference level is limited. Household has higher aspirations

than in the previous cases
(
Y1 + Y2b−C̄2

1+rf
≤ C̄1

)
, but still limited.

There are no gains or losses for the �rst period, since the optimal consumption

coincides with its reference level. In the second period the losses occur in the bad

state of nature. Di�erence between consumptions in di�erent states of nature is driven

by the di�erence between incomes in those states. Due to the relationships between

optimal consumptions and reference levels, the solution is reached in problem (P2).

Savings are negative if the household has the �rst period reference level larger than

the �rst period income. It is also feasible to have smaller reference level and the

household is a lender with positive savings.

Table 3 shows the sensitivity of the optimal values, when there is a change in λ, C̄1

or C̄2.

dC∗1 dC∗2g dC∗2b d(C∗1 − C̄1) d(C∗2g − C̄2) d(C̄2 − C∗2b) dS∗ d(E(U(C∗1)))

dλ = 0 = 0 = 0 = 0 = 0 = 0 = 0 < 0

dC̄1 > 0 < 0 < 0 = 0 < 0 > 0 < 0 < 0

dC̄2 = 0 = 0 = 0 = 0 < 0 > 0 = 0 < 0

Table 3: Sensitivity analysis for C̄1

The loss-aversion parameter has no in�uence on the optimal values except happiness.

The happiness decreases with increasing loss aversion because of the losses in the bad

state of nature.
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Change in the reference level for the �rst period means the change of C∗1 , since

reference level is the optimal value. By increasing it the values of second period con-

sumptions are decreasing. Also the savings and happiness are decreasing. Household

consume more in the �rst period, so the gains in the second period are lower in the

good state of nature and losses in the bad state of nature are higher, even though the

relative consumption is lower.

Second period reference level has impact only on the relative consumptions and

happiness. In the good state of nature the gains are smaller and in the bad state of

nature the losses increase. Overall the happiness has to decrease.

3.4 C∗1 = Y1 + Y2b−C̄2

1+rf

The parameter set-up for this optimal consumption is suggesting that the household

can be described as self-improving and with high aspirations, as in the previous case

with optimal values de�ned in 3. Usually it is comparing with higher-status households.

Speci�cally the conditions are stated in the following proposition.

Proposition 4. Let C1L ≤ Y1 + Y2b−C̄2

1+rf
< C̄1 ≤ min{Y1 + Y2g−C̄2

1+rf
, Y1 + Y2b−C2L

1+rf
} and

δ ≥ 1
(1−p)(1+rf )2

, then for

(i) δ < 1
(1+rf )

and λ ≥ λP2−P5 =
2γ

(
1

1+rf
−δ

)
(−Ω)

[
δ(1−p)− 1

(1+rf )2

] or

(ii) δ > 1
(1+rf )

and λ ≥ λP5
L or

(iii) δ = 1
(1+rf )

and λ > 0

holds that

C1L ≤ C∗1 = Y1 +
Y2b − C̄2

1 + rf
< C̄1 (21)

C∗2g = Y2g − Y2b + C̄2 > C̄2 (22)

C∗2b = C̄2 (23)

1

γ2

E(U(C∗1)) =
γ

1 + rf

[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
− λ

2

(
Ω

1 + rf

)2

(24)

Proof. Proof for (i) follows directly from Lemma C.4, (ii) follows directly from

Lemma C.5 and �nally (iii) follows directly from Lemma C.6.
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The �rst period optimal consumption is below the reference level, so the household

is in the domain of losses. In the second period household experiences only gains, that

in the bad state of nature are zero. This parameter set-up means that the maximum

is reached in the problem (P5).

Savings are equal to C̄2−Y2b
1+rf

, which means that for su�ciently large consumption

reference level in the second period, household is a lender.

Table 4 summarizes the sensitivity analysis.

dC∗1 dC∗2g dC∗2b d(C̄1 − C∗1) d(C∗2g − C̄2) d(C∗2b − C̄2) dS∗ d(E(U(C∗1)))

dλ = 0 = 0 = 0 = 0 = 0 = 0 = 0 < 0

dC̄1 = 0 = 0 = 0 > 0 = 0 = 0 = 0 < 0

dC̄2 < 0 > 0 > 0 > 0 = 0 = 0 > 0 < 0

Table 4: Sensitivity analysis for Y1 + Y2b−C̄2
1+rf

Loss-aversion parameter has no impact on optimal values of consumption in neither

of the periods. The only change is in the happiness which decreases. It happens due

to the higher penalty in the �rst period.

If we change the �rst period reference level, the only change is in the size of the losses

in the �rst period, which increases. Following that, the happiness should decrease which

correspondents with the sensitivity analysis.

Second period reference level has big in�uence on the analyzed optimal values. If

there is an increase of C̄2, then second period optimal consumption in the bad state

of nature has to increase, since they are equal. Also the optimal consumption in

the good state of nature has to increase by the same amount. It means that the

household is consuming more in the second period than before. Following this, the

�rst period consumption has to decrease, which causes higher losses. Finally, the

happiness decreases, because of the increase of losses.

3.5 C∗1 = C̄P6
1

In this case, the parameter set-up can have six di�erent forms but all of them have

common inequality C̄1 > Y1 + Y2b−C̄2

1+rf
. It means that the household is also more self-

improving and with high aspirations, since the �rst period consumption reference level
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has the lower limit. However, it is also limited from becoming too large by either

C̄1 < min
{
Y1 + Y2g−C̄2

1+rf
, C̄T1

1

}
or C̄1 < min

{
Y1 + Y2b−C2L

1+rf
, C̄T

1

}
. Following proposition

summarizes the conditions under which C∗1 = C̄P6
1 .

Proposition 5. For each of the following parameter set-ups

(1-a) C1L ≤ Y1 + Y2b−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1 < min

{
Y1 + Y2g−C̄2

1+rf
, C̄T1

1

}
and λ >

max{0, λP5
U , λP6

2 }

(1-b) Y1 + Y2b−C̄2

1+rf
< C1L ≤ max

{
Y1 + Y2b−C2L

1+rf
, C̄T2

1

}
< C̄1 ≤ min

{
Y1 + Y2g−C̄2

1+rf
, C̄T1

1

}
and λ > max{0, λP6

1 , λP6
2 }

(2-a) C1L ≤ Y1 + Y2b−C̄2

1+rf
< Y1 + Y2g−C̄2

1+rf
≤ C̄1 < min

{
Y1 + Y2b−C2L

1+rf
, C̄T

1

}
and λ >

max{0, λP4
U2, λ

P5
U , λP6

3 }

(2-b) Y1 + Y2b−C̄2

1+rf
< C1L ≤ max

{
Y1 + Y2g−C̄2

1+rf
, C̄T2

1

}
≤ C̄1 < min

{
Y1 + Y2b−C2L

1+rf
, C̄T

1

}
and λ > max{0, λP4

U2, λ
P5
U , λP6

3 , λP6
1 }

(3-a) C1L ≤ Y1 + Y2b−C2L

1+rf
< Y1 + Y2g−C̄2

1+rf
< C̄1 < C̄T1

1 and λ > max{0, λP5
U , λP6

1 , λP6
2 }

(3-b) C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1 < C̄T

1 and λ > max{0, λP5
U , λP6

1 , λP6
3 }

where

λP4
U2 =

(1− p)(1 + rf )k

(1 + rf )(C̄1 − Y1) + C̄2 − E(Y2)
,

λP5
U =

(1 + rf )[1− δ(1 + rf )]γ

Ω
,

λP6
1 =

[1− δ(1 + rf )]γ

C̄T2
1 − C̄1

,

λP6
2 =

[1− δ(1 + rf )]γ

C̄T1
1 − C̄1

,

λP6
3 =

[1− δ(1 + rf )]γ

C̄T
1 − C̄1

,

C̄T
1 = Y1 +

Y2g − C̄2

1 + rf
+ δ(1− p)(1 + rf )(Y2g − Y2b),

C̄T1
1 = Y1 +

Y2b − C2L

1 + rf
+ δ(1− p)(1 + rf )(C̄2 − C2L),

C̄T2
1 = C1L + δ(1− p)(1 + rf )[(1 + rf )(C1L − Y1) + C̄2 − Y2b]
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the optimal solution is C∗1 = C̄P6
1 and the following holds

C1L ≤ C∗1 = C̄P6
1 < C̄1 (25)

C∗2g = Y2g + (1 + rf )(Y1 − C∗1) ≥ C̄2 (26)

C2L ≤ C∗2b = Y2b + (1 + rf )(Y1 − C∗1) < C̄2 (27)
λ

γ2

[
1 + δ(1− p)(1 + rf )

2
]
E(U(C̄P6

1 )) =
1

2
[1− δ(1 + rf )]

2 γ2

+λδ
[
(1 + (1− p)(1 + rf )) Ω + p (Y2g − Y2b)

(
1 + δ(1− p)(1 + rf )

2
)]
γ

−1

2
λ2Ω2δ(1− p) (28)

Note that C̄P6
1 = C̄1 + 1

1+δ(1−p)(1+rf )2

[
δ(1− p)(1 + rf )Ω + γ

λ
(1− δ(1 + rf ))

]
.

Proof. Proofs for (1-a) and (1-b) follow directly from Lemma C.7, (2-a) and (2-b)

follow directly from Lemma C.8 and �nally (3-a) and (3-b) follow directly from Lemma

C.9.

This solution is the inner solution, since it is not on the border of the feasibility

interval. The optimal consumption is below the reference level in the �rst period.

Second period relationships are C∗2b < C̄2 ≤ C∗2g. The solution is reached in the

problem (P6). It means that the household is in the domain of losses during the �rst

period. In the second period, if the nature is in the good state, it is in the domain of

gains otherwise in domain of losses. It is the example where household is more likely

to compare itself to the neighbours with higher economic status.

Household is a borrower, if the �rst period income does not cover the optimal con-

sumption, which happens for su�ciently large �rst period consumption reference level:

Y1 −
1

1 + δ(1− p)(1 + rf )2

[
δ(1− p)(1 + rf )Ω +

γ

λ
(1− δ(1 + rf ))

]
< C̄1.

Note that if the household is a borrower, it has the reference level of consumption

higher than the income in the �rst period.

The sensitivity analysis results are presented in Table 5.

Changes in loss aversion parameter depend on the relation between 1
1+rf

and δ. If

δ < 1
1+rf

than increase in loss-aversion causes decrease of the optimal consumption

in the �rst period. Household has the tendency to spend less in the �rst period for

consumption, because δ is smaller. This has impact on relative consumption in the

�rst period and savings. The �rst period losses increase and savings increases as well.
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dC∗1 dC∗2g dC∗2b d(C̄1 − C∗1) d(C∗2g − C̄2) d(C̄2 − C∗2b) dS∗ d(E(U(C∗1)))

(1) dλ < 0 > 0 > 0 > 0 > 0 < 0 > 0 < 0

(2) dλ = 0 = 0 = 0 = 0 = 0 = 0 = 0 < 0

(3) dλ > 0 < 0 < 0 < 0 < 0 > 0 < 0 < 0

dC̄1 > 0 < 0 < 0 > 0 < 0 > 0 < 0 < 0

dC̄2 < 0 > 0 > 0 > 0 < 0 > 0 > 0 < 0

(1) dλ holds for δ < 1
1+rf

, (2) dλ holds for δ = 1
1+rf

, (3) dλ holds for δ > 1
1+rf

Table 5: Sensitivity results for C̄P6
1

On the other hand, if δ > 1
1+rf

then optimal consumption in the �rst period increases,

household wants to decrease its losses. It means that the savings decreases. In both

cases the happiness decreases with increasing loss-aversion, since the penalty is higher

than reward in the domain of gains, which are only in the good state of nature in the

second period.

If the household increases the �rst period reference level, then the optimal value

increases in the �rst period as well. Again, the household wants to avoid losses. Second

period consumptions get smaller. Losses in the �rst period and in the second period in

the bad state of nature become larger and the overall happiness decreases. Since the

household consumes more in the �rst period also the savings decreases.

Increase of second period reference level means that the optimal consumption in the

�rst period decreases, so second period consumptions increase. Household is not able

to lower the losses in the �rst period when the award from gains is almost still. This

means that the savings increases and happiness decreases.

3.6 C∗1 = Y1 + Y2b−C2L

1+rf

Speci�c parameter set-up is notated in the following proposition.

Proposition 6. For each of the following parameter set-ups

(1-a) C1L ≤ Y1 + Y2b−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
≤ C̄T1

1 < C̄1 ≤ Y1 + Y2g−C̄2

1+rf
and λ >

max{0, λP5
U , λP6

2 }

(1-b) Y1 + Y2b−C̄2

1+rf
< C1L ≤ Y1 + Y2b−C2L

1+rf
≤ C̄T1

1 < C̄1 ≤ Y1 + Y2g−C̄2

1+rf
and λ >
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max{0, λP6
1 , λP6

2 }

(2-a) C1L ≤ Y1 + Y2b−C2L

1+rf
< Y1 + Y2g−C̄2

1+rf
≤ max

{
Y1 + Y2g−C̄2

1+rf
, C̄T1

1

}
< C̄1 and λ >

max{0, λP5
U , λP6

1 , λP6
2 }

(2-b) C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
≤ C̄T3

1 < C̄1 and λ > max{0, λP5
U , λP6

1 , λP6
3 , λP8

1 }

(2-c) Y1 + Y2g−C̄2

1+rf
≤ C1L ≤ Y1 + Y2b−C2L

1+rf
≤ C̄T3

1 < C̄1 and λ > max{0, λP8
1 , λP8

2 }

where

C̄T3
1 = Y1 +

Y2b − C2L

1 + rf
+ δ(1 + rf )[C̄2 − C2L − p(Y2g − Y2b)]

λP8
1 =

[1− δ(1 + rf )]γ

C̄T3
1 − C̄1

λP8
2 =

[1− δ(1 + rf )]γ

C̄T4
1 − C̄1

the optimal solution is C∗1 = Y1 + Y2b−C2L

1+rf
and the following holds

C1L ≤ C∗1 = Y1 +
Y2b − C2L

1 + rf
< C̄1 (29)

C∗2g = Y2g − Y2b + C2L ≥ C̄2 in cases (1− a), (1− b), (2− a) (30)

C∗2g = Y2g − Y2b + C2L ≤ C̄2 in cases (2− b), (2− c) (31)

C∗2b = C2L < C̄2 (32)

1

γ2

E(U(C∗1)) = −γ
(
C̄1 − Y1 −

Y2b − C2L

1 + rf

)
− λ

2

(
C̄1 − Y1 −

Y2b − C2L

1 + rf

)2

+δp γ(Y2g − Y2b + C2L − C̄2)

−δ(1− p)γ(C̄2 − C2L)− λ

2
(C̄2 − C2L)2 (33)

Proof. Proof for (1-a) and (1-b) follow directly from Lemma C.7, (2-a), (2-b) and

(2-c) follow directly from Lemma C.9.

Relationships between reference values of consumption and optimal consumptions

are same as in the previous case, which correspondents with problem (P6) for cases

(1-a), (1-b), (2-a). Household is in the domain of losses in the �rst period and sec-

ond period in the bad state of nature. Only in the second period and good state of

nature it is in the domain of gains. Also C2b equals minimal value, so the household

is consuming most of the income in the �rst period. The good state consumption is
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close to the di�erence between the incomes in the second period. For cases (2-b) and

(2-c) household is in the second period in the domain of losses independently of the

state of the nature. It means that it has stronger self-enhancement motives and higher

aspirations than cases before. The maximum is reached in the problem (P8).

Note that savings are given by C2L−Y2b
1+rf

. Household is a borrower when the second

period income in the bad state of the nature is large enough to cover the minimal

consumption in the second period.

In the sensitivity analysis shows that the analyzed parameters in�uence just a few

optimal values, see in Table 6 for cases (1-a), (1-b) and (2-a) and in Table 7 for cases

(2-b) and (2-c).

dC∗1 dC∗2g dC∗2b d(C̄1 − C∗1) d(C∗2g − C̄2) d(C̄2 − C∗2b) dS∗ d(E(U(C∗1)))

dλ = 0 = 0 = 0 = 0 = 0 = 0 = 0 < 0

dC̄1 = 0 = 0 = 0 > 0 = 0 = 0 = 0 < 0

dC̄2 = 0 = 0 = 0 = 0 < 0 > 0 = 0 < 0

Table 6: Sensitivity analysis for Y1 + Y2b−C2L
1+rf

for cases (1-a), (1-b), (2-a)

dC∗1 dC∗2g dC∗2b d(C̄1 − C∗1) d(C̄2 − C∗2g) d(C̄2 − C∗2b) dS∗ d(E(U(C∗1)))

dλ = 0 = 0 = 0 = 0 = 0 = 0 = 0 < 0

dC̄1 = 0 = 0 = 0 > 0 = 0 = 0 = 0 < 0

dC̄2 = 0 = 0 = 0 = 0 > 0 > 0 = 0 < 0

Table 7: Sensitivity analysis for Y1 + Y2b−C2L
1+rf

for cases (2-b), (2-c)

The loss-aversion parameter has impact only on the happiness. If the household

becomes more loss-averse, then the losses are more penalized. In this case the household

is in the domain of losses in the �rst period and in the second in the bad state of nature

for cases (1-a), (1-b), (2-a). There is no domain of gains for the household in the cases

when C∗2g ≤ C̄2. Since the optimal values of consumptions are not a�ected, then the

happiness has to decrease. The solution is on the border of the interval of feasibility,

so λ has no impact on the optimal consumptions.

Changes in reference levels in both periods have only impact on the relative refer-

ence consumption. They change the amount of losses and gains. This also in�uence
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happiness. By increase in the reference levels the losses get larger (or gains smaller),

so the happiness decreases.

3.7 C∗1 = C1L

The parameter set-up is such that household's optimal consumption during the �rst

period is the smallest possible. It means that the household is having as large savings

as possible to use them in the second period.

Note that max
{
Y1 + Y2b−C̄2

1+rf
, Y1 + Y2b−C2L

1+rf

}
< C̄1 - reference level is larger than in

the previous cases, so household has self-improvement motivates. In the following

proposition are speci�c parameter set-ups.

Proposition 7. For each of the following parameter set-ups

(1) Y1 + Y2b−C̄2

1+rf
< C1L ≤ Y1 + Y2b−C2L

1+rf
< C̄1 < min

{
Y1 + Y2g−C̄2

1+rf
, C̄T2

1

}
and λ >

max{0, λP6
1 , λP6

2 }

(2) Y1 + Y2b−C̄2

1+rf
≤ C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ C̄1 < min

{
Y1 + Y2b−C2L

1+rf
, C̄T2

1

}
and λ >

max{0, λP4
U2, λ

P5
U , λP6

1 , λP6
3 }

(3) Y1 + Y2g−C̄2

1+rf
≤ C1L ≤ Y1 + Y2b−C2L

1+rf
< C̄1 < C̄T4

1 and λ > max{0, λP8
1 , λP8

2 }

the optimal solution is C∗1 = C1L and the following holds

C∗1 = C1L ≤ C̄1 (34)

C∗2g = Y2g + (1 + rf )(Y1 − C1L) ≥ C̄2 for (1) and (2) (35)

C∗2g = Y2g + (1 + rf )(Y1 − C1L) ≤ C̄2 for (3) (36)

C2L ≤ C∗2b = Y2b + (1 + rf )(Y1 − C1L) < C̄2 (37)
1

γ2

E(U(C1L)) = δ
[
(1 + rf )(Y1 − C1L) + E(Y2)− C̄2

]
γ − (C̄1 − C1L)γ

−λ
2

[
(C̄1 − C1L)2 + δ(1− p)

(
(1 + rf )(Y1 − C1L) + Y2b − C̄2

)2
]
(38)

Proof. Proof for (1) follows directly from Lemma C.7, (2) follows directly from

Lemma C.8 and (3) from Lemma C.9.
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Note that the maximum can be reached in the problem (P6) and (P8). The house-

hold is penalized by losses in the �rst period and in the bad state of nature in the

second period and also in the good state of nature in the case (3). Also note that the

�rst period consumption is at the lower border, so household has the largest savings.

Second period consumption levels di�er by the di�erence in income levels in the bad

and in the good state of nature.

In this optimal solution, savings are positive if income in the �rst period is su�ciently

large to cover the minimal consumption in the �rst period and the household is a lender.

Sensitivity Table 8 and 9 is similar to the previous one, when the solution is on the

border of the feasibility interval.

dC∗1 dC∗2g dC∗2b d(C̄1 − C∗1) d(C∗2g − C̄2) d(C̄2 − C∗2b) dS∗ d(E(U(C∗1)))

dλ = 0 = 0 = 0 = 0 = 0 = 0 = 0 < 0

dC̄1 = 0 = 0 = 0 > 0 = 0 = 0 = 0 < 0

dC̄2 = 0 = 0 = 0 = 0 < 0 > 0 = 0 < 0

Table 8: Sensitivity analysis for C1L for cases (1) and (2)

dC∗1 dC∗2g dC∗2b d(C̄1 − C∗1) d(C̄2 − C∗2g) d(C̄2 − C∗2b) dS∗ d(E(U(C∗1)))

dλ = 0 = 0 = 0 = 0 = 0 = 0 = 0 < 0

dC̄1 = 0 = 0 = 0 > 0 = 0 = 0 = 0 < 0

dC̄2 = 0 = 0 = 0 = 0 > 0 > 0 = 0 < 0

Table 9: Sensitivity analysis for C1L for case (3)

The loss-aversion parameter a�ects only happiness, due to the character of the so-

lution. If the loss-aversion increases then the penalty in the domain of losses increases

as well and the happiness has to decrease.

Changes in the reference levels in both periods have impact only on the size of the

losses or gains and happiness. If any of them increases its value, then the happiness

has to decrease. Households is experiencing larger losses and smaller gains in the cases

(1) and (2), which means larger penalty and less reward. In the case (3) there are no

gains, so by increasing the reference levels household just increases the self-improving

motive and has larger losses.
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3.8 C∗1 = C̄P8
1

The last solution that we present is inside the interval of feasibility. The conditions

under which it is the optimal value of consumption in the �rst period are presented in

the following proposition.

Proposition 8. For each of the following parameter set-ups

(1-a) C1L ≤ Y1 + Y2b−C̄2

1+rf
< Y1 + Y2g−C̄2

1+rf
≤ C̄T

1 < C̄1 ≤ Y1 + Y2b−C2L

1+rf
and λ >

max{0, λP4
U2, λ

P5
U , λP6

3 }

(1-b) Y1 + Y2b−C̄2

1+rf
< C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ C̄T

1 < C̄1 ≤ Y1 + Y2b−C2L

1+rf
and λ >

max{0, λP4
U2, λ

P5
U , λP6

1 , λP6
3 }

(1-c) Y1 + Y2g−C̄2

1+rf
< C1L ≤ C̄1 ≤ Y1 + Y2b−C2L

1+rf
and λ > max{0, λP4

U2, λ
P6
3 }

(2-a) C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
≤ max

{
Y1 + Y2b−C2L

1+rf
, C̄T

1

}
< C̄1 < C̄T3

1 and

λ > max{0, λP5
U , λP6

1 , λP6
3 , λP8

1 }

(2-b) Y1 + Y2g−C̄2

1+rf
≤ C1L ≤ Y1 + Y2b−C2L

1+rf
≤ max

{
Y1 + Y2b−C2L

1+rf
, C̄T

1

}
< C̄1 < C̄T3

1 and

λ > max{0, λP8
1 , λP8

2 }

the optimal solution is C∗1 = C̄P8
1 and the following holds

C1L ≤ C∗1 = C̄P8
1 < C̄1 (39)

C2L < C∗2g = Y2g + (1 + rf )(Y1 − C∗1) ≤ C̄2 (40)

C2L ≤ C∗2b = Y2b + (1 + rf )(Y1 − C∗1) < C̄2 (41)
1

γ2

E(U(C∗1)) = γ(C∗1 − C̄1)− λ1

2
(C̄1 − C∗1)2

+δp
[
γ
(
(1 + rf )(Y1 − C∗1) + Y2g − C̄2

)
−λ1

2

(
C̄2 − (1 + rf )(Y1 − C∗1)− Y2g

)2
]

+δ(1− p)
[
γ
(
(1 + rf )(Y1 − C∗1) + Y2b − C̄2

)
−λ1

2

(
C̄2 − (1 + rf )(Y1 − C∗1)− Y2b

)2
]

(42)

where C̄P8
1 = 1

λ

[1−δ(1+rf )]γ

1+δ(1+rf )2
+

C̄1−δ(1+rf )[C̄2−(1+rf )Y1−E(Y2)]

1+δ(1+rf )2
.

Proof. Proof for (1-a), (1-b) and (1-c) follow directly from Lemma C.8, (2-a) and

(2-b) follow directly from Lemma C.9.
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In this case, optimal consumptions in both periods and both states are below the

reference levels. The maximum is reached in the problem (P8). The household is

experiencing losses in all scenarios. Also household is driven by self-improvement mo-

tives. This motive is stronger than in the cases before, since both reference levels in

the second period are larger than the optimal value.

Household is a lender, if the �rst period income covers the optimal consumption,

which happens for su�ciently small �rst period consumption:

Y1 + δ(1 + rf )
2

[
2Y1 +

E(Y2)− C̄2

1 + rf

]
− γ

λ
[1− δ(1 + rf )] > C̄1.

Sensitivity analysis shows, that all the parameters given by the household have impact

on the optimal values, see Table 10 below.

dC∗1 dC∗2g dC∗2b d(C̄1 − C∗1) d(C̄2 − C∗2g) d(C̄2 − C∗2b) dS∗ d(E(U(C∗1)))

(1) dλ < 0 > 0 > 0 > 0 < 0 < 0 > 0 < 0

(2) dλ = 0 = 0 = 0 = 0 = 0 = 0 = 0 < 0

(3) dλ > 0 < 0 < 0 < 0 > 0 > 0 < 0 < 0

dC̄1 > 0 < 0 < 0 > 0 > 0 > 0 < 0 < 0

dC̄2 < 0 > 0 > 0 < 0 > 0 > 0 > 0 < 0

(1) dλ holds for δ < 1
1+rf

, (2) dλ holds for δ = 1
1+rf

, (3) dλ holds for δ > 1
1+rf

Table 10: Sensitivity results for C̄P8
1

We need to consider three cases - (1) where δ < 1
1+rf

, (2) where δ = 1
1+rf

and (3)

where δ > 1
1+rf

.

In the case (1) by increasing loss-aversion parameter, the optimal consumption in

the �rst period drops, however, the second period consumptions increase. It means

that the household is saving in the �rst period to have larger consumption in the

second period. The �rst period loss increases but the second period losses decrease.

In the case (3) loss-aversion has exactly opposite in�uence, household spends more in

the �rst period and less in the second period. Savings are decreasing. In both cases

happiness decreases, because the penalty is higher and changes in the consumptions

are not su�cient. In the case (2) optimal consumption in the �rst period does not

change and it neither does in the second period. Household does not change savings

and the only change is in the penalties, which causes less happiness.
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If the �rst period consumption reference level increases, then the �rst period optimal

consumption increases. This causes the decrease in the second period consumption,

since household is spending more in the �rst period than in the second one. Also

happiness decreases, because losses increase.

Increase in the second period consumption reference level causes decrease in the

optimal �rst period consumption. Household has higher savings and spends more in

the second period to lower the losses. However, the happiness is still decreasing.
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CONCLUSION

Conclusion

Our work describes the main features of prospect theory - utility function and weight

function, as well as the motivation, which led Kahneman and Tversky to publish their

study [11]. Prospect theory takes into consideration that people tend to be risk averse in

the domain of losses and risk seeking in the domain of gains. We are using two period

consumption-investment model for a household to explore the optimal consumption

while household maximizes the overall happiness. We assume that the household is

highly loss averse. We also take into consideration that the second period income is

uncertain with two possible scenarios.

Our utility function is quadratic loss averse, which means it is concave in the domain

of losses, linear in the domain of gains and is based on the di�erences of the reference

levels and corresponding consumptions. We found the close form solutions for every

parameter set-up. Results presented in the last chapter depend on the relationships

between parameters, especially, the position of the �rst period reference level of con-

sumption, C̄1. If the household has low �rst period reference level of consumption, we

assume that it has self-enhancement motives. Propositions 1 and 2 holds when C̄1 is

low. The optimal values are sensitive to the risk averse parameter λ. Sensitivity of the

solutions depends on the relation between δ and rf . The optimal values are sensitive

to the second period reference level for δ < 1
1+rf

, otherwise to the �rst period reference

level. Also this relation in�uences whether in the �rst period the household is in the

domain of gains or losses, respectively. The optimal value stated in the proposition 3

holds for larger �rst period reference level than in the previous cases. It means that

the household is becoming less self-enhanced. The optimal consumption is equal to the

�rst period reference level. The solution holds for δ lower than in the next case stated

in the proposition 4. In this case, second period reference level of consumption has

the in�uence on the optimal values. The household is also becoming less self-enhanced

than in the �rst two cases. The other four solutions stated in the propositions 5, 6, 7

and 8 hold for self-improving households. It means that the reference level is relatively

large in contrast to the previous conditions. Household experiences losses in all four

cases in the �rst period and in the bad state of nature in the second period. In the good

state of the nature it varies. Optimal values, that are inner points of the feasibility
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interval, depend on the risk-averse parameter.

The study of loss averse household may continue by exploring modi�cations of the

model. Interesting might be comparing the results after introducing risky asset with

uncertainty as the possible investment option in the �rst period. Another modi�cation

might be in changing the uncertainty of the second period income and assuming a

continuous distribution. Also the comparison with other studies following quadratic

averse function with regard to the two period model might bring interesting conclusions.
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APPENDIX

Appendix

A Solutions of the Problems

(P1). Note that

CP1,∗
1 =


C̄1, for δ > 1

1+rf

∈
[
C̄1, Y1 + Y2b−C̄2

1+rf

]
, for δ = 1

1+rf

Y1 + Y2b−C̄2

1+rf
, for δ < 1

1+rf

and

1

γ2

E(U(CP1,∗
1 )) =

1

γ2

E(U(C̄1)) = γδ
[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
(43)

= γδ[Ω + p (Y2g − Y2b)] for δ >
1

1 + rf
1

γ2

E(U(CP1,∗
1 )) =

1

γ2

E(U(C1)) =
γ

1 + rf

[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
(44)

for δ =
1

1 + rf
and any C1 ∈

[
C̄1, Y1 +

Y2b − C̄2

1 + rf

]
1

γ2

E(U(CP1,∗
1 )) =

1

γ2

E
(
U

(
Y1 +

Y2b − C̄2

1 + rf

))
= γ

Ω

1 + rf
+ δp γ(Y2g − Y2b) (45)

for δ <
1

1 + rf

(P2). It can be shown that the objective function of (P2) is concave and thus its

stationary point is the point of its maxima. The stationary point is

C̄P2
1 =

k

λ
+ Y1 +

Y2b − C̄2

1 + rf
(46)

where

k ≡ γ[1− δ(1 + rf )]

δ(1− p)(1 + rf )2

Note that k is non-negative for δ ≤ 1
1+rf

. Let's assume that C̄1 ≤ Y1 + Y2b−C̄2

1+rf
. Then

C̄P2
1 is feasible for (P2), and thus its maximum (CP2,∗

1 = C̄P2
1 ), when δ ≤ 1

1+rf
,

i.e., C̄P2
1 ≥ Y1 + Y2b−C̄2

1+rf
≥ C̄1, and λ ≥ (1+rf )k

min{C̄2−C2L,Y2g−Y2b} ≡ λP2, i.e., C̄P2
1 ≤

min
{
Y1 + Y2b−C2L

1+rf
, Y1 + Y2g−C̄2

1+rf

}
. Thus, the following holds

(P2)-(i) If δ ≤ 1
1+rf

and λ ≥ λP2 then CP2,∗
1 = C̄P2

1
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(P2)-(ii) If δ > 1
1+rf

then C̄P2
1 < Y1 + Y2b−C̄2

1+rf
and thus CP2,∗

1 = Y1 + Y2b−C̄2

1+rf

(P2)-(iii) If 0 < λ < λP2 then C̄P2
1 > min

{
Y1 + Y2b−C2L

1+rf
, Y1 + Y2g−C̄2

1+rf

}
and thus CP2,∗

1 =

min
{
Y1 + Y2b−C2L

1+rf
, Y1 + Y2g−C̄2

1+rf

}
Let Y1 + Y2b−C̄2

1+rf
< C̄1 ≤ min

{
Y1 + Y2b−C2L

1+rf
, Y1 + Y2g−C̄2

1+rf

}
. Then

(P2)-(iv) CP2,∗
1 = C̄P2

1 if λP2 ≤ λ ≤ (1+rf )k

−Ω
. Note that λP2 ≤ (1+rf )k

−Ω
only when

(1 + rf )(C̄1 − Y1) ≤ Y2b ≤ (1 + rf )(C̄1 − Y1) + C̄2 ≤ Y2g and when

C2L ≤ Y2b + (1 + rf )(Y1 − C̄1) ≤ C̄2.

(P2)-(v) If 0 < λ < λP2 then C̄P2
1 > min

{
Y1 + Y2b−C2L

1+rf
, Y1 + Y2g−C̄2

1+rf

}
and thus CP2,∗

1 =

min
{
Y1 + Y2b−C2L

1+rf
, Y1 + Y2g−C̄2

1+rf

}
(P2)-(vi) If λ > (1+rf )k

−Ω
then C̄P2

1 < C̄1 and thus CP2,∗
1 = C̄1 .

Note in addition that

1

γ2

E(U(C̄P2
1 )) =

[
Ω

1 + rf
+ δp (Y2g − Y2b) +

(1− δ(1 + rf )) k

2λ

]
γ (47)

1

γ2

E
(
U

(
Y1 +

Y2b − C̄2

1 + rf

))
=

[
Ω

1 + rf
+ δp (Y2g − Y2b)

]
γ

1

γ2

E
(
U

(
Y1 +

Y2b − C2L

1 + rf

))
=

[
Ω

1 + rf
+ δp (Y2g − Y2b)

]
γ +

(
1

1 + rf
− δ
)
γ (C̄2 − C2L)

−
δ(1− p)λ

(
C̄2 − C2L

)2

2
1

γ2

E
(
U

(
Y1 +

Y2g − C̄2

1 + rf

))
=

(
Y1 − C̄1 +

Y2g − C̄2

1 + rf

)
γ

−δ(1− p)
[
γ +

λ

2
(Y2g − Y2b)

]
(Y2g − Y2b)

1

γ2

E(U(C̄1)) = δ
[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
γ − δ(1− p)λ

2
(−Ω)2

(48)

(P4). It can be shown that the objective function of (P4) is concave and thus its

stationary point is the point of its maxima. The stationary point is

C̄P4
1 =

(1− p)k
λ

+ Y1 +
E(Y2)− C̄2

1 + rf
(49)
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Before proceeding further, let's introduce the following notation:

λP4
L =

(1− p)(1 + rf )k

C̄2 − C2L − p(Y2g − Y2b)
(50)

λP4
U =

(1 + rf )k

Y2g − Y2b

(51)

λP4
U2 =

(1− p)(1 + rf )k

(1 + rf )(C̄1 − Y1) + C̄2 − E(Y2)
(52)

Let C̄1 ≤ Y1 + Y2g−C̄2

1+rf
and C̄2 ≥ C2L + Y2g − Y2b. Then

(P4)-(i) CP4,∗
1 = C̄P4

1 if δ < 1
1+rf

and λP4
L ≤ λ ≤ λP4

U

(P4)-(ii) If 0 < λ < λP4
L and δ < 1

1+rf
then C̄P4

1 > Y1+Y2b−C2L

1+rf
and thus CP4,∗

1 = Y1+Y2b−C2L

1+rf

(P4)-(iii) If λ ≥ λP4
U then C̄P4

1 ≤ Y1 + Y2g−C̄2

1+rf
and thus CP4,∗

1 = Y1 + Y2g−C̄2

1+rf

Let Y1 + Y2g−C̄2

1+rf
< C̄1 ≤ Y1 + Y2b−C2L

1+rf
, i.e., C̄2 ≥ C2L + Y2g − Y2b. Then

(P4)-(iv) CP4,∗
1 = C̄P4

1 if λP4
L ≤ λ ≤ λP4

U2

(P4)-(v) If 0 < λ < λP4
L then C̄P4

1 > Y1 + Y2b−C2L

1+rf
and thus CP4,∗

1 = Y1 + Y2b−C2L

1+rf

(P4)-(vi) If λ > λP4
U2 then C̄P4

1 < C̄1 and thus CP4,∗
1 = C̄1
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Note in addition that

1

γ2

E(U(C̄P4
1 )) =

(
Y1 − C̄1 +

E(Y2)− C̄2

1 + rf

)
γ

+
(1− p)k

λ
[1− δ(1 + rf )]γ

−δλ
2

[
p(1− p)(Y2g − Y2b)

2 +

(
(1− p)(1 + rf )k

λ

)2
]

1

γ2

E
(
U

(
Y1 +

Y2b − C2L

1 + rf

))
=

(
Y1 − C̄1 +

Y2b − C2L

1 + rf

)
γ

+δ[p (Y2g − Y2b)− (C̄2 − C2L)]γ

−δλ
2

[
p (C̄2 − C2L − (Y2g − Y2b))

2
]

−δλ
2

[
(1− p)(C̄2 − C2L)2

]
1

γ2

E
(
U

(
Y1 +

Y2g − C̄2

1 + rf

))
=

(
Y1 − C̄1 +

Y2g − C̄2

1 + rf

)
γ

−δ(1− p)
[
γ +

λ

2
(Y2g − Y2b)

]
(Y2g − Y2b)

=
Ω

1 + rf
γ + (Y2g − Y2b)

[
1

1 + rf
− δ(1− p)

]
γ

−δ(1− p)λ
2

(Y2g − Y2b)
2 (53)

1

γ2

E(U(C̄1)) = δ
[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
γ

−δλ
2

[(
(1 + rf )(Y1 − C̄1)− C̄2

)2
+ E(Y 2

2 )
]

+δλ
[
(1 + rf )(Y1 − C̄1)− C̄2

]
E(Y2)

(P5). It can be shown that the objective function of (P5) is concave and thus its

stationary point is the point of its maxima. The stationary point is

C̄P5
1 = C̄1 +

γ

λ
[1− δ(1 + rf )] (54)

Before proceeding further, let's introduce the following notation:

λP5
L =

γ[δ(1 + rf )− 1]

C̄1 − C1L

(55)

λP5
U =

γ(1 + rf )[δ(1 + rf )− 1]

(1 + rf )(C̄1 − Y1) + C̄2 − Y2b

(56)

The following can be observed for C1L ≤ Y1 + Y2b−C̄2

1+rf
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(P5)-(i) For δ < 1
1+rf

is the objective function of (P5) increasing in its set of feasible

solutions and thus CP5,∗
1 = min

{
C̄1, Y1 + Y2b−C̄2

1+rf

}
(P5)-(ii) If δ ≥ 1

1+rf
and C̄1 ≤ Y1 + Y2b−C̄2

1+rf
then CP5,∗

1 = C̄P5
1 if λ ≥ λP5

L . If 0 < λ < λP5
L

then CP5,∗
1 = C1L.

(P5)-(iii) If δ ≥ 1
1+rf

and C̄1 > Y1 + Y2b−C̄2

1+rf
then CP5,∗

1 = C̄P5
1 if

λP5
L ≤ λ ≤ λP5

U . If λ < λP5
L then CP5,∗

1 = C1L and if λ > λP5
U then CP5,∗

1 =

Y1 + Y2b−C̄2

1+rf
.

Note in addition that

1

γ2

E(U(C̄P5
1 )) = δ

[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
γ

+
γ2

2λ
[1− δ(1 + rf )]

2

= δ [Ω + p(Y2g − Y2b)] γ +
γ2

2λ
[1− δ(1 + rf )]

2 (57)

1

γ2

E(U(C̄1)) = δ
[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
γ

= δ [Ω + p (Y2g − Y2b)] γ (58)

1

γ2

E
(
U

(
Y1 +

Y2b − C̄2

1 + rf

))
=

Ωγ

1 + rf
− λ

2

(
Ω

1 + rf

)2

+ δp (Y2g − Y2b)γ (59)

1

γ2

E(U(C1L)) = −(C̄1 − C1L)γ − λ

2
(C̄1 − C1L)2

+δ[(1 + rf )(Y1 − C1L) + E(Y2)− C̄2]γ (60)

(P6). It can be shown that the objective function of (P6) is concave and thus its

stationary point is the point of its maxima. The stationary point is

C̄P6
1 = C̄1 +

1

1 + δ(1− p)(1 + rf )2

[
δ(1− p)(1 + rf )Ω +

γ

λ
(1− δ(1 + rf ))

]
(61)
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Before proceeding further, let's introduce the following notation:

C̄T
1 = Y1 +

Y2g − C̄2

1 + rf
+ δ(1− p)(1 + rf )(Y2g − Y2b) (62)

C̄T1
1 = Y1 +

Y2b − C2L

1 + rf
+ δ(1− p)(1 + rf )(C̄2 − C2L) (63)

C̄T2
1 = C1L + δ(1− p)(1 + rf )[(1 + rf )(C1L − Y1) + C̄2 − Y2b] (64)

λP6
2 =

[1− δ(1 + rf )]γ

C̄T1
1 − C̄1

(65)

λP6
1 =

[1− δ(1 + rf )]γ

C̄T2
1 − C̄1

(66)

λP6
3 =

[1− δ(1 + rf )]γ

C̄T
1 − C̄1

(67)

Note that C̄T2
1 ≤ C̄T1

1 which follows from (8). Note in addition that C̄T2
1 ≤ C̄T

1 if

C1L ≤ Y1 + Y2g−C̄2

1+rf
and C̄T2

1 ≥ C̄T
1 if C1L ≥ Y1 + Y2g−C̄2

1+rf
.

The following can be observed for C1L ≤ Y1 + 1
1+rf

min
{
Y2b − C2L, Y2g − C̄2

}
and

C̄1 ≥ Y1 + Y2b−C̄2

1+rf

(P6)-(i) Let C1L ≤ Y1 + Y2b−C̄2

1+rf
1 and C̄1 ≤ min

{
Y1 + Y2b−C2L

1+rf
, Y1 + Y2g−C̄2

1+rf

}
. Then C̄P6

1 is

feasible, i.e., CP6,∗
1 = C̄P6

1 , if λ ≥ max{0, λP6
L1 , λ

P6
L2} where λP6

L1 ≡
[δ(1+rf )−1]γ

δ(1−p)(1+rf )Ω
and

λP5
U =

(1+rf )[1−δ(1+rf )]γ

Ω

(P6)-(ii) Let C1L > Y1 + Y2b−C̄2

1+rf
and C̄1 ≤ min

{
Y1 + Y2b−C2L

1+rf
, Y1 + Y2g−C̄2

1+rf

}
. Then CP6,∗

1 =

C̄P6
1 if following holds: (i) C̄2 < C1L−C̄1

δ(1−p)(1+rf )
+ (1 + rf )(Y1 − C1L) + Y2b

2 and

λ ≥ max{0, λP6
L1 , λ

P6
1 } where λP6

1 ≡
[δ(1+rf )−1]γ

C̄1−C1L+δ(1−p)(1+rf )[(1+rf )(Y1−C1L)+Y2b−C̄2]
or (ii)

C̄2 >
C1L−C̄1

δ(1−p)(1+rf )
+ (1 + rf )(Y1 − C1L) + Y2b and max{0, λP6

L1} ≤ λ ≤ λP6
1 .

(P6)-(iii) Let C1L ≤ Y1 + Y2b−C̄2

1+rf
, Y1 + Y2b−C2L

1+rf
≤ Y1 + Y2g−C̄2

1+rf
and C̄1 ≥ Y1 + Y2b−C2L

1+rf
.

Thus, the set of feasible solutions is: Y1 + Y2b−C̄2

1+rf
≤ C1 ≤ Y1 + Y2b−C2L

1+rf
. Then

CP6,∗
1 = C̄P6

1 if (i) C̄1 > C̄T1
1 and max{0, λP5

U } ≤ λ ≤ λP6
2 , or (ii) C̄1 < C̄T1

1 and

λ ≥ max{0, λP5
U , λP6

2 }. Note that if λ = λP6
2 then CP6,∗

1 = Y1 + Y2b−C2L

1+rf
and if

λ = λP5
U then CP6,∗

1 = Y1 + Y2b−C̄2

1+rf
. Thus, in case (i), CP6,∗

1 = Y1 + Y2b−C2L

1+rf
if

λ ≥ max{0, λP5
U , λP6

2 }.

(P6)-(iv) Let C1L > Y1 + Y2b−C̄2

1+rf
, Y1 + Y2b−C2L

1+rf
≤ Y1 + Y2g−C̄2

1+rf
and C̄1 ≥ Y1 + Y2b−C2L

1+rf
. Thus,

1I.e., (1 + rf )(Y1 − C̄1) + Y2b ≤ C̄2 ≤ (1 + rf )(Y1 − C1L) + Y2b.
2Note that for Ω to be negative we need in this case δ > 1

(1+rf )(1−p) .
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the set of feasible solutions is: C1L ≤ C1 ≤ Y1 + Y2b−C2L

1+rf
. Then the following

holds for λ ≥ max{0, λP6
1 , λP6

2 }:

(P6)-(iv)-(1) CP6,∗
1 = C1L when C̄1 < C̄T2

1

(P6)-(iv)-(2) CP6,∗
1 = C̄P6

1 when C̄T2
1 < C̄1 < C̄T1

1

(P6)-(iv)-(3) CP6,∗
1 = Y1 + Y2b−C2L

1+rf
when C̄1 > C̄T1

1

(P6)-(v) Let C1L ≤ Y1 + Y2b−C̄2

1+rf
and Y1 + Y2g−C̄2

1+rf
≤ C̄1 ≤ Y1 + Y2b−C2L

1+rf
and thus the set

of feasible solutions is: Y1 + Y2b−C̄2

1+rf
≤ C1 ≤ Y1 + Y2g−C̄2

1+rf
. Then CP6,∗

1 = C̄P6
1

if the following holds: (i) C̄1 < C̄T
1 and λ ≥ max{0, λP5

U , λP6
3 } or (ii) C̄1 > C̄T

1

and max{0, λP5
U } ≤ λ ≤ λP6

3 . In case (ii) δ > 1
1+rf

is necessary for feasibility

of λ. Note that if λ = λP6
3 then CP6,∗

1 = Y1 + Y2g−C̄2

1+rf
and thus in case (ii) if

λ ≥ max{0, λP5
U , λP6

3 } then C
P6,∗
1 = Y1 + Y2g−C̄2

1+rf
. Note �nally that if C̄1 = C̄T

1 ,

δ ≥ 1
1+rf

and λ ≥ max{0, λP5
U } then C

P6,∗
1 = C̄P6

1 and if C̄1 = C̄T
1 , δ <

1
1+rf

and

λ ≥ max{0, λP5
U } then C

P6,∗
1 = Y1 + Y2g−C̄2

1+rf
.

(P6)-(vi) Let C1L > Y1 + Y2b−C̄2

1+rf
and Y1 + Y2g−C̄2

1+rf
≤ C̄1 ≤ Y1 + Y2b−C2L

1+rf
and thus the set of

feasible solutions is: C1L ≤ C1 ≤ Y2g−C̄2

1+rf
. Then the following holds (based also

on the results of (P6)-(v)) for λ > max{0, λP6
1 , λP6

3 }:

(P6)-(vi)-(1) CP6,∗
1 = C1L when C̄1 < C̄T2

1

(P6)-(vi)-(2) CP6,∗
1 = C̄P6

1 when C̄T2
1 < C̄1 < C̄T

1

(P6)-(vi)-(3) CP6,∗
1 = Y1 + Y2g−C̄2

1+rf
when C̄1 > C̄T

1

Note in addition that

λ

γ2

[
1 + δ(1− p)(1 + rf )

2
]
E(U(C̄P6

1 )) =
1

2
[1− δ(1 + rf )]

2 γ2

+λδ
[
(1 + (1− p)(1 + rf )) Ω + p (Y2g − Y2b)

(
1 + δ(1− p)(1 + rf )

2
)]
γ

−1

2
λ2Ω2δ(1− p)
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1

γ2

E
(
U

(
Y1 +

Y2b − C̄2

1 + rf

))
=

Ω

1 + rf
γ − λ

2

(
Ω

1 + rf

)2

+ δp (Y2g − Y2b)γ

1

γ2

E(U(C1L)) = δ
[
(1 + rf )(Y1 − C1L) + E(Y2)− C̄2

]
γ

−(C̄1 − C1L)γ − λ

2
(C̄1 − C1L)2

−λ
2
δ(1− p)

(
(1 + rf )(Y1 − C1L) + Y2b − C̄2

)2

1

γ2

E(U(C̄1)) = δ
[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
γ − λ

2
δ(1− p)Ω2

1

γ2

E
(
U

(
Y1 +

Y2b − C2L

1 + rf

))
=

(
Y1 − C̄1 +

Y2b − C2L

1 + rf

)
γ + δp (Y2g − Y2b)γ

−λ
2

(
Y1 − C̄1 +

Y2b − C2L

1 + rf

)2

− δ(C̄2 − C2L)γ

−λ
2
δ(1− p)(C̄2 − C2L)2

1

γ2

E
(
U

(
Y1 +

Y2g − C̄2

1 + rf

))
=

(
Y1 − C̄1 +

Y2g − C̄2

1 + rf

)
γ − λ

2

(
Y1 − C̄1 +

Y2g − C̄2

1 + rf

)2

−δ(1− p)(Y2g − Y2b)γ −
λ

2
δ(1− p)(Y2g − Y2b)

2

(P8). It can be show that the objective function of (P6) is concave and thus its

stationary point is the point of its maxima. The stationary point is

C̄P8
1 =

1

λ

[1− δ(1 + rf )]γ

1 + δ(1 + rf )2
+
C̄1 − δ(1 + rf )[C̄2 − (1 + rf )Y1 − E(Y2)]

1 + δ(1 + rf )2
(68)

Before proceeding further, let's introduce the following notation:

C̄T3
1 = Y1 +

Y2b − C2L

1 + rf
+ δ(1 + rf )[C̄2 − C2L − p(Y2g − Y2b)] (69)

C̄T4
1 = C1L + δ(1 + rf )

2

(
C1L − Y1 +

C̄2 − E(Y )

1 + rf

)
(70)

λP8
1 =

[1− δ(1 + rf )]γ

C̄T3
1 − C̄1

(71)

λP8
2 =

[1− δ(1 + rf )]γ

C̄T4
1 − C̄1

(72)

Note that C̄T
1 ≤ C̄T3

1 if C̄2 ≥ C2L + Y2g − Y2b and C̄T
1 ≥ C̄T3

1 if C̄2 ≤ C2L + Y2g − Y2b.

Note in addition that C̄T4
1 ≤ C̄T3

1 .

The following can be observed for C̄1 ≥ Y1 + Y2g−C̄2

1+rf
and C̄2 ≥ C2L + Y2g − Y2b

(P8)-(i) Let Y1 + Y2g−C̄2

1+rf
≤ C̄1 ≤ Y1 + Y2b−C2L

1+rf
and thus the set of feasible solutions is:

Y1 + Y2g−C̄2

1+rf
≤ C1 ≤ C̄1. For λ ≥ λP4

U2 is C̄P8
1 ≤ C̄1 and C̄P8

1 ≥ Y1 + Y2g−C̄2

1+rf
for

54



A. SOLUTIONS OF THE PROBLEMS

C̄1 > C̄T
1 and λ ≥ λP6

3 or for C̄1 < C̄T
1 and λ ≤ λP6

3 . Thus, CP8,∗
1 = C̄P8

1 if

C̄1 > C̄T
1 and λ ≥ max{0, λP4

U2, λ
P6
3 } and CP8,∗

1 = Y1 + Y2g−C̄2

1+rf
if C̄1 < C̄T

1 and

λ ≥ λP6
3 .

(P8)-(ii) Let C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1 and thus the set of feasible so-

lutions is: Y1 + Y2g−C̄2

1+rf
≤ C1 ≤ Y1 + Y2b−C2L

1+rf
. Then the following holds for

λ > max{0, λP6
3 , λP8

1 }:

(P8)-(ii)-(1) CP8,∗
1 = Y1 + Y2g−C̄2

1+rf
when C̄1 < C̄T

1 ≤ C̄T3
1

(P8)-(ii)-(2) CP8,∗
1 = C̄P8

1 when C̄T
1 < C̄1 < C̄T3

1

(P8)-(ii)-(3) CP8,∗
1 = Y1 + Y2b−C2L

1+rf
when C̄T

1 ≤ C̄T3
1 < C̄1

(P8)-(iii) Let Y1 + Y2g−C̄2

1+rf
≤ C1L ≤ Y1 + Y2b−C2L

1+rf
< C̄1 and thus the set of feasible solutions

is: C1L ≤ C1 ≤ Y1 + Y2b−C2L

1+rf
. Then the following holds for λ > max{0, λP8

1 , λP8
2 }:

(P8)-(iii)-(1) CP8,∗
1 = C1L when C̄1 < C̄T4

1 ≤ C̄T3
1

(P8)-(iii)-(2) CP8,∗
1 = C̄P8

1 when C̄T4
1 < C̄1 < C̄T3

1

(P8)-(iii)-(3) CP8,∗
1 = Y1 + Y2b−C2L

1+rf
when C̄T4

1 ≤ C̄T3
1 < C̄1
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B Parameter Set-ups

The following observations can be made

(1) If C̄1 ≤ Y1 + Y2b−C̄2

1+rf
, then maximum can be reached either in (P1), (P2) or (P5).

If C̄2 ≥ C2L + Y2g − Y2b, then maximum can be reached also in (P4).

(2) If Y1 + Y2b−C̄2

1+rf
< C̄1 ≤ Y1 + 1

1+rf
min

{
Y2b − C2L, Y2g − C̄2

}
and C1L ≤ Y1 + Y2b−C̄2

1+rf
,

then maximum can be reached in (P2), (P5) or (P6). If C̄2 ≥ C2L + Y2g − Y2b,

then maximum can be reached also in (P4).

(3) If Y1 + Y2b−C̄2

1+rf
< C̄1 ≤ Y1 + 1

1+rf
min

{
Y2b − C2L, Y2g − C̄2

}
and Y1 + Y2b−C̄2

1+rf
<

C1L ≤ Y1 + 1
1+rf

min
{
Y2b − C2L, Y2g − C̄2

}
, then maximum can be reached either

in (P2) or (P6). If C̄2 ≥ C2L + Y2g − Y2b, maximum can be reached also in (P4).

(4) If Y1 + Y2b−C̄2

1+rf
< C̄1 ≤ Y1 + 1

1+rf
min

{
Y2b − C2L, Y2g − C̄2

}
,

Y1 + Y2g−C̄2

1+rf
< C1L ≤ Y1 + Y2b−C2L

1+rf
and C̄2 ≥ C2L + Y2g − Y2b, then maximum can

be reached in (P2) or (P4).

(5) If Y1 + Y2g−C̄2

1+rf
≤ C̄1 ≤ Y1 + Y2b−C2L

1+rf
, C̄2 ≥ C2L + Y2g − Y2b and C1L ≤ Y1 + Y2b−C̄2

1+rf
,

then maximum can be reached in (P4) or (P5) or (P6) or (P8).

(6) If Y1 + Y2g−C̄2

1+rf
≤ C̄1 ≤ Y1 + Y2b−C2L

1+rf
, C̄2 ≥ C2L+Y2g−Y2b and Y1 + Y2b−C̄2

1+rf
< C1L ≤

Y1 + 1
1+rf

min
{
Y2b − C2L, Y2g − C̄2

}
, then maximum can be reached in (P4) or

(P6) or (P8).

(7) If Y1 + Y2g−C̄2

1+rf
≤ C̄1 ≤ Y1 + Y2b−C2L

1+rf
, C̄2 ≥ C2L+Y2g−Y2b and Y1 + Y2g−C̄2

1+rf
< C1L ≤

Y1 + Y2b−C2L

1+rf
, then maximum can be reached in (P4) or (P8).

(8) If Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
≤ C̄1, C̄2 ≥ C2L + Y2g − Y2b and C1L ≤ Y1 + Y2b−C̄2

1+rf
,

then maximum can be reached in (P5) or (P6) or (P8).

(9) If Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
≤ C̄1, C̄2 ≥ C2L+Y2g−Y2b and Y1 + Y2b−C̄2

1+rf
< C1L ≤

Y1 + 1
1+rf

min
{
Y2b − C2L, Y2g − C̄2

}
, then maximum can be reached in (P6) or

(P8).

(10) If Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
≤ C̄1, C̄2 ≥ C2L+Y2g−Y2b and Y1 + Y2g−C̄2

1+rf
< C1L ≤

Y1 + Y2b−C2L

1+rf
, then maximum can be reached only in (P8).
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C Optimal Solutions by Speci�c Parameter Set-ups

Lemma C.1. Let C̄1 ≤ Y1 + Y2b−C̄2

1+rf
, δ < 1

1+rf
and λ ≥ (1+rf )k

min{C̄2−C2L,Y2g−Y2b} . Then the

following holds

C∗1 =
k

λ
+ Y1 +

Y2b − C̄2

1 + rf
> C̄1, (73)

C∗2g = C̄2 + Y2g − Y2b −
(1 + rf )k

λ
≥ C̄2, (74)

C2L ≤ C∗2b = C̄2 −
(1 + rf )k

λ
< C̄2, (75)

1

γ2

E(U(C∗1)) =

[
Ω

1 + rf
+ δp (Y2g − Y2b) +

(1− δ(1 + rf )) k

2λ

]
γ, (76)

where k =
[1−δ(1+rf )]γ

δ(1−p)(1+rf )2
and Ω = (1 + rf )(Y1 − C̄1) + Y2b − C̄2.

Proof. If C̄1 ≤ Y1 + Y2b−C̄2

1+rf
, then maximum can be reached either in (P1), (P2) or

(P5). If C̄2 ≥ C2L+Y2g−Y2b, then maximum can be reached also in (P4). This follows

from the set of feasible solutions. Thus, we compare the values of objective functions

of problems (P1), (P2), (P4) and (P5) at their point of maxima.

Let λ ≥ (1+rf )k

min{C̄2−C2L,Y2g−Y2b} . For δ < 1
1+rf

is CP1,∗
1 = Y1 + Y2b−C̄2

1+rf
and for δ < 1

1+rf

and λ ≥ λP2 is CP2,∗
1 = C̄P2

1 . Thus, comparing maximum values of (P1) and (P2),

namely (46) and (47) implies that E(U(CP2,∗
1 )) > E(U(CP1,∗

1 )).

For δ < 1
1+rf

and C̄1 ≤ Y1 + Y2b−C̄2

1+rf
is CP5,∗

1 = C̄1. Equations (47) and (58) imply

that E(U(CP2,∗
1 )) > E(U(CP5,∗

1 )) for δ < 1
1+rf

and λ > 0.

If in addition C̄2 ≥ C2L + Y2g − Y2b, then the potential candidate for maximum can

occur also in (P4) namely, CP4,∗
1 = Y1 + Y2g−C̄2

1+rf
when λ ≥ (1+rf )k

Y2g−Y2b
= λP4

U . Note that

λP2 ≥ λP4
U and thus for λ > λP2 is still CP4,∗

1 = Y1 + Y2g−C̄2

1+rf
. It can be shown, after

some derivations that

1

γ2

E(U(C̄P2
1 )) =

Ωγ

1 + rf
+ δp (Y2g − Y2b)γ +

(1− δ(1 + rf )) kγ

2λ

>

(
Y1 − C̄1 +

Y2g − C̄2

1 + rf

)
γ − δ(1− p)(Y2g − Y2b)

[
γ +

λ

2
(Y2g − Y2b)

]
=

1

γ2

E
(
U

(
Y1 +

Y2g − C̄2

1 + rf

))
when

[
(Y2g − Y2b)λ− (1−δ(1+rf ))γ

δ(1−p)(1+rf )

]2

> 0 which holds for λ > λP2. Note that Ω =

(1 + rf )(Y1 − C̄1) + Y2b − C̄2. Thus, the maximum is reached in (P2).
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Lemma C.2. Let C̄1 ≤ Y1 + Y2b−C̄2

1+rf
and δ > 1

1+rf
and λ > λP5

L . Then the following

holds

C1L < C∗1 = C̄1 +
γ

λ
[1− δ(1 + rf )] < C̄1 (77)

C∗2g = Y2g + (1 + rf )(Y1 − C̄1) +
γ

λ

(
δ − 1

1 + rf

)
> C̄2 (78)

C∗2b = Y2b + (1 + rf )(Y1 − C̄1) +
γ

λ

(
δ − 1

1 + rf

)
≥ C̄2 (79)

1

γ2

E(U(C∗1)) = δ [Ω + p(Y2g − Y2b)] γ +
γ2

2λ
[1− δ(1 + rf )]

2 (80)

Proof. If C̄1 ≤ Y1 + Y2b−C̄2

1+rf
, then maximum can be reached either in (P1), (P2) or

(P5). If C̄2 ≥ C2L+Y2g−Y2b, then maximum can be reached also in (P4). This follows

from the set of feasible solutions. Thus, we again compare the values of objective

functions of problems (P1), (P2), (P4) and (P5) at their point of maxima.

For δ > 1
1+rf

is CP1,∗
1 = C̄1, see (43), and C

P2,∗
1 = Y1 + Y2b−C̄2

1+rf
. As C1 = Y1 + Y2b−C̄2

1+rf

is feasible also for (P1) and CP1,∗
1 = C̄1, then E(U(CP1,∗

1 )) > E(U(CP2,∗
1 )).

(P5)-(ii) implies that for δ ≥ 1
1+rf

and λ > λP5
L is CP5,∗

1 = C̄P5
1 as given by (54).

Comparing its utility value as given by (57) with the utility of (P1) at its maximum

CP1,∗
1 = C̄1 as given by (43) we see that E(U(CP5,∗

1 )) > E(U(CP1,∗
1 )).

If C̄2 ≥ C2L + Y2g − Y2b, then also problem (P4) can be considered, namely case

(P4)-(iii) as for δ > 1
1+rf

is λP4
U negative. When comparing the utility of (P4) at

its maximum, namely at CP4,∗
1 = Y1 + Y2g−C̄2

1+rf
, see (53), to the utility of (P5) at its

maximum, namely at CP5,∗
1 = C̄P5

1 , see (57), then it can be shown that for δ > 1
1+rf

is

E(U(CP5,∗
1 )) > E(U(CP4,∗

1 )).

Lemma C.3. Let C̄1 ≤ Y1 + Y2b−C̄2

1+rf
and δ = 1

1+rf
. Then

C∗1 ∈
[
C̄1, Y1 +

Y2b − C̄2

1 + rf

]
(81)

C∗2g = Y2g + (1 + rf )(Y1 − C∗1) ≥ C̄2 (82)

C∗2b = Y2b + (1 + rf )(Y1 − C∗1) ≥ C̄2 (83)
1

γ2

E(U(C∗1)) =

[
Y1 − C̄1 +

E(Y2)− C̄2

1 + rf

]
γ (84)

Lemma C.4. Let Y1 + Y2b−C̄2

1+rf
< C̄1 ≤ min

{
Y1 + Y2g−C̄2

1+rf
, Y1 + Y2b−C2L

1+rf

}
and δ < 1

1+rf
.

Then the following holds
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(i) For λ ≥ (1+rf )k

−Ω
and δ < 1

(1−p)(1+rf )2
or Y1 + Y2b−C̄2

1+rf
< C1L ≤ C̄1 is

C1L ≤ C∗1 = C̄1 (85)

C∗2g = Y2g + (1 + rf )(Y1 − C̄1) ≥ C̄2 (86)

C2L ≤ C∗2b = Y2b + (1 + rf )(Y1 − C̄1) < C̄2 (87)
1

γ2

E(U(C∗1)) = δ
[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
γ − δ(1− p)λ

2
(−Ω)2(88)

(ii) For λ ≥
2γ

(
1

1+rf
−δ

)
(−Ω)

[
δ(1−p)− 1

(1+rf )2

] = λP2−P5, C1L ≤ Y1 + Y2b−C̄2

1+rf
and 1

(1−p)(1+rf )2
≤ δ <

1
1+rf

is

C1L ≤ C∗1 = Y1 +
Y2b − C̄2

1 + rf
< C̄1 (89)

C∗2g = Y2g − Y2b + C̄2 ≥ C̄2 (90)

C2L ≤ C∗2b = C̄2 (91)
1

γ2

E(U(C∗1)) = δ
[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
γ − δ(1− p)λ

2
(−Ω)2(92)

Proof. Note that for Y1 + Y2b−C̄2

1+rf
≤ C̄1 ≤ min

{
Y1 + Y2g−C̄2

1+rf
, Y1 + Y2b−C2L

1+rf

}
the maxi-

mum can be reached either in (P2), (P4), (P5) or (P6). Thus, we compare the values

of objective functions of these problems at their points of maxima and show that the

value of objective function of (P2) at its maxima exceeds, under certain conditions,

those of (P4), (P5) or (P6), case (i) and under very speci�c conditions the value of

objective function of (P5) at its maxima exceeds those of (P2), (P4) or (P6), case (ii).

As, under stated conditions, is the set of feasible solutions of (P6) the subset of the

set of feasible solutions of (P2) and the objective function of (P2) exceeds the objective

function of (P6), then the maximum of (P6) can not be the maximum of the stated

problem.

Based on (P2)-(vi) is for λ ≥ (1+rf )k

−Ω
the maximum of (P2) reached at CP2,∗

1 = C̄1

and based on (P4)-(iii) is the maximum of (P4) reached at CP4,∗
1 = Y1 + Y2g−C̄2

1+rf
for

λ ≥ (1+rf )k

Y2g−Y2b
. Note that (1+rf )k

−Ω
≥ (1+rf )k

Y2g−Y2b
as C̄1 ≤ Y1 + Y2g−C̄2

1+rf
. By comparing values

of objective functions of (P2) and (P4) at these points, see (48) and (53), we obtain

after some derivations that (P2) at its maximum exceeds (P4) at its maximum for

λ ≥ 2(1+rf )k

Y2g−Y2b−Ω
. Note again that (1+rf )k

−Ω
≥ 2(1+rf )k

Y2g−Y2b−Ω
as C̄1 ≤ Y1 + Y2g−C̄2

1+rf
.
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Based on (P5)-(i) is the maximum of (P5) reached at CP5,∗
1 = Y1 + Y2b−C̄2

1+rf
as Y1 +

Y2b−C̄2

1+rf
< C̄1. After some derivations we obtain that for δ < 1

(1−p)(1+rf )2
, λ ≥ λP2−P5

and C1L ≤ Y1 + Y2b−C̄2

1+rf
3, objective function of (P2) at its maximum exceeds objective

function of (P5) at its maximum. Note in addition that for δ < 1
(1−p)(1+rf )2

is (1+rf )k

−Ω
≥

λP2−P5.4 In addition, it can be seen that for 1
(1−p)(1+rf )2

≤ δ < 1
1+rf

and λ ≥ λP2−P5

(P5) at its maximum exceeds (P2) at its maximum.

Lemma C.5. Let Y1 + Y2b−C̄2

1+rf
< C̄1 ≤ min

{
Y1 + Y2g−C̄2

1+rf
, Y1 + Y2b−C2L

1+rf

}
and δ > 1

1+rf
.

Then the following holds

(i) For C1L ≤ Y1 + Y2b−C̄2

1+rf
, δ > max

{
1

1+rf
, 1

(1−p)(1+rf )2

}
and λ ≥ λP5

L is

C1L ≤ C∗1 = Y1 +
Y2b − C̄2

1 + rf
< C̄1 (93)

C∗2g = Y2g − Y2b + C̄2 > C̄2 (94)

C∗2b = C̄2 (95)

1

γ2

E(U(C∗1)) =
Ωγ

1 + rf
− λ

2

(
Ω

1 + rf

)2

+ δp (Y2g − Y2b)γ (96)

(ii) For Y1 + Y2b−C̄2

1+rf
< C1L ≤ C̄1 or C1L ≤ Y1 + Y2b−C̄2

1+rf
, 1

1+rf
< δ ≤ 1

(1−p)(1+rf )2
and

λ ≥
2γ

(
1

1+rf
−δ

)
(−Ω)

[
δ(1−p)− 1

(1+rf )2

] = λP2−P5 is

C∗1 = C̄1 (97)

C∗2g = Y2g + (1 + rf )(Y1 − C̄1) ≥ C̄2 (98)

C2L ≤ C∗2b = Y2b + (1 + rf )(Y1 − C̄1) < C̄2 (99)
1

γ2

E(U(C∗1)) = δ
[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
γ − δ(1− p)λ

2
(−Ω)2(100)

Proof. Similarly, as in the proof of Proposition C.4, the relevant problems to inves-

tigate (under conditions stated in this proposition) are (P2), (P4), (P5) or (P6). Using

the same lines of arguments as in Proposition C.4, problems (P4) and (P6) become

not the relevant ones and we show by simple comparisons of values of objective func-

tions at their maxima that maximum is reached in (P5) when C1L ≤ Y1 + Y2b−C̄2

1+rf
and

3Condition Y1 + Y2b−C̄2

1+rf
< C1L ≤ C̄1 implies that there the set of feasible solutions for (P5) is

empty.
4Note that λP2−P5 can be written as λP2−P5 =

2(1+rf )kδ(1−p)

−Ω

[
δ(1−p)− 1

(1+rf )2

] .
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λ ≥ γ[δ(1+rf )−1]

C̄1−C1L
, case (i), and in (P2) when Y1 + Y2b−C̄2

1+rf
< C1L ≤ C̄1 and λ > 0, case

(ii).

Based on (P2)-(vi) is the maximum of (P2) reached at CP2,∗
1 = C̄1 for any for

λ > 0 (as δ > 1
1+rf

) and based on (P5)-(iii) is the maximum of (P5) reached at

CP5,∗
1 = Y1 + Y2b−C̄2

1+rf
for λ ≥ γ(1+rf )[δ(1+rf )−1]

−Ω
and C1L ≤ Y1 + Y2b−C̄2

1+rf
. By comparing

values of objective functions of (P2) and (P5) at these points, see (48) and (59), we get

1

γ2

E
(
U

(
Y1 +

Y2b − C̄2

1 + rf

))
− 1

γ2

E(U(C̄1))

= γ(−Ω)

(
δ − 1

1 + rf

)
+
λ

2
Ω2

[
δ(1− p)− 1

(1 + rf )2

]
> 0 (101)

and thus (P5) at its maximum exceeds (P2) at its maximum for big λs only if δ > 1
1+rf

if either δ ≥ 1
(1−p)(1+rf )2

. On the other hand, if Y1 + Y2b−C̄2

1+rf
< C1L ≤ C̄1, i.e., the set of

feasible solutions of (P5) is empty, or if δ < 1
(1−p)(1+rf )2

and λ ≥ λP2−P5 then it follows

from (101) that (P2) at its maximum exceeds (P5) at its maximum.

Lemma C.6. Let Y1 + Y2b−C̄2

1+rf
< C̄1 ≤ min

{
Y1 + Y2g−C̄2

1+rf
, Y1 + Y2b−C2L

1+rf

}
, δ = 1

1+rf
and

λ > 0. Then the following holds

(i) For C1L ≤ Y1 + Y2b−C̄2

1+rf
and p <

rf
1+rf

is

C1L ≤ C∗1 = Y1 +
Y2b − C̄2

1 + rf
< C̄1 (102)

C∗2g = Y2g − Y2b + C̄2 > C̄2 (103)

C∗2b = C̄2 (104)

1

γ2

E(U(C∗1)) =
γ

1 + rf

[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
− λ

2

(
Ω

1 + rf

)2

(105)

(ii) For Y1 + Y2b−C̄2

1+rf
< C1L ≤ C̄1 or C1L ≤ Y1 + Y2b−C̄2

1+rf
and p ≥ rf

1+rf
is

C∗1 = C̄1 (106)

C∗2g = Y2g + (1 + rf )(Y1 − C̄1) ≥ C̄2 (107)

C2L ≤ C∗2b = Y2b + (1 + rf )(Y1 − C̄1) < C̄2 (108)
1

γ2

E(U(C∗1)) =
γ

1 + rf

[
(1 + rf )(Y1 − C̄1) + E(Y2)− C̄2

]
− λ(1− p)

2(1 + rf )
(−Ω)2

(109)
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Proof. The statements of the proposition follow directly from (101), (105) and (109).

Lemma C.7. Let Y1 + Y2b−C2L

1+rf
< C̄1 ≤ Y1 + Y2g−C̄2

1+rf
. Then the following holds

(i) For C1L ≤ Y1 + Y2b−C̄2

1+rf
and λ > max

{
0, λP5

U , λP6
2

}
is the solution of (7) given as

follows

C∗1 =

 C̄P6
1 , for C̄1 < C̄T1

1

Y1 + Y2b−C2L

1+rf
, for C̄1 > C̄T1

1

(110)

where

C1L ≤ C∗1 = C̄P6
1 < C̄1 (111)

C∗2g = Y2g + (1 + rf )(Y1 − C∗1) ≥ C̄2 (112)

C2L ≤ C∗2b = Y2b + (1 + rf )(Y1 − C∗1) < C̄2 (113)
λ

γ2

[
1 + δ(1− p)(1 + rf )

2
]
E(U(C̄P6

1 )) =
1

2
[1− δ(1 + rf )]

2 γ2

+λδ (1 + (1− p)(1 + rf )) Ω γ − 1

2
λ2Ω2δ(1− p)

+λδp (Y2g − Y2b)
(
1 + δ(1− p)(1 + rf )

2
)
γ (114)

when C̄1 < C̄T1
1 and

C1L ≤ C∗1 = Y1 +
Y2b − C2L

1 + rf
< C̄1 (115)

C∗2g = Y2g − Y2b + C2L ≥ C̄2 (116)

C∗2b = C2L < C̄2 (117)

1

γ2

E(U(C∗1)) = −γ
(
C̄1 − Y1 −

Y2b − C2L

1 + rf

)
− λ

2

(
C̄1 − Y1 −

Y2b − C2L

1 + rf

)2

+δp γ(Y2g − Y2b + C2L − C̄2)

−δ(1− p)γ(C̄2 − C2L)− λ

2
(C̄2 − C2L)2 (118)

when C̄1 > C̄T1
1 .

(ii) For Y1 + Y2b−C̄2

1+rf
< C1L ≤ Y1 + Y2b−C2L

1+rf
and λ > max

{
0, λP6

1 , λP6
2

}
is the solution

of (7) given as follows

C∗1 =


C1L, for C̄1 < C̄T2

1

C̄P6
1 , for C̄T2

1 < C̄1 < C̄T1
1

Y1 + Y2b−C2L

1+rf
, for C̄1 > C̄T1

1

(119)
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where

C∗1 = C1L ≤ C̄1 (120)

C∗2g = Y2g + (1 + rf )(Y1 − C1L) ≥ C̄2 (121)

C2L ≤ C∗2b = Y2b + (1 + rf )(Y1 − C1L) < C̄2 (122)
1

γ2

E(U(C1L)) = δ
[
(1 + rf )(Y1 − C1L) + E(Y2)− C̄2

]
γ − (C̄1 − C1L)γ

−λ
2

[
(C̄1 − C1L)2 + δ(1− p)

(
(1 + rf )(Y1 − C1L) + Y2b − C̄2

)2
]

(123)

if C∗1 = C1L. If C∗1 = C̄P6
1 then results are stated by (111)-(114) and if C∗1 =

Y1 + Y2b−C2L

1+rf
then results are stated by (115)-(118).

Proof. Case (i). For C1L ≤ Y1 + Y2b−C̄2

1+rf
the problems with non-empty sets of feasible

solutions are (P5) and (P6). (P5)-(i) and (P5)-(iii) imply that for λ ≥ λP5
U is the maxi-

mum of (P5) reached at Y1 + Y2b−C̄2

1+rf
. (P6)-(iii) implies that for λ > max

{
0, λP5

U , λP6
2

}
is

the maximum of (P6) reached at C̄P6
1 , see (61), when C̄1 < C̄T1

1 and at Y1+ Y2b−C2L

1+rf
when

C̄1 > C̄T1
1 . As the objective functions of (P5) and (P6) coincide at C1 = Y1 + Y2b−C̄2

1+rf

which is part of the set of feasible solutions of both problems then based on what was

said above is C1 = C̄P6
1 the point where (7) reaches its maximum.

For Y1 + Y2b−C̄2

1+rf
< C1L ≤ Y1 + Y2b−C2L

1+rf
, case (ii), the only problem with non-empty

set of feasible solutions is (P6) and the statements thus follow from (P6)-(iv).

Lemma C.8. Let Y1 + Y2g−C̄2

1+rf
≤ C̄1 ≤ Y1 + Y2b−C2L

1+rf
. Then the following holds

(i) For C1L ≤ Y1 + Y2b−C̄2

1+rf
, C̄1 < C̄T

1 and λ > max
{

0, λP4
U2, λ

P5
U , λP6

3

}
is the solution

of (7) given as follows

C∗1 =

 C̄P6
1 , for C̄1 < C̄T

1

C̄P8
1 , for C̄1 > C̄T

1

(124)
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where results are stated by (111)-(114) if C∗1 = C̄P6
1 and

C1L ≤ C∗1 = C̄P8
1 < C̄1 (125)

C2L < C∗2g = Y2g + (1 + rf )(Y1 − C∗1) ≤ C̄2 (126)

C2L ≤ C∗2b = Y2b + (1 + rf )(Y1 − C∗1) < C̄2 (127)
1

γ2

E(U(C∗1)) = γ(C∗1 − C̄1)− λ1

2
(C̄1 − C∗1)2

+δp γ
(
(1 + rf )(Y1 − C∗1) + Y2g − C̄2

)
−δpλ

2

(
C̄2 − (1 + rf )(Y1 − C∗1)− Y2g

)2

+δ(1− p)γ
(
(1 + rf )(Y1 − C∗1) + Y2b − C̄2

)
−δ(1− p)λ

2

(
C̄2 − (1 + rf )(Y1 − C∗1)− Y2b

)2 (128)

otherwise,

(ii) for Y1 + Y2b−C̄2

1+rf
< C1L ≤ Y1 + Y2g−C̄2

1+rf
and λ > max

{
0, λP4

U2, λ
P5
U , λP6

1 λP6
3

}
is:

(ii)-(1) C∗1 = C1L, see (120)-(123), for C̄1 < C̄T2
1

(ii)-(2) C∗1 = C̄P6
1 , see (111)-(114), for C̄T2

1 < C̄1 < C̄T
1

(ii)-(3) C∗1 = C̄P8
1 , see (125)-(128), for C̄1 > C̄T

1

(iii) For Y1 + Y2g−C̄2

1+rf
< C1L ≤ C̄1 and λ > max

{
0, λP4

U2, λ
P6
3

}
is C∗1 = C̄P8

1 , see (125)-

(128).

Proof. Case (i): Let C1L ≤ Y1 + Y2b−C̄2

1+rf
≤ Y1 + Y2g−C̄2

1+rf
≤ C̄1 ≤ Y1 + Y2b−C2L

1+rf
. For this

parameter set-up the maximum can be reached either in (P4) or (P5) or (P6) or (P8)

where

(P4): C̄1 ≤ C1 ≤ Y1 + Y2b−C2L

1+rf
is the set of feasible solutions and

CP4,∗
1 = C̄1 for λ > λP4

U2, see (P4)-(vi)

(P5): C1L ≤ C1 ≤ Y1 + Y2b−C̄2

1+rf
is the set of feasible solutions and

CP5,∗
1 = Y1 + Y2b−C̄2

1+rf
for λ > λP5

U , see (P5)-(i) and (P5)-(iii)

(P6): Y1 + Y2b−C̄2

1+rf
≤ C1 ≤ Y1 + Y2g−C̄2

1+rf
is the set of feasible solutions and

CP6,∗
1 = C̄P6

1 , see (61), for C̄1 < C̄T
1 and λ > max{0, λP5

U , λP6
3 }, see (P6)-(v) or

CP6,∗
1 = Y1 + Y2g−C̄2

1+rf
for C̄1 > C̄T

1 and λ > λP6
3 , see (P6)-(v)
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(P8): Y1 + Y2g−C̄2

1+rf
≤ C1 ≤ C̄1 is the set of feasible solutions and

CP8,∗
1 = C̄P8

1 , see (68), for C̄1 > C̄T
1 and λ > max{0, λP4

U2, λ
P6
3 }, see (P8)-(i) or

CP8,∗
1 = Y1 + Y2g−C̄2

1+rf
for C̄1 < C̄T

1 and λ > λP6
3 , see (P8)-(i)

As C1 = C̄1 is part of the set of feasible solutions for both (P4) and (P8), values

of utility functions coincide at this point and it is the point where (P4) reaches its

maximum (not (P8)) then the objective function of (P8) at its maximum exceeds the

objective function of (P4) at its maximum.

Similarly, as C1 = Y1 + Y2b−C̄2

1+rf
is part of the set of feasible solutions for both (P5)

and (P6), values of utility functions coincide at this point and it is the point where

(P5) reaches its maximum (not (P6)) and thus the objective function of (P6) at its

maximum exceeds the objective function of (P5) at its maximum.

Let C̄1 < C̄T
1 . Then (P6)-(v) implies that (P6) has an interior solution. As Y1 +

Y2g−C̄2

1+rf
is the feasible solution of both (P6) and (P8), values of objective functions

coincide at this point, and it is actually the point where (P8) reaches its maxima, see

(P8)-(i), then the objective function of (P6) at its maximum exceeds the objective

function of (P8) at its maximum.

On the other hand, let C̄1 > C̄T
1 . Then (P8)-(i) implies that (P8) has an interior

solution. As Y1 + Y2g−C̄2

1+rf
is the feasible solution of both (P6) and (P8), values of

objective functions coincide at this point, and it is actually the point where (P6)

reaches its maxima then the objective function of (P8) at its maximum exceeds the

objective function of (P6) at its maximum.

In summary, for C̄1 < C̄T
1 is (P6)>(P8)>(P4) and (P6)>(P5).5 On the other hand,

for C̄1 > C̄T
1 is (P8)>(P6)>(P5) and (P8)>(P4). This �nished the proof.

Case (ii): Let Y1 + Y2b−C̄2

1+rf
< C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ C̄1 ≤ Y1 + Y2b−C2L

1+rf
. For this param-

eter set-up the maximum can be reached either in (P4), or (P6) or (P8) where (P4) and

(P8) are de�ned as in the proof of case (i) and (P6) is given for λ > max{0, λP6
1 , λP6

3 }

by

(P6): C1L ≤ C1 ≤ Y1 + Y2g−C̄2

1+rf
is the set of feasible solutions and following from (P6)-

5To easy the notation, by writing (P6)>(P8), for instance, we mean: �the value of the utility

function of problem (P6) at its maximum exceeds the value of the utility function of problem (P8) at

its maximum.
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(vi)

CP6,∗
1 = C1L for C̄1 < C̄T2

1

CP6,∗
1 = C̄P6

1 for C̄T2
1 < C̄1 < C̄T

1

CP6,∗
1 = Y1 + Y2g−C̄2

1+rf
for C̄1 > C̄T

1

The statements follow from the similar lines of arguments as in the proof of case (i)

and from comparing (P8) and (P6).

Case (iii): let Y1 + Y2b−C̄2

1+rf
< Y1 + Y2g−C̄2

1+rf
< C1L ≤ C̄1 ≤ Y1 + Y2b−C2L

1+rf
. For this

parameter set-up the maximum can be reached either in (P4) or (P8) and the fact that

the objective function of (P8) at its maximum exceeds the objective function of (P4)

at its maximum was already argued (and shown) in the proof of case (i).

Lemma C.9. Let max
{
Y1 + Y2b−C2L

1+rf
, Y1 + Y2g−C̄2

1+rf

}
< C̄1. Then the following holds

(i) For C1L ≤ Y1 + Y2b−C2L

1+rf
< Y1 + Y2g−C̄2

1+rf
< C̄1 and λ > max{0, λP5

U , λP6
1 , λP6

2 } is the

solution of (7) given as follows

C∗1 =

 C̄P6
1 , for C̄1 < C̄T1

1

Y1 + Y2b−C2L

1+rf
, for C̄1 > C̄T1

1

(129)

where results are stated by (111)-(114) if C∗1 = C̄P6
1 and results are given by

(115)-(118) if C∗1 = Y1 + Y2b−C2L

1+rf
.

(ii) For C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1, C̄

T
1 < C̄1 < C̄T3

1 and λ >

max{0, λP5
U , λP6

1 , λP6
3 , λP8

1 } or

for Y1 + Y2g−C̄2

1+rf
≤ C1L ≤ Y1 + Y2b−C2L

1+rf
< C̄1, C̄

T4
1 < C̄1 < C̄T3

1 and λ >

max{0, λP8
1 , λP8

2 }

is the solution of (7) given by (125)-(128), as stated in Proposition C.8-(i).

(iii) For C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1 < C̄T

1 and λ > max{0, λP5
U , λP6

1 , λP6
3 }

is the solution of (7) given by (111)-(114), as stated in Proposition C.7-(i).

(iv) The following holds for C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1, C̄1 > C̄T3

1 and

λ > max{0, λP5
U , λP6

1 , λP6
3 , λP8

1 }
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or for Y1+Y2g−C̄2

1+rf
≤ C1L ≤ Y1+Y2b−C2L

1+rf
< C̄1, C̄1 > C̄T3

1 and λ > max{0, λP8
1 , λP8

2 }

C1L ≤ C∗1 = Y1 +
Y2b − C2L

1 + rf
< C̄1 (130)

C∗2g = Y2g − Y2b + C2L ≤ C̄2 (131)

C∗2b = C2L < C̄2 (132)

1

γ2

E(U(C∗1)) = −γ
(
C̄1 − Y1 −

Y2b − C2L

1 + rf

)
− λ

2

(
C̄1 − Y1 −

Y2b − C2L

1 + rf

)2

−δp γ(C̄2 − C2L − Y2g + Y2b)−
λ

2
(C̄2 − C2L − Y2g + Y2b)

2

−δ(1− p)γ(C̄2 − C2L)− λ

2
(C̄2 − C2L)2 (133)

(v) For Y1 + Y2g−C̄2

1+rf
≤ C1L ≤ Y1 + Y2b−C2L

1+rf
< C̄1 < C̄T4

1 and λ > max{0, λP8
1 , λP8

2 } is

the solution of (7) given as follows

C∗1 = C1L ≤ C̄1 (134)

C2L ≤ C∗2g = Y2g + (1 + rf )(Y1 − C1L) ≤ C̄2 (135)

C2L ≤ C∗2b = Y2b + (1 + rf )(Y1 − C1L) < C̄2 (136)
1

γ2

E(U(C1L)) =

(137)

Proof. Case (i): Let C1L ≤ Y1 + Y2b−C2L

1+rf
< Y1 + Y2g−C̄2

1+rf
< C̄1 and λ > max{0, λP5

U ,

λP6
1 , λP6

2 }. Then the following two sub-cases can be considered.

Sub-case (i)-(1): Let C1L ≤ Y1 + Y2b−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< Y1 + Y2g−C̄2

1+rf
< C̄1. For this

parameter set-up the maximum can be reached either in (P5) or (P6) where

(P5): C1L ≤ C1 ≤ Y1 + Y2b−C̄2

1+rf
is the set of feasible solutions and

CP5,∗
1 = Y1 + Y2b−C̄2

1+rf
for λ > λP5

U , see (P5)-(i) and (P5)-(iii)

(P6): Y1 + Y2b−C̄2

1+rf
≤ C1 ≤ Y1 + Y2b−C2L

1+rf
is the set of feasible solutions and for λ >

max{0, λP5
U , λP6

2 } is C
P6,∗
1 = C̄P6

1 , see (61), for C̄1 < C̄T1
1 and CP6,∗

1 = Y1 + Y2b−C2L

1+rf

for C̄1 > C̄T1
1 (see (P6)-(iii)).

Sub-case (i)-(2): Let Y1 + Y2b−C̄2

1+rf
< C1L ≤ Y1 + Y2b−C2L

1+rf
< Y1 + Y2g−C̄2

1+rf
< C̄1. For this

parameter set-up the maximum can be reached either only in (P6) where
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(P6): C1L ≤ C1 ≤ Y1+Y2b−C2L

1+rf
is the set of feasible solutions and for λ > max{0, λP6

1 , λP6
2 }

is CP6,∗
1 = C̄P6

1 , see (61), for C̄1 < C̄T1
1 and CP6,∗

1 = Y1 + Y2b−C2L

1+rf
for C̄1 > C̄T1

1 .

This follows from (P6)-(iv)-(2) and (P6)-(iv)-(3).6

Note that for C1L > Y1 + Y2b−C2L

1+rf
is the set of feasible solutions empty for case (i).

As C1 = Y1 + Y2b−C̄2

1+rf
is part of the set of feasible solutions for both (P5) and (P6),

values of utility functions coincide at this point and it is the point where (P5) reaches its

maximum (not (P6)) and thus the objective function of (P6) at its maximum exceeds

the objective function of (P5) at its maximum.

Case (ii): Let C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1, C̄T

1 < C̄1 < C̄T3
1 and

λ > max{0, λP5
U , λP6

1 , λP6
3 , λP8

1 }. Then the following two sub-cases can be considered.

Sub-case (ii)-(1): Let C1L ≤ Y1 + Y2b−C̄2

1+rf
≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1. For this

parameter set-up the maximum can be reached either in (P5), (P6) or (P8) where

(P5): C1L ≤ C1 ≤ Y1 + Y2b−C̄2

1+rf
is the set of feasible solutions and

CP5,∗
1 = Y1 + Y2b−C̄2

1+rf
for λ > λP5

U , see (P5)-(i) and (P5)-(iii)

(P6): Y1 + Y2b−C̄2

1+rf
≤ C1 ≤ Y1 + Y2g−C̄2

1+rf
is the set of feasible solutions and

CP6,∗
1 = Y1 + Y2g−C̄2

1+rf
for λ > max{0, λP5

U , λP6
3 }, see (P6)-(v)

(P8): Y1 + Y2g−C̄2

1+rf
≤ C1 ≤ Y1 + Y2b−C2L

1+rf
is the set of feasible solutions and

CP8,∗
1 = C̄P8

1 for λ > max{0, λP6
3 , λP8

1 }, see (P8)-(ii)-(2)

Sub-case (ii)-(2): Let Y1 + Y2b−C̄2

1+rf
< C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1. For this

parameter set-up the maximum can be reached either in (P6) or (P8) where

(P6): C1L ≤ C1 ≤ Y1 + Y2g−C̄2

1+rf
is the set of feasible solutions and

CP6,∗
1 = Y1 + Y2g−C̄2

1+rf
for λ > max{0, λP6

1 , λP6
3 }, see (P6)-(vi)-(3)

(P8): Y1 + Y2g−C̄2

1+rf
≤ C1 ≤ Y1 + Y2b−C2L

1+rf
is the set of feasible solutions and

CP8,∗
1 = C̄P8

1 for λ > max{0, λP6
3 , λP8

1 }, see (P8)-(ii)-(2)

The objective function of (P6) at its maximum exceeds the objective function of (P5)

at its maximum, in sub-case (ii)-(1) as argued in the proof of case (i). And it can be

6Note that under stated conditions C̄1 can not be below C̄T2
1 and thus case (P6)-(iv)-(1) will not

apply.
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argued in the similar lines that objective function of (P8) exceeds at its maximum the

objective function of (P6) at its maximum, in both sub-cases (ii)-(1) and (ii)-(2).

Statement of case (ii) for Y1 + Y2g−C̄2

1+rf
≤ C1L ≤ Y1 + Y2b−C2L

1+rf
< C̄1, C̄T4

1 < C̄1 < C̄T3
1

and λ > max{0, λP8
1 , λP8

2 } follows from (P8)-(iii)-(2).

Case (iii): Let C1L ≤ Y1+Y2g−C̄2

1+rf
≤ Y1+Y2b−C2L

1+rf
< C̄1 < C̄T

1 and λ > max{0, λP5
U , λP6

1 ,

λP6
3 }. Then the following two sub-cases can be considered.

Sub-case (iii)-(1): Let C1L ≤ Y1 + Y2b−C̄2

1+rf
≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1 < C̄T

1 .

For this parameter set-up the maximum can be reached either in (P6) or (P8) where

(P5): C1L ≤ C1 ≤ Y1 + Y2b−C̄2

1+rf
is the set of feasible solutions and

CP5,∗
1 = Y1 + Y2b−C̄2

1+rf
for λ > λP5

U , see (P5)-(i) and (P5)-(iii)

(P6): Y1 + Y2b−C̄2

1+rf
≤ C1 ≤ Y1 + Y2g−C̄2

1+rf
is the set of feasible solutions and

CP6,∗
1 = C̄P6

1 for λ > max{0, λP5
U , λP6

3 }, see (P6)-(v)

(P8): Y1 + Y2g−C̄2

1+rf
≤ C1 ≤ Y1 + Y2b−C2L

1+rf
is the set of feasible solutions and

CP8,∗
1 = Y1 + Y2g−C̄2

1+rf
for λ > max{0, λP6

3 , λP8
1 }, see (P8)-(ii)-(1)

(P5)<(P6) as argued in the proof of case (i).

Sub-case (iii)-(2): Let Y1 + Y2b−C̄2

1+rf
< C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1 < C̄T

1 . For

this parameter set-up the maximum can be reached either in (P6) or (P8) where

(P6): C1L ≤ C1 ≤ Y1 + Y2g−C̄2

1+rf
is the set of feasible solutions and

CP6,∗
1 = C̄P6

1 for λ > max{0, λP6
1 , λP6

3 }, see (P6)-(vi)-(2)

(P8): Y1 + Y2g−C̄2

1+rf
≤ C1 ≤ Y1 + Y2b−C2L

1+rf
is the set of feasible solutions and

CP8,∗
1 = Y1 + Y2g−C̄2

1+rf
for λ > max{0, λP6

3 , λP8
1 }, see (P8)-(ii)-(1)

As C1 = Y1 + Y2g−C̄2

1+rf
is part of the set of feasible solutions for both (P6) and (P8),

values of utility functions coincide at this point and it is the point where (P8) reaches its

maximum (not (P6)) and thus the objective function of (P6) at its maximum exceeds

the objective function of (P8) at its maximum. This applies for both sub-cases (iii)-(1)

and (iii)-(2).

Statement for case (iii) when Y1 + Y2g−C̄2

1+rf
≤ C1L ≤ Y1 + Y2b−C2L

1+rf
< C̄1 < C̄T

1 and

λ > max{0, λP8
1 , λP8

2 } follows from (P8)-(iii)-(3).
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Case (iv): Let C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1, C̄1 > C̄T3

1 and λ >

max{0, λP5
U , λP6

1 , λP6
3 , λP8

1 }. Then the following two sub-cases can be considered.

Sub-case (iv)-(1): Let C1L ≤ Y1 + Y2b−C̄2

1+rf
≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1 > C̄T3

1 .

For this parameter set-up the maximum can be reached either in (P5), (P6) or (P8)

where

(P5): C1L ≤ C1 ≤ Y1 + Y2b−C̄2

1+rf
is the set of feasible solutions and

CP5,∗
1 = Y1 + Y2b−C̄2

1+rf
for λ > λP5

U , see (P5)-(i) and (P5)-(iii)

(P6): Y1 + Y2b−C̄2

1+rf
≤ C1 ≤ Y1 + Y2g−C̄2

1+rf
is the set of feasible solutions and

CP6,∗
1 = Y1 + Y2g−C̄2

1+rf
for λ > max{0, λP5

U , λP6
3 }, see (P6)-(v)

(P8): Y1 + Y2g−C̄2

1+rf
≤ C1 ≤ Y1 + Y2b−C2L

1+rf
is the set of feasible solutions and

CP8,∗
1 = Y1 + Y2b−C2L

1+rf
for λ > max{0, λP6

3 , λP8
1 }, see (P8)-(ii)-(3)

Based on the similar lines of arguments we can see that (P5)<(P6)<(P8).

Sub-case (iv)-(2): Let Y1 + Y2b−C̄2

1+rf
< C1L ≤ Y1 + Y2g−C̄2

1+rf
≤ Y1 + Y2b−C2L

1+rf
< C̄1 > C̄T3

1 .

For this parameter set-up the maximum can be reached either in (P6) or (P8) where

(P6): C1L ≤ C1 ≤ Y1 + Y2g−C̄2

1+rf
is the set of feasible solutions and

CP6,∗
1 = Y1 + Y2g−C̄2

1+rf
for λ > max{0, λP6

1 , λP6
3 }, see (P6)-(vi)-(3)

(P8): Y1 + Y2g−C̄2

1+rf
≤ C1 ≤ Y1 + Y2b−C2L

1+rf
is the set of feasible solutions and

CP8,∗
1 = Y1 + Y2b−C2L

1+rf
for λ > max{0, λP6

3 , λP8
1 }, see (P8)-(ii)-(3)

Based on the similar lines of arguments we can see that (P6)<(P8).

Finally, statement of case (v) follows from (P8)-(iii)-(1).
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