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Abstract

STARINSKÁ, Veronika: Advanced bitcoin dynamics and risk management [Master

thesis], Comenius University in Bratislava, Faculty of Mathematics, Physics and Infor-

matics, Department of Applied Mathematics and Statistics, Supervisor: Mgr. Pedro

R.C.F. Pólvora, Bratislava, 2017, 58 p.

The aim of this Master Thesis is to study bitcoin dynamics by focusing on the

application of advanced time series modelling methods and particular risk measures.

In the �rst part of this thesis, a robust risk measure called expected shortfall (ES or

cVaR) is applied to bitcoin daily returns. Besides, we pay attention to the risk linked

with a portfolio which includes bitcoin and show that bitcoin is becoming more stable.

As for the second part of this thesis, the important theory of time series modelling

useful to study bitcoin returns is provided. Finally, in the last part, a broad range of

time series methods is considered and applied to bitcoin historical price, concluding in

obtaining the model which �t the data best.

Keywords: Bitcoin, Time Series, Expected Shortfall, Risk Measure, Price Dynamics



Abstrakt v ²tátnom jazyku

STARINSKÁ, Veronika: Pokro£ilé modely dynamiky bitcoinu a riadenie rizík [Diplo-

mová práca], Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a in-

formatiky, Katedra aplikovanej matematiky a ²tatistiky; ²kolite©: Mgr. Pedro R.C.F.

Pólvora, Bratislava, 2017, 58 s.

Cie©om tejto diplomovej práce je skúma´ vývoj ceny bitcoinu zameraním sa na ap-

likáciu pokro£ilých metód z oblasti £asových radov a výberom vhodnej miery rizika.

V prvej £asti práce predstavíme robustnú mieru rizika zvanú expected shortfall (ES

alebo cVaR) a následne ju aplikujeme na denné výnosy bitcoinu. Naviac sa pozrieme

na riziko spojené s portfóliom zah¯¬ajúce bitcoin a ukáºeme, ºe bitcoin v posledných

rokoch ukazuje stabilnej²í priebeh. Druhá £as´ práce sa venuje teórii £asových radov

vhodných na modelovanie dynamiky bitcoinových výnosov. Nakoniec aplikujeme vy-

brané modely £asových radov na historické ceny bitcoinu a nájdeme model, ktorý

popisuje dáta najlep²ie.

K©ú£ové slová: bitcoin, £asové rady, Expected Shortfall, miera rizika, vývoj ceny
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INTRODUCTION INTRODUCTION

Introduction

Bitcoin is a digital and decentralized currency introduced by Satoshi Nakamoto. It

provides users with many advantages such as more anonymity, independence from

third party in form of a �nancial institution and low fees of transactions. In spite of

mentioned bene�ts, bitcoin was considered as highly volatile since its deployment.

However, approximately from year 2015 something remarkable can be seen on the

graphs of bitcoin price. One might notice that the �uctuations in price became less

volatile. The stabilization of bitcoin price might make more people to start perceive

bitcoin as a transaction tool or a business opportunity. The aforementioned facts lead

us to study the price dynamics and try to �nd a suitable model for data.

Therefore, this thesis �rstly introduce a reader to the de�nition of volatility and its

basic characteristics. We will present possible ways of approaching the volatility and

�nish the chapter with short induction into bitcoin volatility. We will mention some of

the research which have been done in aforementioned topic by now.

The second chapter is dedicated to the fundamental theory crucial to understand

the advanced time series modelling. Since the volatility of bitcoin is clearly changing

over the time, we focus our attention to the conditional heteroskedastic models from

ARCH/GARCH family.

A robust risk metric, the expected shortfall or also known as the conditional Value-

at-Risk is introduced in the third chapter. Here we make a use of the bitcoin daily

returns and calculate the expected shortfall value by several approaches. Finally, we

will build a portfolio including bitcoin, Japanese yen and Argentine peso. We will

study the impact of bitcoin to the overall risk which the portfolio is facing.

Naturally, we expect that the negative news linked with bitcoin will have a higher

in�uence on its volatility than the positive news of the same magnitude. Thus, a

measure called news impact curve is presented together with the test for asymmetric

e�ects in the fourth chapter.

And �nally, we will apply the time series theory introduced in chapter 2 on the

daily returns of bitcoin with the intention to �nd an appropriate model describing the

data. We will provide the results of �tting the models and closing comparison of used

approaches.
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1 VOLATILITY

1 Volatility

The value of a portfolio depends on the market's components, including the interest

rates, the exchange rates, the equity prices and many others. Thus, the tracking of

their volatilities plays an important role for the �nancial institutions [15].

In the following chapter we discuss the de�nition of volatility and its basic charac-

teristics, then we introduce exponentially weighted moving average (EWMA) model

and afterwards we move on to the volatility of bitcoin dynamics.

1.1 De�nition of volatility

Firstly, let us remind the well-known basic knowledge of the volatility - σ, which is

de�ned as the standard deviation of the variable's return per unit of time. The period

of time di�ers depending on the particular problem. In case of an option pricing, the

unit of time is usually one year. Using volatility for risk management, the unit of time

usually stands for one day period.

Now, assume the daily returns are independent with the same variance equals to σ2.

The variance of return over T days is T times larger than the variance of the return

over one day. When calculating volatilities, usually the assumption is that there are

252 days per year, because the volatility on business days is much higher than the

one on non-business days. Applying the previous statement, we obtain the relation

between annual and daily standard deviations of return:

σyear = σday
√

252,

showing that the daily volatility is approximately equal to 6% of the annual volatility.

What Causes Volatility?

The �nancial market consists of possible buyers and sellers of a certain good or service

and the transactions between them. Meaning the market is full of various events

happening mostly during the business days. Every new information on the market

makes people to re-evaluate their portfolios. The change in their opinion about the

value of an asset implies changing the asset's price, resulting in volatility change.

11



1.2 Characteristics of Volatility 1 VOLATILITY

Considering a short-run (like in terms of seconds) then this is based on quantity of

transactions. The changes of volatility are usually very small. Complicated algorithms

are designed to detect these quick changes. This is where high-frequency trading comes

into play.

1.2 Characteristics of Volatility

In the following subsection we discuss the attributes of volatility, based on [15] and

[25]. An important feature to mention is that volatility per se can not be forecasted.

We cannot obtain the daily volatility from the daily returns, since there is only one

observation per day. But one can estimate the daily volatility from, for example,

intraday returns. Despite this, the accuracy of such an estimate require better study.

Among commonly observed characteristics of volatility we can put the existence of

volatility clustering. In other words, large changes tend to be followed by large changes,

and small changes tend to be followed by small changes. Figure 1 shows an example

of the volatility clustering shown on the returns of bitcoin.

Further, the volatility jumps are rarely to be seen, so one can assume that volatility

changes continuously. Its value does not diverge to in�nity - statistically speaking,

volatility is often stationary, and it reacts di�erently to a big price increase or a big

price drop.

Even though risk managers usually compute a volatility from historical data, they

should not forget to pay attention to implied volatility. The implied volatility is

what we obtain when we use a pricing formula that takes volatility as one parameter

and we solve that formula with respect to the volatility. So, given an asset's price we

can obtain a volatility, which we denote implied volatility.

The example of such formula is the Black-Scholes formula, which is often used in

option market. But it is necessary to mentioned that usually the implied volatility is

larger than the one obtained by using a GARCH type of volatility model.

12



1.3 Approaching Daily Volatility 1 VOLATILITY

Figure 1: Volatility clustering

The VIX Index

The Chicago Board Options Exchange (CBOE) publishes indices of implied volatility.

The most popular one is the VIX index, representing an implied volatility of 30-day

option on the S&P 500 calculated from a wide range of calls and puts.

1.3 Approaching Daily Volatility

Since, volatility evolves over time it is necessary to study its behaviour and try to

predict it. In this section we discuss some of the basic approaches to calculate the

daily volatility of a variable.

Let σt be the estimated daily volatility of return on day t, the square of the volatility,

σ2
t , be the variance rate, and Pt be the price of the variable at time t. De�ne the (simple)

13



1.3 Approaching Daily Volatility 1 VOLATILITY

daily return - Rt

Rt =
Pt − Pt−1

Pt−1

.

Using the natural logarithm, we obtain the log returns, which we use in the following

chapters.

rt = log
Pt
Pt−1

= logPt − logPt−1.

Now, the �rst estimate of σt is equal to the standard deviation of the returns.

Applying the well-known de�nition of the standard deviation with the most recent m

observations, we obtain

σ̂2
t =

1

m− 1

m∑
i=1

(rt−i − r)2 (1.1)

where r is the mean of the rt

r =
1

m

m∑
i=1

rt−i

The expected change of variable in one day is very small comparing to the standard

deviation of changes, so one can assume r to be zero. By replacing m − 1 with m we

move from an unbiased estimate of the volatility to a maximum likelihood estimate.

All together, we obtain the formula for the variance rate

σ̂2
t =

1

m

m∑
i=1

r2
t−i (1.2)

Weighting Schemes

In previous equation 1.2 we assign same weights to all of the returns. But it is more

reasonable to attribute greater importance to the recent data. A following model

ensures such requirements

σ2
t =

m∑
i=1

αir
2
t−i, (1.3)

where αi are the weights given to the observations, which must satisfy conditions such

as αi > 0 for all i and
∑m

i=1 αi = 1. By choosing αi < αj for i > j we assign less weight

to the older observations.

14



1.3 Approaching Daily Volatility 1 VOLATILITY

Including a long-run average variance rate (VL) in the upper equation 1.3 changes

the model as follows

σ2
t = γVL +

m∑
i=1

αir
2
t−i, (1.4)

with condition on the weights γ+
∑m

i=1 αi = 1. This approach is equivalent to modelling

the variance as an ARCH(p) stochastic process that we de�ne in greater detail in

chapter 2. But before we do so, we introduce the EWMA model.

The Exponentially Weighted Moving Average Model

The EWMA model is a special case of the equation 1.3 with exponentially decreasing

weights αi. Let λ be a constant between zero and one, then αi+1 = λαi for all i.

The daily volatility using the EWMA model is sum of the daily volatility estimate

from previous day and the most recent daily return with associated weights.

σ2
t = λσ2

t−1 + (1− λ)r2
t−1 (1.5)

Now, we take a closer look at equation 1.5 to show exponential decreasing of weights.

Firstly, we substitute for σ2
t−1

σ2
t = λ[λσ2

t−2 + (1− λ)r2
t−2] + (1− λ)r2

t−1,

σ2
t = (1− λ)(r2

t−1 + λr2
t−2) + λ2σ2

t−2.

Repeating previous substitution for σ2
t−2 give us

σ2
t = (1− λ)(r2

t−1 + λr2
t−2 + λ2r2

t−3) + λ3σ2
t−3

By continuing with the iteration process we obtain

σ2
t = (1− λ)

m∑
i=1

λi−1r2
t−i + λmσ2

t−m.

The limit of λmσ2
t−m goes to zero for large m and now the equation above with αi =

(1−λ)λi−1 corresponds with equation 1.3. As one can see, moving back through time,

the weights decrease at rate λ.

Model's storage requirements are undemanding because at any point in time, we

need only the most recent return and the last estimate of volatility to calculate new

15



1.4 Volatility of Bitcoin 1 VOLATILITY

volatility estimate. The EWMA model tracks changes in the volatility. A high value

of λ produce volatility which responds relatively slowly to new information about the

return and vice versa.

1.4 Volatility of Bitcoin

Until now we introduced the basic theory of volatility, including its de�nition, basic

properties and some of the possible ways how to calculate the daily volatility of a

variable. The following section deals with bitcoin volatility.

Since its deployment, bitcoin is enjoying much more popularity by media than

the other cryptocurrencies. It is mostly because bitcoin provide many advantages

such as its complete decentralization from all �nancial authorities, provision of more

anonymity for users and fast processing of payments due to a peer-to-peer network

called Blockchain introduced by Satoshi Nakamoto, see [22]. Despite mentioned bene-

�ts, bitcoin is highly volatile to be used as currency.

In spite of the period of high volatility in 2014, bitcoin started to evince a relatively

stable progress since early 2015. The article [4] noticed the stabilization of the volatility

too. It compares the periods [December 2010 - June 2015] and [January 2015 - June

2015]. Although the second interval shows less volatility persistence, the degree of

asymmetry remains strong. In other words, it is likely driven by negative rather than

positive shocks.

The volume of bitcoin transactions is considered in research published in article

[21]. The raw annualised volatility of Bitcoin and the adjusted returns are compared

to major exchange rates.

Adjusted Return = ∆Exchange rate

Volume of trades

This study shows that when comparing only the raw changes on the bitcoin exchange

rate, the volatility is much higher than the other major currencies, such as Euro,

Sterling Pound, Ruble, Franc and others. Taking into account the volume of trades,

the volatility of the bitcoin exchange rate reduces signi�cantly.

16



2 CONDITIONAL HETEROSKEDASTIC MODELS

2 Conditional Heteroskedastic Models

In the following chapter, we discuss various univariate volatility models. Firstly, we

focus on the ARCH model and its basic properties, then we introduce the generalized

autoregressive conditional heteroskedastic (GARCH) model. We pay attention to the

bene�ts and drawbacks of mentioned volatility models. Eventually, we go through some

of the volatility models designed speci�cally to correct the weaknesses of the existing

ones, such as EGARCH model. This chapter is based on the information from [25].

We can divide the conditional heteroskedastic models into two categories:

• 1st category - use an exact function to determine the dynamics of σ2
t (e.g.

GARCH model),

• 2nd category - use a stochastic equation to describe σ2
t (e.g. the stochastic

volatility model).

Now, we discuss volatility models from the �rst category in more detail. Let's start

with the basic de�nition and properties of the ARCH model.

2.1 The ARCH Model

In the ARCHmodel the volatility at time t is completely pre-determined (deterministic)

given previous values. It is one of the earliest time series models for heteroskedastic-

ity, which is used in modelling �nancial time series that show time-varying volatility

clustering. Throughout the text, at is referred to as the return residual at time t.

De�nition 2.1 (ARCH(p) model). We de�ne the autoregressive conditional heteroskedas-

ticity model of order p, or simply ARCH(p) model as

at =
√
σ2
t εt; σ2

t = ω + α1a
2
t−1 + ...+ αpa

2
t−p (2.1)

where {εt} is a sequence of independent and identically distributed (iid) random vari-

ables with mean zero and variance 1 (white noise with unit variance), i.e., at ∼ N(0, σ2
t ).

One could expect that the older information, the less impact it has on current

volatility, hence αi < αj for i > j. In an ARCH(p) model, only the information

17



2.1 The ARCH Model 2 CONDITIONAL HETEROSKEDASTIC MODELS

recorded at the market less than p periods ago has an e�ect on volatility, meaning that

αp+j = 0 for j = 1, 2, ....

The coe�cients αi must satisfy some conditions to ensure:

• the positive variance ω > 0, α1, ..., αp−1 ≥ 0, αp > 0,

• stationarity α1 + ...+ αp < 1.

2.1.1 Properties of ARCH Models

For better understanding the basic properties of the ARCH model, we start with con-

ditions regarding to the particular case of the ARCH(1) model.

De�nition 2.2 (ARCH(1) model). We de�ne the autoregressive conditional heteroskedas-

ticity model of order 1, or simply ARCH(1) model as

at =
√
σ2
t εt; σ2

t = ω + α1a
2
t−1 (2.2)

where ω > 0, and α1 ≥ 0.

First of all, the unconditional mean of at remains zero because

E(at) = E[E(at|Ft−1)] = E[σtE(εt)] = 0.

Secondly, the unconditional variance of at is equal to:

V ar(at) = E(a2
t ) = E[E(a2

t |Ft−1)]

= E(ω + α1a
2
t−1) = ω + α1E(a2

t−1)

= ω + α1V ar(at)

We obtained the last equation using the fact that at is a stationary process with E(at) =

0, V ar(at) = V ar(at−1) = E(a2
t−1). Now, we rearrange mentioned equation resulting in

V ar(at) = ω
(1−α1)

. Due to the positive variance, we require 0 ≤ α1 < 1. Furthermore,

in some cases we need higher order moments of at to exist, implying α1 must satisfy

some additional constraints, see [25].

For a general case of a process ARCH(p) we can determine its order by using the

partial autocorrelation function (PACF) of a2
t . To check the adequacy of �tted model,

one can use the Ljung-Box statistics of ãt = at
σt

and the forecast of the ARCH model

can be acquire recursively.

18



2.2 The GARCH Model 2 CONDITIONAL HETEROSKEDASTIC MODELS

2.1.2 Drawbacks of ARCH Models

It is necessary to mention some disadvantages of these models. ARCH models respond

slowly to large isolated shocks causing overpredicting the volatility. This is a drawback

because such shocks are likely to happen in case of bitcoin dynamics.

A small number of terms a2
t−1 is often not su�cient, causing that the squares of

residuals are still often correlated. A larger number of terms does not always guarantee

successfulness of the model, since the terms are often not signi�cant or the constraints

on the parameters are not satis�ed.

Moreover, the model responds equally to positive and negative shocks. Thus, it

depends on the square of the previous shocks. From the real life, we know that the

impact of positive and negative shock on �nancial asset is di�erent.

2.2 The GARCH Model

The ARCH model often needs many parameters to appropriately describe the volatility

dynamics. By a simple generalization of the ARCH model we introduce the GARCH

model.

De�nition 2.3 (GARCH(p,q) model). The generalized autoregressive conditional het-

eroskedasticity model, simply GARCH(p,q) model is given by

at =
√
σ2
t εt; σ2

t = ω + α1a
2
t−1 + ...+ αpa

2
t−p

+ β1σ
2
t−1 + ...+ βqσ

2
t−q (2.3)

where {εt} is a sequence of iid random variables with mean zero and variance 1.

As in case of the ARCH model, there are some constraints on parameters:

• variance has to be positive ω > 0, α1, ..., αp−1 ≥ 0, αp > 0,

β1, ..., βq−1 ≥ 0, βq > 0,

• stationarity (α1 + ...+ αp) + (β1 + ...+ βq) < 1.

The αi and βi are known as ARCH and GARCH parameters, respectively.
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2.2.1 Properties of GARCH models

Consider frequently used simple GARCH(1,1) model.

at =
√
σ2
t εt; σ2

t = ω + α1a
2
t−1 + β1σ

2
t−1

0 ≤ α1, β1 ≤ 1, (α1 + β1) < 1 (2.4)

Note that a large a2
t−1 or σ2

t−1 causes a large σ2
t and therefore a large a2

t . Stated

implication is described in chapter 1 as volatility clustering. The aforementioned model

also gives a simple parametric function for calculating the volatility.

Moreover, it can be shown that after ful�lling a condition 1− 2α2
1 − (α1 + β1)2 > 0,

the value of a kurtosis (the fourth standardized moment) is more than three. This

leads us to conclusion that the GARCH(1,1) model has heavier tails than a normal

distribution.

Regarding the weaknesses of GARCH models, they are the same as those of the

ARCH models. For example, a GARCH model assumes the same e�ect on volatility

by both positive and negative shocks.

2.3 Other Models for Volatility

In the theory of time series one might �nd special models designed for enhancing the

weaknesses of above mentioned GARCH model. Now, we brie�y introduce some of

them, focusing on the asymmetric e�ect (also known as the leverage e�ect).

2.3.1 TGARCH(1,1) model

Regarding to �nancial time series, it is usual to observe that "bad news" seem to have

higher impact on volatility than "good news". For instance, the threshold GARCH

(TGARCH) model is designed to cope with this leverage e�ect. Therefore, the

model uses zero as a threshold to distinguish between the "good news" - at > 0 and

the "bad news" - at < 0.

The notation of a TGARCH(1,1) model is

at =
√
σ2
t εt, σ2

t = ω + α1a
2
t−1 + λ1dt−1a

2
t−1 + β1σ

2
t−1, (2.5)
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where dt−1 is a dummy variable. In this case, when threshold is set to zero, the value

of dt−1 is equal to one or zero based on the sign of at−1

dt−1 =

1 if at−1 < 0,

0 if at−1 > 0,

In other words, the e�ect of at−1 on volatility caused by negative return residual is

(α1 + λ1)a2
t−1 and of the positive one is only equal to α1a

2
t−1. So the leverage e�ect of

shocks is ensured.

2.3.2 EGARCH(1,1) model

Another approach used to handle the asymmetric e�ects of positive and negative shocks

is the exponential GARCH (EGARCH) model. Unlike the GARCH model,

EGARCH approach models the logarithm of volatility to detect the aforementioned

asymmetry in observed data.

One of the advantages of an EGARCHmodel is that it does not require the estimated

coe�cients to be positive. On the other hand, It is di�cult to compute unbiased

forecasts of volatility over multiperiod intervals.

at =
√
σ2
t εt; log σ2

t = ω + α1

[
|at−1|
σt−1

− E |at−1|
σt−1

]
+ γ1

(
at−1

σt−1

)
+ β1 log σ2

t−1 (2.6)

Since γ1 is typically negative, positive shocks a�ect volatility less than an unexpected

decrease in price (bad news) of similar magnitude.

2.3.3 NGARCH(1,1) Model

Another enhanced model is nonlinear GARCH model - NGARCH, sometimes

known as the power GARCH model. It covers the leverage e�ect, indicating that

negative news increase future volatility by a larger amount than positive news of the

same magnitude.

The approach is modelling the conditional standard deviation to the power δ as func-

tion of the lagged conditional standard deviations and the lagged absolute innovations

raised to the same power.

at =
√
σ2
t εt; σδt = ω + α1|at−1|δ + β1σ

δ
t−1 (2.7)
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In case δ = 2, this formulation reduces to a standard GARCH(1,1) model, see 2.4

And similarly we could continue naming more models of GARCH. For more detailed

information see, for example [9], [25] or [27].
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3 RISK METRICS

3 Risk metrics

In terms of the �nancial world, a risk represents the chance that an investment's ac-

tual return will be di�erent than expected. So the basic idea of the risk is strongly

associated with the uncertainty. High levels of the uncertainty are usually related with

high potential returns. Measuring and controlling risk has become inseparable part of

decision making. The �nancial markets are no exception.

Figure 2: Price and corresponding returns of bitcoin

3.1 Previous analysis

In [24] we discussed the measure of risk that considers the extreme events as the source

of a risk - the value at risk (VaR). After introducing two approaches of modelling VaR

(modelling VaR from the parametric distribution, and modelling an historical VaR),

we applied aforementioned methods on the bitcoin data.
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The concept of Value at risk includes some inconsistencies, so in this chapter we

focus on the robust risk measures such as a conditional value at risk known as an

expected shortfall.

3.2 Expected shortfall

The conditional value at risk (cVaR or ES) is the average loss conditioned to the

fact that certain threshold is exceeded. It is an alternative to VaR which gives us

more accurate estimate of the amplitude of large losses and is usually used to reduce

the probability that a portfolio will generate large losses. Therefore sometimes the

expected shortfall is called as tail VaR (TVaR) or expected tail loss (ETL).

Now we present the de�nition of mentioned risk measure associated with VaR -

expected shortfall.

De�nition 3.1 (Expected Shortfall (ES)). For a given random variable X, the expected

shortfall is de�ned as the expected size of a loss that exceeds V aRα

ESα = E [X|X > V aRα] (3.1)

= V aRα + E [X − V aRα|X > V aRα] (3.2)

Unlike the Value at Risk, Expected shortfall is considered as coherent risk mea-

sure. We state the de�nition of a coherent risk measure. A more detailed information

regarding the coherent risk measures can be found for example in [8].

De�nition 3.2 (Coherent Risk Measure). A mapping ρ : L∞(Ω,F ,P)→ R is called a

coherent risk measure if the following properties hold

If X ≥ 0 then ρ(X) ≤ 0.(i)

Subadditivity: ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).(ii)

Positive homogeneity: for λ ≥ 0 we have ρ(λX) = λρ(X).(iii)

For every constant function c we have that ρ(c+X) = ρ(X)− c.(iv)

The expected shortfall is a weighted average of the VaR and losses exceeding the

VaR. In other words, as it is said in [15], the VaR asks question: "How bad can the
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situation get?", and the expected shortfall asks: "If the situation does get bad, what is

our expected loss?". The �gure 3 from [15] shows us the di�erence between VaR and

ES. Unlike the VaR, the ES focuses on the events when the VaR is exceeded, which is

represented by a bump in �gure.

(a) VaR (b) ES

Figure 3: Example of probability distribution of the gain - VaR and ES

3.3 Estimation Methods for Expected Shortfall

There are several possible methods how to estimate the expected shortfall. We divide

them into the following categories

• non-parametric methods,

• parametric methods,

• semi-parametric methods.

Now, we take shortly mentioned some of them, more information regarding the esti-

mation methods might be found for example in [18].

3.3.1 Non-parametric Methods

The non-parametric methods use empirical distribution to estimate risk measure. One

of them is the historical method.
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Historical method

This approach of estimating expected shortfall is given by

ÊSα(X) =

(
n∑

i=[nα]

X(i)

)
(n− [nα])

(3.3)

where [x] denotes the largest integer not greater than x and X(1) ≤ X(2) ≤ ... ≤ X(n)

are the variables ordered in the ascending order.

3.3.2 Parametric Methods

The basic idea of parametric methods is to specify parametric distribution for returns,

estimate parameters of distribution and estimate risk measures as functions of esti-

mated parameters.

In this category belong methods which consider the distribution of observations (for

example the Gaussian distribution, Student-t distribution, Generalized Pareto distri-

bution etc.) or assume that the returns follow GARCH(1,1) process or many other

models. To improve the idea behind mentioned approaches we shortly present the

methods which involve normal and generalized pareto distributions.

Normal Distribution

In general, for a N(µ, σ2) the ES is given by

ESα = µ+
f(V aRα)

1− α
σ,

where f(x) is the probability density function.

If the random variable is following the Student-t distribution with degrees of freedom

ν > 2, then the ES is given by

ESα = µ+
gν(t

−1
ν (α))

1− α
· ν + (t−1

ν (α))2

ν − 1
σ

where gν is the density of the standard Student-t distribution. In similar way one can

derive the evaluation of ES for any random variable with a probability distribution

parametrized by a location parameter and a non-negative scale parameter.
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Generalized Pareto Distribution

The GPD is used to model the tails of a distribution and it is speci�ed by three

parameters: location µ, scale σ, and shape ξ.

De�nition 3.3 (Generalized Pareto Distribution (GPD)). The cumulative distribution

function of the GPD is de�ned by

F(ξ,µ,σ) =

1−
(

1 + ξ(x−µ)
σ

) 1
ξ

for ξ 6= 0,

1− exp
(
−x−µ

σ

)
for ξ = 0,

(3.4)

for x ≥ µ when ξ ≥ 0, and µ ≤ x ≤ µ− σ/ξ when µ ∈ R, σ > 0 and ξ ∈ R.

Then the estimation of expected shortfall when VaR is exceeded for GPD has the

following form

ÊSα =
V̂ aRα

1− ξ̂
+
σ̂ − ξ̂µ
1− ξ̂

.

3.3.3 Semi-parametric Methods

The third branch of estimation methods is a mixture of non-parametric and parametric

estimation. Some parts of the probability distribution of returns are treated non-

parametrically and some parts are treated parametrically.

Example of such method is the Cornish-Fisher expansion which provides a relatively

easy way of dealing with non-normality in return distribution. The calculation of VaR is

accurate when returns are close to the Gaussian distribution since it takes into account

the higher moments such as skewness and kurtosis of data. More detailed information

regarding the semi-parametric methods might be �nd for example in [23].

3.4 Bitcoin Expected Shortfall

In this section we apply the methods described above to bitcoin prices.

3.4.1 Historical method

To start with the estimation of ES for bitcoin, we look at the historical value of the ES

of daily returns, setting the level of signi�cance equal to 5%. By changing the amount
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of considered returns we obtained the historical ES for each day from returns of the

last 60, 120, and 180 days, see �gure 4.

Figure 4: Historical estimate of ES at 95% con�dence level- di�erent time intervals

From the �gure with drawn historical estimations we can see that the highest vari-

ability is shown by the ES estimated from 60 previous returns. On the contrary,

estimates from 180 prior returns indicate more stable development.

3.4.2 Parametric method

We start with the comparison of historical and gaussian estimate of the expected short-

fall for bitcoin daily returns. In table 1 are the ES estimates at 95% and 99% level. The

�rst column represents the computation of ES from historical sample. In the second

one, the Gaussian ES is recorded.

Historical VaR Historical ES Gaussian VaR Gaussian ES

95% 0.0706 0.1394 0.0889 0.1124

99% 0.1835 0.2656 0.1272 0.1463

Table 1: 95% and 99% ES and VaR - historical and Gaussian approach

Thus, if you are on one of those days when the VaR is exceeded, in this case when

you expect to lose more than 7%, you can actually end up with loss approximately

14%, which is quite risky.

The Gaussian estimate of ES is smaller than the historical expected shortfall. This

means that an investment in bitcoin is linked with higher risk than we would expect
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from a normal distribution, which is consistent with previous studies that the bitcoin

price does not follow a geometric Brownian motion.

3.5 Portfolio with Bitcoin

For the next analysis we create a portfolio consisting of bitcoin (BTC), Japanese

yen (JPY) and Argentine peso (ARS). After the United States dollar and Euro, the

Japanese yen is the third most traded currency in the world and over the decades,

yen is considered a safe-haven currency. On the other hand, Argentina's underground

economy is likely to take a hit thanks to developed black market for pesos. Figure 5

shows the dynamics of yen and Argentine peso since 2011. Historical exchange rates

for JPY/USD and ARS/USD are from website [13].

Figure 5: Exchange rate for Japanese yen and Argentine peso

Before we start with the estimation of an expected shortfall for the portfolio, let

us go back to the de�nition of a coherent risk measure. As it is stated in [15], the
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properties mentioned in the de�nition 3.2 can be easily demonstrated in the following

way

• monotonicity - if a portfolio has lower returns than another portfolio for every

state of the world, its risk measure is greater. In other words, if one portfolio pro-

duces a worse result than another one, it should be considered as risky, therefore

its risk measure should be higher,

• subadditivity - the risk measure for two merged portfolios in no greater than the

sum of their risk measures before they were merged,

• positive homogeneity - change of the portfolio size by a factor λ while keeping the

relative amounts of di�erent items in the portfolio the same, results in the risk

measure being multiplied by λ,

• translation invariance - if we add an amount of cash c to a portfolio, its risk

measure goes down by c.

Unlike the expected shortfall, a VaR does not always satisfy the property of a subad-

ditivity.

Now, we can continue with estimation of expected shortfall for portfolio made from

JPY, ARS and BTC. The portfolio return is given by

Rp =
n∑
i=1

wiRi (3.5)

where the portfolio weight satisfy
∑n

i=1wi is the percentage composition of a particular

holding in a portfolio. Then the ES of a portfolio has the following form

ESα = E [Rp|Rp ≤ V aRα]

=
n∑
i=1

wiE [Ri|Rp ≤ V aRα] (3.6)

We make several portfolios which consist of daily returns of JPY/USD exchange rate,

ARS/USD exchange rate and BTC/USD exchange rate. Our data sample contains

daily returns for overlapping trading days for all three currencies, starting on 2nd

January 2011 until 30th December 2016. The mentioned portfolios has the following
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form

P1 = 1/3JPY1 + 1/3ARS1 + 1/3BTC1,

P2 = 1/2JPY1 + 1/2ARS1,

P3 = 1/3JPY2 + 1/3ARS2 + 1/3BTC2,

where the index 1 represents time period from 2011 until 2016 and index 2 stands for

period 2014-2016.

To start with, we assign equal weights for all three holdings in portfolio. Table 2

show historical, gaussian and modi�ed (Cornish-Fisher) value of the expected shortfall

at 95% and 99% con�dence level.

Historical ES Gaussian ES Modi�ed ES

95% 0.0531 0.0505 -0.0004

99% 0.0915 0.0659 0.1406

Table 2: Historical, Gaussian and modi�ed ES of portfolio at 95% and 99% con�dence

level (2011-2016)

For 95% con�dence level, the ES is signi�cantly higher than the ES values obtained

for the portfolio consisting only from Japanese yen and Argentine peso, see table 3

Bitcoin has the highest contribution on the values of expected shortfall, in all calcula-

tions it is more than 90%. On the other hand, the modi�ed expected shortfall at 99%

Historical ES Gaussian ES Modi�ed ES

95% 0.0115 0.0115 -0.0094

99% 0.0250 0.0147 0.1448

Table 3: Historical, Gaussian and modi�ed ES of equally weighted portfolio of Japanese yen

and Argentine peso at 95% and 99% con�dence level

con�dence level is almost the same for both portfolios. This is caused by Argentine

peso which at December 2015 tumbled as much as 30 percent when the government let

currency �oat free.

What we would like to show is that the dynamic of bitcoin is becoming more stable

so we repeat aforementioned estimation of the expected shortfall for shorter period of
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time. Now, we consider returns for Japanese yen, Argentine peso, and bitcoin for three

years since January 2014 until the end of year 2016. Results are recorded in table 4.

Historical ES Gaussian ES Modi�ed ES

95% 0.0357 0.0291 0.0351

99% 0.0628 0.0376 0.0583

Table 4: Historical, Gaussian and modi�ed ES of portfolio at 95% and 99% con�dence

level (2014-2016)

It is clearly see that the risk linked with mentioned equally weighted portfolio de-

creased. The bitcoin contribution percentage declined as well. In case of modi�ed

method it is at almost the same level with the Argentine peso.
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4 Asymmetric Impact of News

As we showed before, throughout the years, many approaches of modelling and fore-

casting the volatility were developed. Amongst the most commonly used, de�nitely

belong ARCH and GARCH models and also those which take into consideration a

leverage a�ect of news on volatility (e.g. EGARCH, NGARCH, TGARCH etc.).

4.1 News Impact Curve

In the following section, base on an article [11] we de�ne a standard measure of how

the new information is incorporated into volatility estimates, called a news impact

curve (NIC). This measure was suggested in mentioned article published by Engle

and Ng in 1993. The NIC re�ects a relationship between the new information and

future volatility.

It shows a volatility asymmetry or leverage e�ect (a negative shock yields higher

volatility than a positive shock) for asymmetric GARCH models such as the EGARCH.

Moreover, the news impact curve may be used to compare the properties of di�erent

volatility models in the ARCH class.

4.1.1 Shape of News Impact Curve

The shape of the news impact curve di�ers regarding the applied model. A GARCH

model's NIC is a quadratic function centred on at−1 = 0. The news impact curve for

EGARCH model has minimum at at−1 = 0 and it is exponentially increasing in both

directions but with di�erent parameters. In the case of nonlinear asymmetric GARCH

model is the news impact curve symmetric and centred at at−1 = −γ
√
σ2
t−1.

From �gure 6 (source: [11]) a reader can see how volatility responds to good (right

side of the graph) and bad news (left side of the graph). Moreover, we can observe

two main di�erences between a GARCH and an EGARCH model. Firstly, previously

mentioned, the EGARCH allowance of di�erent impact on volatility by news. Secondly,

the EGARCH model in comparison to GARCH model, allow big news to have a greater

e�ect on volatility.
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Figure 6: News impact curves of GARCH(1,1) and EGARCH(1,1) models, where εt repre-

sents at and ht stands for volatility

To sum up, the leverage e�ect of volatility models is covered by the news impact

curve by letting the slope to be di�erent for positive and negative or allowing the curve

to be centred at at−1 > 0.

4.2 Test for Asymmetric E�ects

Consider that bad news causes more volatility than good news of the same magni-

tude. In this particular case, the GARCH model underpredicts the volatility following

negative news and overpredicts the volatility following positive news.

A part of an article [11] by Engle and Ng was dedicated to three diagnostic tests,

namely Sign Bias Test, Negative Size Bias Test and Positive Size Bias Test.

Having a volatility model, mentioned test examine whether the squared normalized

residuals can be predicted by some not included variable observed in the past. In case

that these variables can predict the squared normalized residual, the variance model is
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misspeci�ed.

Sign bias test is used to examine the signi�cance of positive and negative news on

volatility not predicted by the model under consideration. There is a dummy variable

which is equal to one when at−1 is negative, otherwise it takes a value of zero.

The di�erent e�ects of large and small negative return shocks on volatility which is

not predicted by the volatility model, are the subject of interest in the negative size

bias test.

Positive size bias test is working in a similar way, but in this case it examines the

di�erent impacts that large and small positive return shocks may have on volatility.
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5 Application of Time Series Models to Bitcoin

After introducing the theory needed to understand the basic concept of the advanced

time series models, such as ARCH(p) and GARCH(p,q) model, we focus on modelling

the dynamics of bitcoin returns. The ARCH/GARCH approach is commonly used by

many institutions and companies to gain better idea of the risk their business is facing.

Mean St. dev. Skewness Kurtosis

0.0037 0.0563 -0.3423 13.1556

Table 5: Standard parameters of bitcoin returns

Firstly, we compute the logarithmic returns for the years 2011-2016 from the bitcoin

daily prices we obtained from website [12]. Since the bitcoin market is working 24/7

we include the weekends in our data set. Table 5 shows the evidence of fat tails since

the kurtosis is equal to more than 3 (the Normal value).

Figure 7: Bitcoin returns and correlogram of squared mean-adjusted log-returns

From �gure 7, one might notice the di�erence in amplitudes of bitcoin returns over

the years. In other words, the conditional volatility varies over time (clustering). The

correlogram of squared mean-adjusted returns of bitcoin shows evidence of serial cor-

relation implying a conditional heteroskedastic behaviour.
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5.1 Fitting ARIMA Model and Testing for ARCH E�ect

In this section we focus on �tting ARIMA and GARCH models to obtained bitcoin

returns. Firstly, we �t a suitable ARIMA(p,d,q) model. Since we've already applied

di�erencing on bitcoin price so now, we are working with returns, one should expect the

degree of di�erencing - d - to be equal zero. The resulting order of the �tted ARIMA

model is (p,d,q) = (3,0,1).

Afterwards, we continue with testing whether the residuals of �tted model show

evidence of conditional heteroskedasticity. The ACF of residuals of the ARIMA(3,0,1)

�t are shown in �gure 8. The plot of autocorrelations looks like a realisation of a white

noise which might con�rm the goodness of the �t.

Figure 8: ACF of residuals of �tted ARIMA(3,0,1) model

Let's look at the ACF of squared residuals of �tted ARIMA(3,0,1) model. Figure 10

indicates evidence of serial correlation. We test the autocorrelation of ARIMA(3,0,1)

squared residuals via the Ljung-Box test to address the hypothesis of "no ARCH e�ect"

(no conditional heteroskedasticity). Since the p-value is less then 5%, we reject the null

hypothesis of no autocorrelation, see results of the Ljung-Box test in �gure 9.

Figure 9: Ljung-Box test of squared residuals of an ARIMA(3,0,1)

37



5.2 Estimation of Volatility 5 APPLICATION OF TIME SERIES MODELS

Figure 10: ACF of squared residuals of �tted ARIMA(3,0,1) model

5.2 Estimation of Volatility

We have already shown the presence of the ARCH e�ect in daily bitcoin returns. Now,

we focus on trying to �nd the best �tting heteroskedastic model on the data. Firstly,

we do the estimation of bitcoin volatility via GARCH(1,1) model, afterwards we involve

asymmetric models such as EGARCH(1,1) and TGARCH(1,1).

5.2.1 GARCH Approach

Regarding the observation of volatility, one might only try to estimate its value. Fig-

ure 11 shows an example of a GARCH process. The GARCH approach is based on

an upward spike of volatility which is decaying away until there is another spike. The

estimation obtained by a GARCH model is, broadly speaking, an estimation of how

fast the decay is.

The aforementioned feature of GARCH-based models can be visible also on the

application of GARCH, EGARCH and TGARCH models on daily returns of bitcoin.

We chose them to compare the goodness of �t and test the asymetric impact of positive

and negative news. In most cases GARCH(1,1) model does good job. In practice, up to

GARCH(2,2) model is used. Therefore, we start with a GARCH(1,1) model applied on

returns obtained from the beginning of January 2011 until the end of December 2016.
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Figure 11: Example of a GARCH process (�gure from [20])

5.3 The Whole Data Set

In the following modelling process, we take into consideration bitcoin daily returns

from 1st January 2011 until 31 December 2016. As we mentioned before, the bitcoin

markets are opened 24/7 therefore we involved the weekends as well. For the whole

modelling of bitcoin dynamics we used software R.

5.3.1 GARCH(1,1) Model

As we check before the daily bitcoin returns shows an evidence of autocorrelation, in

other words ARCH e�ect is present. Firstly, we specify the model and afterwards we

�t the speci�cation to logarithm returns.

Figure 12 shows the estimated coe�cients of GARCH(1,1) model and the Ljung-Box

statistics of standardized residuals and standardized squared residuals. One can see

that the stationarity condition α1 + β1 = 0.200371 + 0.798629 = 0.999 < 1 is ful�lled.

On other hand, based on the p-values of the Ljung-Box statistics, there is a clear

evidence of serial correlation in residuals of model.

Among the results we obtained was included the Sign Bias Test indicating the evi-

dence of asymmetric e�ect, see �gure 13. Thus our next chosen models are those which

consider a leverage e�ect, namely an EGARCH(1,1) and a TGARCH(1,1).
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Figure 12: Coe�cients and Ljung-Box statistics for GARCH(1,1) model

Figure 13: The evidence of leverage e�ect

5.3.2 Asymmetric Models

Exponential GARCH(1,1) Model

First asymmetric model we use is an exponential GARCH(1,1). In this case more result

values suggest that the model is not describing the returns in the best way.

Figure 14: Coe�cients and Ljung-Box statistics for EGARCH(1,1) model

For example, we expected the coe�cient γ1 < 0 due to the leverage e�ect, which is

not meet, see �gure 14 showing the estimation of model's coe�cients. Moreover, the

Ljung-Box test con�rms that the serial correlation of residuals is still present.
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Treshold GARCH(1,1) Model

The following �gure 15 shows a results of a treshold GARCH(1,1) model. The estimate

of coe�cient γ1 is equal to 0.040328 > 0 (in �gure represented by parameter eta11),

which corresponds with the leverage e�ect but the autocorrelation of residuals remains

unsolved.

Figure 15: Coe�cients and Ljung-Box statistics for TGARCH(1,1) model

5.3.3 Summary of Applied Models

Previous results of applied model shows that they cannot capture the data properly.

There is a signi�cant serial correlation of residuals. Moreover, the Pearson Goodness-

of-Fit test shows that the normality assumption included in modelling the process is

strongly rejected in all three cases.

Figure 16: Q-Q plots of GARCH(1,1), EGARCH(1,1) and TGARCH(1,1) respectively
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We provide the comparison of aforementioned models using di�erent information

criteria. All of the criteria (Akaike, Bayes, Shibata and Hannan-Quinn) prefer the

EGARCH(1,1) to the rest of models, see table 6.

GARCH(1,1) EGARCH(1,1) TGARCH(1,1)

Akaike (AIC) -3.52949 -3.54166 -3.54151

Bayes (BIC) -3.51909 -3.52867 -3.52852

Shibata -3.52949 -3.54167 -3.54152

Hannan-Quinn -3.52569 -3.53691 -3.53676

Table 6: Information criteria for used models

5.4 Shorter Time Period

Looking at the dynamics of bitcoin price at �gure 2, one may spot more calm devel-

opment in the last few years than in the period around the end of year 2013, when

bitcoin was becoming well-known and its price exceeded USD 1,100.

We decided to look more at the volume traded during the time period starting in

January 2011 until December 2016. In two-years long period during 2011 and 2012

only approximately 0.5% of all the transaction volume was traded. Thus, we decided

to reduce the data sample we are going to working with. The amount of transactions

traded in years 2014-2016 is around 83% of transaction volume.

Figure 17: Traded volume of bitcoin in millions USD. The 90% of traded volume during

years 2011-2016 is to the right of the red line.
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Therefore we use data from 28th November 2013 until 31st December 2016 because

for the mentioned time interval the amount of transaction made is slightly over 90%

of the whole volume. We also take into consideration a fact that during the chosen

period, bitcoin was already known among the people in comparison to its induction

weeks. Also, the volume traded during the day in�uences bitcoin dynamics too. Table

7 states the standard parameters of our new data set.

Mean St. dev. Skewness Kurtosis

-0.0001 0.0390 -0.8229 11.3918

Table 7: Standard parameters of bitcoin returns referring to the truncated dataset

As in previous section, we �rstly checked the serial correlation of squared residuals

and an evidence of ARCH e�ect in new set of data. In both cases, the null hypotheses

regarding the "no correlation" and "no ARCH e�ect" we rejected. So we continue and

apply the GARCH model and afterwards the leverage models, especially EGARCH

and TGARCH with the assumption of normal distribution of the errors.

5.4.1 GARCH(1,1) Model

The speci�cation for an GARCH(1,1) model was made and �tted to data. Now, unlike

the previous �tting to the whole data, the autocorrelation of both, residuals and squared

residuals is no longer present. On the top of that, the estimates of coe�cient satisfy

the stationarity condition: α1 + β1 = 0.122652 + 0.876348 = 0.999 < 1, see �gure 18.

Figure 18: Coe�cients and Ljung-Box statistics for GARCH(1,1) model
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Even the relatively positive results we obtained, the Sign bias test shows some

evidence of the leverage e�ect and as well as in prior models the normal distribution

assumption is rejected so we move to the asymmetric models.

5.4.2 Asymmetric Models

Again, we apply the exponential GARCH(1,1) and threshold GARCH(1,1) models to

bitcoin daily returns. For both models the Ljung-Box test rejected hypothesis for the

serial correlation in data.

As we mentioned in chapter 2, the EGARCH approach does not require the esti-

mated coe�cients to be positive. The leverage e�ect implies the coe�cient α1 < 0 and

as one can see the �gure 19 shows that the estimate of coe�cient α1 is negative.

Figure 19: Coe�cients and Ljung-Box statistics for EGARCH and TGARCH models

5.4.3 Summary of Applied Models

Having the shorter time period of daily bitcoin returns, we provided �tting of GARCH(1,1),

EGARCH(1,1) and TGARCH(1,1) models. The table 8 presents the results of four dif-

ferent information criteria where all prefer the EGARCH(1,1) model.

After �tting aforementioned models we draw the news impact curves and a reader

can clearly see the di�erences we mentioned in section 4.1.1 dedicated to the shape

of news impact curve. The �gure 20 clearly shows us that in case of EGARCH and

TGARCH approach, bad news have higher impact on volatility than good news of the
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GARCH(1,1) EGARCH(1,1) TGARCH(1,1)

Akaike (AIC) -4.0655 -4.0727 -4.0432

Bayes (BIC) -4.0477 -4.0504 -4.0210

Shibata -4.0655 -4.0727 -4.0433

Hannan-Quinn -4.0588 -4.0642 -4.0348

Table 8: Information criteria for used models

same magnitude. Besides this leverage e�ect, one can spot the symmetry of GARCH

news impact curve.

Figure 20: News impact curves for GARCH, EGARCH and TGARCH models

Concerning the goodness of �t, we plotted the Q-Q plots again, see �gure 21. Even

in these terms, Q-Q plots show we should reject the normal distribution assumption.

We con�rm this by providing the Pearson Goodness-of-Fit test as well. The normality

assumption was rejected in all three applied models.

5.5 GARCH Models with Non-normal Errors

To remind, so far we used the GARCH models with normal errors:

at =
√
σ2
t εt,

where εt
iid∼ N(0, 1).

As it is stated in [26], we often come across the estimated standard residuals ε̂t = ât
σ̂t

from a GARCH model with normal errors, which still have fat and/or asymmetric tails.
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Figure 21: Q-Q plots of GARCH(1,1), EGARCH(1,1) and TGARCH(1,1) respectively

In such cases, instead of using the N(0,1) distribution, one might use a standardized

fat-tailed and/or asymmetric error distribution for εt.

Usually, the following fat-tailed error distributions are mostly considered: the Student-

t distribution, the double exponential distribution, the generalized error distribution,

and the generalized hyperbolic distribution.

The most common fat-tailed and asymmetric distribution is skewed-t. One of an-

other possible asymmetric distributions with fat tails is the generalized hyperbolic skew

Student distribution.

5.5.1 GARCH with Student-t Distributed Errors

Now, to gain better idea about the change in the GARCH model we are about to do,

let us brie�y introduce the non-normal GARCH model assuming the errors to have

Student-t distribution.

De�nition 5.1 (GARCH model with Student-t errors). Let ut be Student-t random

variable, ν > 0 represent the degrees of freedom parameter and st be scale parameter.
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Then

f(ut) =
Γ
[
ν+1

2

]
Γ
(
ν
2

)√
πνst

(
1 +

u2
t

stν

)− ν+1
2

(5.1)

var(ut) =
stν

ν − 2
, ν > 2 (5.2)

If the distribution of at in the GARCH model is Student-t with E[α2
t |Ft−1] = σ2

t , where

Ft−1 is the information at time (t− 1), then set

st =
σ2
t (ν − 2)

ν
(5.3)

to obtain a standardized Student-t distribution for εt.

Application of GARCH Model with Non-normal Errors

From Q-Q plots in �gure 21 is clear that the errors of the model are not normally

distributed. Moreover, �gure 22 shows the errors have fat tails. Therefore we decided

to take into consideration a non-normal GARCH model to �t bitcoin returns.

Figure 22: Empirical density of standard residuals of GARCH(1,1) and Q-Q plot

Adjusting our previous model by setting the error distribution to be Student-t we

obtain below mentioned results, see 23. The estimation of the degree of freedom is

equal to df = 2.95. The stationarity condition is still ful�lled hence α1 +β1 = 0.1909 +

0.8081 = 0.999 < 1.
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Regarding the autocorrelation of returns, both Ljung-Box tests reject hypothesis for

standardized returns and their squared values to be serially correlated.

But more interesting is the result of adjusted Pearson Goodness-of-Fit test. Using

the GARCH model with Student-t distributed errors we �nally obtain that the tests

for distribution goodness-of-�t indicates not to reject the hypothesis.

Figure 23: Results of �tted GARCH(1,1) with Student-t distribution of errors

Although we obtained much better model for daily bitcoin returns, the GARCH(1,1)

model is not su�cient enough. A reader may notice, the Q-Q plot of Student-t errors is

straighter than when using the normality assumption but still there are many of those

which does not correspond with the Student-t distribution.

The previous attempt showed us that the EGARCH(1,1) model was the best from

the applied once. Therefore, we carry on with the modi�cation of an EGARCH(1,1)

model by assuming the Student-t error distribution.

Figure 24: Q-Q plot of GARCH(1,1) with Student-t distribution of errors
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5.6 EGARCH Models with Non-normal Errors

5.6.1 Student-t Distributed Errors

Again we repeat whole process of �tting an EGARCH(1,1) model to dataset but this

time with the Student-t error distribution assumption. Now the estimation of degree

of freedom is 2.36 and the serial correlation is rejected too, see 25.

Figure 25: Results of �tted EGARCH(1,1) with Student-t distribution of errors

In addition to that, from the Q-Q plot 26 we can see that there are less outliers

than in case of GARCH(1,1) model with Studet-t distributed errors in �gure 24, but

still some of them remain so we move to another type of innovations distribution to

provide better �t.

Figure 26: Q-Q plot of EGARCH(1,1) with Student-t distribution of errors
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5.6.2 Generalized Hyperbolic Distributed Errors

For the next �tting we choose the EGARCH(1,1) model where the innovations have

generalized hyperbolic (GH) distribution. Firstly we introduce the de�nition.

The generalized hyperbolic distribution describes the exponentially decreasing tails

which are often observed in asset returns. It can be parametrized in many ways, we

de�ne the distribution by the following density function.

De�nition 5.2 (Generalized Hyperbolic Distribution). For (λ, α, β, δ, µ) ∈ R5 with

δ > 0 and α > |β| > 0, the generalized hyperbolic density function has the following

notation

f(x) =

(√
α2−β2

δ

)λ
√

2πKλ

(
δ
√
α2 − β2

)Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
(√

δ2+(x−µ)2

α

)1/2−λ exp(β(x− µ)) (5.4)

where Kλ is the modi�ed Bessel function of the third kind.

For more detailed information about the generalized hyperbolic distribution and its

properties see for example [6] or [14].

Let us continue now with applying the EGARCH(1,1) model with GH distributed

errors. The results stated in �gure 27 shows the model assures no evidence of serial

correlation of residuals and the quantiles are almost a straight line on Q-Q plot, see 29.

Figure 27: Results of �tted EGARCH(1,1) with generalized hyperbolic distribution of errors
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Figure 28: Q-Q plot of EGARCH(1,1) with generalized hyperbolic distribution of errors

5.7 Summary and Comparison of Applied Models

Having the daily bitcoin returns we were trying to �nd the best appropriate model

from time series approaches to describe bitcoin dynamics. We started with the daily

returns from its almost the very beginning - January 2011 until the end of year 2016.

Taking into account that the bitcoin dynamics went through its very volatile and

unstable times until it became well-known among the masses, we decided to focus on

shorter time interval, precisely on daily returns since the end of November 2013. For

this modi�ed data set we used models from GARCH family.

GARCH

Normal

EGARCH

Normal

GARCH

Student-t

EGARCH

Student-t

EGARCH

GenHyp

Akaike (AIC) -4.0655 -4.0727 -4.4127 -4.4216 -4.4263

Bayes (BIC) -4.0477 -4.0504 -4.3905 -4.3949 -4.3907

Shibata -4.0655 -4.0727 -4.4128 -4.4216 -4.4264

Hannan-Quinn -4.0588 -4.0642 -4.4043 -4.4115 -4.4128

Table 9: Information criteria for used models
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Firstly, the basic GARCH and EGARCH models which were not su�cient enough to

describe the data because of the normality assumption of errors. Therefore we concen-

trated on more advanced GARCH and EGARCH models with non-normal distribution

of innovations, such as approaches considering the distribution of errors to be Student-t

or generalized hyperbolic.

The EGARCH(1,1) model assuming Student-t distributed errors gave us much bet-

ter results than the previous models. Using the generalized hyperbolic distribution

enhanced �tting even a bit more. The table 9 shows the information criteria for used

models. Majority of them prefer the last one applied model, namely the EGARCH(1,1)

with generalized hyperbolic distributed errors.

Figure 29: Returns and 2 conditional SD of EGARCH(1,1) with GH distribution

Finally, the �gure 30 shows 1% VaR limits for GARCH(1,1) model with normal

distributed errors and for EGARCH(1,1) model with generalized hyperbolic error dis-

tribution. A reader can see that the EGARCH model capture more of the returns'

peaks.

52



5.7 Summary and Comparison 5 APPLICATION OF TIME SERIES MODELS

(a) 1% VaR - GARCH(1,1) - normal distribution

(b) 1% VaR - EGARCH(1,1) - gen. hyperbolic distribution

Figure 30: Comparison of 1% VaR limits for GARCH(1,1) model with assumption of normal

distribution and EGARCH(1,1) model with generalized hyperbolic distribution of errors

53



CONCLUSION CONCLUSION

Conclusion

In this master thesis we focused on digital cryptocurrency called bitcoin, started with

presenting the bitcoin volatility and the basic characteristics of volatility itself together

with the alternative ways of approaching it.

In the following chapter we introduced the theory of time series. Firstly, we de-

�ned an ARCH(p) model and its basic properties then we presented the generalization

of model called GARCH(p,q) and we �nished the second chapter with the enhanced

models which focus on the asymmetric e�ect such as EGARCH and TGARCH.

The third chapter presented a robust risk measure - an expected shortfall. After

shortly describing various methods of estimating its value, we applied it to the daily

returns of bitcoin. We showed the �uctuation of historical ES and compared Gaussian

ES estimation to Value-at-risk estimate. It was shown that during the years 2011-2016

bitcoin was quite risky investment.

Moreover, we created two equally weighted portfolios consisting of Japanese yen,

Argentine peso and bitcoin. One considering the whole time period since 2011 until

2016, and the second with a truncated data set made of daily returns from 2014 to

the end of 2016. The risk linked with the second portfolio was signi�cantly lower

than for the �rst one, indicating bitcoin dynamics is becoming more stable with lesser

unexpected shocks.

The chapter four provided information regarding a standard measure of the leverage

e�ect of the news called news impact curve with three diagnostic tests for asymmetric

e�ect.

Finally, we applied gathered theoretical knowledge from previous chapters to bitcoin

returns. Firstly, we showed the presence of the heteroskedasticity in our data set and

then we tried to �nd a model which provided the best �t. After applying a basic

GARCH model we found out that there was a serial correlation in residuals of model

and the evidence of asymmetric e�ect, therefore we tried EGARCH and TGARCH

model. The results remained unsatisfactory since we assumed a normal distribution of

innovations.

Based on the former results we decided to look at the traded volume during consid-

ered period. This led us to conclusion that 90% of trades were made since the end of
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year 2013. Thus, for the next analysis we use only this shorter time interval. Moreover,

we changed the assumption of the error distribution from normal to Student-t and/or

generalized hyperbolic distribution. Our analysis ended up with pretty accurate �t of

data by EGARCH(1,1) model with generalized hyperbolic distribution of innovations,

which solved a serial correlation of errors and the Q-Q plot was almost a straight line

as one can see in �gure 29.
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