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Abstract
VODI�KA, Peter: Simulation Of Bond Portfolio Development With Default Risk [Diploma Thesis],
Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of
Applied Mathematics and Statistics; Supervisor: doc. Mgr. Igor Melicher�ík, PhD., Bratislava, 50p.

When investing in a portfolio of corporate bank bonds, we focus on quantifying one of the risks -
the default risk. For the purpose of estimating the value and volatility of banks’ asset value, we
use the theoretical concept of pricing of financial derivatives. The Black and Scholes Model is a
pillar of structural models such as Merton and Moody’s Kealhofer, McQuown and Vasicek Model.
Since one of our goals is to price the bonds, we build the probability of default term structure in a
risk-neutral world, which is obtained by simulating bank asset values. These results are then used
in the calculation of the fair price of the bonds and subsequently lead to determining the portfolio
value. We apply the benefits of portfolio diversification with default risk on both, theoretical and
practical levels. An important parts of the thesis is the simulation of correlated asset values and
the simulation of bond portfolio development.

Keywords: Merton Model, Default Probability Term Structure, Bond Portfolio Development



Abstrakt
VODI�KA, Peter: Simulovanie v˝voja portfólia dlhopisov s rizikom defaultu [Diplomová práca],
Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky, Katedra apliko-
vanej matematiky a ötatistiky; ökolite�: doc. Mgr. Igor Melicher�ík, PhD., Bratislava, 50s.

Pri investovaní do portfólia korporátnych bankov˝ch dlhopisov sa budeme venova� kvantifikovaniu
jedného z rizík - rizika defaultu. Na odhadnutie hodnoty a volatility aktív bánk pouûijeme teoret-
ick˝ koncept oce�ovania finan�n˝ch derivátov. Black a Scholesov model je pilierom ötrukturálnych
modelov - Mertonov a Moody’s Kealhofer, McQuown a Vasicek Model. Ke�ûe jedn˝m z cie�ov je
oce�ovanie dlhopisov, v práci sa venujeme budovaniu �asovej ötruktúry pravdepodobností defaultov
v rizikovo neutrálnom svete. Tú získame pomocou simulácií hodnôt aktív banky. �asové ötruk-
túry pravdepodobností defaultov pouûijeme na v˝po�et férovej ceny dlhopisu, hodnote portfólia a
medziro�ného v˝nosu fondu. Teoreticky odvodíme a prakticky pouûijeme diverzifikáciu portfólia s
rizikom defaultu. V˝znamnou �as�ou v práci je simulácia korelovan˝ch hodnôt aktív bánk a simulo-
vanie v˝voja portfólia berúc v úvahu riziko defaultu.

K�ú�ové slová: Mertonov model, �asová ötruktúra pravdepodobností defaultu, v˝voj
dlhopisového portfólia
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Introduction
When investing in a bond portfolio, it is extremely necessary to quantify two main risks. The first
risk is associated with change in the interest rate (”interest rate risk”). We are well aware that
increasing interest rate causes a decline in the firm’s bond value. Today, however, we are witnessing
a decline in interest rates all around the globe. The other risk is risk of default. It expresses the
state of being uncertain about a firm’s ability to service its obligations and debts.
In the worst case scenario, the consequence of interest rate risk may be decrease in the bond value.
Default itself results in a potentially significant loss for investors. The reason is clear. The bankrupt
firm is not paying the coupon and may, or may not, pay share of the nominal value. This depends
on the seniority of the purchased bond in the portfolio. In addition, the bonds bear quantitative
information and also qualitative status, which is expressed by rating. Its range varies according to
the credit rating agency. Globally there are three major credit rating agencies: Standard & Poor’s,
Fitch Group and Moody’s Corporation. In general, the corporate bonds are more risky than the
government bonds. An important rule says that the firm’s credit rating cannot be better than the
rating of country itself.
According to the Moody’s Analytics team there is no way to distinguish unambiguously between
firms that will default and those that will not. The best we can do is to assess probability of the
entity’s default.

Prior to writing the thesis and the programming itself, we have studied various related sources and
literature, which are listed at the end of the thesis. In addition to the article on key modeling
methodology titled Modeling Default Risk [1] and published by Moody’s, we have also worked with
the notes and knowledge gained through the Master’s study. First of all, the foundations were laid
down in the first year of the studies through the Methods in Risk Management [2], the course led
by Dr. Pavol Jur�a. Pivotal parts were comprised in the Lecture 8 on Credit Risk, which set the
theoretical basis, and also Lecture 9 on particular credit risk models.
Secondly, courses Financial Mathematics I. and II., both are led by the thesis supervisor, assistant
professor Igor Melicher�ík and the book [3] represents also a valuable source of financial modeling
theory.
Another important course for this thesis was Credit Risk in Banking [6], which was included in the
last winter semester of exchange programme. Lectures and presentations given by Dr Sebastiano
Vitali. During the preparatory phase of this thesis, westudied Credit Risk Management and Modeling
[7], the author of which is assistant professor of finance Ji�í Witzany.
Equally important for this thesis were the theses by EFM programme graduates, namely A. Piöková
in 2004: Modeling the Portfolio of Bonds with Risk Default [4] and K. Kadle�íková in 2009: Credit
Default Swap Valuation and Comparison of Development during Financial Crisis [5].

The contents of thesis is divided into four major chapters: Theoretical Concepts and Introduction
to Credit Risk Modeling, Portfolio Risk Default, Asset Value and Bond Price Modeling and Applied
Credit Risk Modeling.

The purpose of the Chapter 1 is to introduce credit risk in terms of firm’s default risk, which is
e�ectively the key concept of this thesis. In this part we present theoretical approach how to mea-
sure this particular kind of risk. We define and describe structural models as Merton and Moody’s
Kealhofer, McQuown and Vasicek Model. Both models are very similar. The common building
pillar is the Black and Scholes Model of pricing option derivatives.

Chapter 2 focuses on transition from the standalone risk to the portfolio risk. The portfolio point
of view addresses and solves the problem of default correlations between two and more firms. We
show several formulas to portfolio profit and portfolio loss. The last Subchapter 2.3 is devoted to
optimization problem to find optimal weights which is equivalent to Markowitz minimum variance
portfolio. Portfolio risk default in the form of Joint Default Frequencies.

Chapter 3 has two parts. In the first one we extend one dimensional model of the firm’s asset value
to multi-dimensional system of stochastic equations. The goal is to correctly model correlated asset
values. Second Subchapter 3.2 introduces the bond price modeling.

Chapter 4 is a final part of thesis. This applied part is structurally divided into bond performance
over the past years from 2009 up to 2017 and the future years from 2018 up to 2022. We deal
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with the real-data-constructed bond portfolio. All senior unsecured bonds have issuers like big
financial houses in Europe. A correct bond pricing requires for estimation of default probability
term structures in risk-neutral world. In the first half of the Chapter we describe in detail the first
algorithm using simulations of bank’s asset value to build this term structures. By-products are our
own credit rating history and fair prices of bonds.
Furthermore, we describe the second algorithm of portfolio diversification and we point out every
step how we estimate inputs required for optimalization. Using all optimum weights and bond prices
we can then fully concentrate on portfolio management. We compare four di�erent ways of investing
into bonds portfolio. We monitor return of these funds.
The last and most complex part is the simulation of the naively diversified portfolio until the maturity
of all the selected bonds. This Subchapter describes in detail the third algorithm of simulation of
correlated bank’s asset values. This algorithm will alternate with the first algorithm of generating
default probability term structures.

9



Chapter 1

Theoretical Concepts and
Introduction to Credit Risk
Modeling

The main sources of this Chapter is the Moody’s Analytics documentation [1] and book of authors
A. Resti and A. Sironi [8].

It is necessary to distinguish two main areas for measuring credit risk:

1. Credit risk management - models are used to determine the loss distribution of general
portfolio over fixed time period, typically at least one year. This is also the goal of this thesis.

2. Analysis of credit-risky securities - dynamic models and continuous time are necessary
because the pay-o� of the most credit-risky products depends on the exact timing of default.

Credit risk is omnipresent in every portfolio and should be closely linked to the structure of existing
credit portfolio models. As already mentioned in the introduction the credit risk is strongly related
to default risk. It is the risk that the value of our portfolio changes due to unexpected events.
These events are represented by negligible or significant changes in the credit quality of issuers. In
this thesis the issuer is considered as a private firm. An issued security is a bond as a su�cient
alternative to a loan.
Firm’s default is a truly rare event. According to Moody’s Analytics, in 2003 typical firm had a
default probability of around 2% annually. However, there is considerable variation in default prob-
abilities across firms. For example, the odds of a firm with a AAA rating defaulting are only about
2 in 10,000 per annum. Then a single A-rated firm has odds of around 10 in 10,000 per annum, five
times higher than a AAA. At the bottom of the Moody’s rating scale, a CCC-rated firm’s odds of
defaulting are 4 in 100, which is 200 times the odds of a AAA-rated firm.

Depending on the problem formulation, credit risk models can be divided into the following:

1. Structural or firm-value models,

2. Reduced-form models.

This grouping cut across the dynamic and static models.

1.1 Structural Models of Default
The model of default is known as a structural or firm-value model. There are three main elements
according Moody’s Analytics documentation [1] that determine the default probability of a firm:

1. Asset Value - the market value of the firm’s asset value. This is a measure of the present value
of the future free cash flows produced by the firm’s asset discounted back at the appropriate
discount rate. This measures the firm’s prospects and incorporates relevant information about
the firm’s industry and the economy.
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2. Asset Risk - the uncertainty or risk of the asset value. This is a measure of the firm’s business
and industry risk. The value of the firm’s asset is an estimate and is thus uncertain. As a
result, the value of the firm’s asset should always be understood in the context of the firm’s
business or asset risk.

3. Leverage - the extent of the firm’s contractual liabilities. Whereas the relevant measure of
the firm’s assets is always their market value, the book value of liabilities relative to the market
value of asset is the pertinent measure of the firm’s leverage, since that is the amount the firm
must repay.

1.1.1 Merton Model
Robert Cox Merton in 1974 based on the book called The Pricing of Options and Corporate Lia-
bilities, written by F. Black and M. Scholes, developed a model to provide method how to measure
corporate credit risk. His model is the prototype of all structural models because it takes into
account also the financial structure of the firm. All assumptions used by professor Merton were
simplistic and idealistically described the market.

Let us assume that the firm is publicly traded on a specific frictionless stock market with zero
transaction costs, taxes and whose asset value follows stochastic process (Vt). The firm’s asset value
follows dynamic process on the probability space L1(�, F ,P) and is modeled by stochastic equation
(hereinafter ”eq.”)

dVt = µV Vt dt + ‡V Vt dWt, (1.1.1)

where Ê œ � are events, F is ‡-algebra, P present chosen probabilistic measure,
!
Wt

"
tØ0

is Wiener
process in R1. Also µV and ‡V are constants representing immediately expected value of asset and
volatility of asset value. Firm’s asset value Vt has log-normal distribution with value at certain time
t expressed by eq.

Vt = V
0

exp
I3

µV ≠ 1
2‡2

V

4
t + ‡V Wt

J
. (1.1.2)

All firm’s liabilities we substitute by a single debt obligation or zero-coupon bond with face value
B and maturity T . The value at time t and 0 Æ t < T of equity and debt is denoted by Et and Bt.
The value of the firm’s asset V is represented by sum

Vt = Et + Bt. (1.1.3)

The firm finances itself by equity (issuing shares) and by debt (issuing bonds). In the next chapters
we will show that both are derivative securities of the underlying Vt. Also, it is necessary to mention
that Merton’s idealistic firm cannot pay out dividends or issue a completely new debt.

The default event occurs if the firm fails to pay a payment to its debt holders. Please note that
the debt B is homogeneous in time t. At maturity T there are the following two possible cases to
happen:

1. When the inequality

VT > B (1.1.4)

holds, the debt holders receive properly B and shareholders receive duly the remaining amount

VT ≠ B. (1.1.5)

2. Otherwise, the credit risk occurs as the default event if

VT Æ B. (1.1.6)
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The firm which issued a bond cannot meet its own financial obligations and the shareholders
have to hand over control to the bondholders by the law. In this case

B = VT

ET = 0.
(1.1.7)

The debt B in accordance with eq. (1.1.3) fulfill following chain of relations

BT = VT ≠ ET = min
!
VT , B

"
= VT ≠

!
VT ≠ B

"
+

= B ≠
!
B ≠ VT

"
+

.
(1.1.8)

The value of the debt at T is equivalent to the nominal value of the debt minus the payo� of the
European put option on firm’s asset VT with exercise price equal to B. As mentioned above, if value
of the firm’s asset VT is bigger than debt B at maturity T we can exercise this option. Consequently,
the real debt is equivalent to the value of the debt minus the value of put option on the underlying
asset. The value of the debt for t = 0 is the di�erence

exp
)

≠ rT
*

B ≠ Put (1.1.9)
The firm’s debt option pricing formula is

Bt = VtN
!

≠ dt,1

"
+ exp

)
≠ r(T ≠ t)

*
BN

!
dt,2

"
, (1.1.10)

where 0 Æ t Æ T . From eq. (1.1.8) we evaluate the European put option for t = 0

B
0

= V
0

N
!

≠ d
0,1

"
+ exp

)
≠ rT

*
B ≠ exp

)
≠ rT}BN

!
≠ d

0,2

"

= V
0

N
!

≠ d
0,1

"
+ exp

)
≠ rT

*
B

1
1 ≠ N

!
≠ d

0,2

"2

= V
0

N
!

≠ d
0,1

"
+ exp

)
≠ rT

*
BN

!
d

0,2

"
.

(1.1.11)

Conventionally

N (x) = 1Ô
2fi

⁄ x

≠Œ
e≠ ›2

2 d› (1.1.12)

is the standardized normal distribution function N (0, 1) with following parameters

dt,1 =
log

1
Vt
B

2
+

1
r + 1

2

‡2

V

2
(T ≠ t)

‡V

Ô
T ≠ t

,

dt,2 = dt,1 ≠ ‡V

Ô
T ≠ t.

(1.1.13)

The present value, abbr. PV of the future pay-o� of the non-default zero-coupon bond C = 0 with
the face value B is discounted value to t = 0

p(0, T ) = Bexp
)

≠ rT
*

. (1.1.14)
With the credit risk is also associated the computation of a credit spread. The firm pays the credit
spread over the default-free interest rate that is proportional to its default probability to compensate
lenders for this uncertainty. The formula for deriving the credit spread is

exp
)

≠ (r + s)T
*

B = V
0

N
!

≠ d
0,1

"
+ p(0, T )BN

!
d

0,2

"
(1.1.15)

and the credit spread is defined as

s = ≠ 1
T

log
3

V
0

B
N

!
≠ d

0,1

"
+ p(0, T )N

!
d

0,2

"4
≠ r. (1.1.16)

The credit spread is a risk premium add-on to the base interest rate ( hereinafter ”IR”) used when
pricing firm’s debt issues. It reflects the firm’s credit rating or the risk rating at the maturity of
the issue. Besides that it bears information about current market spread rates, as well as other
components such as security and liquidity. Credit spreads are quoted in basis points (bps).

Using all reference theory it is easy to determine the firm’s default probability PDt. It is precise
probability of situation that inequality (1.1.6) holds.
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Theorem 1.1.1.
The Probability of Default, abbr. PD can be computed from the formula

PDt = N
!

≠ dt,2

"

= 1 ≠ N
!
dt,2

"
.

(1.1.17)

Proof.

PDt = P
Ë
Vt < B

È

= P
C

Vtexp
;1

µV ≠ 1
2‡2

V

2
(T ≠ t) + ‡V WT ≠t

<
< B

D

= P
C

WT ≠t <
log

1
B
Vt

2
≠

1
µV ≠ 1

2

‡2

V

2
(T ≠ t)

‡V

D

= P
C

W
1

<
≠log

1
Vt
B

2
≠

1
µV ≠ 1

2

‡2

V

2
(T ≠ t)

‡V

Ô
T ≠ t

D

= P
Ë
W

1

< ≠dt,2

È

= N
!

≠ dt,2

"
,

(1.1.18)

where WT ≠t ≥ N (0, T ≠ t) and W
1

≥ N (0, 1).

The Distance to Default, abbr. DD is defined by

DDt = dt,2

=
log

1
Vt
B

2
+

1
µV ≠ 1

2

‡2

V

2
(T ≠ t)

‡V

Ô
T ≠ t

.
(1.1.19)

Cons of Merton model are as follows [6]:

• simplified debt structure and possibility to exercise only in T ;

• Gaussian distribution assumption;

• no negotiation between shareholders and debtholders;

• no arbitrage assumption;

• Black and Scholes Option Pricing Model assumes continuous negotiation of the underlying
asset;

• no downgrading risk.

Pros of Merton model are as follows:

• simple to understand;

• easy to implement;

• no need to adjust for liquidity and liquidity risk;

• it works with main variables as leverage and volatility;

• structural approach.
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1.1.2 Moody’s Kealhofer, McQuown and Vasicek Model
Kealhofer, McQuown and Vasicek model, abbr. KMV model is a later product of already introduced
Merton’s crucial framework. It was developed under the name of Moody’s Analytics, which is a
subsidiary of Moody’s Corporation, and it was established in 2007.

KMV model can also generate Probability of Default, abbr. PD and Expected Default Frequency,
abbr. EDF . Modeling approach is very similar and essentially consists of these three steps:

1. Estimation of firm’s asset value Vt and volatility ‡V from the market value of firm’s equity
Et, volatility of equity ‡E and the book value of firm’s liabilities B.

2. Calculation of the Default Point, abbr. DP and Distance to Default, abbr. DD using Vt, ‡V

and B.

3. Calculation of PD is determined directly from the DD.

Since the equity value can be seen as the European call option on the asset value of the firm Vt with
exercise price equal to B and the firm’s capital is traded the same as debt, we can use the option
pricing theory again. See Figure (1.1) for graphical interpretation of the European call option on
firm’s equitiy.

Fig. 1.1: The firm’s equity as the European call option.

We use the Black and Scholes partial di�erential equation’s result for the European call option on
firm’s equity

Et = CallBS(V, t, ‡V , B, T, µV )
= VtN

!
dt,1) ≠ exp

)
≠ r(T ≠ t)

*
BN

!
dt,2),

(1.1.20)

where T ≠ t is time remaining to expiration. The KMV uses this option nature of E to derive the
underlying V and ‡V implied by the market value, volatility of equity ‡E and the book value of
liabilities B. It has to be highlighted that we have available Et the value of the capitalization at
time t, together with its volatility ‡E . It is impossible to observe Vt and its ‡V . We only know that
‡V is somehow related to, but quite di�erent from ‡E . A firm’s leverage has the e�ect of magnifying
its underlying ‡V .
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We already showed stochastic di�erential eq. for modeling the process of V . The same approach
can be applied for the firm’s equity E

dE

E
= µE dt + ‡E dWt, (1.1.21)

where µE is expressing immediately expected drift and ‡E is volatility of firm’s equity.

As before, we use the Itô’s lemma on equity’s dynamics to derive

dE = ˆE

ˆV
dV + ˆE

ˆt
dt + 1

2‡2

EV 2

ˆ2E

ˆV 2

(dt)2 . . .

=
3

1
2‡2

V V 2

ˆ2E

ˆV 2

+ µV F
ˆE

ˆV
+ ˆE

ˆt

4
dt + ‡V V

ˆE

ˆV
dWt.

(1.1.22)

By derivation with respect to the first, the second power of firm’s asset value and time we gain all
option characteristics and two useful formulas.

1. By comparison of volatility coe�cients about stochastic term dWt from eq. (1.1.21) with
(1.1.22) we gain an interesting pattern eq.

‡E = ‡V
V

E

ˆE

ˆV
. (1.1.23)

2. A ratio ˆE
ˆV is analogical to Asset Delta and it is called firm’s Equity Delta

�E = N
!
d

1

"
. (1.1.24)

3. Directly via drift comparison yields to formula

µE = 1
2‡2

V

V 2

E

ˆ2E

ˆV 2

+ µV
V

E

ˆE

ˆV
+ 1

E

ˆE

ˆt
. (1.1.25)

4. Equity Gamma �E is defined

�E = ˆ2E

ˆV 2

=
N

!
d

1

"

V ‡V

Ô
T ≠ t

(1.1.26)

and it is positive.

5. Equity Theta ◊E

◊E = ˆE

ˆt
= ≠

V N
!
d

1

"
‡V

2
Ô

T ≠ t
≠ µV Bexp

)
≠ µV (T ≠ t)

*
N

!
d

2

"
. (1.1.27)

Using option greeks above we have a formula for µV derived from eq. (1.1.25)

µV =
µEE ≠ ◊E ≠ 1

2

‡2

V V 2�E

V �E
. (1.1.28)

The estimation of exact values Vt and ‡V is more complex. We solve following non-linear system of
eq.

VtN
!
d

1

"
≠ exp

)
≠ r(T ≠ t)

*
BN

!
d

2

"
≠ Et = 0

Vt

E
N

!
d

1

"
‡V ≠ ‡E = 0

(1.1.29)

to get firm’s asset value Vt and its volatility ‡V . It is appropriate to use correct numerical methods
for solving this non-linear system. Since we showed (1.1.24) that function VtN

!
d

1

"
≠exp

)
≠µV (T ≠

t)
*

BN
!
d

2

"
≠ Et is an increasing in Vt, we have surely only one solution. The same applies for

VtN
!
d

1

"
‡V ≠ E‡E .
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A measure of firm’s leverage is stated by the Leverage Ratio, abbr. LR and it is defined as

LR = B
0

V
0

. (1.1.30)

Using LR we can rewrite firm’s equity as follows

E
0

= V
0

1
N

!
d

0,1) ≠ LRN
!
d

0,2)
2

, (1.1.31)

Up to now we could understand B as a constant value of book liabilities. KMV’s authors had opened
the opportunity that the credit risk computation distinguishes two types of liabilities with respect
to T :

1. short-term liabilities, abbr. STL,

2. long-term liabilities, abbr. LTL.

According the Moody’s Analytics documentation [1], we can quote and point out several KMV’s
credit risk characteristic indicators.

1. If we combine STL and LTL correctly, we get theDefault Point, abbr. ”DP” sometimes
referred to the Default Threshold, abbr. DT , which shows an approximate V at which observed
firm will default. The value of DP lies between total and current liabilities

DP = STL + 1
2LTL. (1.1.32)

The DP estimation is based on an extensive empirical research by Moody’s rating agency,
which has looked at thousands of defaulting firms, observing each firm’s DP in relation to the
Vt at the time of default. We already know that the default event occurs when Vt is lower
than B. KMV substitutes B for DP . Therefore, the DP will be considered as nominal debt
B .

2. The KMV definition of the Distance to Default, abbr. DD is intuitive and can be expressed
by formula

DD = market asset value ≠ DP

market asset value ◊ asset volatility . (1.1.33)

The numerator is a relevant net worth of the firm. Apparently, if the firm is about to default,
then market net worth reaches 0. The DD equals the number of standard deviations away
from the DP .

Now, suppose we have obtained both values VT and ‡V from non-linear system (1.1.29). The
Probability of Default is derived from (1.1.18) and uses definition of KMV’s DD

PDt = N
!

≠ DDt

"
. (1.1.34)
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Fig. 1.2: Graphic representation of derived credit risk parameters: 1• - the current firm’s asset value: V0;
2• - the probability distribution of the future firm’s asset value at time H: VH ; 3• - the volatility of the
VH ; 4• - the benchmark of the default point: DP ; 5• - a possible asset value trajectory; 6• - the expected
growth rate of Vt over H; 7• - the length of observed horizon: H

Cons of KMV model are as follows [6]:

• Gaussian distribution assumption on the asset process;

• no arbitrage assumption;

• the firm must be listed in a market;

• market assumed to be e�cient.

Pros of KMV model are as follows:

• functions DD and EDF can be updated more often than the classic rating grade;

• in rating grade approach, companies with the same rating share the same PD;

• debt structure is not oversimplified;

• input data are easier to define;

Firm’s DD functions computed for di�erent segments could be various. For financial institutions
we can modify DD to the Distance to Capital, abbr. DC according to paper written by Larsen
& Mange (2008). The only di�erence between the DC and the DD formula (1.1.19) is that B is
multiplied by ⁄ where ⁄ = 1

1≠PCAR

. PCAR means The Prudential Capital Assessment Review
expressing Basel requirement on the bank capital adequacy.

As a result of the expert meeting on this topic in National Bank of Slovakia, there was presented
advice that there is need to distinguish between the regulatory approach and the approach already
presented. The regulatory approach for financial institutions is based on substitution Risk Weighted
Assets, abbr. RWA instead of value of bank’s asset V in definition of default (1.1.6). RWAs are
multiplied by the risk weight – and compared with the bank’s equity.
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Example 1.1.2.

Before we preceed to portfolio default theory, let us to perform the standalone risk calculation on the
public traded firm Deutsche Bank, abbr. DBK in 2017.

1. We compute daily market equity value Et for t = 1, . . . , 756 where t = 1 equals 1 January
2014 and t = 756 equals to 31 December 2016 as multiplication

daily stock price ◊ outstanding shares. (1.1.35)

It is also possible to ascertain this value from the regular financial statements.

2. We determine Deutsche’s equity standard deviation ‡E from increments of stock prices at least
from the last 3 years and we get ‡E = 66.52%.

3. We choose risk-free IR r instead of µV (see Chapter 3). E.g. Euro-zone goverment bond
r = ≠0.79% in 2017 with maturity 1Y.

4. From the balance sheet we know the last book value of bank’s liabilities before January 2017.
DBK’s is B = EUR 1.525 Trillion.

5. We solve non-linear system (1.1.29) and we get asset value V = EUR 1, 530.633 Billion and
‡V = 0.54 %.

6. Having all parameters we estimate the DD (1.1.19) for next year and we get 2.06 standard
deviations.

7. Since PDQ
1Y = N (≠DD) we finally have 4.78% (478 basis points) probability of default for

DBK in next 1 year under risk-free measure Q (see Chapter 3).

Fig. 1.3: Generating 100 possible Deutsche Bank’s asset value trajectories for 1Y according the Merton
model using risk-free rate.
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Fig. 1.4: Generating 100 possible Deutsche Bank’s asset value trajectories for 2Y according the Merton
model using risk-free rate.
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Chapter 2

Portfolio Risk Default

In Chapter 2 is primary source of theory [4].

2.1 Portfolio Profit and Loss
If default event occurs it is desirable to quantify the approximate value of loss. Firstly, assume the
portfolio which consists of a single bond.

1. Expected Loss, abbr. EL or Credit Loss Rate, abbr. CLR is defined as multiplication of EDF
and Loss Given Default, abbr. LGD

EL = EDF ◊ LGD. (2.1.1)

where LGD is easily understood as share of an firm’s asset that is lost if a borrower defaults.
It can be expressed as

LGD = 1 ≠ RR, (2.1.2)

where RR is the Recovery Rate.

2. Unexpected Loss, abbr. UL is representing volatility of expected loss and can be expressed as

UL = LGD ◊


EDF ◊ (1 ≠ EDF ). (2.1.3)

Moreover, suppose that we measure expected and unexpected portfolio credit loss, whereas portfolio
consists of m bonds. We need to measure diversification and to specify the loss value of the whole
portfolio.

1. The Expected Portfolio Loss, abbr. ELfi is weighted average of expected loss of all bonds
individually, ELi where i = 1, . . . , m

ELfi = w
1

EL
1

+ . . . + wmELm. (2.1.4)

2. The Unexpected Portfolio Loss, abbr. ULfi is more complex than simply weighted average of
ULi where i = 1, . . . , m because total loss is also dependent on the default correlation flij

between every pair of firm’s bonds

ULfi =


w
1

w
1

UL
1

UL
1

fl
11

+ w
1

w
2

UL
1

UL
2

fl
12

+ . . . + wmwmULmULmflmm. (2.1.5)

Naturally, we need to distinguish the market value of a loan to determine the price for which it is
possible to buy or sell. The value is expressed by discounting all cash values in the future to time
t = 0 with respect to correct discount factor.

If the firm defaults, we lose exactly LGD, otherwise we will receive profit Y .
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1. The Profit Y from a single bond is defined as

Y = r + Expected Risk Premium + Unexpected Risk Premium, (2.1.6)

where r is the risk-free IR.

2. The Expected Profit Ȳ from a single bond equals

Ȳ = E[Y ]
= EDF ◊

!
r ≠ LGD

"
+ (1 ≠ EDF ) ◊ Y.

(2.1.7)

3. The Expected Risk Premium is defined as

LGD ◊ EDF

1 ≠ EDF
. (2.1.8)

If we do not know Unexpected Risk Premium we rewrite profit eq. with assumption of zero risk

Y = rf + Expected Risk Premium

Ȳ = EDF ◊
!
r ≠ LGD

"
+ (1 ≠ EDF ) ◊

3
r + LGD ◊ EDF

1 ≠ EDF

4 (2.1.9)

and we get conclusion that expected profit is equal to risk-free IR

Ȳ = r. (2.1.10)

2.2 Default Correlation
For a purpose of this thesis it is important to measure the default correlations between two and
more firms in the portfolio.

1. The first step is to find correct probability that two firms will default at the same time. We
use definition of default (1.1.6). The probability that two firms i and j will default at the
same time can be expressed as joint probability that value of firm’s asset i drops below book
liabilities Bi at the same time as value of asset of firm j drops below book value liabilities Bj .

The Joint Default Frequency, abbr. JDF is defined as

JDFij = P
Ë
Vt,i Æ Bi · Vt,j Æ Bj

È
. (2.2.1)

Following Black and Scholes Option Pricing Model’s assumptions let us take two random vari-
ables Ái, Áj which have standardized normal distribution.

We compute

JDFij = P
Ë

≠ DDi Æ Ái, ≠DDj Æ Áj

È

JDFij = P
C

≠
log

1
Vt,i

Bi

2
+

1
µi ≠ 1

2

‡2

V,i

2
t

‡V,i

Ô
t

Ø Ái, ≠
log

1
Vt,j

Bj

2
+

1
µj ≠ 1

2

‡2

V,j

2
t

‡V,j

Ô
t

Ø Áj

D
.

(2.2.2)

More precisely, we have

JDFij = 1
2fi

Ò
1 ≠ fl2

ij

⁄ ≠DDi

≠Œ

⁄ ≠DDj

≠Œ
exp

C
≠ 1

2(1 ≠ fl2

ij)

1
x2 ≠ 2flijxy + y2

2D
dx dy, (2.2.3)

where flij is correlation between these two firm’s assets values.
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All computations yield to key relationship

JDFij = N
2

1
≠ DDi, ≠DDj , flij

2
, (2.2.4)

where N
2

is standard bivariate normal cumulative distribution function.

2. The second step is to estimate the final formula of default correlation between two firms. Let
us denote X and Y as random variables of firms i and j defaults. X is dummy random variable
and it is equal 1 if firm i defaults or 0 if not with following probabilities

X = 1 with probability EDFi,

Y = 1 with probability EDFj ,

X = 0 with probability 1 ≠ EDFi,

Y = 0 with probability 1 ≠ EDFj .

(2.2.5)

Expected value and variance of random variable X (Y similar index j) are

E(X) = EDFi,

var(X) = EDFi ◊
!
1 ≠ EDFi

"
.

(2.2.6)

More interesting result we get alternative distribution of random variable XY . Value 1 inducts
the credit event that both firms default at the same time and 0 if not.

XY = 1 with probability EDFij ,

XY = 0 with probability 1 ≠ EDFij .
(2.2.7)

Expected value and variance of random variable XY are

E(XY ) = EDFij ,

var(XY ) = EDFij ◊
!
1 ≠ EDFij

"
.

(2.2.8)

We have all components to build default correlation formula for two general random variables

flD
XY = cov(X, Y )

var(X) ◊ var(Y )

= E(XY ) ≠ E(X) ◊ E(Y )
var(X) ◊ var(Y )

.

(2.2.9)

The Default Correlation Function of firm i and firm j is defined by formula

flD
ij = JDFij ≠ EDFi ◊ EDFjÒ

EDFi ◊
!
1 ≠ EDFi

"
◊ EDFj ◊

!
1 ≠ EDFj

" . (2.2.10)

2.3 Portfolio Diversification
It is well known that correctly diversified portfolio is bearing less risk. Using Harry M. Markowitz’s
portfolio theory and with precise execution we can reduce risk with a fixed portfolio expected return,
abbr. E[R]fi. In our case, portfolio risk is hidden in variable called portfolio unexpected loss, abbr.
ULfi.

There are often more possible ways how to formulate optimalization problem of diversification.
With solution of optimalization we get the e�cient frontier. It is a set of optimal portfolios that
can provide the best E[R]fi for an exact risk level of ULfi. Or, on the other hand the lowest risk
level for a pre-defined E[R]fi.
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Portfolios that fall outside the e�cient frontier are considered as sub-optimal because they either
carry too much risk relative to E[R] or too little yield relatively to the volatility.

The optimalization problem can be formulated as follows

min UL2

fi … min wT V w
mÿ

i=1

wi = 1

mÿ

i=1

wiE[Ri] = E[R]fi

(2.3.1)

Subject to minimizing function we can solve the problem with quadratic programming methods. As
output we want to get optimal weights wú

i . The matrix V is defined

Vij = ULiULjflD
ij . (2.3.2)

In the later analysis it is important to deal with properties of the matrix V . The quadratic optimal-
ization problem has a solution only if V œ Rm◊m is a regular, positive definite matrix wT V w º 0
for ’w œ Rm.

The following statements are equivalent:

1. The symmetric matrix V is positive definite.

2. All its eigenvalues are positive.

3. It has a unique Cholesky decomposition, i.e. exists nonsingular square matrix L such that
V = LT L. (See Subchapter 3.1 Asset Value Modeling.)

4. All the leading principal minors of V are positive.

Remark that a covariance matrix is positive definite.

Proof.
In the next steps we want to show that V is a covariance matrix. We use relations (2.1.3, 2.2.10
and 2.2.9) sequentially operated.

Vij = LGD ◊
Ò

EDFi ◊
!
1 ≠ EDFi

"
◊ LGD

Ò
EDFj ◊

!
1 ≠ EDFj

"
ú

ú JDFij ≠ EDFi ◊ EDFjÒ
EDFi ◊

!
1 ≠ EDFi

"
◊ EDFj ◊

!
1 ≠ EDFj

"

= LGD2 ◊
1

JDFij ≠ EDFi ◊ EDFj

2

= LGD2 ◊ cov
1

FIRMi, F IRMj

2
,

(2.3.3)

whereby LGD is a constant. FIRM
1

and FIRMj are dummies random variables (see Subchapter
2.2 Default Correlations) having values 1 if firm i or j defaults or 0 if it does not.

We have shown V º 0.

Based on our experience, the matrix V contains extremely small values. In such a situation the
optimization algorithm does not need to converge. In practice it is reasonable to multiply V with a
large constant. We say without a proof that optimal weights wú are invariant to this multiplication.
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Chapter 3

Asset Value and Bond Price
Modeling

Firstly, we extend necessary theory about the firm’s asset value from Subchapter 1.1.1. We begin
with one-dimensional problem that upgrades to multi-dimensional system of stochastic equations.
Secondly, we introduce useful theory for bond price modeling.

3.1 Asset Value Modeling
Let us start with list of these three assumptions:

1. Firm’s asset value V (t) follows GBM (analogous to stock price).

2. W =
)

Wt, t œ [0, T ]
*

is a Ft-Wiener process.

3.
)

Ft, t œ [0, T ]
*

is a corresponding filtration.

Under below fulfilled conditions of finite integrals

1.
s t

0

µV (t) dt < Œ,

2.
s t

0

‡V (t) dt < Œ,

3.
s t

0

--V (t)µV (t)
-- dt < Œ,

4.
s t

0

V 2(t)‡2

V (t) dt < Œ,

where µV (t) is drift and ‡V (t) is volatility of the firm’s asset value V (t). Then we model V (t) as
GBM

dV (t) = µV (t)V (t) dt + ‡V (t)V (t) dWt. (3.1.1)
If V (t) ”= 0 we can form eq. (3.1.1)

dV (t)
V (t) = µV (t) dt + ‡V (t) dWt. (3.1.2)

Now, we use Itô’s lemma on substituted increasing function f(t, x) = log(x)

dlog
!
V (t)

"
= 1

V (t) dV (t) ≠ 1
2V 2(t)‡2

V (t)V 2(t) dt

= 1
V (t)

1
µV (t)V (t) dt + ‡V (t)V (t) dWt

2
≠ 1

2V 2(t)‡2

V (t)V 2(t) dt

=
3

µV (t) ≠ 1
2‡2

V (t)
4

dt + ‡V (t) dWt

(3.1.3)

and after integration on the interval [0, t] we get

log
!
V (t)

"
= log

!
V (0)

"
+

⁄ t

0

3
µV (s) ≠ 1

2‡2

V (s)
4

ds +
⁄ t

0

‡V (s) dWs. (3.1.4)
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In consequence, the firm’s asset value formula is the solution of (3.1.4)

V (t) = V (0)exp
I ⁄ t

0

3
µV (s) ≠ 1

2‡2

V (s)
4

ds +
⁄ t

0

‡V (s) dWs

J
. (3.1.5)

If we assume that µV and ‡V of firm’s asset are constant in time t, the modeling process can be
expressed by simplified eq.

V (t) = V (0)exp
I3

µV ≠ 1
2‡2

V

4
t + ‡V Wt

J
. (3.1.6)

In practice, we model Wiener process using random variable with standard normal distribution
Á ≥ N (0, 1)

V (t) = V (0)exp
I3

µV ≠ 1
2‡2

V

4
t + ‡V

Ô
tÁ

J
. (3.1.7)

We know that V (t) has a log-normal distribution, i.e.

log
!
V (t)

"
≥ N

A
log

!
V (0)

"
+

3
µV ≠ 1

2‡2

V

4
t, ‡2

V t

B
. (3.1.8)

Let us upgrade already introduced one-asset-dimensional model into a multi-asset-dimensional.

Henceforward, our portfolio contains m assets. Each value of particular asset moreover depends on
correlations with other assets in the portfolio. Let us describe the model how to measure it. It is
an essential question we focus on in this part of the thesis. According to eq. (3.1.1) we define the
stochastic di�erential process of firm’s asset in a matrix form

Q

ccca

dV
1

(t)/V
1

(t)
dV

2

(t)/V
2

(t)
...

dVm(t)/Vm(t)

R

dddb
=

Q

ccca

µ
1

µ
2

...
µm

R

dddb
dt +

Q

ccca

‡
11

‡
12

· · · ‡
1m

‡
21

‡2

2

· · · ‡
2m

...
... . . . ...

‡m1

‡m2

· · · ‡mm

R

dddb

Q

ccca

dW
1

(t)
dW

2

(t)
...

dWm(t)

R

dddb
(3.1.9)

or in an abbreviated form
!

dV (t)
"
./

!
V (t)

"
= µV dt + ‡V dW t, (3.1.10)

where V (t) is a vector of asset values at time t, µV is a vector of drifts, ‡ is volality matrix, W t

is a stochastic vector of m independent Ft-Wiener processes and t œ [0, T ]. We express µV using
expected value as E

#
RVi

$
= µVi , i = 1, . . . , m where RVi is return on asset value. The covariance

matrix ‡V ‡T
V features of m2 elements

‡V ‡T
V =

Q

ccca

var
#
RV1

$
cov

!
RV1 , RV2

"
· · · cov

!
RV1 , RVm

"

cov
!
RV2 , RV1

"
var

#
RV2

$
· · · cov

!
RV2 , RVm

"

...
... . . . ...

cov
!
RVm , RV1

"
cov

!
RVm , RV2

"
· · · var

#
RVm

$

R

dddb

= volT flvol
= volT LUvol
= volT LLT vol

(3.1.11)

and volm◊1

is a volatility vector. fl is the correlation matrix between pairwise asset returns RVi

and RVj . Similarly as the covariance matrix it is a positive definite matrix. It has a unit diagonal.
Having matrix with this properties, we can perform Cholesky decomposition to find an unique lower
triangular matrix L with strictly positive diagonal elements. See general example of both matrixes.

fl =

Q

ccca

1 fl
12

· · · fl
1m

fl
21

1 · · · fl
2m

...
... . . . ...

flm1

flm2

· · · 1

R

dddb
, L =

Q

ccca

l
11

0 · · · 0
l
21

l
22

· · · 0
...

... . . . 0
lm1

lm2

· · · lmm

R

dddb
(3.1.12)
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A multivariate GBM is an example of the asymptotic multivariate m-dimensional normal distribu-
tion of portfolio asset returns with parameters

RV ≥ Nm

1
µV �t, ‡V ‡T

V �t
2

. (3.1.13)

Finally, we can determine the formula for the simulation of correlated asset value

Vi(t) = Vi(0)exp
;1

µVi ≠ 1
2vol2i

2
t + ‡iıW t

<
, (3.1.14)

where vol2i =
q

j ‡2

ij and labeling ‡iı denote whole i row of the matrix ‡.

As we see, covariance and correlation matrixes are important inputs to the introduced theory and
which are key components to the simulation procedure. A specific matrix generating process and a
simulation algorithm is described in the Chapter 4 Applied Credit Risk Modeling.

3.2 Bond Price Modeling
Since we measure credit risk of bond portoflio there is necessity remind bond pricing formulas.

In general the bond is a type of obligation. There are some parameters to determine the bond value.
PV is a present value or market value, F is a face value, Cti a coupon payment in time period
ti, i = 1, . . . , n and n is a number of time periods till maturity and y is a yield to maturity, abbr.
Y TM . Every bond is characterized by flow of future payments (cash flows ) CFti = Cti if ti < T
and CFT = CT + F . All future payments depend on future IR, future inflation, etc. However, it is
not a purpose of this thesis to model also bonds with floating IR and its dependent coupon rates.
The bond with coupon payments has present value defined as

PV =
nÿ

i=1

CFti

Bti

, (3.2.1)

where Bti is continuous discount

Bti = exp
)

rtiti

*

= exp
; ⁄ ti

0

fs ds

<
,

(3.2.2)

where fs is risk-free forward IR. rti is IR valid only in (ti, ti+1

] and CFti is a cash flow at time
ti. Assume the first case of a single cash flow. Let us start with an example according to the
article published in Journal of Banking and Finance [9]. Derive value of a zero coupon bond with
a promised payment EUR 100 in 1Y with a general RR (2.1.2) if the issuer defaults. A calculation
of the single cash flow issue can be performed in 3 steps:

1. The risk-free component RR◊EUR 100 = (1≠LGD)◊EUR 100 is valued using the default-free
discount, i.e.

PV
risk-free

= PV (risk-free flow)

= 1 ≠ LGD

B
1Y

◊ EUR 100,
(3.2.3)

where r
1Y denotes annual risk-free IR.

2. The risky component is valued using The Martingale approach, i.e.

PV
risky

= PV (risky cash flow)
= EQ(discounted risky cash flow)

=
EUR 100 ◊

1
1 ≠ PDQ

2
+ 0 ◊ PDQ

B
1Y

◊ LGD

= 1 ≠ PDQ

B
1Y

◊ LGD ◊ EUR 100,

(3.2.4)

where the expected value is calculated using the risk neutral probability PDQ.
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3. The PV of zero coupon bond subject to default credit risk follows the sum of default-free
component and the risky component, i.e.

PV = PV
risk-free

+ PV
risky

. (3.2.5)

Graphic illustration of example is in Figure (3.1).

Fig. 3.1: Valuation of a single cash flow bond subject to default risk using the risk neutral probability
P DQ.

The implicit discount rate d which accounts for default risk we get as sum

d = r + s, (3.2.6)

where s is specified credit spread and r is risk-free IR. By solving the following eq.

1
1 + r + s

= 1 ≠ LGD

1 + r
+

LGD ◊
!
1 ≠ PDQ

"

1 + r
(3.2.7)

we get a new explicit formula for bond’s credit spread. It can be derived using risk neutral measure
Q by formula

s = LGD ◊ PDQ ◊ (1 + r)
1 ≠ LGD ◊ PDQ

(3.2.8)

We can use the Martingale approach to build generalized pricing model for a bond subject to default
risk

PV = EQ

#
discounted cash flow

$

=
nÿ

i=1

1
Bti

◊ EQ

#
cash flowti

$

= (1 ≠ LGD) ◊
nÿ

i=1

CFti

Bti

+ LGD ◊
nÿ

i=1

CFti ◊
!
1 ≠ PDQ

ti

"

Bti

,

(3.2.9)

where CFt1 , CFt2 , . . . , CFtn are specific cash flows and PDQ
ti

denotes the cumulative risk neutral
EDF at the specific time horizon. The last unknown parameter is the risk neutral probability PDQ.

According to [9] we define:

Definition 3.2.1.
The risk neutral PDQ is the Probability of Default when the value of the firm’s assets falls below
the Default Point, abbr. DP at time T under the modified risk neutral process for the firm’s assets
value V Q

t . It is analogous to (1.1.18)

PDQ
T = N

1
≠ dQ

2

2
. (3.2.10)
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Proof.
PDQ

T = P
Ë
V Q

T < B
È

= P
Ë
V Q

T < DPT

È

= P
C

log
!
V

0

"
+

3
rT ≠ 1

2‡2

V

4
T + ‡V

Ô
TÁT < log

!
DPT

"
D

= P
C

ÁT < ≠
log

1
V0

DPT

2
+

1
rT ≠ 1

2

‡2

V

2
T

‡V

Ô
T

D

= N
1

≠ dQ
2

2
,

(3.2.11)

where
Ô

TÁ = WT ≠ W
0

is normally distributed with zero mean and variance equal to T .

We already have shown definition (1.1.18)

EDFT = N
!

≠ d
2

"
, (3.2.12)

where d
2

has already been defined (1.1.13). Only di�erence between dQ
2

and d
2

is usage of risk-free
IR rt instead of µV . Since

≠dQ
2

= ≠d
2

+ µV ≠ rt

‡V

Ô
T , (3.2.13)

we come to the following relationship of The Cumulative Risk Neutral EDF Q or PDQ at horizon
T . It is expressed as

PDQ
T = N

5
N ≠1(EDF ) + µV ≠ rt

‡V

Ô
T

6
. (3.2.14)

We distinguish two cases:

1. µV Ø rt ∆ PDQ
T Ø EDFT

2. µV Æ rt ∆ PDQ
T Æ EDFT .

In the first case the risk neutral probability of default after risk price adjustment is higher than
actual probability of default. In the second case it is lower. We can get the di�erence µV ≠ rt from
The Capital Asset Pricing Model, abbr. CAPM. It is a well known financial model that describes
the relationship between systematic risk and expected return for firm’s assets

µV ≠ rt = —fi. (3.2.15)

Parameters are:

1. — is Beta of particular asset

— =
cov

!
RV , RM

"

var
!
RM

"

= fl
‡V

‡M
,

(3.2.16)

where RV and RM denote return of the firm’s asset and the market portfolio respectively. ‡V

and ‡M are the volatility of the asset return and the market return, respectively. Paramter fl
is the correlation between returns.

2. fi is The Market Risk Premium for a unit of Beta risk, i.e.

µM ≠ rt (3.2.17)

where µM and µV denote the expected return on the market portfolio and on the firm’s assets
value respectively and rt is the risk-free IR.
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We can rewrite eq. (3.2.14)

PDQ
T = N

C
N ≠1

1
EDFT

2
+ —fi

‡V

Ô
T

D

= N
C

N ≠1

1
EDFT

2
+ fl

fi

‡M

Ô
T

D
,

(3.2.18)

where
fi

‡M
(3.2.19)

is called Market Sharpe Ratio.

As we will see later using correct IR is key entry in the pricing process. More instructions how to
compute and apply risk-free IR rti in the next Chapter 4 Applied Credit Risk Modeling.
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Chapter 4

Applied Credit Risk Modeling

We have decided to use all theoretical tools above to measure credit default risk on real data
portfolio.

4.1 Data
Data preparation is splitted into several parts:

1. Selected Bond Portfolio
The selected portfolio is homogeneous. Homogeneous portfolio implies that all selected corpo-
rate bonds are from the same business sector. In this thesis we select 10 financial institutions.
All bonds have maturity 10 years which are issued by the largest European banks according to
market capitalization in the particular countries (information dated December 2016). These
banks have their headquarters in Germany, United Kingdom, Italy and France. Selected list
of bonds are in the Table (4.1). The Table also provides information on bond’s issue volume,
annual coupon rate, issue date and maturity. The Table does not provide qualitative char-
acteristics which are ratings published on the certain date by Moody’s agency. Rating is a
variable that changes over time. The bond’s rating may vary from the rating of the issuer
itself.

Firm(1) Country Issue Volume(2) Annual Coupon Rate(3) Issue Date Maturity
Deutsche Bank DE 500.0 1.750 06/08/2012 06/08/2022
Commerzbank DE 1,250 7.750 03/16/2011 03/16/2021
Royal Bank of Scotland UK 1,000 5.500 03/23/2010 03/23/2020
Barclays UK 20.00 5.600 03/17/2011 03/17/2021
HSBC Holdings UK 1,750 6.000 06/10/2009 06/10/2019
UniCredit Banca IT 750.0 6.125 04/19/2011 04/19/2021
Banco Intesa Sanpaolo IT 1,500 6.000 01/27/2011 01/27/2021
BNP Paribas FR 2,050 3.750 11/25/2010 11/25/2020
Société Générale FR 5.000 3.830 12/06/2010 12/06/2020
Crédit Agricole FR 50.00 4.530 04/16/2012 04/16/2022

(1) Specific information from following web pages:
• http://markets.businessinsider.com/bonds
• http://finance.yahoo.com/bonds
• http://www.finanzen.ch/obligationen

(2) In milion.
(3) In percent.

Tab. 4.1: Selected portfolio of banks.

2. Firm’s Stock Information

(a) Stock prices in from https://finance.yahoo.com/. Example of possible tickers are DBK.F,
CBK.F, RYS1.F, BCY.F, HBC1.F, UCG.MI, IES.F, BNP.F, SGE.F and XCA.F.

(b) Historical outstanding shares which refer to firm’s stock currently held by all its share-
holders. It is also necessary to mark all historical stock splits.

(c) Historical total liabilities. The amount of debt is usually referred to banks on a quarterly
basis.
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Historical data of total liabilities and oustanding shares are from web page: https://ycharts.com/.

3. The Risk-Free Interest Rate
Risk-free IR rti is key to estimate PDQ. It is necessary to compute risk-free IR term structure
annually. It is a zero-coupon default-free IR of corresponding government bond with di�erent
maturities. For selected portfolio we have risk-free IR term structures for Euro-zone and
United Kingdom.

4. LGD
Moody’s Investor Service regularly publishes research articles indicating the number of de-
faults and corresponding recovery rates RR for financial and non-financial corporate issuers in
Europe. Bond’s seniority is important when it comes to LGD. In our portfolio we have senior
unsecured bonds. Article [10] refers to an average issuer weighted RR for senior unsecured
bonds from 1985 to 2016 as 38.39%. In that case LGD is 61.61%. For senior secured bonds
LGD value is lower 53.86%. These LGD are estimated over a long period. If we look at other
Moody’s articles, we see that LGD for senior unsecured bonds only in the last years at around
50%.

The same value was identified during the expert consultation of the above approach in the
National Bank of Slovakia. For a better understanding of the results and comparison we
change LGD ± 10%.

4.2 2009 - 2017
This Subchapter is divided into the following tasks:

1. Key issue is to determine default probability term structures for all bonds during the observed
history.

2. An assignment of corresponding credit rating.

3. A computation of fair prices of bond and consecutive comparison with issue prices and histor-
ical market prices.

4. Investing in bonds and managing the portfolio using four strategies:

(a) Strategy 1: Buying all bonds with naive diversification.
(b) Strategy 2: Buying undervalued bonds with naive diversification.
(c) Strategy 3: Buying overvalued bonds with naive diversification.
(d) Strategy 4: Portfolio diversification.

4.2.1 Default Probability Term Structure
As we can see in previous Subchapter 4.2 in 2009 was issued one bond (issuer: HSBC Holding), in
2010 3 more (issuers: Royal Bank of Scotland, BNP Paribas and Société Générale), in 2011 4 more
(issuers: Commerzbank, Barclays, UniCredit and Banco Intesa Sanpaolo) and in 2012 last 2 bonds
(Deutsche Bank and Credit Agricole). In order to perform valuation of these bonds with respect
to default risk, we determine term structures of probability of defaults under risk neutral measure
(PDQ term structures). Recall Example (1.1.2) from Subchapter 1.1.2 and computation of PDQ

1,Y

for DBK in the beginning of 2017. Now we want to get values PDQ
2,Y , . . . , PDQ

10,Y .

The Algorithm of Computation the P DQ Term Structures:

1. We generate matrix of Wiener processes W r◊c, where r = 100 000 simulations and c = 10 is
number of monitored years. See matrix W t

W t =

Q

ccca

W 1

t1 W 1

t1 +
!
W 1

t2 ≠ W 1

t1

"
· · · W 1

t9 +
!
W 1

t10 ≠ W 1

t9

"

W 2

t1 W 2

t1 +
!
W 2

t2 ≠ W 2

t1

"
· · · W 2

t9 +
!
W 2

t10 ≠ W 2

t9

"

...
... . . . ...

W r
t1 W r

t1 +
!
W r

t2 ≠ W r
t1

"
· · · W r

t9 +
!
W r

t10 ≠ W r
t9

"

R

dddb
, (4.2.1)
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where W 1

t1 and independent increments Wti ≠Wti≠2 , i = 2, . . . , 10 we generate as
Ô

�t◊N (0, 1).

2. We use directly risk-free IR term structures rtk , k = 1, . . . , 10 for Euro-zone and UK from 2009
to 2017.

3. We simulate V 1

tk
, . . . , V 100 000

tk
for each year from 2009 to 2017 using

Vtk = Vt0exp
;1

rtk ≠ 1
2‡2

V

2
tk + ‡V Wtk

<
, (4.2.2)

where k = 1, . . . , 10 . Vt0 and ‡V are like in the (1.1.2) solution of non-linear system (1.1.29).
Inputs are E and ‡E and its estimated from last 3 years. The recommendation is to use the
‡V calculated from the last year.

4. We already know definition of credit default

PDQ
tk

= P
#
Vtk < B

$
. (4.2.3)

In this simulation case outputs are made by scoring

PDQ
tk

=
)

V s
tk

<B
*

100 000 , (4.2.4)

where s = 1, . . . , 100 000.

Tables of PDQ term structures are (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8) and the last year 2017
(4.9).

2009 2010
HSBC RBS HSBC BNP SG

1 0.04839 0.00365 0.00725 0.02989 0.05130

2 0.10019 0.01908 0.02225 0.05369 0.08064

3 0.13698 0.03785 0.03588 0.06842 0.09559

4 0.16436 0.05550 0.04652 0.07752 0.10478

5 0.18321 0.07023 0.05431 0.08295 0.10989

6 0.19803 0.08314 0.06003 0.08647 0.11297

7 0.20951 0.09397 0.06438 0.08889 0.11497

8 0.21834 0.10312 0.06770 0.09062 0.11628

9 0.22522 0.11063 0.07061 0.09170 0.11719

10 0.23147 0.11773 0.07273 0.09254 0.11771

Tab. 4.2: P DQ term structures in 2010 and 2011.

Y CBK RBS BCY HSBC UNI IS BNP SG
1 0.03374 0.02910 0.02604 0.00002 0.01204 0.01522 0.00867 0.02279
2 0.14821 0.09942 0.03932 0.00062 0.02959 0.02979 0.03174 0.02605

3 0.16656 0.13348 0.04575 0.00175 0.03305 0.03893 0.04430 0.02784

4 0.17330 0.13958 0.04851 0.00289 0.03398 0.04437 0.05192 0.02853

5 0.17603 0.14049 0.05006 0.00367 0.03416 0.04799 0.05652 0.02877

6 0.17732 0.14057 0.05093 0.00451 0.03426 0.04994 0.05942 0.02890

7 0.17788 0.14058 0.05130 0.00508 0.03431 0.05126 0.06126 0.02899

8 0.17821 0.14058 0.05157 0.00563 0.03432 0.05214 0.06252 0.02900

9 0.17831 0.14058 0.05170 0.00601 0.03432 0.05268 0.06340 0.02901

10 0.17839 0.14058 0.05179 0.00629 0.03432 0.05310 0.06403 0.02901

Tab. 4.3: P DQ term structures in 2011.

Y DBK CBK RBS BCY HSBC UNI IS BNP SG CA
1 0.02710 0.06521 0.00547 0.00070 0.00019 0.06552 0.08199 0.04943 0.04167 0.03309
2 0.07428 0.12446 0.03508 0.00485 0.00298 0.08801 0.13761 0.05536 0.07922 0.05401

3 0.11539 0.16422 0.07279 0.01030 0.00793 0.09696 0.15111 0.05852 0.09818 0.06549

4 0.14941 0.19255 0.10170 0.01517 0.01296 0.10105 0.15279 0.05996 0.10925 0.07191

5 0.17573 0.21182 0.12041 0.01981 0.01861 0.10325 0.15296 0.06072 0.11575 0.07566

6 0.19726 0.22728 0.13433 0.02313 0.02297 0.10418 0.15296 0.06111 0.11988 0.07765

7 0.21479 0.23842 0.14234 0.02587 0.02671 0.10472 0.15296 0.06127 0.12262 0.07891

8 0.22856 0.24727 0.14741 0.02817 0.03006 0.10503 0.15296 0.06132 0.12454 0.07969

9 0.24048 0.25391 0.15105 0.02998 0.03289 0.10521 0.15296 0.06137 0.12587 0.08026

10 0.25103 0.26013 0.15352 0.03152 0.03555 0.10528 0.15296 0.06142 0.12692 0.08065

Tab. 4.4: P DQ term structures in 2012.
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Y DBK CBK RBS BCY HSBC UNI IS BNP SG CA
1 0.02670 0.03011 0.01093 0.01472 0.00160 0.05681 0.05974 0.00658 0.02653 0.03717
2 0.08907 0.05421 0.03511 0.03617 0.01054 0.08269 0.14866 0.03403 0.07743 0.04637

3 0.11590 0.07915 0.05763 0.05308 0.02203 0.11319 0.19673 0.04644 0.08800 0.05675

4 0.11991 0.09996 0.07667 0.06523 0.03326 0.13984 0.21245 0.04731 0.08812 0.06497

5 0.12018 0.11538 0.09079 0.07365 0.04317 0.16079 0.21523 0.04734 0.08812 0.07090

6 0.12018 0.12796 0.10274 0.07968 0.05134 0.17809 0.21562 0.04734 0.08812 0.07516

7 0.12018 0.13804 0.11240 0.08432 0.05857 0.19254 0.21564 0.04734 0.08812 0.07831

8 0.12018 0.14631 0.12007 0.08751 0.06440 0.20406 0.21565 0.04734 0.08812 0.08073

9 0.12018 0.15280 0.12599 0.09033 0.06971 0.21389 0.21565 0.04734 0.08812 0.08259

10 0.12018 0.15860 0.13125 0.09236 0.07428 0.22301 0.21565 0.04734 0.08812 0.08413

Tab. 4.5: P DQ term structures in 2013.

Y DBK CBK RBS BCY HSBC UNI IS BNP SG CA
1 0.01581 0.02989 0.00870 0.00141 0.00009 0.01714 0.01263 0.00215 0.00470 0.00033
2 0.03639 0.04435 0.03165 0.00735 0.00181 0.10315 0.04383 0.01741 0.01491 0.00386

3 0.05785 0.05873 0.05510 0.01413 0.00561 0.18612 0.06004 0.03995 0.02765 0.00988

4 0.07612 0.06979 0.07616 0.02018 0.00991 0.22801 0.06393 0.06422 0.03960 0.01648

5 0.08993 0.07770 0.09244 0.02540 0.01460 0.23848 0.06453 0.08604 0.04959 0.02313

6 0.10159 0.08345 0.10628 0.02915 0.01852 0.24016 0.06456 0.10708 0.05755 0.02866

7 0.11089 0.08783 0.11770 0.03200 0.02212 0.24022 0.06457 0.12535 0.06468 0.03336

8 0.11845 0.09098 0.12742 0.03439 0.02528 0.24022 0.06457 0.14126 0.07022 0.03752

9 0.12441 0.09367 0.13517 0.03616 0.02801 0.24022 0.06457 0.15569 0.07526 0.04108

10 0.12968 0.09569 0.14203 0.03773 0.03041 0.24022 0.06457 0.16911 0.07944 0.04434

Tab. 4.6: P DQ term structures in 2014.

Y DBK CBK RBS BCY HSBC UNI IS BNP SG CA
1 0.01881 0.00610 0.00543 0.00166 0.00011 0.03962 0.01395 0.00109 0.00103 0.01335
2 0.10392 0.05031 0.07866 0.05648 0.01680 0.04551 0.03500 0.02108 0.02226 0.09153

3 0.18585 0.10676 0.09762 0.06626 0.02228 0.05597 0.06175 0.05700 0.06015 0.17045

4 0.22985 0.14848 0.10177 0.06722 0.02317 0.06622 0.08733 0.08618 0.08781 0.21143

5 0.24283 0.16712 0.10247 0.06728 0.02328 0.07487 0.10844 0.09806 0.09689 0.22123

6 0.24540 0.17386 0.10271 0.06729 0.02332 0.08182 0.12736 0.10175 0.09879 0.22273

7 0.24560 0.17556 0.10278 0.06730 0.02334 0.08794 0.14325 0.10239 0.09897 0.22277

8 0.24561 0.17586 0.10278 0.06731 0.02334 0.09272 0.15643 0.10247 0.09898 0.22277

9 0.24561 0.17587 0.10278 0.06731 0.02334 0.09694 0.16792 0.10247 0.09898 0.22277

10 0.24561 0.17587 0.10278 0.06731 0.02334 0.10049 0.17842 0.10247 0.09898 0.22277

Tab. 4.7: P DQ term structures in 2015.

Y DBK CBK RBS BCY HSBC UNI IS BNP SG CA
1 0.03058 0.02117 0.02160 0.00222 0.00100 0.02989 0.02475 0.00118 0.00125 0.00755
2 0.04234 0.03373 0.06860 0.01608 0.01045 0.04456 0.04497 0.02662 0.03067 0.08133

3 0.06101 0.05649 0.09679 0.02578 0.01896 0.06620 0.07062 0.07312 0.08274 0.17044

4 0.07897 0.08107 0.10998 0.02993 0.02341 0.08767 0.09442 0.10812 0.11857 0.21579

5 0.09381 0.10287 0.11299 0.03061 0.02447 0.10523 0.11364 0.12271 0.13043 0.22743

6 0.10697 0.12331 0.11430 0.03086 0.02492 0.12067 0.13067 0.12761 0.13332 0.22954

7 0.11811 0.14101 0.11451 0.03090 0.02496 0.13361 0.14459 0.12848 0.13364 0.22965

8 0.12757 0.15622 0.11460 0.03091 0.02496 0.14473 0.15630 0.12861 0.13368 0.22966

9 0.13527 0.16996 0.11461 0.03091 0.02496 0.15416 0.16595 0.12864 0.13368 0.22966

10 0.14234 0.18268 0.11461 0.03091 0.02496 0.16251 0.17461 0.12864 0.13368 0.22966

Tab. 4.8: P DQ term structures in 2016.

Y DBK CBK RBS BCY HSBC UNI IS BNP SG CA
1 0.04776 0.00803 0.04317 0.01724 0.00012 0.04338 0.02862 0.00136 0.00143 0.00244
2 0.05319 0.05818 0.11536 0.06158 0.00407 0.15644 0.11749 0.03046 0.03456 0.06659

3 0.07299 0.10700 0.16577 0.09477 0.01182 0.22965 0.18736 0.05954 0.06432 0.09886

4 0.10171 0.15100 0.18853 0.10753 0.01721 0.28232 0.24103 0.08655 0.08998 0.12088

5 0.13155 0.18753 0.19953 0.11287 0.02122 0.32173 0.28249 0.10802 0.10984 0.13539

6 0.16189 0.21838 0.20285 0.11380 0.02244 0.35293 0.31683 0.12700 0.12730 0.14617

7 0.19081 0.24439 0.20440 0.11410 0.02296 0.37826 0.34437 0.14309 0.14141 0.15409

8 0.21674 0.26621 0.20495 0.11419 0.02315 0.39913 0.36774 0.15639 0.15294 0.16034

9 0.24195 0.28631 0.20505 0.11420 0.02320 0.41809 0.38884 0.16787 0.16255 0.16476

10 0.26555 0.30394 0.20510 0.11421 0.02321 0.43322 0.40623 0.17845 0.17101 0.16862

Tab. 4.9: P DQ term structures in 2017.

PDQ term structure is logically increasing. If default occurs in the first year, in remaining nine
years bank stay in default. We also tried to predict bank’s debt using risk-free IR as following eq.

Btk = Bt0exp
)

rtk tk

*
(4.2.5)
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but results are not satisfactory. In fact, we need to be aware of the ’rolling over debt phenomena’.
Financial institution refinances risk constantly. One recommendation and perhaps a better approach
is to model bank’s liabilities stochastically.

4.2.2 Rating
The purpose of representation of PDQ with corresponding ratings in the Table (4.12) is not to
compare results with Moody’s rating agency, evaluate matches and to conclude whether we are
successful or not. That is impossible. Our recommendation is to take our rating as a result of the
Merton model and algorithm described in the previous Subchapter 4.2.1. Not as reference ratings.
In the Table4.10 we refer to article of author Xiaoming Tong: Modeling Banks’ Probability of Default
[13]. Be aware of the fact that ratings are estimated on US bank portfolio.

Moody’s Rating Aaa Aa1 Aa2 Aa3 A1 A2 A3 Baa1 Baa2 Baa3 Ba1
Min(1) 0 3 5 6 8 10 16 23 37 61 84
Max(1) 3 5 6 8 10 16 23 37 61 84 110

Moody’s Rating Ba2 Ba3 B1 B2 B3 Caa1 Caa2 Caa3 Ca C D
Min 110 130 160 210 280 340 400 630 1400 3100 6700
Max 130 160 210 280 340 400 630 1400 3100 6700 10000

(1) In basis points (bps).

Tab. 4.10: Bank’s 1Y P D values and corresponding ratings.

Moody’s Rating (1) Credit Quality
Aaa Highest quality and ability to repay debt.
Aa High quality and very strong ability to meet its financial commitments.
A Upper medium grade of strong ability to repay debt.

Baa Medium grade of adequate capacity to meet its financial commitments.
Not investment grade

Ba Lower medium grade. Somewhat speculative with risk exposure.
B Low grade. Speculative with risk exposure.

Caa Poor quality. An obligor is currently vulnerable.
Ca Most speculative. An obligor is highly-vulnerable.
C No interest being paid or bankruptcy petition filed.
D In default.

(1) Moody’s ratings from Aa to Ca may be modified by addition of 1, 2 or 3 to show relative
standing within the rating category.

Tab. 4.11: Bond credit quality rating description by Moody’s agency.
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2009 2010 2011 2012 2013 2014 2015 2016 2017
271 267 158 188 306 478 (1)

DBK B2 B2 Ba3 B1 B3 Caa2 (2)

A2 A2 A3 A3 Baa2 Baa2 (3)

337 625 301 299 61 212 80
CBK B3 Caa3 B3 B3 Baa3 B2 Baa3

A2 A3 Baa1 Baa1 Baa1 Baa1 Baa1
37 291 55 109 87 54 216 431

RBS Baa1 B3 Baa2 Ba1 Ba1 Baa2 B2 Caa2
A2 A2 A3 A3 Baa1 A3 A3 Ba1

260 7 147 14 17 22 172
BCY B2 Aa3 Ba3 A2 A3 A3 B1

Aa3 Aa3 A2 A2 A2 A2 A2
484 73 0 2 16 1 1 10 1

HSBC Caa2 Baa3 Aaa Aaa A2 Aaa Aaa A1 Aaa
Aa3 Aa2 Aa2 Aa2 Aa3 Aa3 A1 A1 A1

120 655 568 171 396 299 439
UNI Ba2 Caa3 Caa2 B1 Caa1 B3 Caa2

A2 A3 A3 Baa1 Baa1 Baa1 Baa1
152 820 597 126 140 248 286

IS Ba3 Caa3 Caa2 Ba2 Baa3 B2 B3
A2 A3 Baa2 Baa2 Baa2 Baa1 Baa1

299 87 494 66 22 11 12 14
BNP B3 Ba1 Caa2 Baa3 A3 A2 A2 A2

Aa2 Aa2 A2 A2 A1 A1 A1 A1
513 228 417 265 47 10 13 14

SG Caa2 B2 Caa2 B3 Baa2 A1 A2 A2
Aa3 A1 A2 A2 A2 A2 A2 A2

331 371 3 136 75 24
CA B3 Caa1 Aaa Ba3 A1 Baa1

A2 A2 A2 A2 A1 A1
(1) In basis points (bps).
(2) Our rating according Xiaoming Tong’s transition table.
(3) Moody’s Rating of bank’s senior unsecured debt https://www.moodys.com/.

Tab. 4.12: Our rating and Moody’s rating.

The second e�ective way to check the results is the following text. More details can be founded in
modeling methodology article [11]. Simplified expression of (3.2.8) is economic intuitive relation of
the credit spread

s = PD ◊ LGD + Risk Premium,

s ¥ PD ◊ LGD.
(4.2.6)

So, to extract probability of default from Credit Default Swap, abbr. CDS spreads, one has to
remove the confounding factors as LGD and Risk Premium that arise from risk aversion.

CDS is basic credit derivative. It is contract where the payo� depends on the creditworthiness of
one or more commercial or sovereign entities. When the reference entity is a single firm, bank or
country we are talking about CDS. When the derivative refers to a set of reference entities - it is
Collaterized Debt Obligation, abbr. CDO. Note that CDS provides insurance against the risk of
default by particular firm. In particular, the buyer of the insurance obtain the right to sell bonds
issued by the firm for their face value when a credit event occurs.

E.g. using CDS spreads for Intesa Sanpaolo in 2017 and with assumption LGD = 50% we get

sIS

min

= 124 bps ≠æ PDIS ƒ 2.5%,

sIS = 130 bps ≠æ PDIS ƒ 2.60%,

sIS

max

= 155 bps ≠æ PDIS ƒ 3.1%.

(4.2.7)

Our estimated PDQ for Intesa Sanpaolo in 2017 is 2.86%. E.g. using CDS spreads for UniCredit
in 2017 we have

sUNI

min

= 149 bps ≠æ PDUNI ƒ 3%,

sUNI = 165 bps ≠æ PDUNI ƒ 3.3%,

sUNI

max

= 177 bps ≠æ PDUNI ƒ 3.5%.

(4.2.8)
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Our estimated PDQ for UniCredit in 2017 is 4.34%. The historical development of CDS spreads of
these two Italian banks is on Figure (4.1).

Fig. 4.1: CDS spread curves of UniCredit and Intesa Sanpaolo from October 2009 to April 2017.

Apparently, CDS’s spread curves are extremely correlated. At given time frame, highest values
were achieved from November to December in 2011 and from June to July in 2012.

sUNI

max

= 678 bps ≠æ PDUNI ƒ 13.6%,

sIS

max

= 562 bps ≠æ PDIS ƒ 11.2%.
(4.2.9)

4.2.3 Fair Price
Let us move forward to the next task. We will use all listed PDQ term structures for bond pricing
each year beginning issue year.

Let us describe the bond pricing on example of BNP Paribas’s bond at issue year 2010. We have
introduced the bond pricing formula (3.2.9) which separates the risk-free and risky present value.
We use LGD = 50% and continuous discount (3.2.2). Let us recall risk-free PV formula (3.2.9)

PV BNP = PV BNP

risk-free

+ PV BNP

risky

PV BNP

risk-free

= (1 ≠ LGD) ◊
10ÿ

i=1

CFti

Bti

PV BNP

risky

= LGD ◊
10ÿ

i=1

CFti ◊
!
1 ≠ PDQ

ti

"

Bti

.

(4.2.10)

PDQ
t term structure is estimated on BNP Paribas data. Alternatively, we can write

PV BNP = ◊
10ÿ

i=1

B≠1

ti

Ë
CFti ◊ (1 ≠ LGD) ◊ PDQ

ti
+ CFti ◊

!
1 ≠ PDQ

ti

"È

= ◊
10ÿ

i=1

B≠1

ti

Ë
CFti ≠ CFti ◊ LGD ◊ PDQ

ti

È
.

(4.2.11)

The last statement has desirable economic interpretation. PV of BNP Paribas is sum of discount
cash flows depreciate by possible credit loss in every year.
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ti (2010-19/20) CFti
(1) Discount Factor P V BNP

risky
(1) P V BNP

risk-free
(1) P V BNP(1)

1 3.75 0.9917 1.8039 1.8595 3.6634
2 3.75 0.9714 1.7236 1.8214 3.5450
3 3.75 0.9437 1.6484 1.7695 3.4180
4 3.75 0.9106 1.5751 1.7075 3.2826
5 3.75 0.8746 1.5038 1.6399 3.1437
6 3.75 0.8363 1.4324 1.5680 3.0004
7 3.75 0.7982 1.3636 1.4966 2.8602
8 3.75 0.7594 1.2949 1.4239 2.7188
9 3.75 0.7219 1.2295 1.3537 2.5832
10 103.75 0.6859 32.2891 35.5819 67.871

Total 96.0863
(1) In EUR.

Tab. 4.13: The pricing of BNP Paribas’s bond at the issue date 2010.

It is discussed in detail in the Table (4.13). Important values of real prices of BNP Paribas’s bond
in 2010 are

P BNP

min

= EUR 96.05,

P̄ BNP = EUR 97.11,

P BNP

max

= EUR 99.51.

In this case estimated fair price is really close to bond market price. Let us show second example of
bond and issuer is few times mentioned Deutsche Bank. In the Table (4.14) is performed computation
of PV DBK in 2017.

ti (2017-21/22) CFti
(1) Discount Factor P V DBK

risky
(1) P V DBK

risk-free
(1) P V DBK(1)

1 1.75 1.0079 0.8398 0.8819 1.7218
2 1.75 1.0165 0.8422 0.8895 1.7316
3 1.75 1.0234 0.8301 0.8954 1.7255
4 1.75 1.0268 0.8070 0.8984 1.7054
5 101.75 1.0258 45.3235 52.189 97.5125

Total 104.3969
(1) In EUR.

Tab. 4.14: The pricing of Deutsche Bank’s bond at the beginning of 2017.

Discount factor is greater than one because of the negative IR in the Euro-zone in recent years.
2017’s market prices of this bond are

P DBK

min

= EUR 107.59,

P̄ DBK = EUR 108.32,

P DBK

max

= EUR 108.92.

According to our computation, bond present value in 2017 is lower by 3.6%. We say that the bond
is overvalued by financial market.

In the Table (4.15) we complete annual PV results and real prices according to Subchapter 3.2. In
some years even price of some bonds had high volatility. Our claim is to evaluate bond’s overvalua-
tion or undervaluation. Therefore, it is useful to compute percentage di�erence between our model
output and market average price. See the Table (4.16).

We consider the di�erences in the interval from ≠5% to +5% as trustworthy. If the di�erence
is bigger than +5% (or lower than ≠5%) we determine percentage di�erence between fair price
and maximal market price (or minimal market price). These values are in brackets. Our model
overestimates more than 55% of PV results. The model adds in bond’s present value extremely in
2011 and 2012 and also to Commerzbank from 2011 to 2016 and UniCredit from 2011 to 2013 and
from 2015 to 2016. It is worth noting, the model in recent 2 years undervalues PV .

37



2009 2010 2011 2012 2013 2014 2015 2016 2017
Fair 81.04 95.30 93.90 97.18 104.09 104.39

Max 101.89 103.49 109.47 111.54 111.51 108.92

DBK Min 96.13 96.36 98.54 98.54 108.37 107.59

Median 99.44 99.79 104.62 108.19 110.40 108.41

Average 99.34 99.88 104.48 106.82 110.30 108.32

Fair 127.34 126.72 139.52 135.71 134.37 132.77 125.22

Max 104.36 106.20 114.60 124.75 125.25 122.75 122.59

CBK Min 63.26 72.15 102.00 114.10 117.43 112.10 119.50

Median 90.54 89.65 107.78 122.18 121.13 120.07 120.62

Average 89.12 90.83 108.21 121.18 121.30 119.85 121.01

Fair 108.67 107.75 121.05 121.13 114.83 116.68 112.97 106.57

Max 105.28 101.44 120.41 123.41 124.46 124.47 120.28 116.20

RBS Min 95.15 84.15 91.99 112.14 112.30 112.35 115.91 114.71

Median 103.75 96.69 105.31 118.04 119.30 119.94 118.08 115.62

Average 102.79 95.23 107.76 118.06 119.43 120.06 118.03 115.57

Fair 114.24 130.96 124.98 121.14 122.96 121.35 114.35

Max 101.55 124.85 125.45 127.45 129.10 126.55 122.60

BCY Min 89.55 94.05 115.15 117.8 119.80 120.25 115.80

Median 96.65 109.95 120.33 123.15 123.25 122.35 122.00

Average 96.44 110.65 120.65 123.08 123.88 122.74 120.07

Fair 116.82 113.79 118.13 129.43 125.75 120.4 119.51 115.23 111.50

Max 110.55 117.8 109.49 121.11 123.4 123.4 122.40 120.21 121.21

HSBC Min 108.71 104.34 95.91 101.50 102.50 101.50 100.50 112.17 112.00

Median 109.68 111.27 106.05 112.33 115.75 117.54 115.58 116.12 115.38

Average 109.68 111.77 104.43 112.86 114.83 116.36 114.50 116.37 115.92

Fair 122.79 122.83 124.05 116.03 130.60 124.60 110.91

Max 100.90 102.41 106.24 118.01 118.21 117.42 114.78

UNI Min 66.60 73.22 98.64 105.88 108.79 102.83 113.34

Median 88.05 89.93 103.10 113.08 113.93 113.75 113.97

Average 88.06 91.03 103.22 112.48 114.03 113.06 114.00

Fair 112.23 111.22 114.61 122.18 121.63 118.68 109.21

Max 101.30 113.82 119.24 126.04 127.40 123.58 121.58

IS Min 91.15 100.73 114.10 118.88 121.11 116.14 117.46

Median 96.95 108.23 115.47 121.17 123.92 120.21 118.21

Average 96.31 107.26 115.63 122.03 124.09 119.95 118.49

Fair 96.09 101.85 106.83 114.87 108.54 113.08 109.95 110.54

Max 99.05 99.85 111.35 113.55 116.66 117.56 115.90 114.01

BNP Min 96.05 87.55 95.89 105.65 105.65 105.65 110.53 112.56

Median 96.88 96.05 104.45 109.92 110.90 113.19 113.27 113.37

Average 97.11 96.04 105.07 109.91 111.58 112.81 113.12 113.29

Fair 95.46 104.06 104.21 113.03 111.50 108.46 109.69 110.52

Max 101.48 103.53 111.50 111.06 119.53 117.17 118.45 118.45

SG Min 93.15 85.32 94.39 99.93 104.74 107.11 110.26 108.21

Median 94.23 95.71 104.70 106.45 113.80 115.84 115.43 115.46

Average 96.67 96.85 105.18 108.54 114.81 116.77 116.71 115.95

Fair 112.30 120.25 118.62 116.20 112.99 111.88

Max 109.97 118.64 118.46 119.70 125.93 124.60

CA Min 101.05 100.70 104.86 110.74 112.62 110.08

Median 106.23 113.15 114.91 114.92 119.93 121.14

Average 107.66 114.81 115.01 115.54 119.07 120.65

In EUR.

Tab. 4.15: Bond’s real prices and fair prices from 2009 to 2017.

2009 2010 2011 2012 2013 2014 2015 2016 2017

DBK -18.42

(-15.70)

-4.59

-10.13

(-4.71)

-9.03

(-1.38)

-5.63

(-3.95)

-3.63

CBK +42.89

(+22.02)

+39.52

(+19.32)

+28.94

(+21.74)

+11.99

(+8.79)

+10.78

(+7.28)

+10.78

(+8.16)

+3.48

RBS +5.72

(+3.22)

+13.15

(+6.22)

+39.52

(+0.53)

+2.60 -3.85 -2.82 -4.29

-7.79

(-7.10)

BCY +18.47

(+12.50)

+18.35

(+4.89)

+3.59 -1.58 -0.74 -1.13 -4.77

HSBC +6.50

(+5.67)

+1.81

+13.12

(+7.89)

+14.68

(+6.87)

+9.50

(+1.90)

+3.48 +4.38 -0.98 -3.81

UNI +39.45

(+21.70)

+34.93

(+19.94)

+20.18

(+16.76)

+3.16

+14.52

(+10.48)

+10.21

(+6.12)

-2.71

IS +16.53

(+21.70)

+3.69 -0.88 +0.13 -1.98 -1.06

-7.84

(-7.03)

BNP -1.05

+6.04

(+2.00)

+1.68 +4.51 -2.73 +0.24 -2.80 -2.42

SG -1.26

+7.45

(+0.52)

-0.92 +4.14 -2.89

-7.12

(+1.26)

-6.02

(-0.52)

-4.68

CA +4.31 +4.73 +3.13 +0.57

-5.1

(+0.33)

-7.27

(+1.63)

In percent.

Tab. 4.16: Di�erences between fair prices and market prices.
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4.2.4 Fund Return
In previous tasks we have created the most appropriate data base. Let us use it in terms of portfolio
management. We have already introduced four buying strategies.

Important assumptions are:

1. A su�cient number of financial resources at any time.

2. Zero transaction costs.

3. We buy and sell only at the beginning of the year.

4. We can buy any quantities of bonds.

The first assumption is more imaginable if we are pension fund and we receive cash regularly.
Amount of free cash at given time can be additive constrain in optimasation problem. Optimal
control of portoflio is not the essence of this thesis.

We make The Return of Fund, abbr. RFund which will be tracking only active bonds. Active bonds
are bonds which are purchased in the portfolio at that moment.

RFund is expressed as relative di�erence

RFund =
V fi

ti
≠ V fi

ti≠1

V fi
ti≠1

(4.2.12)

and V fi
ti

is sum of paid coupons and PV of all bonds at given time ti in the portfolio. We have

V fi
ti

=
mÿ

j=1

CF j
ti

+ PV j
ti

, (4.2.13)

where m is number of active bonds. By reason of neither one of the banks has no credit default
in 2009-2017, it is easy to calculate the value of the portfolio Vti . But the future is questionable,
see the next Subchapter 4.3. Data are prepared for first three strategies. The last one strategy of
portfolio diversification is more complex.

Let us describe The Algorithm of Finding the Optimal Weights:

1. A computation of bond expected returns.

In the formula (2.1.7) we need to choose correct bond profit Y . Historical returns of corporate
bonds distinguish according the corresponding rating. For simplification we consider only two
ratings categories Aaa and Baa. These categories had corresponding di�erent yields at given
year. In the Table (4.17) are estimated expected returns for each bond. These individual
profits are compared with risk-free IR. If inequality Ȳti < rti holds, we prefers to buy rather
government bonds. These cases are colored in red in the Table (4.17).

2009 2010 2011 2012 2013 2014 2015 2016 2017
DBK 2.44 0.55 1.21 0.12 -0.05 -1.65

CBK 1.63 1.79 0.83 0.65 1.07 0.44 0.40

RBS 3.56 1.88 3.6 1.32 1.58 1.11 0.20 -1.38

BCY 2.04 1.89 1.13 1.96 1.01 1.18 -0.06

HSBC 3.14 3.01 3.41 2.03 1.80 2.03 1.08 1.24 0.80

UNI 2.78 0.37 -1.06 1.32 0.14 -0.01 -1.29

IS 2.61 1.77 -0.73 1.55 0.66 0.25 -0.53

BNP 1.82 3.87 1.97 1.55 1.92 1.03 1.23 0.74

SG -0.83 1.87 1.09 0.51 1.79 1.03 1.23 0.74

CA 1.31 -0.04 2.01 0.41 0.91 0.68

EU 0.83 0.58 0.14 -0.03 0.11 -0.09 -0.41 -0.79

UK 0.73 0.79 0.71 0.4 0.36 0.39 0.31 0.38 0.06

In percent.

Tab. 4.17: Expected profits Ȳ and r1Y in Euro-zone and UK.

2. A computation of correlation matrix between bank’s asset values fl.
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3. A computation of Joint Default Frequency matrix (2.2.4).

We also already know distance to default for every bond every year. See the Table (4.18).

2009 2010 2011 2012 2013 2014 2015 2016 2017
DBK 2.31917 2.34193 2.54118 2.47161 2.26648 2.06040

CBK 2.22267 1.90334 2.27492 2.27653 2.89155 2.42332 2.79486

RBS 3.06401 2.28827 2.92901 2.68228 2.76604 2.93151 2.41500 2.10887

BCY 2.33631 3.56244 2.56889 3.36013 3.31119 3.22221 2.50663

HSBC 2.05403 2.83119 4.44991 3.91141 3.32229 4.09799 4.04873 3.46087 4.02718

UNI 2.64597 1.90077 1.97439 2.50894 2.14918 2.27653 2.10657

IS 2.55586 1.77889 1.94875 2.62783 2.58972 2.35796 2.29552

BNP 2.27653 2.76729 2.04365 2.86523 3.23214 3.43588 3.41271 3.37086

SG 2.02540 2.39270 2.12558 2.32832 2.98035 3.45232 3.39578 3.35593

CA 2.23141 2.17868 3.76762 2.60665 2.81683 3.19275

In standard deviations.

Tab. 4.18: The DD in 1 year.

Let us show an example of JDF for year 2015 when expected returns of all corporate bonds
are bigger than risk-free rates, i.e. Ȳ > r

1,2015

. Diagonal of the matrix consists of already
known one year PDQ from term structures in 2015. Out of diagonal we have required joint
default probabilities.

Probability of defaulting two largest German banks according market capitalization Deutsche
Bank and Commerzbank in the end of 2015 is

JDF
DBK-CBK

= N
2

1
≠ DD

DBK

, ≠DD
CBK

, fl
DBK-CBK

2

= N
2

1
≠ 2.47161, ≠2.89155, 0.7562935

2

= 0.08%.

(4.2.14)

Correlation fl between bank’s asset values is very high and also joint probability is quite
considerable compared with some others bank pairs.

JDF 2015 =
Q

cccccca

DBK CBK RBS BCY HSBC UNI IS BNP SG CA
DBK 1.881e≠02 8.807e≠04 6.338e≠09 2.336e≠04 2.797e≠10 2.844e≠06 1.495e≠08 2.849e≠04 2.362e≠04 1.570e≠06

CBK 6.099e≠03 3.659e≠09 5.432e≠05 2.207e≠10 1.345e≠06 5.455e≠06 1.950e≠04 1.769e≠04 2.845e≠05

RBS 5.430e≠03 3.432e≠06 2.179e≠05 1.352e≠03 3.677e≠05 6.272e≠11 5.080e≠14 1.704e≠05

BCY 1.660e≠03 4.438e≠08 1.585e≠05 1.074e≠08 2.215e≠05 9.218e≠06 8.306e≠08

HSBC 1.099e≠04 2.574e≠05 2.263e≠07 1.633e≠11 2.151e≠14 5.496e≠07

UNI 3.962e≠02 1.084e≠04 1.280e≠07 2.633e≠09 1.809e≠04

IS 1.395e≠02 2.312e≠08 3.739e≠07 1.250e≠03

BNP 1.090e≠03 1.071e≠04 1.224e≠06

SG 1.030e≠03 6.759e≠06

CA 1.335e≠02

R

ddddddb

(4.2.15)
One more example from 2017. Expected profits of bonds of Deutsche Bank, Royal Bank of
Scotland, Barclays and UniCredit are worse than government bond yields in corresponding
countries. Hence, we do not buy this bonds in 2017.

In the next step we compute covariance matrix V
2017

using following JDF 2017 matrix

JDF 2017 =

Q

cca

CBK HSBC IS BNP SG CA
CBK 8.030e≠03 1.915e≠08 1.976e≠03 2.705e≠06 2.370e≠05 4.922e≠05

HSBC 1.199e≠04 1.324e≠06 2.425e≠05 1.525e≠05 1.659e≠05

IS 2.862e≠02 3.069e≠05 1.134e≠04 1.879e≠04

BNP 1.359e≠03 1.938e≠04 2.011e≠04

SG 1.430e≠03 2.512e≠04

CA 2.439e≠03

R

ddb . (4.2.16)

The most significant joint default probability is JDFCBK≠IS . We compute

JDF
CBK-IS

= N
2

1
≠ DD

CBK

, ≠DD
IS

, fl
CBK-IS

2

= N
2

1
≠ 2.79486, 2.29552, 0.86912523

2

= 0.19%.

(4.2.17)
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Again, a high correlation of assets is input to the calculation.

4. A computation of covariance matrix V (2.3.3).

5. Solving optimization problem (2.3.1).

Optimal weights wú are in the Table (4.19). As reference expected portfolio E
#
R

$
fi

at given
year we choose average of individual expected asset returns. Surely, from a managerial per-
spective there are many options how to choose E

#
R

$
fi
.

2009 2010 2011 2012 2013 2014 2015 2016 2017
DBK 0 0 0 0 0.165073 0.125504 0.129106 0.112462 0

CBK 0 0 0.112319 0 0.132091 0.118609 0 0.099302 0.160423

RBS 0 0.250828 0.123809 0 0.103663 0.102238 0 0 0

BCY 0 0 0.112501 0.538932 0.114286 0.136835 0.121956 0.09186 0

HSBC 1 0.454289 0.318118 0.361712 0.202641 0.182551 0.276401 0.129045 0.206094

UNI 0 0 0.089863 0.048289 0 0.076823 0.065817 0.109615 0

IS 0 0 0.099859 0 0 0.056535 0.071593 0.132921 0.172354

BNP 0 0.294883 0 0 0.120031 0.068861 0.101461 0.114313 0.157612

SG 0 0 0.143531 0.027478 0.162215 0.072545 0.107371 0.118051 0.142048

CA 0 0 0 0.023589 0 0.059499 0.126295 0.092431 0.161469

E[R]fi
(1) 3.14 2.80 2.51 1.83 1.10 1.60 0.76 0.71 0.47

(1)
In percent.

Tab. 4.19: Optimal weights wú.

E[R]fi
(1) 0.12 0.14 0.40 0.66 1,00 1.03 1.07 1.08 1.10

DBK 0.676014 0.650778 0.294263 0.17152 0.027393 0.014709 0 0 0

CBK 0 0 0 0 0.006166 0.007868 0.009973 0.012138 0

RBS 0 0 0 0 0.007357 0.010059 0.013929 0.022819 0.863789

BCY 0 0 0.121399 0.145778 0.064335 0.057049 0.044971 0 0

HSBC 0 0 0 0.105933 0.675106 0.722753 0.793516 0.937685 0.136211

UNI 0.318477 0.307315 0.145873 0.087128 0.014617 0.008195 0 0 0

IS 0 0 0.147741 0.093505 0.019139 0.012608 0.002526 0 0

BNP 0 0 0.009501 0.111781 0.075152 0.0716 0.064812 0.010359 0

SG 0 0 0.006029 0.117877 0.080613 0.077002 0.070273 0.016999 0

CA 0.005509 0.041907 0.275194 0.166478 0.030122 0.018157 0 0 0

(1)
In percent.

Tab. 4.20: Example of optimal weights depending on portfolio expected return in 2015.

Figure (4.2, 4.3, 4.4 and 4.5) show the development of the fund return for strategy 1, 2, 3 and 4
respectively.

Fig. 4.2: Strategy 1: Buying all bonds with naive diversification.
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Fig. 4.3: Strategy 2: Buying undervalued bonds with naive diversification.

Fig. 4.4: Strategy 3: Buying overvalued bonds with naive diversification.

Fig. 4.5: Strategy 4: Portfolio diversification.

4.3 2018 - 2022
In this Subchapter we use theoretical setup from Subchapter 3.1 Asset Value Modeling. We model
portfolio asset values and we take into account the mutual default correlations between assets. Now,
we describe the last algorithm which contains the procedure of computation the PDQ term struc-
tures from 4.2.1 each year. In the next steps, we need to be aware if we operate under risk-neutral
measure Q or not. Let us describe the last proceedure in this thesis.

The Algorithm of the Simulated Fund Return.

1. For the purpose of computation in the real world, we start with the determination of essential
input. It is the vector of annual bank’s asset value drifts µV (i) , i = 1, . . . , 10. It can be
estimated as the trend of linear regression. We have available historical asset values (only in
USD)on a quarterly basis, in some cases information available back to the 90s. If we look at
historical data, we can see that asset values are declining as well as bank debt, occasionally
both V and B increase between some years. It is often possible to observe very large di�erences
in asset values between years, but the value of the bank’s debt is also adjusted at a given year.
We recommend an interesting article on this issue [12] and at least for the experience to read

42



specific annual report for particular bank. For each bank we have selected di�erent lengths of
time series of annual asset values to estimate the drift due to high changes. Our vector of µV

is in the Table (4.21).

Bank DBK CBK RBS BCY HSBC UNI IS BNP SG CA
µV

(1)
-0.85 -1.24 -1.14 -1.40 -0.55 -1.02 -0.80 0.40 -0.03 -0.91

(1)
In percent.

Tab. 4.21: Estimated vector µV .

Eventually, in its annual report the bank indicates prediction of increase or decrease in asset
value for the next year but it never states a specific percentage. To determine this value as
correctly and meaningful as possible from the data available, it requires many years of expe-
rience in the field. It would be appropriate to make the model sensitivity of this variable in
the potential extension of this thesis.

During portoflio simulation process we do not change µV .

2. We compute correlation matrix and perform Cholesky decomposition. Example of used L
matrix in 2018

L =

Q

ccca

1.00000

0.74609 0.66583

0.48518 0.27789 0.82907

0.54222 0.30924 0.38116 0.68196

0.52844 0.14377 0.16989 0.22578 0.78755

0.13027 0.10896 0.05220 0.03446 0.11931 0.97621

0.60534 0.36419 0.18418 0.17196 0.00264 0.08069 0.65643

0.65502 0.36540 0.16802 0.12444 0.05459 0.00610 0.16109 0.603926

0.68489 0.39034 0.19381 0.12222 0.05151 0.04750 0.19356 0.271431 0.45824

0.56310 0.43260 0.16368 0.08109 0.09927 0.01061 0.10070 0.277406 0.16520 0.58141

R

dddb
. (4.3.1)

3. Moreover, we compute covariance matrix and acquire ‡. Example of used volatility matrix ‡
in 2018

‡ =

Q

ccca

0.01318

0.01216 0.01085

0.02482 0.01421 0.04241

0.02051 0.01170 0.01442 0.02580

0.01454 0.00395 0.00467 0.00621 0.02167

0.00648 0.00542 0.00260 0.00170 0.00594 0.04863

0.03008 0.01810 0.00915 0.00854 0.00013 0.00401 0.03262

0.01469 0.00819 0.00376 0.00279 0.00122 0.00013 0.00361 0.01354

0.01325 0.00755 0.00375 0.00236 0.00099 0.00091 0.00374 0.00525 0.00886

0.00738 0.00567 0.00214 0.00106 0.00130 0.00013 0.00132 0.00363 0.00216 0.00762

R

dddb
(4.3.2)

and the volatility vector is

vol =

Q

ccca

0.01318

0.01629

0.05116

0.03783

0.02751

0.04981

0.04970

0.02243

0.01935

0.01312

R

dddb
(4.3.3)

4. We build W t matrix of Wiener processes again according to description (4.2.1).

5. As V
0

value, we put the last known asset value from the bank’s financial statement.

6. We use formula (3.1.14) to simulate portfolio correlated asset values. We simulate 10 000
asset trajectories for each bank. Hence, some bonds maturity earlier, we simulate less asset
values in later years. In the last year, we simulate only Deutsche Bank and Crédit Agricole’s
asset value. Taking this fact into account, we need to estimate new covariance and correlation
matrixes.

7. B is constant and it is the last known value of book liabilities in 1Q 2017 (alternatively in 4Q
2016).

8. By reason of proper bond pricing process, it is necessary to go back into the risk-neutral world.
PDQ term structure under risk-neutral measure Q is estimated using simulations as before.
Recall Subchapter 4.2.1. This time, PDQ is computed for each simulated portfolio asset value
separately using risk-free IR. The problem is evident. We do not know the future spot risk-free
interest rate rti . Nevertheless, we have several options how to proceed further:
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(a) We replicate the same rti term structure.
(b) We use expert rti predictions.
(c) We model rti using stochastic processes.
(d) In our case, we compute risk-free forward IR fti from the following eq.

exp
Ó

rı
tj

tj

Ô
= exp

Ó
rı

ti
ti

Ô
exp

Ó
ftitj ◊

!
tj ≠ ti

"Ô

ftitj © r
!
ti

"
tj≠ti

,
(4.3.4)

where with ı are marked known spot risk-free IR from the last year from 2017. See spot
and forward risk-free IR in Figure (4.6). A simple explanation is that we model the future
risk-free IR as today’s risk-free forwards.

Fig. 4.6: Spot and forward risk-free IR in Euro-zone.

9. We perform the portfolio bond pricing computation using PDQ
j where j = 1, . . . , 10 000 and

fti for each simulation using theory from the Subchapter 3.2. Table (4.22) summerizes PDQ
ti

term structures for each year and each bank estimated from only one simulation j.

2018 DBK CBK RBS BCY HSBC UNI IS BNP SG CA
1 0.0393 0.0299 0.0202 0.0205 0.0015 0.0543 0.0368 0.0350 0.0144 0.0255

2 0.0706 0.0511 0.0305 0.0447 0.0976 0.0699 0.0376 0.0869 0.0767

3 0.1195 0.1008 0.0984 0.1214 0.1411 0.1188

4 0.1703 0.1363

2019
1 0.0789 0.0564 0.0444 0.0452 0.1182 0.0881 0.0253 0.0349 0.0439

2 0.1485 0.1453 0.0932 0.1518 0.2018 0.0629

3 0.2458

2020
1 0.1318 0.1177 0.0659 0.1785 0.1410 0.0880

2 0.2253 0.1365

2021
1 0.5859 0.1469

Tab. 4.22: P DQ term structures of one simulation in 2018, in 2019, in 2020 and sequentially in 2021.
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Y 2017 2018 2019 2020 2021/22
DBK 104.39 97.85 93.46 93.15 72.52

CBK 125.21 118.68 108.86 102.27

RBS 106.56 108.29 102.94

BCY 114.34 108.12 105.13 101.90

HSBC 111.50 105.70

UNI 110.90 112.58 105.20 97.47

IS 109.20 116.06 100.50 98.43

BNP 110.54 106.88 103.31

SG 110.52 107.12 101.15

CA 111.87 107.63 110.13 103.07 99.86

(1)
In EUR.

Tab. 4.23: Simulated bond fair prices using P DQ term structures from the Table (4.22.

10. If the bank, based on the real world simulation, is not in default, we compute value of the
simulated portfolio V fi as before. See definition of V fi (4.2.13) in the Subchapter 4.2.4. It is
a sum of coupon cash flows and fair prices. Using PDQ in the Table 4.22 and fair prices, we
can display one possible curve of fund returns in Figure (4.7). Until 2017, we have already
computed V fi using real bond prices on the financial market according stock exchanges data.

11. Remark, we only perform Strategy 1: buying all bonds with naive diversification.

Fig. 4.7: Example of possible fund return.

12. So far, we have not seen actual bank’s default of selected banks in the observed history. If the
bank’s correlated simulated asset value falls below the debt value, the result of that simulation
is default in the real world. In that case, we compute V fi rather di�erently. Recall bond pricing
examples in the Subchapter 4.2.3. Now, PV

risky

component is 0. As a bond holder, we get
only recovery rate from the value of coupon and from bond fair price at a given year. The
default of one or more banks at any year can dramatically change the value of the simulated
portfolio V fi. E.g. the another curve of fund returns (in red) is added in Figure (4.9). Red
curve line presents again one possible simulated portfolio development. In this case Deutsche
Bank defaults in 2019.
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Fig. 4.8: Two simulated fund returns.

Fig. 4.9: Five di�erent simulated fund returns.

13. The last step in this algorithm is to compute R̄Fund (4.2.12) which presents the average of
simulated fund returns at a given year. As the last result we present the curve of average
simulated fund returns as well. Hence, the curve in Figure (4.10) can be misrepresentated
(recall the Jensen’s inequality), we also plot interval lines, which are computed as

R̄Fund ± ‡R, (4.3.5)

where ‡R is standard deviation of simulated fund returns.

46



Fig. 4.10: Average of simulated fund returns.
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Conclusion
To conclude this thesis, let us summarize the key conclusions and evaluate whether the objectives
of this thesis have been met.

Firstly, our goal was to study the Merton Model and in general credit risk structural models.
Secondly, we focused on pricing of the bond portfolio and simulation of portfolio development
with respect to default risk. It is di�cult to assess whether we have been able to su�ciently cover
theoretical concepts in the initial theoretical Chapters 1, 2 and 3 as well as whether their description
and explanations su�ce the needs and knowledge of any reader who comes across this thesis.
It was the last Chapter 4 where all mathematical definitions and theoretical models have been applied
on real bond data. That was the best way to better understand the weaker and stronger aspects of
these models. However, it needs to be underlined that the whole applied part of the thesis heavily
depends on the type of companies selected for the portfolio. Some may consider it inappropriate
that all bonds selected for the portfolio are issued by 10 European banks. Nevertheless, we have
accepted it as a great challenge and decided to tackle issues associated with it.
The last Chapter 4 contains a large number of results. Behind every outcome, there are many
more data and inputs. Hence, data quality and proper parameters defined for all the models are of
paramount importance. In the thesis we do not refer to the outcomes as the reference ones, instead
we refer to them as our product and as a result of mathematical modeling. If we model banks
such as those in our portfolio, asset values are very high, ranging from billions to trillions of euro.
Similar a�ect can be seen also on the liabilities of the bank. These values are publicly shared only
on quarterly basis.
The determination of the PDQ term structures under risk-neutral measure Q is crucial procedure
in this thesis. We simulate the uncorrelated bank’s assets values from 2009 to 2017 and those of
correlated assets between 2018 and 2022 to find out in how many cases we have run below the value
of the debt in the corresponding year. It is precisely the PD value determines the bond quality and
its credit rating class. We have created our own rating historical series and independently compared
it to the Moody’s o�cial one. PDQ term structures are also inputs to fair bond pricing calculation
and our price can be compared to the actual market price. Another possible conclusion may be
overvaluation or under-valuation of the bond by the financial market.
To the above results we have also added the optimal weights results, taking into account the default
risk. Finally, we have created four strategies to monitor development of these four di�erent fund
returns on an annual basis. The last part and the most complex one is about simulating portfolio
development. The Subchapter 4.3 combines all models mentioned above, except for a model to find
optimal weights. To simulate portfolio development, we have decided to apply only naive bond di-
versification. The observed decline of simulated portfolio value comes by reason of our assumptions
of estimated asset drift vector. Such analysis, however, can be subject to futher extension, alter-
natively follow up on this thesis. In such case it is advisable to discuss asset drifts of the selected
banks with an expert on the financial institution.

The conclusion provides room to assess the approach taken and also to o�er some recommendations
for further actions that may follow up on this topic. To name a few, please see below:

1. In addition to the simulation of the company’s asset value, focus on modeling the debt value.
As we can see in the last Subchapter 4.3, the fixed debt may, or may not, significantly distort
the result. With financial institutions, we also mentioned \rolling of debt phenomenon”. In
case stochastic models are not used, try to reasonably determine the debt trend.

2. We have worked with a constant value of LGD. Since this is a dynamic value over a 10-year
period, it would be advisable to track down di�erent periods when the bank’s LGD has risen
above 50% in real terms. At the meeting with the expert of the National Bank of Slovakia, a
proposal was raised to follow up on a bank index of European financial institutions, to observe
its trend and reflect it on LGD. Another approach can be to determine LGD for every bank
individually.

3. Simulate development of portfolio, which is non-homogenous and sectors therein are diversifi-
cated.

4. Manage portfolio better. In terms of buying and holding to maturity, alternatively work more
with the cash flow, or with the duration of the bonds. For instance to invest matured money.
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5. Future interest rates could be modeled by stochastic processes which we have studied during
EFM programme or simply overlap with equal risk-free interest rates instead of forward rates
in future.

6. For the purpose of comparison calculate the PD according to the bank’s regulatory require-
ments.

7. What is very important is to shorten the time interval and compute at shorter intervals than
just annually. The theory of continuous modeling is derived in this thesis.

8. Calculate model’s sensitivity for parameter modification, e.g. risk-free spot or forward term
structure movements.

9. The question that remains open is what importance and impact have the asset correlations on
the portfolio modeling similar to the one presented here. The importance of asset correlations
varies according similar to the economic cycle. Empirical evidence shows that prior to and
during the financial crisis (e.g. in 2007-2008) the behaviour is similar to ’house of cards’.

Last but not least, I would like to say that this topic has clarified many of credit risk issues and has
forced me to use the great mathematical apparatus I have acquired during my studies. It has been
an excellent experience and I am grateful for it.
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