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Abstrakt v štátnom jazyku 

HÉGLI, Máté: Vývoj LIBOR Market Modelu [Diplomová práca], Univerzita Komenského 

v Bratislave, Fakulta matematiky, fyziky a informatiky, Katedra aplikovanej matematiky 

a štatistiky, Vedúci: Mgr. Sándor Kelemen, PhD., Bratislava, 2020, 96s. 

 

V našej práci skúmame LIBOR Market Modely, ktoré oproti starším stochastickým 

modelom úrokovej miery popisujú dynamiku forwardových úrokových mier. Kvôli relatívne 

presnej kalibrovateľnosti k trhovým cenám capov a swapcií sú tieto modely veľmi 

rozšírené, obľúbené a tiež často používané aj na oceňovanie exotických derivátov úrokovej 

miery. 

V súčasnej dobe môžu úrokové miery nadobudnúť záporné hodnoty s kladnou 

pravdepodobnosťou, preto namiesto štandardného lognormálneho LMM modelu, t.j. BGM 

modelu, skúmame jeho rozšírenia pridaním parametra posunutia a stochastickým 

modelovaním volatility úrokových mier. Uvedieme metodiku modelu a jeho kalibračný 

algoritmus navrhnutý Piterbargom & Andersenom, a predstavíme model LMMPlus, ktorý je 

v praxi používaný na oceňovanie finančných záväzkov v životnom poistení. Na základe 

predpokladov LMMPlus modelu odvodíme oceňovaciu formulu swapcií vyjadrenú 

pomocou momentových vytvárajúcich funkcií, a predstavíme kalibračnú metódu modelu 

k trhovým cenám swapcií.  

 

Kľúčové slová: stochastický model úrokovej miery, deriváty úrokovej miery, LIBOR 

Market Model, LMMPlus, záporná úroková miera, stochastický model volatility, numeraire 

zmena, momentová vytvárajúca funkcia, cena swapcie  



 

Abstract 

HÉGLI, Máté: Evolution of LIBOR Market Model [Master Thesis], Comenius University in 

Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Applied 

Mathematics and Statistics, Tutor: Mgr. Sándor Kelemen, PhD., Bratislava, 2020, 96p. 

 

In this thesis, we investigate the LIBOR Market Models, which opposed to older 

stochastic interest rate models describe the dynamics of forward interest rates, that are 

observable on markets. These models are widely known and popular, because they can be 

relatively accurately calibrated to market cap and swaption prices and used for pricing exotic 

interest rate derivatives. 

Today, interest rates can take on negative values with positive probability, therefore 

instead of the standard lognormal LMM model, i.e. the BGM model, we examine its 

extension by a displacement element and a stochastic volatility process. We present the 

methodology of a model and its calibration proposed by Piterbarg & Andersen and introduce 

the LMMPlus model, which is used in practice for the valuation of life insurance liabilities. 

We also derive a pricing formula for swaptions – expressed in terms of moment generating 

functions – under the assumptions of the LMMPlus model and present the model’s 

calibration algorithm to market swaption prices.  

 

Keywords: stochastic interest rate models, interest rate derivatives, LIBOR Market Model, 

LMMPlus, negative interest rate, stochastic volatility model, change of numeraire, moment 

generating function, swaption pricing 
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Introduction 

Interest rate is one of those rare financial terms that the majority of population is 

familiar with. That is mainly because lending money and acquiring interest from the 

borrower date back several thousand years. By rewarding the act of lending with an amount 

of money at a certain rate, we avoid the issues of the fact that today’s money is not equivalent 

to tomorrow’s. This is the reason costumers pay interest to borrow money from a bank and 

gain interest on money deposited in a bank account. 

 

Interest rate derivatives are financial instruments whose payoffs depend on the 

movement of interest rates. A few decades before, the number of these derivatives, such as 

caps or swaptions started to rapidly increase and finding proper procedures for their pricing 

became substantial. First efforts were made in the ‘70s and ‘80s when the premier time-

homogeneous short-rate models where presented, e.g. the Vasicek (1977), Dothan (1978) or 

the Cox, Ingersoll and Ross model (1983). These one-factor models gave the possibility of 

pricing bonds and some vanilla options analytically, however, they also had some major 

drawbacks. For example, due to the small number of parameters in the diffusion process, 

they could not reproduce zero-coupon bond curves properly. They were easy to calibrate, 

however, since the shape of a term structure they offered was predetermined by some basic 

categories, their calibration to the initial zero-coupon bond curve was inaccurate. They also 

modelled the short-rate, which in fact is not observable on the market. Still, there is a wide 

range of short-rate models (see [1]) used in practice: either one-factor – assuming constant 

or time-dependent parameters – or two-factor models, which turned out to be more precise, 

especially when correlation between two rates plays relevant role. The first non-short-rate 

model was presented one year before the Vasicek model. Fischer Black published a paper 

called The Pricing of Commodity Contracts [2] introducing the model known as Black-76 

model, which was “mimicking the Black and Scholes model” [1]. The first important 

alternative to short-rate models was the framework developed by Heath, Jarrow and Morton 

(1992), who chose to model the instantaneous forward interest rate. The demand constantly 

increased not only for standard interest rate derivatives but for a new type, the exotic interest 

rate derivatives, too. Pricing and hedging these derivatives required a novel approach. Also, 

the problem of the above-mentioned techniques – modelling interest rates that are not 

observable in the market – was still unsolved. The change came by Alan Brace, Dariusz 

Gatarek and Marek Musiela introducing the BGM model (1997) [3], which describes the 
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dynamics of an interest rate directly observable in markets, i.e. the LIBOR forward rate and 

can deal with exotic interest rate derivatives. The BGM model has several extensions having 

some additional assumptions. Together, they are also known as LIBOR Market Models 

(LMM models). 

 

There are several books, papers and theses discussing not only the BGM model (see 

[4] or [5]) and its extensions (see [1]), but their calibrations (see [6]), too. However, many 

of these works were written before the 2008 financial crisis, therefore most of market model 

extensions were not designed to handle negative interest rates. Since then, negative rates 

have become ordinary phenomenon in the financial market, which meant new, practicable 

models had to be invented allowing interest rates to reach negative values. Hence, we 

introduce the LMMPlus model, which is an extension of the BGM model and allows interest 

rates acquire negative values, furthermore, assumes a stochastic volatility model to capture 

the (realistic) stochastic behavior of volatility. 

 

Our aim in this thesis is to create a comprehensive but comprehensible, easily 

readable guide, which enables the reader to understand LMM models in context. Therefore, 

besides presenting the required mathematical and financial apparatus we place an important 

emphasis on explaining arising ambiguities. For that, we often refer to Brigo & Mercurio 

(see [1]) or Piterbarg & Andersen (see [7] and [8]).  

 

In Chapters 1 and 2, we introduce the required mathematical and economical 

background and define the most fundamental financial terms used throughout the thesis. We 

also present the zero-coupon bond together with a set of interest rates considered in this 

thesis. In Chapter 3 we explain the Change of Numeraire technique, which allows us to 

change probability spaces and measures without damaging our original market assumptions 

and we use it to define the forward measure. This technique will also prove its value later in 

Chapter 5, where we derive the forward LIBOR rate dynamics in several measures, introduce 

the general methodology of LMM models and a concrete model, used in practice, the 

LMMPlus model. In Chapter 4 we present a special derivative contract called the interest 

rate swap and the option (swaption) that allows to enter into a swap contract. Since the 

LMMPlus model is calibrated to market swaption prices, Chapter 6 is dedicated to the 

derivation of the swaption pricing formula expressed in terms of moment generating 

functions. Finally, in Chapter 7 we introduce a general grid-based calibration method 
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proposed by Piterbarg & Andersen and a more concrete, a more easily applicable calibration 

algorithm of the LMMPlus model.  
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1 Background 

In this Chapter, we provide some economical and mathematical assumptions that we 

will follow throughout the thesis. We introduce some fundamental definitions and build up 

the necessary background to define the risk-neutral probability measure.   

 

Consider an economy where non-dividend paying securities are traded continuously 

in a finite horizon [0, 𝑇]. Assume a probability space (Ω, ℱ, ℙ) – a threesome of a sample 

space with outcome elements 𝜔, a 𝜎-algebra and a probability measure – on which prices of 

these securities are defined and a corresponding filtration 𝔽 = {ℱ%: 0 ≤ 𝑡 ≤ 𝑇}, where ℱ& ⊆

ℱ% for 𝑠 ≤ 𝑡. We can think of ℱ% as the information at time 𝑡 and assume, that the stochastic 

process of any security price is adapted to ℱ%.  

We also assume the absence of arbitrage, which simply put, disables the opportunity 

to invest zero today and acquire profit from that investment tomorrow. In an arbitrage-free 

economy the prices of two investments or financial instruments with the same payoff at time 

𝑇 must be equal at any time 𝑡 ≤ 𝑇. Otherwise an arbitrage opportunity arises, so that one 

can buy the instrument of lower value and sell the one of higher value, simultaneously. 

Another important assumption is, that the considered economy is complete, meaning that 

every contingent claim is replicable, or as Brigo & Mercurio stated: “a financial market is 

complete if and only if every contingent claim is attainable” [1]. 

 

Definition 1 Self-Financing Strategy [1] Consider a stochastic process of security prices 

𝑆 = {𝑆% ∶ 	0 ≤ 𝑡 ≤ 𝑇} , where 𝑆% = (𝑆%', 𝑆%(, … , 𝑆%))*  and a trading strategy process 𝜙 =

{𝜙% ∶ 	0 ≤ 𝑡 ≤ 𝑇}, where 𝜙% = (𝜙%', 𝜙%(, … , 𝜙%))* is a vector with predictable and locally 

bounded components. Define the value process to the strategy 𝜙 as 

𝑉%(𝜙) = 𝜙%*𝑆% 

and the gains process to the strategy 𝜙 as  

𝐺%(𝜙) = C𝜙+*𝑑𝑆+

%

,

. 

A  trading strategy 𝜙  is self-financing if 𝑉(𝜙) ≥ 0  and its value process satisfies the 

equation 

𝑉%(𝜙) = 𝑉,(𝜙) + 𝐺%(𝜙). 
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Definition 2  Attainable Continent Claim [1] A contingent claim is attainable if there 

exists a self-financing trading strategy – defined for 0 ≤ 𝑡 ≤ 𝑇 – such that its value at time 

𝑇 equals to the value of the contingent claim. 

 

For a more detailed explanation of the arbitrage-free property and the completeness 

of economy see [1]. Brigo & Mercurio, authors of this book also discuss the connection 

between these economical properties and the mathematical property of existence of a unique 

risk-neutral measure, which is the result of works of Harrison & Kreps [9] and Harrison & 

Pliska ([10], [11]). They, in fact, proved that the economy is arbitrage free and complete if 

and only if there exists a unique risk-neutral measure. In addition, it not only ensures that 

the economy meets the requirements but also allows us to define the price of a derivative as 

the conditional expected value of its discounted future payoff.  

However, before defining the risk-neutral measure we must demystify some other 

expressions used in the last paragraph. At first, we introduce the bank account, by which we 

refer to a riskless investment, where profit is accrued continuously at the risk-free rate. 

 

Definition 3  Bank Account [1] Let 𝛽(𝑡) be the value of a bank account for 𝑡 ≥ 0. We 

assume that 𝛽(𝑡) develops by the following differential equation: 

𝑑𝛽(𝑡) = 𝑟%𝛽(𝑡)𝑑𝑡, 

where 𝑟% is a function of time, and satisfies	𝛽(0) = 1.  

By solving the differential equation, it is clear, that 

𝛽(𝑡) = 𝑒∫ .!
"
# /&	. 

 

The instantaneous rate 𝑟%, at which the value of the bank account grows is usually 

referred to as the instantaneous spot rate, or briefly as short-rate. Unlike some other pricing 

methods, such as the Black-Scholes formula used for pricing vanilla options, the short-rate 

𝑟%  is not deterministic. Therefore, in this thesis by the evolving short-rate we mean the 

evolution of 𝑟 through a stochastic process. Naturally, the bank account and the discount 

factor (see below) are also stochastic processes. 

 

Definition 4  Discount Factor [1] The discount factor 𝐷(𝑡, 𝑇) is the amount at time 𝑡 that 

is “equivalent” to one unit of currency payable at time 𝑇. It is given by 
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𝐷(𝑡, 𝑇) = 	
𝛽(𝑡)
𝛽(𝑇) = 𝑒0∫ .!/&

$
" 	. 

 

The equation above can easily be deducted from the fact, that if we wish to have one unit of 

currency at time 𝑇, we should invest the amount of 1/𝛽(𝑇). Hence, the amount at time 𝑡 is 

going to be the discount factor 𝐷(𝑡, 𝑇). Now, that we have defined all the tools needed, we 

can pursue in defining the risk-neutral probability measure.  

 

Definition 5  Risk-Neutral Measure [1] The risk-neutral measure (or equivalent 

martingale measure) ℚ is a probability measure such that 

i) ℚ and	ℙ are equivalent measures; 

ii) the Radon-Nikodym derivative 𝑑ℚ/𝑑ℙ belongs to 𝐿((Ω, ℱ, ℙ); 

iii) the discounted price of a contingent claim 𝐷(0, 𝑡)𝑉(𝑡) is a martingale under ℚ.  

 

For the definition of equivalent measures and the Radon-Nikodym derivative we refer 

the reader to Appendix A. Note, from the third point of Definition 5, we can define the price 

of a contingent claim as the discounted conditional expectation of its payoff under the risk-

neutral measure ℚ. 

 

Definition 6 The Price of an Attainable Contingent Claim Assume there exists a risk-

neutral measure. From its third property (Definition 5) it holds that 𝑉(𝑡)/𝛽(𝑡)  is a 

martingale. Hence, the following holds for all 𝑇 > 𝑡: 

 𝑉(𝑡) = 𝛽(𝑡)𝔼ℚ S
𝑉(𝑇)
𝛽(𝑇)	T ℱ%U	, (1)	

where 𝑉(𝑡) is the price of an arbitrary contingent claim, 𝔼ℚ  is the conditional expectation 

under measure ℚ and ℱ% is the corresponding filtration. 

 

For future reference, we simplify the notation of filtration ℱ%  by writing the conditional 

expectation as 𝔼%
ℚ. 

 

Since a martingale is a zero-drift stochastic process, the “martingale property” of 

normalized asset prices defined in Definition 6 will often be used in next chapters, when 

deriving the interest rate models.  
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Before moving on to Chapter 2, we introduce a possible way – following mainly [5] 

– of finding the risk-neutral measure and deriving the equation from Definition 6. Assume 

dynamics of an arbitrary financial security price 𝑆(𝑡) as 

 𝑑𝑆(𝑡) = 𝜇(𝑡)𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡)𝑑𝑊(𝑡), (2)	

where 𝜇(𝑡) is the drift of the process, 𝜎(𝑡) is the volatility of the price and 𝑊(𝑡)	is Wiener 

process. 

 

 Let (𝜙, 𝜓) be a self-financing strategy with its value process, which we define by  

𝑋(𝑡) = 𝜙%𝛽(𝑡) + 𝜓%𝑆(𝑡), 

where 𝛽(𝑡) is the value of a bank account. Hence, the following must hold: 

𝑑𝑋(𝑡) = 𝜙%𝑑𝛽(𝑡) + 𝜓%𝑑𝑆(𝑡) = 𝜙%𝑟%𝛽(𝑡)𝑑𝑡 + 𝜓%[𝜇(𝑡)𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡)𝑑𝑊(𝑡)]

= 𝑟%[𝑋(𝑡) − 𝜓%𝑆(𝑡)]𝑑𝑡 + 𝜓%𝜇(𝑡)𝑆(𝑡)𝑑𝑡 + 𝜓%𝜎(𝑡)𝑆(𝑡)𝑑𝑊(𝑡)

= 𝑟%𝑋(𝑡)𝑑𝑡 + 𝜓%𝜎(𝑡)𝑆(𝑡) S
𝜇(𝑡) − 𝑟%
𝜎(𝑡) 𝑑𝑡 + 𝑑𝑊(𝑡)U. 

 

By choosing a new Wiener process 𝑊ℚ(𝑡), such that	 

 𝑑𝑊ℚ(𝑡) =
𝜇(𝑡) − 𝑟%
𝜎(𝑡) 𝑑𝑡 + 𝑑𝑊(𝑡), (3)	

we can rewrite the latest form of the value process dynamics as 

𝑑𝑋(𝑡) = 𝑟%𝑋(𝑡)𝑑𝑡 + 𝜓%𝜎(𝑡)𝑆(𝑡)𝑑𝑊ℚ(𝑡). 

All we need to do, is to show that measure ℚ, under which 𝑊ℚ(𝑡) is a Wiener process 

satisfies the properties of the risk-neutral measure from Definition 5. For that, we can simply 

apply the Girsanov’s Theorem I (see Appendix B) on 

𝑊ℚ(𝑡) = C
𝜇(𝑠) − 𝑟&
𝜎(𝑠) 𝑑𝑠

%

,

+𝑊(𝑡), 

the integral of Equation (3). Assuming  2(%)0."
5(%)

  is a bounded process – such that it satisfies 

the Novikov’s condition – the stochastic process 𝑊ℚ(𝑡)  is a Wiener process on the 

probability space (Ω, ℱ,ℚ), furthermore measures ℚ and ℙ are equivalent and their Radon-

Nikodym derivative 𝑑ℚ/𝑑ℙ is from 𝐿((Ω, ℱ, ℙ). 

	
Finally, we need to prove, that the discounted value process is martingale under ℚ. By using 

the multiplication rule of the Itô’s Lemma (see Appendix B) we get 
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𝑑 ]
𝑋(𝑡)
𝛽(𝑡)^ = 	𝑑 _𝑋(𝑡)

1
𝛽(𝑡)` = −

𝑋(𝑡)
𝛽((𝑡) 𝑑𝛽

(𝑡) +
1

𝛽(𝑡) 𝑑𝑋
(𝑡)

= −
𝑟%𝑋(𝑡)
𝛽(𝑡) 𝑑𝑡 +

𝑟%𝑋(𝑡)
𝛽(𝑡) 𝑑𝑡 + 𝜓%𝜎

(𝑡)
𝑆(𝑡)
𝛽(𝑡) 𝑑𝑊

ℚ(𝑡) =
𝑆(𝑡)
𝛽(𝑡)𝜓%𝜎

(𝑡)𝑑𝑊ℚ(𝑡). 

Assuming 6"5(%)7(%)
8(%)

 is a locally bounded process, the discounted process value is a 

martingale under ℚ, since the drift of the process equals to zero. Hence, 

𝑉(𝑡) = 𝛽(𝑡)𝔼%
ℚ S
𝑉(𝑇)
𝛽(𝑇)U, 

where 𝑉 denotes the price of an arbitrary contingent claim associated with the self-financing 

strategy above.  

 

The previous approach reveals another property, which later – when deriving LMM 

models – will be substantial. Note, that we moved from the real-life world (defined under 

measure ℙ) to the risk-neutral world (defined by ℚ). Which leads us to the technique called 

the “change of numeraire”. Using that – similarly to the risk-neutral measure – many other 

probability measures can be defined, while preserving the fundamental properties of 

contingent claims. We will discuss this later in Chapter 3.  

 

  



 17 

2 Zero-Coupon Bond and Interest Rates 

In the Introduction, we pointed out that most of the interest rate models consider the 

dynamics of short-rates. However, we also mentioned the HJM framework modelling the 

instantaneous forward interest rate and LMM models describing the evolution of LIBOR 

rates. In this Chapter, we introduce the zero-coupon bond and its price at time 𝑡, using which 

we define some of the spot interest rates. We also explain the Forward Rate Agreement, 

through which we can derive the definition of forward interest rates.  

 

2.1 Zero-Coupon Bond 

Definition 7  Zero-Coupon Bond [1] A T-maturity zero-coupon bond is a contract that 

guarantees the payment of one unit of currency at time 𝑇. We denote the value of the contract 

at time 𝑡 < 𝑇 as 𝑃(𝑡, 𝑇). Obviously, 𝑃(𝑇, 𝑇) = 1 for any 𝑇. 

  

This definition seems to be suspiciously similar to the definition of discount factor 

from Chapter 1. However, the discount factor is a random quantity depending on the short-

rate 𝑟%, which – in the interest rate theory – is not deterministic, while the zero-coupon bond 

price is the value of a contract that needs to be known at time 𝑡. Still, there is a close 

relationship between these two quantities, which is shown in the following Lemma.  

 

Lemma 1  Zero-Coupon Bond Price Assuming there exists a risk-neutral measure ℚ 

defined by Definition 5, the price of a T-maturity zero-coupon bond at time 𝑡 is given by 

𝑃(𝑡, 𝑇) = 	𝔼%
	ℚ	[𝐷(𝑡, 𝑇)]. 

Proof. It holds, that 𝑃(𝑇, 𝑇) = 1. Now recall the definition of the risk-neutral measure, 

where 𝑉(𝑡) denotes the price of an asset, in this case the zero-coupon bond price. Hence, by 

a simple substitution 𝑉(𝑡) = 𝑃(𝑡, 𝑇) in Equation (1) we have 

𝑃(𝑡, 𝑇) = 𝛽(𝑡)𝔼%
	ℚ c

1
𝛽(𝑇)d = 𝔼%

	ℚ[𝐷(𝑡, 𝑇)]	. 

∎ 

 

Definition 8 Zero-Bond Curve [1] The zero-bond curve at time 𝑡  is the graph of the 

function 

𝑇	 ⟼ 𝑃(𝑡, 𝑇), 𝑇 > 𝑡, 
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which considering the positivity of interest rates should (see below) be decreasing in 𝑇. 

 

In Definition 8, we refer to the book [1] of Brigo & Mercurio, where the zero-bond 

curve (or the term-structure of discount factors) is considered to be 𝑇-decreasing, due to the 

positivity of interest rates (see the next Section to understand the relationship between the 

zero-coupon bond and interest rates). However, our experience in practice claims otherwise 

– in the past few years negative interest rates became common, which resulted non-

monotonic zero-bond curves. As we can see in Figure 1, the term-structure of discount rates 

for the last quartal of 2019 used by the Zurich Insurance Company Ltd. is not decreasing. 

We use these bond prices also in Section 2.2 to express interest rates in terms of the zero-

coupon bond price. 

 

 
Figure 1 Zero-Bond Curve 

 

2.2 Spot Interest Rates 

As we mentioned earlier, any interest rate can be defined in terms of the zero-coupon 

bond price. Which also means, that the zero-coupon bond price can be recovered in many 

ways, depending on the considered type of compounding. Here, we present two types of spot 

interest rates: the continuously compounded – where an investment accrues continuously – 

and the simply compounded – at which an investment accrues proportionally to time. We 
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also consider a third type, the annually-compounded interest rate, but only to be able to 

define the zero-coupon curve. For more, see [1]. 

 Interest rates are characterized by the time to maturity of zero-coupon bonds. For that, 

we use the notation from the following definition. 

 

Definition 9 Time Measure By 𝜏(𝑡, 𝑇) we denote the time elapsed between dates 𝑡 and 𝑇 

in years. For a time structure (or tenor structure), i.e. a set of predefined dates {𝑇:},;:;<, we 

simplify the notation to 𝜏: = 𝜏(𝑇: , 𝑇:='). An interval 𝜏(𝑡, 𝑇) is known as both a tenor, when 

𝑇 is the expiry date of a contract or the time to maturity, when 𝑇 is the maturity of a bond.  

 

Definition 10 Continuously-Compounded Spot Interest Rate [1] Continuously-

compounded spot interest rate at time 𝑡 with maturity 𝑇 is defined by  

𝑅(𝑡, 𝑇) = 	−
ln 𝑃(𝑡, 𝑇)
𝜏(𝑡, 𝑇) 	. 

From the equation above, the bond price in terms of the continuously-compounded rate 

𝑅(𝑡, 𝑇) is the following: 

𝑃(𝑡, 𝑇) = 𝑒0>(%,?)@(%,?)	. 

 

 
Figure 2 Continuously-Compounded Spot Interest Rate 

 
Definition 11 Simply-Compounded Spot Interest Rate [1] The simply-compounded spot 

interest rate at time 𝑡 with maturity 𝑇 is defined by  
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 𝐿(𝑡, 𝑇) =
1 − 𝑃(𝑡, 𝑇)
𝜏(𝑡, 𝑇)𝑃(𝑡, 𝑇)	. (4)	

 

The most widely used and the most important interbank benchmark interest rate is 

the LIBOR (London Interbank Offered Rate) rate, which is a simply-compounded interest 

rate – hence, the notation 𝐿(𝑡, 𝑇). It is fixed in London each day by calculating the trimmed 

mean of interest rates suggested by panel banks in London. In fact, there are 35 different 

LIBOR rates, since they are worked out by the five main currencies of the financial markets 

and 7 different maturities from overnight to one year.  

 

Again, the bond price can be expressed in terms of LIBOR as 

𝑃(𝑡, 𝑇) = 	
1

1 + 𝐿(𝑡, 𝑇)𝜏(𝑡, 𝑇)	. 

 

 
Figure 3 Spot LIBOR Rates 

 

2.3 Forward Interest Rates 

The forward rate can be easily defined through a Forward-Rate Agreement, which is 

characterized by three time instants: the current time 𝑡, the expiry time	𝑇 and the maturity	𝑆, 
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payment, while the former is based on a fixed rate 𝐾 and the latter on the spot rate 𝐿(𝑇, 𝑆). 

Assuming the contract nominal value 𝑁, the value of the contract at maturity 𝑆 is 
 𝑁𝜏(𝑇, 𝑆)n𝐾 − 𝐿(𝑇, 𝑆)o.	 (5)	

By substituting 𝐿(𝑇, 𝑆) defined by (4), the value can be rewritten as 

 𝑁 _𝜏(𝑇, 𝑆)𝐾 −
1

𝑃(𝑇, 𝑆) + 1`. (6)	

Considering just the term 1/𝑃(𝑇, 𝑆) as an amount of currency at maturity time S, we can 

multiply it by the zero-coupon price 𝑃(𝑇, 𝑆) to obtain its value at 𝑇. Clearly, the result is one 

unit of currency at time 𝑇. By moving backwards in time, one can admit, at time 𝑡 it is 

equivalent to an amount of 𝑃(𝑡, 𝑇). By multiplying the remaining two terms by 𝑃(𝑡, 𝑆) we 

obtain their 𝑡-time value equivalent, so we can put down the value of the contract at time 𝑡 

as: 

𝑭𝑹𝑨(𝑡, 𝑇, 𝑆, 𝜏(𝑇, 𝑆), 𝑁, 𝐾) = 𝑁[𝑃(𝑡, 𝑆)𝜏(𝑇, 𝑆)𝐾 − 𝑃(𝑡, 𝑇) + 𝑃(𝑡, 𝑆)]	. 

Assuming there is no cash exchange defined in the contract, it is fair only if the value at time 

𝑡 is zero. Hence, by equating the FRA value to zero, we can find the only 𝐾, that renders the 

contract to be fair. The obtained value leads us to the simply-compounded forward rate. 

 
Definition 12 Simply-Compounded Forward Interest Rate [1] The simply-compounded 

forward interest rate 𝐹(𝑡, 𝑇, 𝑆) prevailing at time	𝑡 for the expiry 𝑇 and maturity 𝑆, with 𝑡 <

𝑇 < 𝑆	is defined by 

 𝐹(𝑡, 𝑇, 𝑆) =
1

𝜏(𝑇, 𝑆) ]
𝑃(𝑡, 𝑇)
𝑃(𝑡, 𝑆) − 1^	. (7)	

 

Now recall the value of the aforementioned FRA. By a simple rearrangement of 

terms in the parenthesis we can easily rewrite it by means of our newly defined interest rate: 

𝑭𝑹𝑨(𝑡, 𝑇, 𝑆, 𝜏(𝑇, 𝑆), 𝑁, 𝐾) = 𝑁𝑃(𝑡, 𝑆)𝜏(𝑇, 𝑆)[𝐾 − 𝐹(𝑡, 𝑇, 𝑆)]	. 

 

As we can see, the value of the FRA at time 𝑡 is very similar to its payoff at maturity time 𝑆. 

By replacing the LIBOR rate 𝐿(𝑇, 𝑆) in Equation (5) with the forward rate 𝐹(𝑡, 𝑇, 𝑆) and 

taking the present value of the previously compiled payoff we can easily value a FRA. Notice 

also, that from Equations (4) and (7) the following relation holds: 

 𝐹(𝑇, 𝑇, 𝑇 + 𝜏) = 	𝐿(𝑇, 𝑇 + 𝜏). (8)	

 
Later, in Chapter 3 we will show, that the forward rate 𝐹(𝑡, 𝑇, 𝑆) is in fact an estimate of the 
spot rate 𝐿(𝑇, 𝑆) as its expectation at time 𝑡 in a special probability measure.  
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Another type of rates, analogous of the short-rate in the future, the instantaneous 
forward rate can be obtained when the maturity 𝑆 of a forward rate approaches the expiry 
time 𝑇. 
 
Definition 13 Instantaneous Forward Interest Rate [1] The instantaneous forward 

interest rate 𝑓(𝑡, 𝑇) prevailing at time 𝑡 for maturity 𝑇 > 𝑡 is defined as  

𝑓(𝑡, 𝑇) = lim
7→?%

𝐹(𝑡, 𝑇, 𝑆) = −
𝜕 ln𝑃(𝑡, 𝑇)

𝜕𝑇 	. 
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3 Change of Numeraire 

 As we already indicated when explaining risk-neutral measure in Chapter 1, the 

change of numeraire is a technique used to easily move from one probability measure to 

another. Although the price of a contingent claim 𝐻 is obtainable as the expectation of its 

discounted payoff, a risk-neutral measure ℚ  “is not necessarily the most natural and 

convenient measure for pricing the claim 𝐻	“ [1]. For example, LIBOR forward rates do not 

have a lognormal distribution in the risk-neutral measure ℚ, but as we show in Chapter 5, 

by using the Change of Numeraire technique we can define a probability measure for each 

forward LIBOR rate, in which the property of lognormality holds. 

A numeraire is an asset that is used as a reference to normalize other asset prices. By 

definition, any non-dividend paying asset can be used as a numeraire. Recall, for example, 

the definition of the risk-neutral measure and its “martingale-property”. We proved, that the 

price of an arbitrary contingent claim – or rather the value of a self-financing strategy 

replicating it – normalized by 𝛽(𝑡) is a martingale under the measure ℚ. In this case, we 

considered the bank account as the numeraire inducing measure ℚ. 

The Change of Numeraire Theorem was proposed and proved by Geman, El Karoui 

and Rochet [12]. It states that we can arbitrarily change numeraires and that there exists a 

probability measure for any of them such that the price of any other asset normalized by the 

numeraire is a martingale under the corresponding measure. An important assumption of the 

theorem was also proved by them, namely every self-financing strategy remains self-

financing after a numeraire change, which implies that every contingent claim remains 

contingent claim after a numeraire change. 

From our perspective, the most important is the following proposition by Geman et 

al. introduced in [1], that generalizes Definition 5 to any numeraire.  

 

Proposition 1 [1] Consider a numeraire 𝑁 and a probability measure 𝒬<, equivalent to the 

initial ℙ, such that the price of any traded asset 𝑋 (without intermediate payments) relative 

to 𝑁 is a martingale under 𝒬<, i.e.,  
𝑋%
𝑁%
= 𝔼< c

𝑋?
𝑁?
~ ℱ%d 				0 ≤ 𝑡 ≤ T. 

Let 𝑈 be an arbitrary numeraire. Then there exists a probability measure 𝒬B, equivalent to 

the initial ℙ, such that the price of any attainable claim 𝑌 normalized by 𝑈 is a martingale 

under 𝒬B, i.e., 
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𝑌%
𝑈%
= 𝔼B c

𝑌?
𝑈?
~ ℱ%d 				0 ≤ 𝑡 ≤ T. 

Moreover, the Radon-Nikodym derivative defining the measure 𝒬B is given by 

 
𝑑𝒬B

𝑑𝒬< =
𝑈?𝑁,
𝑈,𝑁?

. (9)	

Proof. We provide a short sketch of the proof, especially for Equation (9). The first part of 

the proposition, i.e. the existence of the probability measure 𝒬B induced by numeraire 𝑈, 

together with martingale property of a normalized attainable claim can be proved by using 

the Bayes rule for conditional expectations. For that, we refer the reader to [12].  

The second part, i.e. Equation (9) can be obtained by using properties of the two 

numeraires 𝑁 and 𝑈, and a heuristic proof is introduced in [1]. Note that fraction C#
<#

 – where 

𝑍 is an arbitrary traded asset – can be expressed in two ways, which therefore must be equal: 

𝔼< c
𝑍?
𝑁?
d = 𝔼B c

𝑈,
𝑁,
𝑍?
𝑈?
d. 

From the definition of the Radon-Nikodym derivative (see Appendix A) we know, that 

𝔼< c
𝑍?
𝑁?
d = 𝔼B S

𝑍?
𝑁?

𝑑𝒬<

𝑑𝒬BU. 

Hence – according Brigo & Mercurio – by comparing the two right-hand sides 

𝑑𝒬<

𝑑𝒬B =
𝑁?𝑈,
𝑁,𝑈?

, 

which leads us directly to Equation (9). 

∎ 

 

Now, we know that a numeraire can be any non-dividend paying security and we also 

showed that there exists a unique probability measure for every such a security. Therefore, 

we can assume a zero-coupon bond being another numeraire with its corresponding 

probability measure, the 𝑇-forward risk-adjusted measure, or simply the 𝑇-forward measure.  

 

3.1 𝑻-forward Measure 

Definition 14 𝑻-Forward Measure If we denote the price of an arbitrary contingent claim 

by 𝑉, the 𝑇-forward measure ℚ? induced by numeraire 𝑃(𝑡, 𝑇) is the measure under which 

𝑉(𝑡)/𝑃(𝑡, 𝑇) is a martingale. Hence the following holds for all 𝑇 > 𝑡: 
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𝑉(𝑡) = 𝑃(𝑡, 𝑇)𝔼%	? S
𝑉(𝑇)
𝑃(𝑇, 𝑇)U = 𝑃(𝑡, 𝑇)𝔼%	?[𝑉(𝑇)], 

where 𝔼%	? is the conditional expectation in the T-forward measure ℚ? and corresponding to 

the filtration ℱ%. 

 

In Chapter 2, we already mentioned that the forward rate is the estimate of the LIBOR 

spot rate. Now, that we are conscious of the existence of ℚ?, we can show that it is the 

conditional expectation of LIBOR rate under the measure ℚ? . For that, first we need to prove 

that 𝐹(𝑡, 𝑇, 𝑇 + 𝜏) is a martingale under ℚ?=@. 

 
Lemma 2 Martingale Property of 𝑭(𝒕, 𝑻, 𝑻 + 𝝉) The forward rate 𝐹(𝑡, 𝑇, 𝑇 + 𝜏) is a 

martingale under the (𝑇 + 𝜏)-forward measure ℚ?=@. In formulas:  

𝐹(𝑡, 𝑇, 𝑇 + 𝜏) = 	𝔼%	?=@[𝐹(𝑠, 𝑇, 𝑇 + 𝜏)] ,  𝑡 ≤ 𝑠 ≤ 𝑇,	 

where 𝜏 > 0. 

Proof. Recall the definition of the forward rate, 

𝐹(𝑡, 𝑇, 𝑇 + 𝜏) =
1
𝜏 ]

𝑃(𝑡, 𝑇)
𝑃(𝑡, 𝑇 + 𝜏) − 1^. 

To show that 𝐹(𝑡, 𝑇, 𝑇 + 𝜏) is a martingale under the (𝑇 + 𝜏)-forward measure, we need to 

prove that: 

𝐹(𝑡, 𝑇, 𝑇 + 𝜏) = 𝔼%	?=@[𝐹(𝑠, 𝑇, 𝑇 + 𝜏)],  

for any 𝑡 ≤ 𝑠 ≤ 𝑇. We can proceed as follows: 

𝔼%	?=@[𝐹(𝑠, 𝑇, 𝑇 + 𝜏)] = 𝔼%	?=@ S
1
𝜏 ]

𝑃(𝑠, 𝑇)
𝑃(𝑠, 𝑇 + 𝜏) − 1^U =

1
𝜏 ]𝔼%

	?=@ S
𝑃(𝑠, 𝑇)

𝑃(𝑠, 𝑇 + 𝜏)U − 1^. 

We know, that 𝑃(𝑠, 𝑇)  is a security and an arbitrary traded security normalized by a 

numeraire is a martingale under the corresponding measure. Therefore, 𝑃(𝑠, 𝑇)/𝑃(𝑠, 𝑇 + 𝜏) 

is a martingale under the (𝑇 + 𝜏)-forward measure. Hence, 

𝔼%	?=@[𝐹(𝑠, 𝑇, 𝑇 + 𝜏)] =
1
𝜏 ]

𝑃(𝑡, 𝑇)
𝑃(𝑡, 𝑇 + 𝜏) − 1^ = 	𝐹(𝑡, 𝑇, 𝑇 + 𝜏)	. 

∎ 

 

Corollary 1 The forward rate 𝐹(𝑡, 𝑇, 𝑆) is the expectation of the spot rate 𝐿(𝑇, 𝑆) in the 

S-forward measure ℚ7. In formulas: 

𝐹(𝑡, 𝑇, 𝑆) = 	𝔼%	7[𝐿(𝑇, 𝑆)]	, 

where 𝑡 ≤ 𝑇 ≤ 𝑆. 
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Proof. From Lemma 2 we already know, that forward rate 𝐹(𝑡, 𝑇, 𝑆)	is a martingale under 

the 𝑆-forward measure ℚ7. Also, if we recall Equation (8) from Chapter 2, the following 

must hold: 

𝐹(𝑇, 𝑇, 𝑆) = 	𝐿(𝑇, 𝑆). 

Hence, the proof of the corollary is straightforward: 

𝐹(𝑡, 𝑇, 𝑆) = 𝔼%	7[𝐹(𝑇, 𝑇, 𝑆)] = 𝔼%	7[𝐿(𝑇, 𝑆)]	. 

∎ 
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4 Swaps and Swaptions 

 In this Chapter, we introduce the interest rate swap and one of the most important 

interest derivatives, the swaption. We start by explaining and pricing the plain vanilla interest 

rate swap, however, in the end, our focus is on pricing the swaption, i.e. the option contract 

of a swap. Swaptions, together with other interest rate derivatives like caps are the most 

liquid and the most frequently traded derivatives on the interest rate derivative market. 

Therefore, in most cases LMM models are calibrated to their market prices. Since the 

LMMPlus model calibration methodology considers only swaptions as model target 

instruments, in this thesis we left out of consideration caps and their pricing formulas. 

However, we refer the reader to [1] or [13] where they are explained in detail.   

 

4.1 The Plain Vanilla Interest Rate Swap 

A plain vanilla interest rate swap, or – as we refer to it – a swap can be seen as a 

generalization of the FRA. It is an agreement to exchange payments between two legs – 

fixed and floating – at predefined indexed time dates. To remain simple and ease the notation 

in this thesis, we consider that payments of these legs occur at the same time. We derive the 

payoff and the price of a swap by following mainly [1] and [14]. 

 

Consider a set of predefined time dates 0 ≤ 𝑇, < 𝑇' < ⋯ < 𝑇< starting at a given 

date 𝑇,. Since in the previous Chapter we have derived some of the forward rates’ properties 

and we have defined a discrete-time structure, it is reasonable to use the following new 

notation of spot LIBOR rates:  

𝐿(𝑇D, 𝑇D=') = 𝐿D(𝑇D), 

where 𝐿D(𝑡) is the forward (LIBOR) rate defined as 

𝐿D(𝑡) = 𝐹(𝑡, 𝑇D, 𝑇D=') =
1
𝜏D
]
𝑃(𝑡, 𝑇D)
𝑃(𝑡, 𝑇D=')

− 1^. 

At time instant 𝑇:=' the fixed leg pays out the amount 

𝐺𝜏:𝐾, 

and the floating leg pays out 

𝐺𝜏:𝐿:(𝑇:), 
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where 𝐺 is the nominal value, 𝐾 is the fixed rate, 𝐿(𝑇: , 𝑇:=') is the LIBOR interest rate and 

tenor 𝜏: is the time elapsed between 𝑇:=' and 𝑇:. Hence, the cash flow of the fixed leg payer 

or receiver at time 𝑇:=' is given by 

𝐺𝜔𝜏:(𝐿:(𝑇:) − 𝐾), 

where 𝜔 = 1 for the fixed rate payer and 𝜔 = −1 for the fixed rate receiver. From previous 

chapters we know, that the price of a tradable asset can be obtainable in terms of a certain 

conditional expectation. We also mentioned that any forward rate 𝐿:(𝑇:) is a martingale 

under the 	𝑇:='-forward measure. Therefore, since 𝐾 is not time dependent, the price of a 

swap at time 𝑡 < 𝑇, can be calculated as  

𝑉&EFG(𝑡) = 𝜔𝐺� 𝜏:𝑃(𝑡, 𝑇:=')
<0'

:H,

𝔼%:='[𝐿:(𝑇:) − 𝐾] 

= 𝜔𝐺� 𝜏:𝑃(𝑡, 𝑇:=')
<0'

:H,

(𝐿:(𝑡) − 𝐾). 

Note, that the price of a swap could be derived also as the sum of multiple FRAs and the 

final equation would be the same.  

 

4.2 The Swap Measure 

In the following, we introduce the swap measure, for which first we must adjust the 

previous equation as 

𝑉&EFG(𝑡) = 𝜔𝐺� 𝜏:𝑃(𝑡, 𝑇:=') ]
∑ 𝜏:𝑃(𝑡, 𝑇:=')<0'
:H, 𝐿:(𝑡)
∑ 𝜏:𝑃(𝑡, 𝑇:=')<0'
:H,

− 𝐾^
<0'

:H,

 

and define stochastic processes  

𝐴(𝑡) ≡ 𝐴,,<(𝑡) = � 𝜏:𝑃(𝑡, 𝑇:=')
<0'

:H,

, 

𝑆(𝑡) ≡ 𝑆,,<(𝑡) =
∑ 𝜏:𝑃(𝑡, 𝑇:=')<0'
:H, 𝐿:(𝑡)
∑ 𝜏:𝑃(𝑡, 𝑇:=')<0'
:H,

, 

so that the swap price’s equation can be rewritten as 

 𝑉&EFG(𝑡) = 𝐺𝜔𝐴(𝑡)(𝑆(𝑡) − 𝐾). (10)	

For future reference, 𝐴(𝑡) is known as the annuity of the swap, while 𝑆(𝑡) is the forward 

swap rate [14], which similarly to the forward rate in case of an FRA, can be found by 

following the principle of rendering the contract to be a zero priced agreement at time 𝑡. 
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There also exists a generalized form for both, which are used to define the price of swaps 

with different starting and ending dates. 

 

Definition 15 [14] Consider a set of predefined time dates 0 ≤ 𝑇, < 𝑇' < ⋯ < 𝑇<. For 

any integers 𝑘,𝑚  satisfying 0 ≤ 𝑘 ≤ 𝑁 , 𝑚 ≥ 0 and 𝑘 +𝑚 ≤ 𝑁  the annuity rate 𝐴I,)  is 

given by equation 

 𝐴I,)(𝑡) = � 𝜏:𝑃(𝑡, 𝑇:=')
)0'

:HI

, (11)	

and the swap rate 𝑆I,) by equation 

 𝑆I,)(𝑡) =
𝑃(𝑡, 𝑇I) − 𝑃(𝑡, 𝑇))

𝐴I,)(𝑡)
. (12)	

Note, that the general form of the swap rate defined by Equation (12) can be obtained 

after rewriting the definition of 𝑆(𝑡), which is done in the following Remark. 

 

Remark 1 Since the forward LIBOR rate	𝐿:(𝑡) is defined as 

𝐿:(𝑡) =
1
𝜏:
]
𝑃(𝑡, 𝑇:)
𝑃(𝑡, 𝑇:=')

− 1^, 

we can substitute it in  

𝑆(𝑡) =
∑ 𝜏:𝑃(𝑡, 𝑇:=')<0'
:H, 𝐿:(𝑡)
∑ 𝜏:𝑃(𝑡, 𝑇:=')<0'
:H,

 

for every 𝑖 = 0, 1, … , 𝑁 − 1. Hence,  

𝑆(𝑡) =
∑ n𝑃(𝑡, 𝑇:) − 𝑃(𝑡, 𝑇:=')o<0'
:H,

∑ 𝜏:𝑃(𝑡, 𝑇:=')<0'
:H,

,	 

which results  

𝑆(𝑡) =
𝑃(𝑡, 𝑇,) − 𝑃(𝑡, 𝑇<)
∑ 𝜏:𝑃(𝑡, 𝑇:=')<0'
:H,

. 

The denominator of the previous fraction is the annuity 𝐴(𝑡), so the final equation of the 

swap rate 𝑆(𝑡)	is given as  

𝑆(𝑡) =
𝑃(𝑡, 𝑇,) − 𝑃(𝑡, 𝑇<)

𝐴(𝑡) . 

Hence, if we change starting dates 𝑇, and 𝑇< to a more general case, the swap rate is given 

as  

𝑆I,)(𝑡) =
𝑃(𝑡, 𝑇I) − 𝑃(𝑡, 𝑇))

𝐴I,)(𝑡)
. 
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The annuity of a swap is a linear combination of zero-coupon bonds, which makes it 

a tradable non-dividend paying asset. Therefore, we can define a new probability measure, 

the swap measure based on the annuity as a numeraire.  

 

Definition 16 The Swap Measure The swap measure ℚI,)  is a probability measure 

induced by the numeraire 𝐴I,), under which the price of an arbitrary asset	𝑉 normalized by 

the annuity 𝐴I,) is a martingale. In formulas  

𝑉(𝑡) = 𝐴I,)(𝑡)𝔼%
I,) S

𝑉(𝑇)
𝐴I,)(𝑇)

U, 

where 𝔼%
I,) is the conditional expectation under the swap measure ℚI,) and corresponding 

to the filtration ℱ%. 

 

In closing this section, by proving the following Lemma we introduce a swap-rate 

property, that will be helpful in the following Section of swaption pricing. Note, that the 

swap rate is the difference of two zero-coupon bonds – a traded asset – normalized by the 

annuity 𝐴I,). Therefore, according to Definition 16 it must be a martingale under the swap 

measure ℚI,).  

 

Lemma 3 The swap rate 𝑆I,) is a martingale under the swap measure ℚI,).  

Proof. For any 𝑇 ≤ 𝑇I – based on the fact, that the difference of two zero-coupon bonds is a 

traded asset – the following must hold: 

𝔼%
I,)�𝑆I,)(𝑇)� = 𝔼%

I,) S
𝑃(𝑇, 𝑇I) − 𝑃(𝑇, 𝑇I=))

𝐴I,)(𝑇)
U = 

=
𝑃(𝑡, 𝑇I) − 𝑃(𝑡, 𝑇I=))

𝐴I,)(𝑡)
= 𝑆I,)(𝑡). 

∎ 

4.3 Swaptions 

 A swaption gives to its holder the option to enter into a swap agreement. An option 

is a financial instrument, which gives the holder the right, but not the obligation to buy or 

sell the underlying asset for the certain price (strike price) at a future date. However, in case 

of a swap-option contract the strike of a swaption is the fixed rate 𝐾 of the underlying swap. 

Similarly to vanilla options, we can differentiate two types of swaptions based on the two 

legs of a swap agreement: a payer swaption and a receiver swaption. In general, the expiry 
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date of a swaption does not have to be identical with the start date of the underlying swap, 

but in this thesis, we assume they occur at the same time and refer to it as the expiry date. 

Hence, according to their style of exercise there are two main types: 

• European swaption – in which the option can be exercised only at the expiry date. 

• American swaption – in which the option can be exercised at any time during the 

option period. 

 

Just like any option, swaptions can be in-the-money (ITM), at-the-money (ATM) or out-

of-the-money (OTM) depending on the strike’s position compared to the underlying swap 

rate. Considering the payer swaption, it is ITM if 𝑆(𝑡) > 𝐾, while the corresponding receiver 

swaption is OTM. Similarly, if 𝑆(𝑡) < 𝐾, the payer swaption is OTM and the receiver is 

ITM. A swaption is ATM if 𝑆(𝑡) = 𝐾. 

  

In this section, we derive the price of a European swaption, since, assuming the 

lognormality of the swap rate dynamics, it can be done analytically using the Black formula. 

For an American swaption the pricing must be done through numerical methods.  

By the Black formula, we refer to the key result of the extended Black-Scholes-

Merton model [15], [16], which is used to price European-style derivatives analytically when 

interest rates are stochastic. The Black-Scholes-Merton model can be derived by setting up 

a riskless portfolio – that consists of position both in the stock and the derivative – and 

assuming that its return equals to the risk-free return over a short period of time. It is because 

both the underlying asset price and the derivative price depend on the former’s price 

movement. Indeed, they are perfectly correlated over a short period of time. In 1976, Fischer 

Black improved their primary model [2], and presented the framework, which is now known 

as the Black76 model and can be used to price options in terms of futures prices assuming 

stochastic interest rates. A detailed derivation of the whole model is out of the limits of this 

thesis, therefore, we refer the reader to the book of John C. Hull [13]. We only present the 

first steps of the valuation and directly apply the Black formula. 

 

Recall Equation (10) defining the swap price at time 𝑡 as 

𝑉&EFG(𝑡) = 𝐺𝜔𝐴(𝑡)(𝑆(𝑡) − 𝐾). 

Since we assume the 𝑇, is both the expiry time of the swaption and the start of the underlying 

swap, the payoff of the swaption at time 𝑇, must be 
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[𝜔𝐺𝐴(𝑇,)(𝑆(𝑇,) − 𝐾)]= = 𝑚𝑎𝑥n𝐺𝜔𝐴(𝑇,)(𝑆(𝑇,) − 𝐾)o. 

Hence, according to the definition of the swap measure, the swaption price at time 𝑡 is given 

by the formula  

𝑉&EFG%:JD(0) = 𝐴(𝑡)𝔼,
,,< S

[𝐺𝜔𝐴(𝑇,)(𝑆(𝑇,) − 𝐾)]=

𝐴(𝑇,)
U 

= 𝐺𝐴(𝑡)𝔼,
,,<[[𝜔(𝑆(𝑇,) − 𝐾)]=]. 

Assuming 𝑆(𝑡) has a lognormal distribution under the ℚ,,< with standard deviation 𝜎�𝑇, 

the Black formula for the swaption price is defined in the box below. 

 

The price of a swaption with strike 𝐾  and expiry date 𝑇,  at time 0 is given by the 

formula 

𝑉&EFG%:JD(0) = 𝐺𝜔𝐴(0)[𝑆(0)𝒩(𝜔𝑑') − 𝐾𝒩(𝜔𝑑()], 

where 𝐺 is the nominal value of the underlying swap, 𝜔 = 1 for the fixed rate payer and 

𝜔 = −1 for the fixed rate receiver, 

𝑑' =
𝑙𝑛 _𝑆(0)𝐾 ` + 12𝜎

(𝑇,

𝜎�𝑇,
, 𝑑( = 𝑑' − 𝜎�𝑇, 

and 𝒩(𝑥) = ∫ '
√(L

𝑒0
&
'M

'
𝑑𝑦N

0O  is the standard normal cumulative distribution function. 

 

Note, this formula (besides 𝑆 , 𝐾  or 𝑇, ) depends on the parameter 𝜎 , which is 

typically derived from market data. Since such a 𝜎 is implied by the market price of an option 

based on a pricing model, it is called the implied volatility. Implied volatilities can be 

calculated for different strikes 𝐾 and maturities 𝑇. Their mapping from 𝐾 and 𝑇 is known as 

the volatility surface. In the real word swaption valuation volatilities might be adjusted to 

incorporate expert judgment, to reflect the risk-averse prudence or alternatively some risky 

investment views. 

 

As we said, pricing of swaptions using the Black formula requires lognormal swap 

rate  dynamics, which is assumed in case of swap market models (see Chapter 5). In LMM 

models, we consider lognormal dynamics of forward LIBOR rates, which allow pricing caps 

using the Black formula, but prohibit us to price swaptions analytically. However, as we will 
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see later in Chapter 6, swap rate dynamics are not far from being lognormal, therefore we 

can derive an approximated pricing formula for swaptions. 
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5 LIBOR Market Models 

In many cases, some of the short-rate models, or rather their extended forms are still 

used in practice. There are some good reasons: they can be easily applied and also pricing 

with these models can offer satisfying results for many interest rate derivatives. However, 

they all have one major drawback: interest rates modeled by them are not directly observable 

in financial markets.  

The most popular and most widely used models today consider the LIBOR forward 

rates as modeled quantities, which in contrast to the instantaneous spot and forward rates, 

are observable in the market. These are the Market Models, which can be calibrated and used 

for pricing any financial instruments whose payoff can be expressed in terms of forward 

rates, moreover, they are consistent with the Black formula.  

In fact, there are two basic market models, which are unfortunately not compatible: 

the standard lognormal LIBOR Market Model (LMM model) considering lognormal 

dynamics of forward LIBOR rates and the lognormal Swap Rate Market Model considering 

lognormal dynamics of swap rates. As it can be seen in Chapter 6, if a lognormal evolution 

of each forward LIBOR rate is assumed under its measure, swap rates cannot be lognormal 

in their own measure as assumed in the lognormal swap rate model. Hence, swaptions and 

caps can be priced analytically with the Black formula only separately. However, as we have 

already mention in Chapter 4, all is not lost, since in LMM models we can derive a formula 

for approximated swaption prices. 

The most known LMM model is the BGM model [3], which comes from the acronym 

of the names of its authors, Brace, Gatarek and Musiela and assumes a simple lognormal 

evolution of forward LIBOR rates. Since its appearance, several extensions have been 

proposed, which vary in assumptions of special local volatility functions and/or stochastic 

volatility processes.  

First, we define a discrete time structure and the corresponding notation, then using 

the martingale property of forward LIBOR rates, derive their dynamics under different 

measures. We briefly introduce the pioneer work of Brace, Gatarek and Musiela and present 

one of the BGM model’s extension, the LMM with a stochastic volatility process. At the end 

of this Chapter, we also introduce a framework of a concrete model, called the LMMPlus 

model, that is used in practice for the valuation of life insurance liabilities. 
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5.1 Preparation 

The first part of this Chapter is mainly based on [14], since we find the derivation of 

forward LIBOR dynamics coherent and straightforward. Consequently, the notation is 

adjusted. We define the following time structure: 

0 = 𝑇, < 𝑇' < ⋯ < 𝑇<0' < 𝑇< , 

𝜏D = 𝑇D=' − 𝑇D, 

where 𝑛 = 0, 1, … , 𝑁 − 1 and 𝑁 ∈ ℕ is predefined. Note, this defines a finite set of zero-

coupon bonds 𝑃(𝑡, 𝑇D) for {𝑛 ∶ 𝑡 < 𝑇D ≤ 𝑇<}. Therefore, we can rewrite the definition of the 

simply-compounded forward interest rate (or forward LIBOR rate) – like we did in Chapter 

4 – as 

𝐿D(𝑡) = 𝐹(𝑡, 𝑇D, 𝑇D=') =
1
𝜏D
]
𝑃(𝑡, 𝑇D)
𝑃(𝑡, 𝑇D=')

− 1^. 

As we can see, it is easy to derive the zero-coupon bond price recursively. However, by 𝑡 

moving forward, zero-coupon bonds begin to successively expire, hence it is reasonable to 

introduce an index function 𝑞(𝑡) satisfying 

 𝑇P(%)0' ≤ 𝑡 < 𝑇P(%). (13)	

By that, we can identify the first zero-coupon bond that has not expired by time 𝑡. Now we 

can get back to the previous idea and recursively deduce the price of a zero-coupon bond for 

any 𝑡 < 𝑇D. From the definition of the forward LIBOR rate it is clear, that 

𝑃(𝑡, 𝑇D=') =
𝑃(𝑡, 𝑇D)

1 + 𝜏D𝐿D(𝑡)
. 

Hence, after applying this relation recursively, the zero-coupon bond price is given by  

 𝑃(𝑡, 𝑇D) = 𝑃n𝑡, 𝑇P(%)o �
1

1 + 𝜏:𝐿:(𝑡)

D0'

:HP(%)

. (14)	

We can also define the discrete-time equivalent 𝐵(𝑡) of the bank account 𝛽(𝑡) introduced in 

Chapter 1, which represents the time 𝑡 value of investing one unit of currency at time 0. 

While 𝛽(𝑡) accrues continuously at the short-rate, 𝐵(𝑡) grows by reinvesting the initial one 

unit of currency at each time instant 𝑇D for the next time instant 𝑇D='. We know from Chapter 

2, that 

𝐿D(𝑇D) = 𝐹(𝑇D, 𝑇D, 𝑇D=') = 𝐿(𝑇D, 𝑇D='). 

Hence, the value of a simply-compounded money market account at time 𝑇P(%) is given by 
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𝐵n𝑇P(%)o = � n1 + 𝜏:𝐿:(𝑇:)o
P(%)0'

:H,

, 

while its time 𝑡 “equivalent” by 

 𝐵(𝑡) = 	𝑃n𝑡, 𝑇P(%)o � n1 + 𝜏:𝐿:(𝑇:)o
P(%)0'

:H,

. (15)	

Note, that 𝐵(𝑡) can also be a numeraire, hence in the following we introduce the spot 

measure ℚQ as the probability measure defined by the money market account.  

 

Definition 17 Spot Measure The spot measure ℚQ is a measure induced by the numeraire 

𝐵(𝑡), under which 𝑉(𝑡)/𝐵(𝑡) is a martingale. Hence,  

𝑉(𝑡) = 𝐵(𝑡)𝔼%	Q S
𝑉(𝑇)
𝐵(𝑇)U, 

where 𝔼%	Q is the conditional expectation under the spot measure ℚQ and corresponding to 

the filtration ℱ% . 

 

5.2 Forward LIBOR Rate Dynamics 

 Remember the index function 𝑞(𝑡) defined by Equation (13) and consider the set of 

forward LIBOR rates at time 𝑡 , fixed at time instants with index 𝑛 ≥ 𝑞(𝑡) , i.e. 

𝐿P(%)(𝑡), 𝐿P(%)='(𝑡), … , 𝐿<0'(𝑡).  

In Chapter 3, we proved that – considering the discrete-time structure and the 

adjusted notation – 𝐿D(𝑡) is a martingale under the 𝑇D='-forward measure ℚD=' ≡ ℚ?(%&. 

Therefore, assume a set of driftless dynamics for 𝑛 ≥ 𝑞(𝑡): 

 𝑑𝐿D(𝑡) = 𝜎D(𝑡)*𝑑𝑊D='(𝑡), (16)	

where 𝑊D='(𝑡)  is the 𝑚 -dimensional Wiener process under the 𝑇D=' -forward measure 

ℚD=' and 𝜎D(𝑡) is a 𝑚-dimensional process, i.e. 

𝑊D='(𝑡) = 	 [𝑊D=','(𝑡), … ,𝑊D=',)(𝑡)]%R,* , 

𝜎D(𝑡) = [𝜎D'(𝑡), … , 𝜎D)(𝑡)	]%R,* . 

 

For the moment, we do not provide further details regarding the process 𝜎D(𝑡). Now 

we simply assume it corresponds to the conditions of this framework. 
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We derive the dynamics of  𝐿D(𝑡)	under the 𝑇D-forward measure ℚD. As we will see, 

by moving from the 𝑇D='-forward measure to the adjacent forward measure we obtain a 

recursive relation, that will help us to represent the forward-rate dynamics under the terminal 

𝑇<-forward measure.  

 

Lemma 4 [14]  Assume that  𝐿D(𝑡) is given by Equation (16). The dynamics of 𝐿D(𝑡) under 

the 𝑇D-forward measure ℚ?( are given by 

𝑑𝐿D(𝑡) = 𝜎D(𝑡)* �
𝜏D𝜎D(𝑡)

1 + 𝜏D𝐿D(𝑡)
𝑑𝑡 + 𝑑𝑊D(𝑡)�, 

where 𝑊D(𝑡) is the 𝑚-dimensional Wiener process under the 𝑇D-forward measure ℚD. 

Proof. From the result of the Change of Numeraire Theorem in Chapter 3 we know, that the 

Radon-Nikodym derivative defining measure ℚD is given by 

𝑀? =
𝑑ℚD

𝑑ℚD=' =
𝑃(𝑇, 𝑇D)
𝑃(0, 𝑇D)

𝑃(0, 𝑇D=')
𝑃(𝑇, 𝑇D=')

. 

Considering the numeraire 𝑃(𝑡, 𝑇D=') , one can see that the stochastic process 𝑀%  is a 

martingale under the 𝑇D='-forward measure, since  

𝔼%D='[𝑀?] = 𝔼%D=' S
𝑃(𝑇, 𝑇D)
𝑃(0, 𝑇D)

𝑃(0, 𝑇D=')
𝑃(𝑇, 𝑇D=')

U =
𝑃(𝑡, 𝑇D)
𝑃(0, 𝑇D)

𝑃(0, 𝑇D=')
𝑃(𝑡, 𝑇D=')

= 𝑀% 

for 𝑡 ≤ 𝑇. 

Note, that 𝑃(𝑡, 𝑇D)/𝑃(𝑡, 𝑇D=') can be expressed in terms of the forward LIBOR rate, so that 

𝑀% can be rewritten as  

𝑀% =
𝑃(0, 𝑇D=')
𝑃(0, 𝑇D)

n1 + 𝜏D𝐿D(𝑡)o. 

For a given 𝑛 the only 𝑡-dependent value in this process is the forward rate 𝐿D(𝑡), hence the 

derivation of 𝑀% is as simple as  

𝑑𝑀% =
𝑃(0, 𝑇D=')
𝑃(0, 𝑇D)

𝜏D𝑑𝐿D(𝑡) =
𝑃(0, 𝑇D=')
𝑃(0, 𝑇D)

𝜏D𝜎D(𝑡)*𝑑𝑊D='(𝑡). 

If we divide the previous equation by 𝑀%, we get 
𝑑𝑀%

𝑀%
= 𝛾D(𝑡)*𝑑𝑊D='(𝑡), 

where 

𝛾D(𝑡) =
𝜏D𝜎D(𝑡)

1 + 𝜏D𝐿D(𝑡)
. 

It is clear, that 
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𝑑𝑀%

𝑀%
= 𝑑n𝑙𝑛(𝑀%)o, 

hence using the Itô’s Lemma (see Appendix B), with 𝑔(𝑡,𝑀%) = 𝑙𝑛(𝑀%) we obtain 

𝑀% = exp¥C𝛾D(𝑠)*𝑑𝑊D='(𝑠)
%

,

−
1
2C𝛾D

(𝑠)*𝛾D(𝑠)
%

,

𝑑𝑠¦. 

Assuming 𝛾D(𝑡) is locally bounded, i.e. for every 𝑡 > 0 there exists a positive constant 𝐶(𝑡) 

such that  

𝛾D(𝑡)*𝛾D(𝑡) ≤ 𝐶(𝑡), 

𝛾D(𝑡) satisfies the Novikov’s condition (see [17]).  

 

By that, we can apply Girsanov’s Theorem I (see Appendix B), where we set 

𝑊(𝑡) = 𝑊D='(𝑡), 

𝑎(𝑡, 𝜔) = −𝛾D(𝑡), 

𝑌(𝑡) = 𝑊D(𝑡), 

so that 

𝑑𝑊D(𝑡) = 𝑑𝑊D='(𝑡) −
𝜏D𝜎D(𝑡)

1 + 𝜏D𝐿D(𝑡)
𝑑𝑡, 

and 𝑊D(𝑡) is a Wiener process under the 𝑇D-forward measure ℚD. Substituting  

 𝑑𝑊D='(𝑡) = 𝑑𝑊D(𝑡) +
𝜏D𝜎D(𝑡)

1 + 𝜏D𝐿D(𝑡)
𝑑𝑡 (17)	

into Equation (16) we obtain  

𝑑𝐿D(𝑡) = 𝜎D(𝑡)* �
𝜏D𝜎D(𝑡)

1 + 𝜏D𝐿D(𝑡)
𝑑𝑡 + 𝑑𝑊D(𝑡)�, 

i.e. the dynamics of the forward LIBOR rate under the 𝑇D-forward measure ℚD. 

∎ 

 

Note, that the previous Lemma can be used iteratively. Therefore, in the next Lemma 

we prove that the dynamics of 𝐿D(𝑡) for any 𝑛 ≥ 𝑞(𝑡) can be represented under the terminal 

measure ℚ< ≡ ℚ?). 

 

Lemma 5 [14]  Assume that  𝐿D(𝑡) is given by Equation (16). The dynamics of 𝐿D(𝑡) under 

the 𝑇<-forward measure ℚ?) are given by 
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 𝑑𝐿D(𝑡) = 𝜎D(𝑡)*¨− �
𝜏S𝜎S(𝑡)

1 + 𝜏S𝐿S(𝑡)
𝑑𝑡

<0'

SHD='

+ 𝑑𝑊<(𝑡)©, (18)	

where 𝑊<(𝑡) is the Wiener process under the 𝑇<-forward measure ℚ?). 

Proof. Consider the result of Lemma 4, which must hold for any 𝑞(𝑡) ≤ 𝑛 ≤ 𝑁 − 1. Hence, 

applying Equation (17) recursively we obtain dynamics of the Wiener process under the 

terminal measure ℚ?) as 

𝑑𝑊<(𝑡) = 𝑑𝑊<0'(𝑡) +
𝜏<0'𝜎<0'(𝑡)

1 + 𝜏<0'𝐿<0'(𝑡)
𝑑𝑡 

= 𝑑𝑊<0((𝑡) + �
𝜏S𝜎S(𝑡)

1 + 𝜏S𝐿S(𝑡)
𝑑𝑡

<0'

SH<0(

 

⋮ 

= 	𝑑𝑊D='(𝑡) + �
𝜏S𝜎S(𝑡)

1 + 𝜏S𝐿S(𝑡)
𝑑𝑡

<0'

SHD='

. 

Again, 𝑑𝑊D='(𝑡)  can be substituted into Equation (16), which gives us the desired 

dynamics under the 𝑇<-forward measure ℚ?) . 

∎ 

  

In the following Lemma we show that the dynamics of forward LIBOR rates can also 

be represented under the spot measure ℚQ using a very similar approach. As we discuss later, 

considering the dynamics in ℚQ have an advantage over using the dynamics in the terminal 

measure, since its drift term changes as time 𝑡 moves. 

 

Lemma 6 Assume that  𝐿D(𝑡) is given by Equation (16). The dynamics of 𝐿D(𝑡) under 

the spot measure  ℚQ are given by 

 𝑑𝐿D(𝑡) = 𝜎D(𝑡)*¨ �
𝜏S𝜎S(𝑡)

1 + 𝜏S𝐿S(𝑡)
𝑑𝑡

D

SHP(%)

+ 𝑑𝑊Q(𝑡)©, (19)	

where 𝑊Q(𝑡) is the Wiener process under the spot measure  ℚQ .  

Proof. Recall  Equations (14) and (15) from Section 5.1 and proceed as follows. Clearly, 

for 0 ≤ 𝑡 ≤ 𝑇D=' the normalized bond price 
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𝑃(𝑡, 𝑇D=')
𝐵(𝑡) =

𝑃n𝑡, 𝑇P(%)o∏
1

1 + 𝜏:𝐿:(𝑡)
D
:HP(%)

𝑃n𝑡, 𝑇P(%)o∏ n1 + 𝜏:𝐿:(𝑇:)o
P(%)0'
:H,

 

= ¥ � n1 + 𝜏:𝐿:(𝑇:)o
0'

P(%)0'

:H,

¦¥� n1 + 𝜏:𝐿:(𝑡)o
0'

D

:HP(%)

¦ 

is the function of forward LIBOR rates only. 

 

Since the money-market account is a numeraire, by using the Change of Numeraire 

Theorem we can ensure that the corresponding spot measure ℚQ is equivalent to the 𝑇D='-

forward measure ℚ?(%&. Therefore, 𝑃(𝑡, 𝑇D=')/𝐵(𝑡) is a martingale under ℚQ. Let us define 

a stochastic process 𝑁D(𝑡) as 

𝑁D(𝑡) =
𝐵(0)

𝑃(0, 𝑇D=')
𝑃(𝑡, 𝑇D=')
𝐵(𝑡) . 

Assuming 𝑁% satisfies the desired conditions, according to the Martingale Representation 

Theorem presented (see Appendix B) there exists a unique stochastic process 𝜂D(𝑡), such 

that  𝜂D ∈ 𝒱D(0, 𝑡) (also Appendix B) for all 𝑡 ≥ 0 and 

𝑁D(𝑡) = 𝑁, +	C𝜂D(𝑡)*
%

,

𝑑𝑊Q(𝑡), 

where 𝑁, = 1. Therefore, by applying the Itô’s Lemma where 𝑔(𝑡, 𝑁%) = 𝑙𝑛n𝑁D(𝑡)o, the 

stochastic process 𝑁D(𝑡) can be written as 

𝑁D(𝑡) = 𝑒𝑥𝑝¨C
1

𝑁D(𝑠)

%

,

𝜂D(𝑠)*𝑑𝑊Q(𝑠) −
1
2C

1
𝑁D(𝑠)(

𝜂D(𝑠)*𝜂D(𝑠)
%

,

	𝑑𝑊Q(𝑠)©, 

where, '
<"

 is locally bounded (see [18]). Hence,  

𝜈D(𝑡) =
1
𝑁%
𝜂D(𝑡) 

satisfies the Novikov’s condition, and  

 𝑑𝑙𝑛n𝑁D(𝑡)o = 𝜈D(𝑡)*𝑑𝑊Q(𝑡) −
1
2 𝜈D

(𝑡)*𝜈D(𝑡)𝑑𝑡. (20)	

 

We also know from the normalized bond price, that the previous derivation can be 

expressed as 
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𝑑lnn𝑁D(𝑡)o = 𝑑ln°
𝐵(0)

𝑃(0, 𝑇D=')
¥ � n1 + 𝜏:𝐿:(𝑇:)o

0'
P(%)0'

:H,

¦¥� n1 + 𝜏:𝐿:(𝑡)o
0'

D

:HP(%)

¦±, 

where 

𝐵(0)
𝑃(0, 𝑇D=')

¥ � n1 + 𝜏:𝐿:(𝑇:)o
0'

P(%)0'

:H,

¦ 

is not time dependent. Hence, 

 𝑑lnn𝑁D(𝑡)o = − � 𝑑lnn1 + 𝜏:𝐿:(𝑡)o
D

:HP(%)

. (21)	

Previously, we could see the fact – which comes directly from Girsanov’s theorems (see 

Appendix B) – that the diffusion coefficient 𝐷𝐶(∙)  of a stochastic process remains 

unchanged after an equivalent measure change.  

 

Remark 2 The diffusion coefficient 𝐷𝐶(∙) of a process defined as 

𝑑𝑋% = (… )𝑑𝑡 + 𝑣%𝑑𝑊% , 

is the vector 𝑣%. 

 

Therefore, since 𝐷𝐶n𝐿:(𝑡)o under any measure is 𝜎:(𝑡) for 𝑖 = 𝑞(𝑡), … , 𝑛 − 1, by 

applying the Itô’s Lemma on lnn1 + 𝜏:𝐿:(𝑡)o we get  

𝐷𝐶 ´lnn1 + 𝜏:𝐿:(𝑡)oµ =
𝜏:𝜎:(𝑡)

1 + 𝜏:𝐿:(𝑡)	
, 

while  

𝐷𝐶 ´𝑑lnn𝑁D(𝑡)oµ = − �
𝜏:𝜎:(𝑡)

1 + 𝜏:𝐿:(𝑡)	

D

:HP(%)

. 

Clearly, we can equate the diffusion coefficients of Equations (20) and (21), so that we get 

𝜈D(𝑡) = − �
𝜏:𝜎:(𝑡)

1 + 𝜏:𝐿:(𝑡)	

D

:HP(%)

. 

Finally, we can derive dynamics of 𝐿D(𝑡) as 

𝑑𝐿D(𝑡) =
1
𝜏D
𝑑 ]

𝑃(𝑡, 𝑇D)
𝑃(𝑡, 𝑇D=')

^ =
1
𝜏D
𝑑¨

𝑃(𝑡, 𝑇D)
𝐵(𝑡)

𝑃(𝑡, 𝑇D=')
𝐵(𝑡)

© 



 42 

=
1
𝜏D
𝑑¨

𝑃(0, 𝑇D)
𝐵(0) 𝑁D0'(𝑡)

𝑃(0, 𝑇D=')
𝐵(0) 𝑁D(𝑡)

© =
1
𝜏D

𝑃(0, 𝑇D)
𝑃(0, 𝑇D=')

𝑑 ]
𝑁D0'(𝑡)
𝑁D(𝑡)

^. 

For 𝑑(𝑁%0' 𝑁%⁄ ) we can apply the multiplication rule of the Itô’s Lemma (see Appendix 

B), so that  

𝑑 ]
𝑁D0'(𝑡)
𝑁D(𝑡)

^ =
𝑁D0'(𝑡)
𝑁D(𝑡)

n𝜈D0'(𝑡) − 𝜈D(𝑡)o
*n−𝜈D(𝑡)𝑑𝑡 + 𝑑𝑊Q(𝑡)o, 

which results 

𝑑𝐿D(𝑡) =
1
𝜏D

𝑃(𝑡, 𝑇D)
𝑃(𝑡, 𝑇D=')

]
𝜏D𝜎D(𝑡)

1 + 𝜏D𝐿D(𝑡)	
^
*

¨ �
𝜏:𝜎:(𝑡)

1 + 𝜏:𝐿:(𝑡)
𝑑𝑡

D

:HP(%)

+ 𝑑𝑊Q(𝑡)© 

= 𝜎D(𝑡)*¨ �
𝜏:𝜎:(𝑡)

1 + 𝜏:𝐿:(𝑡)	
𝑑𝑡

D

:HP(%)

+ 𝑑𝑊Q(𝑡)©. 

∎ 

 

Summarizing this section, in the following box we provide a collective definition of 

the forward LIBOR rate dynamics under all the probability measures discussed earlier.  

 

The forward LIBOR rate (𝐿D(𝑡)) dynamics under the 𝑇D='-forward measure ℚ?(%& are 

given by the formula: 

𝑑𝐿D(𝑡) = 𝜎D(𝑡)*𝑑𝑊D='(𝑡), 𝑛 = 0, 1, … , 𝑁 − 1. 

Under the terminal forward measure ℚ?): 

𝑑𝐿D(𝑡) = 𝜎D(𝑡)* ¨− �
𝜏:𝜎S(𝑡)

1 + 𝜏S𝐿S(𝑡)
𝑑𝑡

<0'

SHD='

+ 𝑑𝑊<(𝑡)© , 𝑛 = 0, 2, … , 𝑁 − 2. 

Under the spot measure ℚQ: 

𝑑𝐿D(𝑡) = 𝜎D(𝑡)*¨ �
𝜏:𝜎:(𝑡)

1 + 𝜏:𝐿:(𝑡)	
𝑑𝑡

D

:HP(%)

+ 𝑑𝑊Q(𝑡)© , 𝑛 = 0, 1, … , 𝑁 − 1. 
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Take a look at the dynamics in the terminal and the spot measure, and note the difference 

between them: 

• Under the terminal measure, the number of terms in the drift summation is fixed. 

Hence, a forward rate with smaller lower index is probably more biased than a 

forward rate with higher lower index. 

• Under the spot measure, the number of terms in the drift summation is decreasing as 

time increases. 

Also, the discretized cash account is intuitively close to the well-known risk-neutral 

continuous cash account, therefore we choose dynamics under the spot measure ℚQ. 

 

5.3 The Choice of 𝝈𝒏(𝒕) 

Until now, we have not provided assumptions regarding the diffusion process 𝜎D(𝑡). 

In the previous Section we considered it to be a “well-behaved” process, so that the results 

were non-explosive.  

However, to build a proper model, one must be specific about 𝜎D(𝑡). In general, we 

assume that the stochastic diffusion process 𝜎D(𝑡) is defined as 

 𝜎D(𝑡) = 𝜆D(𝑡)𝜑n𝐿D(𝑡)o, (22)	

where 𝜆D(𝑡) is a bounded deterministic 𝑚-dimensional function and 𝜑 ∶ 	ℝ ⟶ ℝ is a local 

volatility process of 𝐿D(𝑡).  

Local volatility functions are very tractable and widely used to find a parametric 

distribution that is flexible enough to consistently price quoted options in a market. Although 

there are many functions proposed (see [1]), most of them lead only to skews in the implied 

volatility. Some more flexible functions allow for smile-shaped volatilities, but each local 

volatility function has its own limitations. Hence, stochastic volatility processes (see Section 

5.5.1) are used instead, or in addition. Obviously not all choices of 𝜑(∙) are allowed – the 

existence and the uniqueness of the solution must be ensured.  

 

We assume 𝐿D(0) being non-negative for all 𝑛, set 𝜑(0) = 0 and consider a local volatility 

function 𝜑(∙) that satisfies the regularity conditions [8]: 

• 𝜑	is Lipschitz continuous 

• 𝜑 satisfies the growth condition  

𝜑((𝑥) ≤ 𝐾(1 + 𝑥(), ∀𝑥 ∈ ℝ 

where 𝐾 is a positive constant. 
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This ensures “non-explosive, pathwise unique solutions” [8] of the stochastic differential 

equation for forward LIBOR rates under all forward measures. The previous assumptions 

and proved results are presented in Interest Rate Modeling [7], [8] by Piterbarg & Andersen 

in form of a lemma. 

 

There are some standard parametrizations for 𝜑, such as 𝜑n𝐿D(𝑡)o = 𝐿D(𝑡) (the log-

normal specification) or 𝜑n𝐿D(𝑡)o = 𝑏𝐿D(𝑡) + 𝑎 (the displaced log-normal specification). 

The former – used in the BGM model – implies flat implied volatilities and satisfies the 

regularity conditions. However, for the latter that is considered by the LMMPlus model, we 

need to impose additional restrictions. Since the displaced local volatility function 

𝜑n𝐿D(𝑡)o = 𝑏𝐿D(𝑡) + 𝑎  clearly violates 𝜑(0) = 0 , we assume 𝑏𝐿D(0) + 𝑎 > 0 . In 

addition, we must prevent 1 + 𝜏D𝐿D(𝑡)  in the denominator of the drift becoming zero, 

therefore the following also must hold: 
𝑎
𝑏 <

1
𝜏D
, 𝑛 = 1, 2, … , 𝑁 − 1. 

Again, detailed explanation and the proof of the results, i.e. the existence of non-explosive 

unique solutions of the stochastic differential equation can be found in [8]. 

 

Another possible parametrization proposed by Piterbarg & Andresen [8] is the 

specification of the displaced log-normality as	𝜑n𝐿D(𝑡)o = (1 − 𝑏)𝐿D(0) + 𝑏𝐿D(𝑡). By that, 

the constant component is different for each forward LIBOR rate and we must require  
(1 − 𝑏)
𝑏 <

1
𝐿D(0)𝜏D

. 

 

In case of stochastic volatility models – like LMMPlus model – the separation of the 

diffusion process still holds, however it is extended by a stochastic volatility process, for 

which we provide further details in Section 5.5.1.  

 

5.4 Brace-Gatarek-Musiela (BGM) Model 

The BGM model is also called the log-normal forward LIBOR rate model, because 

by choosing the skew function as 𝜑(𝑥) = 𝑥 we get 

𝑑𝐿D(𝑡) = 𝐿D(𝑡)𝜆D(𝑡)*𝑑𝑊D='(𝑡),		 
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where 𝜆D(𝑡) ∶ 	ℝ ⟶ ℝ)  is a deterministic function and  𝑊D='(𝑡) is an 𝑚-dimensional 

Wiener process under the 𝑇D='-forward measure.  

 

5.5  LIBOR Market Model with a Stochastic Volatility Process 

In this Section, we present an extension of the standard BGM model, for which we 

introduce the stochastic volatility process (SVP) and discuss its inconveniences associated 

with instantaneous correlations between Wiener processes of the SVP and forward LIBOR 

rates dynamics (see Section 5.5.1). Then, in Section 5.5.2 we guide the reader through the 

algorithm of the rank reduction, including the discussion of the instantaneous correlation 

between forward LIBOR rates; the construction of an instantaneous correlation matrix from 

the sample covariance matrix or using a parametric form; and applying the PCA to reduce 

the number of factors, i.e. the dimension of the Wiener process 𝑊Q . We end this Section by 

introducing the LMMPlus model. 

  

5.5.1  The Stochastic Volatility Process 

The main drawback of the BGM model is that it implies a flat volatility structure. In 

markets, however, we can observe the non-monotonic behavior of volatility structure with 

smiles and skews. As we have discussed earlier, some local volatility functions are able to 

capture such a behavior, but as we also said, they have some limitations. Therefore, in order 

to capture the (realistic) stochastic behavior of volatility and adapt market smiles and skews, 

we introduce the stochastic volatility process. While existence itself of an SVP generates a 

smile-shaped structure, skew-shaped volatilities can be captured only by assuming for 

example a non-zero correlation between the Wiener processes of the SVP and the forward 

rate dynamics, assuming a displaced diffusion or a non-linear local volatility function 𝜑. As 

discussed by Brigo & Mercurio [1], at least one of these requirements should be fulfilled.  

  

Considering the LMM model extended by an SVP, the forward LIBOR rate dynamics 

in the spot measure ℚQ are given as 

𝑑𝐿D(𝑡) = �𝑧(𝑡)𝜑n𝐿D(𝑡)o𝜆D(𝑡)* _�𝑧(𝑡)𝜇D(𝑡)𝑑𝑡 + 𝑑𝑊Q(𝑡)`, 

where we replaced 𝜎D(𝑡) according to Equation (22), 

𝜇D(𝑡) = �
𝜏:𝜑n𝐿:(𝑡)o𝜆:(𝑡)
1 + 𝜏:𝐿:(𝑡)	

D

:HP(%)

 



 46 

and 𝑧(𝑡) is a mean-reverting process – more precisely the Cox-Ingersoll-Ross (CIR) process 

– with dynamics 

𝑑𝑧(𝑡) = 𝜅n𝜃 − 𝑧(𝑡)o𝑑𝑡 + 𝜖�𝑧(𝑡)𝑑𝑍Q(𝑡), 

where parameters 𝜅, 𝜃 and 𝜖 are positive constants, and 𝑍Q(𝑡) is a Wiener process in the 

spot measure ℚQ that is in general correlated to 𝑊Q(𝑡). 

 

This clean form, is not observable under other probability measures, due to the non-

zero correlation between the Wiener processes of dynamics, which is quite inconvenient, for 

example when pricing swaptions (see Chapter 6). In the following we show how the 𝑧-

process changes when we move into the 𝑇D='-forward measure ℚD=' , i.e. the measure, 

where forward LIBOR rates are martingales. From Section 5.2 we know, that the dynamics 

in ℚD=' are given as 

𝑑𝐿D(𝑡) = �𝑧(𝑡)𝜑n𝐿D(𝑡)o𝜆D(𝑡)*𝑑𝑊D='(𝑡), 

where 𝑊D='(𝑡) is a Wiener process under ℚD='. 

Therefore, by applying Lemmas from Section 5.2 the following must hold: 

𝑑𝑊D='(𝑡) = �𝑧(𝑡)𝜇D(𝑡)𝑑𝑡 + 𝑑𝑊Q(𝑡). 

 

In general, we define  

𝑎(𝑡) =
𝑑〈𝑍Q(𝑡),𝑊Q(𝑡)〉

𝑑𝑡 , 

where 〈𝑍Q(𝑡),𝑊Q(𝑡)〉 is the quadratic covariation process (see Appendix B) given by 

d〈𝑍Q(𝑡),𝑊Q(𝑡)〉 = 𝑑𝑍Q(𝑡)𝑑𝑊Q(𝑡). 

Then, we can write (see [8]) 

𝑑𝑍Q(𝑡) = 𝑎(𝑡)*𝑑𝑊Q(𝑡) + �1 − ‖𝑎(𝑡)‖(𝑑𝑊Ä (𝑡), 

where 𝑊Ä (𝑡) is a Wiener process independent from 𝑊Q(𝑡). Moving to the 𝑇D='-forward 

measure ℚD=' by substituting 𝑑𝑊Q(𝑡) we get 

𝑑𝑍Q(𝑡) = 𝑑𝑍D='(𝑡) − �𝑧(𝑡)𝑎(𝑡)*𝜇D(𝑡)𝑑𝑡, 

where  

𝑑𝑍D='(𝑡) = 𝑎(𝑡)*𝑑𝑊D='(𝑡) + �1 − ‖𝑎(𝑡)‖(𝑑𝑊Ä (𝑡). 

 

Hence, the process 𝑧(𝑡)  under the 𝑇D=' -forward measure ℚD='  is given by the 

stochastic differential equation  
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𝑑𝑧(𝑡) = 𝜅 �𝜃 − 𝑧(𝑡) ]1 +
𝜖
𝜅 𝜇D

(𝑡)*𝑎(𝑡)^� 𝑑𝑡 + 𝜖�𝑧(𝑡)𝑑𝑍D='(𝑡), 

where 𝑍D='(𝑡) is a Wiener process under ℚD='. 

 

Obviously, as discussed by Piterbarg & Andersen in Interest Rates Modeling [8], the 

change in the drift makes it harder to deal with the dynamics when implementing measure 

change techniques. Therefore, it is common to assume independent Wiener processes, i.e. 

simply set 𝑎(𝑡) = 0 , so that the SVP dynamics become the same regardless of which 

measure we choose. However, the framework of Piterbarg & Andersen considers a special 

local volatility function 

𝜑n𝐿D(𝑡)o = (1 − 𝑏)𝐿D(0) + 𝑏𝐿D(𝑡), 

such that the volatility skew can be controlled with parameter 𝑏. As we will see in next 

Chapters, the LMMPlus model assumes a simple displaced-diffusion (see Section 5.6), in 

which case a non-zero correlation is recommended.  

 

5.5.2 Instantaneous Correlations and Rank Reduction 

 In one-factor models for interest rates – such as the vanilla short-rate models – 

various points on the forward curve are perfectly correlated. Although this type of forward 

curves – where the points move co-monotonically – is common in markets, some more 

complex types of curve changes can also be observed. Therefore, in LMM models we control 

these correlations by using 𝑚-dimensional Wiener processes. 

 

Using the same covariance notation as before, we have for any 𝑛 and 𝑘 

𝑑〈𝐿D, 𝐿I〉(𝑡) = 𝑧(𝑡)𝜑n𝐿D(𝑡)o𝜑n𝐿I(𝑡)o𝜆D(𝑡)*𝜆I(𝑡)𝑑𝑡. 

Hence, the correlation between 𝐿D(𝑡) and 𝐿I(𝑡) is given by 

Corrn𝑑𝐿D(𝑡), 𝑑𝐿I(𝑡)o =
𝑑〈𝐿D, 𝐿I〉(𝑡)

�𝑑〈𝐿D, 𝐿D〉(𝑡)	𝑑〈𝐿I , 𝐿I〉(𝑡)
=

𝜆D(𝑡)*𝜆I(𝑡)
‖𝜆D(𝑡)‖‖𝜆I(𝑡)‖

. 

 

Obviously, when we have only one Wiener process, i.e. 𝑚 = 1 , the correlation 

Corrn𝑑𝐿D(𝑡), 𝑑𝐿I(𝑡)o(𝑡) = 1 for any 𝑛 and 𝑘. As the number of the Wiener processes 𝑚 

increases, the ability to capture more complex correlations improves. However, it also 

increases the complexity of our model. Therefore, it is our ambition to find an “optimal” 

dimension of Wiener processes. Once we get the empirical data, we can find the smallest 𝑚 
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that is high enough to sufficiently replicate the sample variance-covariance matrix of 

empirical data by using the tools of the principal component analysis (PCA) (see Appendix 

C).  

 

Remark 3  Recall the notation d〈𝐿D, 𝐿I〉(𝑡), satisfying 

𝑑〈𝐿D, 𝐿I〉(𝑡) = 𝑑𝐿D(𝑡)𝑑𝐿I(𝑡). 

Hence,  

𝑑〈𝐿D, 𝐿I〉(𝑡) = 𝑧(𝑡)𝜑n𝐿D(𝑡)o𝜑n𝐿I(𝑡)o𝜆D(𝑡)*𝜆I(𝑡) È𝑧(𝑡)𝜇D(𝑡)*𝜇I(𝑡)(𝑑𝑡)(

+�𝑧(𝑡)𝜇D(𝑡)*𝑑𝑊Q(𝑡) + �𝑧(𝑡)𝜇I(𝑡)*𝑑𝑊Q(𝑡) + n𝑑𝑊Q(𝑡)o(É. 

Note, that n𝑑𝑊Q(𝑡)o( = 𝑑𝑡 and all the other terms in the expression are of order 𝒪n𝑑𝑡T/(o 

or higher. According to Piterbarg & Andersen [7], those terms can be neglected for small 

𝑑𝑡, so that  

𝑑〈𝐿D, 𝐿I〉(𝑡) = 𝑧(𝑡)𝜑n𝐿D(𝑡)o𝜑n𝐿I(𝑡)o𝜆D(𝑡)*𝜆I(𝑡)𝑑𝑡. 

 

5.5.2.1 Sample Correlation Matrix 

Consider now the possession of some market data. In the following, we introduce a 

way to obtain empirical instantaneous correlations and present a possible parametric 

formulation for them.  

 Assume the Musiela parametrization, i.e. instead of a fixed time of maturity a fixed 

time to maturity. Hence, for a fixed value of 𝜏 we can define “sliding” forward rates 𝑙(𝑡, 𝑥) 

with tenor 𝑥 as 

𝑙(𝑡, 𝑥) = 𝐿(𝑡, 𝑡 + 𝑥, 𝑡 + 𝑥 + 𝜏). 

Let 𝑥', … , 𝑥<* be a given set of tenors and 𝑡,, … , 𝑡<" a given set of calendar times, so that we 

can define the 𝑁N 	× 	𝑁% matrix 𝑂 with elements 

𝑂:,S =
𝑙n𝑡S , 𝑥:o − 𝑙n𝑡S0', 𝑥:o

�𝑡S − 𝑡S0'
, 𝑖 = 1,… ,𝑁N , 𝑗 = 1,… ,𝑁% , 

where �𝑡S − 𝑡S0' is the annualizing factor. Hence, by constructing the forward curve from 

market observable derivatives contracts (see techniques presented in Chapter 6 of [7]) we 

can obtain a 𝑁N 	× 	𝑁N variance-covariance matrix defined as 

𝐶 =
𝑂𝑂′
𝑁%
. 
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To fit empirical market data, we need to find a number 𝑚 of Wiener processes that is high 

enough to sufficiently replicate the variance-covariance matrix 𝐶. A concrete example of the 

usage of PCA is presented in [8], where Piterbarg & Andersen state, that in general three or 

four dimensions are sufficient, indeed the loss of variance can be small even for 𝑚 = 2. 

However, in some cases, when a derivative heavily depends on the correlation between 

forward LIBOR rate with tenors close to each other, higher number of dimensions is required.  

 

Now, if we introduce the diagonal matrix 

𝑐 =

⎝

⎜⎜
⎛
�𝐶',' 0 ⋯ 0
0 �𝐶(,( ⋱ ⋮
⋮ ⋱ ⋱ 0

0 ⋯ 0 Ô𝐶<*,<*⎠

⎟⎟
⎞
, 

then the empirical forward LIBOR rate correlation matrix 𝑅 , i.e. the matrix of sample 

estimates 𝑅:,S of instantaneous correlation between forward rates 	𝑙(𝑡, 𝑥:) and 𝑙n𝑡, 𝑥So 𝑖, 𝑗 =

1,… ,𝑁N (when time-homogeneity of correlations is assumed) is given as 

𝑅 = 𝑐0'𝐶𝑐0'.  

In general, we expect matrix 𝑅  with elements 𝑅:,: ≥ 0  and 𝑅:,: = 1  to be real,  

symmetric and positive definite. Since for larger tenors changes in adjacent forward rates 

are more correlated, we expect the sub-diagonals to be increasing, i.e. 𝑖 ⟼ 𝑅:=G,: must be 

increasing for a fixed 𝑝. It should also hold that correlations between 𝑙(∙, 𝑥:) and 𝑙n∙, 𝑥So 

decline in Ø𝑥: − 𝑥SØ. As discussed in [8], the decline is usually steep for small Ø𝑥: − 𝑥SØ, but 

it has near-flat asymptote for tenors far from each other. Their conclusion from the observed 

data was that the decay rate of correlations and the level of the asymptote depend also on 

min{𝑥, 𝑦}  – as the decay rate is decreasing and the asymptote level is increasing with 

min{𝑥, 𝑦}.  

In practice, matrix 𝑅 is often relatively noisy, in sense that it does not satisfy our 

expectations, i.e. might contain non-intuitive entries. To mention one of the possible reasons: 

it is known that correlations tend to change over time. Also, an 𝑁N × 𝑁N correlation matrix 

is characterized by 𝑁N(𝑁N − 1)/2 entries, which is often too high for practical purposes. 

Hence, it is common practice to work with a parametric form based on less parameters, 

which also smooths the correlation matrix. Some well-known parametric formulations can 

be found in  [1] or [8], however, for the following parametric form, we refer the reader to 

[14], where it is given as 
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𝐶𝑜𝑟𝑟 ´𝑑𝐿:(𝑡), 𝑑𝐿S(𝑡)µ = 𝑞n𝑇: − 𝑡, 𝑇S − 𝑡o, 

where  

𝑞(𝑥, 𝑦) = 𝜌O + (1 − 𝜌O)exp _−|𝑥 − 𝑦| ´𝑏	expn𝑎(𝑚𝑖𝑛{𝑥, 𝑦})oµ`, 

−1 ≤ 𝜌O ≤ 1 , 𝑏 ≥ 0  and 𝑎 ∈ ℝ . We can use least-squares optimization against the 

empirical correlation to find the optimal parameters 𝜉∗ = (𝑎∗, 𝑏∗, 𝜌O∗ 	)*: 

𝜉∗ = argmin
W

]𝑡𝑟 _n𝑅 − 𝑅((𝜉)on𝑅 − 𝑅((𝜉)o
*`^, 

where 𝑅 is the empirical correlation matrix and 𝑅((𝜉) is the correlation matrix generated by 

𝜉. From the value of the minimalized function at 𝜉∗ we get the average absolute correlation 

error.  

 

In some cases, parametric forms can generate matrices 𝑅 , that are not positive 

definite. In practice, it is not common, but possible that 𝑅 has some negative eigenvalues. 

Then the correlation matrix has to be “repaired”. For further details, we refer the reader to 

[8].  

 

5.5.2.2 Correlation PCA  

We briefly introduce two possible ways to use PC analysis on an empirical 

correlation matrix. Both of them were presented in the book of Piterbarg & Andersen [8]. 

Consider a 𝑝-dimensional vector 𝑌 , where 𝑌: 	~	𝑁(0, 1)  for 𝑖 = 1,… , 𝑝 . Define a 

positive definite correlation matrix 𝑅 for 𝑌, given as 

𝑅 = 𝔼(𝑌𝑌*), 

and let hold the following approximation 

𝑌 ≈ 𝐷𝑋, 

where 𝑋 is a 𝑚-dimensional vector of independent normal random variables, 𝑚 ≤ 𝑝	and 𝐷 

is a (𝑝 × 𝑚)-dimensional matrix. Note, that 𝐷𝑋 is a vector of variables with zero means and 

unit variance, therefore 𝐷𝐷* can be interpreted as a correlation matrix. We require 𝐷𝐷* to 

have ones on its diagonal and must find an optimal 𝐷∗ that minimizes the function 

ℎ(𝐷; 𝑅) = 𝑡𝑟n(𝑅 − 𝐷𝐷*)(𝑅 − 𝐷𝐷*)*o, 

or in formulas 

𝐷∗ = argmin
X

ℎ(𝐷; 𝑅) , 𝑣(𝐷) = 𝟏, 



 51 

where 𝑣(𝐷)  is a 𝑝 -dimensional vector of the diagonal elements of 𝐷𝐷*  and 𝟏  is a 𝑝 -

dimensional vector of ones. 

 

 The following technique is proposed by Piterbarg & Andersen, and its proof can be 

found in their book called Interest Rate Modeling [8]. Consider a 𝑝-dimensional vector 𝜇 

and 𝐷2 given as the “unconstrained optimum”  (see [8]) 

𝐷2 = argmin
X

ℎn𝐷; 𝑅 + diag(𝜇)o. 

Let 𝜇∗ be the solution of  

 𝑣n𝐷2o − 𝟏 = 𝟎, (23)	

then 𝐷∗ = 𝐷2∗. Hence, instead of looking for an optimal 𝐷 we can solve the 𝑝-dimensional 

root-search problem, i.e. Equation (23). Note, that for a fixed 𝜇 we can easily find 𝐷2 using 

PCA (see Appendix C), where 𝑅 + diag(𝜇) is considered to be the target correlation matrix.  

 

In the end, this algorithm returns a correlation matrix 𝐷∗(𝐷∗)* that has reduced rank 

𝑚. There are several other algorithms for finding an optimal rank-reduced correlation matrix 

(see [8]). In the following, we introduce an alternative, heuristic method.  

 

Another approach to find the rank-reduced correlation matrix can also be found in 

Interest Rate Modeling [8], called the “Poor Man’s Correlation PCA”.  

We suppose that PCA from Appendix C can be directly applied to the correlation 

matrix and compute the 𝑝 × 𝑝 matrix 

𝑅) = 𝐸)Λ)(𝐸))*, 

where Λ)  is the 𝑚 ×𝑚	diagonal matrix of the 𝑚 largest eigenvalues of 𝑅 and 𝐸)  is the 

𝑝 × 𝑚 matrix of eigenvector corresponding to the eigenvalues.  

 We need to ensure that 𝑅) has a diagonal of ones, therefore consider the following 

approximation: 

𝑅 ≈ 𝑟)0'𝑅)𝑟)0', 

where  
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𝑟) =

⎝

⎜
⎜
⎜
⎜
⎛
Ô(𝑅))',' 0 … 0

0 Ô(𝑅))(,( ⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ 0 Ô(𝑅))G,G⎠

⎟
⎟
⎟
⎟
⎞

. 

Note, that 𝐷 is therefore given as 

𝐷 = 𝑟)0'𝐸)�Λ). 

 

Although this algorithm is easier to apply, according to Piterbarg & Andersen, the 

difference between the two approximations is small only if 𝑅) is close to having ones on its 

diagonal. In most cases, when large, complex correlation matrices are considered, the 

approximations highly differ.  

 

5.6  The LMMPlus Model 

The LMMPlus model introduced in [19] is an extension of the BGM model, that is 

used in practice for the valuation of life insurance liabilities by the Zurich Insurance 

Company, Bratislava. It is an LMM model, that considers a displaced lognormal formulation 

of the local volatility function together with the previously introduced stochastic volatility 

process (SVP). Hence, it has some very useful properties: 

• with a displacement, the model does not only correspond to the current/post-crisis 

interest rate environment, but gives us a significant freedom to control the shape of 

the distribution. 

• knowing the volatility skew, the model predicts a realistic evolution of the implied 

volatility and replicates forward rate dynamics more realistically. This may be 

substantial, for example when considering a path-dependent option. 

However, it must also be said, that due to an SVP the model becomes more complex and run 

times increase, too. 

 

In the LMMPlus model we consider a local volatility process of 𝐿D(𝑡), that is given 

by the function 𝜑n𝐿D(𝑡)o = 𝐿D(𝑡) + 𝛿.	Therefore, the dynamics of the forward LIBOR rate 

and the SVP in the spot measure ℚQ for 𝑛 = 0, 1, … , 𝑁 − 1 are  

𝑑𝐿D(𝑡) = �𝑧(𝑡)(𝐿D(𝑡) + 𝛿)𝜆D(𝑡)* _�𝑧(𝑡)𝜇D(𝑡)𝑑𝑡 + 𝑑𝑊Q(𝑡)` 
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𝑑𝑧(𝑡) = 𝜅n𝜃 − 𝑧(𝑡)o𝑑𝑡 + 𝜖�𝑧(𝑡)𝑑𝑍Q(𝑡), 

where  

𝜇D(𝑡) = �
𝜏:(𝐿:(𝑡) + 𝛿)𝜆:(𝑡)

1 + 𝜏:𝐿:(𝑡)	

D

:HP(%)

, 

𝜅, 𝜃 and 𝜖 are positive constants, and the displacement factor 𝛿 must satisfy 𝛿 < 𝜏:0'. 

 

In the LMMPlus model the correlation – discussed in Section 5.5.1 – between the 

Wiener processes of the forward LIBOR rate dynamics and the 𝑧-process dynamics is not 

zero. Instead, we define a constant instantaneous correlation given by the formula 

 𝑑𝑍Q(𝑡) = 𝝆𝑾𝒁
*𝑑𝑊Q(𝑡) + �1 − 𝜌(𝑑𝑊Ä (𝑡), (24)	

where 𝝆𝑾𝒁  is an 𝑚 -dimensional vector of constants [
√)

 and also (for future reference) 

consider another instantaneous correlation 𝜌:(𝑡) defined by equation 

 𝜌:(𝑡) =
〈𝑑𝑍Q(𝑡), 𝑑𝑌:Q(𝑡)〉

𝑑𝑡 , (25)	

where 𝑌:Q(𝑡), given as 

𝑑𝑌:Q(𝑡) =
𝜆:(𝑡)
‖𝜆:(𝑡)‖

	𝑑𝑊Q(𝑡), 

is Gaussian with mean 0 and quadratic variation 𝑡, identifying it as a Wiener process (see 

[8]). 

 

 Note, that in this form the LMMPlus is barely a model, rather than a framework. In 

order to create a working model that is used in practice, we refer the reader to Chapter 7, 

where we complete it by presenting the theory of the LMM model calibration and define a 

specific structure of the deterministic component 𝜆D(𝑡) assumed by the LMMPlus model. 

 

5.7  The Piterbarg & Andersen Model 

Although, we have not specified it yet, in previous Sections we have already 

discussed some assumptions of another model introduced in [8]. Now we would like to 

present the concrete model proposed by Piterbarg & Andersen, who defined an LMM model 

with displaced diffusion and a stochastic volatility process in measure ℚQ as 

𝑑𝐿D(𝑡) = �𝑧(𝑡)n(1 − 𝑏)𝐿D(0) + 𝑏𝐿D(𝑡)o𝜆D(𝑡)* _�𝑧(𝑡)𝜇D(𝑡)𝑑𝑡 + 𝑑𝑊Q(𝑡)` 
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𝑑𝑧(𝑡) = 𝜅n𝑧, − 𝑧(𝑡)o𝑑𝑡 + 𝜖�𝑧(𝑡)𝑑𝑍Q(𝑡), 

where  

𝜇D(𝑡) = �
𝜏:n(1 − 𝑏)𝐿D(0) + 𝑏𝐿D(𝑡)o𝜆:(𝑡)

1 + 𝜏:𝐿:(𝑡)	

D

:HP(%)

, 

𝑧, = 𝑧(0) = 1 and the correlation between 𝑊Q(𝑡) and 𝑍Q(𝑡) is considered to be zero. 

Since 𝑑〈𝑊Q(𝑡), 𝑍Q(𝑡)〉 = 0 , dynamics of the SVP remains unchanged also in other 

probability measures. Hence, dynamics in the 𝑇D='-forward measure are much simpler, in 

formulas 

𝑑𝐿D(𝑡) = �𝑧(𝑡)n(1 − 𝑏)𝐿D(0) + 𝑏𝐿D(𝑡)o𝜆D(𝑡)*𝑑𝑊D='(𝑡) 

𝑑𝑧(𝑡) = 𝜅n𝑧, − 𝑧(𝑡)o𝑑𝑡 + 𝜖�𝑧(𝑡)𝑑𝑍D='(𝑡). 

 As we can see, the model itself does not differ extremely from the LMMPlus model. 

The main differences are between the local volatility functions considered by each model 

and the assumed values of correlations between the Wiener processes of forward rates and 

the SVP. This results that in the Piterbarg & Andersen model slopes at ATM strikes are 

controlled by the parameter 𝑏 instead of non-zero correlations [1]. This model is studied in 

details and well-summarized in [14], where they also discuss the case of time-dependent 

parameters. 

 

  



 55 

6 Swaption Pricing in the LMMPlus Model 

 In this Chapter, we derive the pricing formula for swaptions in the LMMPlus model, 

meaning that we consider a non-zero correlation between the 𝑑-dimensional Wiener process 

𝑊Q and the Wiener process 𝑍Q of SVP dynamics. This Chapter is mainly based on the work 

of Wu & Zhang (see [20]), who proposed a pricing formula for caplets using the same 

approach. 

As we will see, the price of a swaption cannot be obtained analytically, therefore a 

number of approximations are made in the valuation. First, we express the price in terms of 

a moment generating function, then derive the partial differential equation satisfied by the 

moment generating function and eventually compute the moment generating function, which 

is then used to price swaptions. Before moving on to the pricing itself, we should point out, 

that by the term “swaption” used in this Chapter, we refer solely to the payer swaption, since 

the price of a receiver swaption can be derived later using the put-call parity identity.  

 

 Recall the definitions and results from Chapter 4 and consider 𝑇I is the expiry time 

of a swaption, so that if the swaption is exercised, the cashflows take place at times 

𝑇I=', 𝑇I=(, … , 𝑇). Hence, the annuity and swap rates are given as 

𝐴I,)(𝑡) = � 𝜏S𝑃n𝑡, 𝑇S='o
)0'

SHI

, 𝑆I,)(𝑡) =
𝑃(𝑡, 𝑇I) − 𝑃(𝑡, 𝑇))

𝐴I,)(𝑡)
. 

We also know: 

• the swaption price at the expiry time is 

𝑉&EFG%:JD(𝑇I) = 𝐴I,)(𝑇I)maxé𝑆I,)(𝑇I) − 𝐾, 0ê, 

where 𝐾 is the strike rate. 

• 𝑆I,)(𝑡) is a martingale in measure ℚI,), in formulas 

𝔼%\�𝑆I,)(𝑇I)� = 𝑆I,)(𝑡). 

• the swaption price at time 𝑡 can be expressed as 

𝑉&EFG%:JD(𝑡) = 𝐴I,)(𝑡)𝔼%
I,)�maxé𝑆I,)(𝑇I) − 𝐾, 0ê�. 

 

6.1 Introducing the Moment Generating Function 

Note, that the expectation term in the swaption price can be expressed as 

𝔼%\�𝑆I,)(𝑇I)𝟏7+,-(?+)]^� − 𝐾𝔼%
\�𝟏7+,-(?+)]^� 
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or after some adjustments 

𝑆I,)(𝑡) ]𝔼%
I,) ë𝑒

_D`
7+,-(?+)
7+,-(%)

a
𝟏7+,-(?+)]^ì −

𝐾
𝑆I,)(𝑡)

𝔼%\�𝟏7+,-(?+)]^�^, 

where  

𝟏7+,-(?+)]^ = í1, 𝑆I,)(𝑇I) > 𝐾
0, otherwise

. 

If we define the random variable 𝑋 = 𝑙𝑛 _7+,-(?+)
7+,-(%)

` and the constant 𝑥 = 𝑙𝑛 _ ^
7+,-(%)

`, then 

the price of a swaption can be rewritten, so that 

𝑉&EFG%:JD(𝑡) = 𝐴I,)(𝑡)𝑆I,)(𝑡)(𝔼%\[𝑒b𝟏b]N] − 𝑒N𝔼%\[𝟏b]N]). 

 

In terms of the moment generating function defined for a random variable 𝑌 as 

𝑀c(𝑡) ≡ 𝑀(𝑡) = 𝔼[𝑒%c], 

we can express the expectations 𝔼%
I,)[𝟏b]N] and 𝔼%

I,)[𝑒b𝟏b]N] as 

𝔼%
I,)[𝟏b]N] =

1
2 +

1
𝜋C

𝐼𝑚 ´𝑒0:+N𝑀b(𝑖𝑢)µ
𝑢 𝑑𝑢

O

,

, 

𝔼%
I,)[𝑒b𝟏b]N] =

1
2 +

1
𝜋C

𝐼𝑚 ´𝑒0:+N𝑀b(1 + 𝑖𝑢)µ
𝑢 𝑑𝑢

O

,

. 

Due to the fact, that they can be demonstrated with similar arguments, we introduce the 

derivation only of the first equation (see Appendix D). These relations can be described by 

a more general proposition, which – together with its detailed proof – can be found in [21]. 

 

Since expectations are finally replaced, the price of a swaption in terms of the 

moment generation function is given by the formula 

𝑉&EFG%:JD(𝑡) = 	𝐴I,)(𝑡) ô
𝑆I,)(𝑡) − 𝐾

2 +⋯

+
1
𝜋C ¥𝑆I,)(𝑡)

𝐼𝑚 ´𝑒0:+N𝑀b(1 + 𝑖𝑢)µ
𝑢 − 𝐾

𝐼𝑚 ´𝑒0:+N𝑀b(𝑖𝑢)µ
𝑢 ¦𝑑𝑢

O

,

õ. 

 

Note, as we have already mentioned in Section 5.6, the LMMPlus model considers 

displaced forward LIBOR rates. Therefore, swap rates become displaced, too. However, this 
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does not change the payoff and the replacement of rates by 𝐿D(𝑡) + 𝛿 and 𝑆I,)(𝑡) + 𝛿 leads 

to the same swaption pricing formula, where 𝑋 = 𝑙𝑛 _7+,-(?+)=d	
7+,-(%)=d	

` and 𝑙𝑛 _ ^=d	
7+,-(%)=d	

`.  

 

As we can see, this formula contains two improper integrals with moment generating 

functions of the log of the forward swap rate. In order to use it in practice, we must somehow 

approximate the moment generating function 𝑀b. For that, we must derive the swap rate 

dynamics in measure ℚI,), which is done in the following section and solve the Kolmogorov 

backward equation (see Section 6.3) satisfied by the moment generating function of the log-

forward swap rate. 

 

6.2 Swap Rate and SVP Dynamics in Measure ℚ𝒌,𝒎 

In order to derive the dynamics of the forward swap rate, recall the definition of the 

forward swap rate introduced in Chapter 4 as 

𝑆I,)(𝑡) =
∑ 𝜏:𝑃(𝑡, 𝑇:=')𝐿:(𝑡))0'
:HI

𝐴I,)(𝑡)
= � 𝛼:(𝑡)𝐿:(𝑡)

)0'

:HI

, 

where 𝐴I,)(𝑡) is the annuity rate defined earlier, and 

𝛼:(𝑡) =
𝜏:𝑃(𝑡, 𝑇:=')
𝐴I,)(𝑡)

. 

 

In the following, we need to find the dynamics of the forward swap rate and the 

corresponding stochastic volatility process in measure ℚI,).  Since all the tools and 

techniques of measure change are introduced in earlier Chapters, we take liberties with 

skipping some details and walk through the derivation of the measure change in a more 

careless manner – meaning that some technical or computational intermediary steps are left 

as an “exercise” to the reader.  

As we can see, the forward swap rate 𝑆I,)(𝑡) is a function of forward LIBOR rates 

𝐿I(𝑡), 𝐿I='(𝑡), … , 𝐿)0'(𝑡). In Chapter 4 we also showed, that it is a martingale in measure 

ℚI,). Hence, by applying the Itô’s Lemma we get that 

𝑑𝑆I,)(𝑡) = �𝑧(𝑡) �
𝜕𝑆I,)(𝑡)
𝜕𝐿:(𝑡)

(𝐿:(𝑡) + 𝛿)𝜆:(𝑡)*𝑑𝑊I,)(𝑡)
)0'

:HI

, 

or in other terms  
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𝑑𝑆I,)(𝑡) = �𝑧(𝑡)n𝑆I,)(𝑡) + 𝛿o � 𝜔:(𝑡)𝜆:(𝑡)*𝑑𝑊I,)(𝑡)
)0'

:HI

, 

where 𝜔:(𝑡) are the stochastic weights defined as 

𝜔:(𝑡) = ]
𝐿:(𝑡) + 𝛿
𝑆I,)(𝑡) + 𝛿

^ ×
𝜕𝑆I,)(𝑡)
𝜕𝐿:(𝑡)

. 

Random weights depending on the entire forward curve prohibit the analytical 

treatment of these dynamics. Therefore, to get around this complication they can be 

approximated by freezing them in time 0, so that 

 𝜔:(𝑡) ≈ 𝜔:(0). (26)	

Remember that we expressed the swap rate as a weighted sum of forward rates 

𝐿I(𝑡), 𝐿I='(𝑡), … , 𝐿)0'(𝑡). We can expect that these weights 𝛼:(𝑡) in the definition of the 

swap rate vary little over time, therefore 𝜕𝑆I,)(𝑡)/𝜕𝐿:(𝑡) must be near-constant quantities. 

Although, it can depend on the chosen function 𝜑(∙), in cases when “forward curves are 

reasonably flat and the forward curve movements are predominantly parallel” [8], we can 

assume that (𝐿:(𝑡) + 𝛿)/n𝑆I,)(𝑡) + 𝛿o are also close to constant. Hence, in the following 

we consider the swap rate dynamics given by the approximation 

𝑑𝑆I,)(𝑡) ≈ �𝑧(𝑡)n𝑆I,)(𝑡) + 𝛿o � 𝜔:(0)𝜆:(𝑡)*𝑑𝑊I,)(𝑡)
)0'

:HI

. 

 

For the dynamics of stochastic volatility process, recall Section 5.5.1 where we 

defined the dynamics in measure ℚQ by the equation 

𝑑𝑧(𝑡) = 𝜅n𝜃 − 𝑧(𝑡)o𝑑𝑡 + 𝜖�𝑧(𝑡)𝑑𝑍Q(𝑡), 

where 𝑍Q(𝑡) is a Wiener process in measure ℚQ . The desired dynamics of the stochastic 

volatility process in measure ℚI,) can be expressed through techniques of measure change 

used in Section 5.2.  

Define the stochastic process 𝑀% satisfying 

𝑀? =
𝑑ℚI,)	

𝑑ℚQ T
ℱ$

=
𝐵(0)
𝐴I,)(0)

𝐴I,)(𝑇)
𝐵(𝑇) , 

where the annuity rate 𝐴I,)(𝑡) and the simply-compounded money market account 𝐵(𝑡) are 

the numeraires of the corresponding measures. Since it is a martingale in measure ℚQ, we 

get 

𝑀% =
1

𝐴I,)(0)
𝐴I,)(𝑡)
𝐵(𝑡) . 
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We assume the stochastic process 𝑀%  is “well-behaved”, meaning that The Martingale 

Representation Theorem is applicable and 𝑀% can be expressed in form of an exponential 

martingale (see Section 5.2), such that 

𝑑ln(𝑀%) = 𝑣(𝑡)*𝑑𝑊I,)(𝑡) −
1
2 𝑣
(𝑡)*𝑣(𝑡)𝑑𝑡. 

We would like to find the diffusion coefficient 𝐷𝐶[∙] of the log of the stochastic process 𝑀%, 

so we can eventually apply the Girsanov’s Theorem. Clearly, 

𝑑ln(𝑀%) = 𝑑 Èln ´𝐴I,)(𝑡)µ − lnn𝐵(𝑡)oÉ = 𝑑 Èln ´𝐴I,)(𝑡)µ − ln ´𝑃n𝑡, 𝑇P(%)oµÉ, 

therefore the formula for the desired diffusion coefficient is given as 

𝐷𝐶[ln(𝑀%)] = 𝐷𝐶 Èln ´𝐴I,)(𝑡)µÉ − 𝐷𝐶 Èln ´𝑃n𝑡, 𝑇P(%)oµÉ. 

 

The first term can be obtained from 

𝑑ln ´𝐴I,)(𝑡)µ =
𝑑𝐴I,)(𝑡)
𝐴I,)(𝑡)

=
∑ 𝜏S𝑑𝑃n𝑡, 𝑇S='o)0'
SHI

𝐴I,)(𝑡)
= �

𝜏S 	𝑃n𝑡, 𝑇S='o
𝐴I,)(𝑡)

)0'

SHI

𝑑ln ´𝑃n𝑡, 𝑇S='oµ

= ⋯+ � 𝛼S(𝑡)𝐷𝐶 Èln ´𝑃n𝑡, 𝑇S='oµÉ
)0'

SHI

𝑑𝑍I,)(𝑡). 

If we change the notation, so that 𝜎\=	𝐷𝐶 Èln ´𝐴I,)(𝑡)µÉ and 𝜎S='f = 𝐷𝐶 Èln ´𝑃n𝑡, 𝑇S='oµÉ 

for 𝑗 = 𝑘, 𝑘 + 1,… ,𝑚 − 1 , the diffusion coefficient 𝐷𝐶[ln(𝑀%)]  can be given by the 

formula 

𝐷𝐶[ln(𝑁%)] = 𝜎\ − 𝜎P(%)
f , 

where 𝜎\ = ∑ 𝛼S(𝑡)𝜎S='f)0'
SHI  and  ∑ 𝛼S(𝑡))0'

SHI = 1. Hence, 

𝐷𝐶[ln(𝑀%)] = � 𝛼S(𝑡)n	𝜎S='f − 𝜎P(%)
f o

)0'

SHI

, 

Obviously, the difference of the diffusion coefficients can be expressed easily by using 

Equation (14), i.e. the definition of the zero-coupon bond price, so that 

𝜎S='f − 𝜎P(%)
f = 𝐷𝐶 Sln ]

𝑃n𝑡, 𝑇S='o
𝑃n𝑡, 𝑇P(%)o

^U = 𝐷𝐶 ô � lnn1 + 𝜏:𝐿:(𝑡)o
S

:HP(%)

õ. 

 

This term could look familiar, since in Section 5.2 we have already showed that 

𝐷𝐶�lnn1 + 𝜏:𝐿:(𝑡)o� =
𝜏:(𝐿:(𝑡) + 𝛿)�𝑧(𝑡)𝜆:(𝑡)

1 + 𝜏:𝐿:(𝑡)
. 
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Therefore, the difference 𝜎S='f − 𝜎P(%)
f  can be substituted by the term 

�
𝜏:(𝐿:(𝑡) + 𝛿)�𝑧(𝑡)𝜆:(𝑡)

1 + 𝜏:𝐿:(𝑡)

S

:HP(%)

, 

by which we have finally got the diffusion process 

𝑣(𝑡) = 𝜎\ − 𝜎P(%)
f = � ¥𝛼S(𝑡) �

𝜏:(𝐿:(𝑡) + 𝛿)�𝑧(𝑡)𝜆:(𝑡)
1 + 𝜏:𝐿:(𝑡)

S

:HP(%)

¦
)0'

SHI

, 

and can apply the Girsanov’s Lemma to define 𝑊\(𝑡) by the formula 

𝑑𝑊I,)(𝑡) = 𝑑𝑊Q(𝑡) + � 𝛼S(𝑡)�𝑧(𝑡) �
𝜏:(𝐿:(𝑡) + 𝛿)𝜆:(𝑡)

1 + 𝜏:𝐿:(𝑡)

S

:HP(%)

)0'

SHI

𝑑𝑡. 

However, we must consider the correlations between the numeric Wiener process 𝑍Q(𝑡) and 

the 𝑑-dimensional vector 𝑊Q(𝑡) of Wiener processes. Recall Equations (24) and (25) from 

Section 5.6, where we also defined the 𝑑-dimensional vector 𝝆𝒁𝑾 = ´
[
√/
, … , [

√/µ
*

. Then 

𝑍Q(𝑡) is defined as 

𝑑𝑍Q(𝑡) = 𝝆𝒁𝑾*𝑑𝑊Q(𝑡) + �1 − 𝜌(𝑑𝑊Ä (𝑡) 

where 𝑊Ä (𝑡) is a scalar Wiener process independent from 𝑊Q(𝑡), and the correlation 𝜌:(𝑡) 

as 

𝜌:(𝑡) =
〈𝑑𝑍Q(𝑡), _ 𝜆:(𝑡)

‖𝜆:(𝑡)‖
`
*
𝑑𝑊Q(𝑡)〉

𝑑𝑡 . 

Using 𝑑𝑊Q(𝑡) obtained from the Girsanov’s Theorem we can write 

𝑑𝑍Q(𝑡) = 𝝆𝑾𝒁
* ¥𝑑𝑊I,)(𝑡) − � 𝛼S(𝑡)�𝑧(𝑡) �

𝜏:(𝐿:(𝑡) + 𝛿)𝜆:(𝑡)
1 + 𝜏:𝐿:(𝑡)

S

:HP(%)

)0'

SHI

𝑑𝑡¦

+ �1 − 𝜌(𝑑𝑊Ä (𝑡). 

Note, that 

𝝆𝒁𝑾*𝜆:(𝑡) 	= 𝜌:(𝑡)‖𝜆:(𝑡)‖, 

hence the formula can be rewritten as 

𝑑𝑍Q(𝑡) = 𝑑𝑍I,)(𝑡) − � 𝛼S(𝑡)�𝑧(𝑡)𝜉S(𝑡)
)0'

SHI

𝑑𝑡, 

where  

𝑑𝑍I,)(𝑡) = 𝝆𝒁𝑾*𝑑𝑊I,)(𝑡) + �1 − 𝜌(𝑑𝑊Ä (𝑡), 
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𝜉S(𝑡) = �
𝜏:(𝐿:(𝑡) + 𝛿)𝜌:(𝑡)‖𝜆:(𝑡)‖

1 + 𝜏:𝐿:(𝑡)

S

:HP(%)

. 

 

Finally, the desired dynamics of 𝑧(𝑡) in measure ℚI,) are given by the formula 

𝑑𝑧(𝑡) = 𝜅 ´𝜃 − 𝜉÷(𝑡)𝑧(𝑡)µ 𝑑𝑡 + 𝜖�𝑧(𝑡)𝑑𝑍I,)(𝑡), 

where 

𝜉÷(𝑡) = 1 +
𝜖
𝜅 � 𝛼S(𝑡)𝜉S(𝑡)
)0'

SHI

. 

 

Note, that 𝜉S(𝑡) depends on the forward LIBOR rates 𝐿:(𝑡), which – similarly to the 

weights 𝜔:(𝑡) discussed earlier in the swap rate dynamics – prevents us valuating swaptions 

analytically. However, as it is discussed by Wu & Zhang in [20], we can freeze forward 

LIBOR rates in time 0, so that 𝜉S(𝑡) is approximated as 

𝜉S(𝑡) ≈ �
𝜏:(𝐿:(0) + 𝛿)𝜌:(𝑡)‖𝜆:(𝑡)‖

1 + 𝜏:𝐿:(0)

S

:HP(%)

. 

As mentioned earlier, we also expect that the coefficients 𝛼S(𝑡)  vary little over time. 

Therefore, the last approximation we use is 

 𝛼S(𝑡) ≈ 𝛼S(0). (27)	

Hence, the approximated dynamics of 𝑧(𝑡) are given as 

 𝑑𝑧(𝑡) ≈ 𝜅 ´𝜃 − 𝜉÷(𝑡)𝑧(𝑡)µ 𝑑𝑡 + 𝜖�𝑧(𝑡)𝑑𝑍I,)(𝑡), (28)	

where  

𝜉÷(𝑡) ≈ 1 +
𝜖
𝜅 � 𝛼S(0)𝜉S(𝑡)
)0'

SHI

. 

 

Results of this Section are summarized in the box below. In the following, we move 

towards solving the final value problem for the moment generating function.  
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Using Equations (26) and (27) approximated dynamics of the forward swap rate and the 

corresponding stochastic volatility process in the LMMPlus model are given by formulas 

𝑑𝑆I,)(𝑡) = �𝑧(𝑡)n𝑆I,)(𝑡) + 𝛿o𝜆÷I,)(𝑡)*𝑑𝑊I,)(𝑡) 

𝑑𝑧(𝑡) = 𝜅 ´𝜃 − 𝜉÷(𝑡)𝑧(𝑡)µ 𝑑𝑡 + 𝜖�𝑧(𝑡)𝑑𝑍I,)(𝑡), 

where the instantaneous correlation between the 𝑑-dimensional 𝑊I,)(𝑡) and the numeric 

𝑍I,)(𝑡) is given by the formula 

𝑑𝑍I,)(𝑡) =
𝜌
√𝑑

´𝑑𝑊(I,)),'(𝑡) + ⋯+ 𝑑𝑊(I,)),/(𝑡)µ + �1 − 𝜌(𝑑𝑊Ä (𝑡) 

and 

𝜆÷I,)(𝑡) ≈ � 𝜔:(0)𝜆:(𝑡)
)0'

:HI

, 𝜔:(𝑡) = ]
𝐿:(𝑡) + 𝛿
𝑆I,)(𝑡) + 𝛿

^ ×
𝜕𝑆I,)(𝑡)
𝜕𝐿:(𝑡)

 

𝜉÷(𝑡) ≈ 1 +
𝜖
𝜅 � 𝛼S(0)𝜉S(𝑡)
)0'

SHI

, 𝜉S(𝑡) ≈ �
𝜏:(𝐿:(0) + 𝛿)𝜌:(𝑡)‖𝜆:(𝑡)‖

1 + 𝜏:𝐿:(0)

S

:HP(%)

. 

 

6.3 Final Value Problem for the Moment Generating Function 

Define the expectation of function of a process 𝑢(𝑋% , 𝑡) that represents the moment 

generating function of 𝑋? as 

𝑢(𝑋% , 𝑡) = 𝔼%[𝑒_b$], 

where 𝔼%  is the expectation with the filtration ℱ% . We can easily show that 𝑢(𝑋% , 𝑡) is a 

martingale: for 𝑡 > 𝑠 

𝔼&[𝑢(𝑋% , 𝑡)] = 𝔼&È𝔼%[𝑒_b$]É = 𝔼&[𝑒_b$] = 𝑢(𝑋&, 𝑡), 

therefore it must be driftless. Let 𝑋? be the log of the function 𝜑 ´𝑆I,)(𝑡)µ = 𝑆I,)(𝑡) + 𝛿	at 

expiry. The moment generating function  

𝜙(𝑋% , 𝑧(𝑡), 𝑡, 𝑙) = 𝔼%[𝑒_b$] 

must satisfy the Kolmogorov backward equation (see [20] and [22]) 

𝜕𝜙
𝜕𝑡 + 𝜇b

𝜕𝜙
𝜕𝑥 + 𝜇g

𝜕𝜙
𝜕𝑧 +

1
2𝜎b

( 𝜕
(𝜙
𝜕𝑥( + 𝜌bg𝜎b𝜎g

𝜕(𝜙
𝜕𝑥𝜕𝑧 +

1
2𝜎g

( 𝜕
(𝜙
𝜕𝑧( = 0, 

where 𝜇b , 𝜇g , 𝜎b , 𝜎g  are the drifts and volatilities of the processes 𝑋%  and 𝑧(𝑡) and 𝜌bg  is 

their correlation. 

Applying the Itô’s Lemma we get 
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𝑑𝑋% = 𝑑ln _𝜑 ´𝑆I,)(𝑡)µ` = −
1
2 𝑧
(𝑡)ù𝜆÷I,)(𝑡)ù

(𝑑𝑡 + �𝑧(𝑡)𝜆÷I,)(𝑡)*𝑑𝑊I,)(𝑡), 

which together with the dynamics of 𝑧(𝑡) derived in the previous Section give us the desired 

drifts and volatilities as 

𝜇b = −
𝑧(𝑡)
2 ù𝜆÷I,)(𝑡)ù

( 

𝜇g = 𝜅 ´𝜃 − 𝜉÷(𝑡)𝑧(𝑡)µ 

	𝜎b( = 𝑧(𝑡)ù𝜆÷I,)(𝑡)ù
( 

𝜎g( = 𝜖(𝑧(𝑡), 

and the following equation: 

𝜌bg𝜎b𝜎g = 	𝜖𝑧(𝑡) � 𝜔:(0)‖𝜆:(𝑡)‖𝜌:(𝑡)
)0'

:HI

, 

because 

𝜌bg =
〈 𝜆
÷I,)

*

ù𝜆÷I,)ù
𝑑𝑋𝑑𝑧〉 (𝑡)

ú〈
𝜆÷I,)(𝑡)*

ù𝜆÷I,)(𝑡)ù
𝑑𝑋(𝑡)〉( 〈𝑑𝑧(𝑡)〉(

=
𝜎b𝜎g

𝜆÷I,)(𝑡)*

ù𝜆÷I,)(𝑡)ù
𝑑𝑊Q(𝑡)𝑑𝑍Q(𝑡)

𝜎b𝜎g

=
𝜆÷I,)(𝑡)*

ù𝜆÷I,)(𝑡)ù
𝑑𝑊Q(𝑡)𝑑𝑍Q(𝑡) =

∑ 𝜔:(0)𝜆:(𝑡)*𝑑𝑊Q(𝑡)𝑑𝑍Q(𝑡))0'
:HI

ù𝜆÷I,)(𝑡)ù

=
∑ 𝜔:(0)‖𝜆:(𝑡)‖𝜌:(𝑡))0'
:HI

ù𝜆÷I,)(𝑡)ù
. 

 

Also note, that the moment generating function satisfies the final condition, i.e. 

𝜙(𝑋? , 𝑧(𝑇), 𝑇, 𝑙) = 𝔼?[𝑒_b$] = 𝑒_b$ . 

 

In general, when solving the Kolmogorov backward equation we look for solutions 

of the following form: 

𝜙(𝑋, 𝑧, 𝑡, 𝑙) = 𝑒\(@,_)=Q(@,_)g=_N , 

where 𝜏 = 𝑇 − 𝑡, and functions 𝐴 and 𝐵 are obtainable analytically for constant coefficients 

(see [20] or [23]). Substituting this functional form in Kolmogorov’s partial differential 

equation and using 

𝜕𝜙
𝜕𝜏 = −𝜙 _

𝜕𝐴
𝜕𝜏 + 𝑧

𝜕𝐵
𝜕𝜏` ,

𝜕𝜙
𝜕𝑥 = 𝜙𝑙,

𝜕𝜙
𝜕𝑧 = 𝜙𝐵,

𝜕(𝜙
𝜕𝑥( = 𝜙𝑙(,

𝜕(𝜙
𝜕𝑧( = 𝜙𝐵( 
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𝜕(𝜙
𝜕𝑥𝜕𝑧 = 𝜙𝐵𝑙, 

 gives us two ordinary differential equations 
𝑑𝐴
𝑑𝜏 = 𝜅𝜃𝐵, 

𝑑𝐵
𝑑𝜏 = 𝑏(𝐵( + 𝑏'𝐵 + 𝑏,, 

where 

𝑏( =
1
2 𝜖

(, 𝑏' = 𝜖𝑙 � 𝜔:(0)‖𝜆:(𝜏)‖𝜌:(𝜏) − 𝜅𝜉÷(𝜏)
)0'

:HI

, 𝑏, =
1
2 ù𝜆

÷I,)(𝜏)ù
((𝑙( − 𝑙). 

 

The second ordinary differential equation is a Riccatti equation, for which an 

analytical solution is available in case of constant coefficients. However, if we assume 

coefficients constants in a time interval n𝜏S , 𝜏S='o, i.e. piece-wise constants, the analytical 

solutions can be extended through recursion. 

This system of two ordinary differential equations with subject to the initial conditions  

𝐴(0) = 𝐴,, 𝐵(0) = 𝐵,, 

can be solved by transforming the Riccatti equation into a linear first order equation (see 

Remark 4) to get 𝐵 and integrating the first differential equation afterwards to get 𝐴, so that 

𝐴(𝜏) = 𝐴, + 𝜅𝜃 �
−𝑏' + 𝑑h
2𝑏(

𝜏 −
1
𝑏(
ln ]

1 − ℎ𝑒/@

1 − ℎ ^�, 

𝐵(𝜏) = 𝐵, + _
−𝑏' + 𝑑h
2𝑏(

− 𝐵,` ]
1 − 𝑒/@

1 − ℎ𝑒/@^, 

where  

𝑑h = Ô𝑏'( − 4𝑏(𝑏,, ℎ =
2𝐵,𝑏( + 𝑏' − 𝑑h
2𝐵,𝑏( + 𝑏' + 𝑑h

. 

 

Finally, considering the case of piece-wise constant coefficients, let 

𝐴, = 𝐴n𝜏S , 𝑙o, 

𝐵, = 𝐵n𝜏S , 𝑙o 

and replace 𝜏 with 𝜏 − 𝜏S, so that we can arrive at final solutions 

𝐴(𝜏, 𝑙) = 𝐴n𝜏S , 𝑙o + 𝜅𝜃 ¥𝐵=n𝜏 − 𝜏So −
2
𝜖( ln �

1 − ℎS𝑒/.i@0@/j

1 − ℎS
�¦, 



 65 

𝐵(𝜏, 𝑙) = 𝐵n𝜏S , 𝑙o + ´𝐵= − 𝐵n𝜏S , 𝑙oµ �
1 − 𝑒/.i@0@/j

1 − ℎS𝑒/.i@0@/j
�, 

where 𝐵= =
0h&=/.
(h'

  is the particular solution of the Riccatti equation (see Remark 4) and 

ℎS =
2𝑏(𝐵n𝜏S , 𝑙o + 𝑏' − 𝑑h
2𝑏(𝐵n𝜏S , 𝑙o + 𝑏' + 𝑑h

. 

Hence, we have found the approximate moment generating function, which can be 

substituted for 𝑀b(𝑡) in the swaption price formula derived in Section 6.1. In the following 

Remark we present a possible method to transform the Ricatti differential equation into an 

integrable form. For further steps of the derivation of 𝐴(𝜏, 𝑙) and 𝐵(𝜏, 𝑙) see Appendix E. 

 

Remark 4 For the (Riccatti) differential equation 
𝑑𝐵
𝑑𝜏 = 𝑏(𝐵( + 𝑏'𝐵 + 𝑏,, 

we can look for solutions in form 

𝐵 = 𝑌' + 𝑌(. 

Setting 𝑑h = �𝑏'( − 4𝑏(𝑏, the particular solution 𝑌' is given as 

𝑌' =
−𝑏' ± 𝑑h
2𝑏(

, 

 from which – without loss of generality – we can take the one with the “+” sign (see [20]) 

and denote it by 𝐵=. Since the general solution satisfies 

𝑌( = 𝐵 − 𝐵=, 

the following must hold for its derivative: 

𝑑𝑌(
𝑑𝜏 =

𝑑(𝑌( + 𝐵=)
𝑑𝜏 = 𝑏((𝑌( + 𝐵=)( + 𝑏'(𝑌( + 𝐵=) + 𝑏,. 

Using the fact, that the particular solution satisfies 𝑏(𝐵=( + 𝑏'𝐵= + 𝑏, = 0, we get a new 

equation  
𝑑𝑌(
𝑑𝜏 = 𝑏(𝑌(( + 𝑑h𝑌(, 

which is from the class of Bernoulli equations, and therefore has an explicit solution. We can 

simply use the substitution 𝑢 = 𝑌(0' and convert it into the linear differential equation 
𝑑𝑢
𝑑𝜏 + 𝑑h𝑢 = −𝑏(, 

that allows integration.  
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7 Calibration 

In order to create a useful model from the framework discussed in Chapter 5, we 

must define the structure of 𝜆D(𝑡). Once it is done, the model can be calibrated to market-

observable prices of chosen calibration instruments, so that we can find optimal parameters 

in our model. Our aim in this Chapter is to present the issues of the LMM model calibration 

and propose two possible calibration methods:  

• a grid-based process proposed by Piterbarg & Andersen [8],  

• a specific approach introduced in the LMMPlus model calibration methodology. 

As we will see, these methods are very different. While the first one considers exogenously 

given parameters for the stochastic volatility dynamics and the second one defines the 

correlation of forward LIBOR rates through a parametric function. First we present the grid-

based construction of the time-to-maturity component 𝜆D(𝑡) in the Piterbarg & Andersen 

model, then we show the process considered by the LMMPlus model, which results an 

economically interpretable framework that can be easily applied and communicated.  

 

7.1 Construction of 𝝀𝒏(𝒕) 

 The only thing we have not discussed in Chapter 5 is the choice of deterministic 

factor volatility components, i.e. the 𝑚 -dimensional vectors 𝜆I(𝑡)  for 𝑘 = 1,… ,𝑁 − 1 , 

which – as we showed in Section 5.5.2 – are closely related to correlations between forward 

LIBOR rates and the volatility of their processes. In this Section, first we would like to guide 

the reader through the steps of the calibration proposed in [8], which also underlies the 

framework of another work (see [14]) that we often refer to. Then we introduce another 

approach of choosing the time-to-maturity component proposed in the LMMPlus model 

calibration methodology. 

 

7.1.1 The Piterbarg & Andersen Approach 

Now we introduce a general approach proposed by Piterbarg & Andersen. Note, in 

this method we suppose the stochastic volatility dynamics are given exogenously, as trader’s 

input. Then according to Piterbarg & Andersen [8], we can assume that the time-to-maturity 

component is expressed by the following funcions: 

𝜆I(𝑡) = ℎ(𝑡, 𝑇I − 𝑡), ‖𝜆I(𝑡)‖ = 𝑔(𝑡, 𝑇I − 𝑡),	 
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where ℎ ∶ 	ℝ=
( ⟶ℝ)  and 𝑔 ∶ ℝ=

( ⟶ℝ. We consider the parametrization of 𝑔 using the 

Rebonato function, i.e. the following parametric form: 

𝑔(𝑡, 𝑥) = 𝑔(𝑥) = (𝑎 + 𝑏𝑥)𝑒0kN + 𝑑, 

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ= . As we will see in the next Section, this also coincides with the 

assumptions of the LMMPlus model. Note, this specification is not 𝑡-dependent – it only 

depends on the time to maturity (𝑇I − 𝑡). Although in this thesis we keep ourselves to this 

parametrization, we should mention that in order to include dependency on time 𝑡, function 

𝑔 can be also expressed as a multiplication of two functions depending on the time and the 

time to maturity separately (see [8]).  

 

It is common to consider function ‖𝜆I(𝑡)‖  to be a piecewise constant in time 𝑡,  with 

discontinuities at 𝑇D, 𝑛 = 1,… ,𝑁 − 1,  

‖𝜆I(𝑡)‖ = �1{?(0';%;?(}ù𝜆D,Iù
I

DH'

= �1{P(%)HD}ù𝜆D,Iù
I

DH'

, 

where ù𝜆D,Iù  is constructed from a (𝑁% × 𝑁N) -dimensional matrix 𝐺  using a two-

dimensional interpolation method, so that for a rectangular grid of time and tenors {𝑡:} × é𝑥Sê 

𝐺:,S = n𝑎 + 𝑏𝑥So𝑒0kN/ + 𝑑, 

where 𝑖 = 1,… ,𝑁% , 𝑗 = 1,… ,𝑁N . 

 

If we suppose a simple linear interpolation done separately in both dimensions, then 

for 1 ≤ 𝑛 ≤ 𝑘 ≤ 𝑁 − 1 

ù𝜆D,Iù = 𝑤==𝐺:,S +𝑤=0𝐺:,S0' +𝑤0=𝐺:0',S +𝑤00𝐺:0',S0', 

where  

𝑤== =
(𝑇D0' − 𝑡:0')n𝜏D,I − 𝑥S0'o
(𝑡: − 𝑡:0')n𝑥S − 𝑥S0'o

, 𝑤=0 =
(𝑇D0' − 𝑡:0')n𝑥S − 𝜏D,Io
(𝑡: − 𝑡:0')n𝑥S − 𝑥S0'o

, 

𝑤0= =
(𝑡: − 𝑇D0')n𝜏D,I − 𝑥S0'o
(𝑡: − 𝑡:0')n𝑥S − 𝑥S0'o

, 𝑤00 =
(𝑡: − 𝑇D0')n𝑥S − 𝜏D,Io
(𝑡: − 𝑡:0')n𝑥S − 𝑥S0'o

.	 

 

Now, define the (𝑁 − 𝑛) × (𝑁 − 𝑛) instantaneous correlation matrix 𝑅(𝑇D) for a 

fixed 𝑇D as 

𝑅(𝑇D) = Corr ´𝑑𝐿:(𝑇D), 𝑑𝐿S(𝑇D)µ , 𝑖, 𝑗 = 𝑛,… ,𝑁 − 1, 
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which can be computed, for instance, using the parametric form presented in Section 5.5.2.1 

and consider a diagonal volatility matrix 𝑐(𝑇D) with elements  

(𝑐(𝑇D)	):,S = ýù𝜆D,D=S0'ù, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

. 

Hence, an instantaneous covariance matrix 𝐶(𝑇D) can be computed as 

𝐶(𝑇D) = 𝑐(𝑇D)𝑅(𝑇D)𝑐(𝑇D). 

 

If we let 𝐻(𝑇D) be an (𝑁 − 𝑛) × 𝑚 matrix with elements (𝐻(𝑇D)	)S,: = ℎ:n𝑇D, 𝑇D=S0' − 𝑇Do 

for 𝑗 = 1,… ,𝑁 − 𝑛 and 𝑖 = 1,… ,𝑚, then it should follow that 

𝐶(𝑇D) = 𝐻(𝑇D)𝐻(𝑇D)*. 

Therefore, we have two representations of the covariance matrix, so that we can write the 

equation 

 𝐻(𝑇D)𝐻(𝑇D)* = 	𝑐(𝑇D)𝑅(𝑇D)𝑐(𝑇D), (29)	

from which we can construct 𝐻(𝑇D), i.e. the set of vectors ℎn𝑇D, 𝑇D=S0' − 𝑇Do for the whole 

grid, and using that, the full set of 𝜆I(𝑡). 

 

In general, Equation (29) does not have a solution. As it is stated by Piterbarg & 

Andersen (see [8]), while normally the left-hand side does not have a full rank, the right-

hand side does. Therefore, the PCA decomposition (see Appendix C) should be applied. 

Although, it can be performed in many ways, we introduce the “Correlation PCA” [8], which 

is strongly recommended by Piterbarg & Andersen (see Remark below) and discussed earlier 

in Section 5.5.2.2. 

 

By applying the PCA we have 

𝑅(𝑇D) = 𝐷(𝑇D)𝐷(𝑇D)*, 

where the (𝑁 − 𝑛) × 𝑚 matrix 𝐷 can be found by following the steps of Section 5.5.2.2. 

Hence, we can replace 𝑅(𝑇D) in Equation (29) and define 𝐻(𝑇D) as 

𝐻(𝑇D) = 𝑐(𝑇D)𝐷(𝑇D). 

 

Remark 5  Note, that the previous decomposition is independent from the volatility 

matrix 𝑐(𝑇D). Hence, updates made on guesses of the elements of matrix 𝐺 do not affect the 

correlation PCA. For a more detailed justification, we refer the reader to [8]. 
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7.1.2 Construction of 𝝀𝒏(𝒕) in the LMMPlus Model 

In the LMMPlus model, a concrete form of 𝜆D(𝑡) is defined through the Rebonato 

function scaling a set of factor loadings, that need to be estimated using the PCA.  

The 𝑚-dimensional time-to-maturity component 𝜆D(𝑡) of the forward LIBOR rate 

volatility is given as 

𝜆D(𝑡) = !
0, 𝑥 ≤ 0

𝛽D(𝑥)𝑔(𝑥), 𝑥 ∈ (0, 𝑇D]
	𝛽(𝑇D)𝑔(𝑇D), 𝑥 > 𝑇D

, 

where 𝑥 = 𝑇D − 𝑡 , 𝑔(𝑥)  is the exponential Rebonato function defined earlier with 

parameters 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ  and 𝛽D(𝑥) is an 𝑚-dimensional vector – also called the factor 

loading – with elements 𝛽D: , 𝑖 = 1,… ,𝑚, that are constant over the interval 𝑥 ∈ (𝑇D0', 𝑇D]. 

For a better understanding, the elements can be defined using a different approach such as 

𝛽:(𝑥) =

⎩
⎪
⎨

⎪
⎧𝛽'

: , 𝑥 ∈ (0, 𝑇']
𝛽(: , 𝑥 ∈ (𝑇D0', 𝑇D]

…
𝛽D: , 𝑥 ∈ (𝑇D0', 𝑇D]

…
𝛽<: , 𝑥 ∈ (𝑇<0', 𝑇<]

, 𝑖 = 1,… ,𝑚. 

 

Now, considering this parametrization, if we recall the forward LIBOR rate dynamics 

(see Equation (19) in Chapter 5), then the component containing the Wiener process for 𝑥 ∈

(0, 𝑇D] is 

𝜎D(𝑡)*𝑑𝑊Q = 𝜑n𝐿D(𝑡)o𝜆D(𝑡)*𝑑𝑊Q = 𝑔(𝑥)𝜑n𝐿D(𝑡)o𝛽D(𝑥)*𝑑𝑊Q . 

Therefore 𝛽D:  can be thought as an exposure of the forward LIBOR rate 𝐿D(𝑡) to the 𝑖-th 

component of the 𝑚-dimensional Wiener process 𝑊Q. Hence, we refer to this set of vectors 

as factor loadings. 

We can show that the choice of this parametric form gives us a very simple 

representation of the forward LIBOR rate correlations. Indeed, it is given via a small number 

𝑚 of factor loadings. However, to conform the framework presented earlier, first we need 

𝜆D(𝑡) to satisfy the assumption 

‖𝜆D(𝑡)‖ = 𝑔(𝑥), 

so that the factor loadings do not have an impact on the forward LIBOR rate volatility. This 

can be simply achieved by normalizing the factor loadings, such that 

‖𝛽D(𝑥)‖( = n𝛽D'(𝑥)o
( +⋯+ n𝛽D)(𝑥)o

( = 1. 
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Now, recall Section 5.5.2, where we derived the instantaneous correlation between 

two forward LIBOR rates as 

Corrn𝑑𝐿D(𝑡), 𝑑𝐿I(𝑡)o =
𝜆D(𝑡)*𝜆I(𝑡)

‖𝜆D(𝑡)‖‖𝜆I(𝑡)‖
. 

Then, using the parametrization presented earlier, the instantaneous correlation between 

𝐿D(𝑡) and 𝐿I(𝑡) is given by 

Corrn𝑑𝐿D(𝑡), 𝑑𝐿I(𝑡)o = 𝛽P(?(0%)
' 𝛽P(?+0%)

' +⋯+ 𝛽P(?(0%)
) 𝛽P(?+0%)

) , 

meaning that factor loadings describe the correlation between movements of two points on 

the zero-coupon curve. Using PCA, we can choose the most efficient set of factor loadings, 

that describes the LMMPlus model correlations and captures our target correlations.  

According to the LMMPlus model [24], first two factors from the PCA can explain 

approximately 90% of the variance, meaning that by applying the algorithm discussed in 

Appendix C, we decided to set the Wiener process dimension 𝑚 = 2 . The first factor 

influences each point on the curve along the same direction, i.e. describes the parallel shift, 

while the second one can be interpreted as the “tilt” factor, which affects the short and long 

end of the curve oppositely, in different degrees. Hence, we refer to the second factor as the 

short term one (corresponding to the short rate volatility), since it has greater effect on the 

short term yields. Similarly, the first factor is associated with the long term volatility, i.e. we 

refer to it as the long term factor. 

In the case, when we insist on the interpretation of factor one and two as the short 

and long term factors respectively, another approach of using the PCA can be considered.  

Instead of deriving loading factors from the target correlation matrix discussed in Section 

5.5.2.1, we can construct another correlation matrix from a simpler model, the extended two-

factor Black-Karasinki (BK) model, for which we refer the reader to [25]. At this  point, we 

would like to underline, that doing this results a less accurate fit to target correlations, 

however, the LMMPlus model favors the fact of obtaining loading factors, whose influence 

on rates is easy to communicate through wider business. Note, that we can consider short 

rates equivalent to spot rates of up to (approximately) one year maturity, due to the negligible 

effect of the long rate factor at these maturities. and long rate equivalent to the spot rate at 

the maturity, where the short rate factor is zero (for example, 10 years). 

 Using the BK method, we can model yearly forward rates, for example, to thirty 

years [24] and derive a correlation matrix. As we said, the second factor has higher weighting 

on the short end of the curve and lower on longer maturities. Hence, if we apply PCA similar 

to “Poor Man’s” (see Section 5.5.2.2) on the correlation matrix derived from the BK model, 
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then we can choose the short rate factor candidate 𝐹'(𝑛) as the second principal component 

(eigenvector) scaled by the second eigenvalue. Note, that (after constructing the first factor 

loading) the second factor loading can be simply determined using the equation 

(𝛽D')( + (𝛽D()( = 1. 

According to the LMMPlus model methodology, the first factor loadings can be modeled as 

Rebonato parametric forms minimizing the objective function 

𝑂𝐹 = �n𝛽D' −	𝐹'(𝑛)o
(

(o

DH'

, 

such that a minimum is found satisfying 

𝛽D' = (𝑎 + 𝑏𝑛)𝑒0kD + 𝑑 

and 

𝛽D( = �1 − (𝛽D')(. 

Hence, we can determine all the Rebonato parameters and also loading factors 𝛽D' and 𝛽D( 

for 𝑛 = 1,… , 29.  

An advantage of this approach is that we can extrapolate factor loadings, for example, 

to 120 years using the same optimized Rebonato function or interpolate them for semi-

annually or monthly steps, so that it allows smooth and complete correlations. Note, that we 

have also got factors one and two as we required, driving short and long term structure of 

interest rates respectively. 

We would like to draw attention to the notation of the parameters in the factor 

loadings’ Rebonato form, that can be misleading: they do not correspond to those in function 

𝑔 introduced earlier in this Section. 

 

7.1.3 The Rebonato Function 

Recall the time-to-maturity component 𝜆D(𝑡) discussed earlier in this Chapter and 

defined by scaling the (principal component) factor loading by a Rebonato function  

𝑔(𝑥) = (𝑎 + 𝑏𝑥)𝑒0kN + 𝑑, 

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ=. For a better understanding, at the end of this Section we dedicate a 

few words to the nature of the calibration parameters emerged from the Rebonato function. 

For that, we also refer the reader to Figure 4, a visual representation of the Rebonato 

parameters. 
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Since lim
N→O

(𝑎 + 𝑏𝑥)𝑒0kN = 0, parameter 𝑑 is the long-term value of time-to-maturity 

component of the forward LIBOR rate volatility. Also, if 𝑥 = 0, the value of the function is 

equal to (𝑎 + 𝑑), which can be interpreted as the initial value of the forward LIBOR rate 

volatility. The parameters 𝑏 and 𝑐 influence the behavior of the function, while 𝑐 is also 

largely responsible for the curvature. These two parameters, together with 𝑎  determine 

whether a hump occurs and if it does, its location is given by (𝑏 − 𝑎𝑐)/𝑏𝑐. 

 

 
Figure 4 A Representation of The Rebonato Function’s Parameters 

 

7.2 Data Acquisition and Pre-Processing 

The first stage of the calibration process is the data acquisition and pre-processing – 

one must be specific about the input parameters, market data and a set of target prices before 

calibrating the model. Therefore, in this Section we discuss some possible ways of obtaining 

a continuous initial yield curve 𝐿D(0), the choice of calibration instruments and propose a 

concrete value of the displacement factor based on expert judgements from the internal 

documents of Zurich Insurance Company. 

 

7.2.1 Initial Yield Curve 

One of the inputs that is assumed by all LMM models is the initial yield curve 𝐿D(0), 

which must be recovered somehow from market data. For that, first we have to define the 

risk-free reference rate, which can be derived for example from government bonds. The 
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problem is, that in general not all the required rates are directly observable on market. 

Therefore, we must construct a curve that matches the market rates where we want them and 

use an estimation method to get a complete set of rates.  

Instead of deriving a whole interpolation method, we refer the reader to Interpolation 

Methods For Curve Construction [26] written by Hagan & West, where the authors present 

and compare a wide range of yield curve interpolation algorithms. One can also use simple 

theoretical term structure methods, such as Vasicek [27]. However, in case of theoretical 

methods the yield curve is determined to take a shape from basic categories, therefore using 

an empirical method is recommended, for example the monotone convex spline interpolation 

proposed by Hagan & West and applied in [6]. Piterbarg & Andersen [7] also dedicated a 

whole chapter to the theory of constructing yield curves.  

Two other alternative interpolation methods are the Smith-Wilson method (used in 

the LMMPlus model [24]) and the Nelson-Siegel method (see for example [28] and [29]), 

which are used in practice for both interpolation and extrapolation, i.e. when the long-term 

forward rate needs to be determined.  

In the following, we introduce one of the simpler methods, the Nelson-Siegel model, 

which was modified by Svensson (see [28]), who added two more parameters to the original 

model redefining the formula for the instantaneous forward rate as 

𝑓(𝑡, 𝑇) = 𝛽, + 𝛽'𝑒
0@(%,?)p& + 𝛽(

𝜏(𝑡, 𝑇)
𝜚'

𝑒0
@(%,?)
p& + 𝛽T

𝜏(𝑡, 𝑇)
𝜚(

𝑒0
@(%,?)
p' , 

where 𝛽,, 𝛽', 𝛽(, 𝛽T, 𝜚', 𝜚( are estimated using the least-squares method. It is a model that is 

often used in practice and can properly fit long maturities. Using the definitions from Chapter 

2, we can transform the equation, so that for the implied spot rate we get 

𝑅(𝑡, 𝑇) = 𝛽, + 𝛽'¨
1 − 𝑒0

@(%,?)
p&

𝜏(𝑡, 𝑇)
𝜚'

© + 𝛽( ¨
1 − 𝑒0

@(%,?)
p&

𝜏(𝑡, 𝑇)
𝜚'

− 𝑒0
@(%,?)
p& ©

+ 𝛽T¨
1 − 𝑒0

@(%,?)
p'

𝜏(𝑡, 𝑇)
𝜚(

− 𝑒0
@(%,?)
p' ©. 

 

Obviously, the Nelson-Siegel-Svensson method can be easily applied, however, as 

we can see on the following Figure – where we used NSS model to construct an estimated 

yield curve, based only on a few German government bonds from April 13, 2020 – it is far 

from being perfect. Deviations from the market are inevitable because of the least-squares 
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minimization when searching parameters, meaning that the model cannot exactly replicate 

the yield curve. Therefore, when all the market points are required to be included in the yield 

term structure, a spline approach mentioned earlier is more convenient.  

 

 
Figure 5 Spot Rates Estimated by The NSS Method 

 

7.2.2 Calibration Instruments 

In a standard LMM model calibration a set of swaptions and caps should be chosen 

with observable prices on the market, which would serve as calibration target prices. To 

define precisely which swaptions and caps should be included in the calibration, we refer the 

reader to [8], where the authors compare two opposing approaches: global and local.  

In short, the global approach prescribes calibrating the model to a large set of options, 

including swaptions and caps, which results a large set of consistently priced instruments. 

Considering the “grid-based” calibration presented in Section 7.1.1, it is recommended to 

choose ATM swaptions (and also caps) with swaption maturities and swap tenors that 

coincide with points in our grid. Choosing this method is reasonable for example when the 

LMM model is intended to be used on exotic securities.  

In the local approach, also called the parsimonious, one must carefully choose a small 

number of swaptions and caps and focus on “specification of smooth and realistic term 

structures of forward rate volatilities” [8]. Hence, it usually involves strong time-

homogeneity assumptions on the time-to-maturity component 𝜆D(𝑡) . Both have some 
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disadvantages: while in the global approach, the calibration can result forward rate 

volatilities that are extremely non-stationary, in the local approach the mispricing of certain 

options is inevitable, which is obviously problematic in cases, when a model is used for 

pricing complex instruments. Another unanswered question arises, whether we should 

include both swaption and cap markets or only either of them. In general, choosing the global 

approach and including both markets (with weights according to their relative importance) 

is the most reasonable decision, since it is more generally applicable and also many interest 

rate securities depend on LIBOR rates and swap rates simultaneously. However, as stated in 

[8], the followers of the local approach argue, that the model should be calibrated only to 

one of the markets, according to properties of the security to be priced.  

 

Consider now the time-to-maturity component 𝜆D(𝑡) from Section 7.1.2 expressed 

in terms of factor loadings given in the form of a Rebonato function. As we can see, a time-

homogeneity assumption is made in the LMMPlus model, corresponding with the theory of 

the parsimonious approach mentioned above and the idea proposed by Piterbarg & Andersen 

[8], that “the evolution of the volatility structure should be as close to being time-

homogeneous as possible”.  

The LMMPlus model follows the parsimonious approach and is calibrated purely to 

swaption prices or swaption implied volatilities. Obviously, its calibration is not grid-based, 

since the time-to-maturity component is described by factor loadings. Therefore, the set of 

target swaptions is chosen in a different way. According to its methodology, we can choose 

a volatility surface built for multiple swaption maturities (times to expiry dates) and strikes 

with a specific swap tenor (for example 10 years), and also an ATM surface, which is the 

mapping of ATM swaption implied volatilities across multiple maturities and swap tenors. 

By that, we get two slices of the swaption implied volatility cube (an object showing how 

swaption prices vary along dimensions of the swaption maturity, the swaption strike and the 

swap tenor), that have a common intersection at ten year tenor. According to the description 

of the LMMPlus model, it is recommended to fit to at least a 10 × 10 ATM surface to 

maintain the stability of the calibration. We return to this topic in Section 7.3, where the 

concrete calibration algorithm of the LMMPlus model is presented.  

 

7.2.3 Displacement Factor 𝜹 

Recall the definition of the local volatility function introduced in Section 5.6 as 
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𝜑n𝐿D(𝑡)o = 𝐿D(𝑡) + 𝛿. 

We mentioned that a forward rate displacement parameter 𝛿  is used to shift down the 

evolution of forward rates, so that negative forward rates do not cause inconveniencies in 

the model. In fact, −𝛿 becomes the lower bound of forward LIBOR rates and influences the 

distribution of them. It also affects the quality of the model, since forward rates below −𝛿 

cannot be modelled and similarly, for strikes below −𝛿  a close fit cannot be achieved. 

Therefore, the forward displacement parameter 𝛿 must be chosen wisely. A possible way is 

to include it in the optimization process when calibrating the model, however in the 

methodology of the LMMPlus model [24] it is recommended to consider it as an input 

parameter.  

Note, that in order to include a wide range of swaption maturities, strikes and swap 

terms with many negative strikes, a relatively high displacement value should be considered. 

That also generates a less asymmetrical distribution with less/no exploding rates. In the 

LMMPlus model, the displacement factor is set to 𝛿 = 45%. Empirical tests validating the 

choice of 𝛿 – that is out of the scope of this thesis – are covered in the internal document of 

Zurich Insurance Company [24]. 

 

7.3 Calibration Algorithm 

 Consider a given time structure and suppose, that we have managed to find an 

optimal dimension of the Wiener process 𝑊Q . Now, we continue with the framework 

introduced in Section 7.1.1 and discuss the calibration algorithm proposed by Piterbarg & 

Andersen [8]. As we said earlier, this method supposes that parameters of the stochastic 

volatility dynamics and the local volatility function are specified by the user, i.e. given 

exogenously. 

 Once the calibration instruments are chosen, the discrepancies between the model 

and the quoted market prices must be minimized. For that, in general we assume a chosen 

set of 𝑁7  swaptions 𝑉&EFG%:JD,', 𝑉&EFG%:JD,(, … , 𝑉&EFG%:JD,<0  and 𝑁q  caps 

𝑉kFG,', 𝑉kFG,(, … , 𝑉kFG,<1 and introduce a calibration objective function ℐ (see [8]) given as 
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where 𝜔7, 𝜔q , 𝜔r% , 𝜔rN , 𝜔r%' , 𝜔rN' ∈ ℝ= are exogenously specified weights, 𝑉+  denotes the 

quoted market price of swaptions/caps and 𝑉*(𝐺) denotes their generated prices as functions 

of 𝐺 introduced in Section 7.1.1. Obviously, first two terms measure the accuracy of fitting 

to target prices. The other terms can be interpreted this way: 

• the third term – the mean-squared average of the derivatives of 𝐺 – penalizes the 

volatility functions that are too variable through time 

• the fifth term – the mean-squared average of the second derivatives of 𝐺 with respect 

to time – controls the smoothness of volatilities (through time) and penalizes 

discrepancies from a linear evolution 

• the remaining two terms are similar to third and fifth, however, they measure 

constancy and smoothness in the “time-to-maturity direction”. 

 

Since swaption prices can vary too much over a long period of time, unitary weighting 

scheme can make extremely high-priced swaptions overvalued in the objective function. On 

the contrary, implied volatilities are more flat, therefore in practice a commonly used 

approach is to apply the error function to them. Market prices 𝑉+&EFG%:JD,: , 𝑉+kFG&,:  can be 

converted into a constant implied volatilities 𝐼𝑉,72, 𝐼𝑉,q2. Then, if we denote 𝐼𝑉***72(𝐺), 𝐼𝑉***q2(𝐺) 

as corresponding model implied volatilities, we can write a new objective function as 

ℐ(𝐺) =
𝜔7
𝑁7
�n	𝐼𝑉***72(𝐺) − 𝐼𝑉,72o

(
<0

:H'

+
𝜔q
𝑁q

�n	𝐼𝑉***q2(𝐺) − 𝐼𝑉,q2o
(

<1

:H'

+⋯	. 

A possible way – suggested by Piterbarg & Andersen – to refine the calibration is to consider 

different weights for each swaption or cap instead of common weights 𝜔7, 𝜔q .  

 

 By introducing the objective function we can finally move to the calibration 

algorithm proposed by Piterbarg & Andersen [8]. Assuming a given time structure, a selected 
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time and tenor grid {𝑡:} × é𝑥Sê, a chosen number 𝑚 of factors (Wiener process dimension), 

a correlation matrix 𝑅 and a set of calibration swaptions and caps (together with a set of 

weights in the calibration objective function), we can proceed by following steps: 

1. From a guessed matrix 𝐺 construct the full grid ù𝜆D,Iù for all LIBOR indices 𝑘 =

1,… ,𝑁 − 1 and expiry indices 𝑛 = 1,… , 𝑘 (see Section 7.1.1) 

2. Compute the matrix 𝐻(𝑇D) for each 𝑛 = 1,… ,𝑁 − 1 and volatility loadings 𝜆I(𝑇D) 

from ù𝜆D,Iù (see Section 7.1.1) 

3. Given 𝜆I(𝑡) for all 𝑘 = 1,… ,𝑁 − 1 compute model swaption and cap prices. 

4. Find the value of the objective function ℐ(𝐺). 

5. Update 𝐺 and repeat previous steps until the function ℐ(𝐺) is minimized. 

For some numerical optimizers that can be used for calibration purposes, we refer the reader 

to the book of Piterbarg & Andersen, where a couple of useful algorithms and methods 

(available also in some numerical packages) are listed. 

 

As we mentioned earlier, following the parsimonious approach of choosing 

calibration instruments, the LMMPlus model is calibrated to swaptions, while caps are 

excluded. Therefore, in this thesis we did not discuss cap pricing. Due to the exclusion of 

target caps and the non-grid-based construction of the time-to-maturity component 𝜆D(𝑡), 

the calibration objective function used in the LMMPlus model is “cleaner” relative to the 

one proposed by Piterbarg & Andersen. Meaning that it is defined only by the first term, the 

mean-squared error of implied volatilities. To end this Chapter, in the following we introduce 

the objective function and the calibration methodology used in the LMMPlus model.  

 

7.3.1 Calibration of the LMMPlus Model 

The LMMPlus model, introduced in Section 5.6 with time-to-maturity constructed 

through factor loadings as shown in Section 7.1.2, contains only 8 parameters that need to 

be found: 

• A set of parameters 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ= in the Rebonato function 

𝑔(𝑥) = (𝑎 + 𝑏𝑥)𝑒0kN + 𝑑. 

• Positive constants 𝜅, 𝜃 and 𝜖 of the stochastic volatility process (SVP), given by 

𝑑𝑧(𝑡) = 𝜅n𝜃 − 𝑧(𝑡)o𝑑𝑡 + 𝜖�𝑧(𝑡)𝑑𝑍Q(𝑡). 
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• The constant correlation 𝜌 between the Wiener processes of the SVP and the forward 

LIBOR rate dynamics, satisfying  

𝑑𝑍Q(𝑡) =
𝜌
√2

�𝑑𝑊Q,:(𝑡)
(

:H'

+�1 − 𝜌(𝑑𝑊Ä (𝑡). 

Clearly, the first set of parameters controls the time-to-maturity component 𝜆D(𝑡), whereas 

the remaining four affect the SVP, the correlation of its shock component with the forward 

rate shock and allow us fitting to the target skew surface. Recall, that we have chosen two 

slices of the implied volatility cube (see Section 7.2.2), the ATM surface and a volatility 

surface through maturities and strikes with a 10-year swap tenor. While the away-from-the-

money surface serves to find the SVP parameters, the ATM surface drives the parameters of 

the Rebonato function. 

Similarly to the calibration method introduced earlier, our aim is to optimize the 

calibration objective function that measures the accuracy of fitting model outputs to target 

implied volatilities. The algorithm repeatedly chooses optimization parameters, combines 

them with input parameters and produces a new set of modeled swaption prices until they 

sufficiently resemble market swaption prices. As we mentioned earlier, the objective 

function in this case is simpler compared to the general methodology discussed earlier as we 

do not have to include penalizations for the variability and regularity of the volatility 

structure. 

If we assume a given set of 𝑁7  swaptions with market implied volatilities 

𝐼𝑉,', 𝐼𝑉,: , … , 𝐼𝑉,<0 and denote the set of optimization parameters as 

𝜓 = (𝑎, 𝑏, 𝑐, 𝑑, 𝜅, 𝜃, 𝜖, 𝜌), 

then the calibration objective function in the LMMPlus model is given by  

𝜙(𝜓) = �
𝜔:
𝑊 ´𝐼𝑉,: − 𝐼𝑉***:(𝜓)µ

(
<0

:H'
s2t,

, 

where 𝜔: are the user specified weights satisfying 

𝑊 =�𝜔:

<!

:H'

, 

and 𝐼𝑉***:(𝜓) are the model implied volatilities. Note, all parameters are bounded: first seven 

parameters must be positive, whereas the correlation parameter 𝜌 ∈ [−1, 1]. 
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Conclusion 

 In this thesis we examined the LIBOR Market Models modeling the evolution of 

forward LIBOR rates, which are directly observable on markets. Our aim was to provide a 

comprehensive but comprehensible guide, which makes understandable the broad issue of 

building up an advanced interest rate model and deriving a pricing formula using measure 

changes. We focused on deriving the forward LIBOR rate dynamics in several probability 

measures and introducing some advanced LMM models together with their calibration 

methods to market asset prices. We described two models in details: one proposed by 

Piterbarg & Andersen and the LMMPlus model, used in practice by the Zurich Insurance 

Company. 

First, in Chapter 1 we discussed the necessary assumptions of an arbitrage-free 

economy and presented the risk-neutral probability measure. In Chapter 2, we introduced 

the definition of the zero-coupon bond together with some spot interest rates and described 

the Forward Rate Agreement to define forward rates. Then in Chapter 3, we briefly discussed 

the Change of Numeraire Theorem and used it to define forward measures induced by zero-

coupon bonds as numeraires. We also showed the martingale property of forward rates under 

these measures. These Chapters were mainly based on the book Interest Rate Models - 

Theory and Practice with Smile, Inflation and Credit [1] written by Brigo & Mercurio. 

Chapter 4 was dedicated to swaps and swaptions. We presented the vanilla interest rate swap 

and derived its price using its payoff. Then we described the swaption as an option contract 

allowing the owner to enter a swap contract. Again, we derived its price from its payoff, 

however, a pricing formula using the approach proposed by Black [2] was presented, too.  

In Chapter 5, we introduced the discrete-time equivalents of numeraires presented in 

Chapter 2 and derived the evolution of forward LIBOR rates under measures induced by 

them using the Change of Numeraire Theorem and some other techniques of stochastic 

calculus. Then we discussed some possible formulations of the forward LIBOR rate 

evolution: shortly mentioned the basic lognormal formulation proposed by Brace, Gatarek 

and Musiela [3] known as the BGM model and introduced displaced linear local volatility 

functions. We presented two single-factor displacements proposed by Piterbarg & Andersen 

and assumed by the LMMPlus model, separately. As we said, the assumption of displaced 

rates allowed working with negative interest rates and offered the control over implied 

volatility skews. We extended both models by introducing a stochastic volatility process used 

to a more realistic modeling of volatilities and allowing volatility smiles. We also examined 



 81 

the issue of obtaining an empirical correlation matrix and performing principal component 

analysis to reduce the number of factors of uncertainty. Then, due to differences between the 

two models considered in this thesis, at the end of this Chapter we presented their concrete 

frameworks separately.  

In Chapter 6, we derived the pricing formula for swaptions following the approach 

proposed by Wu & Zhang [20] and originally used to pricing caplets. Since there did not 

exist an exact analytical solution for swaption prices under the assumptions of LIBOR 

Market Models, we derived an approximate formula expressed in terms of moment 

generating functions.  

In Chapter 7, we provided the calibration methodology for both the Piterbarg & 

Andersen and the LMMPlus model. We discussed model inputs and presented two ways of 

constructing the deterministic time-to-maturity component of volatility: a grid-based method 

proposed by Piterbarg & Andersen and a more heuristic, economically interpretable method 

assumed by the LMMPlus model. At the end of this thesis we also introduced objective 

calibration functions considered by both models, whose optimization led us to complete 

models calibrated to market prices of target assets. 

 

This thesis is a theory-oriented guide to understand the issue of LIBOR Market 

Models and build up a framework that can relatively accurately price swaptions. We 

provided the methodology of two models, which in fact differ in many assumptions. The one 

proposed by Piterbarg & Andersen considers a forward rate evolution independent from the 

stochastic volatility process, while in the LMMPlus model the correlation between them is 

given by a constant, which needs to be found during the calibration process. Also, the grid-

based calibration method does not involve the optimization of parameters of the stochastic 

volatility process, but instead considers them as input parameters given exogenously. On the 

other hand, as we said the LMMPlus follows a heuristic and more easily applicable 

calibration method based on expert judgments, while sacrificing modeling accuracy to ease 

the economical comprehension and numerical solutions.  

Therefore, a possible continuation of this work would be a detailed comparison of 

their performance. Due to differences described above, implied volatility skews and smiles 

are controlled by different parameters. Hence, an examination of the effect of parameters on 

implied volatilities in both cases would be reasonable. Also, overcoming the technical 

difficulties of converting the swaption pricing formula to a form that can be solved 

numerically, is not trivial. For example, improper integrals included in the pricing formula 
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must be adjusted, for instance by mapping the infinite interval to a finite one or using the 

approximation mentioned in Libor Market Model with Stochastic Volatility [14] written by 

Seonmi Lee.  

In Chapter 7, we discussed some possible interpolation methods used for 

constructing a continuous initial yield curve. However, as we saw, the presented Nelson-

Siegel-Svensson reproduced the curve poorly, especially for the short end. We therefore 

recommend a detailed examination of choosing the proper interpolation method.  

Finally, the most obvious continuation of our thesis would be a computer-based 

practical implementation of the theoretical methodology. It would be an interesting exercise 

to apply both algorithms on concrete, real-life data, so that one would be able to compare 

their accuracy and runtime. Eventually, calibrated models could be used for simulations to 

obtain Monte Carlo estimates of swaption prices. Finally, for a fully functioning model a 

validation process should be also prepared, in order to ensure that the market/target swaption 

prices agree with the Monte Carlo estimates. 
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Appendix A – Measure Theory 

In this Appendix, we introduce some properties of probability measures we refer to 

throughout this thesis. We provide definitions of equivalent measures and the Radon-

Nikodym derivative with the fundamental background from measure theory. 

 

Consider a measurable space (𝑋,𝒜), consisting of a set 𝑋 and a 𝜎-algebra 𝒜 and 

the extended set of real numbers ℝ. = {−∞} ∪ℝ ∪ {∞}. If a property holds for all 𝑥 ∈ 𝑋\𝑁, 

where 𝑁 is a set of measure zero we say it holds almost everywhere, a.e. for short. 

 

A signed measure 𝜈 on 𝑋 is a function 𝜈 ∶ 𝒜	 ⟶ ℝ.  such that: 

• 𝜈(∅) = 0; 

• 𝜈 attains at most on of the values ∞, −∞; 

• if {𝐴: ∈ 𝒜 ∶ 𝑖 ∈ ℕ} is a disjoint collection of measurable sets, then  

𝜈 �3𝐴:

O

:H'

� =�𝜈(𝐴:)
O

:H'

. 

 

Singular Measures [30] 
Measures 𝜇 and 𝜈 on space (𝑋,𝒜) are singular, written 

𝜇 ⊥ 𝜈, 

if there exist sets 𝑀, 𝑁 ∈ 𝒜 such that 𝑀 ∩ 𝑁 = ∅, 𝑀 ∪ 𝑁 = 𝑋 and 𝜇(𝑀) = 0, 𝜈(𝑁) = 0. 

 

Absolute Continuity and Equivalence of Measures [30] 
Consider the signed measure 𝜈 and a measure 𝜇 on (𝑋,𝒜). Then 𝜈 is absolutely continuous 

with respect to 𝜇, written  

𝜈 ≪ 	𝜇, 

if 𝜈(𝐴) = 0 for every 𝐴 ∈ 𝒜 such that 𝜇(𝐴) = 0. 

If the measures are mutually continuous, they are called equivalent. 

 

Lebesgue-Radon-Nikodym Theorem [30] 

Let 𝜈 be a 𝜎-finite signed measure and 𝜇 a 𝜎-finite measure on space (𝑋,𝒜). Then there 

exist unique 𝜎-finite signed measures 𝜈F, 𝜈& such that 

𝜈 = 𝜈F + 𝜈&, 𝑤ℎ𝑒𝑟𝑒	𝜈F ≪ 	𝜇	𝑎𝑛𝑑	𝜈& ⊥ 𝜇. 
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Moreover, there exists a measurable function 𝑓 ∶ 𝑋	 ⟶ ℝ. , uniquely defined up to 𝜇-a.e. 

equivalence, such that 

𝜈F(𝐴) = C 𝑓𝑑𝜇
\

 

for every 𝐴 ∈ 𝒜, where the integral is well-defined as an extended real number. Function  

𝑓 =
𝑑𝜈
𝑑𝜇 

is called the Radon-Nikodym derivative of 𝜈 with respect to 𝜇.  
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Appendix B – Stochastic Calculus 

In this Appendix, we provide the framework, i.e. definitions, lemmas and theorems 

used in our thesis. We leave out the absolute basics, like the definition of a stochastic process 

or the Wiener process. For a complete overview of the stochastic calculus theory we refer 

the reader, for example, to the book Stochastic Differential Equations [22] written by Bernt 

Øksendal. 

 

Martingales [22] 

A filtration on (𝛺, ℱ, ℙ) is a family ℳ = {ℳ%}%R, of 𝜎-algebras ℳ% ⊂ ℱ such that 

0 ≤ 𝑠 < 𝑡	⟹ℳ& ⊂ 	ℳ% . 

A stochastic process {𝑀%}%R, on (𝛺, ℱ, ℙ) is called a martingale with respect to a filtration 

{ℳ%}%R, if 

1. 𝑀% is ℳ%-measurable for all 𝑡, 

2. 𝔼[|𝑀%|] < ∞ for all 𝑡, 

3. 𝔼[𝑀&|𝑀%] = 𝑀% for all 𝑠 ≥ 𝑡. 

 

Itô Process and the Itô’s Lemma [22]  

Let 𝑊% be an 𝑚-dimensional Wiener process under a non-specified probability measure. An 

Itô process is an 𝑛-dimensional stochastic process 𝑋% = (𝑋%', 𝑋%(, … , 𝑋%D)u on (𝛺, ℱ, ℙ) given 

by  

𝑑𝑋% = 𝑢(𝑡, 𝜔)𝑑𝑡 + 𝑣(𝑡, 𝜔)𝑑𝑊% , 

where for process 𝑢 ∶ 	ℝ	 × 	𝛺⟶ℝD satisfies  

C|𝑢(𝑠, 𝜔)|𝑑𝑠
%

,

< ∞, 0 ≤ 𝑡 ≤ 𝑇, 

and – by defining |𝑣(𝑠, 𝜔)|( = 𝑡𝑟{𝑣(𝑠, 𝜔)𝑣(𝑠, 𝜔)′}  – process 𝑣 ∶ 	ℝ	 × 	𝛺⟶ℝD×) 

satisfies 

C|𝑣(𝑠, 𝜔)|(𝑑𝑠
%

,

< ∞, 0 ≤ 𝑡 ≤ 𝑇. 

Let 𝑔(𝑡, 𝑥) be a 𝐶( map [0,∞) 	× 	ℝD ⟶ℝG. Then the process 𝑌(𝑡, 𝜔) = 𝑔(𝑡, 𝑋%) is also 

an Itô process whose component number 𝑘, 𝑌Iis given by the formula 



 89 

𝑑𝑌I =
𝜕𝑔I
𝜕𝑡

(𝑡, 𝑋)𝑑𝑡 +�
𝜕𝑔I
𝜕𝑥:

(𝑡, 𝑋)𝑑𝑋:
:

+
1
2�

𝜕(𝑔I
𝜕𝑥:𝜕𝑥S

(𝑡, 𝑋)𝑑𝑋:𝑑𝑋S
:,S

. 

Proof. We refer the reader to [22].  

∎ 

 

Multiplication Rule of the Itô’s Lemma 
If 𝑋% and 𝑌% are two stochastic processes defined as 

𝑑𝑋% = 𝑢b(𝑡, 𝜔)𝑑𝑡 + 𝑣b(𝑡, 𝜔)𝑑𝑊% , 

𝑑𝑌% = 𝑢c(𝑡, 𝜔)𝑑𝑡 + 𝑣c(𝑡, 𝜔)𝑑𝐵% , 

then 

𝑑(𝑋%𝑌%) = 𝑋%𝑑𝑌% + 𝑌%𝑑𝑋% + 𝑑𝑋%𝑑𝑌% . 

Proof. The formula can be obtained by a direct application of the Itô’s Lemma on the 

stochastic process 𝑋%𝑌%. 

∎ 

 

Quadratic Covariation of Stochastic Processes [31] 
Consider a partition Π  of the interval 〈0, 𝑡〉  as Π ∶ 0 = 𝑡, < 𝑡' < ⋯ < 𝑡D = 𝑡 . If 𝑋  is a 

stochastic process, its quadratic variation, i.e. a pathwise measurement of its variation is 

defined as 

〈𝑋〉% = lim
‖x‖→,

�n𝑋%2%& − 𝑋%2o
(

D0'

:H'

, 

where ‖Π‖ = max
';:;D0'

{𝑡:=' − 𝑡:}. Hence, if we consider another stochastic process 𝑌, the 

quadratic covariation process between 𝑋 and 𝑌 is defined as   

〈𝑋, 𝑌〉% = lim
‖x‖→,

�n𝑋%2%& − 𝑋%2on𝑌%2%& − 𝑌%2o.
D0'

:H'

 

If 𝑋 is an Itô process defined as 

𝑑𝑋% = 𝑢b(𝑡, 𝜔)𝑑𝑡 + 𝑣b(𝑡, 𝜔)𝑑𝑊% , 

their quadratic variation can be computed as 

〈𝑋〉% = 〈C𝑣b(𝑠, 𝜔)𝑑𝑊&

.

,

, C 𝑣b(𝑠, 𝜔)𝑑𝑊&

.

,

	〉% = C𝑣b((𝑠, 𝜔)𝑑〈𝑊,𝑊〉&

%

,

= C𝑣b((𝑠, 𝜔)𝑑𝑠
%

,

, 

where we used that 𝑑〈𝑊,𝑊〉% = 𝑑𝑡 (see [31]). 

Again, if 𝑌 is another Itô process – driven by another Wiener process – defined as 
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𝑑𝑌% = 𝑢c(𝑡, 𝜔)𝑑𝑡 + 𝑣c(𝑡, 𝜔)𝑑𝐵% 

then the quadratic covariation between 𝑋 and 𝑌 is given as 

〈𝑋, 𝑌〉% = 〈C𝑣b(𝑠, 𝜔)𝑑𝑊&

.

,

, C 𝑣c(𝑠, 𝜔)𝑑𝐵&

.

,

	〉% = C𝑣b(𝑠, 𝜔)𝑣c(𝑠, 𝜔)𝑑〈𝑊, 𝐵〉&

%

,

, 

or in differential form 

𝑑〈𝑋, 𝑌〉% = 𝑣b(𝑡, 𝜔)𝑣c(𝑡, 𝜔)𝑑〈𝑊, 𝐵〉% . 

Also, we can write 

𝑑𝑋%𝑑𝑌% = 𝑑〈𝑋, 𝑌〉% = 𝑣b(𝑡, 𝜔)𝑣c(𝑡, 𝜔)𝑑〈𝑊, 𝐵〉% . 

 

Some Classes of Functions and the Itô Integral [22] 

Let 𝒱 = 𝒱(𝑆, 𝑇) be the class of functions  

𝑓(𝑡, 𝜔):	[0,∞) 	×	𝛺⟶ℝ 

such that 

1) (𝑡, 𝜔) ⟶ 	𝑓(𝑡, 𝜔)  is ℬ	 × 	ℱ -measurable, where ℬ  defines a Borel 𝜎 -algebra on 

[0,∞). 

2) 𝑓(𝑡, 𝜔) is ℱ%-adapted. 

3) 𝔼 È∫ 𝑓((𝑡, 𝜔)𝑑𝑡?
7 É < ∞. 

Hence, we can define the Itô integral of a function 𝑓 ∈ 𝒱 as  

C𝑓(𝑡, 𝜔)𝑑𝑊%

?

7

, 

where 𝑊% is a 1-dimensional Wiener process. For more details regarding Itô integrals, we 

refer the reader to [22]. 

 

The previous idea can be extended into a larger class of integrands	𝑓. The second condition 

can be rewritten as 

2’) There exists an increasing family of 𝜎-algebras ℋ%; 𝑡 ≥ 0 such that 

i) 𝑊% is a martingale with respect to ℋ%, 

ii) 𝑓% is ℋ%-adapted. 

Let 𝑊% = (𝑊%
', … ,𝑊%

D)  be an 𝑛 -dimensional Wiener process and  ℱ%
(D)  be a 𝜎 -algebra 

generated by 𝑊(𝑡). The set of matrices 𝑣 = �𝑣(𝑡, 𝜔):S� ∈ ℝ)×D  where each 𝑣:S  satisfies 

conditions 1), 2’) and 3) w.r.t. a filtration ℋ = {ℋ%}%R, we denote by 𝒱ℋ)×D(𝑆, 𝑇). 

For 𝑣 ∈ 𝒱ℋ)×D(𝑆, 𝑇) we can define  
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C𝑣𝑑𝑊%

?

7

, 

which is an 𝑚 × 1  matrix, whose 𝑖 -th component is given by the following sum of 1-

dimensional Itô integrals 

�C𝑣:S(𝑡, 𝜔)𝑑𝑊%
S

?

7

D

SH'

. 

We also introduce another class of functions. First, we extend the previous condition 3) by 

weakening it to 

3’) 𝑃 ´𝔼 È∫ 𝑓((𝑡, 𝜔)𝑑𝑡?
7 É < ∞µ = 1. 

Hence, by 𝒲ℋ(𝑆, 𝑇) we denote the class of functions 𝑓(𝑡, 𝜔) satisfying 1), 2’) and 3’). 

Similarly to the previous class, in matrix case we use  𝒲ℋ
)×D(𝑆, 𝑇). 

 

Martingale Representation Theorem [22] 

Let 𝑊% = (𝑊%
', … ,𝑊%

D)  be an 𝑛 -dimensional Wiener process. Suppose 𝑀%  is an ℱ%
(D) -

martingale under the measure ℙ and that 𝑀% ∈ 𝐿((ℙ) for all 𝑡 ≥ 0. Then there exists a 

unique stochastic process 𝑔(𝑠, 𝜔) such that 𝑔 ∈ 𝒱D(0, 𝑡) for all 𝑡 ≥ 0 and 

𝑀%(𝜔) = 𝔼[𝑀,] + C𝑔(𝑠, 𝜔)𝑑𝑊&

%

,

, ∀𝑡 ≥ 0. 

Proof. We refer the reader to [22].  

∎ 

 

Girsanov’s Theorem I [22]  

Let 𝑌(𝑡) ∈ ℝD be an Itô process of the form  

𝑑	𝑌(𝑡) = 𝑎(𝑡, 𝜔)𝑑𝑡 + 𝑑𝑊% , 𝑡 ≤ 𝑇, 𝑌(0) = 0, 

where 𝑇 ≤ ∞ is a given constant and  𝑊% is an 𝑛-dimensional Wiener process. Put 

𝑀% = 𝑒𝑥𝑝¥−C𝑎(𝑠, 𝜔)𝑑𝑊&

%

,

−
1
2C𝑎

((𝑠, 𝜔)
%

,

	𝑑𝑠¦ , 𝑡 ≤ 𝑇. 

Assume that 𝑎(𝑠, 𝜔) satisfies the Novikov’s condition 

𝔼 ô𝑒𝑥𝑝¥
1
2C𝑎

((𝑠, 𝜔)𝑑𝑠
%

,

¦õ < ∞, 
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where 𝔼 = 𝔼ℙ is the expectation under the measure ℙ. Define the measure ℚ on ´𝛺, ℱ?
(D)µ 

by 

𝑀? =
𝑑ℚ	
𝑑ℙ . 

Then 𝑌(𝑡) is an 𝑛-dimensional Wiener process under the measure ℚ, for 𝑡 ≤ 𝑇. 

Proof. We refer the reader to [22].  

∎ 

 

Girsanov’s Theorem II [22] 

Let 𝑌(𝑡) ∈ ℝD be an Itô process of the form  

𝑑𝑌(𝑡) = 𝛽(𝑡, 𝜔)𝑑𝑡 + 𝜃(𝑡, 𝜔)𝑑𝑊% , 𝑡 ≤ 𝑇,	 

where 𝑊% ∈ ℝ) ,  𝛽(𝑡, 𝜔) ∈ ℝD  and 𝜃(𝑡, 𝜔) ∈ ℝD×) . Suppose there exists a process 

𝑢(𝑡, 𝜔) ∈𝒲ℋ
) and 𝛼(𝑡, 𝜔) ∈𝒲ℋ

D  such that  

𝜃(𝑡, 𝜔)	𝑢(𝑡, 𝜔) = 	𝛽(𝑡, 𝜔) − 𝛼(𝑡, 𝜔) 

and assume that 𝑢(𝑡, 𝜔) satisfies the Novikov’s condition  

𝔼 ô𝑒𝑥𝑝¥
1
2C𝑢

((𝑠, 𝜔)𝑑𝑠
%

,

¦õ < ∞. 

Put 

𝑀% = 𝑒𝑥𝑝¥−C𝑢(𝑠, 𝜔)𝑑𝑊&

%

,

−
1
2C𝑢

((𝑠, 𝜔)
%

,

	𝑑𝑠¦ , 𝑡 ≤ 𝑇. 

and 

𝑑ℚ = 𝑀?𝑑ℙ  on ´𝛺, ℱ?
(D)µ. 

Then  

𝑊%, = C𝑢(𝑠, 𝜔)𝑑𝑠
%

,

+𝑊% , 𝑡 ≤ 𝑇 

is a Wiener process under the measure ℚ and in terms of  𝑊%,  the process 𝑌(𝑡) has the 

stochastic integral representation  

𝑑𝑌(𝑡) = 𝛼(𝑡, 𝜔)𝑑𝑡 + 𝜃(𝑡, 𝜔)𝑑𝑊%, . 

Proof. We refer the reader to [22].  

∎ 
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Appendix C – Principal Components Analysis (PCA) 

In this Appendix we follow the steps of Piterbarg & Andersen presented in Interest 

Rate Modeling: Volume I [7].  

 

Consider a 𝑝-dimensional random variable 𝑍	~	𝑁(0, Σ), where Σ has full rank, i.e. is 

positive definite. Let us define the approximation of 𝑍 as  

𝑍 ≈ 𝐷𝑋, 

where 𝑋 is an 𝑟-dimensional vector of independent normal random variables, 𝑟 ≤ 𝑝 and 𝐷 

is a (𝑝	 × 	𝑟)-dimensional matrix. By an optimal approximation, we mean 𝐿( closeness of 

the covariance matrix 𝐷𝐷*  to Σ . Hence, we define the optimal 𝐷∗  as the matrix that 

minimizes  

𝑓(𝐷) = 𝑡𝑟n(Σ− 𝐷𝐷*)(Σ− 𝐷𝐷*)*o, 

where 𝑡𝑟(𝐴) is the trace of a matrix 𝐴.  

It can be shown [7], that 

𝐷∗ = 𝐸.�Λ. , 

where Λ. is an 𝑟	 × 	𝑟 diagonal matrix of the 𝑟 largest eigenvalues of Σ, and 𝐸. is a 𝑝 × 𝑟 

matrix of 𝑝-dimensional eigenvectors, each corresponding to an eigenvalue in Λ.. 

Now, we can write the approximation of 𝑍 as 

𝑍 ≈ 𝑍@ ≔ 𝐸.�Λ.𝑋 = �𝜆'𝑒'𝑋' + �𝜆(𝑒(𝑋( +⋯+�𝜆.𝑒.𝑋. , 

where 𝑒:  is the 𝑖 -th column of 𝐸.  and 𝜆:  is the 𝑖 -th among the eigenvalues sorted in 

decreasing order of magnitude. The vector 𝑒: is called the 𝑖-th principal component of 𝑍, and 

the random variable �𝜆:𝑋: the 𝑖-th principal factor.  

 

Since 𝑡𝑟n𝐶𝑜𝑣(𝑍, 𝑍)o = ∑ 𝜆:
G
:H'  and 𝑡𝑟 ´𝐶𝑜𝑣n𝑍@, 𝑍@oµ = ∑ 𝜆:.

:H' , by fraction  

∑ 𝜆:.
:H'

∑ 𝜆:
G
:H'

 

we can explain the loss of the total variance.  
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Appendix D – Deriving the Equation from Section 6.1  

We derive the equality 

𝔼%\[𝟏b]N] =
1
2 +

1
𝜋C

𝐼𝑚 ´𝑒0:+N𝑀b(𝑖𝑢)µ
𝑢 𝑑𝑢

O

,

 

introduced in Section 6.1, using the following properties: 

Im(𝑧) =
𝑧 − 𝑧 ̅
2𝑖  

𝑀b(𝑧) = 𝔼[𝑒gb] 

𝑀b(𝑧) =*********** 𝑀b(𝑧 ̅) 

C
𝑠𝑖𝑛(𝑥)
𝑥 𝑑𝑥

O

,

=
𝜋
2. 

 

The equality follows from 

1
𝜋C

Im´𝑒0:+N𝑀b(𝑖𝑢)µ
𝑢 𝑑𝑢

O

,

=
1
𝜋C

𝑒0:+N𝑀b(𝑖𝑢) − 𝑒:+N𝑀b(−𝑖𝑢)
𝑢 𝑑𝑢

O

,

=
1
𝜋C

𝑒0:+N ∫ 𝑒:+M𝑓(𝑦)𝑑𝑦=O
0O − 𝑒:+N ∫ 𝑒0:+M𝑓(𝑦)𝑑𝑦=O

0O
2𝑖𝑢 𝑑𝑢

O

,

=
1
𝜋 C C

𝑒0:+(N0M) − 𝑒:+(N0M)

2𝑖𝑢

O

,

=O

0O

𝑑𝑢	𝑓(𝑦)𝑑𝑦

=
1
𝜋 C C

sinn𝑢(𝑥 − 𝑦)o
𝑢

O

,

=O

0O

𝑑𝑢	𝑓(𝑦)𝑑𝑦 =
1
2 C sign(𝑥 − 𝑦)𝑓(𝑦)𝑑𝑦

=O

0O

=
1
2¥C 𝑓(𝑦)𝑑𝑦

=O

N

− C𝑓(𝑦)𝑑𝑦
N

0O

¦

=
1
2¨C 𝑓(𝑦)𝑑𝑦

=O

N

− ¥ C 𝑓(𝑦)𝑑𝑦
O

0O

−C 𝑓(𝑦)𝑑𝑦
=O

N

¦© = C 𝑓(𝑦)𝑑𝑦
=O

N

−
1
2

= 𝔼%\[𝟏b]N] −
1
2. 
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Appendix E – Results from Section 6.3   

Recall differential equations 
𝑑𝐴
𝑑𝜏 = 𝜅𝜃𝐵, 

𝑑𝐵
𝑑𝜏 = 𝑏(𝐵( + 𝑏'𝐵 + 𝑏,, 

where we considered the decomposition of 𝐵 into a particular and a general solution, written 

𝐵 = 𝑌' + 𝑌(. In Remark 4, we found the particular solution 𝑌' and transformed the second 

differential equation into an integrable linear differential equation 
𝑑𝑢
𝑑𝜏 + 𝑑Q = −𝑏(, 

where 𝑢 = 𝑌(0'. Since both sides can be integrated, the solution for function 𝑢 is 

𝑢 = 𝑒/.@𝑐 −
𝑏(
𝑑Q
. 

Hence,  

𝑌( =
1

𝑒/.@𝑐 − 𝑏(
𝑑Q

, 

and the constant 𝑐 can be found by using the relation 𝑌((0) = 𝐵(0) − 𝑌'. Since the value of 

𝐵 at time 0 is 𝐵, and for 𝑌' we chose the particular solution with the “+” sign, constant 𝑐 

must in fact satisfy 𝑌((0) = 𝐵, − 𝐵=. Therefore, 

𝑌( =
1

𝑒/.@ _ 2𝑏(
2𝑏(𝐵, + 𝑏' − 𝑑h

+ 𝑏(
𝑑Q
` − 𝑏(

𝑑Q

. 

By rearranging the fraction we get the general solution 𝑌( expressed as 

𝑌( =
𝑑Q
𝑏(

ℎ𝑒/.@

1 − ℎ𝑒/.@, 

where  

ℎ =
2𝑏(𝐵, + 𝑏' − 𝑑h
2𝑏(𝐵, + 𝑏' + 𝑑h

. 

We have managed to find both the particular and the general solution, so we can derive 𝐵(𝜏) 

as 

𝐵(𝜏) = 𝑌' + 𝑌( = 𝐵= +
𝑑Q
𝑏(

ℎ𝑒/.@

1 − ℎ𝑒/.@ =
−𝑏' + 𝑑Q
2𝑏(

+
𝑑Q
𝑏(

ℎ𝑒/.@

1 − ℎ𝑒/.@, 

from which we can get to the final form 
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𝐵(𝜏) = 𝐵, +
(−2𝑏(𝐵, − 𝑏' + 𝑑h)

2𝑏(
]
1 − 𝑒/.@

1 − ℎ𝑒/.@^. 

The definition of function 𝐴(𝜏) can be obtained by a simple integration, such that 

𝐴(𝜏) = 𝐴, + 𝜅𝜃C𝐵(𝑠)𝑑𝑠
@

,

= 𝐴, + 𝜅𝜃𝐵,𝜏 +
(−2𝑏(𝐵, − 𝑏' + 𝑑h)

2𝑏(
C
1 − 𝑒/.&

1 − ℎ𝑒/.& 𝑑𝑠
@

,

, 

where  

C
1 − 𝑒/.&

1 − ℎ𝑒/.& 𝑑𝑠
@

,

= 𝜏 − C
1 − ℎ
1 − ℎ𝑥 𝑑𝑥

|3.4

'

= 𝜏 −
1
𝑑Q
_
ℎ − 1
ℎ ` ln ]

1 − ℎ𝑒/.@

1 − ℎ ^. 

Therefore, the final form of 𝐴(𝜏) is given as 

𝐴(𝜏) = 𝐴, +
𝜅𝜃
2𝑏(

�(−𝑏' + 𝑑Q)𝜏 − 2ln ]
1 − ℎ𝑒/.@

1 − ℎ ^�. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


