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Abstract

The properties of time series are typically analyzed in the time domain, although the
same information may be effectively obtained from frequency domain approach, i.e.
spectral analysis. These two methods are not mutually exclusive. Any stationary pro-
cess has both a time domain and a frequency domain representation. For some proper-
ties the time domain approach is more suitable, for another one the frequency domain
suits more. In this thesis we focus our attention on the frequency domain approach and
try to introduce various tools of the spectral analysis.

Keywords: population spectrum • cross-spectral analysis • dynamic correlation •
cohesion
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Abstrakt

Vlastnosti ekonomických časových radov sa zvyčajne popisujú ako premenné závislé od
času. Hovoríme o ich časovej štruktúre. Tie isté vlastnosti ekonomických radov sa však
dajú efektívne popísat’ aj v závislosti od frekvencie, kedy hovoríme o frekvenčnej štruk-
túre časových radov. Analýza časových radov pomocou frekvencií je predmetom skú-
mania spektrálnej analýzy. Vyššie spomenuté reprezentácie sa navzájom nevylučujú,
každý časový rad je možné popísat’ pomocou oboch metód. Avšak niektoré vlastnosti
sú jednoduchšie popisatel’né pomocou spektrálnej analýzy. V tejto práci predstavujeme
čitatel’ovi spektrálnu a krížovú spektrálnu analýzu, ich nástroje ale aj praktické použitie
pre štúdium ekonomických javov.

Kl’účové slová: populačné spektrum • krížová spektrálna analýza • dynamická
korelácia • kohézia

iv



Contents

Contents 3

List of Tables 4

List of Figures 6

1 Introduction 7

2 Aims of the Thesis 10

3 Spectral Techniques and their Applications in Economics 12

4 Classical Spectral Analysis 16
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 The Autocovariance-Generating Function . . . . . . . . . . . . . . . . . . 19
4.3 The Population Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Properties of Population Spectrum . . . . . . . . . . . . . . . . . 21
4.3.2 Interpretation of the Population Spectrum . . . . . . . . . . . . . 21

4.4 The Sample Periodogram . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Estimation of the Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5.1 Non-parametric Estimates of the Spectrum . . . . . . . . . . . . . 23
4.5.2 Parametric Estimates of the Spectrum . . . . . . . . . . . . . . . 26

5 Cross-Spectral Analysis 29
5.1 The Population Spectrum for Vector Processes . . . . . . . . . . . . . . . 29

5.1.1 Estimation of the Multivariate Spectrum . . . . . . . . . . . . . . 31
5.2 The Cross Spectrum and Its Components . . . . . . . . . . . . . . . . . . 33
5.3 Coherence, Coherency, Phase and Gain . . . . . . . . . . . . . . . . . . . 34
5.4 Dynamic Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



Contents

5.5 Cohesion and Cross-Cohesion . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Autocovariance-Generating Function 40
6.1 White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Moving Average Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.1 The First-Order Moving Average Process . . . . . . . . . . . . . . 41
6.2.2 The qth-Order and Infinite-Order Moving Average Process . . . . 42

6.3 Autoregressive Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Mixed Autoregressive Moving Average Processes . . . . . . . . . . . . . 44
6.5 Vector Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.5.1 Vector White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.5.2 Vector Moving Average Process . . . . . . . . . . . . . . . . . . . 45
6.5.3 Vector Autoregression . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Population Spectrum 47
7.1 White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Moving Average Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2.1 The First-Order Moving Average Process . . . . . . . . . . . . . . 48
7.2.2 The qth-Order and Infinity-Order Moving Average Process . . . . 49

7.3 Autoregressive Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3.1 The First-Order Autoregressive Process . . . . . . . . . . . . . . . 50
7.3.2 The pth-Order Autoregressive Process . . . . . . . . . . . . . . . 51

7.4 Mixed Autoregressive Moving Average Processes . . . . . . . . . . . . . 52
7.5 Vector Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.5.1 Vector White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5.2 Vector Moving Average Process . . . . . . . . . . . . . . . . . . . 53
7.5.3 Vector Autoregression . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Monte Carlo Analysis of Spectrum Estimation 55
8.1 Description of the Simulated Processes . . . . . . . . . . . . . . . . . . . 56
8.2 Monte Carlo Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.3 Monte Carlo Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9 China in the World Economy: Dynamic Correlation Analysis 73
9.1 Determinants of Business Cycle Synchronization . . . . . . . . . . . . . . 75

2



Contents

9.2 Stylized Facts for the Business Cycle in China and Selected Countries . . 77
9.3 Cohesion Analysis and Chinese Effect on World Business Cycles . . . . . 80
9.4 Exposure to a Globalization Shock and Business Cycles of OECD Countries 82
9.5 Policy Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10 Conclusions 88

Mathematical Symbols Used in the Text 90

Resumé 92

Bibliography 94

3



List of Tables

8.1 Mean squared error of estimated spectrum of AR(5) process estimated
by Blackman window for different value of bandwidth. . . . . . . . . . . 63

8.2 Monte Carlo results for 50, 500, 1000 simulations and 1000 observations
- Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3 Monte Carlo results for 50, 500, 1000 simulations and 100 observations
- Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.4 Monte Carlo results for 50, 500, 1000 simulations and 100 observations
- Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.1 Estimation results for static correlation, Band-Pass filter, and average
dynamic correlation over selected frequency intervals. . . . . . . . . . . 86

4



List of Figures

4.1 The decomposition of two time series into their components. . . . . . . . 17
4.2 Graphical representation of the windows. . . . . . . . . . . . . . . . . . 25

5.1 Dynamic correlation between εt and εt−1. . . . . . . . . . . . . . . . . . 37

7.1 Population spectrum for white noise process. . . . . . . . . . . . . . . . . 48
7.2 Example of population spectrum for MA(1) process. . . . . . . . . . . . 49
7.3 Example of population spectrum for AR(1) process. . . . . . . . . . . . . 51
7.4 Example of population spectrum for AR(2) process (φ1 = 0.7 and φ2 =

−0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1 Graphical representation of theoretical population spectrum for simu-
lated processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.2 Theoretical population spectrum of AR(5) process compared with spec-
trum estimated by Bartlett window and by Yule-Walker method with dif-
ferent value of p for 50 simulations and 1000 observations. . . . . . . . . 60

8.3 Theoretical population spectrum of model 10 compared with spectrum
estimated by periodogram for 50 and 1000 simulations. . . . . . . . . . 62

8.4 Theoretical population spectrum of AR(5) process compared with spec-
trum estimated by Blackman window for different number of simulations. 70

8.5 Theoretical population spectrum of AR(1) process (φ = 0.9) compared
with spectrum estimated by Bartlett window for different number of sim-
ulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9.1 Dynamic correlations between China and selected countries, 1992-2006. 79
9.2 Aggregate correlations of business cycles in China and selected countries,

1992-2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.3 Cohesion of business cycles in selected regions, 1992-2006. . . . . . . . 81
9.4 Estimation results by frequencies: Bilateral OECD bilateral trade/GDP. . 83

5



List of Figures

9.5 Estimation results by frequencies, determinants of business cycle of OECD
countries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6



1
Introduction

The fluctuations of aggregate output and especially the development of business cycles
belong to the traditional arrears of economic research. Its importance was further
increased by the recent developments. The financial crisis showed that despite a variety
of econometric methods used for the analysis of economic development, we still do not
know much about the determinants of business cycles.

The financial crisis underlined the inter-dependence of business cycles in the world
economy. In particular, the financial crisis started with a crisis of mortgage market and
Lehman collapse in the USA in 2008. Both issues were highly specific to the US financial
developments, but economic and financial integration supported the transmission of
negative shocks to other countries. Eventually, it seems that the European economies,
including the euro area and by this also inevitably the Slovak economy, may be affected
by the financial crisis even harder than the USA, the origin of the shock.

The interdependence of the international business cycles represents the main re-
search topic of presented thesis. It does not address the financial crisis directly, because
it broke out only in the later part of our research. It is also highly questionable whether
we can already draw at least preliminary conclusions from the development of the
financial crisis, which is not yet completed. This issue is left to further research. Nev-
ertheless, the thesis describes the importance of interdependence of business cycles
already in the period before the financial crisis. It shows that countries tend to follow
some common developments which are related to economic and financial integration.
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Introduction

Moreover, the thesis analyze the effects of globalization on world’s business cycles.
Already before the financial crisis China has become an important player in the world
economy. It was integrated deeply with other countries through intensive trade and
financial links. Despite of this, China has kept a highly distinct pattern of economic
fluctuations. This contributed to the emergence of China as the most important growing
market during the financial crisis.

This thesis reviews different spectral techniques used for the analysis of economic
time series. Its main part presents of classical spectral analysis and its bivariate ex-
tension, cross-spectral analysis. Although this part is based on previous literature, it
presents a unique framework for spectral analysis which is missing in the literature.

My first application of the spectral analysis was included already in my master thesis
([9]) where I used the concept of dynamic correlation, cohesion and cross-cohesion to
assess the degree of synchronization of the CEECs business cycle with the euro area.
This was a starting point of my research in this area, which includes also international
partners. I would like to mention especially my supervisor Jarko Fidrmuc, who was
affiliated during the work on my thesis at the University of Munich and more recently
at the Zeppelin University in Friedrichshafen, Germany. In June 2007 we attend the
Workshop on Integration of Russia and China into the World Economy in Helsinki,
Finland. As a result, we started a long-term co-operation with Iikka Korhonen, Bank
of Finland. In our paper [10], which was published as BOFIT Discussion Paper1 in
2008, we use the concept of dynamic correlation to illustrate the impact of China and
globalizations on business cycles in the developed OECD countries. These research
results were presented at numerous international conferences including e.g. CESifo
Economic Studies Conference on Measuring Economic Integration 2011 in Munich,
Germany or Annual Meeting of the Austrian Economic Association 2008 in Vienna,
Austria . Then we provided more details on our results also by the cohesion analysis in
[11], which was a result of Infer workshop in January 2008 in Brussels. While these
analyses were analyzing fluctuations of gross domestic product of examined countries,
in paper [12] we try to analyse the problem from another side. We use the stock prices
of examined countries and calculate the dynamic correlation for these high frequency
data. We presented this paper at the CEPR conference at the Hungarian National Bank

1A revised version of this paper is currently resubmitted for a publication at the CESifo Economic
Studies.
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Introduction

in 2008.
The spectral analysis was initially used in economics already in the 1960s. Clive

Granger, a later Nobel Prize laureate, belonged to authors paving the road for its appli-
cation in business cycle research. Despite of this, the spectral analysis is only seldom
used in research. For example, there are only few standard reference sources in this
area. The best reference includes the Hamilton’s Time Series Analysis [35] where he
clearly describes the one-dimensional and multi-dimensional spectral analysis. How-
ever, this textbook does not discuss some more recent spectral methods including es-
pecially dynamic correlations and cohesion. In many other publications, however, the
spectral analysis is mentioned only briefly (Green, [33]). Therefore, we include into
dissertation a chapter that describes the concept of univariate and multivariate spectral
analysis and theoretical foundations faced with the examples which became the basis
for further investigation of Monte Carlo simulations.

The next parts of the thesis are organized as follows. In the second chapter we
present the main topic of the thesis in a more detail. Chapter 3 offers a brief review of
literature on spectral techniques applied in economics. Chapter 4 provides a review of
the classical spectral analysis. It defines the population spectrum, sample periodogram
and also describes the methods for the estimation of the spectrum. The cross-spectral
analysis is described in the chapter 5. It is an extension of classical spectral analysis
to the simultaneous analysis of two time series. While classical spectral analysis allows
to detect the movements inside the time series, cross-spectral analysis determine the
relationship between two time series. In chapter 6 and 7 we derive the autocovariance-
generating function and the population spectrum for selected AR, MA and ARMA mod-
els generally and demonstrate the results on some examples. We present Monte Carlo
analysis to detect which described method for spectrum estimation is more precise. The
main results of analysis are introduced in chapter 8. In chapter 9 we apply the concept
of cross-spectral analysis to China and OECD countries. Finally, the conclusions in the
chapter 10 summarize the main results of the thesis.

9



2
Aims of the Thesis

The main topic of this thesis is the frequency domain approach for business cycle anal-
ysis. Spectral analysis has a large tradition in various scientific area. Despite of this,
there are only few applications of spectral analysis in economics although the first con-
tribution to this topic were done by Clive Granger a later laureate of the Nobel Prize in
economics. A possible reason may be the difficulty to derive the policy interpretations.
Moreover, the methods of spectral analysis are not built in the standard broadly used
software. We are trying to fill this gap in the literature especially in the following areas:

• Theoretical foundation of classical spectral analysis: We describe the classical
spectral analysis and introduce main idea of this method. Thesis introduces terms
like spectrum, periodogram and describes the method for the spectrum estima-
tion.

• Theoretical foundation of classical cross-spectral analysis: We introduce the
cross-spectral analysis and terms related to this method, like a dynamic correla-
tion, cohesion and cross-cohesion.

• Presentation of population spectrum for standard random processes: We de-
rive the autocovariance-generating function and theoretical population spectrum
for selected autoregressive processes, moving average and ARMA processes and
demonstrate theoretical results.

10



Aims of the Thesis

• Application of Monte Carlo techniques: We employ Monte Carlo simulations
for various processes to analyze which method for spectrum estimation is more
precise and more robust. As the usual criterion of the method’s quality and preci-
sion, we use the mean squared error (MSE) of the estimator, which should achieve
lowest values for preferred method of estimation.

• Application of spectral analysis to business cycles: Dynamic correlation anal-
ysis: We apply cross-spectral analysis (dynamic correlation and cohesion) to illus-
trate the impact of China and globalizations on business cycles in the developed
OECD countries.

11



3
Spectral Techniques and their
Applications in Economics

Spectral analysis has been primary developed and used especially in scientific fields
such as engineering, digital signal processing, geophysics, oceanography, atmospheric
science, astronomy, and meteorology.

Allen et al. in [2] state that spectral analysis is motivated by the observation that
the most regular, and hence predictable, behavior of a time series is to be periodic. This
approach then proceeds to determine the periodic components embedded in the time
series by computing the associated periods, amplitudes, and phases.

While the spectral analysis, provided a description of the main oscillatory compo-
nents of time series, it has not been developed primarily for the economic purposes.
Nowadays it is highly attractive also for applied economic inquiries such as identifying
trend of economic time series, analyzing the business cycles, seasonalities and low-
frequency components, analyzing the co-movements among series and the study of
international business cycles.

The first application of spectral analysis in the study of macroeconomic time series
dates from the middle 1960s. This process of expansion was motivated by the require-
ment of a more insightful knowledge of the series structure and was supported by the
contemporaneous progress in spectral computation. Nerlove in [67], as the first, used
the frequency domain approach in the problem of seasonal adjustment procedures.

12



Spectral Techniques and their Applications in Economics

Two publications ([30] and [31]) written by Clive Granger, who was awarded the No-
bel Memorial Prize in Economic Science in 2003, proved extremely influential in the
adoption of spectral analysis as a new method. Granger, as the first, used also the cross-
spectral techniques in his paper from 1969 ([32]). In the following years, the range of
applications of spectral analysis were extended to the study of the other econometric
issues.

While analysis in time dimension is a standard tool of business cycle analysis, the
application of spectral analysis may introduce new and more robust insights. Statistical
filters, especially the Hodrick-Prescott filter, may generate artificial cycles (see Harvey
and Jaerger, [39]). Moreover, the Hodrick-Prescott filter suffers from an end-point bias.
The band-pass filter, which is recommended in the more recent literature, results in a
loss of observation at the beginning and ending of the time series. By contrast, first
differences are available for the whole sample at the same quality, but they include all
frequencies.

The application of proper spectral method can enhance the comprehension of the
structure and cyclical behaviour of the series in different time scale without the end-
point bias or loss of observations therefore the issue of analyzing the business cycle is
the most frequent object of spectral tools. The spectral analysis may provide a solution
to several of caveats of standard business cycle analysis. As an example, Owens and
Sarte examines in [70] whether the diffusion indexes, for which they estimate the
power spectra, can be tied to the business cycle. Also Pollock in [74] argues that a clear
understanding of the business cycle can be achieved only in the light of its spectral
analysis. Poměnková and Maršálek in their papers ([62], [63] and [64]) inquire the
structure and the nature of the cyclical behavior of economic growth cycle in Czech
Republic using the spectral analysis. They compare the obtained results with another
economic studies and with the results of time domain analysis. Their analysis proves
that the frequency domain provides a deeper insight into the structure and the cyclical
behavior of time series in different time scales. The time domain methods are not
sufficient because they do not reveal the existence of nested cycles.

A various spectral techniques are also used for studying the international business
cycles. A’Hearn and Woitek ([1]) investigate national and international business cycles
in the late 19th century. Hughes-Hallett and Richter ([44] and [45]) use the spectral
approach to analyse the business cycle of European emerging countries. They apply
this method to answer the question, if there is an emerging European business cycle,

13



Spectral Techniques and their Applications in Economics

and how well have existing and candidate countries converged at different cycles and
different periods of time? Poměnková and Kapounek ([51]) focus on the business cycles
development of Czech and Slovak economies using frequency approach. Following the
results which identify different waves with different periods in the same business cycle
they argues that a common stabilization macroeconomic policy for both countries is
not efficient. Baxter and King ([7]) focus on isolating business-cycle fluctuations in
economic time series, defined as cycle in the data between specified frequency bands.

All another interesting economic topics, unexplained within time domain approach,
have found some answers within the frequency domain econometric framework. For
example, Wang in [82] proposes the frequency domain approach to measure the per-
sistence in economic time series. Iacobucci in her paper [46] shows how cross-spectral
analysis and filtering can be used to find correlation between unemployment and infla-
tion in USA (i.e. the Phillips curve) in some specific frequency bands, even if it does
not appear in raw data. The issue of identifying the trend-cycle component from an
economic time series is discussed in the paper [41] from Higo and Nakada. Atesoglu
and Vilasuso in [6] employ the spectral techniques to determine the relationship be-
tween real export growth and real output growth in the United States across different
frequency bands. They reveal significant, positive relationship between long-run fre-
quency components.

Croux with several coauthors used the spectral techniques, especially dynamic cor-
relation and cohesion, to reveal the relations between time series which are unknown
in time domain approach. Croux et al. in [15] first discussed the measure of dynamic
correlation which can be used as a measure of comovement of two time series. This
paper also proposes a measure of dynamic comovement between more than two time
series, called cohesion and illustrates these new indeces of comovement on empirical
example. Croux et al. adopt the concept of dynamic correlation and cohesion in [16]
to detect whether European Union can be treated as single market. Moreover Croux
et al. apply the spectral approach for Granger-causality tests. In [17] they propose a
new testing procedure for the Pierce spectral Granger causality measure and then ap-
ply this methodology in the context of the predictive value of the European production
expectation surveys.

Also Bátorová in [9] use the concept of dynamic correlation, cohesion and cross-
cohesion to assess the degree of synchronization of the CEECs business cycle with the
euro area as one of two applied approaches. Wozniak and Parzen in [71] also ob-

14



Spectral Techniques and their Applications in Economics

serve the relationship between euro area and new member state using the coherence.
Bátorová, Fidrmuc and Korhonen ([10], [11] and [12]) apply the concept of cross-
spectral analysis to detect how much influence China has on business cycles in the
developed OECD countries.

Spectral tools are very attractive not only for macroeconomic inquiries but also for
financial applications. For instance, they are applied in order to evaluate security prices,
especially prices of derivative securities. Mario, for example, used spectral methods for
computing the value of double barrier options ([60]) or for computing the value of
European call options ([61]).
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4
Classical Spectral Analysis

This chapter introduces a base terminology of classical spectral analysis. More detailed
discussion of spectral analysis are provided by Fuller ([28]), Harvey ([38]), Hamilton
([35]), Chatfield ([14]), Hatanaka ([40]) and others.

4.1 Introduction

A time series, {Yt}∞t=−∞, is the collection of observations indexed by the date of each
observation. Its properties are generally analyzed in the time domain representation. It
means, that the value of the variable Yt at the date t is presented in the following form

Yt = µ+
∞∑
j=0

ψjεt−j,

where {εt}∞t=−∞ represents a sequence of innovations and µ is the mean of Yt.
Also dynamical properties of economic time series are typically inquires in the time

domain. However, information about dynamics of time series obtained from time do-
main analysis could be effectively supplemented by frequency domain approach, i.e.
spectral analysis.

Spectral analysis is concerned with exploration of cyclical patterns of data and its
main purpose is to decompose the original series into an infinite sum of periodic func-
tions, each having a different frequency ω ranging between 0 and π. This fundamental
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of the spectral analysis is captured in spectral representation theorem which states that
any covariance-stationarity process {Yt}∞t=−∞ can be expressed as

Yt = µ+

π∫
0

α(ω). cos(ωt)dω +

π∫
0

β(ω). sin(ωt)dω, (4.1)

where each frequency ω corresponds to a unique time horizon T, such T = 2π/ω, and
weights α(ω) and β(ω) are random variables with zero mean. It means that the process
Yt is periodic function with frequency ω or with period T.

4.1.1 Illustrative Example

The underlying intuition of the spectral analysis for two simulated processes is illus-
trated in figure 4.1. Both series have been simulated over 120 months ∼ 10 years and
they are formed by three components of different frequencies.

Figure 4.1: The decomposition of two time series into their components.

The first plot represents high frequency components which correspond to the short-
run time horizon. The second one illustrates the medium frequency components corre-
sponding to the business cycle time horizon and the components in the low frequencies
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corresponding to the long-run time horizon are presented in the third plot. The sum of
these components creates a final time series illustrated in the last plot of the figure.

All three time series are constructed according to spectral representation theo-
rem (4.1). We assume that one unit of time is month. The time series illustrated short-
run time horizon were constructed with the frequency ω = π/6 which corresponds to
the period T = 2π/(π/6) = 12 months ∼ 1 year. In contrast, long-run time series
were created with the frequency ω = π/54, corresponds to the period T = 2π/(π/54)

= 108 months ∼ 9 years. And time series representing business cycle horizon were
constructed with frequency ω = π/24 which corresponds to the period T = 2π/(π/24)

= 48 months ∼ 4 years. In reality, a time series are composed of an infinite sum of such
components, which can be isolated through the spectral analysis.
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4.2 The Autocovariance-Generating Function

Let {Yt}∞t=−∞ define a covariance-stationary process with mean E(Yt) = µ and with the
sequence of autocovariances {γj}∞j=−∞, where jth autocovariance is defined as

γj = E(Yt − µ)(Yt−j − µ).

If the sequence of autocovariances is absolutely summable1, then autocovariance-generating
function for a time series Yt is defined as

gY (z) =
∞∑

j=−∞

γjz
j, (4.2)

where its argument (z) is a complex scalar. Thus, the autocovariance-generating func-
tion is defined like a sum of jth autocovariance multiplied by z raised to the jth power
over all possible values of j.

Of a particular interest as an argument for the autocovariance-generating function
is z represented by

z = cos(ω)− i. sin(ω) = e−iω,

where i is a complex unit and ω is a real number. Then the autocovariance-generating
function for a time series Yt can be rewritten as

gY (e−iω) =
∞∑

j=−∞

γje
−iωj, (4.3)

The construction of the autocovariance-generating function for various processes is
described in Appendix 6.

1A sequence of numbers {γj}∞j=0 is absolutely summable, if it satisfies
∑∞
j=0 |γj | <∞.
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4.3 The Population Spectrum

If the autocovariance-generating function defined in (4.2) is evaluated at z = e−iω

and divided by 2π, we obtain a formula of the population spectrum or spectral density
function of Y :

sY (ω) =
1

2π
gY (e−iω) =

1

2π

∞∑
j=−∞

γje
−iωj. (4.4)

It is clear that the population spectrum is a function of ω. Therefore population spec-
trum sY (ω) of a time series process Yt with the set of autocovariances {γj}∞j=−∞ can be
computed at any value of ω.

The following facts can be combined to simplify the population spectrum:

• Symmetry of autocovariances: γj = γ−j.

• DeMoivre’s theorem: e−iωj = cos(ωj)−i. sin(ωj).One consequence of this theorem
is an equation: eiωj + e−iωj = 2 cos(ωj).

• Trigonometry results: cos(0) = 1, cos(π) = 0, sin(0) = 0, sin(π) = 1.

• Symmetries of sin and cos functions: cos(−ω) = cos(ω), sin(−ω) = − sin(ω).

Following the relations above, spectrum defined in (4.4) simplifies to

sY (ω) =
1

2π

{
γ0 + 2

∞∑
j=1

γj cos(ωj)

}
ω ∈ [0, π]. (4.5)

Thus, if the sequence of autocovariances {γj}∞j=−∞ is known, the value for the popula-
tion spectrum sY (ω) is obtained from (4.4) or (4.5). The opposite is also true. If the
spectrum is known for all ω from [0, π], the jth autocovariance γj for any given j is
calculated from

γj =

π∫
−π

sY (ω)eiωjdω (4.6)

or equivalently from

γj =

π∫
−π

sY (ω) cos(ωj)dω. (4.7)

This means that the population spectrum and the sequence of autocovariances contain
the same information.
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4.3.1 Properties of Population Spectrum

The population spectrum is defined according to the expression (4.5). From this ex-
pression and from the properties of cosine function (symmetry around 0 and periodicity
with the period 2π) implies the following properties of the population spectrum sY (ω):

• Population spectrum is strictly real-valued, continuous function of ω.

• The population spectrum is a periodic function of ω: sY (ω+ 2kπ) = sY (ω) for any
integer k. It means, if we know the value of the population spectrum for all ω
between 0 and π, we can infer the value of sY (ω) for any ω.

• The spectrum is symmetric around ω = 0 : sY (−ω) = sY (ω).

4.3.2 Interpretation of the Population Spectrum

If the j in (4.7) is set to zero, the following result is obtained:

π∫
−π

sY (ω)dω = γ0. (4.8)

It means that the total variance γ0 of Yt, can be viewed as the sum of the spectral
densities over all possible frequencies. More precisely, the area under the population
spectrum between [−π, π] gives γ0, the variance of Yt. To use the symmetry of popula-
tion spectrum, this equation can be rewritten to the form:

2

π∫
0

sY (ω)dω = γ0.

More generally, consider integration over only some of the frequencies:

ω1∫
−ω1

sY (ω)dω = 2

ω1∫
0

sY (ω)dω 0 < ω1 ≤ π. (4.9)

The result would be a positive number that can be interpreted as the portion of the
total variance of time series Yt that is associated with frequencies less than or equal to
ω1.
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4.4 The Sample Periodogram

The population spectrum for the covariance-stationary process Yt is defined in (4.5).
Let y1, y2, . . . , yT be a sample of T observations of Yt which provides a variance and
T − 1 autocovariances:

γ̂j = γ̂−j =
1

T

T∑
t=j+1

(yt − ȳ)(yt−j − ȳ) for j = 0, 1, 2, . . . , T − 1 (4.10)

and ȳ is a sample mean

ȳ = T−1
T∑
t=1

yt.

So we can construct the sample periodogram

ŝy(ω) =
1

2π

T−1∑
j=−T+1

γ̂je
−iωj, (4.11)

which is natural estimator of the spectrum. The sample periodogram can be also alter-
natively rewritten as

ŝy(ω) =
1

2π

{
γ̂0 + 2

T−1∑
j=1

γ̂j cos(ωj)

}
. (4.12)

Analogous to the relation between the population spectrum and total variance, the
area under the periodogram is the sample variance of y.

π∫
−π

ŝy(ω)dω = γ̂0.

To use the symmetry of sample periodogram, this equation can be rewritten as follows

2

π∫
0

ŝy(ω)dω = γ̂0.
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4.5 Estimation of the Spectrum

The population spectrum sY (ω) defined in (4.5) can be estimated using one of two
approaches: a non-parametric or a parametric approach.

The simplest way to estimate the population spectrum is to estimate spectrum sY (ω)

by the sample periodogram ŝy(ω). This approach is based on the replacing the theoreti-
cal autocovariances in (4.5) by the sample autocovariances. Thus, an obvious estimator
of the spectrum is the sample periodogram

ŝy(ω) =
1

2π

{ T−1∑
j=−T+1

γ̂je
−iωj

}
or alternatively

ŝy(ω) =
1

2π

{
γ̂0 + 2

T−1∑
j=1

γ̂j cos(ωj)

}
.

However, this approach has some disadvantages:

• High variance of the estimation.

• The estimation is not more accurate as the sample size T increases. The more
observations we have, the more autocovariances have to be estimated. Hence, if
T increases, the number of estimated parameters increase as well.

4.5.1 Non-parametric Estimates of the Spectrum

Since a sample periodogram as an estimator of the population spectrum has some dis-
advantages, a number of methods have been suggested to improve the properties of
this estimator.

One ways to resolve this issue is to use non-parametric estimates. Their main idea lies
in the similarity of the population spectrum sY (ω) and sY (λ) if the frequency ω is close
to the frequency λ. The spectrum might be therefore estimated with weighted average
of the values of sample periodogram ŝy(ωj) for frequencies λ from neighborhood of
the frequency ω, where the weights depend on the distance between λ and ω. Let
ŝY (ω) denote an estimation of population spectrum sY (ω). Then the non-parametric
estimation is based on the following formula

ŝY (ωj) =
h∑

m=−h

κ(ωj+m, ωj).ŝy(ωj+m), (4.13)
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where ωj = 2πj/T , h (bandwidth) is a smoothing parameter that represents how many
frequencies are used and useful for estimation. The function κ(ωj+m, ωj), called kernel,
indicates weights assigned to used frequencies. The sum of weights has to be 1.

h∑
m=−h

κ(ωj+m, ωj) = 1

Averaging method of sample periodogram ŝy(ω) over different frequencies can be
also represented as multiplying the jth sample autocovariance γ̂j for j > 0 in (4.11) by
a weight κ∗j

ŝY (ω) =
1

2π

{
γ̂0 +

T−1∑
j=1

κ∗j γ̂j cos(ωj)
}
, (4.14)

where κ∗j is also called kernel, because the specification of kernel function κ(ωj+m, ωj)

in (4.13) can be equivalently formulated in the terms of weights κ∗j .
One of the simplest weighting scheme consists of truncating the sequence of auto-

covariances. This is tantamount to multiplying them with a rectangular function which
is 1 inside some extend and 0 outside.

κ?j =

{
1 for |j| ≤ h

0 otherwise

The function κ?j is called truncated or rectangular window.
One of the most popular choice for the weights in spectral analysis is Bartlett kernel,

called also Bartlett or triangular window, which is defined as

κ?j =

{
1− |j|

h
for |j| ≤ h

0 otherwise

Thus the Bartlett estimation of population spectrum is

ŝY (ω) =
1

2π

{ h∑
j=−h

(
1− |j|

h

)
γ̂je
−iωj

}
(4.15)

and it can be also alternatively rewritten as

ŝY (ω) =
1

2π

{
γ̂0 + 2

h∑
j=1

(
1− |j|

h

)
γ̂j cos(ωj)

}
. (4.16)

There are some another possibilities for computing the weights:
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• Tukey window: κ?j = 0.5 + 0.5 cos
(
πj
h

)
|j| ≤ h

The window is also called the Tukey-Hanning or Blackman-Tukey window.

• Welch window: κ?j = 1−
(
j
h

)2 |j| ≤ h

• Hamming window: κ?j = 0.54 + 0.46 cos
(
πj
h

)
|j| ≤ h

• Parzen (de la Valle-Poussin) window:

κ?j =


1− 6

(
j
h

)2
+ 6
( |j|
h

)3 for |j| ≤ h
2

2
(
1− |j|

h

)3 for h
2
≤ |j| ≤ h

0 otherwise

• Blackman window: κ?j = 0.54 + 0.5 cos
(
πj
h

)
+ 0.08 cos(2πj

h
) |j| ≤ h

• Lanczos window: κ?j = sin(πj
h

)/πj
h

|j| ≤ h

Figure 4.2: Graphical representation of the windows.

A bandwidth parameter h in the mentioned formulas denotes the size of the corre-
sponding window.

The periodogram, contains only T observations, is asymptotically unbiased but it
has a large variance. One way to resolve the large variance is to reduce the autocovari-
ances by using the mentioned window. But this procedure introduces some bias. The
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severity of bias depends on the size of bandwidth h. When h is small, the variance of
the spectrum is relatively small but bias increase. On the other hand, large h acquires
the large variance but the periodogram becomes asymptotically unbiased.

Thus one practical question arises: How should one choose the value for the band-
width h? Diebold ([21], p.129) suggests to take h equal to the square root of the
number of observations T . Chatfield ([14]) claims that h approximately equals to 2

√
T

is large enough to provide the resolution. Hamilton ([35]) suggests that one “practical
guide is to plot an estimate of the spectrum using several different bandwidths and
rely on subjective judgment to choose the bandwidth that produces the most plausible
estimate.” Finally, Hannan ([36]) says, “the experience is the real teacher.”

4.5.2 Parametric Estimates of the Spectrum

Another popular way to go about estimating the spectrum of a time series is to adopt a
parametric approach. Therefore we introduce few of parametric methods for spectrum
estimation in this section.

The Autoregressive Method

The evidence, that any linear process can be approximated by pth-order autoregressive
process, AR(p), expressed in the form

Yt = µ+ φ1Yt−1 + . . .+ φpYt−p + εt,

where E(ε2t ) = σ2, has led Parzen ([72]) to suggest a technique known as autoregressive
spectral estimation.

The first step of this procedure is to estimate the coefficients of an AR(p) process
by OLS. These estimates are then substituted for the parameters φ1, φ2, . . . , φp in the
population spectrum of an AR(p) process

sY (ω) =
σ2

2π
· 1

(1−
∑p

j=1 φje
−iωj)(1−

∑p
j=1 φje

iωj)
2, (4.17)

thereby yielding an estimator of the population spectrum. In other words, an AR(p)

process is fitted to the data and the estimator of the population spectrum is then taken
as the theoretical spectrum of the fitted process.

2The derivation of population spectrum for autoregressive processes is described in section 7.3.
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One difficulty of this method lies in decision on the order of the AR process. If the
p is too small, the estimated spectrum may be badly biased but a large p increases a
variance of the spectrum. According to Harvey ([38]), one solution to find an appro-
priate order of the model is to determine it on the goodness of fit criterion, given by or
maximizing the adjusted R2 or minimizing Akaike’s information criterion (AIC)

AIC = −2l

T
+

2p

T
, (4.18)

where l is log likelihood function using p estimated parameters, T is number of obser-
vations.

Such methods have been used in autoregressive spectral estimation with some suc-
cess, because in this case the estimator is a theoretical spectrum and it tends to be
smoother than a spectrum produced by standard methods.

The Yule-Walker Method

Yule-Walker method, called also the autocorrelation method, is similar to the autoregres-
sive method described above. It uses the same evidence that any linear process can be
approximated by pth-order autoregressive process. The only difference between these
two methods is the estimation of coefficients of autoregressive process.

Let AR(p) process be defined as

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt,

where E(εt) = 0, E(ε2t ) = σ2 and its mean is calculated as

E(Yt) = µ =
c

1− φ1 − φ2 − . . .− φp
(4.19)

µ = c+ φ1µ+ φ2µ+ . . .+ φpµ (4.20)

Using (4.20), the basic AR(p) can be rewritten to

Yt − µ = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + . . .+ φp(Yt−p − µ) + εt.

Multiplying the both sides of the equation by (Yt−j − µ) and taking expectation we get

γj =

{
φ1γj−1 + φ2γj−2 + . . .+ φpγj−p for j = 1, 2, . . . , p

φ1γ1 + φ2γ2 + . . .+ φpγp + σ2 for j = 0.
(4.21)
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Dividing (4.21) by γ0 produces Yule-Walker equation

%j = φ1%j−1 + φ2%j−2 + . . .+ φp%j−p for j = 1, 2, . . . , p, (4.22)

where %j is jth autocorrelation of AR(p) process defined as jth autocovariance divided
by the variance γ0

%j =
γj
γ0
.

Thus the first step of Yule-Walker procedure, parametric method of spectrum es-
timation, is to estimate the coefficients of an AR(p) process defined by Yule-Walker
equation (4.22). These estimates are then substituted for the parameters φ1, φ2, . . . , φp

in the population spectrum of an AR(p) process

sY (ω) =
σ2

2π
· 1

(1−
∑p

j=1 φje
−iωj)(1−

∑p
j=1 φje

iωj)
, (4.23)

thereby yielding an estimator of the population spectrum. Again the difficulty of this
method lies in deciding on the order of the AR process.
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5
Cross-Spectral Analysis

Cross-spectral analysis is the extension of classical spectral analysis to the simultane-
ous analysis of two time series. While univariate spectral analysis allows a detection
of movements inside each series, by cross-spectral analysis it is possible to describe
pairs of time series in frequency domain by decomposing their covariance in frequency
components.

The main purpose of cross-spectral analysis is to determine the relationship between
two time series as a function of frequencies. One of the attractions of cross-spectral
analysis is that it may be permit the characterizations of cyclical relationship which are
difficult to model in the time domain.

5.1 The Population Spectrum for Vector Processes

The concept of population spectrum described for univariate time series may be ex-
tended for multivariate time series.

Let Yt be a covariance-stationary (n × 1) vector process with mean E(Yt) = µ and
jth autocovariance matrix

E[(Yt − µ)(Yt−j − µ)′] = Γj. (5.1)

The symmetry of autocovariances known for scalar processes, γj = γ−j, is not true for
vector processes, Γj 6= Γ−j. The correct relation between the autocovariance matrices
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is
Γ′j = Γ−j. (5.2)

If the sequence of autocovariance matrices {Γj}∞j=−∞ is absolutely summable and if
z is complex scalar, the autocovariance-generating function of Yt is defined as

GY(z) =
∞∑

j=−∞

Γjz
j. (5.3)

If the autocovariance-generating function from (5.3) is evaluated for z = e−iω and
divided by 2π, we obtain the population spectrum for vector Y

sY(ω) =
1

2π
GY(e−iω) =

1

2π

∞∑
j=−∞

Γje
−iωj. (5.4)

Recall that the relation between the population spectrum sY (ω) for univariate pro-
cess Y and jth autocovariance γj is couched in formula (4.6) or equivalently in (4.7).
For covariance-stationary vector process Yt, the relation between its population spec-
trum sY(ω) and the jth autocovariance matrix can be expressed by analogy as

Γj =

π∫
−π

sY(ω)eiωjdω. (5.5)

This means that the population spectrum and the sequence of autocovariance matrices
{Γj}∞j=−∞ contains the same information. If j in (5.5) is set to zero, the following result
is obtained

Γ0 =

π∫
−π

sY(ω)dω. (5.6)

It means that the area under the population spectrum between [−π, π] gives Γ0, the
unconditional variance-covariance matrix of Y .

The population spectrum for multivariate vector processes are described in previous
formulas. Now concentrate on a case of n = 2 variables to gain more deeply into
understanding of multivariate spectrum. So let

Yt =

[
Xt

Yt

]
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whereXt is covariance-stationary process with mean equals µX and Yt is also covariance-
stationary process with mean µY . The jth autocovariance matrix of such defined Yt is

Γj = E

[
(Xt − µX)(Xt−j − µX) (Xt − µX)(Yt−j − µY )

(Yt − µY )(Xt−j − µX) (Yt − µY )(Yt−j − µY )

]
=

[
γ
(j)
XX γ

(j)
XY

γ
(j)
Y X γ

(j)
Y Y

]
. (5.7)

Then the population spectrum for such defined vector process would be

sY(ω) =
1

2π


∞∑

j=−∞
γ
(j)
XXe

−iωj
∞∑

j=−∞
γ
(j)
XY e

−iωj

∞∑
j=−∞

γ
(j)
Y Xe

−iωj
∞∑

j=−∞
γ
(j)
Y Y e

−iωj

 . (5.8)

Using DeMoivre theorem, relation (5.2) and the trigonometry facts that cos(−ω) =

cos(ω) and sin(−ω) = − sin(ω), the population spectrum (5.8) can be simplified to

sY(ω) =
1

2π


∞∑

j=−∞
γ
(j)
XX cos(ωj)

∞∑
j=−∞

γ
(j)
XY {cos(ωj)− i. sin(ωj)}

∞∑
j=−∞

γ
(j)
Y X{cos(ωj)− i. sin(ωj)}

∞∑
j=−∞

γ
(j)
Y Y cos(ωj)

 . (5.9)

After simplification, it is clear that the diagonal elements have not imaginary part and
off-diagonal elements are complex numbers.

5.1.1 Estimation of the Multivariate Spectrum

Non-parametric Estimates of the Multivariate Spectrum

Let y1,y2, . . . ,yT denote samples of T observations of Yt. Then we can construct sample
multivariate periodogram

ŝy(ω) =
1

2π

T−1∑
j=−T+1

Γ̂je
−iωj, (5.10)

where Γ̂j = T−1
∑T

t=j+1(yt − ȳ)(yt−j − ȳ) and ȳ = T−1
∑T

t=1 yt.

Non-parametric method for estimation of multivariate population spectrum applies
weighting coefficients κ∗j to sample autocovariances Γ̂j in the formula for sample mul-
tivariate periodogram. Thus an estimate of multivariate population spectrum would
take the form

ŝY (ω) =
1

2π

T−1∑
j=−T+1

κ∗j Γ̂je
−iωj (5.11)
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or alternatively

ŝY (ω) =
1

2π

{
Γ̂0 +

T−1∑
j=1

κ∗j
(
Γ̂je

−iωj + Γ̂
′

je
iωj
)}
. (5.12)

The Bartlett window defined in 4.5.1 is applicable also in the multivariate case.
Thus the modified Bartlett estimation of multivariate population spectrum is

ŝY (ω) =
1

2π

{ h∑
j=−h

(
1− |j|

h

)
Γ̂je

−iωj
}

(5.13)

and it can be also alternatively rewritten as

ŝY (ω) =
1

2π

{
Γ̂0 +

h∑
j=1

(
1− |j|

h

)(
Γ̂je

−iωj + Γ̂
′

je
iωj
)}
. (5.14)

Parametric Estimation of the Multivariate Spectrum

By analogy with the estimation of the population spectrum for univariate process, the
population spectrum for Yt can be estimated also by parametric approach which is based
on the evidence that multivariate time series can be reasonably described by pth-order
vector autoregressive process VAR(p) defined in the form

Yt = C + Φ1Yt−1 + Φ2Yt−2 + . . .+ ΦpYt−p + εt, (5.15)

where C is (n×1) vector of constants, Φj is (n×n) matrix of autoregressive coefficients
for j = 1, 2, . . . , p and ε is vector generalization of white noise 1.

The first step of this procedure is to estimate the coefficients of a VAR(p) process
by OLS. The optimal lag structure of VAR(p) process should be identified using the
information criteria, especially Akaike’s information criterion (AIC)2. These estimates
are then substituted for the parameters Φ1,Φ2, . . . ,Φp in the theoretical population
spectrum of pth-order vector autoregressive process

sY(ω) =
1

2π
[In −Φ1e

−iω −Φ2e
−i2ω − . . .−Φpe

−ipω]Ω

× [In −Φ
′

1e
iω −Φ

′

2e
i2ω − . . .−Φ

′

pe
ipω]

′
,

(5.16)

thereby yielding an estimator of the population spectrum.

1For vector generalization of white noise holds that E(εt) = 0, E(εtε
′

τ ) = Ω for t = τ , where Ω is
(n× n) symmetric positive definitive matrix and if t 6= τ E(εtε

′

τ ) = 0.
2For definition of AIC criterion see (4.18).
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5.2 The Cross Spectrum and Its Components

Let {Xt}∞t=−∞ be covariance-stationary process with mean equals µX and {Yt}∞t=−∞ be
also covariance-stationary process with mean µY . The population cross spectrum from
Xt to Yt is defined as:

sY X(ω) =
1

2π

∞∑
j=−∞

γ
(j)
Y Xe

−iωj

=
1

2π

∞∑
j=−∞

γ
(j)
Y X{cos(ωj)− i. sin(ωj)}, (5.17)

where γ(j)Y X is j-th autocovariance between X and Y equal to

γ
(j)
Y X = E(Yt − µY )(Xt−j − µX).

Since the cross spectrum is a complex number it can be presented as a sum of real
and imaginary part:

sY X(ω) = cY X(ω) + i.qY X(ω). (5.18)

The real component of cross spectrum cY X(ω) is called cospectrum between X and Y

and it is calculated as

cY X(ω) =
1

2π

∞∑
j=−∞

γ
(j)
Y X cos(ωj). (5.19)

It is characterized by the following properties:

• The cospectrum between X and Y is the same as the cospectrum between Y and
X: cY X(ω) = cXY (ω).

• The cospectrum is symmetric function: cY X(−ω) = cY X(ω).

The imaginary component of the cross spectrum qY X(ω) is called quadrature spectrum
from X to Y :

qY X(ω) = − 1

2π

∞∑
j=−∞

γ
(j)
Y X sin(ωj). (5.20)

The quadrature spectrum has the following properties:

• The quadrature spectrum from X to Y is the negative of quadrature spectrum
from Y to X: qY X(ω) = −qXY (ω).
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• The quadrature spectrum is odd function: qY X(−ω) = −qY X(ω).

By analogy with the relation (4.8), the area under the cross spectrum is equal to the
covariance between X and Y :

π∫
−π

sY X(ω)dω = E(Yt − µY )(Xt − µX). (5.21)

It further follows from (5.18) and from properties of quadrature spectrum that (5.21)
can be rewritten as

π∫
−π

cY X(ω)dω = E(Yt − µY )(Xt − µX). (5.22)

Thus, the covariance between X and Y is equal to the area under the cospectrum
between X and Y . The cospectrum cY X(ω) expressed by the portion of covariance
between X and Y corresponds to cycles with frequency ω.

5.3 Coherence, Coherency, Phase and Gain

The relationship between two time series is normally characterized by the gain and the
phase. These two quantities are derived from cross spectrum.

Let Yt and Xt be jointly covariance-stationary processes with continuous spectrum
sY (ω) and sX(ω) respectively. The cross spectrum from Xt to Yt is defined by

sY X(ω) =
1

2π

∞∑
j=−∞

γ
(j)
Y Xe

−iωj.

It can be also alternatively represented in polar coordinate form

sY X(ω) = cY X(ω) + i.qY X(ω) = RY X(ω).eiθ(ω), (5.23)

where the function RY X(ω) is called the gain and it shows the amplitude of relationship
between time series as a function of frequency. It is represented as

RY X(ω) = {[cY X(ω)]2 + [qY X(ω)]2}1/2. (5.24)

The phase function θ(ω) represents the phase difference between the frequency compo-
nents of two time series as a function of frequency and it satisfies

θ(ω) = tan−1
[
qY X(ω)

cY X(ω)

]
. (5.25)
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5.3 Coherence, Coherency, Phase and Gain Cross-Spectral Analysis

Although the gain and the phase characterize the relationship between time series, the
relationship is not an exact one. This suggest the need for a third quantity, coherency
or coherence respectively, which measures the strength of the relationship at different
frequencies.

Coherency function can show at which frequencies two sets of time series are coher-
ent and at which frequencies they are not. It is defined as

CY X(ω) =
sY X√

sY (ω)sX(ω)
=
cY X(ω) + i.qY X(ω)√

sY (ω)sX(ω)
, (5.26)

where sY X(ω) is cross spectrum from X to Y , cY X(ω) is a cospectrum between X and Y
and qY X(ω) is quadrature spectrum from X to Y . Hence, the coherency is complex in
general and it is not a symmetric function. Priestley in [75] calls the function defined
in (5.26) the complex coherency and its absolute value |CY X(ω)| the coherency. He also
claims that “CY X(ω) represents a correlation coefficient in the frequency domain”.

Coherency raised to the second power is called population coherence between X and
Y or squared coherency. The coherence is numerically defined as

hY X(ω) =
|sY X(ω)|2

sY (ω)sX(ω)
=

[cY X(ω)]2 + [qY X(ω)]2

sY (ω)sX(ω)
. (5.27)

Therefore the coherence is real and symmetric function. However, it does not measure
correlation of two processes at different frequencies, because it disregards the phase
difference between variables. It indicates how well X corresponds to Y at each fre-
quency. The values of the coherence satisfies 0 ≤ hY X(ω) ≤ 1 for all ω.

To take the moduli on both sides of (5.23) we see that |sY X(ω)|2 = RY X(ω)2, so the
information about the phase is lost in coherence hY X(ω).

The gain factor combined with coherency function and phase function would give
us fair clear picture about the relationship between two sets of time series. The analysis
of these three quantities together with spectrum of each series give us an overall view
of the frequency interactions of the time series.
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5.4 Dynamic Correlation

The correlation analysis is the fundamental approach, which has been applied in the
literature to study the degrees of synchronization between economic variables.

The most common measure of co-movement between time series is classical correla-
tion, which is also used in the literature to measure the business cycle correlation.

The classical correlation, corr(Xt, Yt), between two random variables Xt and Yt is
defined as

corr(Xt, Yt) =
E(XtYt)− E(Xt)E(Yt)√

E(X2
t )− E(Xt)2

√
E(Y 2

t )− E(Yt)2

Unfortunately, the classical correlation is associated with two main drawbacks:
Firstly, it does not allow for a separation of idiosyncratic components and common
co-movements. Secondly, it is basic tool of static analysis that fails to capture any dy-
namics in the co-movement.

An alternative measure of synchronization in case of business cycles is the dynamic
correlation. The spectral based dynamic correlation was proposed by Croux et al. in
[15]. This indicator provides a formal measure of correlation, degree of comovement,
between two time series at each individual frequency.

Let Xt and Yt be two covariance-stationary processes and sX(ω) and sY (ω) be the
spectral density functions belong to them. The cospectrum between these time series
is represented by the value cY X(ω) which is defined by (5.19). Thus, the dynamic
correlation between Xt and Yt is defined as

ρY X(ω) =
cY X(ω)√
sX(ω)sY (ω)

. (5.28)

It is clear from definition that the dynamic correlation, which lies between -1 and 1, is
conceptually similar to the classical correlation between two series in the time domain.
The higher dynamic correlation of time series is, the more similar the fluctuations at
that frequency are. However, unlike the classical correlation, one obtains a correlation
coefficient that can vary across different frequencies. Thus, the concept of dynamic
correlation is more comprehensive because it looks at the correlation across entire fre-
quency band.

An illustrative example of dynamic correlation between εt and εt−1, where εt is white
noise process, is provided by the following figure 5.1. From the figure it is clear, that the
dynamic correlation ranges from 1 at the frequency zero to -1 at the frequency π. The
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5.4 Dynamic Correlation Cross-Spectral Analysis

lowest frequencies show highest correlation implying that the long-run fluctuations in
the series are strongly related. The higher frequencies corresponds to perfect negative
correlation.

Figure 5.1: Dynamic correlation between εt and εt−1.

In this case, the classical correlation corr(εt, εt−1) is the simple mean of the dynamic
correlation over the presented interval and it equals zero. This is due to fact that the
white noise has a flat spectrum over the interval [0, π]3. But generally the relation
between dynamic and static correlation is not so simple and obvious like in the case of
white noise process.

Alternatively, we could aggregate the dynamic correlation defined in (5.28) across
a frequency band Ω = [ω1, ω2] as

ρY X(Ω) =

∫
Ω

ρY X(ω)dω =

∫
Ω
cY X(ω)dω√∫

Ω
sX(ω)dω

∫
Ω
sY (ω)dω

, (5.29)

where 0 ≤ ω1 < ω2 ≤ π.

The dynamic correlation within the frequency band, as it is defined in (5.29), can be
used also for measurement of the co-movement of seasonal components of two eco-
nomic time series since we can select the frequency band of our interest (business cycle
frequencies, or short-run and long-run frequencies) and then evaluate the dynamic
correlation within this frequency band.

3The derivation of population spectrum for white noise process is described in 7.1.
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5.5 Cohesion and Cross-Cohesion Cross-Spectral Analysis

In particular case, if ω1 = 0 and ω2 = π, the dynamic correlation within frequency
band ρY X(Ω) is reduced to static correlation corr(X, Y ), what is confirmed by the previ-
ous illustrative example. Hereby, we can extract the static correlation from the dynamic
correlation.

5.5 Cohesion and Cross-Cohesion

Croux et al. in [15] used the notion of dynamic correlation to construct a multivariate
index of co-movement, called cohesion. The cohesion provides a measure of the degrees
of co-movement within a group of variables. An extension of cohesion which measure
a co-movements between two groups of variables is called cross-cohesion.

The cohesion, defined in frequency domain, is a measure of dynamic co-movement
between time series. In bivariate case, the measure is reduced to the dynamic corre-
lation (5.28). The cohesion is useful for studying problems of business cycle synchro-
nization and investigating short-run and long-run dynamic properties of multiple time
series. It is an appropriate technique to obtain the facts on co-movements of macroe-
conomic variables at specified frequency band.

Let Yt = (Y1t, . . . , Ynt)
′ be a vector of n ≥ 2 variables and w = (w1, . . . , wn)′ be a

vector of the non-normalized positive weights of the variables in Yt. The cohesion of
the variables in Yt is defined as the weighted average of dynamic correlation between
all possible pairs of series. Therefore, the cohesion is defined as

cohY (ω) =

∑
i 6=j wiwjρYiYj

(ω)∑
i 6=j wiwj

. (5.30)

Clearly cohY (ω) = 1 if and only if all the variables in Yt are perfectly co-moved at
frequency ω. But the small cohesion index does not need to imply the small pairwise co-
movements because it can be originated from large negative and positive covariances
canceling out each other. Croux et al. in [15] excludes the diagonal terms in (5.30)
for two reasons. First, it is reasonable to require that, if the entries in Yt are pairwise
uncorrelated at all leads and lags, cohesion is zero at all frequencies. And second, the
inclusion of the diagonal terms would render cohesion dependent on n.

Alternatively, we could aggregate the cohesion defined in (5.30) across a frequency
band Ω = [ω1, ω2] as

cohY (Ω) =

∑
i 6=j wiwjρYiYj

(Ω)∑
i 6=j wiwj

, (5.31)
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where 0 ≤ ω1 < ω2 ≤ π.

The cohesion index can be generalized to an index measuring the cross-cohesion
between the (n× 1) vector Yt and (m× 1) vector Xt. Thus, the cross-cohesion between
Yt and Xt at frequency ω is given by

cohY X(ω) =

∑n
i=1

∑m
j=1wYiwXj

ρYiXj
(ω)∑n

i=1

∑m
j=1wYiwXj

. (5.32)

If the Yt and Xt are scalars, then the cross-cohesion is reduced to the dynamic correla-
tion (5.28).
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6
Autocovariance-Generating Function

The concept of autocovariance-generating function for univariate processes was intro-
duced in the section 4.2. Thus autocovariance-generating function for univariate time
series Yt is defined as

gY (z) =
∞∑

j=−∞

γjz
j,

where its argument (z) is a complex scalar and γj is jth autocovariance of Yt. Then, in
the section 5.1, we extend this concept for multivariate processes. The autocovariance-
generating function of vector process Yt is therefore defined as

GY(z) =
∞∑

j=−∞

Γjz
j,

where Γj is autocovariance matrix related to Yt.
In this chapter we derive the autocovariance-generating function for various pro-

cesses, for univariate ones (white noise, autoregressive process, moving average pro-
cess and ARMA process) and also for vector processes (vector white noise, vector au-
toregression,. . . ) in order to obtain the population spectrum for them.
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6.1 White Noise Autocovariance-Generating Function

6.1 White Noise

We start with the simplest process, the white noise.
Let {εt}∞t=−∞ be a white noise whose elements have mean zero and variance σ2,

E(εt) = 0 (6.1)

γ0 = E(ε2t ) = σ2, (6.2)

and for which the ε’s are uncorrelated across time:

γj = E(εtεt−j) = 0 for j 6= 0. (6.3)

The autocovariance-generating function for a vector white noise, Yt = εt, could be
therefore calculated from

gY (z) = σ2z0 = σ2. (6.4)

6.2 Moving Average Processes

6.2.1 The First-Order Moving Average Process

Let {εt}∞t=−∞ be a white noise satisfied equations (6.2) and (6.3). Consider the process

Yt = µ+ εt + θεt−1, (6.5)

where µ and θ are any real constants. This time series is called first-order moving
average process, denoted MA(1).

The mean of the first-order moving average process is given by

E(Yt) = E(µ+ εt + θεt−1) = µ+ E(εt) + θE(εt−1) = µ. (6.6)

The variance of Yt is

γ0 = E(Yt − µ)2 = E(εt + θεt−1)
2 = (1 + θ2)σ2. (6.7)

The first autocovariance of MA(1) process is

γ1 = E(Yt − µ)(Yt−1 − µ) = E(εt + θεt−1)(εt−1 + θεt−2)

= E(εtεt−1 + θε2t−1 + θεtεt−2 + θ2εt−1εt−2)

= θσ2 (6.8)
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6.2 Moving Average Processes Autocovariance-Generating Function

and higher autocovariances are all zero

γj = E(Yt − µ)(Yt−j − µ) = 0 for j > 1.

According to the previous equations of variance and autocovariances, the autocovariance-
generating function for the first-order moving average process is calculates as

gY (z) = [θσ2]z−1 + [(1 + θ2)σ2]z0 + [θσ2]z1.

It can be rewritten as follows

gY (z) = σ2(1 + θz)(1 + θz−1). (6.9)

6.2.2 The qth-Order and Infinite-Order Moving Average Process

The qth-order moving average process, denoted MA(q), is expressed as

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q, (6.10)

where εt is a white noise defined in previous section and µ and (θ1, θ2, . . . , θq) could be
any real numbers. With using the lag operator the process can be alternatively rewritten
as

Yt = µ+ (1 + θ1L+ θ2L
2 + . . .+ θqL

q)εt.

The qth-order moving average process has mean equals to

E(Yt) = µ+ E(εt) + θ1E(εt−1) + θ2E(εt−2) + . . .+ θqE(εt−q) = µ. (6.11)

And the variance of MA(q) process is

γ0 = E(Yt − µ)2 = E(εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q)
2

= E(ε2t + θ21ε
2
t−1 + θ22ε

2
t−2 + . . .+ θ2qε

2
t−q + . . .)

= (1 + θ21 + θ22 + . . .+ θ2q)σ
2. (6.12)

The autocovariances of MA(q) process are given by

γj =

{
(θj + θj+1θ1 + θj+2θ2 + . . .+ θqθq−j)σ

2 for j = 1, 2, . . . , q

0 for j > q.

42
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Consequently the autocovariance-generating function for MA(q) process could be spec-
ified as

gY (z) = σ2(1 + θ1z + θ2z
2 + . . .+ θqz

q)(1 + θ1z
−1 + θ2z

−2 + . . .+ θqz
−q). (6.13)

By analogy, we can derive an autocovariance-generating function also for infinity-
order moving average process, MA(∞), that is defined as

Yt = µ+
∞∑
j=0

ψjεt−j.

If MA(∞) is rewritten as
Yt = µ+ ψ(L)εt (6.14)

with ψ(L) = ψ0 + ψ1L + ψ2L
2 + . . . , then its autocovariance-generating function is

defined as
gY (z) = σ2ψ(z)ψ(z−1). (6.15)

6.3 Autoregressive Processes

If εt is a white noise satisfying (6.2) and (6.3), then a first-order autoregression, denoted
AR(1), is characterized by

Yt = c+ φYt−1 + εt. (6.16)

It can be also written as
Yt = µ+ (1− φL)−1εt,

where µ is a mean of AR(1) process, calculated as µ = c/(1 − φ). This notation is very
similar to MA(∞) definition in (6.14). AR(1) process is a special form of MA(∞)

where ψ(L) = 1/(1− φL). Therefore autocovariance-generating function of AR(1) pro-
cess could be calculated as

gY (z) =
σ2

(1− φz)(1− φz−1)
· (6.17)

The same method for the derivation of the autocovariance-generating function should
be applied to for pth-order autoregressive process, AR(p)

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt. (6.18)
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Analogous to AR(1) process, the process AR(p) can be rewritten in lag operator form
in the following way

Yt = µ+ ψ(L)εt,

where µ is a mean of AR(p) process, calculated as µ = c/(1 − φ1 − φ2 − . . . − φp), and
ψ(L) = 1/(1− φ1L− φ2L

2− . . .− φpLp). So the AR(p) process in this form is viewed as
MA(∞) process. Therefore autocovariance-generating function of AR(p) process could
be calculated as

gY (z) =
σ2

(1− φ1z − φ2z2 − . . .− φpzp)(1− φ1z−1 − φ2z−2 − . . .− φpz−p)
· (6.19)

6.4 Mixed Autoregressive Moving Average Processes

A mixed autoregressive moving average process, ARMA(p, q), consisting from both au-
toregressive and moving average term, is defined as

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q, (6.20)

It can be alternatively rewritten into lag operator form

(1− φ1L− φ2L
2 − . . .− φpLp)Yt = c+ (1 + θ1L+ θ2L

2 + . . .+ θqL
q)εt.

or
Yt = µ+ ψ(L)εt,

where

ψ(L) =
1 + θ1L+ θ2L

2 + . . .+ θqL
q

1− φ1L− φ2L2 − . . .− φpLp
,

and
µ = c/(1− φ1 − φ2 − . . .− φp).

The autocovariance-generating function for a stationary ARMA(p, q) process can
be written as

gY (z) = σ2 (1 + θ1z + θ2z
2 + . . .+ θqz

q)

(1− φ1z − φ2z2 − . . .− φpzp)

× (1 + θ1z
−1 + θ2z

−2 + . . .+ θqz
−q)

(1− φ1z−1 − φ2z−2 − . . .− φpz−p)
·

(6.21)
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6.5 Vector Processes

6.5.1 Vector White Noise

Let εt be a vector white noise process which satisfies the following equations

E(εt) = 0 (6.22)

E(εtε
′

τ ) =

{
Ω for t = τ

0 otherwise,
(6.23)

where Ω is (n× n) symmetric positive definitive matrix.
The autocovariance-generating function for a vector white noise, Yt = εt, could be

therefore calculated from
GY(z) = Ω. (6.24)

6.5.2 Vector Moving Average Process

A vector qth-order moving average process, denoted MA(q), is characterized by

Yt = µ+ εt + Θ1εt−1 + Θ2εt−2 + . . .+ Θqεt−q, (6.25)

where εt is a vector white noise defined in previous section and Θj denotes (n × n)

matrix of MA coefficients for j = 1, 2, . . . , q.

The mean of vector qth-order moving average process is µ, variance of Yt is

Γ0 = E[(Yt − µ)(Yt − µ)′]

= Ω + Θ1ΩΘ
′

1 + Θ2ΩΘ
′

2 + . . .+ ΘqΩΘ
′

q

(6.26)

and jth autocovariance

Γj =


ΘjΩ + Θj+1ΩΘ

′
1 + . . .+ ΘqΩΘ

′
q−j for j = 1, 2, . . . , q

ΩΘ
′
−j + Θ1ΩΘ

′
−j+1 + . . .+ Θq+jΩΘ

′
q for j = −1,−2, . . . ,−q

0 otherwise.

Analogous to autocovariance-generating function for univariateMA(q) process (6.13),
the autocovariance-generating function for vector MA(q) process has form

GY(z) = (In + Θ1z + Θ2z
2 + . . .+ Θqz

q)Ω

× (In + Θ
′

1z + Θ
′

2z
2 + . . .+ Θ

′

qz
−q).

(6.27)
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We can derive an autocovariance-generating function also for vector infinity-order
moving average process, MA(∞), that is defined as

Yt = µ+ Ψ(L)εt (6.28)

with Ψ(L) = Ψ0 + Ψ1L + Ψ2L
2 + . . ., as generalization of relation (6.27). Therefore

autocovariance-generating function for vector MA(∞) process could be calculated as

GY(z) = [Ψ(z)]Ω[Ψ(z−1)]
′

(6.29)

6.5.3 Vector Autoregression

A pth-order vector autoregressive process, denoted V AR(p), is defined in the form

Yt = C + Φ1Yt−1 + Φ2Yt−2 + . . .+ ΦpYt−p + εt, (6.30)

where C is (n×1) vector of constants, Φj is (n×n) matrix of autoregressive coefficients
for j = 1, 2, . . . , p and εt is vector generalization of white noise satisfying equations
(6.22) and (6.23).

Such defined V AR(p) process can be rewritten in lag operator form as

Yt = µ+ Ψ(L)εt,

where mean µ of V AR(p) process is calculated as µ = (In − Φ1 − Φ2 − . . . − Φp)
−1C

and Ψ(L) = (In −Φ1L−Φ2L
2 − . . .−ΦpL

p)−1 indicates an (n× n) matrix polynomial
in lag operator. So V AR(p) process in this form is viewed as vector MA(∞) process,
(6.28).

Therefore autocovariance-generating function for V AR(p) process could be calcu-
lated as

GY(z) = (In −Φ1z −Φ2z
2 − . . .−Φpz

p)−1Ω

× (In −Φ
′

1z
−1 −Φ

′

2z
−2 − . . .−Φ

′

pz
−p)−1.

(6.31)
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7
Population Spectrum

In previous chapter we derived the autocovariance-generating function for various uni-
variate and multivariate processes. This chapter describes how to calculate the pop-
ulation spectrum from the autocovariance-generating function. The presentation of
population spectrum is defined in the section 4.3 for univariate processes and in the
section 5.1 for multivariate processes.

The population spectrum sY (ω) of univariate process Yt is generally defined in (4.4).
The multivariate extension of population spectrum sY(ω) of vector process Yt is gener-
ally defined by the relation (5.4).

7.1 White Noise

Let Yt = εt where {εt}∞t=−∞ be a white noise satisfying equations (6.2) and (6.3) with
autocovariance-generating function defined in (6.4). Thus, the population spectrum
for white noise

sY (ω) =
σ2

2π
, (7.1)

where σ2 is the variance of Yt, is a constant for all ω. The flat spectrum of white noise
process is also shown in figure 7.1. Looking at the figure, it might be obvious that the
area under the spectrum over the range [−π, π] is actually equal to the variance of the
white noise process, σ2.
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Figure 7.1: Population spectrum for white noise process.

In fact, figure 7.1 and the equation (7.1) provide a definition of white noise process
in the frequency domain. Harvey in [38] claims that the spectrum of white noise may
be regarded as consisting of an infinite number of cyclical components all of which
have equal weight.

7.2 Moving Average Processes

7.2.1 The First-Order Moving Average Process

The first-order moving average process MA(1) defined in (6.5) as

Yt = µ+ εt + θεt−1

has γ0 = (1 + θ2)σ2, γ1 = θσ2 and higher autocovariances of the MA(1) process are all
zero, γj = 0 for j > 1. Substituting the autocovariance-generating function of MA(1)

process derived from mentioned relations

gY (z) = σ2(1 + θz)(1 + θz−1)

into (4.4) gives the definition of population spectrum for the first-order moving average
process

sY (ω) =
σ2

2π
(1 + θe−iω)(1 + θeiω). (7.2)
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According to the consequence of DeMoivre’s theorem, (7.2) may be rewritten as

sY (ω) =
σ2

2π
(1 + θ2 + 2θ cosω). (7.3)

If the process is defined with positive θ, the spectrum sY (ω) is monotonically decreasing
function of ω from [0, π]. It means that the spectrum is greater at the lower frequen-
cies. Whereas when the MA(1) process is defined with negative θ, the spectrum is
monotonically increasing and greater at the higher frequencies.

The example of decreasing (θ = 0.5) and increasing (θ = −0.5) population spectrum
for MA(1) process is illustrated in figure 7.2.

Figure 7.2: Example of population spectrum for MA(1) process.

Because the Yt is defined as weighted average of current and lagged disturbance
terms, the series changes more slowly than the white noise. This is reflected by posi-
tive first-order autocovariance in time domain or by higher values of spectrum at the
lower frequencies in frequency domain. This fact confirms the relation between the
spectrum and the autocovariance function described in the section 4.3.2 that they are
complementary rather than competitive.

7.2.2 The qth-Order and Infinity-Order Moving Average Process

Let MA(q) process

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q,
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has an autocovariance-generating function defined in (6.13). The population spectrum
of qth-order moving average process can be then defined as

sY (ω) =
σ2

2π
(1 + θ1e

−iω + θ2e
−i2ω + . . .+ θqe

−iqω)

× (1 + θ1e
iω + θ2e

i2ω + . . .+ θqe
iqω).

(7.4)

If the moving average polynomial is factored in the following form

1 + θ1z + θ2z
2 + . . .+ θqz

q = (1− η1z)(1− η2z) . . . (1− ηqz),

then the population spectrum for MA(q) process can be rewritten as

sY (ω) =
σ2

2π

q∏
j=1

[1 + η2j − 2ηj.cos(ω)].

Let Yt be the infinity-order moving average process, MA(∞)

Yt = µ+ ψ(L)εt,

where ψ(L) = ψ0+ψ1L+ψ2L
2+. . . and let gY (z) defined in (6.15) be an autocovariance-

generating function ofMA(∞). Hence, the population spectrum for anMA(∞) process
is given by

sY (ω) =
σ2

2π
ψ(e−iω)ψ(eiω). (7.5)

7.3 Autoregressive Processes

7.3.1 The First-Order Autoregressive Process

Let AR(1) process
Yt = c+ φYt−1 + εt

has an autocovariance-generating function defined in (6.17). Thus, the population
spectrum of the first-order autoregressive process is given by

sY (ω) =
σ2

2π
· 1

(1− φe−iω)(1− φeiω)

=
σ2

2π
· 1

(1 + φ2 − 2φ. cos(ω))
· (7.6)
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7.3 Autoregressive Processes Population Spectrum

The spectrum of AR(1) process is similar to the spectrum of an MA(1) process char-
acterized by (7.2). Thus, if the AR(1) process is defined with positive φ (positive au-
tocorrelation), the spectrum sY (ω) is monotonically decreasing function of ω over [0, π]

and it is dominated by low frequency components. Whereas when the AR(1) process
is defined with negative φ (negative autocorrelation), the spectrum is monotonically
increasing function of ω.

The example of decreasing (φ = 0.5) and increasing (φ = −0.5) population spec-
trum for AR(1) process is drawn in figure 7.3.

Figure 7.3: Example of population spectrum for AR(1) process.

7.3.2 The pth-Order Autoregressive Process

Let AR(p) process

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt

has an autocovariance-generating function defined in (6.19). Thus, the population
spectrum of pth-order autoregressive process is given by

sY (ω) =
σ2

2π
· 1

(1− φ1e−iω − φ2e−i2ω − . . .− φpe−ipω)

× 1

(1− φ1eiω − φ2ei2ω − . . .− φpeipω)
·

(7.7)
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If the autoregressive polynomial is factored in the following form

1− φ1z − φ2z
2 − . . .− φpzp = (1− λ1z)(1− λ2z) . . . (1− λpz),

then the population spectrum for AR(p) process can be formulated as

sY (ω) =
σ2

2π
· 1

p∏
j=1

[1 + λ2j − 2λj.cos(ω)]

·

The shape of the spectrum for AR(p) process depends crucially on the values taken
by the parameters φ1, φ2, . . . , φp. Monotonically decreasing or increasing population
spectrum is typical only for AR(1) processes as a special case of AR(2) process, because
it is similar to the spectrum of MA(1) process.

Figure 7.4: Example of population spectrum forAR(2) process (φ1 =0.7 and φ2 =−0.5).

Figure 7.4 represents the population spectrum for AR(2) process with φ1 = 0.7 and
φ2 = −0.5. The peak indicates a tendency towards a cycle what can be termed pseudo-
cyclical behaviour, since the movements are not regular. The type of such pseudo-
cyclical behaviour is attractive for economic modeling, because series generated by
AR(2) processes can easily exhibit the kind of fluctuations often observed in practice.

7.4 Mixed Autoregressive Moving Average Processes

Let Yt be the mixed autoregressive moving average process, ARMA(p, q)

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q
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with autocovariance-generating function defined in (6.21). Hence, the population spec-
trum for an ARMA(p, q) process is given by

sY (ω) =
σ2

2π
· (1 + θ1e

−iω + θ2e
−i2ω + . . .+ θqe

−iqω)

(1− φ1e−iω − φ2e−i2ω − . . .− φpe−ipω)

× (1 + θ1e
iω + θ2e

i2ω + . . .+ θqe
iqω)

(1− φ1eiω − φ2ei2ω − . . .− φpeipω)
·

(7.8)

Using the decomposition of moving average and autoregressive polynomials, the pop-
ulation spectrum for ARMA(p, q) process can be written as

sY (ω) =
σ2

2π
·

q∏
j=1

[1 + η2j − 2ηj.cos(ω)]

p∏
j=1

[1 + λ2j − 2λj.cos(ω)]

·

7.5 Vector Processes

7.5.1 Vector White Noise

Let Yt = εt where εt be a vector white noise satisfied equations (6.22) and (6.23) with
autocovariance-generating function defined in (6.24). For that reason, the multivariate
population spectrum for vector white noise process is calculated as

sY(ω) =
1

2π
Ω. (7.9)

7.5.2 Vector Moving Average Process

Let vector MA(q) process

Yt = µ+ εt + Θ1εt−1 + Θ2εt−2 + . . .+ Θqεt−q

has an autocovariance-generating function defined in (6.27). The population spectrum
of vector qth-order moving average process can be then defined as

sY(ω) =
1

2π
· (In + Θ1e

−iω + Θ2e
−i2ω + . . .+ Θqe

−iqω)Ω

× (In + Θ
′

1e
iω + Θ

′

2e
i2ω + . . .+ Θ

′

qe
iqω).

(7.10)
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7.5 Vector Processes Population Spectrum

Let Yt be the infinity-order moving average process, MA(∞)

Yt = µ+ Ψ(L)εt,

defined in (6.28) and let GY(z) defined in (6.29) be an autocovariance-generating
function related to it. Hence, the population spectrum for vector MA(∞) process is
given by

sY(ω) =
1

2π
[Ψ(e−iω)]Ω[Ψ(eiω)]

′
. (7.11)

7.5.3 Vector Autoregression

Let vector V AR(p) process

Yt = C + Φ1Yt−1 + Φ2Yt−2 + . . .+ ΦpYt−p + εt

has an autocovariance-generating defined in (6.31). Thus the population spectrum for
pth-order vector autoregression is derived as

sY(ω) =
1

2π
(In −Φ1e

−iω −Φ2e
−i2ω − . . .−Φpe

−ipω)−1Ω

× (In −Φ
′

1e
iω −Φ

′

2e
i2ω − . . .−Φ

′

pe
ipω)−1.

(7.12)
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8
Monte Carlo Analysis of Spectrum
Estimation

In this chapter we apply Monte Carlo simulations to analyse what method for spectrum
estimation described in the section 4.5 is more precise. As the usual criterion of the
method’s quality and precision, we use the mean squared error (MSE) of the estimator,
which should achieve lowest values for preferred method of estimation.

The application of spectral analysis means that a population spectrum of actual time
series is estimated. In reality, those time series are characterized by different statistical
properties as they can be generated by a large variety of random processes. Therefore,
we would like to asses how precise the different method are for different data generat-
ing processes and how sensitive the estimates are to model misspecification. In other
words we would like to know which estimation method described in the section 4.5 is
more precise or accurate. In this case Monte Carlo method is an appropriate tool how
to obtain the information about the quality of the applied methods.

The term Monte Carlo refers to the computer-based statistical method that over the
years has been applied to a huge number of problems from different scientific areas
like a statistical physics, molecular simulations, dynamic system analysis and statistical
testing. This method was named after the city Monte Carlo because it is known for the
number of casinos which are the symbol of a random number generator.

Monte Carlo method as a research tool was used at first in 1940s by von Neumann,
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8.1 Description of the Simulated Processes Monte Carlo Analysis of Spectrum Estimation

Ulam and Richtmyer ([68]) and first paper about this new method was written by
Metropolis and Ulman ([65]) in 1949. Metropolis in his paper from 1980s ([66])
describes the beginning of the method in a more detail.

A Monte Carlo experiment attempts to replicate an actual data by generating the
process using experiment. It means that simulated process is approximated by generat-
ing many random realizations of a stochastic process and averaging them in some way.
In econometrics, the Monte Carlo method is used to explore the quantitative properties
of the model with stochastic elements.

Monte Carlo experiments generally involve the following steps:

1. Specification of the model of our interest.

2. Generation a set of random variables of sample size T from the perspective dis-
tribution function of the error terms.

3. Evaluation the model with generated error terms.

4. Repeating the second and third step R times, i.e. R simulations.

5. Analysis of the results using summary statistics (e.g. mean squared error, vari-
ance, etc.).

8.1 Description of the Simulated Processes

We choose eleven different processes for Monte Carlo simulation. We try to compre-
hend in these processes different properties of time series. Nine of them are autore-
gressive processes with different order and two ARMA processes.

Therefore, we apply the Monte Carlo analysis for eleven following processes and six
number of simulations, R = 50, 100, 200, 500, 1000 and 2000.

• Model 1: AR(5) Yt = 0.5Yt−1 − 0.6Yt−2 + 0.3Yt−3 − 0.4Yt−4 + 0.5Yt−5 + εt

• Model 2: AR(2) Yt = 0.7Yt−1 − 0.5Yt−2 + εt

• Model 3: AR(2) Yt = 0.6Yt−1 − 0.9Yt−2 + εt

• Model 4: AR(1) Yt = 0.9Yt−1 + εt

• Model 5: AR(1) Yt = −0.9Yt−1 + εt

• Model 6: AR(1) Yt = 0.5Yt−1 + εt

• Model 7: AR(1) Yt = −0.5Yt−1 + εt
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8.1 Description of the Simulated Processes Monte Carlo Analysis of Spectrum Estimation

• Model 8: AR(1) Yt = 0.1Yt−1 + εt

• Model 9: AR(1) Yt = −0.1Yt−1 + εt

• Model 10: ARMA(2, 4) Yt = 0.5Yt−1 − 0.6Yt−2 + εt + 0.3εt−1 − 0.4εt−2 + 0.5εt−3

− 0.8εt−4

• Model 11: ARMA(2, 1) Yt = 0.75Yt−1 − 0.3Yt−2 + εt + 0.25εt−1

where εt is a white noise defined in the section 6.1. These models are convenient
because of their simplicity and the different spectra they represent.

Figure 8.1: Graphical representation of theoretical population spectrum for simulated
processes.

We do not normalize the time series to have equal variance or the same spectral
density at the origin. Theoretical spectra of all simulated processes are illustrated in
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8.2 Monte Carlo Results Monte Carlo Analysis of Spectrum Estimation

figure 8.1. Those theoretical spectra are calculated according to the formulas derived
in the chapter 7 where we focus on the AR, MA and ARMA processes.

In general, we can see that relatively similar stochastic processes may have highly
different spectrum. In figure 8.1, spectrum of model 1 shows multiple peaks, the higher
one at frequency ω ≈ π/3 and the smaller one at frequency ω ≈ 3π/4. The spectrum
of model 2 has local minimum at zero frequency and peak at frequency ω ≈ 1. Model
3 is flat at the origin but with a very sharp peak at frequency ω ≈ 1.3. The first-
order autoregressive processes (model 4, 5, 6, 7, 8 ,9) have the typical spectral density.
Spectrum is monotonically decreasing with a maximum at zero frequency if the process
is defined with positive autocorrelation and the spectrum is monotonically increasing
with maximum at ω = π if the process is defined with negative autocorrelation. In
general, we can see that AR(1) processes with higher autoregressive parameter φ show
a flat spectrum for short-term frequencies and a sharp peak for long-run frequencies.
The spectrum of model 10 show also several peaks. Finally the last plot represents the
spectrum of model 11 which has peak in long-run frequencies and then it is decreasing
function of frequency.

8.2 Monte Carlo Results

In order to derive implications for applied spectral analysis especially of business cycles,
we perform several Monte Carlo simulations for individual models specified above and
estimation methods introduced in the section 4.5.

We calculate the mean squared error and variance for all eleven models and six
number of simulations and two sample size, T =100 or 1000 observations. We also
present MSE and variance by frequencies. The long-run frequencies correspond to the
low frequency band below π/16, the business cycles belong to the frequencies between
ω = π/16 and ω = π/3 and short-run frequencies are higher than π/3. The detailed
results of Monte Carlo simulations are presented in tables 8.1, 8.2, 8.3 and 8.4.

We employ the Monte Carlo analysis for parametric and also for non-parametric
methods. From parametric methods described in the section 4.5.2 we choose the Yule-
Walker method with different value of p. We perform the analysis for p = 1, 2, . . . , 6

for all eleven models but in tables we present the results for p equals to real order
of simulated process, for underestimate value of p, (p − 1), and also for overestimate
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8.2 Monte Carlo Results Monte Carlo Analysis of Spectrum Estimation

value of p, (p + 1). For first-order autoregressive processes we present the results for
p = 1, 2, 3.

The estimation made by non-parametric methods was realized using three different
windows Bartlett, Parzen and Blackman.1 For comparison we present the results also
for periodogram in spite of its known disadvantages.2

Tables 8.2 and 8.3 show the results for the mean squared error (MSE). The mean
squared error of an estimator β̂ with respect to the estimated parameter β is defined as

MSE(β) = E(β̂ − β)2.

Tables 8.2 and 8.3 confirm that the most accurate methods for the estimation of
the spectrum for autoregressive processes are the parametric methods because they
are based on the (true) AR process. By contrast, the non-parametric methods of spec-
trum estimation are most efficient for the ARMA processes. This finding is supported
by the following example. If we estimate the model 1 (5th-order autoregressive pro-
cess) by Yule-Walker parametric method with p = 5, the MSE is equal to 0.00170 for
500 simulations and 100 observations across all frequencies. If we choose the non-
parametric method with Bartlett window for the spectrum estimation, MSE is much
higher (0.00349). But if we estimate the model 10 by Yule-Walker parametric method
with p = 6, MSE = 0.06824 for the same conditions, 500 simulations, 100 observations
and all frequencies. Moreover, the value of the mean squared error declines to 0.02561
if we choose the non-parametric method with Bartlett window.

For a final evaluation of robustness of different methods for empirical applications,
we should keep in mind that we do not know the true data generating process in
standard applications. In general, we try to approximate it by pth-order autoregressive
process with lower value of p because empirical analysis may tend to underestimate the
order of the autoregressive process. Actually, in this case the parametric methods for
spectrum estimation are no longer the best performing methods. The non-parametric
method are a better choice if the lag order of AR process is underestimated. For exam-
ple, see the model 1 (5th-order autoregressive process) generated with 1000 observa-
tions and its MSE values for 1000 simulations across all frequencies (table 8.2). The
mean squared error equals to 0.03749 for non-parametric method with Bartlett win-

1The definition of the window is described in the section 4.5.1.
2The section 4.5 reports more detailed information about the disadvantages of periodogram as the

estimation method.
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dow. If we estimate the correct p and use parametric Yule-Walker method with p = 5,
the MSE = 0.00005. But if we underestimate the lag order and p set to 4 for Yule-
Walker method, MSE rapidly increases to 0.20283. Therefore, we recommend to use of
non-parametric methods with windows, because there is general tendency to underesti-
mate the order of autoregressive process and non-parametric methods are most robust
to models miss-specification. In turn, if the p is overestimated, we can see that MSE
declines but not so rapidly. MSE for our example and Yule-Walker with p = 6 is equal
to 0.000048. This findings deduced from numerical results is confirmed also by figure
8.2 which represents the estimated spectra obtained by Monte Carlo analysis with 50
simulations. For graphical representation we choose the lower number of simulations
to see the spectra with underestimated order of autoregressive process much better.

Figure 8.2: Theoretical population spectrum of AR(5) process compared with spec-
trum estimated by Bartlett window and by Yule-Walker method with different value of
p for 50 simulations and 1000 observations.

Tables 8.2 and 8.3 report also the sensitivity of the non-parametric methods to the
window specifications, which affects the accuracy of these methods. The periodogram
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represents the primitive non-parametric method without using the window. The quality
of the periodogram estimate can be improved with windows. The Bartlett and Black-
man windows seem to be the best solutions. For higher number of simulations, the
mean squared error of non-autoregressive process for Blackman and Bartlett window
is better than for periodogram. If we estimate model 11 with periodogram, the means
squared error for 1000 simulations equals to 0.02080. If we choose the Blackman
window for the estimation , the mean squared error is lower (0.00353).

Furthermore, the smoothness and clarity of estimated spectra may be regarded also
as an important factor of quality of different estimation methods. Therefore, we analyze
variance of estimated spectrum (overall variance and variance in specified intervals of
the long-run, business cycle and short-run frequencies).

In table 8.4 we report the results for the variance of simulated processes. This
table is not so comprehensive like the tables for the mean squared error (see tables
8.2 and 8.3). For simplicity, we do not present the variance results for models 8 and 9
because the results for them are very similar to the results for model 6 or 7 respectively.
Moreover, we present the results only for selected methods and for selected number of
simulations (50, 500 and 1000 simulations).

Table 8.4 strengthens our previous finding that one main disadvantage of the pe-
riodogram estimation is its high variance. In average, the variance for periodogram
is the highest across all frequencies (or frequency band) and across all simulated pro-
cesses. For example see the variance for 50 iterations, the variance for model 1 across
all frequencies is equal to 0.37296 but the variance for Blackman window is several
times lower (0.06503). This evidence is also obvious from figure 8.3 which represents
the spectrum of model 10 estimated by periodogram for 50 and 1000 Monte Carlo
simulations.

In turn, the estimations with Blackman and Bartlett window have the lowest vari-
ance. The variance results are not influenced by the selected process as much as the
results for MSE. It means, that Blackman and Bartlett window reach the lower variance
independently of process type, for autoregressive processes and also for other types of
processes.

Tables 8.2 and 8.3 present also the results for two different number of observations.
The results in table 8.3 corresponds to time series with 100 observations therefore they
are relevant for short time series, like GDP data for European countries. Results in
table 8.2 corresponds to time series with 1000 observations therefore these results are
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Figure 8.3: Theoretical population spectrum of model 10 compared with spectrum
estimated by periodogram for 50 and 1000 simulations.

relevant if the source data have higher frequency like stock prices. By comparing these
tables, it is clear that non-parametric methods are more precise for higher number of
observations. This property reflects that the value of spectra is calculated using the
bandwidth expressed by the expression

m =
√
T .

Figure 8.4 illustrates how the estimated value of spectrum converge to the theo-
retical value with increasing number of simulations and with increasing number of
observations through all frequencies. We try to join all three aspects (number of ob-
servations, number of simulations and frequency) in one figure. Figure 8.4 illustrates
the comparison between the theoretical spectrum of AR(5) process, shown also in fig-
ure 8.1, and estimated spectrum. In this case, we estimate the spectrum by the non-
parametric method with Blackman window in Monte Carlo simulations where the num-
ber of simulation is equal to number of observations. The figure confirms our previous
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statement that the non-parametric method is more precise with increasing number of
observations. If the number of simulations is 100, the mean squared error for all fre-
quencies is equal to 0.21167 and it decreases with increasing number of observations.
For R = T = 1000, the mean squared error for all frequencies is equal to 0.04942. Since
both peaks of AR(5) process lie in the short-run frequencies, so this part has the biggest
share on MSE. Mean squared error of the short-run frequencies is equal to 0.29057 if
the number of simulations is 100 and it declines to 0.06734 for 1000 simulations.

In turn, for AR(1) processes with positive autocorrelation, where MSE is mainly
attributed by the long-run frequencies because the spectrum gains the highest value
for low frequencies close to zero. The graphical comparison of theoretical spectrum of
AR(1) process with φ = 0.9 and estimated spectrum by non-parametric method with
Bartlett window is illustrated in figure 8.5 which documents that the most problematic
part is the peak area in the long-run frequency interval. As in the previous example,
the estimate is more precise with an increasing number of observations because also in
this case the number of simulations is equal to number of observations.

AR(5): Yt = 0.5Yt−1 − 0.6Yt−2 + 0.3Yt−3 − 0.4Yt−4 + 0.5Yt−5 + εt

Number of simulations 50 100 200 500 1000 2000

Bandwidth h =
√
T

All frequencies 0.05107 0.04915 0.05059 0.04966 0.04942 0.04964

Long-run frequencies 0.00035 0.00049 0.00051 0.00041 0.00037 0.00038

Bus. cycle frequencies 0.01873 0.01717 0.01572 0.01774 0.01708 0.01704

Short-run frequencies 0.06916 0.06689 0.06965 0.06744 0.06734 0.06769

Bandwidth h = 2
√
T

All frequencies 0.01033 0.01124 0.01011 0.00948 0.00954 0.00936

Long-run frequencies 0.00018 0.00010 0.00018 0.00010 0.00010 0.00012

Bus. cycle frequencies 0.00253 0.00249 0.00234 0.00256 0.00253 0.00276

Short-run frequencies 0.01449 0.01588 0.01423 0.01321 0.01331 0.01294

Table 8.1: Mean squared error of estimated spectrum of AR(5) process estimated by
Blackman window for different value of bandwidth.

The influence of bandwidth value on the estimated spectrum should receive a spe-
cial attention. Diebold ([21], p.129) suggests to set h equal to the squared root of
the number of observations T . Chatfield ([14]) claims that h approximately equals to
2
√
T is large enough to provide the resolution. Our Monte Carlo simulations confirm
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the Chatfield’s suggestion, the h equals to 2
√
T is more suitable because the estimated

spectrum with this value of bandwidth is more precise. This results is also obvious from
table 8.1 which represent the numeric comparison of spectrum for model 1 estimated
by non-parametric method with Blackman window for different values of bandwidth.
The spectrum is estimated with bandwidth equal to the squared root of T and also with
bandwidth equal to 2

√
T for 1000 observations. If h =

√
T and number of simulations

is 1000, the mean squared error of estimated spectrum for all frequencies is equal to
0.04942. If we use bandwidth h = 2

√
T , the mean squared error declines to 0.00954.
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50 simulations 500 simulations 1000 simulations
MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE:

All Long-run Bus. cycle Short-run All Long-run Bus. cycle Short-run All Long-run Bus. cycle Short-run
frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies

Model 1
Periodogram 0.08350 0.04698 0.02875 0.10921 0.01030 0.03043 0.00906 0.00880 0.00574 0.02531 0.00258 0.00508
Bartlett window 0.03953 0.00028 0.00763 0.05631 0.03784 0.00027 0.00705 0.05400 0.03749 0.00025 0.00663 0.05365
Parzen window 0.06254 0.00046 0.02198 0.08508 0.06101 0.00055 0.02118 0.08309 0.06084 0.00050 0.02054 0.08309
Blackman window 0.05107 0.00035 0.01873 0.06916 0.04966 0.00041 0.01774 0.06744 0.04942 0.00037 0.01708 0.06734
Yule-Walker (p=4) 0.20702 0.04008 0.03579 0.29271 0.20197 0.04128 0.03418 0.28565 0.20283 0.04103 0.03402 0.28703
Yule-Walker (p=5) 0.00051 0.00007 0.00012 0.00070 0.00004 0 0 0.00006 0.00005 0 0 0.00007
Yule-Walker (p=6) 0.00056 0.00011 0.00013 0.00078 0.00003 0 0 0.00005 0.00005 0 0 0.00007
Model 2
Periodogram 0.03147 0.02051 0.07581 0.01467 0.00511 0.01844 0.00693 0.00305 0.00330 0.01682 0.00513 0.00121
Bartlett window 0.00071 0.00007 0.00138 0.00051 0.00039 0.00005 0.00078 0.00027 0.00038 0.00010 0.00076 0.00025
Parzen window 0.00045 0.00005 0.00091 0.00031 0.00021 0.00001 0.00046 0.00014 0.00021 0.00001 0.00045 0.00013
Blackman window 0.00035 0.00008 0.00072 0.00023 0.00013 0.00001 0.00028 0.00008 0.00012 0 0.00028 0.00007
Yule-Walker (p=1) 0.05931 0.08335 0.10787 0.03732 0.05973 0.08807 0.10824 0.03734 0.05973 0.08802 0.10824 0.03734
Yule-Walker (p=2) 0.00001 0 0.00005 0 0 0 0 0 0 0 0 0
Yule-Walker (p=3) 0.00002 0 0.00005 0.00001 0 0 0.00001 0 0 0 0.00001 0
Model 3
Periodogram 1.53702 0.01827 0.09371 2.27040 0.09653 0.00793 0.02563 0.13395 0.04625 0.00254 0.00675 0.06654
Bartlett window 1.21715 0.00195 0.03217 1.81611 1.22237 0.00182 0.03356 1.82341 1.19968 0.00195 0.03335 1.78937
Parzen window 1.87384 0.00001 0.08020 2.78387 1.87812 0 0.08380 2.78885 1.86305 0.00001 0.08212 2.76689
Blackman window 1.59698 0 0.04330 2.38266 1.60162 0 0.04618 2.38848 1.58550 0 0.04490 2.36477
Yule-Walker (p=1) 7.92833 0.05775 0.07966 11.87779 7.92837 0.05815 0.07974 11.87778 7.92835 0.05792 0.07969 11.87779
Yule-Walker (p=2) 0.01157 0 0 0.01739 0.00785 0 0 0.01180 0.00501 0 0 0.00753
Yule-Walker (p=3) 0.01104 0 0 0.01660 0.00699 0 0 0.01050 0.00397 0 0 0.00597
Model 4
Periodogram 4.77922 68.04026 0.89933 0.05569 4.61459 69.64944 0.02700 0.00027 3.91819 59.19012 0.01039 0.00015
Bartlett window 0.47835 6.97138 0.06272 0.00055 0.38310 5.58335 0.05001 0.00053 0.41142 5.99943 0.05295 0.00054
Parzen window 0.63578 9.02762 0.14383 0.00001 0.55084 7.78993 0.13242 0 0.57711 8.17921 0.13436 0
Blackman window 0.51465 7.38711 0.09685 0 0.43199 6.19038 0.08383 0 0.45695 6.55595 0.08673 0
Yule-Walker (p=1) 0.00965 0.14519 0.00016 0 0.00094 0.01410 0.00003 0 0.00059 0.00874 0.00005 0
Yule-Walker (p=2) 0.01240 0.18717 0.00007 0 0.00165 0.02489 0.00003 0 0.00066 0.00979 0.00003 0
Yule-Walker (p=3) 0.01195 0.18025 0.00009 0 0.00202 0.03048 0.00002 0 0.00080 0.01200 0.00002 0
Model 5
Periodogram 1.21151 0.00194 0.00264 1.81955 0.19556 0.00058 0.00076 0.29355 0.07349 0.00157 0.00053 0.11008
Bartlett window 0.33744 0.00016 0.00021 0.50704 0.32998 0.00015 0.00021 0.49583 0.31610 0.00016 0.00022 0.47496
Parzen window 0.52058 0 0 0.78238 0.51276 0 0 0.77064 0.50069 0 0 0.75250
Blackman window 0.40270 0 0 0.60523 0.39454 0 0 0.59297 0.38154 0 0 0.57343
Yule-Walker (p=1) 0.00389 0 0 0.00584 0.00096 0 0 0.00144 0.00062 0 0 0.00093
Yule-Walker (p=2) 0.00265 0 0 0.00398 0.00086 0 0 0.00130 0.00072 0 0 0.00108
Yule-Walker (p=3) 0.00098 0 0 0.00148 0.00125 0 0 0.00188 0.00103 0 0 0.00154
Model 6
Periodogram 0.02087 0.16724 0.02538 0.00449 0.00869 0.09973 0.00656 0.00050 0.00668 0.09143 0.00167 0.00028
Bartlett window 0.00003 0.00025 0.00004 0.00001 0.00011 0.00110 0.00011 0.00001 0.00009 0.00100 0.00004 0.00001
Parzen window 0.00001 0.00001 0.00003 0 0.00004 0.00041 0.00003 0 0.00002 0.00032 0.00001 0
Blackman window 0.00001 0 0.00003 0.00001 0.00003 0.00031 0.00002 0 0.00002 0.00025 0 0
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50 simulations 500 simulations 1000 simulations
MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE:

All Long-run Bus. cycle Short-run All Long-run Bus. cycle Short-run All Long-run Bus. cycle Short-run
frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies

Model 6
Yule-Walker (p=1) 0.00007 0.00071 0.00009 0 0 0 0 0 0 0.00001 0 0
Yule-Walker (p=2) 0.00006 0.00051 0.00008 0 0 0 0 0 0 0.00004 0 0
Yule-Walker (p=3) 0.00006 0.00060 0.00008 0 0 0 0 0 0 0.00004 0 0
Model 7
Periodogram 0.02620 0.01131 0.00414 0.03658 0.00256 0.00111 0.00018 0.00366 0.00099 0.00124 0.00010 0.00133
Bartlett window 0.00006 0.00001 0.00002 0.00008 0.00011 0 0.00001 0.00016 0.00009 0.00001 0.00001 0.00013
Parzen window 0.00001 0 0.00001 0.00001 0.00003 0 0 0.00005 0.00002 0 0 0.00003
Blackman window 0.00001 0 0.00001 0.00001 0.00003 0 0 0.00004 0.00001 0 0 0.00002
Yule-Walker (p=1) 0 0 0 0 0 0 0 0.00001 0 0 0 0
Yule-Walker (p=2) 0.00001 0 0 0.00002 0 0 0 0.00001 0 0 0 0
Yule-Walker (p=3) 0.00001 0.00001 0 0.00001 0 0 0 0.00001 0 0 0 0
Model 8
Periodogram 0.00666 0.00994 0.00833 0.00566 0.00128 0.00950 0.00120 0.00049 0.00096 0.00927 0.00053 0.00031
Bartlett window 0.00002 0.00010 0.00002 0.00001 0 0.00003 0 0 0 0.00002 0 0
Parzen window 0.00001 0.00008 0.00002 0.00001 0 0.00002 0 0 0 0.00001 0 0
Blackman window 0.00001 0.00008 0.00002 0.00001 0 0.00002 0 0 0 0.00001 0 0
Yule-Walker (p=1) 0 0 0 0 0 0 0 0 0 0 0 0
Yule-Walker (p=2) 0 0.00002 0 0 0 0 0 0 0 0 0 0
Yule-Walker (p=3) 0.00001 0.00002 0.00001 0 0 0 0 0 0 0 0 0
Model 9
Periodogram 0.00897 0.00497 0.00627 0.01045 0.00102 0.00339 0.00078 0.00089 0.00066 0.00457 0.00036 0.00039
Bartlett window 0.00001 0.00002 0.00001 0.00001 0 0 0 0 0 0.00001 0 0
Parzen window 0.00001 0.00002 0.00001 0.00001 0 0 0 0 0 0.00001 0 0
Blackman window 0.00001 0.00003 0.00001 0.00001 0 0 0 0 0 0.00001 0 0
Yule-Walker (p=1) 0 0 0 0 0 0 0 0 0 0 0 0
Yule-Walker (p=2) 0 0 0 0 0 0 0 0 0 0 0 0
Yule-Walker (p=3) 0 0 0 0 0 0 0 0 0 0 0 0
Model 10
Periodogram 0.05834 0.00622 0.09791 0.04755 0.00715 0.00126 0.01190 0.00581 0.00469 0.00103 0.00843 0.00354
Bartlett window 0.00244 0.00113 0.00217 0.00268 0.00220 0.00130 0.00173 0.00248 0.00251 0.00133 0.00233 0.00270
Parzen window 0.00202 0.00016 0.00073 0.00272 0.00190 0.00022 0.00055 0.00261 0.00217 0.00023 0.00094 0.00286
Blackman window 0.00128 0.00006 0.00035 0.00177 0.00118 0.00010 0.00024 0.00167 0.00140 0.00011 0.00054 0.00187
Yule-Walker (p=4) 0.07847 0.00024 0.08107 0.08520 0.07744 0.00025 0.07970 0.08419 0.07823 0.00025 0.08120 0.08479
Yule-Walker (p=5) 0.06982 0.00059 0.08719 0.06969 0.06903 0.00060 0.08590 0.06903 0.06996 0.00060 0.08723 0.06988
Yule-Walker (p=6) 0.06909 0.00026 0.08740 0.06854 0.06825 0.00027 0.08566 0.06799 0.06938 0.00026 0.08751 0.06894
Model 11
Periodogram 0.08749 0.78633 0.11059 0.00870 0.02022 0.21358 0.01993 0.00111 0.01246 0.15385 0.00709 0.00057
Bartlett window 0.00044 0.00138 0.00098 0.00012 0.00031 0.00021 0.00088 0.00009 0.00024 0.00054 0.00049 0.00011
Parzen window 0.00019 0.00060 0.00050 0.00002 0.00009 0.00001 0.00032 0.00001 0.00006 0.00014 0.00014 0.00003
Blackman window 0.00018 0.00075 0.00044 0.00002 0.00007 0.00003 0.00024 0 0.00005 0.00019 0.00010 0.00002
Yule-Walker (p=2) 0.00318 0.01500 0.00672 0.00058 0.00326 0.01487 0.00703 0.00059 0.00370 0.01628 0.00841 0.00054
Yule-Walker (p=3) 0.00037 0.00152 0.00094 0.00003 0.00035 0.00159 0.00084 0.00003 0.00029 0.00124 0.00066 0.00005
Yule-Walker (p=4) 0.00008 0.00005 0.00022 0.00002 0.00004 0.00001 0.00011 0.00001 0.00001 0 0.00004 0

Table 8.2: Monte Carlo results for 50, 500, 1000 simulations and 1000 observations - Mean Squared Error
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50 simulations 500 simulations 1000 simulations
MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE:

All Long-run Bus. cycle Short-run All Long-run Bus. cycle Short-run All Long-run Bus. cycle Short-run
frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies

Model 1
Periodogram 0.07680 0.05077 0.03570 0.09597 0.00708 0.03988 0.00202 0.00586 0.00611 0.03866 0.00258 0.00431
Bartlett window 0.18166 0.00637 0.03269 0.25920 0.17049 0.00349 0.04483 0.23779 0.17190 0.00320 0.04268 0.24082
Parzen window 0.23057 0.01221 0.05258 0.32409 0.22284 0.00895 0.06715 0.30693 0.22386 0.00837 0.06511 0.30933
Blackman window 0.21447 0.01217 0.04916 0.30128 0.20601 0.00865 0.06393 0.28296 0.20704 0.00803 0.06159 0.28552
Yule-Walker (p=4) 0.19061 0.03596 0.02654 0.27219 0.17063 0.03574 0.02945 0.24101 0.17833 0.03586 0.02678 0.25365
Yule-Walker (p=5) 0.01206 0.00047 0.00036 0.01793 0.00170 0.00005 0.00061 0.00231 0.00385 0.00005 0.00025 0.00569
Yule-Walker (p=6) 0.01028 0.00032 0.00030 0.01530 0.00156 0.00008 0.00064 0.00207 0.00367 0.00007 0.00030 0.00538
Model 2
Periodogram 0.02689 0.03155 0.04073 0.02085 0.00364 0.02940 0.00295 0.00135 0.00353 0.03440 0.00300 0.00068
Bartlett window 0.00468 0.00064 0.00845 0.00356 0.00438 0.00029 0.00869 0.00304 0.00423 0.00024 0.00808 0.00307
Parzen window 0.00737 0.00165 0.01448 0.00507 0.00712 0.00117 0.01425 0.00483 0.00685 0.00126 0.01351 0.00472
Blackman window 0.00565 0.00077 0.01108 0.00394 0.00539 0.00046 0.01086 0.00367 0.00520 0.00046 0.01030 0.00361
Yule-Walker (p=1) 0.05948 0.08331 0.10834 0.03739 0.05955 0.08449 0.10834 0.03738 0.06006 0.08980 0.10887 0.03742
Yule-Walker (p=2) 0.00068 0.00008 0.00171 0.00033 0.00015 0.00008 0.00045 0.00004 0.00008 0.00013 0.00023 0.00001
Yule-Walker (p=3) 0.00039 0.00020 0.00051 0.00036 0.00006 0.00017 0.00009 0.00004 0.00004 0.00025 0.00004 0.00002
Model 3
Periodogram 0.13326 0.03758 0.08216 0.16339 0.03842 0.00834 0.00346 0.05552 0.01763 0.00701 0.00898 0.02217
Bartlett window 4.32891 0.01185 0.47422 6.31350 4.14834 0.01172 0.65643 5.96860 4.19225 0.01137 0.60690 6.05461
Parzen window 5.09816 0.00106 0.73727 7.36455 4.96895 0.00040 0.97186 7.07576 4.99989 0.00050 0.90908 7.14759
Blackman window 4.83196 0.00054 0.70902 6.97592 4.69410 0.00010 0.94568 6.67327 4.72699 0.00015 0.88227 6.74829
Yule-Walker (p=1) 7.92840 0.05657 0.07943 11.87811 7.92843 0.05705 0.07952 11.87807 7.92844 0.05702 0.07952 11.87808
Yule-Walker (p=2) 0.89473 0.00002 0.00010 1.34467 0.35815 0.00001 0.00004 0.53825 0.43179 0.00001 0.00003 0.64893
Yule-Walker (p=3) 0.84859 0.00007 0.00022 1.27527 0.29268 0 0.00004 0.43985 0.37888 0.00001 0.00004 0.56941
Model 4
Periodogram 5.62807 84.05082 0.20739 0.01894 4.96097 74.86641 0.02869 0.00153 4.92395 74.20600 0.05500 0.00093
Bartlett window 2.63809 38.39422 0.35625 0.00412 2.70032 39.45288 0.32724 0.00412 2.67420 38.92272 0.36026 0.00424
Parzen window 3.21719 45.54613 0.76028 0.00044 3.26580 46.48394 0.71013 0.00050 3.23834 45.88031 0.75651 0.00052
Blackman window 2.97147 42.05257 0.70647 0.00017 3.02309 43.03350 0.65691 0.00022 2.99602 42.43527 0.70345 0.00023
Yule-Walker (p=1) 0.10726 1.59167 0.00733 0.00001 0.05310 0.78451 0.00448 0 0.04589 0.67705 0.00412 0
Yule-Walker (p=2) 0.10404 1.53530 0.00923 0.00001 0.05132 0.76218 0.00335 0.00001 0.04884 0.73109 0.00178 0.00001
Yule-Walker (p=3) 0.09924 1.48681 0.00331 0.00001 0.04814 0.71954 0.00199 0.00001 0.04824 0.72263 0.00161 0.00001
Model 5
Periodogram 0.55980 0.00284 0.00440 0.83929 0.03161 0.00131 0.00011 0.04734 0.00867 0.00370 0.00067 0.01239
Bartlett window 1.96617 0.00110 0.00261 2.95384 2.04422 0.00108 0.00281 3.07107 2.04645 0.00109 0.00276 3.07443
Parzen window 2.71299 0 0 4.07741 2.78620 0 0.00002 4.18744 2.78580 0 0.00001 4.18684
Blackman window 2.44001 0.00002 0 3.66715 2.50910 0 0.00001 3.77098 2.51014 0 0 3.77255
Yule-Walker (p=1) 0.03431 0 0 0.05156 0.06584 0 0 0.09895 0.06367 0 0 0.09569
Yule-Walker (p=2) 0.01630 0 0 0.02449 0.06415 0.00001 0 0.09641 0.06705 0 0 0.10077
Yule-Walker (p=3) 0.02232 0.00001 0 0.03354 0.06140 0.00001 0 0.09228 0.06853 0.00001 0 0.10299
Model 6
Periodogram 0.01565 0.15812 0.01477 0.00184 0.01112 0.15798 0.00174 0.00031 0.01058 0.15178 0.00164 0.00016
Bartlett window 0.00230 0.02425 0.00233 0.00011 0.00160 0.01690 0.00144 0.00015 0.00149 0.01578 0.00121 0.00018
Parzen window 0.00204 0.02053 0.00231 0.00010 0.00142 0.01475 0.00149 0.00008 0.00133 0.01339 0.00138 0.00011
Blackman window 0.00180 0.01855 0.00199 0.00006 0.00116 0.01246 0.00113 0.00004 0.00107 0.01126 0.00105 0.00007
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50 simulations 500 simulations 1000 simulations
MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE: MSE:

All Long-run Bus. cycle Short-run All Long-run Bus. cycle Short-run All Long-run Bus. cycle Short-run
frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies

Model 6
Yule-Walker (p=1) 0.00009 0.00121 0.00004 0 0.00002 0.00009 0.00004 0 0.00003 0.00033 0.00003 0
Yule-Walker (p=2) 0.00007 0.00044 0.00008 0.00002 0.00004 0.00036 0.00003 0.00001 0.00005 0.00052 0.00004 0.00001
Yule-Walker (p=3) 0.00015 0.00035 0.00040 0.00002 0.00009 0.00109 0.00003 0.00001 0.00013 0.00157 0.00006 0.00002
Model 7
Periodogram 0.01069 0.00449 0.00330 0.01429 0.00278 0.00383 0.00061 0.00356 0.00066 0.00207 0.00008 0.00076
Bartlett window 0.00101 0.00005 0.00024 0.00142 0.00049 0.00004 0.00012 0.00069 0.00063 0.00001 0.00012 0.00090
Parzen window 0.00105 0 0.00006 0.00155 0.00053 0 0.00001 0.00080 0.00066 0.00001 0.00001 0.00099
Blackman window 0.00083 0 0.00005 0.00122 0.00033 0 0 0.00050 0.00045 0.00002 0.00001 0.00067
Yule-Walker (p=1) 0.00006 0.00001 0.00001 0.00009 0.00002 0 0 0.00003 0.00003 0.00001 0.00001 0.00004
Yule-Walker (p=2) 0.00015 0 0 0.00023 0.00005 0.00002 0.00001 0.00008 0.00004 0.00001 0 0.00006
Yule-Walker (p=3) 0.00018 0.00003 0.00001 0.00027 0.00010 0.00007 0.00001 0.00013 0.00010 0.00002 0 0.00015
Model 8
Periodogram 0.00506 0.02225 0.00554 0.00316 0.00185 0.01965 0.00123 0.00033 0.00140 0.01820 0.00038 0.00014
Bartlett window 0.00009 0.00040 0.00002 0.00008 0.00006 0.00053 0.00004 0.00002 0.00003 0.00027 0.00002 0
Parzen window 0.00006 0.00018 0.00004 0.00006 0.00004 0.00028 0.00004 0.00002 0.00001 0.00013 0.00002 0
Blackman window 0.00007 0.00021 0.00004 0.00006 0.00004 0.00033 0.00004 0.00002 0.00001 0.00015 0.00001 0
Yule-Walker (p=1) 0.00001 0 0 0.00002 0.00001 0.00003 0.00001 0.00001 0.00001 0.00008 0.00002 0
Yule-Walker (p=2) 0.00003 0 0.00001 0.00004 0.00002 0.00001 0 0.00003 0.00002 0.00014 0.00002 0.00001
Yule-Walker (p=3) 0.00005 0 0.00003 0.00007 0.00004 0.00008 0.00002 0.00005 0.00005 0.00029 0.00003 0.00003
Model 9
Periodogram 0.00782 0.01472 0.01385 0.00471 0.00101 0.00768 0.00024 0.00066 0.00077 0.00761 0.00020 0.00032
Bartlett window 0.00003 0.00002 0.00006 0.00003 0.00001 0.00009 0 0.00001 0.00001 0.00006 0.00001 0
Parzen window 0.00003 0 0.00002 0.00003 0.00001 0.00006 0.00001 0 0.00001 0.00005 0.00001 0
Blackman window 0.00003 0.00001 0.00002 0.00003 0.00001 0.00009 0.00001 0 0.00001 0.00007 0.00001 0
Yule-Walker (p=1) 0.00001 0.00002 0.00001 0 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 0.00001 0.00001
Yule-Walker (p=2) 0.00003 0.00010 0.00002 0.00002 0.00002 0.00004 0.00001 0.00002 0.00001 0.00003 0.00001 0.00002
Yule-Walker (p=3) 0.00004 0.00017 0.00003 0.00003 0.00004 0.00007 0.00001 0.00005 0.00003 0.00007 0.00001 0.00004
Model 10
Periodogram 0.06113 0.06863 0.13005 0.03257 0.01132 0.02233 0.01678 0.00803 0.00198 0.00590 0.00228 0.00148
Bartlett window 0.01861 0.01389 0.01306 0.02133 0.02561 0.01427 0.02610 0.02654 0.02409 0.01349 0.02351 0.02538
Parzen window 0.03727 0.01916 0.03629 0.03947 0.04323 0.02258 0.04923 0.04287 0.04225 0.02043 0.04679 0.04258
Blackman window 0.02907 0.01106 0.02481 0.03258 0.03493 0.01400 0.03656 0.03636 0.03384 0.01247 0.03406 0.03588
Yule-Walker (p=4) 0.06673 0.00027 0.06338 0.07469 0.07770 0.00034 0.08424 0.08276 0.07474 0.00031 0.08161 0.07937
Yule-Walker (p=5) 0.05820 0.00064 0.06580 0.06085 0.06882 0.00096 0.08872 0.06754 0.06603 0.00082 0.08688 0.06411
Yule-Walker (p=6) 0.05575 0.00028 0.06267 0.05848 0.06824 0.00041 0.08890 0.06664 0.06483 0.00037 0.08604 0.06268
Model 11
Periodogram 0.05091 0.44330 0.06518 0.00615 0.02038 0.26818 0.00819 0.00066 0.02080 0.29008 0.00515 0.00034
Bartlett window 0.00419 0.01135 0.01074 0.00084 0.00209 0.00638 0.00336 0.00115 0.00353 0.01152 0.00757 0.00111
Parzen window 0.00353 0.00345 0.01031 0.00080 0.00181 0.00018 0.00389 0.00113 0.00298 0.00216 0.00776 0.00112
Blackman window 0.00269 0.00381 0.00783 0.00051 0.00113 0.00037 0.00221 0.00077 0.00218 0.00267 0.00549 0.00079
Yule-Walker (p=2) 0.00238 0.01482 0.00420 0.00041 0.00224 0.01075 0.00457 0.00046 0.00278 0.01660 0.00540 0.00034
Yule-Walker (p=3) 0.00095 0.00108 0.00315 0.00004 0.00054 0.00342 0.00108 0.00003 0.00078 0.00092 0.00247 0.00009
Yule-Walker (p=4) 0.00086 0.00088 0.00290 0.00003 0.00021 0.00043 0.00061 0.00002 0.00018 0.00017 0.00055 0.00003

Table 8.3: Monte Carlo results for 50, 500, 1000 simulations and 100 observations - Mean Squared Error
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50 simulations 500 simulations 1000 simulations
All Long-run Bus. cycle Short-run All Long-run Bus. cycle Short-run All Long-run Bus. cycle Short-run

frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies frequencies
Model 1
Periodogram 0.37296 0.04058 0.07410 0.52333 0.39184 0.03252 0.05344 0.55915 0.37411 0.03286 0.06398 0.52894
Bartlett window 0.07271 0.00001 0.05897 0.08273 0.09023 0.00000 0.07344 0.10274 0.08717 0.00000 0.07020 0.09975
Blackman window 0.06503 0.00000 0.05001 0.07193 0.08037 0.00000 0.06135 0.08913 0.07749 0.00001 0.05882 0.08634
Yule-Walker (p=5) 0.24658 0.00117 0.05542 0.34685 0.31883 0.00134 0.06078 0.45251 0.29390 0.00145 0.05657 0.41676
Model 2
Periodogram 0.08800 0.03405 0.07661 0.07111 0.06620 0.02986 0.04503 0.04772 0.06706 0.03480 0.04278 0.04824
Bartlett window 0.03865 0.00002 0.01535 0.02834 0.03884 0.00003 0.01499 0.02977 0.04027 0.00004 0.01558 0.03031
Blackman window 0.04139 0.00006 0.01191 0.03151 0.04149 0.00006 0.01225 0.03243 0.04312 0.00007 0.01274 0.03332
Yule-Walker (p=2) 0.05268 0.00002 0.02788 0.04067 0.05784 0.00002 0.03357 0.04452 0.05983 0.00002 0.03463 0.04590
Model 3
Periodogram 6.98579 0.03926 0.12916 10.15619 8.10979 0.00828 0.07204 11.79885 7.73488 0.00737 0.06752 11.25746
Bartlett window 1.31536 0.00172 0.52502 1.70873 1.60986 0.00219 0.68161 2.07587 1.52926 0.00209 0.63794 1.97592
Blackman window 1.19347 0.00001 0.65220 1.47390 1.45526 0.00001 0.82584 1.78346 1.38396 0.00002 0.77840 1.69921
Yule-Walker (p=2) 3.42627 0.00000 0.05884 4.95795 4.69302 0.00000 0.06056 6.80502 4.47931 0.00000 0.06082 6.49204
Model 4
Periodogram 6.57046 60.97182 0.81268 0.01984 5.65215 50.00607 0.68428 0.00259 5.49921 45.92256 0.63403 0.00211
Bartlett window 1.53666 0.09603 1.05349 0.00317 1.46830 0.09019 1.00318 0.00337 1.51134 0.09035 1.04129 0.00358
Blackman window 1.54996 0.03751 1.24373 0.00170 1.48331 0.03546 1.18245 0.00189 1.52949 0.03601 1.22113 0.00200
Yule-Walker (p=1) 5.25140 19.09528 0.43225 0.00115 5.52877 18.79541 0.45419 0.00113 5.70357 19.85095 0.45749 0.00113
Model 5
Periodogram 6.99133 0.00266 0.00445 9.97311 6.55748 0.00130 0.00012 9.36609 6.45135 0.00376 0.00070 9.19945
Bartlett window 2.63884 0.00005 0.00023 3.50052 2.37858 0.00006 0.00024 3.15447 2.39432 0.00006 0.00024 3.17120
Blackman window 2.60988 0.00000 0.00003 3.39889 2.34366 0.00000 0.00003 3.04927 2.36452 0.00000 0.00003 3.07284
Yule-Walker (p=1) 6.56743 0.00000 0.00002 9.40232 5.40881 0.00000 0.00002 7.71776 5.46039 0.00000 0.00002 7.79311
Model 6
Periodogram 0.03752 0.14515 0.02025 0.00311 0.03447 0.14774 0.01603 0.00176 0.03484 0.14099 0.01634 0.00171
Bartlett window 0.01905 0.00000 0.00527 0.00170 0.01967 0.00001 0.00717 0.00149 0.02037 0.00001 0.00733 0.00161
Blackman window 0.02161 0.00001 0.00547 0.00200 0.02226 0.00003 0.00720 0.00169 0.02305 0.00002 0.00732 0.00183
Yule-Walker (p=1) 0.03256 0.00046 0.01430 0.00139 0.03012 0.00033 0.01315 0.00136 0.03092 0.00037 0.01356 0.00137
Model 7
Periodogram 0.04159 0.00459 0.00337 0.04500 0.03520 0.00384 0.00063 0.03771 0.03194 0.00200 0.00012 0.03296
Bartlett window 0.02335 0.00000 0.00008 0.02196 0.02414 0.00000 0.00004 0.02388 0.02363 0.00000 0.00006 0.02293
Blackman window 0.02643 0.00000 0.00008 0.02476 0.02718 0.00000 0.00004 0.02677 0.02666 0.00000 0.00006 0.02578
Yule-Walker (p=1) 0.02808 0.00000 0.00003 0.02944 0.03052 0.00000 0.00003 0.03226 0.03051 0.00000 0.00003 0.03229
Model 10
Periodogram 0.26575 0.07000 0.38481 0.17463 0.17537 0.02371 0.18341 0.13994 0.17323 0.00683 0.18998 0.13713
Bartlett window 0.09772 0.00015 0.10766 0.06703 0.07862 0.00027 0.07692 0.05657 0.08068 0.00024 0.08146 0.05888
Blackman window 0.09480 0.00035 0.08504 0.06990 0.07729 0.00034 0.06421 0.05858 0.07898 0.00032 0.06764 0.06055
Yule-Walker (p=6) 0.07092 0.00001 0.13279 0.03106 0.05238 0.00001 0.08983 0.02547 0.05551 0.00001 0.09630 0.02781
Model 11
Periodogram 0.15804 0.45839 0.07223 0.02523 0.14301 0.25786 0.02185 0.01946 0.13270 0.27564 0.01369 0.01948
Bartlett window 0.08628 0.00002 0.00420 0.01695 0.09722 0.00015 0.00760 0.01782 0.08967 0.00012 0.00574 0.01812
Blackman window 0.09727 0.00001 0.00494 0.02046 0.10949 0.00004 0.00739 0.02157 0.10109 0.00003 0.00580 0.02162
Yule-Walker (p=3) 0.11098 0.00004 0.00633 0.01609 0.12191 0.00014 0.00641 0.01866 0.11611 0.00009 0.00463 0.01958

Table 8.4: Monte Carlo results for 50, 500, 1000 simulations and 100 observations - Variance
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Figure 8.4: Theoretical population spectrum of AR(5) process compared with spec-
trum estimated by Blackman window for different number of simulations.
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Figure 8.5: Theoretical population spectrum of AR(1) process (φ=0.9) compared with
spectrum estimated by Bartlett window for different number of simulations a.

aComparison is presented only for long-run and business cycle frequencies.
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8.3 Monte Carlo Implications

Overall, we find that the all methods are more precise with an increasing number of
observations. A higher the number of observations is associated with lower values of
mean squared error. This characteristic we use in the [12] where we apply the spectral
analysis for stock prices.

The parametric methods, in our case Yule-Walker method, is the best estimator for
autoregressive processes. But for other processes, the non-parametric methods with
windows are more precise. The sharp peaks in spectrum for different examined pro-
cesses cause the problem during the estimation for both types of method.

The estimations with Bartlett or Blackman window have a lower variance and MSE
in comparing with the results estimated with Parzen window or the periodogram. The
periodogram achieves the higher variance among the examined method. Therefore the
quality of the periodogram estimate can be improved by an appropriate selection of the
windows.

However, usually we do not know the true data generating process. Mostly, the real
time series are approximated by autoregressive processes. In general, there is the ten-
dency to underestimate the order of the autoregressive process. Real time series have
more complex structure, therefore we recommend to use the non-parametric methods
smoothed by the Blackman or Bartlett window because they are better estimator of
spectrum for autoregressive processes with underestimate value of order.

We also apply the Monte Carlo analysis to detect how the bandwidth of window
affects the precision of the estimation. Monte Carlo simulations with different band-
widths confirmed the statement of Chatfield that h approximately equals to 2

√
T is high

enough to provide a sufficient graphical resolution (see [14]).
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9
China in the World Economy: Dynamic
Correlation Analysis ∗

In the last decade the structure of the world economy has become more complex. Be-
fore 1990, the economic development was clearly dominated by the USA, Japan and
several European economies. There was also significant effort to achieve some degree
of policy coordination through the Organisation for Economic Co-operation and De-
velopment (OECD), International Monetary Fund (IMF), and especially the European
Union (EU). In general, the emerging countries were highly dependent on economic
development in the OECD countries and followed to some extent also their policies.

Few events in the world economy match the emergence of China in recent decades.
Predominantly agrarian before 1980, China today boasts an extensive modern indus-
trial economy with booming urban regions. The country’s high trade growth is sup-
ported by large foreign direct investment (FDI) flows (Eichengreen and Tong, [22]).
Not surprisingly, growth in the world’s most populous country has changed the distri-
bution of economic activities across the world. Between 1980 and 2006, the share of
Chinese GDP in the world economy valued at market exchange rates increased from
1.7% to 5.5% (this share is even higher if purchasing-power-adjusted prices are used).

∗This chapter is based on the papers China in the world economy: Dynamic correlation analysis of
business cycles ([10]) and New global players and disharmonies in the world orchestra: Cohesion analysis
of business cycles of China ([11]) elaborated in cooperation with Jarko Fidrmuc and Iikka Korhonen.
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China in the World Economy

The international redistribution of economic activities holds important implications
for business cycles. Emerging countries, and particularly China, contribute significantly
to global growth. Thus, global economic prospects are less dependent than earlier on
the performance of large developed economies such as the US and Germany. This
situation may make countries in a particular region less vulnerable to demand shocks
(IMF, [49]).

The literature on business cycle synchronization stresses the importance of foreign
trade and capital flows. Thus, the emergence of China as a large trading nation and a
target for international investment may have a significant impact on the business cycles
of its partner countries.

Even as China has opened up to the world economy, recent business cycle trends
suggest differences among countries in their intensity of trade and financial relations
with China. This seems especially important in the case of European countries. We
observe a joint EU cycle up to the 1980s (Artis and Zhang in [5], Fatás in [24]) that
essentially vanishes in the 1990s (Artis, [4]). Moreover, the intensity of the trading and
financial links with China has diverged among individual EU countries. For example,
the UK, Germany, Finland, and the Netherlands have extensive links with China, while
many other EU countries have quite modest economic ties with China.

Foreign trade and foreign direct investment (FDI) are generally seen as important
factors of business cycles. However, their effects on correlation of international business
cycles are ambiguous. Frankel and Rose in [27] find a robust positive relationship
between trade intensity and correlation of business cycles between OECD countries.
This is reflected in high shares of intra-industry trade between these countries. Yet
China’s specific position in the international division of labor should result in increased
specialization. Krugman in [56], for example, argues that this should cause business
cycle divergence between countries. Moreover, FDI can be either a substitute or a
complement to exports between a pair of countries.

In addition to the rich literature on trade between China and the developed coun-
tries (Bussière et al., [13]), there are also a range of authors (e.g. de Grauwe and
Zhang, [20]) dealing with the determinants of the business cycles in Southeast Asia.
Few papers deal specifically with the synchronization of business cycles in developed
countries and China, so this study aims to help fill this gap in the literature.

Our study shows three findings. First, the business cycle in China is quite different
from OECD countries (with the exception of Korea). Second, trade flows between
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OECD countries and China have so far had rather limited effects on the comovements in
China and OECD countries, although they have increased the comovement at the short-
run frequencies. This stands in sharp contradiction to the positive relationship between
trade and business cycle similarities between OECD countries extensively documented
in the earlier literature (and confirmed here for OECD countries). Finally, trade and
financial flows with China have lowered the degree of business cycle synchronization
between OECD countries. To our knowledge, this result is novel to the literature.

9.1 Determinants of Business Cycle Synchronization

Economic development is determined by domestic factors (e.g. aggregate demand
shocks and budgetary policy) and international factors (e.g. external demand and in-
ternational prices for traded goods), as well as their interaction. In open economies,
international factors play an important role, often driving the formulation of domes-
tic policies designed to insulate the economy from adverse external economic shocks.
Frankel and Rose in [27] argue that trade, and more generally economic integration
among countries, results in increased synchronization of individual business cycles.
They contend trade links provide a channel for transmission of shocks across countries.
In line with approach, Kenen ([52]) shows that the correlation between two countries’
output changes increases with the intensity of trade links. Kose and Yi ([55]) subse-
quently analyze this issue in an international real business cycle model. Although their
model suggests a positive relation between trade and output comovement, only small
qualitative effects are obtained.

The hypothesis of a positive relationship between trade and business cycles is not
universally accepted, however. Krugman in [56], for example, argues that countries
should be expected to increasingly specialize as they become more integrated. Thus, the
importance of asymmetric or sectorspecific shocks should increase with the process of
economic integration — a pattern perhaps more appropriate here to explaining Chinese
business cycles.

The role of trade links has been studied extensively in the empirical literature. De-
spite the theoretical ambiguities, authors generally find that countries trading more in-
tensively exhibit a higher degree of output comovement (e.g. Frankel and Rose, [27],
Otto et al., [69], Baxter and Kouparitsas, [8]). It is not trade relations per se, however,
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that induce business cycle synchronization. Indeed, Frankel and Rose’s hypothesis un-
derscores the fact that bilateral trade is mainly intra-industry trade (although this in-
dicator does not directly enter their analysis). Instead, they argue that specialization
increases the exposure to sector-specific shocks transmitted via intra-industry trade.
Fontagné ([26]) discusses the relation between intraindustry trade and the symmetry
of shocks in a monetary union. Fidrmuc ([25]) demonstrates that intra-industry trade
is a better indicator for business cycle symmetry than simple trade intensity.

Given China’s tendency to specialize vertically, this channel may not be particularly
relevant for the Chinese business cycle. Instead, the specialization forces discussed
by Krugman ([56]) appear to dominate and drive the differences in business cycles of
China and its various trading partners.

Financial integration between countries could also play an important role in syn-
chronization of business cycles, but again, the impact of financial integration on business
cycles is ambiguous. On the one hand, financial markets work similarly to trade links.
Thus, business cycles in one country are likely to affect investment decisions and asset
prices in other countries via financial flows. Conversely, FDI allows countries to special-
ize (Kalemli-Ozcan et al., [50], Hoffmann, [42], Imbs, [48]) such that a high degree
of financial integration may reduce the extent of co-fluctuations. Empirical analysis
here seems to indicate a less robust impact of financial integration on business cycle
synchronization (see Artis et al., [4]).

In any case, the literature on business cycle correlation is concentrated on devel-
oped economies. Among the studies that look at business cycle correlation in Eastern
Asia, we note the most relevant papers. Sato and Zhang ([76]) find common business
cycles for the East Asian region. Shin and Sohn ([80]) show trade integration (and
financial integration to a considerably lesser extent) enhances comovements of output
in East Asia. Kumakura in [57] reports that the share of electronic products in foreign
trade increases business cycle correlation for the countries around the Pacific. Finally,
Shin and Wang ([79]) observe that trade is a significant determinant of business cycle
correlation for East Asian countries. Few, if any, papers directly examine the correlation
of business cycles between China and other emerging Asian economies and those of the
OECD countries.
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9.2 Stylized Facts for the Business Cycle in China and

Selected Countries

We use quarterly GDP data taken from IMF International Financial Statistics. For devel-
oped countries, the time series start in the 1970s or 1980s. Where seasonal adjustment
is required, we perform the US Census Bureau’s X12 ARIMA procedure for the entire
available period.

For China, we use national quarterly data in current prices deflated by the CPI. It is
important to note here that these time series have undergone major revision recently.
So far, only annual data are available according to the new methodology1. We adjusted
the time series using the same procedure as for other countries. In China’s case, the
time series start from 1992. This restricts our analysis to the period between 1992 and
2006.

All time series were tested on unit root by Dickey-Fuller GLS test proposed by Elliott
et al. ([23]), which improves the power of the ADF test by detrending. The test rejects
clearly the null of unit root in output of all analyzed countries. Similarly, Kwiatkowski
et al. ([58]) tests fail to reject the null of stationarity for all countries. Panel version of
both tests (according to Im et al., [47] and Hadri, [34]) confirms these results.

We calculate dynamic correlation defined in (5.28) between China and selected
developed economies. Figure 9.1 presents these dynamic correlations of business cycles
in China and selected developed economies between 1992 and 2006. As in most cited
studies, we distinguish among three components of the aggregate correlation. First,
the long-run movements (over 8 years) correspond to the low frequency band below
π/16. Second, the traditional business cycles (i.e. cycles with a period between 1.5 and
8 years) belong to the medium part of the figure (marked as a shadow area) between
π/16 and π/3. Finally, the short-run movements are defined by frequencies over π/3.
Although it is usual to neglect these developments in literature, we look at them here
as the short-run dependences of economic development could potentially be important
in China’s case.

We can see that business cycles in China and selected economies vary significantly
over the frequencies. Some of countries show comparably high positive correlation with

1The impact of the revision on correlations should be moderate as long as the dynamic properties of
the time series remain the same.
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the long-run cycles of China. These countries include mainly the non-European OECD
countries (the US, Korea, Australia, Japan and New Zealand). To a lesser degree, we
also see positive correlations of the long-run development in Denmark, Italy, Norway
and Turkey. In general, the non-European OECD countries trade more intensively with
China than the remaining countries of our sample, which may help explain the extent
of business cycle correlation. For European countries, however, this explanation is less
credible.

We find a more homogenous picture for the traditional business cycle frequencies
(between π/16 ≈ 0.2 and π/3 ≈ 1). In general, negative correlations of business cycles
in China and OECD countries dominate. Basically, only Korea and Denmark show a
positive correlation over the whole interval of business cycle frequencies. This confirms
the earlier findings of Shin and Sohn ([80]) and Sato and Zhang ([76]). As before,
the non-European OECD countries show a positive correlation at the lower range of the
interval (close to eight years). Only Belgium and Spain show positive correlation at
frequencies close to 1.5 years.

Finally, we see large differences in short-run frequencies. In general, the dynamic
correlations tend to increase at the right end of the spectrum (see figure 9.1). This
would correspond to strong business linkages between suppliers from China and final
producers in developed countries. Among the European countries, short-term correla-
tion appears to be high for Finland, the Netherlands, and Sweden. Short-run correla-
tions are also high also for the US and Korea, but only marginally positive for Japan.
All these countries can be characterized as having highly intensive relationships with
China over a longer period.

Figure 9.2 compares average dynamic correlations at the business cycle and the
short-run frequencies with the static correlations for the sample. We can see that the
negative correlations dominate for nearly all countries especially for the business cycle
frequencies. Only Korea, Denmark, Norway and Italy show a positive correlation of
business cycles with China. At the same time, several countries show positive dynamic
correlations for the short-run frequencies. This is especially strong for Korea, Nether-
lands, Sweden, Spain, and the USA. Thus, there could be also some signs of increasing
similarities of business cycles. Cui and Syed ([18]) find that China is moving away from
traditional assembly operations in its processing activities and its exports have started
to rely more on domestically sourced components.
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Figure 9.1: Dynamic correlations between China and selected countries, 1992-2006 a.

aBusiness cycle frequencies are marked by the shadow area.
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Figure 9.2: Aggregate correlations of business cycles in China and selected countries,
1992-2006.

9.3 Cohesion Analysis and Chinese Effect on World

Business Cycles

As we know from the section 5.5, the cohesion, an extension of dynamic correlation,
defined in (5.30) is a measure of dynamic co-movement within a group of variables.
Hence, it is an appropriate technique for study of problems of business cycle synchro-
nization.

Therefore, in order to illustrate the synchronization across the surveyed countries,
it is possible to compute the cohesion, which provides a better measure of the dynamic
co-movements between time series than alternative methods.

Figure 9.3 illustrates a graphical representation of cohesion for selected regions of
the world economy at all frequencies. The figure provides a comparison of the cohesion
among OECD countries (except Japan and Korea that are involved in Asia group), Asian
countries and members of European Union.

We can see that OECD countries show a high level of cohesion for all frequencies.
In general, we confirm a high degree of synchronization of business cycles in OECD
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Figure 9.3: Cohesion of business cycles in selected regions, 1992-2006 a.

aBusiness cycle frequencies are marked by the shadow area.

countries. Not surprising, the highest values of cohesion are found for the European
Union (defined as 15 member states before 2004). Nevertheless, the addition of the
non-European OECD countries does not change the picture significantly.

By contrast, the level of cohesion between China, Korea and Japan is close to zero
at the business cycle frequencies. In turn, the Asian cohesion is higher for the very
short-term frequencies than in other regions. The inclusion of the Asian countries to
the worldwide level of cohesion makes a difference, although we reflect the different
size of the countries by using the GDP weights. For business cycle frequencies, we
can see that the degree of cohesion drops approximately by one half and it stays at
relatively low levels also for the short-run movements. Actually, future developments
can result even in further declines of the worldwide level of cohesion as the weights of
emerging countries increase. The evidence on business cycle decoupling indicates that
this process can be counteracted only slowly with the convergence of business cycles in
emerging countries with those in OECD countries (see Kose et al., [54]).
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9.4 Exposure to a Globalization Shock and Business

Cycles of OECD Countries

The stylized facts of the previous sections show that the business cycles in China and
in the OECD countries are largely not synchronized. Furthermore, the intensity of eco-
nomic links with China differs largely between the OECD countries. This can influence
the business cycles of the individual OECD countries as shown partially in the previous
section. In addition to increased synchronization of movements at particular frequen-
cies, the synchronization between OECD countries may decline as a result of different
exposure to the ‘globalization’ or ‘China’ shock. Alternatively, different specialization
patterns achieved during the globalization period may lead also to increasing dissimi-
larities in business cycles of the OECD countries despite similar exposure to trade and
financial integration with China and other emerging markets.

Therefore, we extend our analysis to the business cycles between the OECD coun-
tries (excluding Korea and Mexico from the previous sample because they are possibly
more similar to emerging economies and due to data reasons). We start with the es-
timation of the traditional OCA endogeneity equation which follows Frankel and Rose
([27]) for individual frequencies,

ρY X(ω) = β1(ω) + β2(ω)bY X + εY X(ω). (9.1)

where ρY X is the dynamic correlation between X and Y at frequency ω and bY X stands
for trade to GDP ratio of countries Y and X. Because estimating (9.1) by OLS may be
inappropriate (see Imbs, [48]), we use two stage OLS. This reflects that bilateral trade
flows might be influenced by exchange rate policies. Therefore, trade and FDI intensi-
ties have to be instrumented by exogenous determinants of bilateral trade and financial
flows. Such instruments are provided by the so-called ‘gravity model’ (Bussière et al.,
[13]) including the log of GDP and GDP per capita, log of distance between trading
partners, a dummy for geographic adjacency, countries with a common language, and
a dummy for the 15 earlier member states of the EU and the NAFTA.

Usually, equations similar to (9.1) are estimated for static correlation between OECD
countries, which represents also the starting point of our analysis. The results are
presented in the first column of table 9.1. Similarly, other authors sometimes use the
band-pass filter (BPF), which is also presented in the third column in table 9.1. In

82



9.4 Exposure to a Globalization Shock and Business Cycles China in the World Economy

addition, table 9.1 presents results for all intervals of dynamic correlations for selected
frequency intervals. As expected, we can see that the trade coefficient estimated for
the average dynamic correlations over all frequencies is nearly equal to the results
for the static correlation. The same is true for the average of dynamic correlations
over the business cycle frequencies, while the results for the band-pass filter are much
higher. We can see also that trade coefficient is nonsignificant for the average dynamic
correlation over the short-run frequencies. This means that trade has mainly an effect
on business cycle and long-run frequencies. This is an interesting extension of Frankel
and Rose ([27]) result.

The detailed results for individual frequencies are reported in figure 9.4. We can
see that the positive relationship between business cycle similarities and the degree
of trade integration is fully confirmed for the business cycle frequencies as well as for
the long-run frequencies in OECD countries. Somewhat surprisingly, the relationship is
positive but no longer significant for the short-run frequencies.

Figure 9.4: Estimation results by frequencies: Bilateral OECD trade/GDP a.

aConfidence bands are constructed as 1.96 standard errors and business cycle frequencies are marked
by the shadow area.

In the next step, we extend equation (9.1) to

ρY X(ω) = β1(ω) + β2(ω)bY X + δ(ω)xY + δ(ω)xX + εY X(ω). (9.2)

where x represents the measures of economic and financial integration with China,
which enters for both countries Y and X. In particular, we take the ratio of bilateral
trade, FDI stock, and flows (between 2001 and 2005) recorded between OECD coun-

83



9.4 Exposure to a Globalization Shock and Business Cycles China in the World Economy

Figure 9.5: Estimation results by frequencies, determinants of business cycle of OECD
countries a.

aEach block of the table corresponds to a regression set, which includes the bilateral OECD trade and
a proxy for countries’ links to China. Confidence bands are constructed as 1.96 standard errors. Business
cycle frequencies are marked by the shadow area. For better comparison, explanatory variables have
been rescaled to yield coefficients of the same size.

tries and China to GDP of the analyzed OECD countries. This shows the importance of
economic and financial links from the perspective of the OECD countries. We restrict
the coefficient for economic and financial integration with China, δ, to be the same for
both countries, as the differences between them are caused by different ordering of
the countries in the data matrix. This reflects also that we use only one half of the all
possible combinations of N countries, because the indicators are the same (except for
possible errors in trade statistics) for the country pair Y and X as well as for the pair
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X and Y .
The previous results for bilateral trade intensities of OECD countries remain un-

changed (see table 9.1) if we include data for trade and financial links of OECD coun-
tries with China. Furthermore, we can see that the adjusted coefficients of determi-
nation improve as well. Actually, trade flows between OECD countries explain only 4
per cent of variance of our measure of similarity of comovements at the business cy-
cle frequencies. The inclusion of trade intensity with China explains additional 15%

of variance of business cycle similarities for the average of dynamic correlations for
business cycle frequencies. The share of explained variance is even higher for static
correlations, correlations using the band-pass filter and average dynamic correlations
for the long-run frequencies.

In contradiction to trade integration between OECD countries, figure 9.5 and table
9.1 show that x has negative sign and is highly significant especially at the longer-term
business cycles frequencies. This pattern is the same for all indicators of economic and
financial links between OECD countries and China. This confirms our hypothesis that
high intensity of trade and financial links to China has a negative effect on country’s
synchronization with business cycles of other OECD countries. For the short-run fre-
quencies, the estimated coefficients are insignificant and in few cases they have positive
signs.

In all estimations, the effects of bilateral OECD trade intensity remains positive
and significant for the business cycle frequencies (especially those at the right-hand
spectrum). However, the size of the coefficients is slightly lower in all estimations
when economic ties with China are included. This finding can be visible also for the
individual frequencies in figure 9.5.
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Static Average Static ADC: ADC: ADC:

correlation dynamic correlation Bus. cycle Short-run Long-run

correlation for BPF frequencies frequencies frequencies

Basic equation (Only OECD bilateral data)

OECD Trade 0.709 *** 0.613 *** 1.264 *** 0.684 *** 0.311 1.602 ***

(0.188) (0.187) (0.370) (0.244) (0.205) (0.304)

Intercept 0.136 *** 0.130 *** 0.304 *** 0.226 *** 0.058 *** 0.295 ***

(0.017) (0.017) (0.034) (0.022) (0.019) (0.028)

n 171 171 171 171 171 171

Adjusted R2 0.087 0.059 0.004 0.037 0.023 0.049

Augmented equation 1 (Including OECD countries’ trade with China)

OECD Trade 0.669 *** 0.581 *** 1.149 *** 0.629 *** 0.307 1.498 ***

(0.175) (0.179) (0.311) (0.226) (0.206) (0.244)

Trade with China −1.135 *** −0.893 *** −3.274 *** −1.568 *** -0.130 −2.944 ***

(0.221) (0.225) (0.392) (0.284) (0.259) (0.307)

Intercept 0.336 *** 0.288 *** 0.881 *** 0.502 *** 0.081 0.814 ***

(0.042) (0.043) (0.075) (0.054) (0.049) (0.059)

n 171 171 171 171 171 171

Adjusted R2 0.208 0.135 0.297 0.181 0.019 0.388

Augmented equation 2 (Including OECD countries’ FDI stock in China)

OECD Trade 0.930 *** 0.773 *** 1.932 *** 1.075 *** 0.324 2.070 ***

(0.195) (0.192) (0.407) (0.259) (0.215) (0.317)

FDI stocks in China −0.134 *** −0.147 *** −0.122 *** −0.144 *** −0.110 *** −0.278 ***

(0.037) (0.037) (0.078) (0.049) (0.041) (0.060)

Intercept 0.161 *** 0.163 *** 0.298 *** 0.244 *** 0.089 *** 0.346 ***

(0.021) (0.020) (0.043) (0.028) (0.023) (0.034)

n 171 171 171 171 171 171

Adjusted R2 0.134 0.126 -0.060 0.047 0.059 0.090

Augmented equation 3 (Including OECD countries’ FDI flows to China)

OECD Trade 0.843 *** 0.680 *** 1.730 *** 0.836 *** 0.280 1.936 ***

(0.176) (0.172) (0.357) (0.211) (0.208) (0.264)

FDI flows to China −3.045 *** −3.151 *** −5.793 *** −4.962 *** −1.730 *** −6.465 ***

(0.468) (0.458) (0.951) (0.563) (0.554) (0.703)

Intercept 0.269 *** 0.273 *** 0.545 *** 0.447 *** 0.141 *** 0.575 ***

(0.027) (0.026) (0.054) (0.032) (0.031) (0.040)

n 171 171 171 171 171 171

Adjusted R2 0.262 0.259 0.143 0.333 0.070 0.334

Note: BPF - band pass filter, ADC - average dynamic correlation over selected frequencies. Standard errors

are in parentheses. ***, ** and * denote significance at 1%, 5% and 10 %, respectively.

Table 9.1: Estimation results for static correlation, Band-Pass filter, and average dy-
namic correlation over selected frequency intervals.
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9.5 Policy Implications

The emergence of China as an important trading nation has been one of the major
events in the world economy in the past two decades. During this gradual process,
China gained in economic weights and influenced economic developments around the
world. Thus, China has become an important factor of growth of the global economy.
However, we are interested how much influence China has on business cycles in the
developed OECD countries.

We show that the interdependence between the economic development in China
and in developed economies is generally relatively small. However, many countries
show a high correlation of the short-run fluctuations. Many transnational companies
use China as a part of their production chain (see Dean et al., [19]), and this is es-
pecially true for the other Asian countries. In turn, most countries show a negative
correlation with China for the traditional business cycles (cycles with periods between
1.5 and 8 years). It seems that countries, which have more intensive economic and
financial relationships with China, have also higher dynamic correlation with Chinese
economy. This seems to be especially true for the long-term developments.

In sum, our results confirm a special position of China in the world economy, al-
though the countries having already intensive trading relationships with China (e.g.
Korea, Japan, and the USA) have also more similar cycles with China over all frequen-
cies. Despite the increased trade links between the countries, Chinese business cycle
remains in general rather different from the rest of the world.

Finally, we show that countries engaged intensively in trade and investment in China
tend to have a lesser degree of synchronization of business cycles with the other OECD
countries. At the same time, trade and financial integration between the OECD coun-
tries strengthen the similarity of business cycles in the OECD countries. Both effects
are less important for the short-run comovements. Although these findings may be
subject to data problems, our results confirm the dissynchronization effects of trade
specialization between China and OECD countries on their business cycles as described
by Krugman in [56], while synchronization effects prevail between the OECD countries
(Frankel and Rose, [27]).
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10
Conclusions

In presented thesis we performed extensive analysis of methods of spectrum estimation.
The main question of this thesis was to evaluate which method of spectrum estimation
is more precise and to use the theoretical findings in practical evaluation.

First of all, using Monte Carlo simulations we find that the all methods are more
precise with an increasing number of observations. A higher the number of observations
is associated with lower values of mean squared error. This characteristic we use in the
[12] where we apply the spectral analysis for stock prices.

The parametric methods, in our case Yule-Walker method, is the best estimator for
autoregressive processes. But for other processes, the non-parametric methods with
windows are more precise. The sharp peaks in spectrum for different examined pro-
cesses cause the problem during the estimation for both types of method.

The estimations with Bartlett or Blackman window have a lower variance and MSE
in comparing with the results estimated with Parzen window or the periodogram. The
periodogram achieves the higher variance among the examined method. Therefore the
quality of the periodogram estimate can be improved by an appropriate selection of the
windows.

However, usually we do not know the true data generating process. Mostly, the real
time series are approximated by autoregressive processes. In general, there is the ten-
dency to underestimate the order of the autoregressive process. Real time series have
more complex structure, therefore we recommend to use the non-parametric methods
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smoothed by the Blackman or Bartlett window because they are better estimator of
spectrum for autoregressive processes with underestimate value of order.

Then we use the knowledge of dynamic correlation and cohesion and we apply our
finding from Monte Carlo analysis to illustrate the impact of China and globalizations
on business cycles in the developed OECD countries. The spectrum for dynamic corre-
lation is calculated using non-parametric method smoothed by the Bartlett window.

We also show that the interdependence between the economic development in
China and in developed economies is generally relatively small. However, many coun-
tries show a high correlation of the short-run fluctuations. Many transnational com-
panies use China as a part of their production chain, and this is especially true for the
other Asian countries. In turn, most countries show a negative correlation with China
for the traditional business cycles (cycles with periods between 1.5 and 8 years). It
seems that countries, which have more intensive economic and financial relationships
with China, have also higher dynamic correlation with Chinese economy. This seems to
be especially true for the long-term developments

In sum, our results confirm a special position of China in the world economy, al-
though the countries having already intensive trading relationships with China (e.g.
Korea, Japan, and the USA) have also more similar cycles with China over all frequen-
cies. Despite the increased trade links between the countries, Chinese business cycle
remains in general rather different from the rest of the world.
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Mathematical Symbols Used in the Text

• ω or λ - frequency

• Ω - frequency band, Ω = [ω1, ω2]

• T - period, T = 2π/ω

• γ0 - variance

• γj - jth autocovariance

• %j - jth autocorrelation

• Γj - jth autocovariance matrix

• Γ0 - variance-covariance matrix

• γ(j)XY - jth autocovariance between X and Y

• gY (z) - autocovariance-generating function

• GY(z) - autocovariance-generating function of vector process

• sY (ω) - population spectrum, spectral density function

• sY (ω) - population spectrum for vector process

• ȳ - sample mean

• ŝy(ω) - sample periodogram

• κ(ωj+m, ωj) - kernel

• h - bandwidth

• sY X(ω) - population cross spectrum from X to Y

• cY X(ω) - cospectrum between X and Y

• qY X(ω) - quadrature spectrum from X to Y

• RY X(ω) - gain

• θ(ω) - phase

• CY X(ω) - coherency

• hY X(ω) - population coherence between X and Y , squared coherency
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Mathematical Symbols Used in the Text

• corr(X, Y ) - classical correlation between X and Y

• ρY X(ω) - dynamic correlation between X and Y at frequency ω

• ρY X(Ω) - dynamic correlation between X and Y within frequency band Ω

• cohY (ω) - cohesion of Y at frequency ω

• cohY (Ω) - cohesion of Y within frequency band Ω = [ω1, ω2]

• cohY X(ω) - cross-cohesion between X and Y at frequency ω

• bY X - trade to GDP ratio of countries Y and X

• xi - coefficient for economic and financial integration country i with China
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Resumé

Ústrednou témou predloženej dizertačnej práce je spektrálna analýza. Spektrálna ana-
lýza bola metóda primárne vyvinutá a aplikovaná vo vedách ako geofyzika, astronómia,
meteorológia, ale svoju úlohu zohrala aj pri digitálnom spracovaní signálu. Až neskôr sa
použila aj pri analyzovaní časových radov, teda našla svoje uplatnenie aj v ekonometrii.

Vlastnosti časových radov sa v ekonometrii popisujú prevažne pomocou metód za-
ložených na časovej štruktúre dát. Spektrálna analýza poskytuje iný pohl’ad na vlast-
nosti časových radov a pomáha analyzovat’ a riešit’ také otázky aplikovanej ekonómie
ako identifikácia trendu a sezónnosti ekonomických časových radov, štúdium medz-
inárodného hospodárskeho cyklu a analýza vzájomnej interakcie časových radov.

Nerlove v [67], ako prvý, používa frekvenčný prístup pri riešení problému sezón-
neho očistenia, teda prvá aplikácia spektrálnej analýzy v ekonometrii sa datuje do
polovice 60-tych rokoch minulého storočia. Detailnejší prehl’ad literatúry o aplikáciách
spektrálnych metód v ekonometrii ponúka kapitola 3.

Kapitola 4 popisuje klasickú 1-rozmernú spektrálnu analýzu. V tejto kapitole defin-
ujeme, čo je spektrum a aké sú jeho vlastnosti a ako sa vypočíta. Spoznávame pojem
periodogram a metódy používané na odhad spektra.

Existujú dva typy metód odhadu spektra – parametrické a neparametrické metódy.
Podstata parametrických metód je založená na fakte, že každý lineárny process je
možné aproximovat’ pomocou autoregresného procesu. Medzi parametrické metódy
odhadu patria autoregresívna a Yule-Walker metóda. Rozdiel medzi týmito dvomi metó-
dami spočíva len v odhade parametrov autoregresného procesu, ktorý aproximuje ana-
lyzovaný časový rad.

Spektrum je možné odhadnút’ aj pomocou periodogramu, kde sa teoretické hod-
noty autokovariancií nahradia reálnymi hodnotami vypočítanými z odhadovaných dát.
Periodogram ako metóda pre odhad spektra má však určité nevýhody, preto sa ako
neparametrická metóda odhadu používa vylepšená verzia. Spektrum sa teda odhaduje
ako vážený priemer hodnoty periodogramu.

Piata kapitola popisuje krížovú spektrálnu analýzu, rozšírenie jednorozmernej spek-
trálnej metódy na analýzu vzájomnej interakcie dvoch časových radov. Zatial’ čo kla-
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sická spektrálna analýza umožňuje detekovat’ pohyb v rámci jednej časovej rady, krížová
spektrálna analýza dokáže určit’ vzt’ah medzi dvomi časovými radmi. Táto kapitola
taktiež definuje pojem spektra pre vektorové procesy, popisuje ako sa takéto spektrum
vypočíta a ako sa odhaduje. V kapitole sa zoznamujeme s pojmom dynamickej korelácie
dvoch časových radov, a s pojmom kohézie a krížovej kohézie.

V šiestej a siedmej kapitole sme všeobecne odvodili spektrum pre procesy ḱlzavých
priemerov prvého a q-teho rádu, pre autoregresné procesy prvého a p-teho rádu a pre
ARMA procesy. Všeobecné výsledky sme názorne ilustrovali na niekol’kých príkladoch.

Ôsma kapitola práce je venovaná Monte Carlo simuláciám, pomocou ktorých sme
sa snažili odpovedat’ na otázku, ktorá vyššie popísaná metóda odhadu populačného
spektra je najvhodnejšia. Ako všeobecné kritérium pre posúdenie presnosti metódy
sme použili minimalizáciu MSE. Výsledky simulácií sú prezentované v tabul’kách a ná-
zorných grafoch.

V deviatej kapitole sme prakticky využili poznatky o krížovej spektrálnej analýze
teoreticky popísané v piatej kapitole. Naším ciel’om bolo pomocou krížovej spektrál-
nej analýzy zistit’, aký vel’ký vplyv má Čína na hospodárske cykly v rozvinutých kra-
jinách OECD. Naše výsledky získané pomocou aplikácie dynamickej korelácie a kohézie
potvrdzujú špeciálne postavenie Číny vo svetovej ekonomike. Zdá sa, že krajiny, ktoré
majú intenzívnejšie ekonomické a finančné vzt’ahy s Čínou (napr. Japonsko, Kórea
a USA), majú tiež vyššiu dynamickú koreláciu s čínskou ekonomikou, predovšetkým
v dlhodobom časovom horizonte. Vzájomná závislost’ medzi hospodárskym rozvojom
ostatných vyspelých krajinách OECD a Čínou je však vo všeobecnosti pomerne malá.
Výnimkou je krátkodobý časový horizont, pre ktorý mnohé krajiny vykazujú vysokú
koreláciu.

Záverečná desiata kapitola je zhrnutím základných výsledkov a záverov z nich plynú-
cich.
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