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ABSTRACT ABSTRAKT

BOKES, Tomáš: Probabilistic and analytic methods for pricing American style of Asian options [dissertation thesis]. Department

of Applied Mathematics and Statistics. Faculty of Mathematics, Physics, and Informatics. Comenius University of Bratislava.

Degree of academic qualification: Philosophiae Doctor (PhD.). Bratislava: FMFI UK, 2011. 188 pages.

In the thesis, we analyze floating strike

American style Asian options with various av-

eraging and lookback options.

As one of the main results, we present a

new, unifying method for calculation of the

limit of early exercise boundary at expiry. The

method can be used for any financial deriva-

tive that can be transformed into a so called

Doob-Meyer decomposition of Snell envelope

of its discounted pay-off function. Results for

the limit of early exercise boundary of Amer-

ican style of option strategies calculated by

this approach are compared to results calcu-

lated by the PSOR method.

The early exercise boundary of analyzed

options is estimated by the first order of poly-

nomial expansion. We use the condition of

smoothness of solution to derive the expan-

sion close to expiry. The result is consistent

with already known values derived for plain

vanilla options.

In the thesis, we also present a differen-

tial equation for the early exercise boundary

of analyzed options. This equation is derived

from the modification of Black–Scholes par-

tial differential equation.

Key words: Asian options, lookback options, early exer-

cise boundary, limit at the expiry

V práci analyzujeme tzv. floating strike

ázijské opcie amerického typu s rôznym ty-

pom priemerovania a tzv. lookback opcie.

Jedným z hlavných výsledkov je jednotná

metóda na výpočet hodnoty hranice skorého

uplatnenia blízko expirácie. Metóda je pou-

žitel’ná pre l’ubovol’ný finančný derivát, ktorý

sa dá transformovat’ na tvar Doob-Meyerovho

rozkladu Snellovej obálky jeho diskontovanej

pay-off funkcie. Výsledky získané pre hranicu

skorého uplatnenia pre americký typ opčných

stratégií vypočítané prezentovanou metódou

sú konfrontované s výsledkami spočítanými

metódou PSOR.

Hranica skorého uplatnenia pre analyzo-

vané opcie je aproximovaná polynomickým

rozvojom prvého stupňa. Rozvoj v blízkosti

expirácie je odvodený na základe podmienky

hladkého napojenia. Získané hodnoty sú kon-

zistentné s už známymi hodnotami pre tzv.

vanilla opcie.

V práci tiež uvádzame diferenciálnu rov-

nicu na výpočet vol’nej hranice pre analyzo-

vané opcie. Táto rovnica je odvodená na zá-

klade modifikovanej Black–Scholesovej par-

ciálnej diferenciálnej rovnice.

Kl’účové slová: ázijské opcie, lookback opcie, hranica

skorého uplatnenia, limita v expirácii





Preface
"Discas oportet, quamdiu est, quod nescias."

– PROVERB

Mathematics and finance have been connected from the very beginning. The

evolution in one of them is followed by developments in the other. The chaos and

randomness of financial markets caused by (not always rational) behavior of agents

involved in the system has to be supported by the order of mathematics. As we have

already seen in the past, the market powers can handle with changes in the financial

world themselves. Sooner or later, the equilibrium taking into account new situation

is established. However, the price has often been too high to be satisfied with the

result. Therefore the mathematical background is a necessary complement to market

mechanisms and instincts of a good trader.

The most important task for a trader is to manage his portfolio to decrease the

risk of loss as much as possible. Solving this problem is usually very difficult and thus

every little help comes to hand. Solving partial, generalized problems is very good

approach to the hedging.

The way to master risk of each element of the market leads through the under-

standing of its behavior. This can be achieved by finding the price fair for both the

holder and the seller. However, this is not so easy in general. Even some of the most

elemental components of the financial world are priced by (more or less precise)

approximative methods under restrictive assumptions. The improvements of models

and application of the results in the real market can resemble to a never-ending circle

of tries and errors, but every little step that pushes our modeled estimates closer to

the reality creates a necessary piece of the puzzle...
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Introduction
"On n’a pas besoin de lumière, quand on est

conduit par le ciel."

– JEAN BAPTISTE POQUELIN MOLIÈRE

The valuation is an elemental feature of trading system. Traders need to calculate

the value of each traded commodity as exact as possible. The bias in valuation can

cause unreasonable loss for the trader or an arbitrage opportunity. The price of

financial instruments on a market is a bid-ask equilibrium achieved by the market

powers. Even this price is accepted by all traders on the market, it is not necessary

the correct value. Calculation of the exact price of financial instruments can prevent

the instability in the trading system. Also the financial instruments that are traded

over the counter (OTC) cannot rely on the market powers (because the number of

traders involved into OTC transactions is much lower than those involved into the

exchange trading).

The evolution in trading system impacts the development of financial derivatives.

Origins of option derivatives lay in far history12. The very first record of option

transaction appears in the Bible. In the book of Genesis, Jacob agreed to work for

Laban for seven years to receive a permission to marry Laban’s younger daughter,

Rachel. In other words, Jacob paid seven years of labor to receive the right, but not

the obligation to marry Rachel. However, this contract did not involve any speculative

feature.

In the Ancient Greece, Aristotle in his work Politics in 332 BC describes a story

about the famous philosopher and astronomer Thales of Miletus, who (according to

his knowledge of stars) predicted a great harvest. He bought the rights to use all

olive presses in Chios and Miletus as the first man when the harvest come. At the

1The Options Institute (1999, Chapter 1)
2 http://www.optiontradingpedia.com/history_of_options_trading.htm
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2 INTRODUCTION

time of harvest, he sold these rights to olive farmers with high profit.

In the 17th century, Europe was influence by the tulip mania. Tulip bulbs imported

from Turkey and Netherlands became the symbol of wealth and prices of the most

rare of them grew to astronomic heights. The bulbs were sold faster than they could

grow, thus call options were introduced into the tulip market. The mania culminated

on February 1637, when prices became so high that nobody was able to afford it and

the bubble collapsed. The Dutch economy and tulip speculators were crushed by the

tiny flower bulbs. In the end of the century, an organized market for call and put

options was created in London. The public was still threatened by Dutch experiences

and the Parliament was pushed into regulation of the option market. This concluded

into a ban of option trading in 1733 known as Barnard’s act. This market restriction

caused by the unreasonable fear kept financial derivatives officially illegal until 1860.

However, the Barnard’s act was ineffective, because nor the penalties nor the risk of

loss were able to stop the option market.

In 90. of the 18th century, options came also to the United States together with the

foundation of exchange in New York. Later, Chicago Board of Trade (CBOT; 1848)

and the Chicago Mercantile Exchange (CME; 1919) were founded to keep up with

growing market.

First, the simple derivatives (as forwards and plain vanilla options) were used to

hedge the risk of portfolio. The breakpoint in valuation methods for the financial

derivatives is dated to early 70. of the 20th century. The cornerstone laid by Black

and Scholes (1973) and Merton (1973) or its modifications occur in majority of all

pricing techniques. However, the idea presented in 1973 was not the first attempt in

valuation of plain vanilla options. Almost identical concept was presented 65 years

earlier in the unpublished paper Theorie der Prämiengeschäfte by Italian mathemati-

cian Vincenz Bronzin (cf. Hafner and Zimmermann 2009).

The revolution in pricing of plain vanilla options was accompanied by foundation

of the Chicago Board Options Exchange (CBOE; 1973) and the Options Clearing

Corporation (OCC; 1973).

The well known Black–Scholes partial differential equation and the theory be-

hind it are considered as an important basis in the financial engineering. However,

the theory of valuation has undergone many changes since that time. The progress

in valuation of simple financial instruments pushed traders into inventing less pre-
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dictable derivatives. The growth of their variety traded on markets has increased the

need for more general and more accurate valuation.

The most basic classification of financial derivatives is according to their expira-

tion time (one of their main properties). The European style of derivatives can be

exercised only at the expiration time T . On the other hand, by buying the Ameri-

can style of derivatives the holder obtains right to exercise it at any moment by the

expiration time. The early exercise boundary of financial derivative x∗t = x∗(t) splits

the t− x (time–underlying) space into continuation region C and stopping region S.

The derivative is exercised if spot value of underlying is in the stopping region, i.e.

(t, xt) ∈ S and is held otherwise, i.e. (t, xt) ∈ C (cf. Hull 1997, Geske and Johnson

1984, Geske and Roll 1984, Karatzas 1988, Chadam 2008, Kwok 2008, Kuske and

Keller 1998, Mallier 2002, Pascucci 2008).

The valuation of (exotic) options is usually done by one of two methods. It is cal-

culated either by a differential equation and in the case of more complicated deriva-

tives the numerical scheme of solving the differential equation is used. The second

method is based on the theory of conditioned expected value and martingales. This

method is also used as a background theory for the Monte Carlo method. However,

if we consider the American style of an option, the valuation becomes more difficult,

because we need to calculate the early exercise boundary as well. If there is no way

how one could calculate the early exercise function, it can be partially approximated

by more simple functions (e.g. Taylor expansion).

In this thesis, we present new method for calculation of the analytic value of limit

of early exercise boundary at expiry. However, many authors have considered partic-

ular problems and there are also results for some types of derivatives (cf. Albanese

and Campolieti 2006, Alobaidi and Mallier 2006, Bokes and Ševčovič 2011, Chiarella

and Ziogas 2005, Dai and Kwok 2006, Detemple 2006, Kwok 2008, Ševčovič 2008,

Wilmott et al. 1995, Wu et al. 1999, etc.). The presented method is a unified ap-

proach to this problem. It can be used to determine the limit of exercise boundary

for American style of a general derivative that can be written in form

Vam(t, xt) = Veu(t, xt) + Et
[∫ T

t

1S(u, xu)fb(u, xu) du

]
,

where Veu is the price of European style of derivative, Et is conditioned expected

value according to the information at time t, 1S is the indicator function for stopping
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region S and fb is American style bonus function. Such decomposition (for plain

vanilla option) was introduced in Kim (1990). The method presented in this thesis

was introduced in Bokes (2011).

Asian options belong to a group of so-called path-dependent options. Their pay-

off functions depend on the spot value of underlying during the whole or some

part(s) of life span of option. Usually, Asian options depend on the (arithmetic or

geometric) average of the spot price of the underlying. They can be used as a useful

tool for hedging highly volatile assets or goods. Since the price of an underlying

varies during the life span of option, the holder of Asian option can be secured from

the risk of a sudden price jumps to undesirable region (too high for the call option

holder or too low for the put option holder). Among path-dependent options, Asian

options play an important role as they are quite common in currency and commodity

markets like e.g. oil industry (cf. Wilmott et al. 1995, Hull 1997, Wu et al. 1999,

Hansen and Jørgensen 2000, Detemple 2006, Dai and Kwok 2006, Wystup 2006,

Kwok 2008, Kim and Oh 2004, Wu and Fu 2003, Linetsky 2004).

In this thesis, we focus on the floating strike Asian call or put options whose strike

price depends on the averaged path history of the underlying asset. More precisely,

we are interested in pricing American style Asian call and put options having the pay-

off functions Ω(S,A) = (S − A)+ and Ω(S,A) = (A − S)+, respectively. The strike

price A is given as an average of the underlying over the time history [0, T ]. If we

consider the general type of average in form

(At)
p =

1

t

∫ t

0

(Su)
p du,

we can transform this expression into maximum value (At →Mt) and into minimum

value (At → mt) for p → ∞ and p → −∞, respectively. This generalization allows

us to deal also with lookback options, i.e. options similar to Asian type, where the

average is replaced by extreme value.

We calculate the price of American type of Asian option with various types of av-

eraging (including lookback options). The calculation is based on the theory of con-

ditioned expected values and has been motivated by Hansen and Jørgensen (2000).

As we have already mentioned above, the American type pricing problem is accompa-

nied with the problem of early exercise boundary. We calculate the first two elements

of the expansion of the free boundary at the expiry in terms of
√
T − t. To derive the
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absolute element, we use our new method. The first order element is calculated

from the marginal condition of the free boundary guaranteeing the smoothness of an

American type option (cf. Bokes 2010, Bokes and Ševčovič 2011).

The calculation of the early exercise boundary itself as an explicit function leads

to mathematical problems that we are not able to handle yet. Thank to several trans-

formations of the problem of American type of Asian option, we derive an integral-

differential equation for the early exercise boundary. This equation can be solved by

a numerical approximation scheme also presented in the thesis. We derive the equa-

tion for various types of averaging. However, for the sake of simplicity, the scheme is

presented only for the Asian call option with continuous arithmetic averaging.

In the first chapter, we summarize some preliminaries of mathematical theory

(e.g. Itô calculus, Girsanov’s theorem etc.) often used in the valuation of options

(and other derivatives).

The second and third chapter present basic characteristics of financial deriva-

tives with major respect to the options and a subgroup of exotic options called path-

dependent options, respectively. We also summarize the classification of the most

important exotic options. The main focus of the third chapter is given to Asian,

lookback and barrier options.

In the next chapter, we calculate the value of Asian option with various averages

and lookback options by the theory of conditioned expected values and martingales.

The fifth and sixth chapter present the analysis of behavior of early exercise

boundary. In the former chapter we introduce a new, unified approach of calculat-

ing the limit of early exercise boundary at expiry of the general financial derivative.

The latter chapter presents the results of new method on the floating strike Asian

and lookback options. Moreover, we calculated the first order expansion of the early

exercise boundary of floating strike Asian and lookback options.

In the seventh chapter, we summarize the modification of Black–Scholes partial

differential equation for pricing path-dependent options.

The eighth chapter presents the transformation of partial differential equations

from the previous chapter. Moreover, we present an integral-differential equation

and a numerical approximation scheme for the calculation of early exercise boundary.

In the first chapter of appendix of the thesis, we present methods from fourth,

fifth and sixth chapter applied on the plain vanilla options.
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The second chapter in the appendix consists of a survey of sensitivity indicators

- the Greeks with analytic and graphic examples for European plain vanilla options.

For the European Asian options with geometric average, approximation of European

Asian option with arithmetic average and European lookback options, we provide

examples of the sensitivity only by graphic examples.

Next chapter in the appendix contains supporting lemmas and proofs of theorems

and lemmas from the thesis.

The concluding chapter in appendix obtains numerical comparison of results from

the fifth chapter with values calculated by the projected successive over relaxation

(PSOR) method.



Goals of the thesis

In the thesis we study and analyze several questions and problems that are related

to the valuation of the American style Asian options. The main goals of the thesis can

be summarized as follows:

g.1 Valuation of the Asian option with non-zero dividend rate. To extend the

model introduced in paper Hansen and Jørgensen (2000) by the dividend rate

q, the kernel a and general average. Using the theory of conditioned expecta-

tions to calculate the value of the American style Asian floating strike option

with the general average. To perform similar calculation also for the value of

floating strike lookback options. [These results are contained in papers Bokes

(2010), Bokes and Ševčovǐc (2011).]

g.2 The limit of early exercise boundary. To create a new method for calculation

of the limit of early exercise boundary at expiry. The method is applicable

for the general financial derivative that can be written in form of Doob-Meyer

decomposition of Snell envelope. [These results are contained in paper Bokes

(2011).]

g.3 Approximation of the early exercise boundary of the American style Asian

option. To calculate the function that approximate the early exercise boundary

of the floating strike Asian option close to expiration T for general averaging.

[These results are contained in paper Bokes and Ševčovǐc (2011).]

g.4 Equation for the early exercise boundary of the Asian option. To create

an equation and numerical approximation scheme for the calculation of the

early exercise boundary of floating strike Asian options with various averages

and lookback options. [These results are contained in paper Bokes and Ševčovǐc

(2011).]

7
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CHAPTER 1

Preliminaries

In this chapter, we summarize some results from stochastic calculus. We mainly

focus on random variables, stochastic processes, Itô calculus and martingales. The

following definitions and theorems are in major adapted from Karatzas and Shreve

(1988, Chapter 1), Melicherčík and Olšárová (2005, Chapter 1) and Revuz and Yor

(2005, first chapters). More detailed information can be found in Revuz and Yor

(2005), Kallenberg (1997), Karatzas and Shreve (1988, 1998), Malliaris (1982), Dur-

rett (1996) or Melicherčík and Olšárová (2005).

1.1 Random variables and stochastic processes

DEFINITION 1.1. Let (Ω,F , P ) be a probability space. Random variable is measurable

function X on Ω.

The expected value of random variable X is defined as

E [X] =

∫
X dP.

DEFINITION 1.2. Let T be a set, (E, E) a measurable space. A stochastic process

indexed by T , taking its values in (E, E), is a family of measurable mappings Xt, t ∈ T ,

from a probability space (Ω,F , P ) into (E, E). The space (E, E) is called the state

space.

DEFINITION 1.3. Let (Ω,F , P ) be a probability space and let X be a nonempty family

of nonnegative random variables defined on (Ω,F , P ). The essential supremum of X ,

denoted by esssupX , is a random variable X∗ satisfying

(i) ∀X ∈ X , X ≤ X∗ almost surely.

(ii) If Y is a random variable satisfying X ≤ Y almost surely for all X ∈ X , then

X∗ ≤ Y almost surely.

9
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DEFINITION 1.4. A continuous-time stochastic process {Wt : 0 ≤ t < T} is called a

Wiener process (or standard Brownian motion) on [0, T ) (see FIGURE 1.1 (left)) if

(i) W0 = 0 almost surely.

(ii) For any 0 ≤ t ≤ t+∆ < T the increment Wt+∆−Wt has the Gaussian distribution

with mean 0 and variance ∆, i.e. Wt+∆ −Wt ∼ N (0,∆).

(iii) For any finite set of times 0 < t1 < t2 < . . . < tn < T the random variables

Wt1 ,Wt2 −Wt1 , . . . ,WT −Wtn

are independent.

(iv) For all ω in a set of probability one, Wt(ω) is a continuous function of t.

DEFINITION 1.5. Suppose µ ∈ R and σ > 0. A continuous-time stochastic process

{Bt : 0 ≤ t < T} is called a Brownian motion with drift µ and variance σ2 on [0, T ) if

(i) B0 = 0 almost surely.

(ii) For any 0 ≤ t ≤ t+ ∆ < T the increment Bt+∆−Bt has the Gaussian distribution

with mean µ∆ and variance σ2∆, i.e. Bt+∆ −Bt ∼ N (µ∆, σ2∆).

(iii) For any finite set of times 0 < t1 < t2 < . . . < tn < T the random variables

Bt1 , Bt2 −Bt1 , . . . , BT −Btn

are independent.

(iv) For all ω in a set of probability one, Bt(ω) is a continuous function of t.

REMARK 1.1. Relation between Brownian motion and Wiener process is described by

the equation

Bt = µt+ σWt.

REMARK 1.2. According to the fact that the Wiener process is a subset of the Brownian

motion (µ = 0 and σ = 1), we will often refer to the Wiener process as a (standard)

Brownian motion.
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T
t

Wt

T
t

eWt

FIGURE 1.1: Paths of simulated Wiener process (left) and the respective geometric

Wiener process (right).

DEFINITION 1.6. Let {Bt : 0 ≤ t < T} be a Brownian motion. The stochastic process

{Gt : 0 ≤ t < T} defined by

Gt = G0e
Bt , G0 ∈ R

is called a geometric Brownian motion with drift µ and variance σ2 (see FIGURE 1.1

(right)).

1.2 Conditioned expected values

DEFINITION 1.7. Let (Ω,F , P ) be a probability space, X : Ω → R a random variable,

with property E(|X|) < ∞. Let H ⊂ F be a σ-algebra. Conditioned expected value

E(X|H) is a random variable with following properties

(i) E(X|H) is H-measurable.

(ii)
∫
H
E(X|H) dP =

∫
H
X dP for ∀H ∈ H.

THEOREM 1.1. Let X, Y be random variables on probability space (Ω,F , P ) with prop-

erty E(|X|) <∞, E(|Y |) <∞. Let a, b ∈ R and H ⊂ F be a σ-algebra. Then

(i) E(aX + bY |H) = aE(X|H) + bE(Y |H)

(ii) E(E(X|H)) = E(X)

(iii) If X is H-measurable, then E(X|H) = X.

(iv) If Y is H-measurable, then E(Y X|H) = Y E(X|H).
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THEOREM 1.2. LetX be a random variable on probability space (Ω,F , P ) with property

E(|X|) <∞.

Let G, H be a σ-algebrae with property

G ⊂ H ⊂ F .

Then

E(X|G) = E(E(X|H)|G).

1.3 Itô calculus

Integrals in the stochastic calculus can also have stochastic features. The form of Itô

integral is introduced by the following expression∫
A

f(t, ω) dWt(ω),

where A ⊂ R+.

DEFINITION 1.8. Let Wt(ω) be a Wiener process on probability space (Ω,F , P ). The

symbol FWt states for the smallest σ-algebra on Ω generated by sets of type

{ω;Wt1(ω) ∈ F1, . . . ,Wtk(ω) ∈ Fk},

where k = 1, 2, . . . and for ∀j tj ≤ t and Fj ⊂ R are Borel sets.

DEFINITION 1.9. Let {Ft}t≥0 be an increasing system of σ-algebrae on Ω. The stochastic

process

g(t, ω) : [0,∞)×Ω→ R

is Ft-adapted if for ∀t ≥ 0 is function

ω → g(t, ω)

Ft-measurable.

THEOREM 1.3. Let Wt(ω) be a Wiener process on probability space (Ω,F , P ). Let the

function

f(t, ω) : [0,∞)×Ω→ R

has properties
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(i) the function is B × F -measurable, where B are Borel sets on R+,

(ii) stochastic process f(t, ω) is FWt -adapted,

(iii) E(
∫
A
f 2(t, ω) dt) <∞, where A ⊂ R.

Then for the function f , Itô integral is defined.

THEOREM 1.4. (Itô isometry)

Let the function f(t, ω) satisfy conditions in the THEOREM 1.3, then for A ⊂ R

E

[(∫
A

f(t, ω) dWt(ω)

)2
]

= E
[∫

A

f 2(t, ω) dt

]
.

LEMMA 1.1. (Itô lemma)

Let Xt(ω) be an Itô process

dXt(ω) = u(t, ω) dt+ v(t, ω) dWt(ω).

Let g(t, x) ∈ C2([0,∞)× R). Then

Yt(ω) = g(t,Xt(ω))

is also an Itô process

dYt =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) dXt +

1

2
v2 ∂

2g

∂x2
(t,Xt) dt.

LEMMA 1.2. (Multidimensional Itô lemma)

Let Xt(ω) = (X1
t (ω), . . . , Xn

t (ω)) be an n-dimensional Itô process

dXt(ω) = u(t, ω) dt+ v(t, ω) dWt(ω).

Let the covariance of dWt = (dW 1
t , . . . dW

n
t ) be defined by

Covar
[
dW i

t , dW
j
t

]
=

{
dt for i = j

ρijdt for i 6= j
,

where ρij ∈ [−1, 1] is the correlation coefficient.

Let g(t, x) ∈ C2([0,∞)× Rn). Then

Yt(ω) = g(t,Xt(ω))

is also an Itô process

dYt =
∂g

∂t
(t,Xt) dt+

n∑
i=1

∂g

∂xi
(t,Xt) dX

i
t +

1

2

n∑
i,j=1

ρijv
ivj

∂2g

∂xi∂xj
(t,Xt) dt.
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1.4 Martingales

DEFINITION 1.10. Let P = (Ω,F , P ) be a probability space. System of σ-algebrae

{Mt}t≥0,Mt ⊂ F with property

0 ≤ s < t→Ms ⊂Mt

is called a filtration on the space P.

DEFINITION 1.11. Let (Ω,F , P ) be a probability space. The filtration {Ft}t≥0 satisfy

the usual conditions, if it is right continuous and F0 contains all P -negligible events

in F .

DEFINITION 1.12. Let (Ω,F , P ) be a probability space. An adapted process A is called

increasing, if for almost every ω ∈ Ω we have

(i) A0(ω) = 0.

(ii) t 7→ At(ω) is a nondecreasing, right continuous function

and E [At] <∞ holds for every 0 ≤ t <∞. An increasing process is called integrable if

E [A∞] <∞, where A∞ = limt→∞At.

DEFINITION 1.13. Let us consider a measurable space (Ω,F) equipped with a filtration

{Ft}. A random time T is a stopping time of the filtration, if the event {T ≤ t} belongs

to the σ-field Ft for every t ≥ 0.

A random time T is an optional time of the filtration, if the event {T < t} belongs

to the σ-field Ft for every t ≥ 0.

DEFINITION 1.14. Suppose {Dt}t≥0 is an increasing system of σ-algebrae on Ω. The

function τ : Ω→ [0,∞) is Markov time with respect to {Dt} if

{ω ∈ Ω : τ(ω) ≤ t} ∈ Dt for ∀t ≥ 0.

DEFINITION 1.15. Let us consider the class T (Ta) of all stopping times T of the filtra-

tion {Ft}t≥0 which satisfy P (T <∞) = 1 (respectively, P (T ≤ a) = 1 for a given finite

number a > 0). The right continuous process {Xt} according to the filtration {Ft}t≥0 is

said to be of class D, if the family {XT}T∈T is uniformly integrable; of class DL if the

family {XT}T∈Ta is uniformly integrable, for every 0 < a <∞.
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DEFINITION 1.16. A real-valued process {Mt}t≥0 on a probability space (Ω,F , P ),

adapted to a filtration {Mt}t≥0 is a submartingale (with respect to {Mt}t≥0 and mea-

sure P ) if

(i) E(|Mt|) <∞ for ∀t ≥ 0,

(ii) E(Ms|Mt) ≥Mt almost surely for ∀s ≥ t.

A processM such that−M is a submartingale is called a supermartingale and a process

which is both a submartingale and supermartingale is a martingale.

DEFINITION 1.17. An increasing process A is called natural, if for every bounded, right

continuous martingale {Mt} according to the filtration {Ft}t≥0 we have

E
[∫

(0,t]

MsdAs

]
= E

[∫
(0,t]

Ms−dAs

]
, for ∀0 < t <∞.

THEOREM 1.5. (Martingale representation theorem)

Let Mt(ω), Nt(ω) ∈ L2(Ω, P ), 0 ≤ t ≤ T be FWt martingales. Suppose the volatility

of Mt has property

P (mt 6= 0) = 1.

Then there exists exactly one FWt -adapted process ϕt that satisfies

dNt = ϕt dMt

and

P

(∫ t

0

(ϕξmξ)
2 dξ <∞

)
= 1.

1.5 Snell envelope and Doob-Meyer decomposition

DEFINITION 1.18. Let {Yt}0≤t≤T be an Ft-adapted, integrable process on probability

space (Ω,F , P ). Define a process {Zt}0≤t≤T by

ZT = YT ,

Zt = max [Yt,Et [Zs]] , for ∀s ≥ t.

The process Z is called Snell envelope of the process Y . It is (clearly) an adapted

process.
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THEOREM 1.6. The Snell envelope {Zt}0≤t≤T of the process {Yt}0≤t≤T is a supermartin-

gale. Furthermore, it is the smallest supermartingale which dominates Y in the sense

Zt ≥ Yt for all 0 ≤ t ≤ T .

THEOREM 1.7. (Doob-Meyer decomposition)

Let (Ω,F , P ) be a probability space and let filtration {Ft}t≥0 satisfy the usual con-

ditions.

If the right-continuous submartingale X according to the filtration {Ft}t≥0 is of class

DL, then it admits the decomposition

Xt = Mt + At, 0 ≤ t

as the summand of a right continuous martingale M = {Mt} and an increasing process

A = {At} both according to the filtration {Ft}t≥0. The latter can be taken to be natural;

under this additional condition, the decomposition is unique (except for the set of zero

measure).

Further, if X is of class D, then M is a uniformly integrable martingale and A is

integrable.

1.6 Girsanov’s theorem

DEFINITION 1.19. We say a measure ν is absolutely continuous with respect to µ, i.e.

ν � µ if µ(A) = 0 implies that ν(A) = 0.

THEOREM 1.8. (Radon-Nikodým theorem)

Let µ and ν be σ-finite measures on space (Ω,F). If ν � µ, there is a function f ∈ F
so that for all A ∈ F ∫

A

fdµ = ν(A).

Function f is usually denoted dν
dµ

and called the Radon-Nikodým derivative.

THEOREM 1.9. (Girsanov’s theorem)

Let Wt(ω) for 0 ≤ t ≤ T be the Brownian motion on the space (Ω,F , P ). If γt(ω) is

FWt -adapted process, that

EP (e
1
2

∫ T
0 γ2t (ω) dt) <∞,

then there exists a measure Q on (Ω,F) with following properties
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(i) Q ∼ P , i.e. Q(A) > 0⇔ P (A) > 0 for ∀A

(ii) ln dQ
dP

(ω) = −
∫ T

0
γt(ω) dWt(ω)− 1

2

∫ T
0
γ2
t (ω) dt

(iii) W̃t(ω) = Wt(ω) +
∫ t

0
γs(ω) ds is a Brownian motion on (Ω,F , Q).

The expression dQ
dP

is a Radon-Nikodým derivative.
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CHAPTER 2

Financial derivatives

Evolution in trading during last decades has been pushing people into finding new

possibilities how to hedge their assets. One of the ways how to take care of risk in

a portfolio is to include derivatives. There are many types of financial derivatives

that are being traded either on exchange or over-the-counter (OTC). The most im-

portant of them are introduced and classified in this chapter. For more information

see Wilmott et al. (1995), Taleb (1996), Hull (1997), Melicherčík et al. (2005), Kwok

(2008) or Ševčovič et al. (2011).

2.1 General properties

If we want to talk about derivatives, first we should introduce a general definition.

DEFINITION 2.1. (Financial) derivative is a financial contract. Value of a derivative

depends on the value of an underlying financial instrument with more basic structure.

Its value at expiration date is exactly determined by the price process of the underlying

up to the time of expiry.

Purpose of derivative is to pass (part of) the (unwanted) risk to the second party by

paying the non-arbitrage price of the contract. This operation is called hedging (of the

portfolio).

From here, we will use expressions X and Xt ≡ X
∣∣
t

as a function X in general

and at the time t, respectively.

Variables S and St are value and spot value of the underlying asset at time t, re-

spectively (e.g. the stock or the foreign exchange rate). We assume that the underlying

asset of derivative satisfies stochastic differential equation

dSt
St

= µdt+ σdWt, (2.1)

19
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where µ ∈ R is a drift, σ ∈ R+ is volatility and Wt is Wiener process. Although there

is no reason to state that the volatility σ does not depend on other variables, in this

chapter we assume that it is constant.

The solution of equation (2.1) is geometric Brownian motion

St = S0e
(µ− 1

2
σ2)t+σWt .

There are parameters that are common for all derivatives.

• Expiration time is denoted by parameter T .

• Variables t and τ = T − t denotes time and time to expiry, respectively.

• Continuous risk-free interest rate is denoted by parameter r.

• Continuous rate of benefit from holding (storing) the underlying asset is denoted

by parameter q (q > 0 for money or stock with non-zero dividend rate, q = 0

for stock with zero dividend rate, q < 0 for commodity). Value −q is called the

cost-of-carry.

• Volatility of the return of underlying asset is denoted by parameter σ.

• Strike (exercise) price (the price at which the transaction with underlying is

made) is denoted by constant or function X,Xi.

All derivatives are characterized by their pay-off function Ω satisfying the property

ΩT ≡ Ω
∣∣
T

= V T . Usually, but not necessarily, the pay-off function does not depend

on time, i.e. ∂Ω
∂t

= 0.

The party involved into a derivative contract by buying it is in the long position.

The other party is in the short position.

We can classify derivatives in several groups. We present the most common of

them: options, forwards, futures and swaps.

First, we briefly present latter two types of derivatives. Basic features of options

and futures are described in separate SECTIONS 2.2 and 2.3, respectively.
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2.1.1 Futures

Futures are very similar to forwards (see SECTION 2.3). The main difference between

futures and forwards is the way how to trade them. There is a variety of exchanges

trading futures, e.g. Chicago Board of Trade (CBOT), Chicago Mercantile Exchange

(CME), etc. To make possible trading of the futures on an exchange, there is a need

of standardized content of contracts specified by the exchange.

2.1.2 Swaps

A swap is an agreement between two parties to exchange cash-flows in the future.

The dates of cash-flow transfer and the way of calculation is obtained in the swap

contract.

2.2 Options

According to the type of transaction, there are (usually) two different types of op-

tions.

A call option is financial instrument giving the holder right, but not the obligation to

buy an underlying asset at or by a (certain specified) date T at a (certain specified)

price X.

Buying a call option contract hedges upward movement of the price of underlying

asset.

A put option is financial instrument giving the holder right, but not the obligation to

sell an underlying asset at or by a (certain specified) date T at a (certain specified)

price X.

Buying a put option contract hedges downward movement of the price of under-

lying asset.

The most basic classification of option contracts is made by the expiration time.

• European options can be expired only at the expiration time T defined in the

contract.
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S

V

X
S

V

X

FIGURE 2.1: Value of the long position of a European plain vanilla call option

contract (left) and put option contract (right) at the time t = 0 (solid), 0 < t < T

(dashed) and at the expiration time t = T (bold) (purchase price included).

• Bermudan option can be expired in certain given time moments by the expira-

tion time T defined in the contract. [Bermudan options do not often appear in

the classification by expiration time, because they belong to the group of exotic

options.]

• American options can be expired at every moment by the expiration time T

defined in the contract.

The most basic (European and American) options are called plain vanilla options.

The rest of options is usually marked as exotic options, although their classification is

not exact. We discuss the exotic options in the following chapter.

2.2.1 European plain vanilla options

The pay-off function of a European plain vanilla option is given by the expression

Ω = (c (S −X))+ , (2.2)

where the function (x)+ ≡ max(x, 0) and c = 1 or c = −1 for call or put option,

respectively. The strike price X is a constant.

The value of a European plain vanilla option can be calculated as a solution of

the Black–Scholes partial differential equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)∂V

∂S
− rV = 0. (2.3)
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X
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V

FIGURE 2.2: Value of the short position of a European plain vanilla call option

contract (left) and put option contract (right) at the time t = 0 (solid), 0 < t < T

(dashed) and at the expiration time t = T (bold) (purchase price included).

TABLE 2.1: The marginal condition of European plain vanilla option for Black–

Scholes partial differential equation.

call option put option

Vt
∣∣
S=0

= 0 Vt
∣∣
S=0

= Xe−r(T−t)

limS→∞
Vt
S

= e−q(T−t) limS→∞ Vt = 0

The terminal condition for this problem is the pay-off function (2.2) and the marginal

conditions for ∀t ∈ [0, T ] are summarized in TABLE 2.1.

The value of a European vanilla option can be also calculated as conditioned

expected value (with risk-neutral measure Q that exists according to the Girsanov’s

theorem 1.9) of discounted pay-off function

Vt = EtQ
(
e−r(T−t)Ω

∣∣
S=ST

)
= EQ

(
e−r(T−t)Ω

∣∣
S=ST

∣∣∣FWt ) ,
where Ω is defined in (2.2) and FWt , defined in DEFINITION 1.8, represents the infor-

mation in the time t.

The value function at time t is equal to

V (t, S) = c
(
e−q(T−t)SΦ (c dt)− e−r(T−t)XΦ

(
c
(
dt − σ

√
T − t

)))
, (2.4)

where c = 1 or c = −1 for call or put option, respectively. The Φ( · ) is the cumulative

distribution function CDF of the normal probability distribution N (0, 1) and

dt =
lnS − lnX + (r − q + 1

2
σ2)(T − t)

σ
√
T − t

. (2.5)
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The cash-flow value of an option is calculated as a difference of the value (2.4) and

the purchase price (PP ) of an option contract discounted to time t.

V cash-flow
t = Vt − ertPP = Vt − ertV0

∣∣
S=S0

for a long position,

V cash-flow
t = −Vt + ertPP = −Vt + ertV0

∣∣
S=S0

for a short position.

2.2.2 American plain vanilla options

American and European style of option contract are different in a possibility to claim

the contract earlier than at the expiration date. Such feature gives an advance to the

holder of an American style option against the one holding identical, but European

style option. Consequently, we have an inequality showing relation between values

of these two types of contracts

V eu
t ≤ V am

t ∀t ∈ [0, T ]. (2.6)

Inequality (2.6) turns into equality (in case of vanilla options) for call option with

zero rate of benefit from holding the underlying, i.e. c = 1 and q = 0.

The pay-off of an American option is defined by equation

Ω
∣∣
S=ST∗

= (c (ST ∗ −X))+ , (2.7)

where T ∗ is the expiration time for an American option, all other variables and pa-

rameters have the same meanings and properties as in the pay-off function for a

European option (2.2).

The American style option contract can be exercised anytime by the expiration

time T , thus the value of this derivative cannot be less than its pay-off function, i.e.

V eu
T = Ωeu = Ωam = V am

T ≤ V am
t ∀t ∈ [0, T ].

As in the case of a European option, we can use two methods for pricing the

option. However, the closed formula for value of an American plain vanilla option

has not been derived yet. The most common approach to pricing is solving the partial

differential problem by numerical methods.

DEFINITION 2.2. The early exercise boundary S∗ = S∗(t) is a function that splits the

(t, S)-space into two regions. The stopping region S ≡ {St, t ∈ [0, T ]} where the option
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FIGURE 2.3: The continuous region C, the stopping region S and the early exercise

boundary S∗ of an American call option contract (left) and put option contract

(right).

contract is exercised and the continuation region C ≡ {Ct, t ∈ [0, T ]} where the option

contract is held.

For the plain vanilla options, the stopping and continuation regions are summarized

in TABLE 2.2.

The optimal stopping time T ∗ = T ∗(S) is the inversion function of the early exer-

cise boundary.

TABLE 2.2: The stopping region S and continuous region C for plain vanilla option.

call option put option

stopping region S {(S∗t ,∞), t ∈ [0, T ]} {(0, S∗t ), t ∈ [0, T ]}
continuation region C {(0, S∗t ), t ∈ [0, T ]} {(S∗t ,∞), t ∈ [0, T ]}

To price an American plain vanilla option, we need to solve the Black–Scholes

partial differential equation (2.3) on the continuation region C. The terminal condi-

tion is defined by (2.7) and the marginal conditions for ∀t ∈ [0, T ] are summarized

in TABLE 2.3.

The last marginal condition in TABLE 2.3 guarantees the smoothness of the func-

tion Vt on the merger of C and S region. The value of V on the S region is equal to

the pay-off function (2.7), i.e.

Vt = Ωt for ∀S ∈ St.
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TABLE 2.3: The marginal condition of American plain vanilla option for Black–

Scholes partial differential equation.

call option put option

marginal condition Vt
∣∣
S=0

= 0 limS→∞ Vt = 0

continuation condition Vt
∣∣
S=S∗t

= Ωt

∣∣
S=S∗t

Vt
∣∣
S=S∗t

= Ωt

∣∣
S=S∗t

smoothness condition ∂Vt
∂S

∣∣
S=S∗t

= 1 ∂Vt
∂S

∣∣
S=S∗t

= −1

By solving the introduced problem, we calculate the function of an American plain

vanilla option contract Vt, but also the early exercise function S∗.

The price of American option can be also defined by the conditioned expected

value as

Vt = ess sup
T ∗∈T[t,T ]

EQt
(
e−r(T

∗−t)Ω
∣∣
S=ST∗

)
= ess sup

T ∗∈T[t,T ]

EQ
(
e−r(T

∗−t)Ω
∣∣
S=ST∗

∣∣∣FWt ) ,
where Q is the risk-neutral measure, Ω is defined in (2.7), FWt defined in DEFINI-

TION 1.8 represents the information in time t and TI is a set of all Markov times with

values within the interval I.

Although there is no closed formula for American style option price, there are

many approximations or numerical methods for calculation of the price or behavior

of early exercise boundary (cf. Hull 1997, Geske and Johnson 1984, Geske and Roll

1984, Karatzas 1988, Chadam 2008, Kwok 2008, Kuske and Keller 1998, Mallier

2002, Pascucci 2008).

2.3 Forwards

A forward is an agreement to buy an underlying at a certain future time (certain

specified date) T for a (certain specified constant) price X.

Forward contracts are traded in OTC market. Forwards are usually used to hedge

foreign exchange rate movements.

The pay-off function of forward is defined by the expression

Ω = S −X.
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FIGURE 2.4: Value of the long (left) and the short (right) position of a forward

contract (with r > q) at the time t = t1 < T (solid), t = t2 ∈ (t1, T ) (dashed) and

at the expiration time T (bold).

To exclude the arbitrage, we have to set the strike price to satisfy the equation

V0 = 0.

The non-arbitrage forward strike price is then calculated as

X = S0e
(r−q)T , (2.8)

where r is the interest rate and q is the rate of benefit from holding (storing) the

underlying asset.

The foreign exchange rate (F ) is very common as an underlying asset in the

forward contracts. The rate of benefit q is equal to the foreign interest rate rf and

(2.8) becomes

XF = F0e
(r−rf )T .

The value of a forward contract at time t is calculated as

V (t, S) = e−q(T−t)S − e−r(T−t)X.
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CHAPTER 3

Exotic options

After the important improvements were included into the pricing mechanism of

the basic financial instruments (such as plain vanilla options), the market was in need

of something more unpredictable. The increasing demand for higher complexity of

financial derivatives has brought the exotic features into elements of portfolio. The

trend of inventing new, less predictable, financial derivatives persists and already

wide family of exotic derivatives is still growing in all dimensions. However, this

evolution comes hand in hand with more problems that must be solved to sufficiently

secure the portfolio. According to large variability and high unpredictability of exotic

options, they can be used to hedge many types of risk that can occur on market.

This chapter deals with elementary classification and main features of the most

famous financial instruments selected from the enormous group of exotic options.

The main scope lays on the class of path-dependent options, we focus especially on

Asian, lookback and barrier options.

Mathematical problems arising from the valuation of financial derivatives pre-

sented in this chapter are discussed only marginally. For more detailed analysis of

exotic options pricing problems see e.g. Wilmott (2006), Epps (2007), Briys et al.

(1998), Zhang (1998), Kwok (2008), Ševčovič et al. (2011), Hull (1997).

3.1 Classification of exotic options

As we have already mentioned, there does not exist a closed definition of the exotic

option. By the most common classification, all options except for the plain vanilla op-

tions belong into this group. The exotic options varies in many characteristics, thus

their exact classification is impossible. In this paper, we use classification according

to the main properties of derivatives (this approach is presented in Wilmott (2006)).

The derivatives are considered according to following six features: time dependence,

29
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FIGURE 3.1: The classification scheme of exotic options (based on (Wilmott 2006)).

cash-flows, path dependence, dimensionality, order and embedded decision. The dis-

tribution of exotic derivatives is presented in FIGURE 3.1 and in TABLES 3.1-3.3 we

classify derivatives presented in this chapter.

3.1.1 Time dependence

The pay-off function or the behavior of a financial derivative contract can depend on

the time elapsed from start or remaining to the expiry T .

The example of time dependence feature is a Bermudan options. The Bermudan

style derivative is permitted to be exercised on certain dates or during certain periods

up to the expiration time. According to this feature, this derivative is referred to as

time-inhomogeneous.

3.1.2 Cash-flows

Some derivatives can consist of cash-flows that are paid to holder through the life of

contract. The cash-flows can be further divided into discrete and continuous.
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According to the non-arbitrage condition, so called jump condition have to be

involved into the valuation of a derivative with discrete cash-flows, i.e.

lim
t→T0−

V (t) = E [HT0 ] + lim
t→T0+

V (t),

where V is the value of derivative and HT0 is the cash-flow paid to holder of a deriva-

tive at time T0.

For a continuous cash-flow derivative contracts, payments are usually defined as

a function of a spot value of underlying asset. Instead of including the jumping

condition, cash-flows are implemented into the pricing model as source term.

3.1.3 Path dependence

The pay-off function of path-dependent derivatives usually depends on the spot price

at the maturity

Ω = f(t, St, S·), (3.1)

where the function of time S· = S( · ) represents the path of the spot price up to time

t. There are two varieties of path dependence: strong and weak. Both cases can be

either continuous or discrete according to the sampling of path of underlying asset.

Strong path dependence

The pay-off function of strongly path-dependent derivative contracts depends on the

value and path (behavior) of the underlying asset during its life. The path property

is usually captured by an independent variable, e.g. the average in Asian options.

Weak path dependence

The pay-off function of weakly path-dependent derivative contracts depends only on

the path (behavior) of the underlying asset during its life.

3.1.4 Dimensionality

The dimensionality of derivative contract refers to the number of variables involved

into the model. The plain vanilla option is two dimensional as there are two vari-

ables: time t and underlying asset S. There are two types of dimensionality: strong
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path dependence and multi factor. In the former one, we increase the dimensionality

by including a variable capturing path property. The latter case covers derivatives

with multiple underlying assets, i.e. multiple sources of randomness.

3.1.5 Order

The pay-off function of the higher order derivative contracts depends on some other

financial derivative, e.g. options on options. The plain vanilla options are of the first

order.

3.1.6 Embedded decisions

Many derivative contracts have included some property that can be activated by the

decision of holder or writer. American style derivative with its early exercise bound-

ary obtain this feature. The implement assumption in the pricing of derivatives with

embedded decision is that the holder behaves rationally and wants to increase his

benefit as much as possible.

3.2 Path-dependent options

The path-dependent options belong to the group of the most frequently used and

analyzed exotic options. Unlike the other types of the exotic options, the pay-off

function of path-dependent options depends, in some non-trivial way, on the path

history of the spot price of underlying during (the whole or part of) the life of an

option.

In a very fundamental sense, also the American style of an option can be consid-

ered as a path-dependent option. In this paper we do not use such classification, we

consider the American style early exercise rights as a possible feature of any option.

There are three main groups of the path-dependent options: Asian options, look-

back options and barrier options. The classification of these path-dependent options

is presented in TABLE 3.1.
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TABLE 3.1: Classification of main path-dependent exotic options.

Derivative
Time

dependence
Cash-flows

Path

dependence
Dimension Order

Embedded

decisions

Asian option Yes/Noa No Strong 3b first No

Lookback option Yes/Noa No Strong 3b first No

Barrier option

knock-out
No No Weak 2 first No

Barrier option

knock-in
No No Weak 2 secondc No

a The derivative is time dependent for discrete sampling of the underlying asset but it is not for continuous sampling.

b The dimension can be reduced by suitable substitution (see SECTION 4.2).

c The problem can be solved as difference between vanilla and barrier knock-out option.

3.2.1 Asian options

Asian option is a path-dependent derivative. It depends on the average A of the value

of underlying asset reached during the (not necessary whole) life of option contract.

There are two types of Asian options: fixed strike and floating strike option.

The pay-off function of the fixed strike (aka average rate) option depends on

difference between the average and given constant strike price X, i.e. the underlying

asset in the plain vanilla option pay-off is replaced by an average:

ΩAsian = (c(A−X))+ ,

where c = 1 or c = −1 for call or put option, respectively.

The pay-off function of the floating strike (or average strike) option depends on

difference between the spot value of the underlying asset at the time of expiry and

the average at the expiry as well, i.e. the strike price in the plain vanilla option

pay-off is replaced by an average:

ΩAsian = (c(S − A))+ ,

where c = 1 or c = −1 for call or put option, respectively.

There is a variety of averages that are used in the Asian style contracts, e.g. arith-

metic, geometric, weighted arithmetic, etc. In the real market a discrete version of

the average is more common than the continuous averaging. The average can be also

capped or floored to ensure the average in certain boundaries. The Asian option with

such an average is called capped Asian option.
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FIGURE 3.2: The arithmetic and geometric average of an underlying S (left). The

maximum and minimum value of an underlying asset S (right).

According to their pay-off, Asian options can be used to hedge highly volatile

underlying assets. The average of an underlying smooths big jumps caused by the

volatility of the market (see FIGURE 3.2).

The American style Asian options are called Hawaiian options, however, we do

not use this name in this thesis.

3.2.2 Lookback options

Lookback option is a path-dependent derivative. The pay-off function of lookback

option depends on the extreme value (maximum M or minimum m) of value of the

underlying asset reached during (the whole or part of) the life of the option contract.

Similarly to the Asian style options, lookback options can be divided in two main

groups according to the pay-off function. The first type is extreme rate options

Ωmin = (c (m−X))+ ,

Ωmax = (c (M −X))+ ,

where c = 1 or c = −1 for call or put option, respectively. The second type of lookback

options is called extreme strike options

Ωmin = S −m,

Ωmax = M − S.

Notice that it is not reasonable to create an extreme strike lookback put option for

minimum value or call option for maximum option.
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If the maximum or minimum is guaranteed by certain lower or upper boundary,

respectively, the derivative is called capped Lookback option. A perpetual lookback

option is called Russian option.

3.2.3 Barrier options

Barrier option is a path-dependent derivative. In some cases the barrier option con-

tracts are more attractive to the traders, because they are cheaper than regular op-

tions.

Barrier option is a financial derivative that change its property when hits specified

barrier (lower barrier BL(t) and/or upper barrier BU(t)).

The basic classification of barrier options is naturally based on the effect that takes

place at the time when the underlying hits the barrier.

The most common barrier option ceases to exist when hits the barrier or reversely

change from inactive to active. In the first case, the option is active from the begin-

ning. At the time of hitting the barrier TB, the holder takes the rebate (defined by

the function R(t)) and the option expires. Such options are called knock-out barrier

options and their pay-off function is

Ωout =

{
(c (S −X))+ , St ∈ (BL(t), BU(t)) for ∀t ∈ [0, T ],

er(T−TB)R(TB), otherwise.

In the other case, the option is inactive at the beginning. If the underlying spot

value hits the barrier, the option starts to exist. The holder takes the rebate if the

barrier is not achieved. Such options are called knock-in barrier options and their

pay-off is

Ωin =

{
R(T ), St ∈ (BL(t), BU(t)) for ∀t ∈ [0, T ],

(c (S −X))+ , otherwise.

3.3 Other exotic derivatives

In this section, we present exotic derivatives traded on the financial markets. How-

ever, the full list of exotic contracts traded is much wider and is growing each day.

The classification of most interesting of them is presented in TABLES 3.2-3.3.
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Packages

The package is a set of financial assets (derivatives - vanilla options and forwards,

cash and underlying assets) connected together by a contract. The most often used

packages are well know strategies as bull spreads, bear spreads, condor spreads,

butterfly spreads, straddles, strangles etc.

Binary options

Binary options have discontinuous pay-offs. The two basic types of binary options

are cash-or-nothing and asset-or-nothing. The cash-or-nothing option pays a constant

amount of cash at the in the money area and nothing at the out the money and at the

at the money area. The asset-or-nothing option pays an asset at the in the money area

and nothing at the out the money and at the at the money area.

The pay-off function for cash-or-nothing is

ΩCoN = H 1ITM(S),

where H is the amount of contracted money and 1ITM( · ) is the indicator function

of in-the-money region. The pay-off function for asset-or-nothing is

ΩAoN = S 1ITM(S),

where 1ITM( · ) is the indicator function of in-the-money region. The in-the-money

region for asset-or-nothing option is usually set as interval (X,∞).

Compound options

Compound options are options on options. There are two strike prices and two expi-

ration dates, one for the ”inner” and one for the ”outer” option. There are four types

of the compound options: put on a put, put on a call, call on a put and call on a call.

Let V be value function of an option with expiration time T and let T < T be

expiration time of a compound option. The pay-off function of compound option is

Ωcompound = (c (V (T, S)−X))+ ,

where c = 1 or c = −1 is for call or put option, respectively.
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Chooser options

Chooser option gives an option to its holder to choose between several options at the

certain exactly given time, e.g. a call and a put option.

Let C and P be value of a call and a put options with expiration time T1 and

T2, respectively. The chooser option (for these two options) with expiration time

T < min [T1, T2] has pay-off function

Ωchooser = max [C(T, S)−XC , P (T, S)−XP , 0] ,

where XC and XP are strike prices of call and put option, respectively.

Extendible options

The extendible option is regular plain vanilla options with feature that at some spec-

ified time T , the holder (or the writer) can either exercise the option or extend the

option’s life and even change the strike price. The pay-off function for the case with

holder in charge is

Ωextendible = max
[
(c (S −X))+ , V (T, S)

]
,

where V is an option (the same call/put type as the extendible one) with expiration

time T > T and c = 1 or c = −1 is for call or put option, respectively. For the case

with writer in charge, the maximum in pay-off function is replaced by minimum.

Range notes

Range note is a derivative that gives fixed income at rate H all the time that under-

lying asset (usually equity or foreign exchange rate) lies within a given set I. The

pay-off function of the range note is

Ωrange = H

∫ T

t0

1I(St)dt,

where 1I is the indicator function of set I and t0 and T are time of settlement and

expiration time, respectively. Range note can be defined on several sets with different

rates (negative as well).

For example, a range note called in-out range accrual note on a foreign exchange

rate pays fixed income for positive part of the ratio of difference of time (or days)
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that spot value was within the range I and time (or days) it was outside the range.

The pay-off function of such range note is given by

Ωrange = H

(∫ T
t0

1I(St)dt

T − t0
−

(
1−

∫ T
t0

1I(St)dt

T − t0

))+

.

Passport options

Passport option (aka perfect trader) is a call option on the trading account, i.e. the

holder receives the positive part of value of his trading account π. To solve this

problem, one needs to include a state variable π into the model. The pay-off function

of passport option is

Ωpassport = π+.

For suitable selection of the type of variable π, the dimension of this problem can be

reduced, e.g. for π given by stochastic differential equation

dπ = r(π − kS) dt+ k dS,

where r is interest rate and k is amount of options in the portfolio and is called a

strategy (the parameter k can vary through time, i.e. it can be replaced by parameter

kt).

Forward-start options

These options start at some time in the future. After this period of time the derivative

behaves as a regular option (its type depends on the contract). The start of the option

is usually conditioned by the position at the money or the strike is set to the actual

value of the underlying asset at forward-start time. The pay-off function of the latter

case is

Ωfwd−start = (c (S − Sfwd))+ ,

where Sfwd is the value of underlying asset at forward-start time and c = 1 or c = −1

for call or put option, respectively.

Break/cancelable forward

The break/cancelable forward can be terminated by the holder at certain time speci-

fied in contract.
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Shout options

Shout option is an European vanilla option, with the property that the holder can

”shout” to the writer once (or more times) during the life of the option (this can be

done only if S > X for call option and S < X for put option). After the ”shout”, the

option expires and holder gets another pure plain vanilla option with strike price set

to the actual value of underlying asset. The pay-off function of this option is

Ωshout = c er(T−Tshout) (Sshout −X) + (c (S − Sshout))+ ,

where Tshout is optimal shouting time, Sshout is the value of underlying asset and c = 1

or c = −1 for call or put option, respectively.

Problem of pricing the shout option is similar to pricing American vanilla option.

Instead of early exercise boundary we are looking for optimal shouting boundary.

Volatility derivatives

The volatility option is considered with discrete sampling. It depends on the process

σi =

√√√√ 1

∆t

1

n− 1

n∑
i=1

(
ln

Sti
Sti−1

)2

,

where ∆t = ti − ti−1 is difference of time moments in the discretization grid. For

the purpose of valuation it is necessary to include two new state variables σ and

S−i = Sti−1
, i.e. the past value of underlying asset. For more details see Wilmott

(2006).

The pay-off function of volatility option is

Ωvolatility = σ.

The variation of volatility option is variance option, i.e. the option on value σ2.

Another example of derivative where realized variance is involved is called variance

swap with the pay-off function

Ωvar−swap = σ2 − σ2
fix,

where σfix is fixed volatility given by the contract. Similar derivatives are also made

for correlation, e.g. correlation swap (hedging basket options).
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Cliquet/Ratchet options

The cliquet or ratchet option is periodic financial derivative resetting the strike price

to the value of actual price of the underlying asset. At each reset time the holder

receives payment of the difference between old and new strike price or the payment

can be also accumulated until the final maturity.

Coupe options

The coupe option is periodic financial derivative resetting the strike price to the worse

of the actual (or original) strike price and value of actual price of the underlying asset.

At each reset time the holder receives payment of the difference between old strike

price and actual price of underlying asset or the payment can be also accumulated

until the final maturity. Coupe option is similar to cliquet option, but is cheaper.

Israeli options

The Israeli or game option is a plain vanilla option, with feature that the seller of

option can cancel the contract but must pay the early exercise pay-off and the penalty

fee.

HYPER option

The HYPER option, i.e. High Yielding Performance Enhancing Reversible option is an

American vanilla option that can be exercised over and over. On each exercise, the

type of the option changes from call to put and vice versa.

Parisian options

The Parisian option is a barrier option where the barrier feature is activated only

after the underlying asset spends some time beyond the barriers. According to this

feature, there is need to measure the time spent outside the barriers. The classical

Parisian option resets the elapsed time once the underlying returns inside the region.

The Parasian contract does not reset the elapsed time. Clearly, we need to include

state variable keeping the value of elapsed time into the model.
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TABLE 3.2: Classification of selected exotic options (part 1).

Derivative
Time

dependence
Cash-flows

Path

dependence
Dimension Order

Embedded

decisions

Package No No No 2 first No

Binary option No No No 2 first No

Compound option No No No 2 second No

Chooser option No No No 2 second
No

(or trivial)

Extendible

option
No No No 2 second Yes

Range note No
Yes

(continuous)
Weak 2 first No

In-out range

accrual note
No No Strong 3 first No

Passport option No No Weak 3 first Yes

Forward-start

option
No No Weak 2 second No

Break/cancelable

forward
Yes No No 2 first Yes

Shout option No
Yes

(discrete)
Strong 3 second Yes

Volatility option Yes/Noa No
Strong

(discrete)
4c first No

Cliquet/Ratchet

option
Yes

Yes/Nob

(discrete)
Strong 3 first No

Coupe option Yes
Yes/Nob

(discrete)
Strong 3 first No

Israeli option No No Weak 2 first Yes

HYPER option No
Yes

(discrete)
Strong 3 second Yes

a The derivative is time dependent for discrete sampling of the underlying asset but it is not for continuous sampling.

b The cash-flow can be accumulated until final maturity or paid at each reset date.

c The dimension can be reduced by suitable substitution.

Installment knock-out option

The installment knock-out option is an out barrier option with feature, that the holder

can pay the installment to keep the option alive. If he does not want to pay the

installment, he loses the contract.

Edokko options

The Edokko (Edo is the old name for Tokyo and ko means people) or Tokyo option is

a knock-out barrier option with the so called caution region. After the first hit of the



42 CHAPTER 3. EXOTIC OPTIONS

barrier, the option moves from the safety position into the caution status. Hitting the

barrier while in caution state, the option vanishes. There is an optional feature of

this derivative, that holder can make certain payment given by the contract to reset

from the caution back into the safety status. For more details see Fujita and Miura

(2002).

Lookback-Asian options

Lookback-Asian option is a member of group of strongly path-dependent options,

where more than one path variable is included. Here the average and extreme values

are involved in the value of the option in various ways.

Ladders

The ladder option is a lookback option with discretely sampled value of underlying

asset. The process of this maximum M̂ and minimum m̂ is given by

M̂t = max{S ∈ D̂;S ≤Mt}

and

m̂t = min{S ∈ D̂;S ≥ mt},

respectively. The set D̂ is set of discrete values of underlying asset, e.g. even values

and Mt = maxτ≤t Sτ and mt = minτ≤t Sτ . The pay-off function is then given as a

function

Ωladder = f(M̂) or Ωladder = f(m̂),

for maximum or minimum, respectively.

Basket options

Basket option involves more than one risky underlying. It depends on the value of

the basket of assets (underlying assets or indices). The pay-off function of the basket

option on underlying assets Si is given by

Ωbasket =

(
c

(∑
i

wiS
i −X

))+

,
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where c = 1 or c = −1 for call or put option, respectively. The constant wi denotes

the share (or weight) of ith underlying asset in basket or index. For the multi-asset

options pricing, the correlation matrix should be involved in the calculation.

Rainbow options

Rainbow option involves more than one risky underlying. It is similar to the basket

option, but the weights of underlying assets depend on their performance. For the

multi-asset options pricing, the correlation matrix should be involved in the calcula-

tion. There are many types of the rainbow options, we present several most common

of them.

The exchange option or Margrabe option is a derivative contract, in which the

holder exchanges one asset for another. The pay-off function of this option for assets

S1 and S2 is

Ωmargrabe =
(
S1 − S2

)+
.

The best of n assets plus cash option has pay-off function given by

Ωbest+cash = max
[
H,max

i
Si
]
,

where H is the value of cash set according to the contract.

The better of n assets option is a variation of best of n assets plus cash option with

H = 0, i.e. the pay-off is positive part of the best performing asset.

The worse of n assets option the pay-off is positive part of the worst performing

asset.

The maximum of n assets option and minimum of n assets option are vanilla option

with underlying asset replaced by the best or the worst performing of underlying

assets, respectively.

Mountain range options

The mountain range options combine characteristics of basket and range options, i.e.

the derivative depends on more underlying assets and there is particular period of

time when the option is active. For the multi-asset options pricing, the correlation

matrix should be involved in the calculation. There are several types of mountain

range options.
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TABLE 3.3: Classification of selected exotic options (part 2).

Derivative
Time

dependence
Cash-flows

Path

dependence
Dimension Order

Embedded

decisions

Parisian option

knock-out
No No

Strong

(continuous)
3 first No

Parisian option

knock-in
No No

Strong

(continuous)
3 secondc No

Installment

knock-out option
Yes Yes Weak 2 first Yes

Edokko option No No Weak 3 first Yes

Lookback-Asian

option
Yes/Noa No Strong 4b first No

Ladder Yes/Noa No Strong 3b first No

Simple basket

of n assets
No No No n+1 first No

Rainbow option

of n assets
No No No n+1 first No

Margrabe option No No No 3 first No

Mountain range

of n assets
Yes No Yes/No >n+1 first No

Napolean option No No No 2 first No

Quanto option No No No 3 first No

a The derivative is time dependent for discrete sampling of the underlying asset but it is not for continuous sampling.

b The dimension can be reduced by suitable substitution.

c The problem can be solved as difference between vanilla and Parisian knock-out option.

The Altiplano option is a multi-asset call option with a feature, that the holder

receives a compensatory coupon if the underlying asset never reaches the strike price

(or some other given barrier) during given period.

The Annapurna option is a multi-asset option, where the holder is rewarded if all

underlying assets in the basket never fall below certain barrier during a given period.

The Atlas option is a multi-asset call option, where some of the best and some of

the worst performing assets are removed from the basket before the execution of the

option.

The Everest option is a long-term multi asset option. The holder gets the pay-off

based on the worst performing asset in the basket. The Everest option usually last

for 10 to 15 years and the basket usually contains 10 to 25 assets.

The Himalayan option is multi-asset call option, where the best performing asset

is thrown out of the basket at specified sampling dates, leaving just one asset in the

basket at the end.
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Napolean options

The Napolean option is a financial contract typically based on the stock index. The

pay-off of this derivative is a fixed coupon and the worst return of the index over

specified time periods.

Quanto options

The quanto option is a financial derivative with underlying asset in one currency and

pay-off in the another one.

British (style of) options

The British option is a class of early exercise options based on hedging of the true

drift µ of underlying asset. The derivative defines a contract drift µc (constant value

specified at the start of the contract). The holder can exercise the option whenever

prior the expiration time T and he receives the best prediction of the pay-off accord-

ing to the contract drift, i.e. the (general) pay-off function of British option is given

by

ΩGB = ERt
[
ΩT

∣∣
S=ST

|St = S
]
,

where ΩT is the pay-off function at expiration time T , ERt [X] = ER[X|Ft] is the

conditioned expectation with information available at time t (the information set

is represented by the filtration Ft of the σ-algebra F where the Brownian motion

is supported) and R is a probability measure according to which the underlying is

driven by stochastic differential equation

dSt = µcSt dt+ σSt dW
R
t .

It is clear, that the pay-off function of the British option depends on time.

The most simple example of the British type derivatives is British vanilla option.

The pay-off function at the expiry T is the same as for the plain vanilla options, i.e.

Ωvanilla
T = (c (S −X))+. Consequently, the pay-off function at time t is

ΩGB,vanilla = c
(
eµc(T−t)SΦ (c dµct )−XΦ

(
c
(
dµct − σ

√
T − t

)))
,
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where c = 1 or c = −1 for call or put option, respectively. The function Φ( · ) is the

cumulative distribution function CDF of the normal probability distribution N (0, 1)

and dµct =
ln S
X

+(µc+
1
2
σ2)(T−t)

σ
√
T−t .

The British feature is a property that can be add to many (more or less simple)

derivative contracts, e.g. vanilla, Asian, lookback, Russian etc. For more detailed

information see Peskir and Samee (2008a,b), Glover et al. (2009a,b).

3.4 Hedging of the exotic portfolio

Portfolio consisting of financial instruments (and/or underlying assets) is usually se-

cured using the indicators of sensitivity called Greeks (i.e. partial derivatives accord-

ing to some of the parameters). The more exotic features we add to the portfolio, the

more complex Greeks we need to include into its hedging mechanism.

While dealing with a portfolio consisting of simple derivatives as vanilla options, it

suffice to consider simpler Greeks (i.e. first order Greeks). On the other hand, if there

are exotic features in the portfolio, we need to include more complex sensitivities

(e.g. Greeks of higher order, i.e. Greeks on Greeks). We discuss these indicators in

detail in the APPENDIX B.



CHAPTER 4

A probabilistic model for pricing
American style options

The main purpose of this section is to derive an integral equation for valuation

of an American style Asian option paying continuous dividends (we call the under-

lying S and the rate of benefit q the stock and the dividend rate, respectively). We

follow the idea of derivation from Hansen and Jørgensen (2000). Their formula for

a floating strike option was derived using the theory of martingales and conditioned

expected values. We extend their formula for general financial derivative on under-

lying(s) driven by a Brownian motion (this includes also Asian options on underlying

paying non-zero dividend yield and having a general form of floating strike aver-

aging). In a more detail, we discuss Asian options with geometric, arithmetic and

weighted arithmetic averaging operator. This chapter is based on results from the

paper Bokes (2010)1 and the first part of paper Bokes and Ševčovič (2011)2.

4.1 Model

The pricing model is based on the assumption of stochastic behavior of the underlying

asset in time. Throughout the thesis (except for the generalizations of problems)

we shall assume that the underlying asset price St is driven by a stochastic process

satisfying the following stochastic differential equation

dSt = (r − q)St dt+ σSt dW
P
t , 0 ≤ t ≤ T. (4.1)

It starts almost surely from the initial price S0 > 0. Here the constant parameter

r > 0 denotes the risk-free interest rate whereas q ≥ 0 is a continuous dividend rate.
1 TB: 2010, Valuation of the American-style of Asian option by a solution to an integral equation, Acta

Universitatis Matthiae Belii
2 TB and Ševčovič, D.: 2011, Early exercise boundary for American type of floating strike Asian option

and its numerical approximation, Applied Mathematical Finance

47
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The constant parameter σ stands for the volatility of underlying asset return and W P
t

is the Wiener process with respect to the standard risk-neutral probability measure

P . A solution to equation (4.1) corresponds to the geometric Brownian motion

St = S0e
(r−q− 1

2
σ2)t+σWP

t , 0 ≤ t ≤ T.

The bond (risk-free) market is driven by differential equation

dBt = rBt dt, (4.2)

with B0 = 1, i.e. Bt = ert.

As we have already mentioned above we shall derive the value of an American

style Asian option with floating strike. If we define the optimal stopping time as T ∗,

the pay-off of option is set by

Ω
∣∣∣
(S,A)=(ST∗ ,AT∗ )

= (c (ST ∗ − AT ∗))+ ,

where At is a continuous average of the stock value during the interval [0, t] and c = 1

for a call option and c = −1 for a put option.

We may consider several different types of averages. We define parametric class

of averages with parameter p

(At)
p =

1∫ t
0
a(s) ds

∫ t

0

a(t− u)(Su)
p du. (4.3)

The integrable kernel function a( · ) ≥ 0 is usually defined either as a(s) = e−λs where

λ > 0 is constant (the exponential kernel) or as a(s) = 1 (the constant kernel; this

is a special case of the exponential kernel with λ → 0). By the appropriate choice of

the kernel, we can create both continuous and discrete averages. We discuss several

possible choices of the parameter p and the kernel a( · ).
By the choice of the constant kernel and value p = 0 we obtain continuous geo-

metric average (the expression is calculated as the limit limp→0At)

lnAt =
1

t

∫ t

0

lnSu du. (4.4)

In the case of the constant kernel and value p = 1 we obtain continuous arithmetic

average

At =
1

t

∫ t

0

Su du, (4.5)
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the choice of the general kernel and value p = 1 gives us the weighted arithmetic av-

erage (in the following sections we usually replace general kernel by the exponential

one)

At =
1∫ t

0
a(s) ds

∫ t

0

a(t− u)Su du. (4.6)

If we choose the constant kernel and value |p| → ∞, the Asian (floating strike) option

transforms into the lookback (floating price) option. For p→ −∞ the model suits for

put (minimum) lookback option

At = inf
u∈[0,t]

Su = mt (4.7)

and for p→∞ the model suits for call (maximum) lookback option

At = sup
u∈[0,t]

Su = Mt. (4.8)

[We define these averages also in the SECTION 7.2.]

4.2 Calculation of the formula

According to Hansen and Jørgensen (2000), the American style contingent claims

can be priced by the conditioned expectations approach. First, we present a theorem

that can be used to calculate the value of general American style financial derivative

on underlying(s) driven by a Brownian motion.

The value of American style of derivative on underlying x with the pay-off func-

tion Ω : R+ × Rn → R is calculated by solving the problem of mathematic program-

ming

V (t, x) = esssup
s∈T[t,T ]

EQt
[
Nt
Ns

Ω (s, xs)
∣∣∣xt = x

]
, (4.9)

where Nt is the numeraire, Q is the risk-neutral measure, T[t,T ] denotes the set of

all stopping times in the interval [t, T ] and EQt [X] = EQ[X|Ft] is the conditioned

expectation with information available at time t (the information set is represented

by the filtration Ft of the σ-algebra F where the Brownian motion is supported) and

the esssup is the essential supremum (see DEFINITION 1.3).
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THEOREM 4.1. Assume stochastic behavior of the underlying(s) driven by a stochastic

differential equation

dxit = µi dt+ σi dW i
t ,

for i ∈ {1, . . . , n} on their domain D ⊂ Rn. The values µi ∈ R, σi ≥ 0 and dWt =

(dW 1
t , . . . , dW

n
t ) are drift, volatility and differential of standard n-dimensional Brown-

ian motion under the joined risk-neutral measureQ, respectively. The covariance matrix

Σ of dWt is defined for i, j ∈ {1, . . . , n} by

Σi,j = Covar
[
dW i

t , dW
j
t

]
= ρijdt,

where ρij ∈ [−1, 1] is the correlation coefficient and ρii = 1.

Let function N : R+ × Rn → R+ and Ω : R+ × Rn → R be the numeraire and

pay-off function, respectively. Moreover, assume that both functions are differentiable

on x ∈ D ⊂ Rn except for the set of zero measure.

Then the value V (t, xt) of American style of derivative on underlying asset xt is given

by

V (t, xt) = v(t, xt) + e(t, xt), (4.10)

where

v(t, xt) ≡ N (t, xt) EQt
[
(N (T, xT ))−1 Ω(T, xT )

]
, (4.11)

e(t, xt) ≡ N (t, xt) EQt
[
−
∫ T

t

1S(u, xu)fd(u, xu) du

]
, (4.12)

and

fd(t, xt) =
∂
(

Ω(t,xt)
N (t,xt)

)
∂t

+
n∑
i=1

µi
∂
(

Ω(t,xt)
N (t,xt)

)
∂xi

+
1

2

n∑
i,j=1

ρijσ
iσj

∂2
(

Ω(t,xt)
N (t,xt)

)
∂xi∂xj

. (4.13)

REMARK 4.1. It is worthwhile noting that the expression (4.10) of the value of an

American style derivative can be restated as follows:

Ṽam(t, x) = Ṽeu(t, x) + EQt
[∫ T

t

1S(u, xu)fb(u, xu) du

]
where Ṽeu stands for the price of European style derivative and 1S(u, xu)fb(u, xu), u ∈
[0, T ], represents a surplus bonus of the American style derivative against the European

style derivative.
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For the case of Asian options, expression (4.9) becomes

V (t, S, A) = esssup
s∈T[t,T ]

EPt
[
e−r(s−t) (c(Ss − As))+

∣∣∣St = S,At = A
]
, (4.14)

where T[t,T ] denotes the set of all stopping times in the interval [t, T ] and EPt [X] =

EP [X|Ft] is the conditioned expectation with information available at time t (the in-

formation set is represented by the filtration Ft of the σ-algebra F where the Brow-

nian motion is supported) and the esssup is the essential supremum (see DEFINI-

TION 1.3).

We can solve the problem simply using THEOREM 4.1, but we want to decrease

the dimension of problem so we change the probability measure by the martingale

ηt = e−(r−q)t St
S0

= e−
1
2
σ2t+σWP

t . (4.15)

The new probability measureQ is defined as dQ = ηT dP and according to Girsanov’s

theorem 1.9, the process

WQ
t = W P

t − σt

is a standard Brownian motion with respect to the measure Q. The value of stock

under this measure is defined by

St = S0e
(r−q+ 1

2
σ2)t+σWQt (4.16)

According to Harrison and Kreps (1979), all asset prices ft discounted by time

value of money is martingale under the measure P , i.e.

e−rtft = EPt
[
e−rTfT

]
.

If we change the measure to Q, we have

ft = EPt
[
e−r(T−t)fT

]
= EQt

[
ηt
ηT
e−r(T−t)fT

]
= EQt

[
St
ST
e−q(T−t)fT

]
. (4.17)

The expression (4.17) yields that all assets discounted by the full stock price (divi-

dends included) priced under the new measure are Q-martingales, i.e.

ft
eqtSt

= EQt
[

fT
eqTST

]
.
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According to this fact, we can reduce the dimension of stochastic variables. We

introduce a new variable xt = At
St

. We obtain:

V (t, S, A) = ess sup
s∈T[t,T ]

EPt
[
e−r(s−t) (c(Ss − As))+

∣∣∣St=S
At=A

]
= ess sup

s∈T[t,T ]

EQt
[
ηt
ηT
e−r(s−t) (c(Ss − As))+

∣∣∣St=S
At=A

]
= ess sup

s∈T[t,T ]

EQt
[
e−(r−q)tSte

−r(s−t) (c(Ss − As))+ EQs
[
erT

eqTST

] ∣∣∣St=S
At=A

]
= ess sup

s∈T[t,T ]

EQt
[
e−(r−q)tSte

−r(s−t) (c(Ss − As))+ e(r−q)s

Ss

∣∣∣St=S
At=A

]

= ess sup
s∈T[t,T ]

EQt

[
e−q(s−t)St

(
c

(
1− As

Ss

))+ ∣∣∣St=S
At=A

]
= ess sup

s∈T[t,T ]

e−q(s−t)S EQt
[
(c(1− xs))+

∣∣∣St=S
At=A

]
. (4.18)

The expression (4.18) can be rewritten in terms of the new variable x = A
S

as

follows:

Ṽ (t, x) = e−qt
V (t, S, A)

S
= e−qT

∗
t EQt

[(
c(1− xT ∗t )

)+
]
, (4.19)

where T ∗t = inf{s ∈ [t, T ]|xs = x∗s} and x∗ is the exercise boundary.

DEFINITION 4.1. The stopping region S and continuation region C for an American

style Asian call and put option (4.19) are defined by

Scall = Cput = {(t, x)|t ∈ [0, T ], 0 ≤ x < x∗t},

Ccall = Sput = {(t, x)|t ∈ [0, T ], x∗t < x <∞},

where [0, T ] ∈ t 7→ x∗t ∈ R is a continuous function determining the early exercise

boundary. By 1S( · ) we shall denote the indicator function of the set S, i.e. 1S(t, y) = 1

for (t, y) ∈ S and 1S(t, y) = 0 otherwise.

In the following theorem, we present a solution to the pricing problem with one

stochastic variable xt formulated in (4.19). It is a generalization of the result by

Hansen and Jørgensen (2000) and Wu et al. (1999) for the case of a nontrivial divi-

dend rate q ≥ 0 and a general form of the averaging of the floating strike price.
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THEOREM 4.2. The value Ṽ (t, xt) = e−qtV (t, xt) of the American style floating strike

Asian call (c = 1) or put option (c = −1) on the underlying asset xt is given by

Ṽ (t, xt) = ṽ(t, xt) + ẽ(t, xt), (4.20)

where

ṽ(t, xt) ≡ EQt
[
e−qT (c(1− xT ))+] , (4.21)

ẽ(t, xt) ≡ EQt
[∫ T

t

c e−quxu1S(u, xu)

(
dAu
Au
− (r − qx−1

u ) du

)]
, (4.22)

with the average given by the function At, stopping region S and continuous dividend

rate q ≥ 0.

The value of dAt
At

depends on the average used in the valuation. The expression

for the general average has form

dAt
At

=
1

p
∫ t

0
a(s) ds

a(0) +
∫ t

0
a′(t− u)

(
Su
St

)p
du

(xt)p
− a(t)

 dt. (4.23)

This expression is unusable in its general form, thus we restrict the weighted averag-

ing to the exponential kernel a(s) = e−λs, and the expression simplifies into

dAt
At

=
λ

p(1− e−λt)

(
1

(xt)p
− 1

)
dt. (4.24)

For the geometric averaging we have the expression

dAgt
Agt

= −1

t
lnxgt dt, (4.25)

for the arithmetic average it is

dAat
Aat

=
1

t

(
1

xat
− 1

)
dt, (4.26)

and for the weighted arithmetic averaging with exponential kernel the expression

becomes
dAwat
Awat

=
λ

1− e−λt

(
1

xwat
− 1

)
dt. (4.27)

Finally, for the lookback options the expression has form

dmt

mt

=
dMt

Mt

= 0. (4.28)
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The expression for the lookback option is calculated from the expression for the gen-

eral average, where x∞t = Mt

St
≥ 1 and x−∞t = mt

St
≤ 1.

We calculate the exact or approximate formula for the American style Asian option

with various floating strike averages. The next lemma will be useful in calculations

to follow.

LEMMA 4.1. Let z = lnZ ∼ N (α, β2) and define

γp ≡
lnK − α

β
− pβ,

where K > 0 and p ∈ R. We have

(i) E
[
1{Z≤K}

]
= Φ(γ0)

[this expression is a special case of the expression (iii)],

(ii) E
[
1{Z≥K}

]
= Φ(−γ0)

[this expression is a special case of the expression (iv)],

(iii) E
[
1{Z≤K}Z

p
]

= epα+ p2β2

2 Φ(γp),

(iv) E
[
1{Z≥K}Z

p
]

= epα+ p2β2

2 Φ(−γp),

(v) E [(K − Z)+] = KΦ(γ0)− eα+β2

2 Φ(γ1),

(vi) E [(Z −K)+] = eα+β2

2 Φ(−γ1)−KΦ(−γ0),

(vii) E
[
1{Z≤K}Z lnZ

]
= eα+β2

2 ((α + β2)Φ(γ1)− βΦ(γ1)),

(viii) E
[
1{Z≥K}Z lnZ

]
= eα+β2

2 ((α + β2)Φ(−γ1) + βΦ(γ1)),

where Φ( · ) and Φ( · ) are standard normal cumulative distribution and density func-

tions, respectively.

4.2.1 Approximation for the general average

The probabilistic distribution function of the general average defined by (4.3) cannot

be expressed by an explicit expression. Following the idea of Hansen and Jørgensen

(2000) we approximate the probabilistic distribution of the variable xt = At
St

for



4.2. CALCULATION OF THE FORMULA 55

the general average At by the log-normal conditioned distribution, i.e. lnxu|Ft ∼
N (αt,u, (βt,u)

2) at time t. Moreover, it is not possible to calculate the approximation

with the general kernel, thus we use the exponential kernel a(s) = e−λs, with λ > 0.

The result for the constant kernel can be calculated as a limit λ→ 0.

We use following lemma in the derivation of the approximation.

LEMMA 4.2. Consider that the variable ξu has a log-normal conditioned distribution

with parameters αt,u and βt,u, i.e.

ln ξu|Ft ∼ N (ln ξt + αt,u, (βt,u)
2).

Then the variable (ξu)
p where p ∈ R has a log-normal conditioned distribution with

parameters pαt,u and pβt,u, i.e.

ln (ξu)
p|Ft ∼ N (ln (ξt)

p + pαt,u, p
2(βt,u)

2).

According to the LEMMA 4.2, we define the parameters of the approximate log-

normal distribution by

αt,u =
2

p
lnEQt [(xu)

p]− 1

2p
lnEQt

[
(xu)

2p
]
, (4.29)

βt,u =

√
1

p2
lnEQt [(xu)2p]− 2

p2
lnEQt [(xu)p]. (4.30)

LEMMA 4.3. Consider the variable (xu)
p =

(
Au
Su

)p
, where Au and Su are defined as

the general average (4.3) with exponential kernel a(s) = e−λs, with λ > 0 and as in

(4.16), respectively. First two conditioned moments EQt [(xu)
p] and EQt [(xu)

2p] of (xu)
p

entering the expressions for the functions αt,u = α(t, u, xt) and βt,u = β(t, u, xt) can be

calculated, for t ≤ u, as follows:

EQt [(xu)
p] = (xt)

p 1− e−λt

1− e−λu
e−κλ,p(u−t) +

λ

1− e−λu
1− e−κλ,p(u−t)

κλ,p
, (4.31)

EQt
[
(xu)

2p
]

= (xt)
2p (1− e−λt)2

(1− e−λu)2
e−(2κλ,p−p2σ2)(u−t)

+2(xt)
pλ(1− e−λt)
(1− e−λu)2

e−κλ,p(u−t) 1− e−κλ,p(u−t)

κλ,p
(4.32)

+λ2 (κλ,p − p2σ2)− 2(κλ,p − p2 σ2

2
)e−κλ,p(u−t) + κλ,p e

−2(κλ,p−p2 σ
2

2
)(u−t)

(1− e−λu)2 κλ,p (κλ,p − p2 σ2

2
) (κλ,p − p2σ2)

,

where κλ,p = λ+ p
(
r − q + (1− p)σ2

2

)
.
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Now, we return to the problem of valuation of an Asian option. First we replace the

general form of the average in (4.22) by the expression for the general average with

the exponential kernel defined by (4.23). Recall that for the floating strike Asian call

or put option, the stopping region S = {(t, x), x ≥ 0, cx∗t > cx}, where x∗t is the

exercise boundary and c = 1 for the case of a call option whereas c = −1 for a put

option.

Using LEMMA 4.1 we calculate the value of both (4.21) and (4.22). The European

part of the option has value

ṽ(t, x) = EQt
[
e−qT (c(1− xT ))+] = e−qTEQt

[
(c(1− xT ))+]

= c e−qT
(

Φ

(
−c αt,T

βt,T

)
− eαt,T+

(βt,T )2

2 Φ

(
−c
(
αt,T
βt,T

+ βt,T

)))
(4.33)

and the American early exercise bonus premium

ẽ(t, x) = EQt
[∫ T

t

c e−quxu1S(xu)

(
dAu
Au
− (r − q

xu
) du

)]
=

∫ T

t

c e−quEQt
[
1{cx∗≥cx}

(
xuλ

p(1− e−λu)
((xu)

−p − 1)− rxu + q

)]
du

=

∫ T

t

c e−qu
(
qEQt

[
1{cx∗≥cx}

]
−
(

λ

p(1− e−λu)
+ r

)
EQt
[
1{cx∗≥cx}xu

]
+

λ

p(1− e−λu)
EQt
[
1{cx∗≥cx}(xu)

1−p]) du (4.34)

=

∫ T

t

c e−qu
(
qΦ(c γ0,t,u)−

(
r +

λ

p(1− e−λu)

)
eαt,u+

(βt,u)
2

2 Φ(c γ1,t,u)

+
λ

p(1− e−λu)
e(1−p)αt,u+(1−p)2 (βt,u)

2

2 Φ(c γ1−p,t,u)

)
du,

where Φ( · ) is the standard normal cumulative distribution function and

γp,t,u =
lnx∗u − αt,u

βt,u
− pβt,u. (4.35)

Returning to the original variables we have the approximate value of American

style Asian option with a continuous arithmetic averaging

V (t, S, A) = SeqtṼ (t, x)

= Seqt(ṽ(t, x) + ẽ(t, x))

= v(t, S, A) + e(t, S, A), (4.36)
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where

v(t, S, A) = cSe−q(T−t)
(

Φ

(
−c αt,T

βt,T

)
− eαt,T+

(βt,T )2

2 Φ

(
−c
(
αt,T
βt,T

+ βt,T

)))
(4.37)

and

e(t, S, A) = cS

∫ T

t

e−q(u−t)
(
qΦ(c γ0,t,u)−

(
r +

λ

p(1− e−λu)

)
eαt,u+

(βt,u)
2

2 Φ(c γ1,t,u)

+
λ

p(1− e−λu)
e(1−p)αt,u+(1−p)2 (βt,u)

2

2 Φ(c γ1−p,t,u)

)
du. (4.38)

4.2.2 Geometric average

In this section, we recall the integral equation for pricing American style of Asian

geometrically averaged floating strike options. It was derived for the case q = 0 by

Hansen and Jørgensen (2000) and for the general case q ≥ 0 by Wu et al. (1999).

The formula for the geometric continuous average can be derived from the result

presented in SECTION 4.2.1 as a limit p → 0 and λ → 0. The stochastic variable

xgt =
Agt
St

has log-normal probabilistic distribution. We have identified the distribution,

so there is no need of any approximation and the formula can be calculated exactly.

LEMMA 4.4. (Wu et al. 1999) In the case of geometric averaging, the variable xgt =
Agt
St

has log-normal (conditioned) distribution lnxgu|Ft ∼ N (αt,u, β
2
t,u), where u ≥ t and

parameters αt,u = α(t, u, xt) and βt,u = β(t, u) are defined by

αgt,u =
t

u
lnxgt −

u2 − t2

2u
(r − q +

σ2

2
), (4.39)

βgt,u =
σ

u
√

3

√
u3 − t3. (4.40)

REMARK 4.2. The value of limit of expression (4.29) for p → 0 and λ → 0 is equal to

(4.39). But if we calculate the value of limit of expression (4.30) we have

lim
λ→0

lim
p→0

βt,u =
σ

u
√

3

√
u3 − t3 − 3t(u− t)2 6= βgt,u.

Now, one can apply LEMMA 4.1 in order to calculate the formula for option with the

geometric averaging. The stopping region S = {(t, x), x ≥ 0, cx∗t > cx}, where x∗t is

the exercise boundary and c = 1 for the case of a call option whereas c = −1 for a put
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option. If we insert the expression dAgt
Agt

for the geometric average (4.25) into (4.21)

and (4.22) we obtain the formula for the European style option

ṽg(t, xt) = EQt
[
e−qT (c(1− xgT ))+] = e−qTEQt

[
(c(1− xgT ))+]

= c e−qT

(
Φ

(
−c

αgt,T
βgt,T

)
− eα

g
t,T+

(β
g
t,T

)2

2 Φ

(
−c

(
αgt,T
βgt,T

+ βgt,T

)))
(4.41)

and the value of the American early exercise bonus premium

ẽg(t, xt) = EQt
[∫ T

t

c e−quxgu1S(xgu)

(
dAgu
Agu
− (r − q

xgu
) du

)]
=

∫ T

t

c e−quEQt
[
1{cx∗≥cxg}

(
−1

u
xgu lnxgu − rxgu + q

)]
du

=

∫ T

t

c e−qu
(
qEQt

[
1{cx∗≥cxg}

]
− rEQt

[
1{cx∗≥cxg}x

g
u

]
−1

u
EQt
[
1{cx∗≥cxg}x

g
u lnxgu

])
du (4.42)

=

∫ T

t

c e−qu
(
qΦ(c γg0,t,u)

+eα
g
t,u+

(β
g
t,u)

2

2

(
c
βgt,u
u

Φ(γg1,t,u)−
(
r +

αgt,u + (βgt,u)
2

u

)
Φ(c γg1,t,u)

))
du,

where Φ( · ) is the standard normal cumulative distribution function, Φ( · ) ≡ Φ′( · )
is the standard normal probability density function and

γgp,t,u =
lnx∗u − α

g
t,u

βgt,u
− pβgt,u. (4.43)

Returning to the original variables we obtain the formula of American style float-

ing strike Asian option with geometrically averaged floating strike:

V g(t, S, A) = SeqtṼ g(t, xt)

= Seqt(ṽg(t, xt) + ẽg(t, xt))

= vg(t, S, A) + eg(t, S, A), (4.44)

where

vg(t, S, A) = cSe−q(T−t)

(
Φ

(
−c
αgt,T
βgt,T

)
− eα

g
t,T+

(β
g
t,T

)2

2 Φ

(
−c

(
αgt,T
βgt,T

+ βgt,T

)))
(4.45)
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and

eg(t, S, A) = cS

∫ T

t

e−q(u−t)
(
qΦ(c γg0,t,u) (4.46)

+eα
g
t,u+

(β
g
t,u)

2

2

(
c
βgt,u
u

Φ′(γg1,t,u)−
(
r +

αgt,u + (βgt,u)
2

u

)
Φ(c γg1,t,u)

))
du.

If we formally set value of the continuous dividend rate to zero, i.e. q = 0, the result

is identical to the expression obtained in the paper Hansen and Jørgensen (2000).

4.2.3 Approximation for the arithmetic average

Unfortunately, in the case of an arithmetically averaged floating strike Asian op-

tion the probabilistic distribution function of the arithmetic average cannot be ex-

pressed in an explicit way. Following the SECTION 4.2.1 (and Hansen and Jørgensen

(2000)) we approximate the probabilistic distribution of the variable xat =
Aat
St

for

the continuous arithmetic average Aat by the log-normal conditioned distribution, i.e.

lnxau|Ft ∼ N (αat,u, (β
a
t,u)

2) at time t, where

αat,u = 2 lnEQt [xau]−
1

2
lnEQt

[
(xau)

2
]
, (4.47)

βat,u =

√
lnEQt [(xau)

2]− 2 lnEQt [xau]. (4.48)

LEMMA 4.5. Consider the variable xu = Au
Su

, where Au and Su are defined as the arith-

metic average (4.5) and as in (4.16), respectively. First two conditioned moments

EQt [xau] and EQt [(xau)
2] of xu entering the expressions for the functions αat,u = αa(t, u, xat )

and βat,u = βa(t, u, xat ) can be calculated, for t ≤ u, as follows:

EQt [xau] = xat
t

u
e−(r−q)(u−t) +

1

(r − q)u
(
1− e−(r−q)(u−t)) , (4.49)

EQt
[
(xau)

2
]

= (xat )
2 t

2

u2
e−2(r−q−σ

2

2
)(u−t) + xat

2te−(r−q)(u−t)

u2(r − q)
(
1− e−(r−q)(u−t)) (4.50)

+
(r − q − σ2)− 2(r − q − σ2

2
)e−(r−q)(u−t) + (r − q)e−2(r−q−σ

2

2
)(u−t)

u2(r − q)(r − q − σ2

2
)(r − q − σ2)

.

REMARK 4.3. If we formally set the value of the continuous dividend rate q = 0 in

LEMMA 4.5 we obtain almost identical expression to that of Hansen and Jørgensen
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(2000) except of the second moment EQt [(xau)
2] entering (4.47) and (4.48). The ex-

pression

EQt
[
(xau)

2
]
HJ

= (xat )
2 t

2

u2
e−2(r−σ

2

2
)(u−t) + xat

2te−r(u−t)

u2(r − σ2)

(
1− e−(r−σ2)(u−t)

)
+

(r − σ2)− 2(r − σ2

2
)e−r(u−t) + re−2(r−σ

2

2
)(u−t)

u2r(r − σ2

2
)(r − σ2)

.

by Hansen and Jørgensen (2000) differs from our (4.50) in the second summand where

the term r−σ2 is replaced by r in both the denominator and the exponent. The expression

EQt
[
(xau)

2
]
HJ

is not consistent with the derivation presented by Hansen and Jørgensen

(2000).

Now, we can return to the problem of valuation of an Asian option. First we replace

the general form of the average in (4.22) by the expression for the arithmetic average

defined by (4.26). The stopping region S is the same as for the case of geometric

averaging S = {(t, x), x ≥ 0, cx∗t > cx}.
Using LEMMA 4.1 we calculate the value of both (4.21) and (4.22). The European

part of the option has value

ṽa(t, x) = EQt
[
e−qT (c(1− xaT ))+] = e−qTEQt

[
(c(1− xaT ))+]

= c e−qT

(
Φ

(
−c
αat,T
βat,T

)
− eαat,T+

(βat,T )2

2 Φ

(
−c

(
αat,T
βat,T

+ βat,T

)))
(4.51)

and the American early exercise bonus premium

ẽa(t, x) = EQt
[∫ T

t

c e−quxau1S(xau)

(
dAau
Aau
− (r − q

xau
) du

)]
=

∫ T

t

c e−quEQt
[
1{cx∗≥cxa}

(
1

u
(1− xau)− rxau + q

)]
du (4.52)

=

∫ T

t

c e−qu
((

1

u
+ q

)
EQt
[
1{cx∗≥cxa}

]
−
(

1

u
+ r

)
EQt
[
1{cx∗≥cxa}x

a
u

])
du

=

∫ T

t

c e−qu
((

q +
1

u

)
Φ(c γa0,t,u)−

(
r +

1

u

)
eα

a
t,u+

(βat,u)
2

2 Φ(c γa1,t,u)

)
du,

where Φ( · ) is the standard normal cumulative distribution function and

γap,t,u =
lnx∗u − αat,u

βat,u
− pβat,u. (4.53)
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Returning to the original variables we have the approximate value of American

style Asian option with a continuous arithmetic averaging

V a(t, S, A) = SeqtṼ a(t, x)

= Seqt(ṽa(t, x) + ẽa(t, x))

= va(t, S, A) + ea(t, S, A), (4.54)

where

va(t, S, A) = cSe−q(T−t)

(
Φ

(
−c
αat,T
βat,T

)
− eαat,T+

(βat,T )2

2 Φ

(
−c

(
αat,T
βat,T

+ βat,T

)))
(4.55)

and

ea(t, S, A) = cS

∫ T

t

e−q(u−t)
((

q +
1

u

)
Φ
(
c γa0,t,u

)
(4.56)

−
(
r +

1

u

)
eα

a
t,u+

(βat,u)
2

2 Φ
(
c γa1,t,u

))
du.

4.2.4 Lookback options

The general average (4.3) can be transformed into the maximum or the minimum

value of variable St by appropriate choice of the parameter p (p → −∞ and p → ∞
for minimum and maximum, respectively). The conditioned distribution of both

lnx−∞t and lnx∞t can be derived exactly. Distribution of the similar variables is de-

rived by Kwok (2008). We use the idea of the derivation of distribution.

Neither of the stochastic variables x−∞t = mt
St

and x∞t = Mt

St
has log-normal prob-

abilistic distribution. We define the distribution by the CDF of the variables. As for

the geometric average, we have identified the distribution, so there is no need of any

approximation and the formula can be calculated exactly.

LEMMA 4.6. Consider geometric Brownian process St defined by (4.16) and define

stochastic variables mt = infs∈[0,t] Ss and Mt = sups∈[0,t] Ss.

Moreover, we define parameters αt,u = α(t, u, xt) and βt,u = β(t, u) by

α±∞t,u = lnx±∞t − (r − q +
σ2

2
)(u− t), (4.57)

β±∞t,u = σ
√
u− t. (4.58)
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The conditioned CDFs of stochastic variables yu = ln x−∞u = ln mu
Su
≥ 0 and Yu =

lnx∞u = ln Mu

Su
≤ 0 where u ≥ t are given by the expressions

Fmin(yu)|Ft = Φ

(
yu − α−∞t,u
β−∞t,u

)
+ e−ςyuΦ

(
yu + α−∞t,u
β−∞t,u

)
(4.59)

for y ≤ 0 and

Fmax(Yu)|Ft = Φ

(
Yu − α∞t,u
β∞t,u

)
− e−ςYuΦ

(−Yu − α∞t,u
β∞t,u

)
(4.60)

for Y ≥ 0, respectively. The constant ς =
r−q+σ2

2
σ2

2

and Φ( · ) is the CDF of the normal

probability distribution N (0, 1).

REMARK 4.4. The value of limit of expressions (4.29) and (4.30) for p → ±∞ lead to

the log-normal distribution (same for both∞ and −∞)

lim
p→±∞

F p(y)|Ft = Φ

(
y − α±∞t,u
β±∞t,u

)
6=

{
Fmax(y)|Ft
Fmin(y)|Ft

.

LEMMA 4.7. Let z = lnZ be a stochastic variable with the CDF defined by (4.59) for

minimum and by (4.60) for maximum. We define

γ+
p ≡ lnK + α

β
− pβ,

γ−p ≡ lnK − α
β

− pβ,

where K > 0 and p ∈ R. We have

(i) for minimum value

Emin
[
1{Z≤K}

]
= Φ(γ−0 ) + e−ς lnKΦ(γ+

0 )

[this expression is a special case of the expression (iii)],

(ii) for maximum value

Emax
[
1{Z≥K}

]
= Φ(−γ−0 ) + e−ς lnKΦ(−γ+

0 )

[this expression is a special case of the expression (iv)],
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(iii) for minimum value

Emin
[
1{Z≤K}Z

p
]

= epα+ p2β2

2 Φ(γ−p ) +
p

p− ς
e−(p−ς)α+

(p−ς)2β2
2 Φ(γ+

p−ς)

− ς

p− ς
e(p−ς) lnKΦ(γ+

0 ),

(iv) for maximum value

Emax
[
1{Z≥K}Z

p
]

= epα+ p2β2

2 Φ(−γ−p ) +
p

p− ς
e−(p−ς)α+

(p−ς)2β2
2 Φ(−γ+

p−ς)

− ς

p− ς
e(p−ς) lnKΦ(−γ+

0 ),

where Φ( · ) is standard normal CDF.

We can return to the problem of valuation of a lookback option. First we replace the

general form of the average in (4.22) by the expression for the extreme value (4.28)

(this expression is equal to zero). The stopping region S is the same as in previous

sections and is defined by S = {(t, x), x ≥ 0, cx∗t > cx}.

We recall that lookback floating strike call option is reasonable only for the min-

imum value of the underlying (according to the inequality St ≥ mt for ∀t) and put

option is reasonable only for the maximum value of the underlying (according to the

inequality St ≤ Mt for ∀t). Thus, we associate the value of parameter c = 1 with call

option and minimum value and c = −1 with put option and maximum value.

Using LEMMA 4.7 we calculate the value of both (4.21) and (4.22). The European

part of the option has value

ṽ±∞(t, x) = EQt
[
e−qT c

(
1− x±∞T

)]
= e−qTEQt

[
c
(
1− x±∞T

)]
= c e−qT

(
1− eα

±∞
t,T +

(β±∞t,T )
2

2 Φ

(
−c

(
α±∞t,T
β±∞t,T

+ β±∞t,T

))

− 1

1− ς
e−(1−ς)α±∞t,T +

(1−ς)2(β±∞t,T )
2

2 Φ

(
c

(
α±∞t,T
β±∞t,T

− (1− ς)β±∞t,T

))

+
ς

1− ς
Φ

(
c
α±∞t,T
β±∞t,T

))
(4.61)
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and the American early exercise bonus premium

ẽ±∞(t, x) = EQt
[∫ T

t

c e−qux±∞u 1S(x±∞u )

(
dA±∞u
A±∞u

− (r − q

x±∞u
) du

)]
=

∫ T

t

c e−quEQt
[
1{cx∗≥cx±∞}

(
−rx±∞u + q

)]
du (4.62)

=

∫ T

t

c e−qu
(
qEQt

[
1{cx∗≥cx±∞}

]
− rEQt

[
1{cx∗≥cx±∞}x

±∞
u

])
du

=

∫ T

t

c e−qu
(
q
(
Φ
(
c γ−0,t,u

)
+ e−ς lnx∗uΦ

(
c γ+

0,t,u

))
−r

(
eα
±∞
t,u +

(β±∞t,u )
2

2 Φ
(
c γ−1,t,u

)
+

1

1− ς
e−(1−ς)α±∞t,u +

(1−ς)2(β±∞t,u )
2

2 Φ
(
c γ+

1−ς,t,u
)

− ς

1− ς
e(1−ς) lnx∗uΦ

(
c γ+

0,t,u

)))
du, (4.63)

where Φ( · ) is the standard normal cumulative distribution function and

γ+
p,t,u =

lnx∗u + α±∞t,u
β±∞t,u

− pβ±∞t,u , (4.64)

γ−p,t,u =
lnx∗u − α±∞t,u

β±∞t,u
− pβ±∞t,u . (4.65)

Returning to the original variables and substituting α, β and ς we have the value

of American style lookback option

V ±∞(t, S, A) = SeqtṼ ±∞(t, x)

= Seqt(ṽ±∞(t, x) + ẽ±∞(t, x))

= v±∞(t, S, A) + e±∞(t, S, A), (4.66)

where

v±∞(t, S, A) = c
(
Se−q(T−t)Φ

(
c d±∞t

)
− Ae−r(T−t)Φ

(
c
(
d±∞t − σ

√
T − t

))
+S

σ2

2(r − q)

(
S

A

)− 2(r−q)
σ2

e−r(T−t)Φ

(
c

(
−d±∞t +

2(r − q)
σ

√
T − t

))
− σ2

2(r − q)
e−q(T−t)SΦ

(
−c d±∞t

))
(4.67)



4.2. CALCULATION OF THE FORMULA 65

and

e±∞(t, S, A) = c

∫ T

t

(
q

(
Se−q(u−t)Φ

(
c

(
d±∞t +

lnx∗u
σ
√
u− t

))
+Se−q(u−t)

(
1

x∗u

) 2(r−q)
σ2

+1

Φ

(
c

(
−d±∞t +

lnx∗u
σ
√
u− t

)))

−r
(
Ae−r(u−t)Φ

(
c

(
d±∞t +

lnx∗u − σ2(u− t)
σ
√
u− t

))
(4.68)

−σ
2e−r(u−t)

2(r − q)
S

(
S

A

)− 2(r−q)
σ2

Φ

(
c

(
−d±∞t +

lnx∗u + 2(r − q)(u− t)
σ
√
u− t

))
+Se−q(u−t)

r − q + σ2

2

r − q

(
1

x∗u

) 2(r−q)
σ2

Φ

(
c

(
−d±∞t +

lnx∗u
σ
√
u− t

))))
du.

The function d±∞t is defined by

d±∞t =
ln S

A
+ (r − q + σ2

2
)(T − t)

σ
√
T − t

.

Recall that for c = 1 is A = m and for c = −1 is A = M .

If we formally set value of the continuous dividend rate to zero, i.e. q = 0, the

value of European style lookback option is identical to the expression obtained by

Kwok (2008).
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CHAPTER 5

Limit value of
the early exercise boundary
at expiry

In this chapter, we present a new method for the position of early exercise bound-

ary x∗ at expiry T for general type of derivative. The result is stated for a wide

class of integral equations for pricing American style of derivatives. This problem has

been already considered by many authors for American style of certain derivatives

(cf. Albanese and Campolieti 2006, Alobaidi and Mallier 2006, Bokes and Ševčovič

2011, Chiarella and Ziogas 2005, Dai and Kwok 2006, Detemple 2006, Kwok 2008,

Ševčovič 2008, Wilmott et al. 1995, Wu et al. 1999). Presented method is a unified

approach solving the generalized problem of finding the position of early exercise

boundary at expiry. Notice that there are no restrictions on the underlying asset (i.e.

the underlying asset does not have to be driven by equation (4.1)). This chapter is

based on results from the recent preprint by Bokes (2011)1.

5.1 Limit value theorem

The methodology for calculation of the limit value of early exercise boundary at

expiry is summarized into THEOREM 5.1.

Let D ⊂ Rn be a subset of Euclidean space Rn. In what follows, we shall denote by

∂A the boundary of set A ⊂ D with respect to the topology of D, i.e. ∂A = A ∩ D\A.

THEOREM 5.1. Consider an American style of derivative Vam on the underlying x ∈
D ⊂ Rn with the stopping and continuation regions defined by the open sets S ⊂ D and

C ⊂ D, respectively. Let X ∗t = ∂S(t, · ) ≡ ∂C(t, · ) for t ∈ [0, T ] be a (set of) manifold(s)

1 TB: 2010, A unified approach to determining the early exercise boundary position at expiry for

American style of general class of derivatives, arXiv:1012.0348v2
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of the early exercise boundary at time t. Suppose that the value of Vam is given by the

equation

Vam(t, xt) = Veu(t, xt) + Et
[∫ T

t

1S(u, xu)fb(u, xu) du

]
, (5.1)

where Veu denotes the price of corresponding European style of derivative and fb(t, x) is

a function representing the early exercise bonus. Furthermore, we suppose that

Vam(t, x) ≥ Ω(t, x) and Vam(t, x) ≥ Veu(t, x) for any t ∈ [0, T ], x ∈ D,

where Ω(t, x) is the pay-off function at time t for both American style and European

style of derivative, i.e.

Vam(T, x) = Ω(T, x) = Veu(T, x) for any x ∈ D.

Then the limit of early exercise boundary at expiry is given by

X ∗T = ∂Z+
T , (5.2)

where Z+
T = {xT ∈ D; fb(T, xT ) > 0}.

REMARK 5.1. Price process of the American style derivative discounted by the numeraire

is a supermartingale according to the risk neutral measure. It is the Snell envelope of

pay-off process discounted by the numeraire and (5.1) discounted by the numeraire is the

Doob-Meyer decomposition of this supermartingale. For further details see SECTION 1.5

or Karatzas and Shreve (1998).

REMARK 5.2. Notice that according to the second part of the proof of THEOREM 5.1

(in SECTION C.2), we can determine the function of American style bonus function fb at

expiry by the formula

fb(T, y) = lim
t→T

∂

∂t
(Veu(t, y)− Ω(t, y)) .

REMARK 5.3. According to THEOREM 4.1, the bonus function in (5.1) at the expiry is

given by the expression (if the assumptions of theorem are fulfilled)

fb(T, xT ) = −N (T, xT )fd(T, xT ), (5.3)

where N is the numeraire and fd is given by (4.13). The values of fd on the set of zero

measure where the pay-off function Ω and N are not differentiable can be set to the

arithmetic average of limes superior and limes inferior at each point of this set.
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REMARK 5.4. The limit of early exercise boundary analyzed in this thesis is the ex-

pansion of order zero. For several financial derivatives of American style, higher order

expansion was calculated. Further details on this expansion can be found in Dewynne

et al. (1993), Ševčovǐc (2001), Wilmott et al. (1995) for plain vanilla call option, in

Stamicar et al. (1999), Zhu (2006), Zhu and He (2007) for plain vanilla put option

and in Bokes and Ševčovǐc (2011) for Asian options.

5.2 Calculation of the early exercise boundary posi-

tion at expiry

In this section, we calculate the limit of early exercise boundary at expiry for several

types of American style of financial derivatives and their strategies. The underlying

of all derivatives presented in this section is driven by a geometric Brownian motion.

THEOREM 5.1 does not have limitation on the distribution of underlying and can be

used also in other models for underlying assets (e.g. Lévy processes).

We assume that the underlying asset S is driven by stochastic differential equation

(4.1).

Although, trading of American style of option strategies is not common, we use

them to demonstrate THEOREM 5.1 on more complex types of derivatives.

5.2.1 Plain vanilla options

The European style of vanilla call/put option gives its holder right to buy/sell the

underlying S at maturity time T for the expiration price X. The pay-off functions for

call and put options are

Ωcall(t, S;X) = (S −X)+ and Ωput(t, S;X) = (X − S)+ ,

respectively. The value of European style of vanilla option (the well known solution

of Black–Scholes partial differential equation extended by Merton) for both call and

put option is given by

Ceu(t, S;X) = e−q(T−t)SΦ (dt)− e−r(T−t)XΦ
(
dt − σ

√
T − t

)
, (5.4)

P eu(t, S;X) = e−r(T−t)XΦ
(
−dt + σ

√
T − t

)
− e−q(T−t)SΦ (−dt) , (5.5)



70 CHAPTER 5. LIMIT VALUE OF THE EARLY EXERCISE BOUNDARY AT EXPIRY

S

fb
call

r>q

r

q
X

S

fb
call

r£q

X

FIGURE 5.1: The American style bonus function for a call option with r > q (left)

and r ≤ q (right).

where dt =
ln S
X

+
(
r−q+σ2

2

)
(T−t)

σ
√
T−t .

We know the value of both pay-off function and European style of option, so we

can calculate fb at the expiry according to REMARK 5.2, i.e. for call option and put

option we have

f callb (T, S) =


0 for S < X,
X
2

(q − r) for S = X,

qS − rX for S > X

and fputb (T, S) =


rX − qS for S < X,
X
2

(r − q) for S = X,

0 for S > X,

respectively.

Finally, we have the boundary of set of positive values of f callb (see FIGURE 5.1)

and fputb (see FIGURE 5.2)

∂Z+call
T = max

[
X,

r

q
X

]
= S∗callT and ∂Z+put

T = min

[
X,

r

q
X

]
= S∗putT ,

respectively. This result is well known and can be found also in Albanese and Cam-

polieti (2006), Detemple (2006), Kwok (2008), Wilmott et al. (1995) and many

other sources.

5.2.2 Bullish and bearish spreads

The most basic strategies consisting of vanilla options of the same type are bullish

and bearish spread. Both strategies are difference of two vanilla options.

The European style of bullish spread is difference of two vanilla call options with

different strike price, i.e. the pay-off function (for both European style and American
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FIGURE 5.2: The American style bonus function for a put option with r ≥ q (left)

and r < q (right).

style) is defined by

Ωbull(t, S;X1, X2) = Ωcall(t, S;X1)− Ωcall(t, S;X2)

= (S −X1)+ − (S −X2)+ ,

for X1 < X2. The pay-off of European style of bullish spread is a linear combination

of vanilla options, so it can be priced by the same linear combination of the value of

vanilla options, i.e.

V bull
eu (t, S;X1, X2) = Ceu(t, S;X1)− Ceu(t, S;X2),

where Ceu is defined by (5.4).

According to REMARK 5.2, the American style bonus function at the expiry is

f bullb (T, S) =



0 for S < X1,
X1

2
(q − r) for S = X1,

qS − rX1 for X1 < S < X2,
X2

2
(q + r)− rX1 for S = X2,

r (X2 −X1) for X2 < S.

The boundary of set of positive values of f bullb (see FIGURE 5.3) is

∂Z+bull
T = min

[
max

[
X1,

r

q
X1

]
, X2

]
= S∗bullT .

The bearish spread is defined as difference of two put options with different strike

prices. The pay-off and value of European style of bearish spread is defined for



72 CHAPTER 5. LIMIT VALUE OF THE EARLY EXERCISE BOUNDARY AT EXPIRY

S

fb
bull

r£q

X1

S

fb
bull

r>q

r

q
X1

S

fb
bull

rpq

X2

FIGURE 5.3: The American style bonus function for bullish spread with r ≤ q (left),

r > q (middle) and r � q (right).
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FIGURE 5.4: The American style bonus function for bearish spread with r ≥ q (left),

r < q (middle) and r � q (right).

X1 < X2 by

Ωbear(t, S;X1, X2) = Ωput(t, S;X2)− Ωput(t, S;X1)

= (X2 − S)+ − (X1 − S)+

and

V bear
eu (t, S;X1, X2) = Peu(t, S;X2)− Peu(t, S;X1),

respectively. The function Peu is defined by (5.5).

The bonus function for the American bearish spread at the expiry is

f bearb (T, S) =



r (X2 −X1) for S < X1,

rX2 − X1

2
(r + q) for S = X1,

rX2 − qS for X1 < S < X2,
X2

2
(r − q) for S = X2,

0 for X2 < S.



5.2. CALCULATION OF THE EARLY EXERCISE BOUNDARY POSITION AT EXPIRY 73

S

fb
strangle

r>q

r

q
X2X1

S

fb
strangle

rbq

r

q
X1 X2

FIGURE 5.5: The American style bonus function for strangle spread with r > q (left)

and r ≤ q (right).

And the boundary of set of positive values of f bearb (see FIGURE 5.4) is

∂Z+bear
T = min

[
max

[
X1,

r

q
X2

]
, X2

]
= S∗bearT .

5.2.3 Strangles and straddles

The European style of strategies strangle and straddle spread consist also of two

vanilla options as bullish and bearish spread. These strategies are created as a sum

of one put option and one call option. A straddle spread is restricted case of strangle,

so we consider only a strangle spread in the calculation. The pay-off function of the

European style of strangle is

Ωstrangle(t, S;X1, X2) = Ωput(t, S;X1) + Ωcall(t, S;X2)

= (X1 − S)+ + (S −X2)+ ,

usually forX1 ≤ X2, where the caseX1 = X2 is called a straddle spread. This strategy

is again a linear combination of vanilla options and so the value of European style of

strategy is

V strangle
eu (t, S;X1, X2) = Peu(t, S;X1) + Ceu(t, S;X2),

where the functions Ceu and Peu are defined by (5.4) and (5.5), respectively.

The bonus function for the American strangle at the expiry calculated according



74 CHAPTER 5. LIMIT VALUE OF THE EARLY EXERCISE BOUNDARY AT EXPIRY

S

fb
straddle

r>q

r

q
X

X

S

fb
straddle

rbq

r

q
X

X

FIGURE 5.6: The American style bonus function for straddle spread with r > q (left)

and r ≤ q (right).

to REMARK 5.2 is

f strangleb (T, S) =



rX1 − qS for S < X1,
X1

2
(r − q) for S = X1,

0 for X1 < S < X2 or X1 = S = X2,
X2

2
(q − r) for S = X2,

qS − rX2 for X2 < S.

For the American style of strangle spread, there are two points in the boundary of

set of positive values of f strangleb (see FIGURE 5.5).

∂Z+strangle
T =

{
min

[
X1,

r

q
X1

]
,max

[
X2,

r

q
X2

]}
= S∗strangleT .

For the straddle we have the boundary of set for X1 = X2 = X (see FIGURE 5.6)

∂Z+straddle
T =

{
X,

r

q
X

}
= S∗straddleT .

These results are consistent with Alobaidi and Mallier (2006), Chiarella and Ziogas

(2005).

5.2.4 Condors and butterflies

The most complex frequently used strategy consisting of vanilla options is European

style of condor spread and its restriction butterfly spread. The European style of

condor spread is a linear combination of four vanilla call options and its pay-off
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FIGURE 5.7: The American style bonus function for condor spread (left) and butter-

fly spread (right) with −X4 +X3 +X2 −X1 > 0 and r (X3 +X2 −X1) ≥ qX4.

function is

Ωcondor(t, S;X1, X2, X3, X4) = Ωcall(t, S;X1)− Ωcall(t, S;X2)

−Ωcall(t, S;X3) + Ωcall(t, S;X4)

= (S −X1)+ − (S −X2)+ − (S −X3)+ + (S −X4)+ ,

for X1 < X2 ≤ X3 < X4, where the case X2 = X3 is called a butterfly spread. The

price of a European style of condor is calculated by the formula

V condor
eu (t, S;X1, X2, X3, X4) = Ceu(t, S;X1)− Ceu(t, S;X2)

−Ceu(t, S;X3) + Ceu(t, S;X4),

where the function Ceu is defined by (5.4).

Once more, we use REMARK 5.2 to calculate the bonus function for American style

of condor spread.

f condorb (T, S) =



0 for S < X1,
X1

2
(q − r) for S = X1,

qS − rX1 for X1 < S < X2,
X2

2
(q + r)− rX1 for S = X2,

r (X2 −X1) for X2 < S < X3,
X3

2
(r − q) + r (X2 −X1) for S = X3,

r (X3 +X2 −X1)− qS for X3 < S < X4,

r (X3 +X2 −X1)− X4

2
(q + r) for S = X4,

r (−X4 +X3 +X2 −X1) for X4 < S.
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FIGURE 5.8: The American style bonus function for condor spread (left) and butter-

fly spread (right) with −X4 +X3 +X2 −X1 > 0 and r (X3 +X2 −X1) < qX4.

Notice that for a butterfly spread we have X2 = X3 = X and thus the function has

form

f butterflyb (T, S) =



0 for S < X1,
X1

2
(q − r) for S = X1,

qS − rX1 for X1 < S < X,

r (X −X1) for S = X,

r (2X −X1)− qS for X < S < X4,

r (2X −X1)− X4

2
(q + r) for S = X4,

r (−X4 + 2X −X1) for X4 < S.

There are three different cases, when determining the boundary of set of positive

values of f condorb .

In the first case, if we have −X4 +X3 +X2−X1 > 0 and r (X3 +X2 −X1) ≥ qX4,

then the set of boundary points has only one element (see FIGURE 5.7).

∂Z+condor
T = min

[
max

[
X1,

r

q
X1

]
, X2

]
= S∗condorT .

In the second case, we have −X4 +X3 +X2−X1 > 0 and r (X3 +X2 −X1) < qX4.

The set of boundary points has three elements (see FIGURE 5.8).

∂Z+condor
T =

{
min

[
max

[
X1,

r

q
X1

]
, X2

]
,

max

[
X3,

r

q
(X3 +X2 −X1)

]
, X4

}
= S∗condorT .

In the last case, we have −X4 +X3 +X2−X1 ≤ 0 and the set of boundary points
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FIGURE 5.9: The American style bonus function for condor spread (left) and butter-

fly spread (right) with −X4 +X3 +X2 −X1 ≤ 0.

has two elements (see FIGURE 5.9).

∂Z+condor
T =

{
min

[
max

[
X1,

r

q
X1

]
, X2

]
,

min

[
max

[
X3,

r

q
(X3 +X2 −X1)

]
, X4

]}
= S∗condorT .

5.2.5 Shout options

Shout options are financial derivatives similar to European plain vanilla options. The

difference is that the holder of a shout option can once during the life of derivative

”shout” to the writer, i.e. the option expires and the strike price is reset to actual spot

price of the underlying asset. The shouting action is conditioned by in-the-money

position of the option. According to this property, we need to know optimal shouting

boundary along with the limit of the boundary at the expiry. The pay-off function of

call and put shout option is

Ωcall,shout(t, S;X) =

{
0 for S ≤ X,

S −X + Ceu(t, S;S) for S > X

and

Ωput,shout(t, S;X) =

{
X − S + Peu(t, S;S) for S < X,

0 for S ≥ X,

respectively. The functions Ceu and Peu are defined by (5.4) and (5.5), respectively.

Notice, that the underlying S is under the same measure as for the vanilla option,

thus we have the numeraire Nt = ert. In this case, we use the idea from REMARK 5.3
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to determine the bonus function fb:

f call,shoutb (T, S) =

{
0 for S < X,

∞ for S ≥ X
and fput,shoutb (T, S) =

{
∞ for S ≤ X,

0 for S > X.

The boundary of set of positive values for call is the same as for put shout option:

∂Z+shout
T = X = S∗shoutT .

This result can be also found in Alobaidi et al. (2011). However, the value of limit

was set up only by argumentation and without any mathematical formulation.

5.2.6 British vanilla options

The British vanilla option is financial derivative hedging the real trend of the under-

lying asset. This feature allows its holder to exercise the option prior to the expiry

T and receive the best prediction of the pay-off according to the real trend of under-

lying restricted to the contract drift µc. The pay-off functions of call and put British

vanilla option are

ΩGB,call = eµc(T−t)SΦ (dµct )−XΦ
(
dµct − σ

√
T − t

)
and

ΩGB,put = XΦ
(
−dµct + σ

√
T − t

)
− eµc(T−t)SΦ (−dµct ) ,

respectively. The function Φ( · ) is standard normal cumulative distribution function

and dµct =
ln S
X

+(µc+
1
2
σ2)(T−t)

σ
√
T−t .

Notice again, that the underlying S is under the same measure as for the vanilla

option, thus we have the numeraire Nt = ert. We can use the idea from REMARK 5.3

to determine the bonus function fb:

fGB,callb (T, S) =

{
0 for S < X,

(q + µc)S − rX for S ≥ X

and

fGB,putb (T, S) =

{
rX − (q + µc)S for S ≤ X,

0 for S > X.
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Finally, we have the boundary of set of positive values of fGB,callb and fGB,putb

∂Z+GB,call
T = max

[
X,

r

q + µc
X

]
= S∗GB,callT

and

∂Z+GB,call
T = min

[
X,

r

q + µc
X

]
= S∗GB,callT ,

respectively. This result is consistent with the one presented in Peskir and Samee

(2008a,b).
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CHAPTER 6

Early exercise boundary of
path-dependent options

In this chapter, we analyze the behavior of the early exercise boundary of Asian

options near the expiry. First, we discuss the limit at the expiry (the expansion of

order zero). In the rest of the chapter, the first order approximation of the early

exercise boundary (in terms of
√
τ =
√
T − t) is calculated. This chapter is based on

results from the second part of paper Bokes and Ševčovič (2011)1.

6.1 Limit of the early exercise boundary at expiry

In this section, we determine the position of the early exercise boundary x∗ at expiry

T for floating strike Asian options with continuous geometric and arithmetic aver-

aging and lookback options. The result is calculated according to THEOREM 5.1. To

present the idea from REMARK 5.3 we use original variables St and At, mt or Mt

instead of transformed variable xt for Asian, lookback call or lookback put options,

respectively.

The pay-off functions of floating strike Asian call, Asian put, lookback call and

lookback put options are

ΩAsian
call (t, S, A) = (S − A)+ ,ΩAsian

put (t, S, A) = (A− S)+ ,

Ωlookback
call (t, S,m) = (S −m)+ and Ωlookback

put (t, S,M) = (M − S)+ ,

respectively. Now, we use (5.3) to determine the bonus function fb. According to

Hansen and Jørgensen (2000) we can use the numeraire Nt = ert.

1 TB and Ševčovič, D.: 2011, Early exercise boundary for American type of floating strike Asian option

and its numerical approximation, Applied Mathematical Finance

81
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FIGURE 6.1: The American style bonus function for Asian call option with geometric

average and r > q (left) and with r ≤ q (right).

The function fd for call option and for put option has form

f calld (t, S, A) =


0 for S < A,
1
2

(
lim supS→A f

call
d (t, S, A) + lim infS→A f

call
d (t, S, A)

)
for S = A,

e−rt (−r (S − A) + µS − µA) for A < S

and

fputd (t, S, A) =


e−rt (−r (A− S) + µA − µS) for S < A,
1
2

(
lim supS→A f

put
d (t, S, A) + lim infS→A f

put
d (t, S, A)

)
for S = A,

0 for A < S,

respectively. The value µS = (r − q)S according to (4.1) and µA is drift of the

stochastic differential equation

dA = µAdt+ σAdW
A
t .

According to (4.25) the bonus function at the expiry for call and put Asian options

with continuous geometric average has form

f call,gb (T, S,A) =


0 for S < A,
A
2

(q − r) for S = A,

−rA+ qS − 1
T
A ln A

S
for A < S

and

fput,gb (T, S,A) =


rA− qS + 1

T
A ln A

S
for S < A,

A
2

(r − q) for S = A,

0 for A < S,
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FIGURE 6.2: The American style bonus function for Asian put option with geometric

average and r ≥ q (left) and with r < q (right).
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FIGURE 6.3: The American style bonus function for Asian call option with arithmetic

average and r > q (left) and with r ≤ q (right).

respectively. The boundary of set of positive values (see FIGURE 6.1 for call option

and FIGURE 6.2 for put option) is given by

∂Z+call,g
T =

{
(S,A) ∈ R2

+;
S

A
= max

[
1, G̃

]}
= X ∗call,gT

and

∂Z+put,g
T =

{
(S,A) ∈ R2

+;
S

A
= min

[
1, G̃

]}
= X ∗put,gT ,

where G̃ is the positive solution of transcendental equation

r − qG− 1

T
lnG = 0.

The solution G̃ is unique on R+ for q ≥ 0 and T > 0.

According to (4.26), the bonus function at the expiry for call and put Asian op-
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FIGURE 6.4: The American style bonus function for Asian put option with arithmetic

average and r ≥ q (left) and with r < q (right).

tions with continuous arithmetic average has form

f call,ab (T, S,A) =


0 for S < A,
A
2

(q − r) for S = A,(
q + 1

T

)
S −

(
r + 1

T

)
A for A < S

and

fput,ab (T, S,A) =


−
(
q + 1

T

)
S +

(
r + 1

T

)
A for S < A,

A
2

(r − q) for S = A,

0 for A < S,

respectively. The boundary of set of positive values (see FIGURE 6.3 for call option

and FIGURE 6.4 for put option) is given by

∂Z+call,a
T =

{
(S,A) ∈ R2

+;
S

A
= max

[
1,
r + 1

T

q + 1
T

]}
= X ∗call,aT

and

∂Z+put,a
T =

{
(S,A) ∈ R2

+;
S

A
= min

[
1,
r + 1

T

q + 1
T

]}
= X ∗put,aT .

Finally, according to (4.28) the bonus function at the expiry for call and put look-

back options has form

fminb (T, S,m) =


0 for S < m,
m
2

(q − r) for S = m,

−rm+ qS for m < S
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FIGURE 6.5: The American style bonus function for lookback call (minimum) option

with r > q (left) and with r ≤ q (right).
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FIGURE 6.6: The American style bonus function for lookback put (maximum) option

with r ≥ q (left) and with r < q (right).

and

fmaxb (T, S,M) =


rM − qS for S < M,
M
2

(r − q) for S = M,

0 for M < S,

respectively. The boundary of set of positive values (see FIGURE 6.5 for call option

and FIGURE 6.6 for put option) is given by

∂Z+min
T =

{
(S,m) ∈ R2

+;
S

m
= max

[
1,
r

q

]}
= X ∗minT

and

∂Z+max
T =

{
(S,M) ∈ R2

+;
S

M
= min

[
1,
r

q

]}
= X ∗maxT .
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We use THEOREM 5.1 to obtain the limit of the early exercise boundary at ex-

piry also for American style of Asian options with other types of the strike price

averaging method analyzed in this paper. Results are presented in TABLE 6.1 and

COROLLARY 6.1.

TABLE 6.1: The limit of the early exercise boundary position x∗T at expiry t = T (x̂T
solves (6.2), x̂wT solves (6.1) and x̃T solves (6.3)).

x∗T put call

general constant kernel average max (x̂T , 1) min (x̂T , 1)

general exponential kernel average max (x̂wT , 1) min (x̂wT , 1)

geometric average max (x̃T , 1) min (x̃T , 1)

arithmetic average max
(
q+ 1

T

r+ 1
T

, 1
)

min
(
q+ 1

T

r+ 1
T

, 1
)

weighted arithmetic average max
(
q(1−e−λT )+λ
r(1−e−λT )+λ

, 1
)

min
(
q(1−e−λT )+λ
r(1−e−λT )+λ

, 1
)

maximum lookback option max
(
q
r
, 1
)

–

minimum lookback option – min
(
q
r
, 1
)

COROLLARY 6.1. The value of limit of early exercise boundary at expiry x∗T for the

floating strike Asian option is summarized in TABLE 6.1. In the case of the general

average with the exponential kernel, it follows from (4.22) that

f̂b(T, xT ) = e−qT
(

λ

1− e−λT
xT
p

(
1

(xT )p
− 1

)
− rxT + q

)
.

Then x∗T = x̂wT is a solution of the transcendent equation

λ

1− e−λT

(
1

(x̂wT )p
− 1

)
= rp− qp

x̂wT
(6.1)

if x̂wT ∈ ITM (in-the-money), otherwise x∗T = 1.

For the constant kernel, we can simply calculate the limit λ→ 0

1

(x̂T )p
− 1 = rpT − qpT

x̂T
. (6.2)

Both equations (6.1) and (6.2) have unique solution on R+.

And in the case of a geometric average, it follows from (4.22) (or from the limit of

the general average for p → 0) that f̃b(T, xT ) = e−qT
(
− 1
T
xT lnxT − rxT + q

)
. Then



6.2. EXPANSION OF THE EARLY EXERCISE BOUNDARY CLOSE TO EXPIRY 87

xT
g

=1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 1.

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

rT

qT x Tg

xT
a

=1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 1.

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

rT

qT x Ta

FIGURE 6.7: Isolines of the limit of early exercise boundary at expiry of call option

for the continuous geometric (left) and the continuous arithmetic average (right).

x∗T = x̃T is a solution of the transcendent equation

ln x̃T =
qT

x̃T
− rT, (6.3)

if x̂T ∈ ITM (in-the-money), otherwise x∗T = 1. As we have already mentioned above,

also the equation (6.3) has unique solution on R+.

The formula for limit of early exercise boundary at expiry (6.3) for geometric

averaging is the same as presented by Wu et al. (1999) and Detemple (2006, p.

69). Notice that the same values of limit of early exercise boundary at expiry for

the continuous arithmetic average type of an Asian option are derived also in Dai

and Kwok (2006) and Ševčovič (2008). The result for geometric, arithmetic and

exponentially weighted Asian options can be found in Bokes and Ševčovič (2011).

For the case of lookback options, the same result can be found again in Dai and

Kwok (2006).

6.2 Expansion of the early exercise boundary close to

expiry

Throughout this section, we shall assume the structural assumption on the interest

and dividend rates:

c r > c q, (6.4)
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where c = 1 for call option and c = −1 for put option.

We shall calculate an approximation of the option early exercise boundary func-

tion for a call and put option. The approximation is obtained by the first order Taylor

series expansion in the
√
τ variable, where τ = T−t is the time to expiry, i.e. we need

to calculate the first derivative of x∗t at expiry T with respect to
√
τ variable. Follow-

ing Kuske and Keller (1998), Dewynne et al. (1993), Ševčovič (2001) we propose an

approximation of the early exercise boundary x∗t in the form

1

%T−t
= x∗t = x∗T (1 + hσ

√
T − t) +O(T − t) as t→ T,

where h ∈ R is a constant. To calculate h, we use the condition of smoothness for

the value of the option at the early exercise boundary - the smooth pasting principle

(cf. Kwok 2008, Dai and Kwok 2006). Since Ṽ (T, x) = e−qT (c(1− x))+, we have

− c = eqt
∂Ṽ

∂x
(t, x∗t ) = eqt

∂ṽ

∂x
(t, x∗t ) + eqt

∂ẽ

∂x
(t, x∗t )

= eqt
∂ṽ

∂x
(t, x∗t ) + eqt

∫ T

t

∂ẽI

∂x
(t, x∗t , u, x

∗
u) du

= v̂x(t, x
∗
t ) +

∫ T

t

êIx(t, x
∗
t , u, x

∗
u) du, (6.5)

where eI denotes integrated function. The first step (common for all averages) of

derivation are substitutions t = T−τ and u = T−τ(1−θ) into the previous equation:

−c = v̂x(T − τ, x∗T−τ ) + τ

∫ 1

0

êIx
(
T − τ, x∗T−τ , T − τ(1− θ), x∗T−τ(1−θ)

)
dθ (6.6)

This equation should be valid through the time. Thus, we set its derivative with

respect to τ equal to zero

0 =
∂

∂τ

(
c + v̂x(T − τ, x∗T−τ )

)
+

∫ 1

0

êIx
(
T − τ, x∗T−τ , T − τ(1− θ), x∗T−τ(1−θ)

)
dθ

+τ

∫ 1

0

∂

∂τ
êIx
(
T − τ, x∗T−τ , T − τ(1− θ), x∗T−τ(1−θ)

)
dθ.

The last element on the right-hand side of previous equation tends to zero with τ → 0

(for all cases of average presented below). The derivation is straightforward and

simple, but very long, space exhausting and similar to the following one, thus we left

this proof to the reader.
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Next, we calculate the limit for τ → 0:

0 = lim
τ→0

∂v̂x(T − τ, x∗T−τ )
∂τ

+ lim
τ→0

∫ 1

0

êIx
(
T − τ, x∗T−τ , T − τ(1− θ), x∗T−τ(1−θ)

)
dθ. (6.7)

In further derivation, we use following limits (common for all averages) calculated

according to TABLE 6.1, LEMMA 4.3 (for general average), LEMMA 4.4 (for geometric

average), LEMMA 4.5 (for arithmetic average) and LEMMA 4.6 (for lookback options).

lim
τ→0

lnx∗T (1 + hσ
√
τ(1− θ))− αT−τ,T−τ(1−θ)

βT−τ,T−τ(1−θ)
= −h1−

√
1− θ√
θ

, (6.8)

for θ ∈ (0, 1) and

lim
τ→0

cαT−τ,T−τ(1−θ) = cαT,T = c lnx∗T < 0, (6.9)

lim
τ→0

βT−τ,T−τ(1−θ) = βT,T = 0+, (6.10)

lim
τ→0

Φ

(
−cαT−τ,T

βT−τ,T

)
= Φ

(
−c lnx∗T

0+

)
= 1, (6.11)

∀n ∈ N ∪ {0} : lim
τ→0

Φ′
(
αT−τ,T
βT−τ,T

)
(βT−τ,T )n

= 0, (6.12)

lim
τ→0

∂xαT−τ,T−τ(1−θ) =
1

x∗T
, (6.13)

lim
τ→0

βT−τ,T−τ(1−θ) ∂τ

(
βT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
=

θσ2

2
, (6.14)

for θ ∈ (0, 1].

Since we have assumed (6.4), we have 0 < x∗T 6= 1 (see TABLE 6.1). Notice that

both α and β have polynomial order in τ and the derivative of normal cumulative

distribution function (i.e. the probability density function) has exponential order

in τ variable. In all derivations we have used several properties of the derivative

of normal cumulative distribution function Φ(x), e.g. Φ′(x) = Φ′(−x), Φ′′(x) =

−xΦ′(x) and Φ′(a
b

+ c) = e−
ac
b
− c

2

2 Φ′(a
b
).

The following lemma will be useful in derivation of asymptotic behavior of the

early exercise close to expiry. Its proof is straightforward and follows from increasing

behavior of the right-hand side of equation (6.15) as a function of the h variable (see

FIGURE 6.8).
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FIGURE 6.8: The right-hand side of equation (6.15) as a function of the h variable

with the unique root h∗.

LEMMA 6.1. The implicit equation

0 = 1−
∫ 1

0

Φ

(
−h1−

√
1− θ√
θ

)
dθ + h

∫ 1

0

√
1− θ√
θ

Φ′
(
−h1−

√
1− θ√
θ

)
dθ (6.15)

has the unique solution h∗ having its approximate value h∗ .= −0.638833.

Notice that the first order asymptotic expansion as t → T of the early exercise

boundary S∗t ≈ S∗T (1 + 0.638833σ
√
T − t) for the American call option derived by

Dewynne et al. (1993), Ševčovič (2001) and in SECTION A.3 contains the same con-

stant −h∗ .= 0.638833 where h∗ is a solution of (6.15).

REMARK 6.1. For the early exercise boundary function x∗t = x∗t (T, r, q, σ
2) as a function

of the model parameters T, r, σ2 > 0, q ≥ 0, we have the following scaling property:

x∗t (T, r, q, σ
2) = x∗t

T
(1, rT, qT, σ2T ).

REMARK 6.2. According to SECTIONS 6.2.1-6.2.4, the early exercise boundary has very

similar behavior close to the expiry for all analyzed options. The only difference is in

the limit value that multiplies the expression. Moreover, the behavior of free boundary

is similar to the plain vanilla option.

Notice that for T → ∞ and t close to expiry, the problem of Asian and lookback

options reduces to the plain vanilla option problem.
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6.2.1 General average

We recall that αt,u = α(t, u, x), βt,u = β(t, u, x) and that we use the approximation
1

%T−u
= x∗u = x∗T (1 + hσ

√
T − u). In this section, we use the following notation (to

simplify the derivation)

r − q +
σ2

2
= Λ,

x∗T = P ,

αT−τ,T = αT ,

βT−τ,T = βT ,

αT−τ,T−τ(1−θ) = αθ,

βT−τ,T−τ(1−θ) = βθ,

γp,T−τ,T−τ(1−θ) = γp.

We use the value of the Asian option with general average (4.33) and (4.34) and

we calculate the derivative of European part of the expression.

v̂x(t, x)=eqt
∂

∂x
ṽ(t, x)

=c e−q(T−t)
∂

∂x

(
Φ

(
−c
(
αT
βT

))
− eαT+

β2T
2 Φ

(
−c
(
αT
βT

+ βT

)))
=e−q(T−t)

(
∂xβTΦ′

(
αT
βT

)
− c (∂xαT + βT∂xβT ) eαT+

β2T
2 Φ

(
−c
(
αT
βT

+ βT

)))
.

We calculate additional limits for the general average with exponential kernel

lim
τ→0

∂τ

(
αT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
− hσ

2
√
τ

= θ

(
−Λ− λ

1− e−λT
1− P−p

p

)
,(6.16)

lim
τ→0

∂τ

(
∂xαT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
+

hσ

2P
√
τ

=− θλ

1− e−λT
P−(p+1), (6.17)

lim
τ→0

∂xβT−τ,T−τ(1−θ) = 0, (6.18)

lim
τ→0

∂τ

(
∂xβT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
= 0, (6.19)

lim
τ→0

∂τ

(
βT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
∂xβT−τ,T−τ(1−θ) = 0, (6.20)

lim
τ→0

∂xβT−τ,T−τ(1−θ)

β2
T−τ,T−τ(1−θ)

= 0, (6.21)
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for θ ∈ (0, 1]. Now, we calculate the first part of the limit (6.7). According to limits

(6.8) - (6.14), the elements with derivative of CDF tends to zero in the limit and limit

of the CDF tends to 1, thus if we use the equation (6.1), we have

lim
τ→0

∂τ v̂x(T − τ, x) = c qP
1

P
− cP

[
− λ

1− e−λT
P−(p+1) − lim

τ→0

hσ

2P
√
τ

+
1

P

(
−Λ− λ

1− e−λT
1− P−p

p
+ lim

τ→0

hσ

2
√
τ

+
σ2

2

)]
= c

(
q

P
+

λ

1− e−λT
P−p

)
.

Next, we calculate the derivative of integral function of American style option

bonus:

êIx(t, x, u, x
∗
u) = c e−qτθ

∂

∂x

(
qΦ(c γ0)−

(
r +

λ

p(1− e−λ(T−τ(1−θ)))

)
eαθ+

β2θ
2 Φ(c γ1)

+
λ

p(1− e−λ(T−τ(1−θ)))
e(1−p)αθ+(1−p)2 β

2
θ
2 Φ(c γ1−p)

)
= e−qτθ (q∂xγ0Φ

′(γ0)

−c
(
r +

λ

p(1− e−λ(T−τ(1−θ)))

)
(∂xαθ + βθ∂xβθ)e

αθ+
β2θ
2 Φ(c γ1)

−
(
r +

λ

p(1− e−λ(T−τ(1−θ)))

)
∂xγ1e

αθ+
β2θ
2 Φ′(γ1)

+ cλ
(1− p)∂xαθ + (1− p)2βθ∂xβθ

p(1− e−λ(T−τ(1−θ)))
e(1−p)αθ+(1−p)2 β

2
θ
2 Φ(c γ1−p)

+λ
∂xγ1−p

p(1− e−λ(T−τ(1−θ)))
e(1−p)αθ+(1−p)2 β

2
θ
2 Φ′(γ1−p)

)
.

Since ∂xγp = −∂xαθ
βθ
− (lnx∗u−αθ)∂xβθ

β2
θ

− p∂xβθ, we use the equation (6.1) and limits

(6.8) - (6.14) and (6.16) - (6.21) to calculate the limit

lim
τ→0

êIx(t, x, u, x
∗
u)= c

(
q

P
+

λ

1− e−λT
P−p

)
(6.22)

×
(
−Φ

(
−ch1−

√
1− θ√
θ

)
+ ch

√
1− θ√
θ

Φ′
(
−h1−

√
1− θ√
θ

))
.

Integrating (6.22) with respect to θ ∈ [0, 1], putting both partial limits into (6.7),

dividing by the nonzero constant c
(
q
P

+ λ
1−e−λT P

−p
)

and by LEMMA 6.1, we finally

obtain

x∗t = P (1 + h∗σ
√
T − t) +O(T − t) as t→ T,

where h∗ .= −0.638833c.
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6.2.2 Geometric average

We recall that αgt,u = α(t, u, x), βgt,u = β(t, u) and that we use the approximation
1

%gT−u
= xg∗u = xg∗T (1 + hσ

√
T − u). In this section, we use the following notation (to

simplify the derivation)

r − q +
σ2

2
= Λ,

xg∗T = G,

αgT−τ,T = αT ,

βgT−τ,T = βT ,

αgT−τ,T−τ(1−θ) = αθ,

βgT−τ,T−τ(1−θ) = βθ,

γgp,T−τ,T−τ(1−θ) = γp.

We use the value of the Asian option with geometric average (4.41) and (4.42)

and we calculate the derivative of European part of the expression.

v̂gx(t, x) = eqt
∂

∂x
ṽg(t, x)

= c e−q(T−t)
∂

∂x

(
Φ

(
−c
(
αT
βT

))
− eαT+

β2T
2 Φ

(
−c
(
αT
βT

+ βT

)))
= −c e−q(T−t)∂xαT eαT+

β2T
2 Φ

(
−c
(
αT
βT

+ βT

))
.

We calculate additional limits for the general average with exponential kernel

lim
τ→0

∂τ

(
αgT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
− hσ

2
√
τ

= θ

(
−Λ− lnG

T

)
, (6.23)

lim
τ→0

∂τ

(
∂xα

g
T−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
+

hσ

2G
√
τ

= − θ

GT
, (6.24)

for θ ∈ (0, 1]. Now, we calculate the first part of the limit (6.7). According to limits

(6.8) - (6.14), the elements with derivative of CDF tends to zero in the limit and limit

of the CDF tends to 1, thus if we use the equation (6.3), we have

lim
τ→0

∂τ v̂
g
x(T − τ, x) = c qG

1

G
− cG

[
− 1

GT
− lim

τ→0

hσ

2G
√
τ

+
1

G

(
−Λ− lnG

T
+ lim

τ→0

hσ

2
√
τ

+
σ2

2

)]
= c

(
q

G
+

1

T

)
.
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Next, we calculate the derivative of integral function of American style option

bonus:

êIgx (t, x, u, x∗u)=c e−qτθ
∂

∂x

(
qΦ(c γ0) + eαθ+

β2θ
2

(
c βθ

T − τ(1− θ)
Φ′(γ1)

−
(
r +

αθ + β2
θ

T − τ(1− θ)

)
Φ(c γ1)

))
=e−qτθ (q∂xγ0Φ

′(γ0)

+∂xαθe
αθ+

β2θ
2

(
βθ

T − τ(1− θ)
Φ′(γ1)− c

(
r +

αθ + β2
θ

T − τ(1− θ)

)
Φ(c γ1)

)
+eαθ+

β2θ
2

(
βθ∂xγ1

T − τ(1− θ)
Φ′′(γ1)−

(
c ∂xαθ

T − τ(1− θ)

)
Φ(c γ1)

−∂xγ1

(
r +

αθ + β2
θ

T − τ(1− θ)

)
Φ′(γ1)

))
.

Since ∂xγp = −∂xαθ
βθ

, we use the equation (6.3) and limits (6.8) - (6.14) and (6.23) -

(6.24) to calculate the limit

lim
τ→0

êIgx (t, x, u, x∗u) = c

(
q

G
+

1

T

)
(6.25)

×
(
−Φ

(
−ch1−

√
1− θ√
θ

)
+ ch

√
1− θ√
θ

Φ′
(
−h1−

√
1− θ√
θ

))
.

Integrating (6.22) with respect to θ ∈ [0, 1], putting both partial limits into (6.7),

dividing by the nonzero constant c
(
q
G

+ 1
T

)
and by LEMMA 6.1, we finally obtain

xg∗t = G(1 + h∗σ
√
T − t) +O(T − t) as t→ T,

where h∗ .= −0.638833c.

6.2.3 Arithmetic average

We recall that αat,u = α(t, u, x), βat,u = β(t, u, x) and that we use the approximation
1

%aT−u
= xa∗u = xa∗T (1 + hσ

√
T − u). In this section, we use the following notation (to

simplify the derivation)

r − q +
σ2

2
= Λ,

xa∗T = A,

αaT−τ,T = αT ,
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βaT−τ,T = βT ,

αaT−τ,T−τ(1−θ) = αθ,

βaT−τ,T−τ(1−θ) = βθ,

γap,T−τ,T−τ(1−θ) = γp.

We use the value of the Asian option with arithmetic average (4.51) and (4.52)

and we calculate the derivative of European part of the expression.

v̂ax(t, x)= eqt
∂

∂x
ṽa(t, x)

=c e−q(T−t)
∂

∂x

(
Φ

(
−c
(
αT
βT

))
− eαT+

β2T
2 Φ

(
−c
(
αT
βT

+ βT

)))
=e−q(T−t)

(
∂xβTΦ′

(
αT
βT

)
− c (∂xαT + βT∂xβT ) eαT+

β2T
2 Φ

(
−c
(
αT
βT

+ βT

)))
.

We calculate additional limits for the general average with exponential kernel

lim
τ→0

∂τ

(
αT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
− hσ

2
√
τ

= θ

(
−Λ− 1

T
+

1

AT

)
, (6.26)

lim
τ→0

∂τ

(
∂xαT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
+

hσ

2A
√
τ

= − θ

A2T
, (6.27)

lim
τ→0

∂xβT−τ,T−τ(1−θ) = 0, (6.28)

lim
τ→0

∂τ

(
∂xβT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
= 0, (6.29)

lim
τ→0

∂τ

(
βT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
∂xβT−τ,T−τ(1−θ) = 0, (6.30)

lim
τ→0

∂xβT−τ,T−τ(1−θ)

β2
T−τ,T−τ(1−θ)

= 0, (6.31)

for θ ∈ (0, 1]. Now, we calculate the first part of the limit (6.7). According to limits

(6.8) - (6.14), the elements with derivative of CDF tends to zero in the limit and limit

of the CDF tends to 1, thus if we use the value of A = 1+qT
1+rT

, we have

lim
τ→0

∂τ v̂
a
x(T − τ, x) = c qA

1

A
− cA

[
− 1

A2T
− lim

τ→0

hσ

2A
√
τ

+
1

A

(
−Λ− 1

T
+

1

AT
+ lim

τ→0

hσ

2
√
τ

+
σ2

2

)]
= c

(
r +

1

T

)
.
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Next, we calculate the derivative of integral function of American style option

bonus:

êIax (t, x, u, x∗u) = c e−qτθ
∂

∂x

((
q +

1

T − τ(1− θ)

)
Φ(c γ0)

−
(
r +

1

T − τ(1− θ)

)
eαθ+

β2θ
2 Φ(c γ1)

)
= e−qτθ

(
∂xγ0

(
r +

1

T − τ(1− θ)

)
Φ′(γ0)

−c(∂xαθ + βθ∂xβθ)

(
r +

1

T − τ(1− θ)

)
eαθ+

β2θ
2 Φ(c γ1)

−∂xγ1

(
r +

1

T − τ(1− θ)

)
eαθ+

β2θ
2 Φ′(γ1)

)
.

Since ∂xγp = −∂xαθ
βθ
− (lnx∗u−αθ)∂xβθ

β2
θ

− p∂xβθ, we use the value of A = 1+qT
1+rT

and limits

(6.8) - (6.14) and (6.26) - (6.31) to calculate the limit

lim
τ→0

êIax (t, x, u, x∗u) = c

(
r +

1

T

)
(6.32)

×
(
−Φ

(
−ch1−

√
1− θ√
θ

)
+ ch

√
1− θ√
θ

Φ′
(
−h1−

√
1− θ√
θ

))
.

Integrating (6.32) with respect to θ ∈ [0, 1], putting both partial limits into (6.7),

dividing by the nonzero constant c
(
r + 1

T

)
and by LEMMA 6.1, we finally obtain

xa∗t = A(1 + h∗σ
√
T − t) +O(T − t) as t→ T, (6.33)

where h∗ .= −0.638833c.

6.2.4 Lookback option

We recall that α±∞t,u = α(t, u, x), β±∞t,u = β(t, u) and that we use the approximation
1

%±∞T−u
= x±∞∗u = x±∞∗T (1 + hσ

√
T − u). In this section, we use the following notation

(to simplify the derivation)

r − q +
σ2

2
= Λ,

x±∞∗T = L,

α±∞T−τ,T = αT ,

β±∞T−τ,T = βT ,
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α±∞T−τ,T−τ(1−θ) = αθ,

β±∞T−τ,T−τ(1−θ) = βθ,

γ+
p,T−τ,T−τ(1−θ) = γ+

p ,

γ−p,T−τ,T−τ(1−θ) = γ−p .

We use the value of the Asian option with arithmetic average (4.61) and (4.62)

and we calculate the derivative of European part of the expression.

v̂±∞x (t, x) = eqt
∂

∂x
ṽ±∞(t, x)

= c e−q(T−t)
∂

∂x

(
1− eαT+

β2T
2 Φ

(
−c
(
αT
βT

+ βT

))
− 1

1− ς
e−(1−ς)αT+

(1−ς)2β2T
2 Φ

(
c

(
αT
βT
− (1− ς)βT

))
+

ς

1− ς
Φ

(
c
αT
βT

))
= c e−q(T−t)∂xαT

(
−eαT+

β2T
2 Φ

(
−c
(
αT
βT

+ βT

))
+e−(1−ς)αT+

(1−ς)2β2T
2 Φ

(
c

(
αT
βT
− (1− ς)βT

)))
,

where ς = 2Λ
σ2 . We calculate additional limits for the general average with exponential

kernel

lim
τ→0

∂τ

(
αT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
− hσ

2
√
τ

= −θΛ, (6.34)

lim
τ→0

∂τ

(
∂xαT−τ,T−τ(1−θ)

∣∣
x= 1

%τ

)
+

hσ

2A
√
τ

= 0, (6.35)

lim
τ→0

Φ

(
c
αT−τ,T
βT−τ,T

)
= Φ

(
c
lnx∗T
0+

)
= 0, (6.36)

for θ ∈ (0, 1]. Now, we calculate the first part of the limit (6.7). According to limits

(6.8) - (6.14), the elements with derivative of CDF tends to zero in the limit and limit

of the CDF tends to 1 or to zero, thus we have

lim
τ→0

∂τ v̂
±∞
x (T − τ, x) = c qL

1

L
− cL

[
− lim

τ→0

hσ

2L
√
τ

+
1

L

(
−Λ + lim

τ→0

hσ

2
√
τ

+
σ2

2

)]
= c r.

Next, we calculate the derivative of integral function of American style option
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bonus:

êI±∞x (t, x, u, x∗u) = c e−qτθ
∂

∂x

(
q
(
Φ
(
c γ−0

)
+ e−ς lnx∗uΦ

(
c γ+

0

))
−r
(
eαθ+

β2θ
2 Φ

(
c γ−1

)
+

1

1− ς
e−(1−ς)αθ+

(1−ς)2β2θ
2 Φ

(
c γ+

1−ς
)

− ς

1− ς
e(1−ς) lnx∗uΦ

(
c γ+

0

)))
= e−qτθ

(
q
(
∂xγ

−
0 Φ′

(
γ−0
)

+ ∂xγ
+
0 e
−ς lnx∗uΦ′

(
γ+

0

))
−r
(
c ∂xαθe

αθ+
β2θ
2 Φ

(
c γ−1

)
+ ∂xγ

−
1 e

αθ+
β2θ
2 Φ′

(
γ−1
)

−c ∂xαθe−(1−ς)αθ+
(1−ς)2β2θ

2 Φ
(
c γ+

1−ς
)

+
∂xγ

+
1−ς

1− ς
e−(1−ς)αθ+

(1−ς)2β2θ
2 Φ′

(
γ+

1−ς
)

− ς

1− ς
∂xγ

+
0 e

(1−ς) lnx∗uΦ′
(
γ+

0

)))
.

where ς = 2Λ
σ2 . Since ∂xγ±p = ±∂xαθ

βθ
, we use the value of L = q

r
and limits (6.8) - (6.14)

and (6.34) - (6.36) to calculate the limit

lim
τ→0

êI±∞x (t, x, u, x∗u)=c r

(
−Φ

(
−ch1−

√
1− θ√
θ

)
+ ch

√
1− θ√
θ

Φ′
(
−h1−

√
1− θ√
θ

))
.

Integrating (6.37) with respect to θ ∈ [0, 1], putting both partial limits into (6.7),

dividing by the nonzero constant c r and by LEMMA 6.1, we finally obtain

x±∞∗t = L(1 + h∗σ
√
T − t) +O(T − t) as t→ T,

where h∗ .= −0.638833c.



CHAPTER 7

Partial differential equation for
path-dependent options

In this chapter, we derive the modified Black–Scholes partial differential equation

for financial derivatives dependent on the average of the value of underlying, i.e.

Vt = V (t, S, A). The variable representing the general average is defined by

At = A(t, It), (7.1)

where It =
∫ t

0
U(t, u, Su) du. Solving this equation with appropriate zero and margin

conditions, we can price all derivatives with the pay-off function satisfying condition

Ω
∣∣∣
(S,A)=(ST ,AT )

= f(ST , AT ), (7.2)

i.e. derivatives with pay-off depending only on value and average of the underlying

at the time of expiry.

7.1 Derivation of the Black–Scholes equation for Asian

options

Suppose we have a portfolio consisting of underlying S (e.g. a stock), derivative V

(e.g. an option) and money B (a risk-less assets, e.g. a bond). We suppose this

portfolio to be self-financing, i.e. transactions in one group of assets is done only by

the resources from the other two groups of assets. Let QS
t and QV

t denote amount of

underlying and derivative in time t respectively, then for ∀t ∈ [0, T ]

SdQS
t + V dQV

t + δBt = 0. (7.3)

We also suppose the zero investment growth in portfolio, i.e. for ∀t ∈ [0, T ]

SQS
t + V QV

t +Bt = 0. (7.4)
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Change of money amount is influenced by several different factors. Money in-

crease by the return from holding the money rBtdt, holding the underlying bring us

some return (positive or negative) qSQS
t dt and change in amount of money done by

transactions δBt. Together the total change of amount of money is

dBt = rBtdt+ δBt + qSQS
t dt. (7.5)

As long as the (7.4) holds for ∀t, we can differentiate it. Using (7.3) and including

(7.5), the equation yields

QS
t dS +QV

t dV + rBtdt+ qSQS
t dt = 0. (7.6)

Using (7.4) again, dividing equation by QV
t and introducing a substitution ∆ = −QSt

QVt
,

we have

dV − rV dt+ ∆ ((r − q)Sdt− dS) = 0. (7.7)

We assume that the underlying follows the stochastic differential equation

dS = (r − q)Sdt+ σSdWt (7.8)

and the derivative is defined as a function Vt = V (t, S, A), i.e. it follows a stochastic

differential equation as well. Applying Itô lemma one has

dV =

(
∂V

∂t
+ (r − q)S∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

)
dt+

∂V

∂A
dA+ σS

∂V

∂S
dWt. (7.9)

According to the (7.1), the value dAt = ∂At
∂t
dt+ ∂At

∂It (U(t, t, S) +
∫ t

0
∂U
∂t

(t, u, Su) du) dt

Including (7.8) and (7.9) into (7.7) we acquire(
∂V

∂t
+ (r − q)S∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

+

(
∂A

∂t
+
∂A

∂I

(
U(t, t, S) +

∫ t

0

∂U
∂t

(t, u, Su) du

))
∂V

∂A
− rV

)
dt (7.10)

+

(
∂V

∂S
−∆

)
σSdWt = 0.

We want to eliminate the stochastic feature in the equation so we set

∆ =
∂V

∂S
. (7.11)
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Substituting for ∆, the equation yields Black–Scholes partial differential equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S

+

(
∂A

∂t
+
∂A

∂I

(
U(t, t, S) +

∫ t

0

∂U
∂t

(t, u, Su) du

))
∂V

∂A
− rV = 0. (7.12)

7.2 Modified Black–Scholes equation

Now, we summarize the modified Black–Scholes equation for floating strike Asian

options with various averaging and lookback options.

If we consider the general average

At =

(
1∫ t

0
a(s) ds

∫ t

0

a(t− u)(Su)
p du

) 1
p

. (7.13)

the functions are defined as A(u, I) =
(

1∫ u
0 a(s) ds

I
) 1
p

and U(t, u, S) = a(t−u)Sp. Then

we can rewrite the partial differential equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r− q)S∂V

∂S
+
a(0)Sp +

∫ t
0
a′(t− u)(Su)

p du− a(t)Ap

pAp−1
∫ t

0
a(s) ds

∂V

∂A
− rV = 0.

(7.14)

For the continuous geometric average

Agt = e
1
t

∫ t
0 lnSu du, (7.15)

we define the functions as A(u, I) = e
1
u
I and U(t, u, S) = lnS.

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S
+

lnS − lnAg

t
Ag
∂V

∂A
− rV = 0. (7.16)

For the continuous arithmetic average

Aat =
1

t

∫ t

0

Su du, (7.17)

the functions are defined as A(u, I) = 1
u
I and U(t, u, S) = S.

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S
+
S − Aa

t

∂V

∂A
− rV = 0. (7.18)
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The weighted continuous arithmetic average

Awat =
1∫ t

0
a(s) ds

∫ t

0

a(t− u)Su du, (7.19)

have the functions defined as A(u, I) = 1∫ u
0 a(s) ds

I and U(t, u, S) = a(t− u)S.

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S
+
a(0)S +

∫ t
0
a′(t− u)Sudu− a(t)Awa∫ t

0
a(s) ds

∂V

∂A
− rV = 0.

(7.20)

If we define a(s) = e−λs for λ > 0, then a′(s) = −λa(s) and the equation (7.20)

simplifies into

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S
+ λ

S − Awa

1− e−λt
∂V

∂A
− rV = 0. (7.21)

For the lookback options

mt = A−∞t = inf
u∈[0,t]

Su (7.22)

and

Mt = A∞t = sup
u∈[0,t]

Su. (7.23)

we cannot define functions A(u, I) and U(t, u, S). Instead of defining these functions,

we calculate the limit of the (7.14) for |p| → ∞ (the expression is the same for both

p→∞ and p→ −∞)

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S
− rV = 0. (7.24)

This equation is the same as the basic Black–Scholes partial differential equation for

vanilla options (2.3). The only difference is in the terminal and marginal conditions.

The solution of the partial differential equation for American style floating strike

option is calculated only on the continuation region

Ccall = (0, S∗t ) and Cput = (S∗t ,∞)

for call and put option, respectively. The value S∗t = S∗(t, A) is position of early

exercise boundary at time t ∈ [0, T ] for value of average A > 0 (or extreme value).

The value of option on the stopping region S is set to the value of the pay-off function

Ω for both call and put option.
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The terminal condition for all floating strike Asian options is given by their pay-off

function

VT = Ω = (S − A)+ and VT = Ω = (A− S)+ .

for call and put option, respectively. The average A is replaced by minimum m for

floating strike lookback call option and by maximum M for put option.

The American style marginal conditions and condition of smoothness are for call

option given by

Vt = 0 at S = 0,

Vt = Ω,
∂Vt
∂S

= 1 at S = S∗t

and for put option are given by

Vt = 0 at S =∞,

Vt = Ω,
∂Vt
∂S

= −1 at S = S∗t ,

where t ∈ [0, T ].

For the lookback options, there is one more condition that guarantees the extreme

property of m and M . The time-underlying space is restricted by inequalities

S ≥ m and S ≤M

for call (minimum) and put (maximum) lookback option, respectively.

According to Goldman et al. (1979), the value of a lookback option at S = m or

S = M is unaffected by marginal changes of the current extreme value. Thus, we

replace the marginal condition at S = 0 and at S = ∞ by the extreme condition for

t ∈ [0, T ]
∂Vt
∂m

= 0 at S = m and
∂Vt
∂M

= 0 at S = M (7.25)

for call and put option, respectively.
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CHAPTER 8

Transformation method

The purpose of this chapter is to propose an efficient numerical algorithm for de-

termining the early exercise boundary position x∗t for American style of Asian and

lookback options. Construction of the algorithm is based on a solution to a nonlocal

parabolic partial differential equation (PDE). The governing PDE is constructed for

a transformed variable representing the so-called δ-synthesized portfolio. Further-

more, we employ a front fixing method (also referenced to as Landau’s fixed domain

transformation) developed by Wu and Kwok (1997), Stamicar et al. (1999), Ševčovič

(2001) for plain vanilla options as well as for a class of nonlinear Black–Scholes equa-

tions Ševčovič (2007, 2008), Ankudinova and Ehrhardt (2008b,a). In this chapter,

we consider lookback options as a version of Asian options, thus the meaning of Asian

options includes also lookback options. We again use the constant c = 1 and c = −1

for call and put option, respectively. At the end of this chapter, we present numerical

results and comparisons for Asian option with arithmetic average achieved by these

methods to the recent method developed by Dai and Kwok (2006). This chapter is

based on results from the last part of paper Bokes and Ševčovič (2011)1.

First, we recall the partial differential equation for pricing Asian options derived

in CHAPTER 7 (cf. Kwok 2008). We assume that the asset price dynamics is driven by

the stochastic differential equation (4.1)

dSt = (r − q)St dt+ σSt dWt, 0 ≤ t ≤ T,

with a drift r − q, volatility σ and the standard Wiener process Wt. If we apply Itô

formula to the function V = V (t, S, A) we obtain

dV =

(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2

)
dt+

∂V

∂S
dS +

∂V

∂A
dA. (8.1)

1 TB and Ševčovič, D.: 2011, Early exercise boundary for American type of floating strike Asian option

and its numerical approximation, Applied Mathematical Finance
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Recall that for arithmetic, geometric, weighted arithmetic continuous averaging or

extreme values we have dA
A

= f(A
S
, t)dt, where the function f = f(x, t) is defined as

follows (see (4.25)-(4.28)):

f(x, t) =


1
t
( 1
x
− 1) arithmetic averaging,

−1
t

lnx geometric averaging,
λ

1−e−λt (
1
x
− 1) exponentially weighted arithmetic averaging,

0 maximum or minimum value.

(8.2)

Inserting the expression dA = A f(A
S
, t)dt into (8.1) and following standard argu-

ments from the Black–Scholes theory we obtain the governing equation for pricing

Asian option with averaging given by (8.2) in the form:

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ S(r − q)∂V

∂S
+ A f

(
A

S
, t

)
∂V

∂A
− rV = 0, (8.3)

where 0 < t < T and S,A > 0 (see e.g. Dai and Kwok 2006, Kwok 2008). The above

equation is subject to the terminal pay-off condition

V (T, S,A) = Ω(S,A) = (c(S − A))+ , S, A > 0.

It is well known (see e.g. Kwok 2008, Dai and Kwok 2006) that for Asian options

with floating strike we can perform dimension reduction by introducing the following

similarity variable:

x =
A

S
, W (x, τ) =

V (t, S, A)

A
where τ = T − t. It is straightforward to verify that V (t, S, A) = A W

(
A
S
, T − t

)
is a

solution of (8.3) iff W = W (x, τ) is a solution to the following parabolic PDE:

∂W

∂τ
− σ2

2

∂

∂x

(
x2∂W

∂x

)
+ (r − q)x∂W

∂x
− f(x, T − τ)

(
W + x

∂W

∂x

)
+ rW = 0, (8.4)

where x > 0 and 0 < τ < T . The initial condition for W immediately follows from

the terminal pay-off diagram, i.e.

W (x, 0) =

(
c

(
1

x
− 1

))+

.

8.1 American style of Asian options

Following Dai and Kwok (2006), we have the exercise region for American style of

Asian options given by

E = {(t, S, A) ∈ [0, T ]× [0,∞)× [0,∞), V (t, S, A) = Ω(S,A)}.
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This region can be described by the early exercise boundary function S∗ = S∗(t, A)

such that E = {(t, S, A) ∈ [0, T ]× [0,∞)× [0,∞), cS ≥ cS∗(t, A)}. For American style

of an Asian option we have to impose a homogeneous Dirichlet boundary condition

V (t, 0, A) = 0 and V (t,∞, A) = 0 for call and put option, respectively. According

to Dai and Kwok (2006) the C1 continuity condition at the point (t, S∗(t, A), A) of

a contact of a solution V with its pay-off diagram implies the following boundary

condition at the free boundary position S∗(t, A):

∂V

∂S
(t, S∗(t, A), A) = c, V (t, S∗(t, A), A) = c (S∗(t, A)− A) , (8.5)

for any A > 0 and 0 < t < T . It is important to emphasize that the early exercise

boundary function S∗ can be also reduced to a function of one variable by introducing

a new state function x∗t as follows:

S∗(t, A) =
A

x∗t
.

The function t 7→ x∗t is a free boundary function for the transformed state variable

x = A
S

. For American style of Asian options the spatial domain for the reduced

equation (8.4) is given by

c

%(τ)
< cx, (τ, x) ∈ (0, T )× (0,∞), where %(τ) =

1

x∗T−τ
.

Taking into account boundary conditions (8.5) for the option price V we end up with

corresponding boundary conditions for the function W :

W (x, τ) = c

(
1

x
− 1

)
,
∂W

∂x
(x, τ) = − c

x2
at x =

1

%(τ)
,
W (∞, τ) = 0 (call option)

W (0, τ) = 0 (put option)
(8.6)

for any 0 < τ < T and the initial condition

W (x, 0) =

(
c

(
1

x
− 1

))+

for any x > 0. (8.7)

According to the time-underlying space restriction S ≥ m for the lookback call

and S ≤ M for put option, we need to replace marginal condition at S = 0 for call

and at S =∞ for put option by extreme condition

∂V

∂m
(t, S,m) = 0 at S = m and

∂V

∂M
(t, S,M) = 0 at S = M (8.8)
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for call (minimum) and put (maximum) option, respectively (see Goldman et al.

1979). In terms of transformed functionW the restriction yields cx ≤ c and condition

(8.8) becomes

W (x, τ) + x
∂W

∂x
(x, τ) = 0 at x = 1. (8.9)

8.2 Fixed domain transformation

In order to apply the Landau front fixing domain transformation for the early exercise

boundary problem (8.4), (8.6), (8.7) we introduce a new state variable ξ and an

auxiliary function Π = Π(ξ, τ) representing a synthetic portfolio. They are defined as

follows:

ξ = ln (%(τ)x) , Π(ξ, τ) = W (x, τ) + x
∂W

∂x
(x, τ) .

Clearly, cx > c
%(τ)

iff c ξ > 0 for τ ∈ (0, T ). The value ξ = ∞ and ξ = −∞ of the

transformed variable corresponds to the value x = ∞ and x = 0, respectively, i.e.

when expressed in the original variable S = 0 and S =∞, respectively. On the other

hand, the value ξ = 0 corresponds to the free boundary position x = x∗t , i.e. S =

S∗(t, A). For the lookback options, we have restrict the space to 0 < c ξ ≤ c ln %(τ).

After straightforward calculations we conclude that the function Π = Π(ξ, τ) is a

solution to the following parabolic PDE:

∂Π

∂τ
+ a(ξ, τ)

∂Π

∂ξ
− σ2

2

∂2Π

∂ξ2
+ b(ξ, τ)Π = 0,

where the term a(ξ, τ) depends on the free boundary position %. The terms a, b are

given by

a(ξ, τ) =
%̇(τ)

%(τ)
+ r − q − σ2

2
− f

(
eξ

%(τ)
, T − τ

)
, (8.10)

b(ξ, τ) = r − ∂

∂x
(xf(x, T − τ))

∣∣∣∣
x= eξ

%(τ)

, (8.11)

where %̇(τ) = ∂%
∂τ

(τ). Notice that for our cases, we have according to (8.2)

b(ξ, τ)=


r + 1

T−τ arithmetic averaging,

r + 1
T−τ (ξ + 1− ln %(τ)) geometric averaging,

r + λ
1−e−λ(T−τ) exponentially weighted arithmetic averaging,

r maximum or minimum value.
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The initial condition for the solution Π can be determined from (8.7) as

Π(ξ, 0) =

{
−c for c ξ < c ln %(0),

0 for c ξ > c ln %(0).

Since ∂xW (x, τ) = − c
x2

and W (x, τ) = c
(

1
x
− 1
)

for x = 1
%(τ)

and W (∞, τ) = 0 (call

option) or W (0, τ) = 0 (put option) we conclude the Dirichlet boundary conditions

for the transformed function Π(ξ, τ)

Π(0, τ) = −c, Π(c∞, τ) = 0.

According to (8.9), the latter condition is for lookback options replaced by

Π(c ln %(τ), τ) = 0.

It remains to determine an algebraic constraint between the free boundary function

%(τ) and the solution Π. Similarly as in the case of a linear or nonlinear Black–

Scholes equation (cf. Ševčovič 2007) we obtain, by differentiation the condition

W
(

1
%(τ)

, τ
)

= c (%(τ)− 1) with respect to τ, the following identity:

c
d%

dτ
(τ) =

∂W

∂x

(
1

%(τ)
, τ

)(
− 1

%(τ)2

)
d%

dτ
(τ) +

∂W

∂τ

(
1

%(τ)
, τ

)
.

Since ∂xW
(

1
%(τ)

, τ
)

= −c %(τ)2 we have ∂W
∂τ

(x, τ) = 0 at x = 1
%(τ)

. Assuming conti-

nuity of the function Π(ξ, τ) and its derivative Πξ(ξ, τ) up to the boundary ξ = 0 we

obtain

x2∂
2W

∂x2
(x, τ)→ ∂Π

∂ξ
(0, τ) + 2c %(τ), x

∂W

∂x
(x, τ)→ −c %(τ) as x→ 1

%(τ)
.

Passing to the limit x→ 1
%(τ)

in (8.4) we end up with the algebraic equation

q%(τ)− r + f

(
1

%(τ)
, T − τ

)
= c

σ2

2

∂Π

∂ξ
(0, τ) (8.12)

for the free boundary position %(τ) where τ ∈ (0, T ]. Notice that according to (8.2)

we have for 0 < τ < T and

• for arithmetic averaging

%(τ) =
1 + r(T − τ) + cσ

2

2
(T − τ)∂Π

∂ξ
(0, τ)

1 + q(T − τ)
,
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• for geometric averaging

ln %(τ) + q(T − τ)%(τ) = r(T − τ) + c
σ2

2
(T − τ)

∂Π

∂ξ
(0, τ),

• for exponentially weighted arithmetic averaging

%(τ) =
λ+ r

(
1− eλ(T−τ)

)
+ cσ

2

2

(
1− eλ(T−τ)

)
∂Π
∂ξ

(0, τ)

λ+ q (1− eλ(T−τ))
,

• for maximum or minimum value

%(τ) =
r + cσ

2

2
∂Π
∂ξ

(0, τ)

q
,

i.e. we can derive an explicit expression for the free boundary position %(τ) in all

cases except for geometric averaging as a function of the derivative ∂ξΠ(0, τ) eval-

uated at ξ = 0. The value %(0) can be deduced from THEOREM 5.1 and values of

x∗T = 1
%(0)

for Asian options are summarized in TABLE 6.1.

In summary, we derived the following nonlocal parabolic equation for the synthe-

sized portfolio Π(ξ, τ):

∂Π

∂τ
+ a(ξ, τ)

∂Π

∂ξ
− σ2

2

∂2Π

∂ξ2
+ b(ξ, τ)Π = 0,

for Asian options: 0 < τ < T, c ξ > 0,

for lookback options: 0 < τ < T, 0 < c ξ ≤ c ln %(τ),

with an algebraic constraint

q%(τ)− r + f

(
1

%(τ)
, T − τ

)
= c

σ2

2

∂Π

∂ξ
(0, τ), 0 < τ < T,

subject to the boundary and initial conditions (8.13)

for Asian options: Π(0, τ) = −c, Π(c∞, τ) = 0,

for lookback options: Π(0, τ) = −c, Π(c ln %(τ), τ) = 0,

Π(ξ, 0) =

{
−c for c ξ < c ln %(0),

0 for c ξ > c ln %(0),

where a(ξ, τ) and b(ξ, τ) are given by (8.10) and (8.11),

and the starting point %(0) = 1
x∗T

is given by THEOREM 5.1.
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8.2.1 An equivalent form of the equation for the free boundary

Although equation (8.12) provides an algebraic formula for the free boundary posi-

tion %(τ) in terms of the derivative ∂ξΠ(0, τ) such an expression is not quite suitable

for construction of a robust numerical approximation scheme. The reason is that

any small inaccuracy in approximation of the value ∂ξΠ(0, τ) is transferred in to the

entire computational domain 0 < c ξ < c∞ making thus a numerical scheme very

sensitive to the value of the derivative of a solution evaluated in one point ξ = 0.

For the lookback options, the domain is 0 < c ξ < c ln %(τ). Nevertheless, we use

the domain of Asian options in the general equations (to acquire the expression for

lookback options, it suffice simply replace∞ by ln %(τ) in the upper boundary of inte-

grals). Although there are various ways to approximate the derivative ∂ξΠ(0, τ) (see

e.g. Kandilarov and Valkov 2011), in our case the following method is more suitable.

In what follows, we present an equation for the free boundary position %(τ) which

is more robust from the numerical approximation point of view.

Integrating the governing equation (8.13) with respect to ξ from 0 to c∞ yields

d

dτ

∫ c∞

0

Π dξ +

∫ c∞

0

a(ξ, τ)
∂Π

∂ξ
dξ − σ2

2

∫ c∞

0

∂2Π

∂ξ2
dξ +

∫ c∞

0

b(ξ, τ)Π dξ = 0,

where functions a and b are defined by (8.10) and (8.11), respectively. We recall the

boundary conditions Π(c∞, τ) = 0 and Π(c ln %(τ), τ) = 0 for Asian and lookback op-

tions, respectively and Π(0, τ) = −c for both types of options. Consequently, we have

boundary ∂ξΠ(c∞, τ) = 0 for Asian options. According to Goldman et al. (1979),

the value of lookback option at extreme does not depend on the current value of

extreme and thus we have ∂ξΠ(c ln %(τ), τ) = 0 for lookback option. By applying

condition (8.12), we obtain the following differential equation:

d

dτ

(
ln %(τ) + c

∫ c∞

0

Π(ξ, τ) dξ

)
+ q%(τ)− q − σ2

2

+ c

∫ c∞

0

[
r − f

(
eξ

%(τ)
, T − τ

)]
Π(ξ, τ) dξ = 0.

In our cases, we obtain according to (8.2)

• for arithmetic averaging

d

dτ

(
ln %(τ) + c

∫ c∞

0

Π(ξ, τ) dξ

)
+ q%(τ)− q − σ2

2
(8.14)

+ c

∫ c∞

0

[
r − %(τ)e−ξ − 1

T − τ

]
Π(ξ, τ) dξ = 0,
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• for geometric averaging

d

dτ

(
ln %(τ) + c

∫ c∞

0

Π(ξ, τ) dξ

)
+ q%(τ)− q − σ2

2
(8.15)

+ c

∫ c∞

0

[
r +

ξ − ln %(τ)

T − τ

]
Π(ξ, τ) dξ = 0,

• for exponentially weighted arithmetic averaging

d

dτ

(
ln %(τ) + c

∫ c∞

0

Π(ξ, τ) dξ

)
+ q%(τ)− q − σ2

2
(8.16)

+ c

∫ c∞

0

[
r − λ%(τ)e−ξ − 1

1− eλ(T−τ)

]
Π(ξ, τ) dξ = 0,

• for maximum or minimum value

d

dτ

(
ln %(τ) + c

∫ c ln %(τ)

0

Π(ξ, τ) dξ

)
+ q%(τ)− q − σ2

2
(8.17)

+ c r

∫ c ln %(τ)

0

Π(ξ, τ) dξ = 0.

8.3 A numerical approximation scheme

Our numerical approximation scheme is based on a solution to the transformed sys-

tem (8.13). For the sake of simplicity, the scheme will be derived for the case of

arithmetically averaged Asian call option. Derivation of the scheme for geometric,

weighted arithmetic averaging or extreme value call option and for all analyzed put

options is similar and therefore omitted.

We restrict the spatial domain ξ ∈ (0,∞) to a finite interval of values ξ ∈ (0, L)

where L > 0 is sufficiently large. For practical purposes, it is sufficient to take L ≈ 2.

Let denote the time step by k = T
m
> 0 and the spatial step by h = L

n
> 0. Here

m,n ∈ N denote the number of time and space discretization steps, respectively. We

denote by Πj = Πj(ξ) the time discretization of Π(ξ, τj) and %j ≈ %(τj) where τj = jk.

By Πj
i we shall denote the full space–time approximation for the value Π(ξi, τj). Then

for the Euler backward in time finite difference approximation of equation (8.13) we

have

Πj − Πj−1

k
+ cj

∂Πj

∂ξ
−
(
σ2

2
+
%je−ξ − 1

T − τj

)
∂Πj

∂ξ
− σ2

2

∂2Πj

∂2ξ
+

(
r +

1

T − τj

)
Πj = 0
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where cj is an approximation of the value c(τj) where the c(τ) = %̇(τ)
%(τ)

+ r − q. The

solution Πj = Πj(x) is subject to Dirichlet boundary conditions at ξ = 0 and ξ = L.

We set Π0(ξ) = Π(ξ, 0) (see (8.13)). In what follows, we make use of the time step

operator splitting method. We split the above problem into a convection part and a

diffusive part by introducing an auxiliary intermediate step Πj− 1
2 :

(Convective part)
Πj− 1

2 − Πj−1

k
+ cj

∂Πj− 1
2

∂ξ
= 0 , (8.18)

(Diffusive part)

Πj − Πj− 1
2

k
−
(
σ2

2
+
%je−ξ − 1

T − τj

)
∂Πj

∂ξ
− σ2

2

∂2Πj

∂2ξ
+

(
r +

1

T − τj

)
Πj = 0. (8.19)

Similarly as in Ševčovič (2007) we shall approximate the convective part by the

explicit solution to the transport equation ∂τ Π̃ + c(τ)∂ξΠ̃ = 0 for ξ > 0 and τ ∈
(τj−1, τj] subject to the boundary condition Π̃(0, τ) = −1 and the initial condition

Π̃(ξ, τj−1) = Πj−1(ξ). It is known that the free boundary function %(τ) need not

be monotonically increasing (see e.g. Dai and Kwok 2006, Ševčovič 2008, Hansen

and Jørgensen 2000). Therefore depending whether the value of c(τ) is positive or

negative the boundary condition Π̃(0, τ) = −1 at ξ = 0 is either in–flowing (c(τ) > 0)

or out–flowing (c(τ) < 0). Hence, the boundary condition Π̃(0, τ) = −1 can be

prescribed only if c(τj) ≥ 0. Let us denote by C(τ) the primitive function to c(τ),

i.e. C(τ) = ln %(τ) + (r − q)τ . Solving the transport equation ∂τ Π̃ + c(τ)∂ξΠ̃ = 0 for

τ ∈ [τj−1, τj] subject to the initial condition Π(ξ, τj−1) = Πj−1(ξ) we obtain:

Π̃(ξ, τ) = Πj−1(ξ − C(τ) + C(τj−1))

if ξ − C(τ) + C(τj−1) > 0 and

Π̃(ξ, τ) = −1

otherwise. Hence the full time-space approximation of the half-step solution Π
j− 1

2
i

can be obtained from the formula

Π
j− 1

2
i =

{
Πj−1(ηi), if ηi = ξi − ln %j + ln %j−1 − (r − q)k > 0 ,

−1, otherwise.
(8.20)

In order to compute the value Πj−1(ηi) we make use of a linear interpolation between

discrete values Πj−1
i , i = 0, 1, . . . , n.
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Using central finite differences for approximation of the derivative ∂ξΠj we can

approximate the diffusive part of a solution of (8.19) as follows:

Πj
i − Π

j− 1
2

i

k
+

(
r +

1

T − τj

)
Πj
i

−
(
σ2

2
+
%je−ξi − 1

T − τj

)
Πj
i+1 − Πj

i−1

2h
− σ2

2

Πj
i+1 − 2Πj

i + Πj
i−1

h2
= 0 .

Therefore the vector of discrete values Πj = {Πj
i , i = 1, 2, . . . , n} at the time level

j ∈ {1, 2, . . . ,m} is a solution of a tridiagonal system of linear equations

αjiΠ
j
i−1 + βjiΠ

j
i + γjiΠ

j
i+1 = Π

j− 1
2

i , for i = 1, 2, . . . , n, where (8.21)

αji (%
j) = − k

2h2
σ2+

k

2h

(
σ2

2
+
%je−ξi − 1

T − τj

)
, γji (%

j) = − k

2h2
σ2− k

2h

(
σ2

2
+
%je−ξi − 1

T − τj

)
,

βji (%
j) = 1 +

(
r +

1

T − τj

)
k − (αji + γji ) . (8.22)

The initial and boundary conditions at τ = 0 and x = 0, L, can be approximated as

follows:

Π0
i =

{
−1 for ξi < ln 1+rT

1+qT
,

0 for ξi ≥ ln 1+rT
1+qT

,

for i = 0, 1, . . . , n, and Πj
0 = −1, Πj

n = 0 for j = 1, . . . ,m.

Finally, we employ the differential equation (8.14) to determine the free boundary

position %. Taking the Euler finite difference approximation of d
dτ

(
ln %+

∫∞
0

Π dξ
)

we

obtain

(Algebraic part)

ln %j = ln %j−1 + I0(Πj−1)− I0(Πj) + k

(
q +

σ2

2
− q%j−1 − I1(%j−1,Πj)

)
(8.23)

where I0(Π) stands for numerical trapezoidal quadrature of the integral
∫∞

0
Π(ξ) dξ

and I1(%j−1,Π) is a trapezoidal quadrature of the integral∫ ∞
0

(
r − %j−1e−ξ − 1

T − τj

)
Π(ξ) dξ.

We formally rewrite discrete equations (8.23), (8.20) and (8.21) in the operator

form:

%j = F(Πj), Πj− 1
2 = T (%j), A(%j)Πj = Πj− 1

2 , (8.24)



8.4. COMPUTATIONAL EXAMPLES OF THE FREE BOUNDARY APPROXIMATION 115

where lnF(Πj) is the right-hand side of equation (8.23), T (%j) is the transport

equation solver given by the right-hand side of (8.20) and A = A(%j) is a tridiag-

onal matrix with coefficients given by (8.22). The system (8.24) can be approxi-

mately solved by means of successive iterations procedure. We define, for j ≥ 1,

Πj,0 = Πj−1, %j,0 = %j−1. Then the (p + 1)-th approximation of Πj and %j is obtained

as a solution to the system:

%j,p+1 = F(Πj,p), Πj− 1
2
,p+1 = T (%j,p+1), A(%j,p+1)Πj,p+1 = Πj− 1

2
,p+1 . (8.25)

Supposing the sequence of approximate discretized solutions {(Πj,p, %j,p)}∞p=1 con-

verges to the limiting value (Πj,∞, %j,∞) as p → ∞ then this limit is a solution to

a nonlinear system of equations (8.24) at the time level j and we can proceed by

computing the approximate solution in the next time level j + 1.

8.4 Computational examples of the free boundary ap-

proximation

Finally we present several computational examples of application of the numerical

approximation scheme (8.25) for the solution Π(ξ, τ) and the free boundary position

%(τ) of (8.13). We consider American style of Asian arithmetically averaged floating

strike call options.
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t*

continuation region

exercise region

FIGURE 8.1: The function %(τ) (left). A comparison of the free boundary posi-

tion x∗t = 1/%(T − t) (right) obtained by our method (solid curve) and that of the

projected successive over relaxation algorithm by Dai and Kwok (dashed curve).

In FIGURE 8.1 we show behavior of the early exercise boundary function %(τ) and
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the function x∗t = 1
%(T−t) . In this numerical experiment we chose r = 0.06, q = 0.04,

σ = 0.2 and very long expiration time T = 50 years. These parameters correspond to

the example presented by Dai and Kwok (2006). As far as other numerical param-

eters are concerned, we chose the mesh of n = 200 spatial grid points and we have

chosen the number of time steps m = 105 in order to achieve very fine time stepping

corresponding to 260 minutes between consecutive time steps when expressed in the

original time scale of the problem.
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FIGURE 8.2: A 3D plot (left) and contour plot (right) of the function Π(ξ, τ).
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FIGURE 8.3: Profiles of the function Π(ξ, τ) for various times τ ∈ [0, T ].

In FIGURE 8.2, we can see the behavior of transformed function Π in both 3D as

well as contour plot perspectives. In FIGURE 8.3, we also plot the initial condition



8.4. COMPUTATIONAL EXAMPLES OF THE FREE BOUNDARY APPROXIMATION 117

Π(ξ, 0) and five time steps of the function ξ 7→ Π(ξ, τj) for τj = 0.1, 1, 5, 25, 50.
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FIGURE 8.4: A comparison of the free boundary position x∗t for various dividend

yield rates q = 0.04, 0.03, 0.025 and fixed interest rate r = 0.06 (left). Comparison

of x∗t for various interest rates r = 0.06, 0.04, 0.02 and fixed dividend yield q = 0.04.

Dots represents the solution obtained by Dai and Kwok (right).

TABLE 8.1: Comparison of PSOR and our transformation method for T = 50,

σ = 0.2, q = 0.04.

r = 0.06 r = 0.04 r = 0.02

‖x∗,transt − x∗,psort ‖∞ 0.09769 0.03535 0.05359

‖x∗,transt − x∗,psort ‖1 0.00503 0.00745 0.01437

minx∗,transt 0.52150 0.57780 0.63619

A comparison of early exercise boundary profiles with respect to varying inter-

est rates r and dividend yields q is shown in FIGURE 8.4. A comparison of the free

boundary position x∗t = 1
%(T−t) obtained by our method (solid curve) and that of

the projected successive over relaxation algorithm by Dai and Kwok (2006) (dotted

curve) for different values of the interest rate r is shown in FIGURE 8.4 (right). The

algorithm of Dai and Kwok (2006) is based on a numerical solution to the varia-

tional inequality for the function W = W (x, τ) which is a solution to (8.4) in the

continuation region and it is smoothly pasted to its pay-off diagram (8.6). It is clear

that our method and that of Dai and Kwok (2006) give almost the same results. A

quantitative comparison of both methods is given in TABLE 8.1 for model parameters

T = 50, σ = 0.2, q = 0.04 and various interest rates r = 0.02, 0.04, 0.06. We evaluated
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discrete L∞(0, T ) and L1(0, T ) norms of the difference x∗,transt − x∗,psort between the

numerical solution x∗,transt , t ∈ [0, T ], obtained by our method and that of Dai and

Kwok (2006) denoted by x∗,psort . We also show the minimal value mint∈[0,T ] x
∗,trans
t of

the early exercise boundary.
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FIGURE 8.5: The free boundary position for expiration times T = 0.7 (left) and

T = 1 (right).
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FIGURE 8.6: A comparison of the free boundary position with its analytic approxi-

mation (dashed line).

Finally, in FIGURE 8.5 we present numerical experiments for shorter expiration

times T = 0.7 and T = 1 (one year) with zero dividend rate q = 0 and r = 0.06,

σ = 0.2. We also present a comparison of the free boundary position x∗t = 1
%(T−t) and

the analytic approximation (6.33) for parameters: r = 0.06, q = 0, σ = 0.2 and T = 1.

It is clear that the analytic approximation (6.33) is capable of capturing the behavior

of x∗t only for times t close to the expiry T . Moreover, the analytic approximation

is a monotone function whereas the true early exercise boundary x∗t is a decreasing

function for small values of t and then it becomes increasing (see e.g. FIGURE 8.6).



Conclusions
"A man may imagine things

that are false, but he can only understand things that

are true, for if the things be false, the apprehension of

them is not understanding."

– SIR ISAAC NEWTON

In this thesis, we analyze floating strike American style Asian and lookback op-

tions (members of the class of path-dependent options).

CHAPTER 3 summarizes wide range of exotic options traded on the market. We

used a classification based on Wilmott (2006). The main scope of the chapter is

path-dependent options.

In CHAPTER 4, we calculated the value of American style Asian option with gen-

eral type of average according to the theory of conditioned expected values and mar-

tingales (following the idea of Hansen and Jørgensen (2000)). The calculation was

also done for the continuous geometric average and we have approximated the value

of Asian option with continuous arithmetic averaging. Moreover, we calculated the

value of floating strike American style lookback options. The extreme value can be

obtain as a limit of the general average.

We created a new method for the calculation of the limit of the early exercise

boundary at the expiry. This problem was analyzed by many authors for selected

financial derivatives. Our methodology, presented in CHAPTER 5, is a unifying ap-

proach to calculate the limit for general financial derivative that can be written as a

Doob-Meyer decomposition of the Snell envelope of its discounted pay-off function.

In the APPENDIX D, we have verified this method by comparing results with numerical

results calculated by the PSOR method. The comparison was performed on American

style of option strategies.
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120 CONCLUSIONS

In CHAPTER 6, we have analyzed the behavior of early exercise boundary close

to expiry of Asian and lookback options. According to the methodology from the

previous chapter, we calculated the limit value of the free boundary at expiry. The

calculation of the first order expansion is based on the marginal condition of smooth-

ness of an American style derivative value at the early exercise boundary.

We present an integral-differential equation for calculation of the early exercise

boundary of Asian and lookback options. The equation was derived in CHAPTER 8

by several transformation of the modified Black–Scholes partial differential equation

for path-dependent derivatives. The discretization of presented equation leads to

numerical approximation scheme.

We have covered selected problems of the topic presented in this thesis. However,

there are still open issues up to further research.



APPENDIX A

American style vanilla option

In this chapter, we use methods and theory presented in the main part of the

thesis on plain vanilla options. First, we use the model for the derivation of the

value presented in SECTION 4.2. Then we summarize the limit of early exercise

boundary at expiry already calculated in SECTION 5.2.1. And finally, we calculate

the approximation of early exercise boundary at the expiry following derivation from

SECTION 6.2.

Most of the results presented in this chapter can be found e.g. in Kwok (2008).

A.1 Calculation of the formula

For the value of an American style vanilla, we have no need to change the probability

measure. We use the time value of money as the numeraire.

We set a problem similar to the (4.14)

V (t, S) = ess sup
s∈T[t,T ]

EQt
[
e−r(s−t) (c(Ss −X))+

∣∣∣St = S
]
, (A.1)

where T[t,T ] denotes the set of all stopping times in the interval [t, T ], EQt [X] =

EQ[X|Ft] is the conditioned expectation with information of time t and X is the

strike price of the option (c = 1 for a call option and c = −1 for a put option).

We follow the derivation of the formula from SECTION 4.2

V (t, S) = ess sup
s∈T[t,T ]

EQt
[
e−r(s−t) (c(Ss −X))+

∣∣∣St = S
]

= ess sup
s∈T[t,T ]

e−r(s−t)EQt
[
(c(Ss −X))+

∣∣∣St = S
]
.

We can rewrite last equation as

Ṽ (t, S) = e−rtV (t, S) = e−rT
∗
t EQt

[(
c(ST ∗t −X)

)+
]
,

where T ∗t = inf{s ∈ [t, T ]|Ss = S∗s} and S∗ is the exercise boundary.
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REMARK A.1. According to TABLE 2.2, the stopping region S and continuation region C
for call option and put option are defined by

Ccall = Sput = {(t, S) ∈ [0, T ]× [0, S∗)},

Scall = Cput = {(t, S) ∈ [0, T ]× (S∗,∞)},

respectively.

Next, we present an application of THEOREM 4.1 for the value of American plain

vanilla option.

THEOREM A.1. The value of the American style vanilla option Ṽ (t, St) = e−rtV (t, St)

on stock underlying with dividend rate is given by

Ṽ (t, St) = ṽ(t, St) + ẽ(t, St),

where

ṽ(t, St) ≡ EQt
[
e−rT (c(ST −X))+]

and

ẽ(t, St) ≡ EQt
[∫ T

t

c e−ru1S(u, Su)(qSu − rX) du

]
,

with stopping region S. Here the function 1S( · ) is the indicator function of the set S,

c = 1 for call option and c = −1 for put option.

We use LEMMA 4.1 to calculate the expected values. According to the model

we know that stock price S has lognormal distribution, i.e. lnSu|Ft ∼ N (αt,u, β
2
t,u),

where

αt,u = lnSt + (r − q − 1

2
σ2)(u− t),

βt,u = σ
√
u− t.

First part of the formula is well-known Black–Scholes formula for European style

vanilla option (2.4):

v(t, S) = ertṽ(t, S)

= c

(
Se−q(T−t)Φ

(
c

(
αt,T − lnX

βt,T
+ βt,T

))
−Xe−r(T−t)Φ

(
c
αt,T − lnX

βt,T

))
,
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where Φ( · ) is the CDF of the normal probability distribution N (0, 1). We used this

α and β notation to make the formula consistent with the rest of this paper.

The stopping region of the American style vanilla option is defined as cS ≥ cS∗,

where S∗ is the early exercise boundary. We also need to define

γp,t,u =
lnS∗u − αt,u

βt,u
− pβt,u,

where S∗t is the value of early exercise boundary at time t. The American style bonus

of the formula has form

e(t, S) = ertẽ(t, S)

=

∫ T

t

c e−r(u−t)
(
qeαt,u+

β2t,u
2 Φ(−c γ1,t,u)− rXΦ(−c γ0,t,u)

)
du

= c

∫ T

t

qSe−q(u−t)Φ

(
c

(
αt,u − lnS∗u

βt,u
+ βt,u

))
−rXe−r(u−t)Φ

(
c
αt,u − lnS∗u

βt,u

)
du.

This result can be found e.g. in Kim (1990) or Kwok (2008).

A.2 Limit of the early exercise boundary at expiry

The limit of the early exercise boundary at the expiry for the plain vanilla options is

calculated according to THEOREM 5.1. The calculation is presented as an example in

SECTION 5.2.1.

We recall that if we know explicit formula for value of European style of deriva-

tive, we can simply calculate the American style bonus function fb at the expiry ac-

cording to REMARK 5.2:

f vanillab (T, S) =


0 for cS < cX,

cX
2

(q − r) for S = X,

c (qS − rX) for cS > cX,

where c = 1 or c = −1 for call option or put option, respectively.

The boundary of set of positive values of f vanillab is given by following expression

∂Z+vanilla
T = c max

[
cX, c

r

q
X

]
= S∗vanillaT .
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The value of limit of the early exercise boundary at expiry S∗T is summarized in

TABLE A.1.

TABLE A.1: Starting point of the early exercise boundary S∗
T .

S∗T put call

vanilla option min
(
rX
q
, X
)

max
(
rX
q
, X
)

This result is well known and can be found also in Kwok (2008), Albanese and

Campolieti (2006), Detemple (2006), Wilmott et al. (1995) and many other sources.

A.3 Expansion of the exercise boundary close to ex-

piry

Throughout this section, we shall assume the structural assumption on the interest

and dividend rates (6.4), i.e.

c r > c q,

where c = 1 or c = −1 for call option or put option, respectively.

We follow the derivation presented in SECTION 6.2. The form of approximation

function for early exercise boundary of a plain vanilla option has form

%T−t = S∗t =
rX

q
(1 + hσ

√
T − t) +O(T − t) as t→ T,

where h ∈ R is a constant. To calculate h, we use the condition of smoothness of the

value of the option across the early exercise boundary - smooth pasting principle (cf.

Kwok 2008, Dai and Kwok 2006).

c =
∂V

∂S
(t, S∗t ) =

∂v

∂S
(t, S∗t ) +

∂e

∂S
(t, S∗t ) =

∂v

∂S
(t, S∗t ) +

∫ T

t

∂eI

∂S
(t, S∗t , u, S

∗
u) du

= v̂S(t, S∗t ) +

∫ T

t

êIS(t, S∗t , u, S
∗
u) du,

where eI denotes integrated function and we use the expression for V presented in

the end of SECTION A.1. The first step of derivation are substitutions t = T − τ and
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u = T − τ(1− θ) into the previous equation:

c = v̂S(T − τ, S∗T−τ ) + τ

∫ 1

0

êIS
(
T − τ, S∗T−τ , T − τ(1− θ), S∗T−τ(1−θ)

)
dθ (A.2)

This equation should be valid through the time. Thus, we set its derivative with

respect to τ equal to zero

0 =
∂

∂τ

(
−c + v̂S(T − τ, S∗T−τ )

)
+

∫ 1

0

êIS
(
T − τ, S∗T−τ , T − τ(1− θ), S∗T−τ(1−θ)

)
dθ

+τ

∫ 1

0

∂

∂τ
êIS
(
T − τ, S∗T−τ , T − τ(1− θ), S∗T−τ(1−θ)

)
dθ.

The last element on the right-hand side of previous equation tends to zero with

τ → 0. The derivation is straightforward and simple, but very long, space exhausting

and similar to the following one, thus we left this proof to the reader.

Next, we calculate the limit for τ → 0:

0 = lim
τ→0

∂v̂S(T − τ, S∗T−τ )
∂τ

+ lim
τ→0

∫ 1

0

êIS
(
T − τ, S∗T−τ , T − τ(1− θ), S∗T−τ(1−θ)

)
dθ.

(A.3)

We recall that αt,u = α(t, u, S), βt,u = β(t, u). In this section, we use the following

notation (to simplify the derivation)

r − q +
σ2

2
= Λ,

αT−τ,T = αT ,

βT−τ,T = βT ,

αT−τ,T−τ(1−θ) = αθ,

βT−τ,T−τ(1−θ) = βθ,

γp,T−τ,T−τ(1−θ) = γp.

In further derivation, we use following limits calculated according to SECTION A.1

and SECTION A.2

lim
τ→0

αT−τ,T−τ(1−θ) − ln rX
q

(1 + hσ
√
τ(1− θ))

βT−τ,T−τ(1−θ)
= h

1−
√

1− θ√
θ

,

for θ ∈ (0, 1) and

lim
τ→0

c
(
αT−τ,T−τ(1−θ) − lnX

)
= c (αT,T − lnX) = c ln

r

q
> 0,
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lim
τ→0

βT−τ,T−τ(1−θ) = βT,T = 0+,

lim
τ→0

Φ

(
c
αT−τ,T − lnX

βT−τ,T

)
= Φ

(
c
ln r

q

0+

)
= 1,

∀n ∈ N ∪ {0} : lim
τ→0

Φ′
(
αT−τ,T−lnX

βT−τ,T

)
(βT−τ,T )n

= 0,

lim
τ→0

∂SαT−τ,T−τ(1−θ) =
1

S∗T
=

q

rX
,

lim
τ→0

βT−τ,T−τ(1−θ) ∂τ

(
βT−τ,T−τ(1−θ)

∣∣
S=%τ

)
=

θσ2

2
,

for θ ∈ (0, 1].

Since we have assumed (6.4), we have 0 < r
q
6= 1. Notice that both α and β

have polynomial order in τ and the derivative of the normal cumulative distribution

function (i.e. the probability density function) has exponential order in τ variable. In

all derivations we have used several properties of the derivative of normal cumulative

distribution function Φ(x), e.g. Φ′(x) = Φ′(−x), Φ′′(x) = −xΦ′(x) and Φ′(a
b

+ c) =

e−
ac
b
− c

2

2 Φ′(a
b
).

We calculate the derivative of the European part of the expression (i.e. Greek

delta).

v̂S(t, S) =
∂

∂S
ṽ(t, S) = c e−q(T−t)Φ

(
c

(
αt,T − lnX

βt,T
+ βt,T

))
.

Now, we calculate the first part of the limit (A.3). According to presented limits,

the elements with derivative of CDF tends to zero in the limit and limit of the CDF

tends to 1, thus we have

lim
τ→0

∂τ v̂S(T − τ, S) = −c q.

Next, we calculate the derivative of the integral function of American style option

bonus:

êIS(t, S, u, S∗u) = c e−rτθ
∂

∂S

(
qeαθ+

β2θ
2 Φ(−c γ1)− rXΦ(−c γ0)

)
= e−rτθ

(
c q∂Sαθe

αθ+
β2θ
2 Φ(−c γ1)

−q∂Sγ1e
αθ+

β2θ
2 Φ′(−γ1) + r∂Sγ0XΦ′(−γ0)

)
.
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Since ∂Sγp = −∂Sαθ
βθ

, the limit yields

lim
τ→0

êIS(t, S, u, S∗u) = c q

(
Φ

(
ch

1−
√

1− θ√
θ

)
+ ch

√
1− θ√
θ

Φ′
(
h

1−
√

1− θ√
θ

))
.

(A.4)

Integrating (A.4) with respect to θ ∈ [0, 1], putting both partial limits into (A.3),

dividing by the nonzero constant −c q and by LEMMA 6.1, we finally obtain

S∗t =
rX

q
(1 + h∗σ

√
T − t) +O(T − t) as t→ T,

where h∗ .
= 0.638833c. This result (for plain vanilla call option) is fully consistent

with that of Dewynne et al. (1993), Ševčovič (2001).
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APPENDIX B

Greeks
"Timeo Danaos et dona ferentes!"

– PUBLIUS VERGILIUS MARO

Each portfolio has to be managed to reduce the risk the most efficiently possible.

The movements of financial derivatives value can be followed and estimated by their

sensitivities called Greeks (see e.g. Haug 2006). Greeks (or Greek letters) are used

to hedge the risk caused by derivative contracts in portfolio. The more complex

derivatives are included into portfolio, the more advanced indicators have to be used

to secure the undesired losses. However, relying only on the Greeks can be unwise.

For the purpose of this section, we define following variables

d1 = dt and d2 = dt − σ
√
T − t, (B.1)

where dt is defined in (2.5). We recall that c = 1 for call and c = −1 for put option.

Greeks of the first, the second and the third order are summarized in table called

the MammaM (see TABLE B.1). This table shows the relationship of the more com-

mon Greeks to the four primary inputs of Black–Scholes model (the spot price of the

underlying asset S, the volatility σ, the time to expiry τ = T − t and the risk-free

interest rate r).

TABLE B.1: The MammaM table presenting relationship between Greeks.

∂
∂S

∂
∂σ

∂
∂τ

∂
∂r

Value V Delta ∆ Vega V Theta −Θ Rho P
Delta ∆ Gamma Γ Vanna Charm

Vega V Vanna Vomma DvegaDtime

Gamma Γ Speed Zomma Color

Vomma Ultima Totto
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The most basic sensitivities used in the hedging are first order Greeks delta ∆,

theta Θ, rho P and vega V and second order Greek gamma Γ. We can use these basic

Greeks to rewrite the Black–Scholes partial differential equation (2.3) as

Θ +
1

2
σ2S2Γ + (r − q)S∆− rV = 0.

In following sections, we briefly present Greeks and illustrate their behavior on

the European style plain vanilla option, Asian option with geometric average, approx-

imation of Asian option with arithmetic average and lookback option. In FIGURE B.1

we present the value of an option and in FIGURES B.2-B.17 the dependence of Greeks

on the value of underlying asset S for five time moments 0 = t1 < t2 < t3 < t4 < T

(by dotted line, dot-dashed line, dashed line, solid line and thick solid line, respec-

tively). We have fixed the value of average and extremes in figures for the Asian

options and lookback option, respectively.
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V max

FIGURE B.1: The value V of a European style call (center left) and put (center right)

vanilla option contract. Call (above) and put (below) value of Asian option contract

with geometric averaging (left) and arithmetic averaging approximation (middle)

and lookback option (right).
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B.1 First order Greeks

Delta ∆

The Greek delta (see FIGURE B.2) is calculated as the first partial derivative of the

value V according to the value of underlying asset S

∆ =
∂V

∂S
,

i.e. the slope of the option value function V .
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FIGURE B.2: The Greek delta ∆ of a European style call (center left) and put (center

right) vanilla option contract. Call (above) and put (below) Greek delta ∆ of Asian

option contract with geometric averaging (left) and arithmetic averaging approxi-

mation (middle) and lookback option (right).

To manage the portfolio by delta hedging we have to keep the equation

∆ = −Q
S
t

QV
t

, (B.2)

whereQS
t is the number of underlying assets at the time t andQV

t number of financial

derivatives at the time t. Hedging of the portfolio by this scheme can be done either
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initially by ∆0 (static hedging) or at certain time moments by ∆ (dynamic hedging).

The expression (B.2) is the same as the one used in derivation of Black–Scholes

partial differential equation (in SECTION 7.1).

The value of ∆ for European vanilla option is

∆EU = c e−q(T−t)Φ (c d1) ,

where d1 is defined in (B.1) and Φ( · ) is the CDF of the normal probability distribu-

tion N (0, 1).

Theta Θ

The Greek theta (see FIGURE B.3) is the first partial derivative of the value V with

respect to the time t

Θ =
∂V

∂t
.
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FIGURE B.3: The Greek theta Θ of a European style call (center left) and put (center

right) vanilla option contract. Call (above) and put (below) Greek theta Θ of Asian

option contract with geometric averaging (left) and arithmetic averaging approxi-

mation (middle) and lookback option (right).
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As there is no uncertainty in the time flow, this factor is used in major as a de-

scriptive statistics.

The value of Θ for European vanilla option is

ΘEU = c
(
qe−q(T−t)SΦ (c d1)− rXe−r(T−t)Φ (c d2)

)
− σe−q(T−t)SΦ (d1)

2
√
T − t

,

where d1 and d2 are defined in (B.1), Φ( · ) and Φ( · ) are the CDF and PDF of the

normal probability distribution N (0, 1), respectively.

Vega V

The Greek vega (see FIGURE B.4) is the first partial derivative of the value V with

respect to the volatility σ

V =
∂V

∂σ
.
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FIGURE B.4: The Greek vega V of a European style vanilla option contract (center).

Call (above) and put (below) Greek vega V of Asian option contract with geomet-

ric averaging (left) and arithmetic averaging approximation (middle) and lookback

option (right).
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The value of V for European vanilla option is

VEU = e−q(T−t)SΦ (d1)
√
T − t,

where d1 is defined in (B.1) and Φ( · ) is the PDF of the normal probability distribution

N (0, 1).

Rho P

The Greek rho (see FIGURE B.5) is the first partial derivative of the value V with

respect to the interest rate r

P =
∂V

∂r
.
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FIGURE B.5: The Greek rho P of a European style call (center left) and put (center

right) vanilla option contract. Call (above) and put (below) Greek rho P of Asian

option contract with geometric averaging (left) and arithmetic averaging approxi-

mation (middle) and lookback option (right).

The value of P for European vanilla option is

PEU = c(T − t)e−r(T−t)XΦ (c d2) ,

where d2 is defined in (B.1) and Φ( · ) is the CDF of the normal probability distribu-

tion N (0, 1).
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Dual delta ∆dual

The Greek dual delta (see FIGURE B.6) is the first derivative of the value V with

respect to the strike price of derivative X

∆dual =
∂V

∂X
.

[Alternatively for Asian and lookback options, strike price X can be replaced by

average and extreme value, respectively.]
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FIGURE B.6: The Greek dual delta ∆dual of a European style call (center left) and

put (center right) vanilla option contract. Call (above) and put (below) Greek dual

delta ∆dual of Asian option contract with geometric averaging (left) and arithmetic

averaging approximation (middle) and lookback option (right).

The value of ∆dual for European vanilla option is

∆EU
dual = c e−r(T−t)Φ (c d2) ,

where d2 is defined in (B.1) and Φ( · ) is the CDF of the normal probability distribu-

tion N (0, 1).
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B.2 Second order Greeks

Gamma Γ

The Greek gamma (see FIGURE B.7) is defined as the second partial derivative of the

value V with respect to the value of underlying asset S

Γ =
∂∆

∂S
=
∂2V

∂S2
.
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FIGURE B.7: The Greek gamma Γ of a European style vanilla option contract (cen-

ter). Call (above) and put (below) Greek gamma Γ of Asian option contract with

geometric averaging (left) and arithmetic averaging approximation (middle) and

lookback option (right).

Gamma is the rate of change of ∆. These two factors are used together to manage

the portfolio. If the absolute value of gamma is low, the delta changes only a little

and there is no need to perform delta hedging so frequently as for the high absolute

value of gamma.
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The value of Γ for European vanilla option is

ΓEU = e−q(T−t)
Φ (d1)

Sσ
√
T − t

,

where d1 is defined in (B.1) and Φ( · ) is the PDF of the normal probability distribution

N (0, 1).

Charm

The Greek charm (see FIGURE B.8) is the first derivative of ∆ with respect to the

variable τ = T − t
Charm =

∂∆

∂τ
= −∂Θ

∂S
=

∂2V

∂S∂τ
.
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q

Charmmax

M

FIGURE B.8: The Greek charm of a European style call (center left) and put (center

right) vanilla option contract. Call (above) and put (below) Greek charm of Asian

option contract with geometric averaging (left) and arithmetic averaging approxi-

mation (middle) and lookback option (right).

The value of charm for European vanilla option is

CharmEU = −c qe−q(T−t)Φ (c d1) + e−q(T−t)Φ (d1)

(
r − q

σ
√
T − t

− d2

2(T − t)

)
,
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where d1 and d2 are defined in (B.1), Φ( · ) and Φ( · ) are the CDF and the PDF of the

normal probability distribution N (0, 1), respectively.

Vanna

The Greek vanna (see FIGURE B.9) is the first derivative of ∆ with respect to the

volatility σ

V anna =
∂∆

∂σ
=
∂V
∂S

=
∂2V

∂S∂σ
.

S

Σ T

2 Π

Vannag

A

S

Σ T

2 Π

Vannaa

A

S

Σ T

2 Π

Vannamin

m

S

Σ T

2 Π

Vanna

X

S

Σ T

2 Π

Vannag

A
S

Σ T

2 Π

Vannaa

A

0
S

Σ T

2 Π

Vannamax

M

FIGURE B.9: The Greek vanna of a European style vanilla option contract (center).

Call (above) and put (below) Greek vanna of Asian option contract with geomet-

ric averaging (left) and arithmetic averaging approximation (middle) and lookback

option (right).

The value of vanna for European vanilla option is

V annaEU = −e−q(T−t)Φ (d1)
d2

σ
=
V
S

(
1− d1

σ
√
T − t

)
,

where d1 and d2 are defined in (B.1), Φ( · ) is the PDF of the normal probability

distribution N (0, 1).
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Vomma

The Greek vomma (see FIGURE B.10) is defined as the second partial derivative of

the value V with respect to the volatility σ

V omma =
∂V
∂σ

=
∂2V

∂σ2
.
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FIGURE B.10: The Greek vomma of a European style vanilla option contract (cen-

ter). Call (above) and put (below) Greek vomma of Asian option contract with

geometric averaging (left) and arithmetic averaging approximation (middle) and

lookback option (right).

The value of vomma for European vanilla option is

V ommaEU = e−q(T−t)SΦ (d1)
d1d2

σ

√
T − t = V d1d2

σ
,

where d1 and d2 are defined in (B.1), Φ( · ) is the PDF of the normal probability

distribution N (0, 1).



140 APPENDIX B. GREEKS

DvegaDtime ∂V
∂τ

The Greek DvegaDtime (see FIGURE B.11) is the first derivative of V with respect to

the variable τ = T − t

DvegaDtime =
∂V
∂τ

= −∂Θ

∂σ
=

∂2V

∂σ∂τ
.
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FIGURE B.11: The Greek DvegaDtime of a European style vanilla option contract

(center). Call (above) and put (below) Greek DvegaDtime of Asian option contract

with geometric averaging (left) and arithmetic averaging approximation (middle)

and lookback option (right).

The value of DvegaDtime for European vanilla option is

DvegaDtimeEU = e−q(T−t)SΦ (d1)
√
T − t

(
q +

(r − q)d1

σ
√
T − t

− 1 + d1d2

2(T − t)

)
,

where d1 and d2 are defined in (B.1), Φ( · ) is the PDF of the normal probability

distribution N (0, 1).
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Dual gamma Γdual

The Greek dual gamma (see FIGURE B.12) is defined as the second partial derivative

of the value V with respect to the strike price X

Γdual =
∂∆dual

∂X
=
∂2V

∂X2
.

Dual gamma is the rate of change of ∆dual. [Alternatively for Asian and lookback

options, strike price X can be replaced by average and extreme value, respectively.]
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FIGURE B.12: The Greek dual gamma Γdual of a European style vanilla option

contract (center). Call (above) and put (below) Greek dual gamma Γdual of Asian

option contract with geometric averaging (left) and arithmetic averaging approxi-

mation (middle) and lookback option (right).

The value of Γdual for European vanilla option is

ΓEUdual = e−r(T−t)
Φ (d2)

Xσ
√
T − t

,

where d2 is defined in (B.1) and Φ( · ) is the PDF of the normal probability distribution

N (0, 1).
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B.3 Third order Greeks

Speed

The Greek speed (see FIGURE B.13) is defined as the third partial derivative of the

value V with respect to the value of underlying asset S

Speed =
∂Γ

∂S
=
∂2∆

∂S2
=
∂3V

∂S3
.
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FIGURE B.13: The Greek speed of a European style vanilla option contract (center).

Call (above) and put (below) Greek speed of Asian option contract with geomet-

ric averaging (left) and arithmetic averaging approximation (middle) and lookback

option (right).

The value of speed for European vanilla option is

SpeedEU = −e−q(T−t) Φ (d1)

S2σ
√
T − t

(
d1

σ
√
T − t

+ 1

)
= −Γ

S

(
d1

σ
√
T − t

+ 1

)
,

where d1 is defined in (B.1), Φ( · ) is the PDF of the normal probability distribution

N (0, 1).
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Color

The Greek color (see FIGURE B.14) is the first derivative of Γ with respect to the

variable τ = T − t

Color =
∂Γ

∂τ
=

∂2∆

∂S∂τ
= −∂
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∂S2
=

∂3V

∂S2∂τ
.
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FIGURE B.14: The Greek color of a European style vanilla option contract (center).

Call (above) and put (below) Greek color of Asian option contract with geometric

averaging (left) and arithmetic averaging approximation (middle) and lookback op-

tion (right).

The value of color for European vanilla option is

ColorEU = −e−q(T−t) Φ (d1)

2Sσ(T − t) 3
2

(
1 + 2q(T − t)− d1d2 + d1

2(r − q)
√
T − t

σ

)
,

where d1 and d2 are defined in (B.1), Φ( · ) is the PDF of the normal probability

distribution N (0, 1).
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Zomma

The Greek zomma (see FIGURE B.15) is the first derivative of Γ with respect to the

volatility σ

Zomma =
∂Γ

∂σ
=
∂V anna

∂S
=

∂2∆

∂S∂σ
=
∂2V
∂S2

=
∂3V

∂S2∂σ
.
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FIGURE B.15: The Greek zomma of a European style vanilla option contract (cen-

ter). Call (above) and put (below) Greek zomma of Asian option contract with

geometric averaging (left) and arithmetic averaging approximation (middle) and

lookback option (right).

The value of zomma for European vanilla option is

ZommaEU = e−q(T−t)Φ (d1)
d1d2 − 1

Sσ2
√
T − t

= Γ
d1d2 − 1

σ
,

where d1 and d2 are defined in (B.1), Φ( · ) is the PDF of the normal probability

distribution N (0, 1).
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Ultima

The Greek ultima (see FIGURE B.16) is defined as the third partial derivative of the

value V with respect to the volatility σ

Ultima =
∂V omma

∂σ
=
∂2V
∂σ2

=
∂3V

∂σ3
.
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FIGURE B.16: The Greek ultima of a European style vanilla option contract (center).

Call (above) and put (below) Greek ultima of Asian option contract with geometric

averaging (left) and arithmetic averaging approximation (middle) and lookback op-

tion (right).

The value of ultima for European vanilla option is

UltimaEU = e−q(T−t)Φ (d1)
S
√
T − t
σ2

(
d2

1d
2
2 − d1d2 − d2

1 − d2
2

)
=
V
σ2

(
d2

1d
2
2 − d1d2 − d2

1 − d2
2

)
,

where dt is defined in (B.1), Φ( · ) is the PDF of the normal probability distribution

N (0, 1).
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Totto

The Greek totto (see FIGURE B.17) is the first derivative of vomma with respect to the

variable τ = T − t

Totto =
∂V omma

∂τ
= −∂
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=
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FIGURE B.17: The Greek totto of a European style vanilla option contract (center).

Call (above) and put (below) Greek totto of Asian option contract with geometric

averaging (left) and arithmetic averaging approximation (middle) and lookback op-

tion (right).

The value of totto for European vanilla option is

TottoEU =
d1d2

σ

∂V
∂τ

+
V
σ

(
d2
∂d1

∂τ
+ d1

∂d2

∂τ

)
,

where d1 and d2 are defined in (B.1), Φ( · ) is the PDF of the normal probability

distribution N (0, 1).
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B.4 Other Greeks

Lambda Λ

The Greek lambda is elasticity of value of financial derivative according to the price

of underlying asset S

Λ =
S

V

∂V

∂S
=
S

V
∆.

Option duration

Option duration, also called omega is the optimal time to exercise the American or

Bermudan style financial derivative. It is also the expected time of hitting the barrier

for knock-out barrier options.
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APPENDIX C

Proofs
"Dubito ergo cogito, cogito ergo sum."

– RENÉ DU PERRON DESCARTES

In this chapter, we present proofs for theorems and lemmas presented in the main

part of thesis.

C.1 A probabilistic model for pricing American style

options

PROOF of THEOREM 4.1 We follow the proof of result for Asian options presented

by Hansen and Jørgensen (2000) and we include necessary generalizing modifica-

tions.

In the proof, we use the variable Ṽ = N−1V = N−1v +N−1e = ṽ + ẽ instead of

V = v + e.

First, we suppose that the value is in the continuation region, i.e. (t, x) ∈ C. The

derivative is held and so we can apply Itô lemma to calculate the differential

dṼ
∣∣
C =

∂Ṽ

∂t
dt+

n∑
i=1

∂Ṽ

∂xi
dxi +

1

2

n∑
i,j=1

∂2Ṽ

∂xi∂xj
dxidxj

=

(
∂Ṽ

∂t
+

n∑
i=1

µi
∂Ṽ

∂xi
+

1

2

n∑
i,j=1

ρijσ
iσj

∂2Ṽ

∂xi∂xj

)
dt+

n∑
i=1

σi
∂Ṽ

∂xi
dW i

=
n∑
i=1

σi
∂Ṽ

∂xi
dW i,

where the last equality holds true, because Ṽ
∣∣
C is Q-martingale.

Now we suppose that the value is in the stopping region, i.e. (t, x) ∈ S. The value

of derivative is defined by

Ṽ (t, xt)
∣∣
S = (N (t, xt))

−1 Ω(t, xt).
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Hence the differential dṼ
∣∣
S = d

(
Ω(t,xt)
N (t,xt)

)
has the form

dṼ
∣∣
S =

∂
(

Ω(t,xt)
N (t,xt)

)
∂t

dt+
n∑
i=1

∂
(

Ω(t,xt)
N (t,xt)

)
∂xi

dxi +
1

2

n∑
i,j=1

∂2
(

Ω(t,xt)
N (t,xt)

)
∂xi∂xj

dxidxj

=

∂
(

Ω(t,xt)
N (t,xt)

)
∂t

+
n∑
i=1

µi
∂
(

Ω(t,xt)
N (t,xt)

)
∂xi

+
1

2

n∑
i,j=1

ρijσ
iσj

∂2
(

Ω(t,xt)
N (t,xt)

)
∂xi∂xj


︸ ︷︷ ︸

fd(t,xt)

dt

+
n∑
i=1

σi
∂
(

Ω(t,xt)
N (t,xt)

)
∂xi

dW i.

For both regions the following stochastic equation has to be satisfied:

dṼ (t, xt) = 1S(t, xt) fd(t, xt) dt+ dMQ
t , (C.1)

where MQ
t is a Q-martingale. Integrating (C.1) from t to T and taking expectation

we have

EQt
[
Ṽ (T, xT )

]
− Ṽ (t, xt) = EQt

[∫ T

t

1S(u, xu)fd(u, xu) du

]
+ EQt

[∫ T

t

dMQ
u

]
︸ ︷︷ ︸

=0

,

after rearranging elements, we have

Ṽ (t, xt) = EQt
[
Ṽ (T, xT )

]
− EQt

[∫ T

t

1S(u, xu)fd(u, xu) du

]
= EQt

[
(N (T, xT ))−1 Ω(T, xT )

]︸ ︷︷ ︸
=ṽ(t,xt)

+EQt
[
−
∫ T

t

1S(u, xu)fd(u, xu) du

]
︸ ︷︷ ︸

=ẽ(t,xt)

.

which completes the proof of THEOREM 4.1. �

In the proof of THEOREM 4.2 we shall use the following lemma.

LEMMA C.1. The auxiliary variable xt = At
St

satisfies the following stochastic differential

equation:

dxt = xt
dAt
At
− (r − q)xt dt− σxt dWQ

t .
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PROOF of LEMMA C.1 We express the differential dxt = d
(
At
St

)
as

dxt =
1

St
dAt −

At
S2
t

dSt +
At
S3
t

(dSt)
2 = xt

dAt
At
− (r − q)xt dt− σxt dWQ

t ,

and the proof of lemma follows. �

Notice that, when comparing to the original expression due to Hansen and Jør-

gensen (2000) with a zero dividend rate q = 0, the only difference is that the param-

eter r is replaced by the term r − q.

PROOF of THEOREM 4.2 In the proof, we use THEOREM 4.1 and LEMMA C.1. Ac-

cording to (4.19) we have the numeraire and pay-off function

N (t, xt) = eqt

and

Ω(t, xt) = (c(1− xt))+ ,

respectively. Moreover, we have the stochastic differential equation

dxt = xt
dAt
At
− (r − q)xt dt− σxt dWQ

t = µ̃ dt− σ̃ dWQ
t .

Then the function (4.13) becomes on the stopping region S

fd(t, xt) dt = c(1− xt)
∂ (e−qt)

∂t
dt+ c e−qtµ̃

∂ ((1− xt))
∂x

dt+
1

2
c e−qtσ̃2∂

2 ((1− xt))
∂x2

dt

= −c qe−qt(1− xt) dt− c e−qtµ̃ dt

= −c e−qt
(
xt
dAt
At

+ (q − rxt) dt
)
.

And the proof of theorem follows. �

PROOF of LEMMA 4.1 Consider a stochastic variable z = lnZ ∼ N (α, β2). Recall

that

γp ≡
lnK − α

β
− pβ,

where K > 0 and p ∈ R. Functions Φ( · ) and Φ( · ) denote standard normal cumula-

tive distribution and density functions, respectively. The PDF of normal distribution

N (α, β2) has form

Φ(z) =
1√
2πβ

e
− (z−α)2

2β2 .
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We begin with item (iii):

E
[
1{Z≤K}Z

p
]

=

∫ lnK

−∞
epz

1√
2πβ

e
− (z−α)2

2β2 dz

=

∫ lnK

−∞

epα+ p2β2

2

√
2πβ

e
− (z−(α+pβ2))2

2β2 dz

= epα+ p2β2

2

∫ lnK−(α+pβ2)
β

−∞

1√
2π
e−

ξ2

2 dξ

= epα+ p2β2

2 Φ

(
lnK − α

β
− pβ

)
= epα+ p2β2

2 Φ(γp).

If we set p = 0, we have item (i). Item (iv) is calculated by

E
[
1{Z≥K}Z

p
]

=

∫ ∞
lnK

epz
1√
2πβ

e
− (z−α)2

2β2 dz

= epα+ p2β2

2

(
1−Φ(γ−p )

)
= epα+ p2β2

2 Φ(−γp).

Again, if we set p = 0, we have item (ii).

We continue with item (v)

E
[
(K − Z)+

]
=

∫ lnK

−∞
(K − ez) 1√

2πβ
e
− (z−α)2

2β2 dz

= K

∫ lnK

−∞

1√
2πβ

e
− (z−α)2

2β2 dz −
∫ lnK

−∞
ez

1√
2πβ

e
− (z−α)2

2β2 dz

= KE
[
1{Z≤K}

]
− E

[
1{Z≤K}Z

]
= KΦ(γ0)− eα+β2

2 Φ(γ1)

and item (vi)

E
[
(Z −K)+

]
=

∫ ∞
lnK

(ez −K)
1√
2πβ

e
− (z−α)2

2β2 dz

=

∫ ∞
lnK

ez
1√
2πβ

e
− (z−α)2

2β2 dz −K
∫ ∞

lnK

1√
2πβ

e
− (z−α)2

2β2 dz

= E
[
1{Z≥K}Z

]
−KE

[
1{Z≥K}

]
= eα+β2

2 Φ(−γ1)−KΦ(−γ0).
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Finally, we calculate item (vii)

E
[
1{Z≤K}Z lnZ

]
=

∫ lnK

−∞
ezz

1√
2πβ

e
− (z−α)2

2β2 dz

=

∫ lnK

−∞
z
eα+β2

2

√
2πβ

e
− (z−(α+β2))2

2β2 dz

= eα+β2

2

∫ lnK−(α+β2)
β

−∞

βξ + (α + β2)√
2π

e−
ξ2

2 dξ

= eα+β2

2

(
(α + β2)

∫ γ1

−∞

1√
2π
e−

ξ2

2 dξ + β

∫ γ1

−∞

ξ√
2π
e−

ξ2

2 dξ

)
= eα+β2

2

(
(α + β2)Φ(γ1)− β

[
1√
2π
e−

ξ2

2

]γ1
−∞

)
= eα+β2

2

(
(α + β2)Φ(γ1)− βΦ(γ1)

)
and item (viii)

E
[
1{Z≥K}Z lnZ

]
=

∫ ∞
lnK

ezz
1√
2πβ

e
− (z−α)2

2β2 dz

=

∫ ∞
lnK

z
eα+β2

2

√
2πβ

e
− (z−(α+β2))2

2β2 dz

= eα+β2

2

∫ ∞
lnK−(α+β2)

β

βξ + (α + β2)√
2π

e−
ξ2

2 dξ

= eα+β2

2

(
(α + β2)

∫ ∞
γ1

1√
2π
e−

ξ2

2 dξ + β

∫ ∞
γ1

ξ√
2π
e−

ξ2

2 dξ

)
= eα+β2

2

(
(α + β2)Φ(−γ1)− β

[
1√
2π
e−

ξ2

2

]∞
γ1

)
= eα+β2

2

(
(α + β2)Φ(−γ1) + βΦ(γ1)

)
.

And the proof of lemma follows. �

PROOF of LEMMA 4.2 Consider stochastic variable X = lnY ∼ N (µ, σ2), then

lnY p = p lnY = pX ∼ N (pµ, p2σ2).

Let Y = ξu
ξt

then the proof of lemma follows. �
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PROOF of LEMMA 4.3 For both moments EQt [(xu)
p] and EQt [(xu)

2p] we follow the

idea of the derivation from Hansen and Jørgensen (2000).

In the derivation of the first moment we split the expression into sum

EQt [(xu)
p] = EQt

[
λ

1− e−λu

∫ u

0

e−λ(u−v)

(
Sv
Su

)p
dv

]
=

λ

1− e−λu

∫ t

0

e−λ(t−v)

(
Sv
St

)p
dv e−λ(u−t)EQt

[(
St
Su

)p]
+

λ

1− e−λu

∫ u

t

e−λ(u−v)EQt
[(

Sv
Su

)p]
dv.

According to the definition of St, we have for all v, u ≥ t(
Sv
Su

)p
= ep(r−q+

σ2

2
)(v−u)+pσ(WQv −WQu ).

Taking the conditioned expectation

EQt
[(

Sv
Su

)p]
= ep(r−q+

σ2

2
)(v−u)+ p2σ2

2
|v−u|.

In all expression, we need to calculate, the condition v ≤ u is satisfied, so we can

simplify previous expression to

EQt
[(

Sv
Su

)p]
= e

p
(
r−q+(1−p)σ

2

2

)
(v−u)

.

Together we have

EQt [(xu)
p] =

1− e−λt

1− e−λu
(xt)

p e−κλ,p(u−t) +
λ

1− e−λu

∫ u

t

e−κλ,p(u−v) dv,

EQt [(xu)
p] = (xt)

p 1− e−λt

1− e−λu
e−κλ,p(u−t) +

λ

1− e−λu
1− e−κλ,p(u−t)

κλ,p
.

where κλ,p = λ+ p
(
r − q + (1− p)σ2

2

)
. This proves the first part of the lemma.

Now we continue with the evaluation of the second conditioned moment.

EQt
[
(xu)

2p
]

= EQt

[(
λ

1− e−λu

∫ u

0

e−λ(u−v)

(
Sv
Su

)p
dv

)2
]

= (xt)
2p (1− e−λt)2

(1− e−λu)2
e−2λ(u−t)EQt

[(
St
Su

St
Su

)p]
+2(xt)

pλ(1− e−λt)
(1− e−λu)2

e−λ(u−t)EQt
[(

St
Su

)p] ∫ u

t

e−λ(u−v)EQt
[(

Sv
Su

)p]
dv

+
λ2

(1− e−λu)2

∫ u

t

∫ u

t

e−λ(2u−z−v)EQt
[(

Sz
Su

Sv
Su

)p]
dv dz.
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We now calculate conditioned expectation of expression(
Sz
Su

Sv
Su

)p
= ep(r−q+

σ2

2
)(z+v−2u)+pσ(WQz +WQv −2WQu ).

If we assume that u ≥ z, v and let m = min {z, v} and M = max {z, v}, we have

WQ
z +WQ

v − 2WQ
u = −(2(WQ

u −WQ
M) + (WQ

M −WQ
m )).

Then the value of expectation is

EQt
[(

Sz
Su

Sv
Su

)p]
= e

p
(
r−q+(1−p)σ

2

2

)
(z+v−2u)+p2σ2(u−M)

.

Now we have calculated all expressions we need to evaluate the second conditioned

expectation from the lemma. If we put all together and perform necessary calculation

we have

EQt
[
(xu)

2p
]

= (xt)
2p (1− e−λt)2

(1− e−λu)2
e−(2κλ,p−p2σ2)(u−t)

+2(xt)
pλ(1− e−λt)
(1− e−λu)2

e−κλ,p(u−t) 1− e−κλ,p(u−t)

κλ,p
(C.2)

+λ2 (κλ,p − p2σ2)− 2(κλ,p − p2 σ2

2
)e−κλ,p(u−t) + κλ,p e

−2(κλ,p−p2 σ
2

2
)(u−t)

(1− e−λu)2 κλ,p (κλ,p − p2 σ2

2
) (κλ,p − p2σ2)

,

where κλ,p = λ+ p
(
r − q + (1− p)σ2

2

)
. And the proof of lemma follows. �

REMARK C.1. If we let λ → 0, p → 1 and set q = 0, we obtain the case analyzed in

Hansen and Jørgensen (2000) (HJ). However, the expression (C.2) (with the mentioned

set up of parameters) does not equal the one derived by HJ (see REMARK 4.3). The latter

expression is not consistent with the derivation presented in the HJ paper. We believe

that this problem is caused by a typo and subsequent copy-pasting. We have decided that

it is important to highlight this difference.

PROOF of LEMMA 4.4 The proof of this lemma can be found also in Hansen and

Jørgensen (2000). The only difference is that the constant parameter r is replaced

by the constant difference r − q. Nevertheless, we provide the proof for the reader.

First we recall the definition of the xgt

lnxgt =
1

t

∫ t

0

lnSu du− lnSt
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and definition of the St

ST = Ste
(r−q+σ2

2
)(T−t)+σ

∫ T
t dWu ,

where T ≥ t.

We need to calculate the expansion of the lnAT = 1
T

∫ T
0

lnSu du at time t

lnAT =
t

T
lnAt +

1

T

∫ T

t

(
lnSt + (r − q +

σ2

2
)(u− t) + σ

∫ u

t

dWs

)
du

=
t

T
lnAt +

T − t
T

lnSt + (r − q +
σ2

2
)
(T − t)2

2T
+
σ

T

∫ T

t

∫ T

s

du dWs

=
t

T
lnAt +

T − t
T

lnSt + (r − q +
σ2

2
)
(T − t)2

2T
+
σ

T

∫ T

t

(T − s) dWs

Now we can expand the expression for the lnxgT

lnxgT =
1

T

∫ T

0

lnSu du− lnST

=
1

T

∫ t

0

lnSu du+
T − t
T

lnSt +
r − q + σ2

2

2T
(T − t)2

+
σ

T

∫ T

t

(T − u) dWu − lnSt − (r − q +
σ2

2
)(T − t)− σ

∫ T

t

dWu

=
t

T
lnxgt −

r − q + σ2

2

2T
(T 2 − t2)− σ

T

∫ T

t

u dWu

The first two elements of lnxgT are deterministic (at time t), so we calculate first

two moments only for the Itô integral. Expected value is zero and the variance is

calculated by the Itô isometry

Vart
[
−σ
T

∫ T

t

u dWu

]
=
σ2

T 2

∫ T

t

u2 du =
σ2(T 3 − t3)

3T 2

This proves the lemma. �

PROOF of LEMMA 4.5 According to the LEMMA 4.3, we set value p = 1 and calculate

the limit λ→ 0 in expressions for both moments. And the proof of lemma follows. �



C.1. A PROBABILISTIC MODEL FOR PRICING AMERICAN STYLE OPTIONS 157

t0 T
t

2m-x
m
x

Bt
0

FIGURE C.1: Reflection principle. The dashed line is reflection B̃0
t of the solid line

process B0
t .

PROOF of LEMMA 4.6 In the proof of lemma, we use the idea from Kwok (2008).

The derivation of distribution of extreme values is based on the reflection princi-

ple. We derive the CDF of the stochastic variable yt = mt−Bt, where mt = infs∈[0,t] Bs

and Bt = µt + σWt ∼ N (µt, σ2t) is Brownian motion. First, we set zero drift rate in

the Brownian notion, i.e. µ = 0 and Bt → B0
t .

We need to calculate probability P (yT < y,B0
T > x), where y ≤ 0 and y ≤ x.

We follow the derivation of the probability P (mT < m,B0
T > x), where m ≤ 0

and m ≤ x from Kwok (2008). According to the desired probability we expect that

the value falls below m and so we can assume that there exists time 0 < t0 < T , such

that B0
t0

= m for the first time. Suppose we define a random process

B̃0
t =

{
B0
t for t < t0

2m−B0
t for t0 ≤ t ≤ T

.

The process B̃0
t is the mirror reflection of B0

t at level m within the time interval [t0, T ]

(see FIGURE C.1).

There are two important properties of the relation of the original process and its

reflection. First, the following equality holds for u ≥ 0

B̃0
t0+u − B̃0

t0
= −(B0

t0+u −B0
t0

) ∼ N (0, σ2u).

The second property is the following equivalency

P (B0
t > x)⇔ P (B̃0

t < 2m− x).

According to these two properties, we have two equivalent paths of the stochastic

process B0
t . In both cases the process starts in point 0 and then decreases to value m.
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Then both of processes move in different direction path of the length x−m. Thus we

have

P (mT < m,B0
T > x) = P (B̃0

T < 2m− x) = P (B0
T < 2m− x)

= Φ

(
2m− x
σ
√
T

)
, m ≤ min (x, 0).

Now, we calculate the probability P (yT < y,B0
T > x). We define random process

B̂T−t = Bt −BT for t ∈ [0, T ]

= µt+ σWt − µT − σWT

= −µ(T − t)− σ(WT −Wt).

It is clear that the distribution of the process is

B̂t ∼ N (−µt, σ2t),

i.e. B̂t is equivalent to Bt with µ̂ = −µ (when we turn the flow of time, the stochastic

increments do not change, but the drift decreases). This implies that

P (B0
T > x) = P (B0

0 −B0
T < −x) = P (B̂0

T < −x) = P (B̂0
T > x).

Moreover, yt = infs∈[0,t] B̂s and thus

P (yT < y, B̂0
T > x) = Φ

(
2y − x
σ
√
T

)
, y ≤ min (x, 0).

Next, we apply Girsanov’s theorem 1.9 to include the drift. We need to change the

probability measure to keep the zero-drift of the Brownian motion with respect to

the new probability P̃ . According to the change of the wiener process

W P̃
t = −µt

σ
+W P

t ,

the Radon-Nikodým derivative has form

ln
dP

dP̃
= −µ

σ
W P̃
t −

µ2T

2σ2
.

We calculate the probability

P (yT < y, B̂T > x) = EP
[
1{yT<y}1{B̂T>x}

]
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= EP̃
[
1{yT<y}1{B̂T>x}e

− µ

σ2
B̂T−µ

2T

2σ2

]
(reflection principle) = EP̃

[
1{2y−B̂T>x}e

− µ

σ2
(2y−B̂T )−µ

2T

2σ2

]
= e−

2µy

σ2 EP̃
[
1{B̂T<2y−x}e

µ

σ2
B̂T−µ

2T

2σ2

]
= e−

2µy

σ2

∫ 2y−x

−∞

1√
2πσ2T

e−
ξ2

2σ2T e
µ

σ2
ξ−µ

2T

2σ2 dξ

= e−
2µy

σ2

∫ 2y−x

−∞

1√
2πσ2T

e−
(ξ−µT )2

2σ2T dξ

= e−
2µy

σ2 Φ

(
2y − x− µT

σ
√
T

)
, y ≤ min (x, 0).

We derive the decumulative distribution function

P (yT > y, B̂T > x) = P (B̂T > x)− P (yT < y, B̂T > x)

= Φ

(
−x− µT
σ
√
T

)
− e−

2µy

σ2 Φ

(
2y − x− µT

σ
√
T

)
, y ≤ min (x, 0).

If we set y = x, the inequality B̂T > y is implicitly satisfied by yT > y and we can

calculate the CDF of the minimum

Fmin(y) = 1−
(

Φ

(
−y − µT
σ
√
T

)
− e−

2µy

σ2 Φ

(
y − µT
σ
√
T

))
= Φ

(
y + µT

σ
√
T

)
+ e−

2µy

σ2 Φ

(
y − µT
σ
√
T

)
, y ≤ 0.

The last step of the derivation is to calculate the conditioned distribution.

Suppose that yt = y0, i.e. the minimum of the process is equal y0 for time interval

[0, t]. The time point when the minimum was achieved does not change the condi-

tioned distribution, so we can assume that the minimum is at the time t. We shift the

Brownian motion by the value y0 and we have desired conditioned distribution.

P (yT > y, B̂T > x
∣∣yt = y0) = P (yT−t > y, B̂T−t + y0 > x)

= P (yT−t > y, B̂T−t > x− y0)

= Φ

(
−x+ y0 − µτ

σ
√
τ

)
− e−

2µy

σ2 Φ

(
2y − x+ y0 − µτ

σ
√
τ

)
,

for y ≤ min (x, 0) and τ = T − t. We finish the derivation by the same steps as for the

unconditioned distribution. The conditioned CDF of the minimum is then

Fmin(y)|Ft = Φ

(
y − y0 + µ(T − t)

σ
√
T − t

)
+ e−

2µy

σ2 Φ

(
y + y0 − µ(T − t)

σ
√
T − t

)
, y ≤ 0.
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Finally, we set Bt = ln St
S0

= (r − q + σ
2
)t + σWt and the proof for distribution of

minimum value follows.

The distribution of maximum value can be derived from the distribution of the

minimum according to the equality

max
t≤u≤T

(µu+ σWu) = − min
t≤u≤T

(−µu− σWu) = − min
t≤u≤T

(−µu+ σWu).

We need to swap −Y , −Y0, −x and −µ for y, y0, x and µ, respectively. Finally, we

have

P (YT < Y,−B̂T < x
∣∣Yt = Y0)=P (YT−t < Y,−B̂T−t + y0 < x)

=P (YT−t < Y,−B̂T−t < x− y0)

=Φ

(
x− Y0 + µτ

σ
√
τ

)
− e−

2µY

σ2 Φ

(
−2Y + x− Y0 + µτ

σ
√
τ

)
,

for Y ≥ max (x, 0) and τ = T −t. By setting x = Y , we achieve CDF for the maximum

value

Fmax(Y )|Ft = Φ

(
Y − Y0 + µ(T − t)

σ
√
T − t

)
− e−

2µY

σ2 Φ

(
−Y − Y0 + µ(T − t)

σ
√
T − t

)
, Y ≥ 0.

And the proof of lemma follows. �

PROOF of LEMMA 4.7 Consider a stochastic variable z with CDF

F (z, c) = Φ

(
z − α
β

)
+ c e−ςzΦ

(
c
z + α

β

)
for c z ≤ 0, where c = 1 for minimum and c = −1 for maximum. We recall that

Z = ez and

γ+
p ≡ lnK + α

β
− pβ,

γ−p ≡ lnK − α
β

− pβ,

where K > 0 and p ∈ R.

First, we calculate the expected value for the minimum.

E
[
1{Z≤K}Z

p
]

=

∫ lnK

−∞
epz

∂F (z, 1)

∂z
dz
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=

∫ lnK

−∞
epz
(

1√
2πβ

e
− (z−α)2

2β2 +
e−ςz√
2πβ

e
− (z+α)2

2β2 − ςe−ςzΦ
(
z + α

β

))
dz

We calculate each part of the integral separately.∫ lnK

−∞
epz

1√
2πβ

e
− (z−α)2

2β2 dz =

∫ lnK

−∞

epα+ p2β2

2

√
2πβ

e
− (z−(α+pβ2))2

2β2 dz

= epα+ p2β2

2

∫ lnK−(α+pβ2)
β

−∞

1√
2π
e−

ξ2

2 dξ

= epα+ p2β2

2 Φ

(
lnK − α

β
− pβ

)
= epα+ p2β2

2 Φ(γ−p )

∫ lnK

−∞
e(p−ς)z 1√

2πβ
e
− (z+α)2

2β2 dz =

∫ lnK

−∞

e−(p−ς)α+
(p−ς)2β2

2

√
2πβ

e
− (z+α−(p−ς)β2)2

2β2 dz

= e−(p−ς)α+
(p−ς)2β2

2

∫ lnK+α−(p−ς)β2
β

−∞

1√
2π
e−

ξ2

2 dz

= e−(p−ς)α+
(p−ς)2β2

2 Φ

(
lnK + α

β
− (p− ς)β

)
= e−(p−ς)α+

(p−ς)2β2
2 Φ(γ+

p−ς)

∫ lnK

−∞
−ςe(p−ς)zΦ

(
z + α

β

)
dz = −

[
ς

p− ς
e(p−ς)zΦ

(
z + α

β

)]lnK

−∞

+
ς

p− ς

∫ lnK

−∞

e(p−ς)z
√

2πβ
e
− (z+α)2

2β2 dz

= − ς

p− ς
e(p−ς) lnKΦ

(
lnK + α

β

)
+

ς

p− ς
e−(p−ς)α+

(p−ς)2β2
2 Φ

(
lnK + α

β
− (p− ς)β

)
= − ς

p− ς
e(p−ς) lnKΦ(γ+

0 )

+
ς

p− ς
e−(p−ς)α+

(p−ς)2β2
2 Φ(γ+

p−ς)

Now, we sum all elements and we have the expected value for minimum distribution

(iii). By setting the parameter p = 0 we obtain also the expression (i).
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The derivation of the expected value for the maximum is similar.

E
[
1{Z≥K}Z

p
]

=

∫ ∞
lnK

epz
∂F (z,−1)

∂z
dz

=

∫ ∞
lnK

epz
(

1√
2πβ

e
− (z−α)2

2β2 +
e−ςz√
2πβ

e
− (z+α)2

2β2 + ςe−ςzΦ

(
−z + α

β

))
dz

As for the minimum, we calculate each part of the integral separately.∫ ∞
lnK

epz
1√
2πβ

e
− (z−α)2

2β2 dz = epα+ p2β2

2

(
1−Φ(γ−p )

)
= epα+ p2β2

2 Φ(−γ−p )

∫ ∞
lnK

e(p−ς)z 1√
2πβ

e
− (z+α)2

2β2 dz = e−(p−ς)α+
(p−ς)2β2

2

(
1−Φ(γ+

p−ς)
)

= e−(p−ς)α+
(p−ς)2β2

2 Φ(−γ+
p−ς)∫ ∞

lnK

ςe(p−ς)zΦ

(
−z + α

β

)
dz =

[
ς

p− ς
e(p−ς)zΦ

(
−z + α

β

)]∞
lnK

+
ς

p− ς

∫ ∞
lnK

e(p−ς)z
√

2πβ
e
− (z+α)2

2β2 dz

= − ς

p− ς
e(p−ς) lnKΦ(−γ+

0 )

+
ς

p− ς
e−(p−ς)α+

(p−ς)2β2
2

(
1−Φ(γ+

p−ς)
)

= − ς

p− ς
e(p−ς) lnKΦ(−γ+

0 )

+
ς

p− ς
e−(p−ς)α+

(p−ς)2β2
2 Φ(−γ+

p−ς)

Now, we sum all elements and we have the expected value for maximum distribution

(iv). By setting the parameter p = 0 we obtain also the expression (ii).

And the proof of lemma follows. �

C.2 Limit value of the early exercise boundary at ex-

piry

LEMMA C.2. Consider a mutually disjoint decomposition D = A∪∂A∪B of a topological

space D, where ∂A ≡ ∂B. Moreover, consider a set Z so that A ⊂ Z ⊂ A, where
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A ≡ A ∪ ∂A is the closure of set A, then

∂A = ∂Z.

PROOF of LEMMA C.2 Let a ∈ ∂A. For each ε > 0, there exists a neighborhoodOε(a)

so that ã ∈ A ∩ Oε(a) and b̃ ∈ B ∩ Oε(a). This implies, that a ∈ ∂Z, i.e. ∂A ⊂ ∂Z,

because ã ∈ Z, but b̃ 6∈ Z ⊂ A.

Since ∂A = A ∩ D\A and Z = A, we have ∂Z = Z ∩ D\Z ⊂ ∂A and the proof of

lemma follows. �

PROOF of THEOREM 5.1 Part 1). First, we show that

S(T, · ) ⊂ {xT ∈ D; fb(T, xT ) > 0}.

We have

1

T − t
Et
[∫ T

t

1S(u, xu)fb(u, xu) du

]
=

1

T − t
(Vam(t, xt)− Veu(t, xt)) ≥ 0,

for any t ∈ [0, T ). In the limit t → T , we can omit the conditioned expected value

operator Et and we obtain

1S(T, xT )fb(T, xT ) ≥ 0.

Let (T, yT ) ∈ S, then we obtain

fb(T, yT ) ≥ 0.

Now suppose that there exists (T, ỹT ) ∈ S such that fb(T, ỹT ) = 0. Notice that in

the stopping region S we have the identity Vam(t, x) = Ω(t, x) for any (t, x) ∈ S and,

consequently, ∂
∂t

(Vam(t, x)− Ω(t, x)) = 0. Then we have

0 =
∂

∂t
(Vam(t, ỹt)− Ω(t, ỹt))

∣∣∣
t=T

=
∂Veu
∂t

(t, ỹt)
∣∣∣
t=T
− fb(T, ỹT )− ∂Ω

∂t
(t, ỹt)

∣∣∣
t=T

=
∂

∂t
(Veu(t, ỹt)− Ω(t, ỹt))

∣∣∣
t=T

.

In the stopping region, exercising the derivative (American style) gives holder higher

pay-off than keeping it (European style), i.e.

Veu(t, y) < Ω(t, y) for (t, y) ∈ S,
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for t sufficiently close to expiry T . The value of difference between European style of

derivative and pay-off is increasing (from negative values to zero at maturity). The

derivative of this difference is positive in the stopping region, i.e.

∂

∂t
(Veu(t, ỹt)− Ω(t, ỹt))

∣∣∣
t=T

> 0.

This is a contradiction and the proof of first part follows.

Part 2). Now, we show that

{xT ∈ D; fb(T, xT ) > 0} ⊂ S(T, · ) = S(T, · ) ∪ X ∗T .

The function fb can be determined on stopping region by the following property

0 =
∂

∂t
(Vam(t, ỹt)− Ω(t, ỹt))

∣∣∣
t=T

=
∂Veu
∂t

(t, ỹt)
∣∣∣
t=T
− 1S(T, ỹT )fb(T, ỹT )− ∂Ω

∂t
(t, ỹt)

∣∣∣
t=T

.

To span the function on the whole domain D, we omit the function 1S(u, xu) and we

have

fb(T, ỹT ) =
∂

∂t
(Veu(t, ỹt)− Ω(t, ỹt))

∣∣∣
t=T

.

Notice that the function fb nullifies movements away from the pay-off function Ω.

On the continuous region C, the holder of a financial derivative does not want to

exercise it, because keeping this derivative yields better pay-off, i.e.

Veu(t, y) > Ω(t, y) for (t, y) ∈ C,

for t sufficiently close to expiry T . The value of difference between European style

of derivative and pay-off is decreasing (from positive values to zero at maturity).

The derivative of this difference is negative and so is the value of function fb in the

continuation region, i.e.

fb(T, ỹT ) =
∂

∂t
(Veu(t, ỹt)− Ω(t, ỹt))

∣∣∣
t=T

< 0.

The function fb can have positive values only on S(T, · ).
Using LEMMA C.2 we have (5.2) and the proof follows. �
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C.3 American style vanilla option

PROOF of THEOREM A.1 In the proof, we use THEOREM 4.1. According to (A.1) we

have the numeraire and pay-off function

N (t, xt) = ert

and

Ω(t, xt) = (c(St −X))+ ,

respectively. Moreover, we have the stochastic differential equation

dSt = (r − q)St dt+ σSt dW
Q
t = µ̃ dt− σ̃ dWQ

t .

On the stopping region S, function (4.13) becomes

fd(t, xt) = c(St −X)
∂ (e−rt)

∂t
+ c e−rtµ̃

∂ ((St −X))

∂S
+

1

2
c e−rtσ̃2∂

2 ((St −X))

∂S2

= −c re−rt(St −X) dt+ c e−rtµ̃

= −c e−rt (−rX + qSt) .

And the proof of theorem follows. �
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APPENDIX D

Numerical simulations of
the early exercise boundary
at expiry

In this chapter, we compare analytic values of the limit of early exercise boundary

(EEB) according to the method from CHAPTER 5 with values calculated by the PSOR

(projected successive over relaxation) method introduced in Elliot and Ockendom

(1982). For further details on the PSOR method see Kwok (2008) or Wilmott et al.

(1995). Values for plain vanilla options, Asian options and lookback options are

derived in other sources (e.g. Detemple 2006, Kwok 2008, Ševčovič 2008), thus we

present results only for the strategies considered in SECTION 5.2 (bullish, bearish,

strangle, straddle and condor spread).

D.1 PSOR method

The PSOR method approach to solving an American plain vanilla options type prob-

lem of valuation is based on transformation of the problem by introducing new vari-

ables y = lnS/X and τ = T − t (for problem with more strike prices Xi, we use their

arithmetic average instead of X). The value function V (t, S) is transformed into

u(τ, y) = eαy+βτV (T − τ,Xey),

where α = r−q
σ2 − 1

2
and β = r−q

2
+ (r−q)2

2σ2 + σ2

8
. Applying this transformation, the Black–

Scholes equation changes into the simplest form of a parabolic partial differential

equation
∂u

∂τ
=
σ2

2

∂2u

∂y2
.

Next, the time–space mesh is created within the range τ ∈ [0, T ] and y ∈ [−L,L],

where T is the expiration time and L is a sufficiently big constant to cover desired
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region of the transformed space variable. The precision of result depends on the

selection of constants m and n, that set up time and space steps ∆t = T
m

and ∆y = L
n
,

respectively. According to the definition of steps, there are m+1 time steps and 2n+1

space steps.

In each time step a linear problem is solved using an iterative successive over re-

laxation (SOR) method with parameter ω (and the tolerance εPSOR). The calculated

iterative results are projected to the transformed pay-off diagram. This is done by

taking the maximum of value of transformed pay-off and computed iteration of a

solution obtained by the SOR successive iteration (keeping the solution greater than

or equal to the pay-off).

The value of early exercise boundary is calculated as a boundary of set where the

solution is equal to pay-off function (with the tolerance εboundary), i.e.

S∗t = ∂ {S > 0|V (t, S) = Ω(t, S)} .

D.2 Comparison of analytic and numerical approach

In TABLES D.1-D.5, we present values of the limit of early exercise boundary at expiry

for bullish, bearish, strangle, straddle and condor spread calculated by the PSOR

method, respectively. The discretization parameters L, n, m and both tolerances

εPSOR and εboundary varies according to increase the precision of the result. In the

calculation, the SOR parameter is set to ω = 1.4 and we use the same value for both

tolerances in all cases, i.e. εPSOR = εboundary = ε. The financial parameters of a

contract, namely interest rate r, dividend rate q and strike price(s) Xi, varies to fulfill

conditions of examined cases. The volatility σ = 30% of the return of underlying

asset is held constant.

Our targeted value is at the expiry, i.e. τ = T − T = 0. However, we are not able

to calculate the value of early exercise boundary at this time by the PSOR method.

Thus we calculate the value at the origin (birth) of a contract with extremely low

expiration time, i.e. the expiration has to be chosen close to zero. In the calculation,

we use values from the set T ∈ {10−5, 10−6, 10−7, 10−8}.
Each numerical value tends to analytic value calculated by the formulae presented

in SECTION 5.2. The numerical results are improving with increasing density of the
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time–space mesh and decreasing tolerance (as expected). Approaching the highest

precision by the set up of parameters, the relative error is decreasing to the order

10−4 or lower.

In FIGURES D.1-D.5, we present pay-off functions of bullish, bearish, strangle,

straddle and condor spread, respectively. Moreover, an illustrative position of the

limit value(s) of the early exercise boundary is depicted for each set up of the finan-

cial parameters of a contract.
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TABLE D.1: Comparison of analytic and numerical values of the limit of early exer-

cise boundary for bullish spread.

r q X1 X2 T L n m ε S∗theor S∗calc error

2% 3% 1 2 10−5 1 1000 100 10−10 1 1.00548 0.548%

2% 3% 1 2 10−6 1 1000 100 10−10 1 1.00347 0.347%

2% 3% 1 2 10−7 1 1000 100 10−10 1 1.00247 0.247%

2% 3% 1 2 10−8 1 5000 150 10−12 1 1.00047 0.047%

2% 3% 1 2 10−8 1 10000 200 10−14 1 1.00037 0.037%

2% 3% 1 2 10−8 1 20000 250 10−14 1 1.00027 0.027%

3% 2% 1 2 10−5 1 1000 100 10−10 1.5 1.5 0.000%

3% 2% 1 2 10−6 1 1000 100 10−10 1.5 1.49551 −0.300%

3% 2% 1 2 10−7 1 1000 100 10−10 1.5 1.44986 −3.343%

3% 2% 1 2 10−8 1 5000 150 10−12 1.5 1.49521 −0.319%

3% 2% 1 2 10−8 1 10000 200 10−14 1.5 1.5 0.000%

3% 2% 1 2 10−8 1 20000 250 10−14 1.5 1.49985 −0.010%

5% 2% 1 2 10−5 1 1000 100 10−10 2 1.99864 −0.068%

5% 2% 1 2 10−6 1 1000 100 10−10 2 1.99864 −0.068%

5% 2% 1 2 10−7 1 1000 100 10−10 2 1.99864 −0.068%

5% 2% 1 2 10−8 1 5000 150 10−12 2 1.99984 −0.008%

5% 2% 1 2 10−8 1 10000 200 10−14 2 1.99984 −0.008%

5% 2% 1 2 10−8 1 20000 250 10−14 2 1.99994 −0.003%

S

X2-X1

W
bull

r£q

X1

S

X2-X1

W
bull

r>q

r

q
X1

S

X2-X1

W
bull

rpq

X2

FIGURE D.1: Limit values of the early exercise boundary at expiry for bullish spread

with r ≤ q (left), r > q (middle) and r � q (right).
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TABLE D.2: Comparison of analytic and numerical values of the limit of early exer-

cise boundary for bearish spread.

r q X1 X2 T L n m ε S∗theor S∗calc error

2% 3% 1 2 10−5 1 1000 100 10−10 1.33333 1.33304 −0.022%

2% 3% 1 2 10−6 1 1000 100 10−10 1.33333 1.33571 0.178%

2% 3% 1 2 10−7 1 1000 100 10−10 1.33333 1.36542 2.407%

2% 3% 1 2 10−8 1 5000 150 10−12 1.33333 1.33651 0.239%

2% 3% 1 2 10−8 1 10000 200 10−14 1.33333 1.33331 −0.002%

2% 3% 1 2 10−8 1 20000 250 10−14 1.33333 1.33331 −0.002%

3% 2% 1 2 10−5 1 1000 100 10−10 2 1.98867 −0.567%

3% 2% 1 2 10−6 1 1000 100 10−10 2 1.99265 −0.368%

3% 2% 1 2 10−7 1 1000 100 10−10 2 1.99464 −0.268%

3% 2% 1 2 10−8 1 5000 150 10−12 2 1.99904 −0.048%

3% 2% 1 2 10−8 1 10000 200 10−14 2 1.99924 −0.038%

3% 2% 1 2 10−8 1 20000 250 10−14 2 1.99944 −0.028%

2% 5% 1 2 10−5 1 1000 100 10−10 1 1.00147 0.147%

2% 5% 1 2 10−6 1 1000 100 10−10 1 1.00147 0.147%

2% 5% 1 2 10−7 1 1000 100 10−10 1 1.00047 0.047%

2% 5% 1 2 10−8 1 5000 150 10−12 1 1.00027 0.027%

2% 5% 1 2 10−8 1 10000 200 10−14 1 1.00017 0.017%

2% 5% 1 2 10−8 1 20000 250 10−14 1 1.00007 0.007%

S

X2-X1

W
bear

r<q

r

q
X2

S

X2-X1

W
bear

r³q

X2

S

X2-X1

W
bear

r`q

X1

FIGURE D.2: Limit values of the early exercise boundary at expiry for bearish spread

with r < q (left), r ≥ q (middle) and r � q (right).
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TABLE D.3: Comparison of analytic and numerical values of the limit of early exer-

cise boundary for strangle spread.

r q X1 X2 T L n m ε S∗theor S∗calc error

3% 2% 1 2 10−5 1 1000 100 10−10 1

3

0.99448

3.00256

−0.552%

0.085%

3% 2% 1 2 10−6 1 1000 100 10−10 1

3

0.99647

2.99656

−0.353%

−0.115%

3% 2% 1 2 10−7 1 1000 100 10−10 1

3

0.99747

2.95195

−0.253%

−1.602%

3% 2% 1 2 10−8 1 5000 150 10−12 1

3

0.99947

2.99536

−0.053%

−0.155%

3% 2% 1 2 10−8 1 10000 200 10−14 1

3

0.99967

2.99986

−0.033%

−0.005%

3% 2% 1 2 10−8 1 20000 250 10−14 1

3

0.99977

2.99986

−0.023%

−0.005%

2% 3% 1 2 10−5 1 1000 100 10−10 0.66667

2

0.66662

2.01066

−0.007%

0.533%

2% 3% 1 2 10−6 1 1000 100 10−10 0.66667

2

0.66996

2.00665

0.494%

0.332%

2% 3% 1 2 10−7 1 1000 100 10−10 0.66667

2

0.6994

2.00464

4.910%

0.232%

2% 3% 1 2 10−8 1 5000 150 10−12 0.66667

2

0.66996

2.00104

0.494%

0.052%

2% 3% 1 2 10−8 1 10000 200 10−14 0.66667

2

0.66669

2.00064

0.003%

0.032%

2% 3% 1 2 10−8 1 20000 250 10−14 0.66667

2

0.66669

2.00054

0.003%

0.027%

S

X1

W
strangle

r>q

X1
r

q
X2

S

X1

W
strangle

rbq

X2
r

q
X1

FIGURE D.3: Limit values of the early exercise boundary at expiry for strangle spread

with r > q (left) and r ≤ q (right).
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TABLE D.4: Comparison of analytic and numerical values of the limit of early exer-

cise boundary for straddle spread.

r q X T L n m ε S∗theor S∗calc error

3% 2% 1.5 10−5 1 1000 100 10−10 1.5

2.25

1.49252

2.2512

−0.499%

0.054%

3% 2% 1.5 10−6 1 1000 100 10−10 1.5

2.25

1.49551

2.24671

−0.300%

−0.146%

3% 2% 1.5 10−7 1 1000 100 10−10 1.5

2.25

1.497

2.20002

−0.200%

−2.221%

3% 2% 1.5 10−8 1 5000 150 10−12 1.5

2.25

1.4991

2.24536

−0.060%

−0.206%

3% 2% 1.5 10−8 1 10000 200 10−14 1.5

2.25

1.4994

2.25008

−0.040%

0.003%

3% 2% 1.5 10−8 1 20000 250 10−14 1.5

2.25

1.49963

2.24997

−0.025%

−0.002%

2% 3% 1.5 10−5 1 1000 100 10−10 1

1.5

0.99947

1.50752

−0.053%

0.501%

2% 3% 1.5 10−6 1 1000 100 10−10 1

1.5

1.00247

1.50451

0.247%

0.300%

2% 3% 1.5 10−7 1 1000 100 10−10 1

1.5

1.033

1.503

3.300%

0.200%

2% 3% 1.5 10−8 1 5000 150 10−12 1

1.5

1.00327

1.5009

0.327%

0.060%

2% 3% 1.5 10−8 1 10000 200 10−14 1

1.5

0.99997

1.5006

−0.003%

0.040%

2% 3% 1.5 10−8 1 20000 250 10−14 1

1.5

1.00007

1.50038

0.007%

0.025%

S

X

W
straddle

r>q

X r

q
X

S

X

W
straddle

rbq

Xr

q
X

FIGURE D.4: Limit values of the early exercise boundary at expiry for straddle spread

with r > q (left) and r ≤ q (right).
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TABLE D.5: Comparison of analytic and numerical values of the limit of early exer-

cise boundary for condor spread.

r q X1 X2 X3 X4 T L n m ε S∗theor S∗calc error

3% 2% 1 3 4 5 10−5 1.5 1000 100 10−10 1.5 1.50104 0.069%

3% 2% 1 3 4 5 10−6 1.5 1000 100 10−10 1.5 1.49654 −0.231%

3% 2% 1 3 4 5 10−7 1.5 1000 100 10−10 1.5 1.45013 −3.324%

3% 2% 1 3 4 5 10−8 1.5 5000 150 10−12 1.5 1.49519 −0.320%

3% 2% 1 3 4 5 10−8 1.5 10000 200 10−14 1.5 1.50013 0.009%

3% 2% 1 3 4 5 10−8 1.5 20000 250 10−14 1.5 1.50002 0.001%

2% 3% 1 3 4 5 10−5 1.5 1000 100 10−10

1

4

5

1.00567

4.00945

5.03622

0.567%

0.236%

0.724%

2% 3% 1 3 4 5 10−6 1.5 1000 100 10−10

1

4

5

1.00416

4.00945

5.02113

0.416%

0.236%

0.423%

2% 3% 1 3 4 5 10−7 1.5 1000 100 10−10

1

4

5

1.00266

4.02754

5.02113

0.266%

0.688%

0.423%

2% 3% 1 3 4 5 10−8 1.5 5000 150 10−12

1

4

5

1.00086

4.00224

5.00309

0.086%

0.056%

0.062%

2% 3% 1 3 4 5 10−8 1.5 10000 200 10−14

1

4

5

1.00056

4.00104

5.00234

0.056%

0.026%

0.047%

2% 3% 1 3 4 5 10−8 1.5 20000 250 10−14

1

4

5

1.00033

4.00074

5.00159

0.033%

0.019%

0.032%

3% 2% 1 2 3 4.5 10−5 1.5 1000 100 10−10 1.5

4.5

1.50017

4.47086

0.012%

−0.648%

3% 2% 1 2 3 4.5 10−6 1.5 1000 100 10−10 1.5

4.5

1.49568

4.48429

−0.288%

−0.349%

3% 2% 1 2 3 4.5 10−7 1.5 1000 100 10−10 1.5

4.5

0.99609

4.48429

−33.594%

−0.349%

3% 2% 1 2 3 4.5 10−8 1.5 5000 150 10−13 1.5

4.5

1.49972

4.49642

−0.018%

−0.080%

3% 2% 1 2 3 4.5 10−8 1.5 10000 200 10−14 1.5

4.5

1.50017

4.49777

0.012%

−0.050%

3% 2% 1 2 3 4.5 10−8 1.5 20000 250 10−14 1.5

4.5

1.50006

4.49844

0.004%

−0.035%
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S

X2-X1

-X4+X3+X2-X1

W
condor

Case 1

r

q
X1

S

X2-X1

-X4+X3+X2-X1

W
condor

Case 2

X1 X3 X4

S

X2-X1

-X4+X3+X2-X1

W
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X4
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q
X1

FIGURE D.5: Limit values of the early exercise boundary at expiry for condor spread

with parameters satisfying −X4 +X3 +X2−X1 > 0 and r (X3 +X2 −X1) ≥ qX4

(above left), −X4 +X3 +X2−X1 > 0 and r (X3 +X2 −X1) < qX4 (above right)

and −X4 +X3 +X2 −X1 ≤ 0 (below).
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List of symbols

We list only the most often used and most important symbols. Other symbols are

defined and/or explained in the CHAPTER 1 or at the place of their first usage.

( · )+ – non-negative part of the value/ function.

∂A – boundary of the set A.

∞, −∞, ±∞ – index for a maximum, a minimum and an extreme value, respectively.

1I( · ) – indicator function, equals 1 on set I and 0 otherwise.

A – limit at the expiry for Asian option with arithmetic averaging (SECTION 6.2).

A,At – average process, value of average process at time t, respectively.

a – index for an arithmetic average.

a( · ) – weight kernel function of weighted average.

a( · , · ), b( · , · ) – support functions defining the type of averaging (CHAPTER 8).

α, β – coefficients of a log-normal distribution.

Bt – value of a bond (risk-free asset) (CHAPTER 4 and 7).

Bt – Brownian motion (CHAPTER 1).

Ceu – value of a European plain vanilla call option.

C, Ct – continuation region, continuation region at time t, respectively.

c – equals 1 for a call option and −1 for a put option.
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D – domain of a function.

E – expected value.

Et, E( · |Ft) – conditioned expected value according to the information at time t.

fb – American style bonus function.

G – limit at the expiry for Asian option with geometric averaging (CHAPTER 6).

g – index for a geometric average.

H – (amount of) cash.

I – index for an integrated function (SECTION 6.2 and A.3).

L – limit at the expiry for lookback option (SECTION 6.2).

Λ – support parameter; Λ = r − q + σ2

2
(SECTION 6.2 and A.3).

λ – parameter of weighting exponential kernel function.

M,Mt – maximum process, value of a maximum process at time t, respectively.

m,mt – minimum process, value of a minimum process at time t, respectively.

µ – drift of a stochastic process.

Nt – numeraire.

Ω – pay-off function (begins in CHAPTER 2).

P – limit at the expiry for Asian option with general averaging (SECTION 6.2).

Peu – value of a European plain vanilla put option.

P,Q,Q,R – probability measures.

p – parameter of the class of general averages.
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Φ( · ) – standard normal cumulative distribution function (CDF).

Φ( · ) – standard normal probability density function (PDF).

PP – purchase price of a financial derivative.

q – rate of benefit, dividend rate, −q is cost-of-carry.

r – risk-free interest rate.

ρij – correlation coefficient of ith and jth element.

%, %τ – early exercise boundary and value of the early exercise boundary as a function

of time to expiry τ , respectively.

S,St – stopping region, stopping region at time t, respectively.

S, St – underlying asset, spot value of an underlying asset at time t, respectively.

S∗, S∗t – early exercise boundary, value of the early exercise boundary at time t, re-

spectively.

Σ – covariance matrix.

ς – support parameter; ς =
r−q+σ2

2
σ2

2

.

σ – volatility of a stochastic process.

σ2 – variance of a stochastic process.

T – expiration time.

T ∗ – optimal stopping time.

t – time.

τ – time to expiry; τ = T − t.

Ṽ , Ṽt – transformed value of a derivative, transformed value of a derivative at time

t, respectively.
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V, Vt – value of a derivative, value of a derivative at time t, respectively.

v, e – value of a European derivative and an American bonus, respectively.

Wt – Wiener process.

wa – index for a weighted arithmetic average.

X ∗T – set of limits of early exercise boundary at the expiry.

X,Xi – strike price (CHAPTER 2, 3, 5, APPENDIX A, B, D and SECTION C.3).

x∗, x∗t – early exercise boundary and value of the early exercise boundary of trans-

formed space variable x = A
S

, respectively.

x – transformed space variable x = A
S

.

X, Y, Z – random variables, (super/sub)martingales or stochastic processes.
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