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1 Abstracts

English

The thesis covers different approaches used in current modern computational finance. Analytical and
numerical approximative methods are studied and discussed. Effective algorithms for solving multi-factor
models for pricing of financial derivatives have been developed.

The first part of the thesis is dealing with modeling of aspects and focuses on analytical approximations
in short rate models for bond pricing. We deal with a two-factor convergence model with non-constant
volatility which is given by two stochastic differential equations (SDEs). Convergence model describes the
evolution of interest rate in connection with the adoption of the Euro currency. From the SDE it is possible
to derive the PDE for bond price. The solution of the PDE for bond price is known in closed form only in
special cases, e.g. Vasicek or CIR model with zero correlation. In other cases we derived the approximation
of the solution based on the idea of substitution of constant volatilities, in solution of Vasicek, by non-
constant volatilities. To improve the quality in fitting exact yield curves by their estimates, we proposed a
few changes in models. The first one is based on estimating the short rate from the term structures in the
Vasicek model. We consider the short rate in the European model for unobservable variable and we estimate
it together with other model parameters. The second way to improve a model is to define the European
short rate as a sum of two unobservable factors. In this way, we obtain a three-factor convergence model.
We derived the accuracy for these approximations, proposed calibration algorithms and we tested them on
simulated and real market data, as well.

The second part of the thesis focuses on the numerical methods. Firstly we study Fichera theory which
describes proper treatment of defining the boundary condition. It is useful for partial differential equa-
tion which degenerates on the boundary. The derivation of the Fichera function for short rate models
is presented. The core of this part is based on Alternating direction explicit methods (ADE) which be-
long to not well studied finite difference methods from 60s years of the 20th century. There is not a lot
of literature regarding this topic. We provide numerical analysis, studying stability and consistency for
convection-diffusion-reactions equations in the one-dimensional case. We implement ADE methods for
two-dimensional call option and three-dimensional spread option model. Extensions for higher dimen-
sional Black-Scholes models are suggested. We end up this part of the thesis with an alternative numerical
approach called Trefftz methods which belong to Flexible Local Approximation MEthods (FLAME). We
briefly outline the usage in computational finance.

Slovak

Práca popisuje rôzne prístupy používané v súčasnom modernom oceňovaní finančných derivátov. Za-
oberáme sa analytickými a numerickými aproximačnými metódami. Vyvinuli sme efektívne algoritmy
riešenia viacfaktorových modelov oceňovania finančných derivátov.

Prvá čast’ práce sa zaoberá modelovaním rôznych aspektov a je zameraná na analytické aproximácie cien
dlhopisov v modeloch krátkodobých úrokových mier. Zaoberáme sa dvojfaktorovým konvergenčným mod-
elom s nekonštantnom volatilitou, ktorý je daný dvomi stochastickými diferenciálnymi rovnicami. Kon-
vergenčný model opisuje vývoj úrokovej miery v súvislosti s prijatím eura. Zo stochastickej diferenciálnej
rovnice je možné odvodit’ parciálnu diferenciálnu rovnicu pre cenu dlhopisu. Riešenie parciálnej diferen-
ciálnej rovnice pre cenu dlhopisu v uzavretej forme je známe iba v špeciálnych prípadoch, napr. Vašíčkov
model alebo CIR model s nulovou koreláciou. V ostatných prípadoch, sme odvodili aproximáciu riešenia
založenú na myšlienke substitúcie konštantných volatilít, v riešení Vašíčkovho modelu, nekonštantnými
volatilitami. Z dôvodu zlepšenia kvality zhody odhadnutých a presných výnosových kriviek sme navrhli
niekol’ko zmien v modeloch. Prvá z nich je založená na odhade výnosových kriviek z časovej štruktúry
úrokových mier vo Vašíčkovom modeli. Krátkodobú úrokovú mieru považujeme za nepozorovatel’nú pre-
mennú a odhadujeme ju spolu s ostatnými parametrami modelu. Druhý spôsob ako vylepšit’ model je
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definovanie európskej krátkodobej úrokovej miery ako súčtu dvoch nepozorovatel’ných faktorov. Týmto
spôsobom získavame trojfaktorový konvergenčný model. Odvodili sme presnost’ aproximácie, navrhli sme
postup kalibrácie a testovali sme ho na simulovaných a reálnych trhových dátach.

Druhá čast’ práce sa zameriava na numerické metódy. Najskôr študujeme Ficherovu teóriu, ktorá popisuje
správne zaobchádzanie a definovanie okrajových podmienok pre parciálne diferenciálne rovnice, ktoré
degenerujú na hranici. V práci uvádzame odvodenie Ficherových podmienok pre modely krátkodobých
úrokových mier. Jadrom tejto časti sú ADE (alternating direction explicit) metódy zo 60. rokov 20.
storočia, ku ktorým sa nenachádza vel’a literatúry. V práci je obsiahnutá numerická analýza, štúdium sta-
bility a konzistencie pre konvekčno-difúzno-reakčnú rovnicu v jednorozmernom prípade. ADE metódy
implementujeme pre dvojrozmerné call opcie a trojrozmerné spread opcie. Navrhujeme rozšírenia na
viacrozmerné prípady Black-Scholesovho modelu. Túto čast’ práce ukončujeme alternatívnou metódou
nazývanou Trefftz, ktorá patrí medzi Flexible Local Approximation MEthods (FLAME).

German
Die Doktorarbeit beinhaltet verschiedene Methoden, die in der heutigen modernen Finanzmathematik
eingesetzt werden. Es werden analytische und numerische Approximationsmethoden analysiert und disku-
tiert, sowie effektive Algorithmen für Multifaktormodelle zur Bewertung von Finanzderivaten entwickelt.

Der erste Teil der Doktorarbeit behandelt Modellierungsaspekte und ist auf die analytische Approximation
von Zinssatzmodellen im Anleihenmarkt fokussiert. Wir behandeln ein Zweifaktorkonvergenzmodell mit
nichtkonstanter Volatilität, das durch zwei stochastische Differentialgleichungen (SDG) gegeben ist. Das
Modell beschreibt die Entwicklung von Zinsraten in Verbindung mit dem Eurowechselkurs. Ausgehend
von der SDG ist es möglich eine partielle Differentialgleichung (PDG) für den Anleihekurs herzuleiten.
Eine Angabe der Lösung der PDG ist nur in Einzelfällen in geschlossener Form möglich, z.B. im Vasicek
or CIR Modell mit Korrelation null. In anderen Fällen haben wir eine Approximation an die Lösung des
CIR Modells durch Ersetzen der konstanten Volatilität duch eine flexible Volatilität erhalten. Um eine
höhere Genauigkeit bei der Anpassung an die reale Zinskurve zu erhalten, haben wir einige Änderungen
innerhalb des Modells vorgeschlagen. Die erste basiert dabei auf der Schätzung des Momentanzinses durch
die Zinsstrukturkurse innerhalb des Vasicek-Modells. Wir betrachten den Momentanzins im europäischen
Modell für eine unbeobachtbare Variable und schätzen diese zusammen mit den anderen Modellparame-
tern. Als zweite Verbesserungsmöglichkeit des Modells betrachten wir den europäischen Momentanzins
als Summe von zwei unbeobachtbaren Prozessen. Auf diesem Wege erhalten wir ein Dreifaktorkonver-
genzmodell. Wir zeigen die Genauigkeit dieser Approximationen, schlagen Kalibirierungsalgorithmen vor
und testen die Modelle an simulierten, sowie realen Marktdaten.

Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit numerischen Methoden. Zuerst erläutern
wir die Fichera-Theorie, die eine systematische Untersuchung von Randbedingungen erlaubt. Sie ist bei
partiellen Differentialgleichungen, die am Rand degenerieren, von großem Nutzen. Es wird die Fichera-
Funktion für Zinssatzmodelle hergeleitet. Den Kern der Doktorarbeit bilden Alternating Direction Explicit
(ADE) Verfahren, aus den 60er des 20. Jahrhunderts die zu den nicht ausgiebig untersuchten Verfahren
zählen. Daher existiert heute nur sehr wenig Literatur zu diesem Thema. Wir führen eine numerische
Analyse durch und untersuchen die Stabilitäts- und Konsistenzeigenschaften für Konvektions-Diffusions-
Reaktions Gleichungen in einer Raumdimension. Wir implementieren ADE Methoden für zweidimension-
ale Call-Optionen und dreidimensionale Spreadoptionsmodelle. Zusätzlich werden Erweiterungen für das
höherdimensionale Black-Scholes-Modell vorgeschlagen. Wir beenden diesen Abschnitt der Doktorarbeit
mit einer alternativen numerischen Methode, der sogenannten Trefftz-Methode, die zu der Klasse der Flex-
ible Local Approximation MEthods (FLAME) gehört. Wir erläutern kurz ihre Nutzung im Rahmen der
Finanzmathematik.
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2 Aims of the dissertation thesis

The goal of the thesis is to provide a wide scope of techniques used in computational finance.
On the one hand we see importance of the analytical techniques, on the other hand we tackle
with numerical schemes. Another goal is to provide models and their solutions which are easy
implementable. The better model, the better description of the reality. But the more complex
model, the more troubles. Extension to higher dimensional (or nonlinear models) is necessary but
or goal is to keep in mind the simpler model, the better. We do not want to deal with calibration
and solving too complex models, because something it is even not possible. The suggested model
or scheme must be tractable. In recent years we are witnesses of the negative interest rates in the
whole European union. This fact must be considered and included to the all the models created
in the way that they are capable to distinguish and cover all the situations. If the case is too
complicated, we should provide an implementation in the way where it is possible and easy to
provide parallelization of the algorithm. Computational finance is applied science but it requires
knowledge from various fields in mathematics: SDEs, PDEs, analytical techniques, numerical
analysis, optimization, programming and everything with having some knowledges from pricing
of financial derivatives, such as options and bonds. Goal of this thesis is to cover all these subjects
and suggest the effective methods for the given task.

To summarize the aim of the dissertation thesis we say we deal with the mathematical analysis of
the multifactor models for pricing of financial derivatives which includes:

• short rate models for bond pricing

– convergence model of an interest rate

– choice of a suitable model for the European and the domestic interest rate

– a two-factor short rate model and its extension to a three-factor model

– suggestion of the analytical approximation

– bond pricing

– implementation of a simulation analysis

– calibration of these models

• numerical solutions of the second order parabolic PDE

– Fichera theory (boundary conditions)

– finite difference method, or some other alternative approaches

– Alternating Direction Explicit (ADE) method

– numerical analysis of ADE schemes incluuding stability and consistency analysis

• considering one-dimensional and higher dimensional models

– suggestion of an effective algorithms for dealing with these models

3 Structure of the thesis and included techniques

In the thesis we deal with one-dimensional (or in other terminology one-factor), two-dimensional
and three-dimensional models and we outline extensions to higher dimensional cases. Sorting
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according to dimensionality is displayed in the following diagram which models and analytical
and numerical approximative methods are included in the thesis.

The chapters are mostly based on the published results and each chapter is accesible in any order
allowing a swift reading to readers. For reader interested in numerical analysis we refer to the
second part of the thesis, for reader interested more in analytical techniques we recommend to
read the first part of the thesis. The thesis does not have extended theoretical part but it is a
collection of own research results.

In the following text we explain which kind of models are studied in the thesis. Dynamics of the
stock price, interest rate, volatility are described by SDEs which can be solved using analytical
methods or numerical simulations. From SDE we can derive the corresponding partial differential
equation (PDE) which describes the price of the bond, or option. In our work we deal with
the analytical and numerical PDE approaches. Interest rate modeling using short rate models,
analytical approximations for bond pricing and its accuracy are discussed in detail in the first part
of the thesis. Second part of the thesis is focused on the efficient numerical solutions of higher
dimensional option pricing problems which are described by a parabolic PDE, also called also
Black-Scholes (BS) model.

Models which are studied in this work, are described by the SDE:

dXt = µ(Xt , t)dt +σ(Xt , t)dW,
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where W is Wiener process. Function µ(Xt , t) is the trend or drift of the equation and σ(Xt , t)
describes fluctuations around the drift. A solution of this SDE is a stochastic process Xt . For scalar
Xt we have one-factor models, for vector valued Xt we deal with multi-factor models. Dynamics
of the evolution of the process Xt is described by SDE, where Xt can represent an underlying
asset, usually a stock price, but it can also be interest rate or volatility. In case Xt is a short rate,
derived PDE represents equation for pricing of bonds. In case Xt is a stock price, derived PDE is
an equation for option pricing, called also Black-Scholes model. If additionally there is given a
stochastic volatility, we get the Heston model; and if there is given also a stochastic interest rate,
it leads to the Heston-Hull-White model.

4 Modeling of the interest rate in short rate models, bond pricing
and its analytical approximations

A discount bond is a security which pays its holder a unit amount of money at specified time T
(called maturity). P(t,T ) is the price of a discount bond with maturity T at time t. It defines the
corresponding interest rate R(t,T ) by the formula

P(t,T ) = e−R(t,T )(T−t), i.e. R(t,T ) =− lnP(t,T )
T − t

.

A zero-coupon yield curve, also called term structure of interest rates, is then formed by interest
rates with different maturities. Short rate (or instantaneous interest rate) is the interest rate for in-
finitesimally short time. It can be seen as the beginning of the yield curve: r(t) = limt→T− R(t,T ).
For a more detailed introduction to short rate modeling see e.g. [2], [15].

Short rate models are formulated by stochastic differential equation (SDE) for a variable X :

dXt = µ(Xt , t)dt +σ(Xt , t)dW

which defines the short rate r = r(Xt). Here W is a Wiener process, function µ(Xt , t) is the
trend or drift part and the volatility σ(Xt , t) represents fluctuations around the drift. Choosing
different drift µ(Xt , t) and volatility σ(Xt , t) leads to various one-factor models (where Xt is a
scalar) and multi-factor models (where Xt is a vector). In short rate models, bond prices and term
structures of interest rates are determined by the parameters of the model and the current level of
the instantaneous interest rate (so called short rate).

4.1 Convergence model of CKLS type

A convergence model of interest rates explains the evolution of the domestic short rate in connec-
tion with the European rate. The first model of this kind was proposed by Corzo and Schwartz
in 2000 and its generalizations were studied later. Its dynamics is described by two stochastic
differential equations - the domestic and the European short rate. We consider a model in which
the risk-neutral drift of the European short rate re is a linear function of re, risk-neutral drift of
the domestic short rate rd is a linear function of rd and re and volatilities take the form σerγe

e and
σdrγd

d , i.e.
drd = (a1 +a2rd +a3re)dt +σdrγd

d dWd ,

dre = (b1 +b2re)dt +σerγe
e dWe,

(1)
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where Cov[dWd ,dWe] = ρdt. Parameters a1,a2,a3,b1,b2 ∈R,σd ,σe > 0,γd ,γe ≥ 0 are given con-
stants and ρ ∈ (−1,1) is a constant correlation between the increments of Wiener processes dWd
and dWe. We will refer to this model as two-factor convergence model of Chan-Karolyi-Longstaff-
Sanders (CKLS) type. The domestic bond price P(rd ,re,τ) with the maturity τ satisfies the PDE:

−∂P
∂τ

+(a1 +a2rd +a3re)
∂P
∂ rd

+(b1 +b2re)
∂P
∂ re

+
σ2

d r2γd
d

2
∂ 2P
∂ r2

d
+

σ2
e r2γe

e

2
∂ 2P
∂ r2

e
+ρσdrγd

d σerγe
e

∂ 2P
∂ rd∂ re

− rdP = 0,
(2)

for rd ,re > 0,τ ∈ (0,T ), with the initial condition P(rd ,re,0) = 1 for rd ,re > 0. Unlike for Vasicek
and uncorrelated CIR model, in this case it is not possible to find solution in the separable form.
For this reason, we are seeking for an approximative solution (2).

In our paper paper [7] substituting its constant volatilities by instanteneous volatilities we obtain
an approximation of the solution for a general model. We compute the order of accuracy for this
approximation, propose an algorithm for calibration of the model and we test it on the simulated
and real market data. On the one hand, suggested approximation and calibration algorithm provide
reasonably accurate results, which was proved, but on the other hand, by comparing accuracy of
estimated and exact yield curves we did not achieve wanted results. Improvements are suggested
in the following subsections.

4.2 Estimating the short rate from the term structures

As an improvement for modeling of the interest rate we suggest the idea of Estimating the short
rate from the term structures in the Vasicek model in our paper [13]. The idea of this approach is
to use observable market term structures to calibrate the model. We use the weighted mean square
error where a difference between observed yields and computed yields, using Vasicek model, is
minimized. The calibration procedure was proposed and the application on simulated and real
market data was performed. We tried to find out the relation between the estimated short rate and
market overnight. It is interesting to deal with if it is really necessary to consider the short rate for
the unobservable variable and estimate it together with other model parameters. We find out that
the estimated short rate is robust when the set of maturities of the interest rate is being changed.

4.3 Short rate as a sum of CKLS-type processes

As an another improvement for modeling of the European interest rate we suggest the short rate
model of interest rates, in which the short rate is defined as a sum of two stochastic factors dis-
cussed in our paper [5]. Each of these factors is modeled by a stochastic differential equation with
a linear drift and the volatility proportional to a power of the factor. We show calibration methods
which - under the assumption of constant volatilities – allow us to estimate the term structure of
interest rate as well as the unobserved short rate, although we are not able to recover all the param-
eters. We apply it to real data and show that it can provide a better fit compared to a one-factor
model. A simple simulated example suggests that the method can be also applied to estimate
the short rate even if the volatilities have a general form. Therefore we propose an analytical
approximation formula for bond prices in such a model and derive the order of its accuracy.
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4.4 A three-factor convergence model of interest rates

Combining two approaches from [7] and [5] we suggested a three-factor convergence model of
interest rates [21]. In all the previous models, the European rates are modeled by a one-factor
model. This, however, does not provide a satisfactory fit to the market data. A better fit can be
obtained using the model, where the short rate is a sum of two unobservable factors. We model
European rate by 2 SDEs and the domestic interest rate by 1 stochastic differential equation.
Therefore, we build the convergence model for the domestic rates based on this evolution of the
European market. We propose the following model for the joint dynamics of the European re and
domestic rd instantaneous interest rate. The European rate re = r1 + r2 is modeled as the sum of
the two mean-reverting factors r1 and r2, while the domestic rate rd reverts to the European rate.
Volatilities of the processes are assumed to have a general CKLS form. Hence

dr1 = κ1(θ1− r1)dt +σ1rγ1
1 dw1

dr2 = κ2(θ2− r2)dt +σ2rγ2
2 dw2

drd = κd((r1 + r2)− rd)dt +σdrγd
d dwd

with Cor(dw) = Rdt, where dw = (dw1,dw2,dwd)
T is a vector of Wiener processes with corre-

lation matrix R, whose elements (i.e., correlations between ri and r j) we denote by ρi j. Figure
1 and Figure 2 show the evolution of the factors and the interest rates for the following set of
parameters: κ1 = 3,θ1 = 0.02,σ1 = 0.05,γ1 = 0.5,κ2 = 10,θ2 = 0.01;σ2 = 0.05,γ2 = 0.5,κd =
1,σd = 0.02,γd = 0.5,ρi j = 0 for all i, j.

Figure 1: Simulation of the factors r1,r2 (left) and the European short rate re = r1 + r2 (right).

Figure 2: Simulation of the European short rate re and the domestic short rate rd .

We study the prices of the domestic bonds in this model which are given by the solution of
the PDEs. In general, it does not have an explicit solution. Hence we suggest an analytical
approximative formula and derive the order of its accuracy in a particular case.
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5 Numerical methods

We focus on the Alternating Direction Explicit (ADE) methods, as an efficient scheme, which can
be used for a wide range of financial problems. Designing the numerical scheme, we do not only
need to take care for the choice of a mesh, but have to choose the boundary conditions carefully,
as well. Because of the issue with the boundary conditions we have studied the Fichera theory,
which helped us to distinguish how to define boundary conditions for equations degenerating on
the boundary. According to the sign of the Fichera function, we chose which kind of boundary
conditions need to be supplied. The second issue about boundary condition is the influence of the
stability of the numerical scheme. Since the matrix approach also includes boundary conditions,
we prefer to use it for the stability analysis instead of the von Neumann stability analysis.

5.1 Results of application of Fichera theory in financial applications

Choosing set of parameters κ = 0.5, θ = 0.05, σ = 0.1, γ = 0.5 in CIR model
dr = κ (θ − r)dt+σrγdWt , we get at r = 0 a positive Fichera function b = κθ−σ2/2 = 0.02 > 0.
This is equivalent with the statement that the Feller condition is satisfied. According to the Fichera
theory, as soon as it is outflow part of boundary, we must not supply BCs. In this example in Fig. 3
and Fig. 5 and Table 1, we intentionally supplied BCs in an ’outflow’ situation when we should
not in order to illustrate what might happen if one disregards the Fichera theory. In the evolution
of the solution we can observe a peak and oscillations close to the boundary. In Fig. 5 we plot the
relative error, which is reported also in the Table 1.
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Figure 3: Numerical solution, Dirichlet BC
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Figure 4: Numerical solution, without BC
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Figure 5: Relative error, case with Dirichlet BC
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Figure 6: Relative error, case without BC

In our example we used the same parameters, but with or without defining Dirichlet BC. Here,
“without BC” means that we used for the numerical BC the limit of the interior PDE for r→ 0.
The corresponding results are shown on the right hand side, in Fig. 4, Fig. 6 and the relative errors
are recorded in Table 1. For the numerical solution we used the implicit finite difference method
from [12]. The reference solution is obtained either as the analytic solution for the CIR model
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Table 1: Relative error, case with BC

time[days] relative error
1 0.0147
40 0.0079
80 0.0029
120 (maturity) 0

Table 2: Relative error, case without BC

time[days] relative error
1 0.0039
40 0.0029
80 0.0015
120 (maturity) 0

(γ = 0.5, if Feller condition is satisfied), c.f. [2] or in all other cases using a very fine resolution
(and suitable BCs). The conditions at outflow boundaries are obtained by studying the limiting
behavior of the interior PDE or simply by horizontal extrapolation of appropriate order. Recall
that negative values of the Fichera function (i.e. an inflow boundary) correspond to not satisfied
Feller condition and may destroy the uniqueness of solutions to the PDE. Details about deriving
Fichera function for one, two factor short rate models can be found in our proceedings paper [4].

5.2 Explanation of Alternating direction explicit methods

ADE schemes were proposed by Saul’ev [20] in 1957, later developed by Larkin [16], Bakarat
and Clark [1] in 1964-66. More recently, these schemes have received some attention by Duffy
[11], [10] 2013 and Leung and Osher [17] 2005 who have studied and applied these schemes in
both financial modeling and other applications. Numerical analysis of ADE schemes for one di-
mensional convection-diffusion-reaction equation can be found in our paper [3] and in [17]. Some
advantages of the ADE methods are that they can be implemented in a parallel framework and are
very fast due to their explicitness; for a complete survey on the advantages and the motivation to
use them in a wide range of problems we refer the reader to [9], [10].

We have considered ADE method, that strongly uses boundary data in the solution algorithm
and hence is very sensible to incorrect treatment of boundary conditions. We have implemented
ADE scheme for solving Black-Scholes equation. By treating the nonlinearity explicitly, it can
be applied for nonlinear BS equations, as well. ADE scheme consists from two steps (sweeps).
In the first step upward sweeping is used and in the second step downward sweeping is used and
there are combined after each time step. To our knowledge, the ADE scheme has not been applied
to nonlinear PDEs before. It can compete to the Crank-Nicolson scheme, Alternating Direction
Implicit (ADI) and LOD splitting method. The sweeping procedure is done from one boundary
to another and vice versa.

Figure 7: Upward sweep Figure 8: Downward sweep
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Figures 7 and 8 show a grid for calculating the price of a call option in the BS model. The blue line
represents payoff as an initial condition and the green lines are given by the Dirichlet boundary
conditions for small and big asset values. The calculation is made by stepping backward in time.
To calculate the value of the yellow point in the upward sweep, we use the black values. We can
see that we do not use only values from the previous time level but also already known values
from the current time level, what preserves the explicitness of this sweep. Next, for the same time
level, we repeat the process with the downward sweep. To complete the current time level, we
combine the intermediate solutions from the upward and downward sweep by averaging, which
gives the final approximation at this time level. The schematic algorithm we can express in the
following way:
For n = 0,1, . . . ,N−1

1. Init: un
j = cn

j , dn
j = cn

j , j = 1, ...,J−1

2. Upward solution, un+1
j j = 1, . . . ,J−1

3. Downward solution, dn+1
j j = J−1, . . . ,1

4. Combination cn+1 = un+1+dn+1

2

For the discretization of the diffusion term we use, c.f. [20]

∂ 2v(x j, tn)
∂x2 ≈

un
j+1−un

j −un+1
j +un+1

j−1

h2 , j = 1, . . . ,J−1

∂ 2v(x j, tn)
∂x2 ≈

dn+1
j+1 −dn+1

j −dn
j +dn

j−1

h2 , j = J−1, . . . ,1.

(3)

In order to obtain a symmetric scheme we use the following approximations of the reaction term,
the same for the upward and downward sweep

v(x j, tn)≈
un+1

j +un
j

2
, j = 1, . . . ,J−1; and v(x j, tn)≈

dn+1
j +dn

j

2
, j = J−1, . . . ,1. (4)

Different approximations of the convection term are possible [17], [8]. In the following we state
three of them. First, Towler and Yang [22] used special kind of centered differences

∂v(x j, tn)
∂x

≈
un

j+1−un+1
j−1

2h
, j = 1, . . . ,J−1; and

∂v(x j, tn)
∂x

≈
dn+1

j+1 −dn
j−1

2h
, j = J−1, . . . ,1.

(5)
More accurate approximations were proposed by Roberts and Weiss [19], Piacsek and Williams [18]

∂v(x j, tn)
∂x

≈
un

j+1−un
j +un+1

j −un+1
j−1

2h
, j = 1, . . . ,J−1,

∂v(x j, tn)
∂x

≈
dn+1

j+1 −dn+1
j +dn

j −dn
j−1

2h
, j = J−1, . . . ,1.

(6)

As a third option we will use upwind approximations combined with the ADE technique. Since
we have in mind financial applications we will focus on left going waves, i.e. negative sign
before convection term. Right going waves (positive sign before convection term) are treated
analogously.
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The well-known first order approximation reads

∂v(x j, t)
∂x

≈
v j+1(t)− v j(t)

h
j = J−1, . . . ,1, (7)

and the forward difference of second order [24]

∂v(x j, t)
∂x

≈
−v j+2(t)+4v j+1(t)−3v j(t)

2h
, j = J−1, . . . ,1. (8)

Applying the ADE time splitting we obtain for the upwind strategy (7)

∂v(x j, tn+1)

∂x
≈

un
j+1−un

j

h
, j = 1, . . . ,J−1,

∂v(x j, tn+1)

∂x
≈

dn
j+1−dn

j +dn+1
j+1 −dn+1

j

2h
, j = J−1, . . . ,1,

(9)

and for the second order approximation

∂v(x j, tn+1)

∂x
≈
−un

j+2 +4un
j+1−3un

j

2h
, j = 1, . . . ,J−1,

∂v(x j, tn+1)

∂x
≈
−dn

j+2 +4dn
j+1−3dn

j −dn+1
j+2 +4dn+1

j+1 −3dn+1
j

4h
, j = J−1, . . . ,1.

(10)

We will show that this upwind approximation (9) leads to a stable scheme.

Numerical analysis results focusing on stability and consistency considerations are described in
[17] and [3]. In [3] a numerical analysis of convection-diffusion-reaction equation with constant
coefficients and smooth initial data is provided. The authors proved that the ADE method applied
to the one-dimensional reaction-diffusion equation on a uniform mesh with the discretization of
the diffusion according to Saul’ev [20] and the discretization of the convection term following
Towler and Yang [22] is unconditionally stable. If a convection term is added to the equation and
upwind discretization for this term is used, the ADE scheme is also unconditionally stable c.f. [3].

In the ADE schemes one computes for each time level two different solutions which are referred
to as sweeps. Hereby the number of sweeps does not depend on the dimension. It has been shown
[3, 11, 17] that for the upward and downward sweep the consistency is of order O((dτ)2+h2+ dτ

h )
where dτ is the time step and h denotes the space step. An exceptionality of the ADE method is
that the average of upward and downward solutions has consistency of order O((dτ)2 +h2). For
linear models, unconditional stability results and the O((dτ)2 + h2) order of consistency lead to
the O((dτ)2 +h2) convergence order.

Stability, consistency and convergence analysis can be extended to higher dimensional models.

The straightforward implementation also to nonlinear cases with preserving good stability and
consistency properties of the scheme is also a strong advantage. In this paper we show how
one can implement this scheme for higher dimensional models by focusing on a linear model.
However, one could use this procedure for non-linear models as well. One way how to do it is to
solve nonlinear equation in each time level, instead of system of nonlinear equations in case of
implicit schemes. Another way is to keep nonlinearity in the explicit form and solve it directly.
Powerful tool for nonlinear equations represents also the Alternating segment explicit-implicit
and the implicit-explicit parallel difference method [25].
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5.3 ADE schemes for multidimensional models

We have suggested and implemented ADE schemes algorithm for two- and three-dimensional
models appearing in finance, esp. the multi-dimensional linear BS model. Details are recorded
in our paper [6]. ADE schemes have not used before for multidimensional models. We consider
two-dimensional (2D) spread options and also three-dimensional (3D) call options. Experimental
and theoretical second order of convergence for three dimensional call option model is displayed
in the Figure 9.
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Figure 9: Experimental order of convergence in three dimensional call option model

Approach in our algorithm and its fundamental set-up can be implemented even in higher dimen-
sions. The advantage is that in higher dimensional cases still only 2 sweeps are required. Another
advantage of the ADE schemes is that they are suitable method for parallelization.

5.4 Trefftz methods, Flexible local approximation schemes (FLAME)

Goal of this section is to present a short overview on alternative methods for solving the Black-
Scholes model. Trefftz methods are represented by Flexible Local Approximation Methods
(FLAME). They have been applied in different areas, but not in finance yet. Trefftz schemes are
an alternative to traditional methods solving the for Black-Scholes equation. The Trefftz approach
may lead to new finite difference schemes. Trefftz functions by definition satisfy the underlying
differential equation. Examples for basis functions are exponentials, plane waves, harmonic poly-
nomials, etc. There is a lot of study for stationary problems but how it works for time-dependent
problems like the Black-Scholes equation. One example is given in [23] pp.7-8. Here, the time
is considered as an additional coordinate. Basis functions are chosen as dependent functions on
space and time. Chapter about Trefftz methods serves in the thesis as a proof of concepts that
Trefftz methods can be used in different fields. However there is a lot of scope for improvement
and suggesting the FLAME scheme with good properties. Big potential of FLAME methods is to
generate as good exact solution as possible based on the choice of the basis functions. In a series
of experiments we observe some numerical instabilities which are the subject for a deeper study.
Suggestions of using Trefftz basis function in another approaches, e.g. Discontinuous Galerkin
method are challenging, as well. FLAME has a great deal of flexibility which makes this method
competitive. The application to nonlinear equations and usage of nonuniform meshes can be a
nice enrichment of these approaches (it can save a lot of computational time, it is convenient to
use nonuniform mesh for financial problems; e.g. a mesh according to [14]).
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6 Achieved results, conclusion and outlook

Thesis covers both analytical and numerical methods used in computational finance, as it was
aimed. It deals with different models, as short rate models for bond pricing or Black-Scholes
equations for call and spread option pricing. It covers deep study about proper treatment of
boundary conditions.

The first part of the thesis is focused on searching for a suitable approximative solution of the
convergence CKLS model. Crucial part of the analytical part of the thesis is based on [7] where
accuracy for analytical approximation for two-dimensional CKLS is derived. We suggest an im-
proved approximation with higher accuracy order. A complete analysis of the the approximation,
testing on simulated and providing calibration using real market data are included. Since the re-
sults with real market were not perfectly satisfactory, we implemented a few improvements. One
of them is the estimation of the overnight interest rates based on the modeling from the term struc-
tures of the interest rate in Vasicek model in the [13]. Simulations show that the procedure exhibits
high precision. When applying it to the real data, we obtain a good fit of the term structures. An-
other possibility how to improve modeling of the stochastic interest rate model is to suggest the
alternative model, where the one-dimensional stochastic process is modeled as a sum of two un-
observable processes [5]. Since calibration of the bond yields is dependent on the European data,
improvement in fitting of the bond yield in European model will also influence the accuracy of
the domestic bond yield curves. We end up this modeling and analytical part of the thesis with
three-factor convergence model of interest rate with the [21]. Combining two-factor convergence
short rate model and improvement in modeling of one interest rate as a sum of two CKLS-type
processes lead to the three-factor model. Calibration algorithms for convergence model of interest
rate in deeply described and on real market data provided.

In the second part of the thesis and in the [4] we discuss application of the classical Fichera theory
to the resulting degenerated parabolic PDEs from one and two factor short rate models. This the-
ory provides highly relevant information how to supply BCs in these applications. We provide a
numerical analysis for ADE methods solving linear convection-diffusion-reaction equations. The
stability was investigated by two different approaches. The matrix approach yields unconditional
stability in the downward sweep using upwind discretization. The von-Neumann analysis yields
unconditional stability of the downward sweep using the Roberts and Weiss approximation. It
turned out that the order of consistency is O(k2 +h2 + k/h) for the upward or downward sweeps,
but its combination exhibits an increase order of consistency O(k2 + h2). More details can be
found in our paper [3]. We suggest the usage of ADE methods to numerically solve higher-
dimensional PDEs. We implemented it for the linear 2D and 3D Black-Scholes pricing equation
in [6]. The second order of consistency of the implemented ADE method for higher dimensional
models was verified experimentally. Also, since the ADE approach is quite suitable to paralleliza-
tion, an implementation using a parallel computing environment will be envisaged.

In the last Chapter of the thesis we briefly introduce an alternative approach of solving the Black-
Scholes equation based on the flexible local approximative schemes, also called Trefftz methods.
The results are very preliminary and there is a lot of room for improvements.

The thesis deals with broad scope of numerical and analytical techniques. It brings unique results
in form of approximations in closed form formula in short-rate models and brushes up forgotten
ADE schemes, brings its numerical analysis and implements it in higher dimensional models.
Also some other side results appeared as a surprise which had not been really planned, such as
Fichera theory or Trefftz methods, what is of course a positive finding.
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7 Own authors publications and its citations

Papers in reviewed journals and proceedings:
1. Z. Bučková (Zíková), B. Stehlíková, Convergence model of interest rates of CKLS type,

Kybernetika 48(3), 2012, 567-586

• cited in: N. Ishimura, T. Fujita, M. Nakamura, A model of the instantaneous interest
rate in discrete processes, Procedia Economics and Finance 5, 2013, 355–360

2. J. Halgašová, B. Stehlíková, Z. Bučková (Zíková): Estimating the short rate from the term
structures in the Vasicek model, Tatra Mountains Mathematical Publications 61: 87-103,
2014

3. Z. Bučková, J. Halgašová, B. Stehlíková: Short rate as a sum of CKLS-type processes,
accepted for publication in Proceedings of Numerical analysis and applications conference,
Springer Verlag in LNCS, 2016.

4. B. Stehlíková, Z. Bučková (Zíková): A three-factor convergence model of interest rates.
Proceedings of Algoritmy 2012, pp. 95-104.

5. Z. Bučková, M. Ehrhardt, M. Günther: Fichera theory and its application to finance, Pro-
ceedings ECMI 2014, Taormina, Sicily, Italy, 2016

• cited in: M. C. Calvo-Garrido, M. Ehrhardt, C. Vázquez Cendón: Pricing Swing Op-
tions in Electricity Markets with Two Stochastic Factors Using a Partial Differential
Equation Approach, Journal of Computational Finance, 2016

6. Z. Bučková, M. Ehrhardt, M. Günther: Alternating Direction Explicit Methods for Convec-
tion Diffusion Equations, Acta Math. Univ. Comenianae, Vol. LXXXI: 309–325, 2015

7. Z. Bučková, P. Pólvora, M. Ehrhardt, M. Günther: Implementation of Alternating Direction
Explicit Methods to higher dimensional Black-Scholes Equation, AIP Conf. Proc. 1773,
030001; 2016

Book chapter:
• Z. Bučková, B. Stehlíková, D. Ševčovič: Numerical and analytical methods for bond pricing

in short rate convergence models of interest rates, book chapter in the book Advances in
Mathematics Research. Volume 21, 2016

Other published work or preprints:
• Z. Bučková, J. Silva, M. Ehrhardt, M. Günther: STRIKE Novel Methods in Computational

Finance, A European mathematical research training network, ECMI Newsletter 55, March
2014

• Z. Bučková, M. Ehrhardt: Splitting Methods on Special Meshes, ECMI Newsletter 56, Oc-
tober 2014

• A. Zocca, Z. Bučková, I. G. Minelli, M. Gastaldello, M. Aleandri, A. Trucchia, D. V.
Greetham, A. Guterman, P. Giavedoni, A. Tsipenyuk, D. Cusseddu, R. B. Lijó, Z. Var-
banov, B. Zlatanovska, A. Stojanova, M. Kocaleva, D. Bikov, A. Melchiori, A. Sgalambro:
Mathematical and statistical analyses to support service performance forecasting in queu-
ing systems, Study Groups with Industry, Problem presented by QURAMI company at 124th
ESGI, preprint, 2016
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Abstracts from international and domestic conferences:
• Z. Bučková, I. Tsukerman, M. Ehrhardt: Traditional vs. Trefftz Difference Schemes for the

Black-Scholes Equation, extended abstract, AMiTaNS conference 2016

• Z. Bučková (Zíková), Three-factor convergence model of interest rate, MMEI 2012 : Joint
Czech-German-Slovak Conference, 2012 p. 21

• J. Halgašová, B. Stehlíková, Z. Bučková (Zíková), Three-factor convergence model of in-
terest rate, ISCAMI 2012, Ostrava : Universitas Ostraviensis, 2012 p. 40-41

• Z. Bučková (Zíková), Convergence model of interest rate, Študentská vedecká konferencia
FMFI UK, Bratislava 2011 : Zborník príspevkov, Bratislava : Fakulta matematiky, fyziky a
informatiky UK, 2011 p. 70

8 Grants

• VEGA 1/0747/12: Kvalitatívna a kvantitatívna analýza parabolických parciálnych diferen-
ciálnych rovníc a ich aplikácie

• Marie Curie International Training Network (ITN, 01/2013 - 12/2016), FP7-PEOPLE-
2012-ITN (FP7 Marie Curie Action, Project Multi-ITN STRIKE - Novel Methods in Com-
putational Finance

• APVV-14-0069, Modern methods for solving nonlinear partial differential equations in fi-
nancial mathematics

• DAAD 01/2013-12/2014, NL-BS-AO: bilateral German-Slovakian Project Numerical So-
lution of nonlinear Black–Scholes sequation

• VEGA 1/0251/16: Kvantitatívna analýza modelov úrokových mier v podmienkach eu-
rozóny a pristupujúcich krajín a jej aplikácie

9 Teaching activities

• Exercises to the lectures: financial derivatives (UK), PDE (UK), microeconomy (UK), ODE
(BUW), PDE (BUW), financial mathematics (BUW)

• Supervision of 2 bachelor thesis has been done. Currently 1 bachelor thesis on UK and 1
master thesis on BUW is in progress.

10 List of given talks at international and domestic conferences

1. Z. Bučková (Zíková): “Models of interest rate”, ISCAMI 2012: 13th International Student
Conference on Applied Mathematics and Informatics, International conference, Malen-
ovice, May 10-13, 2012

2. Z. Bučková (Zíková), B. Stehlíková: “Models of interest rate, Three factor convergence
model”, MMEI 2012: 17th International Conference on Mathematical Methods in Econ-
omy and Industry, International conference, Berlin, 24. -28. June 2012
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3. EAPG workshop 2012, Stretnutie mladých ekonómov

4. Z. Bučková (Zíková), B. Stehlíková, J. Halgašová: “Estimating the short rate from the
termstructures in the Vasicek model ”, ALGORITMY 2012: Conference on Scientific com-
puting. Vysoké Tatry. Podbanské. 9-14.9.2012

5. Z. Bučková (Zíková), B. Stehlíková, J. Halgašová: “Estimating the short rate from the
termstructures in the Vasicek model ”, ICCS 2013 Conference: International Conference
on Computational Science, Barcelona, 5.- 7.June 2013

6. Z. Bučková, M. Ehrhardt, M. Günther, “Fichera theory and its application in finance”, Min-
isymposium Computational Finance in the framework of ECMI 2014 - The 18th European
Conference on Mathematics for Industry, Taormina, Siciliy, June 9-13.

7. Z. Bučková, M. Ehrhardt, M. Günther, “Numerical analysis of Alternating direction explicit
methods for convection-reaction-diffusion equation”, Sixth Conference Finite Difference
Methods: Theory and Applications, Lozenetz, Bulgaria, June 18-23, 2014 (organized by
Ruse)

8. Z. Bučková, M. Ehrhardt, M. Günther, “The Alternating Direction Explicit Method - Nu-
merical analysis and its Application in Finance”, Summer School on Computational Fi-
nance in the framework of Conference MMEI 2014 - Mathematical Methods in Economics
and Industry, Bratislava -Smolenice castle, September 7-12, 2014

9. Z. Bučková: Mid-Term Review, ITN Strike, Würzburg, October 1, 2014

10. Z. Bučková, M. Ehrhardt, M. Günther, “Implementation of the Alternating Direction Ex-
plicit Methods in Multidimensional Models in Finance”, SCF2015 Conference Stochastics
& Computational Finance 2015 - From Academia to Industry, Lisbon, Portugal, July 6-10,
2015

11. Z. Bučková, M. Ehrhardt, M. Günther, “Implementation of ADE methods for higher-dimensional
models ”, ICCF2015 Conference International Conference on Computational Finance, Green-
wich, UK, December 14-18, 2015

12. Z. Bučková, M. Ehrhardt, M. Günther, “Numerical analysis of Alternating direction ex-
plicit methods and its implementation for higher dimensional and nonlinear Black-Scholes
model”, Minisymposium on Financial Mathematics at ALGORITMY 2016 Conference,
Podbanske, Slovakia, March 13-18, 2016

13. Z. Bučková, B. Stehlíková, “Modelling of interest rate”, 6th International Conference, NAA
2016 - Numerical Analysis and Its Applications, Lozenetz, Bulgaria, June 15-20, 2016

14. Z. Bučková, M. Ehrhardt, I. Tsukerman, “Traditional vs. Trefftz Difference Schemes for the
Black-Scholes Equation”, special session Computational Finance; AMiTaNS-16, Albena,
Bulgaria, June 22-27, 2016

15. Z. Bučková, M. Ehrhardt, M. Günther, “Advanced Numerical Methods in Finance for
Black-Scholes model”, special session Computational Finance; AMiTaNS-16, Albena, Bul-
garia, June 22-27, 2016
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