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1 Introduction

One of the most important problems faced by investors involve the allocation of their
wealth among different investment opportunities in a market consisting of risky assets.
Determination of optimal portfolios is a rather complex problem depending on the objec-
tive of the investor. The problem of optimizing the portfolio returns has been discussed
by many authors and the voluminous literature is devoted to solve such problem. The
most known solution for portfolio optimization has been introduced by Markowitz (1952)
and belongs to static portfolio optimization methods. The task to estimate the evolution
on the financial market has shown to be very difficult. Especially in the recent years
the financial markets are characterized by high volatility which causes extreme values of
asset prices and their returns. The distributions of many financial quantities were shown
to have heavy tails and exhibit skewness and other non Gaussian properties. These ob-
servations led to the new approach of modeling the asset returns by means of fat tailed
probability distribution.

In the dissertation thesis we study the impact of the choice of fat-tailed distribution
of asset returns when optimizing portfolio. We consider stochastic accumulation model
in application saving management discussed by Kilianová, Melicherč́ık and Ševčovič in
series of articles, see [3], [4], [6], [7]. We replace the modeling of returns by the normal
distribution with non symmetrical distribution typical for their fatter tails.

2 Goals of the thesis

The main goal of the thesis is to study and implement the fat tailed distribution of the
returns into financial planning problems. We adopt the dynamic accumulation model
originally designed for the optimal saving management and consider fat tailed Normal-
Inverse-Gaussian distribution for the asset returns and the portfolio return. We aim to
analyze the pitfalls arising from considering the fat tailed distribution characterized by
exhibiting large kurtosis and introduce a stable numerical method for solving formulated
optimization problem.

We study the distribution of the final wealth and its properties for normal and for NIG
distribution. Our following aim is to provide a sensitivity analysis of the model to the
model parameters, especially to the parameters of the portfolio return distribution. We
focus on the dependency of final accumulated sum on portfolio descriptive statistics and
study the influence of a small change in one input parameters to final wealth descriptive
statistics and optimal choice.

3 Model formulation

The model describes the problem of an investor starting from initial capital with infinite
time horizon. A special case is related to pension fund management for clients who
contribute regularly to selected funds in order to maximize their pension after certain
time horizon, at the retirement time.

The model is based on the recovery of initial capital with the possibility of rebalancing
at each time step. We assume an investor having information about the history of the
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market denoted by It for each investment time t ∈ R+, possessing capital of C0 units,
which he can invest in a finite set of investment opportunities, set of N different assets.
Let Xt for t ∈ R+ denote the capital of the investor at the beginning of the time period.
Then the investor’s capital is evolving in time according to equation

Xt+∆t = Xte
rθt∆t, (3.1)

X0 = C0, (3.2)

where rθt represents the return of the portfolio composed from opportunities i = 1, ..., N
with weights θi.

3.1 Model with regular contributions

The problem is defined as a finite horizon problem with horizon T and with portfolio
containing only long positions in assets from finite set of investment opportunities. We
consider an investor possessing an initial capital C0 and contributing regularly the value
of value C∆t in times corresponding to rebalance time points (the yearly contribution
corresponds to the value C). The wealth evolution Xt can be described as following

Xt+∆t = Xte
(r

θt
t −ρt)∆t + C∆t,

≡ Ft(Xt, θt, r
θt
t ), t ∈ [0, T ),

X0 = C0,

(3.3)

where rθt represents the return of portfolio with weights θt in the time period [t, t+∆t).
The portfolio can consist from risky, low-risky and non-risky assets. The portfolio weights
fulfill the condition

∑
i θ

i
t = 1 for each t, i.e. the risk free assets are considered to be part

of the portfolio with volatility close to zero. The ρt > 0 corresponds e.g. to inflation
rate.

3.2 Pension problem

Pension management problem is a special case of the model with regular contribution
adapted to the needs of pension planning. The pension problem is a long-term horizon
problem bound to the client’s salary, economic prediction for the salary growth and
restrictions introduced by Government. The pension problem suited for Slovak pension
system has been discussed by Ševčovič, Melicherč́ık and Kilianová.

We suppose that the future pensioner deposits once a year a τ -part of his yearly salary
wt in a pension fund with composition expressed by θ with respect to the Governmental
restriction. After the retirement time T the pensioner usually strives to maintain his
living standard. Therefore the accumulated saved amount, from the pensioner’s point
of view, is not really what he is interested in. The ratio of the cumulative sum sT and

the yearly salary wT , dT =
sT
wT

, is more important. Using the quantity dt =
st
wt

the

budget-constraint equations can be formulated as

dt+∆t = dte
(r

θt
t −ρt)∆t + τ∆t,

≡ Ft(dt, θ, r), t ∈ [0, T ),

d0 = τ∆t,

(3.4)
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where rθtt is the return of the fund with portfolio composition θt in time period [t, t+1),
ρt denotes the wage growth in [t, t+ 1) and T is the expected retirement time, [3]. The
salary of the saver follows a deterministic process given by equation wt+∆t = wte

ρt∆t.
We assume that the term structure of wage growth is known and can be estimated by
means of an econometric model.

3.3 Problem formulation

Investor’s satisfaction and risk attitude are often described by the utility function. The
set of investor’s opportunities is created by assets behaving in stochastic manner. We
suppose that the investor’s utility U with the risk aversion coefficient is known as well
as the asset distribution.

The choice of the opportunity i from the set of N assets depends on the investor’s
profile and his attitude to risk. Intuitively, the investor’s risk aversion decreases with his
wealth. Therefore, we formulate the problem in the way: at given level of investor’s risk
aversion we maximize the expected utility from his wealth at time T .

The investor decides at every time step t for portfolio composition θt according to
information It containing the history of all asset returns. We formulate the problem as
stochastic dynamic problem

max
θ∈Θ

E(U(XT )) (3.5)

subject to budget constraint given by (3.3).
We apply a fact from the theory of conditional expectations that a sequence of non-

decreasing information {It, t ∈ [0, T )} may be considered as a sequence of non-decreasing
σ-algebras. This allows the implementation of the tower law for conditional expectations
on (3.5).

Denoting the investor’s intermediate utility function at time t as Vt(X) = max
θ∈Θ

E(U(XT )|
Xt = X) and applying the tower law, we obtain the Bellman equation

Vt(X) = max
θ

E(Vt+∆t(Ft(X, θ, r)))

VT (X) = U(X).
(3.6)

The solution of (3.6) gives to the investor the information about the optimal portfolio
composition θ in every time t in dependency on the random variable representing current
wealth Xt. Supposing that the compound probability distribution of each portfolio com-
position is known and is represented by density f θ

t , the equation (3.6) can be rewritten
into form

Vt(X) = max
θ

E(Vt+∆t(Ft(X, θ, r)))

= max
θ

∫
R
Vt+∆t(Ft(X, θ, r))f θ

t (r)dr. (3.7)

According to Proposition 3.1 the optimal solution exists and is unique for increasing
function Ft in X. The solution denotes the decisions process for the optimal opportunity
choice in each decision time t.
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Proposition 3.1. Let U(X) be an increasing, strictly concave, C2 smooth function for
X > 0. Then for any t = 0,∆t, 2∆t . . . , T −∆t,

1. the function Vt(X) is increasing and strictly concave in X-variable;

2. there exists the unique argument θ̂t(X) of the maximum in (3.7).

3.4 Utility function

Usual assumption is that the function U(x) is twice differentiable; with (i) U ′(x) > 0
and (ii) U ′′(x) < 0. The first property amounts to the evident requirement that more is
better. The U ′ is referred to as a marginal utility.The second property is referred to as
a risk aversion.

We suppose the utility functions of CRRA type. The first CRRA power utility func-
tion with coefficient α > 0 representing the investor’s risk aversion is given by

U(x) =
x1−α

1− α
. (3.8)

The model formulation (3.3) for C0 = C∆t allows to derive an interesting property
that the level of wealth is proportional to the contribution rate, i.e.

E(XλC
t ) = λE(XC

t ), (3.9)

for any t and α > 0. Process XC
t is evolving according to (3.3) with regular yearly

contribution of value C.

4 Normal inverse Gaussian distribution

Portfolio optimization is based on trading of risk and return. The construction of port-
folios with minimum risk for a given return depends on two inputs: the choice of the risk
measure, and the probability distribution used to model returns. Although the normal
distribution for modeling returns was widely used for many years, we can find a volu-
minous literature concerning modeling returns with probability distribution which may
better take in account more extreme changes. It can be shown that for many assets the
returns do not behave “normally”. It has been observed that the fat tails are one of the
features of the asset returns distribution. Andersen, Bollerslev, Diebold, Ebens in [1]
show that the daily DJIA (Dow Jones Industrial Average) returns, have fatter tails than
the normal and, for the majority of the stocks, are also skewed.

The NIG distribution is a special case of generalized hyperbolic distribution. It has
four parameters α, β, µ, δ specifying the shape of the density function. Barndorff-Nielsen
[2] defined the NIG distribution as a normal variance-mean mixtures when the mixture
distribution is a inverse Gaussian distribution.

Definition 1. The random variable X is normal inverse Gaussian distributed
NIG(α, β, µ, δ) if its probability density function is given by

f(x) =
α

π
exp{δ

√
α2 − β2 + β(x− µ)}

K1(αδ
√
1 + (x−µ

δ
)2)√

1 + (x−µ
δ
)2

(4.1)
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where K1 denotes the modified Bessel function of the third kind, and the conditions for
the parameters are α > 0, δ > 0, µ ∈ R, 0 ≤ |β| ≤ α.

Normal inverse Gaussian distribution exhibits properties stated in Proposition 4.1.

Proposition 4.1. The NIG class of densities has the following properties:

1. Scaling property: If X ∼ NIG(α, β, µ, δ), then Y = cX ∼ NIG(α
c
, β
c
, cµ, cδ).

2. Convolution property: If X1 ∼ NIG(α, β, µ1, δ1) and X2 ∼ NIG(α, β, µ2, δ2) are
independent, then the sum Y = X1 +X2 ∼ NIG(α, β, µ1 + µ2, δ1 + δ2).

3. Standardization: If X ∼ NIG(α, β, µ, δ), then variable Y =
X − µ

δ
has the Stan-

dard Normal Inverse Gaussian Distribution NIG(αδ, βδ, 0, 1).

The first four moment mean, variance, skewness and kurtosis can be expressed by
means of NIG parameters. Similarly, the NIG parameters can be expressed using the
moments as stated in Theorem 4.1.

Theorem 4.1. Suppose that random variable X is NIG(α, β, µ, δ) distributed and its
mean, variance, skewness and excess kurtosis are denoted as E,V ,S and eK, respectively.
Then the parameters are related to the moments by

α =
3√
V
(3eK − 4S2)

1
2

(3eK − 5S2)
(4.2)

β = α
S

(3eK − 4S2)
1
2

(4.3)

δ = αV
(
1− β2

α2

) 3
2

(4.4)

µ = E− δ
β√

α2 − β2
(4.5)

under condition that 3eK − 5S2 > 0.

4.1 Motivation for using normal inverse Gaussian distribution

Onalan in his article [8] provided an empirical analysis of financial data, especially he
focused on S&P Index and VIX Index. He investigated the use of normal inverse Gaussian
distribution in financial risk management. We have adopted the NIG model and analyze
the fitness on the real data. In Figure 4.1 we offer an illustration how the real data are
actually fitted by the normal distribution and the fat tailed distribution NIG. We have
considered the daily data for S&P500 Index in time period 02/01/2000 - 02/01/2014.

4.2 Drawbacks of NIG distribution

NIG distribution has the great property to describe the density shape of the variable in
very good way and depict its skewness and kurtosis. The replication is straightforward
from NIG distribution with parameters obtained by Theorem 4.1.
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Figure 4.1 Histogram of log returns for daily data for S&P Index and density of proba-
bility distribution for time period Jan 2000 - Jan 2014.

One drawback follows directly from NIG convolution property (Theorem 4.1) defined
only for independent variables exhibiting same shape parameters which is a very restric-
tive condition. Considering more dimensional space of uncorrelated variables leads to
non-problematic replication exhibiting the pre-desribed values of mean, variance, skew-
ness and kurtosis. The problem appears when considering more dimensional space of
correlated NIG distributed variables. The higher the correlation and the higher the skew-
ness and kurtosis of the variables, the less precise replication.

Therefore we introduce the algorithms for generating mixtures created by correlated
NIG distributed variables.

5 Mixture of NIG distributed time series

The normal inverse Gaussian distribution does not belong to class of infinitely divisible
distributions, i.e. the mixture of two or more NIG distributed variables does not have to
create NIG distributed variable unless the mixing variables share the shape parameters
α and β. This feature of NIG distribution causes difficulties when assuming a portfolio
composed from assets with NIG distributed returns. In general, it is not usual that
more assets follow distributions with same shape parameters. Therefore, we introduce a
procedure for approximation of parameters of NIG mixtures.

Another issue arising by creating NIG mixtures follows from the properties of the
historical time series often exhibiting high correlation and their modeling (replication)
requires to take this correlation into consideration. In the next sub-sections we offer two
algorithms for replicating the time series with pre-described four moments and correla-
tion.

5.1 Replication of time series: Choleski approach

Replication of the time series from pre-defined moments and correlation create an im-
portant part by generating the NIG mixtures. We first analyze an algorithm based on
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Choleski decomposition commonly used by generating correlated normal random vari-
ables. Despite of the difference between the NIG and normal distribution the algorithm
gives for some set of parameters sufficiently precise results.

However, if the time series are correlated, the replicated times series do not have to
exhibit the pre-described values of the four moments and correlation. We have provided
an analysis regarding the correctness of replication of asset returns when considering
mixture of two correlated NIG distributed variables and state our results in Table 5.1.

Table 5.1 Table of observed dependencies of pre-described and replicated time series
properties by Choleski decomposition based algorithm.

Skewness Kurtosis Corr |ρ| Consequence

S(A1) = 0 K(A1) = K(A2)
low X

S(A2) = 0 higher the higher correlation causes worse
fit of K(A2), higher K worse K(A2)

S(A1) ̸= 0 K(A1) = K(A2)
low the higher the skewness of asset 2

|S(A2)|, the worse correlation
S(A2) ̸= 0 higher the higher correlation |ρ|, the worse

S(A2) (and |K(A2)|)
S(A1) = 0 K(A1) ̸= K(A2)

low correlation does not correspond to
pre-described correlation (≈ ρ/2 )

S(A2) = 0 higher worse correlation and worse K(A2)

S(A1) ̸= 0 K(A1) ̸= K(A2)
low correlation does not correspond to

pre-described correlation
S(A2) ̸= 0 higher worse correlation and worse K(A2)

5.2 Replication of time series: Optimization approach

We assume a NIG mixture consisting from two assets, whose properties are given by their
first four moments and correlation. The aim is to generate the time series satisfying these
inputs. However, the replicated time series do not maintain the input properties and
thus the time series have to be generated by means of other parameters. The objective
is to find the set of parameters, that would replicate time series exhibiting pre-described
properties.

Since the transformation of the independent random variables to correlated variables
with given correlation by means of Choleski decomposition keeps the first variable un-
changed, we fix the realization of the first asset while the moments of the second asset
and the correlation will be a subject of optimization. The algorithm searches a set of 4
parameter - variance, skewness and kurtosis for the second asset and correlation of asset
1 and asset 2 using the genetic algorithm, that would replicate by using the Choleski
approach time series with predefined moments and correlation.

Remark 5.1. The use of the optimization based algorithm seem to be effective for time
series with relatively high correlation (|ρ| > 0.4) and different kurtosis. The effectiveness
of use of the genetic algorithm vanishes with decreasing correlation.
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For |ρ| low the optimization based algorithm works effectively (sufficient replication
properties and short time) if the optimizing parameter is only correlation ρ and other
model parameters are fixed.

5.3 Generating NIG mixtures with predefined moments

We consider a portfolio consisting from N assets with NIG distributed returns, i =
1, . . . , N , with weights θ, where θ = (θ1, . . . , θN)

T . We presume that the portfolio returns
are also NIG distributed, i.e. rθP ∼ NIG(αθ, βθ, µθ, δθ). To estimate the parameters
αθ, βθ, µθ, δθ of the portfolio returns, we first define an approximation of a NIG mixture.

Definition 2 (NIG approximation of mixture). Assume that ri ∼ NIG(αi, βi, µi, δi) for
i = 1, 2, . . . , N . Then for weighted mixture r =

∑N
i=1 θiri the aim is to find parameters

αθ, βθ, µθ, δθ of NIG distribution dependent on vector θ such that it holds

1. for θ = e the parameters agree exactly (e is a unit vector);

2. first four parameters of convex combination r =
∑N

i=1 θiri agree with four moments
of r for each θi ∈ [0, 1],

∑
i θi = 1.

Assumption 5.1. We assume that for each asset i, i = 1, . . . , N the values of first four
moments of asset returns (Ei,Vi,Si, eKi) and the corresponding correlation matrix Σ are
known or can be calculated from real time series.

The algorithm is presented in Table 5.2.

Table 5.2 NIG MIXTURE ALGORITHM

INPUT

Return of asset i (Ai): Ei = E(Ai),Vi = V(Ai),Si = S(Ai),Ki =
K(Ai);

correlation matrix Σ = corr(i, j) for i, j = 1, ..., N.

ALGORITHM

1. replicate the asset returns Xi for i = 1, . . . , N by Choleski

decomposition based algorithm or by Optimization based

algorithm;

2. compute the portfolio return as linear combination of asset

returns weighted according to composition θ, i.e. rθ =∑N
i=1 θiXi;

3. compute the values of the first four moments E(rθ),V(rθ),S(rθ) and

K(rθ) for the vector rθ;

4. calculate NIG parameters.

Remark: It is assumed that the random vector rθ representing the

portfolio returns is also NIG distributed.
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6 Numerical approximation of stochastic dynamic

optimization problem

In this section we describe the numerical approximation procedure for solving the for-
mulated maximization problem (3.5) with dynamic constraints given by (3.3). The
numerical scheme for solving this problem has been described in details by Kilianová,
Melicherč́ık and Ševčovič, e.g. in [4]. The proposed scheme has been constructed for
needs of implementation of normal distribution. The NIG distribution exhibits a specific
shape and requires also a special treatment for its numerical approximation. We describe
the numerical process with a focus on needs of use of NIG distribution or generally dis-
tribution with fat tails and high kurtosis.

The problem is formulated as a decision problem. In each time t the investor decides
for the stock-to-bond proportion θ according to the problem given by Bellman equation.
The problem to be solved in each time step t is to find the maximum over θ of the
integral ∫

R
Vt+∆t(xt+∆t)f

θ(r)dr. (6.1)

The values of Vt are calculated in space points {xi, i = 1, ..., nx} with x1 = xmin and
xnx = xmax (equidistant) and in time points corresponding to ∆t. In each grid point the
values are calculated for {θj, j = 1, ..., nθ} of the interval [0, 1] (equidistant) where nθ is
sufficiently large.

The density function f θ is considered to be the density function of the portfolio
returns. When considering the NIG density function f θ the NIG parameters αθ, βθ, µθ

and δθ are as discussed in section 5. For normal distribution the formula for parameters
µθ and σθ is known and no approximation algorithm is needed.

The peak of the NIG density function can be due to the high kurtosis thin and high.
The classical trapezoidal rule with uniform spacing grid for approximating the definite
integral is not sufficient, since the grid should be denser in neighborhood of the center of
the peak. For the Bellman type integral with NIG distribution densities f θ we therefore
use the Legendre-Gauss quadrature with n > 0 nodes. The quadrature rule is based on
approximation of the integral by the weighted sum of function values at specified points
within the domain of integration. We consider interval Ir to be sufficiently large to cover
all non zero values, Ir = (rθ−15σθ, rθ+15σθ), using n = 50 nodes. The efficient interval
Ir for normal distribution or distributions with thinner tails can be much smaller.

As far as the values of function Vt are computed only in discrete points xi, we need
to define a proper approximation of the values ξ ∈ [xmin, xmax] as well as for values
outside of the defined interval. Especially, the approximation of Vt(ξ) in points outside
the space grid ξ > xmax require a special attention. We define the approximation of
Vt(ξ),∀ξ ∈ [0,∞] as following

1. for ξ < xmin we set Vt(ξ) = Vt(xmin) (this restriction can be viewed as the bottom
value that has to be ensured);

2. for ξ > xmax, Vt(ξ) is set as (6.3);

3. for ξ ∈ [xmin, xmax] an interpolation of nearest neighboring grid points is calculated
as (6.4).
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6.1 Boundary conditions

The correct setting of the boundary condition creates a crucial part of the numerical
solution. The error caused by incorrect valuation of the value function outside the grid
accumulates by backward calculation and thus strongly influences the solution. In the
portfolio optimization problem the contour lines of optimal choice θ could be therefore
incorrectly curved.

The boundary condition for ξ > xmax set as Vt(ξ) = Vt(xmax) would require a large
value of xmax which would be very time consuming since the division of the interval
has to be dense. Another option is to use an extrapolation for approximation of Vt(ξ).
However, a decline in the rate of growth of the value function Vt (can be seen already
for VT (.) = U(.)) causes that the values obtained by extrapolation are strongly deviated
from the true values. The error accumulates therefore from the first step, for t = T .
These facts leaded to derivation of the heuristic of a boundary condition specific for our
type of problem.

We propose 6.1 assumed by deriving the heuristic for boundary condition specific for
our model.

Lemma 6.1. For utility function in form (3.8) and wealth evolution given by (3.3), for
x → ∞ the integral can be approximated as

lim
x→∞

∫
R

(
xe(r

θ−ρ)∆t + C∆t

x

)1−α

f(r)dr =

∫
R
e(r

θ−ρ)∆t(1−α)f(r)dr. (6.2)

For model without the contributions, i.e. C = 0, the solution is exact.

We approximate the value of Vt(ξ) for ξ > xmax as

Vt(ξ) = βtU(ξ)

βt = γTγT−∆t · · · γt+∆tβT

γt = min
θ

∫
R
e(r

θ−ρt)∆t(1−α)f θ(r)dr.

(6.3)

6.2 Interpolation of the value function

The value function of the point not lying on the grid has to be approximated by means
of the adjacent grid points. The value of Vt for any ξ ∈ [xmin, xmax] can be expressed by
means of the interpolation of values Vt(xi) and Vt(xi+1) corresponding to the closest grid
points fulfilling ξ ∈ [xi, xi+1].

We offer option based on copying the shape of the utility function and its mapping to
calculated values. We use the shape of the utility function and compute Vt(ξ) as

Vt(ξ) = cξU(ξ),

cξ ≈ cxi
+

cxi+1
− cxi

xi+1 − xi

(ξ − xi),
(6.4)

where cξ is calculated as a linear interpolation of ratios of Vt and U scaled according to

βt, i.e. cxi
=

Vt(xi)

βtU(xi)
and cxi+1

=
Vt(xi+1)

βtU(xi+1)
. This approach enables the use of lower

space division nx than by the linear interpolation while achieving the same result.
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Remark 6.1. Since the values inside and outside the space grid point should create a
continuous function, the values Vt(ξ) for ξ > xmax have to be parallel shifted such that
the value Vt(xmax) equals to Vt(xmax) obtained by (6.3).

7 Results

In this chapter we examine the proposed numerical scheme on the saving management
problem designed for the II. pillar of the Slovak pension system. We follow the discussed
dynamic model and maximize the expected utility of the final accumulated wealth of the
pensioner.

We apply the algorithm for normally and NIG distributed returns and compare the
trajectories of the expected wealth evolution during the investment time and specially the
optimal decision for portfolio composition for normal and for NIG distributed portfolio
returns. We analyze the distribution of the final wealth and its properties and discuss
the impact of the considered skewness and kurtosis of the asset returns.

7.1 Parameters

We consider a Slovak future pensioner whose retirement time T is 40 years. According
to Slovak pension system, he contributes into his saving account in II. pillar very month
8.91% of his yearly salary. Further we assume that the pension management institutions
invest only into two assets. Stocks are represented by S&P500 Index and bonds by ten
years US governmental bonds. In each fund there are restriction given by the Slovak
Government in Equation 7.1. The wage growth ρt in Slovakia was taken from a paper
by Kvetan et al. [5]. We further use a grid for numerical calculation with ∆t = 1
(rebalancing is possible once a year), equidistant space division of interval [0.01, 50] with
nx = 1200 and equidistant division of θ ∈ [0, 1] with nθ = 100.

θt =


[0, 0.8] if T − t > 15 (last 15 years of saving),

[0, 0.5] if T − t > 7 (last 7 years of saving),

0 otherwise.

(7.1)

We consider the same time period Jan 1996 - Jun 2002 as in Kilianová et al. [4]
for time series representing the portfolio assets. The bond yield as a non-risky asset is
characterized by small volatility which is 0.82% with expected return 5.16% per year.
On the other hand, the risky-assets offer higher yield but under higher risk. The S&P
500 Index in considered time period yields to 10.28% per year with volatility almost
16.9%. The correlation of their returns is -0.1151. We calculate the second two moments
for needs of NIG distribution, i.e. skewness and kurtosis of the bond are -0.05 and 3.6,
respectively and for stock -0.24 and 5.92, respectively.

7.2 Comparison: Normal vs. NIG distribution

The optimal choice for portfolio composition of the future pensioner has the characteris-
tics that in the early years, he prefers a high proportion of risky assets which decreases
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with shortening of time to retirement. The pensioner tends to decide for more conserva-
tive portfolios in the last years of savings. The preferences change also in dependence on
the current accumulated wealth, i.e the higher accumulated sum the lower proportion of
the risky assets in portfolio. Due to the Governmental restrictions, the optimal choice is
regulated and the decision might be strongly affected.

With increasing risk aversion, the investor tends to take more conservative decisions
for same time and level of accumulated sum. The Figure 7.1 illustrates the trajectory of
the optimal choice of the saver for tree different coefficient levels α = 5, 9, 13. By both
cases, with (a) and without (b) the regulations we observe that the saver tends to reduce
the risky part of the portfolio sooner for higher α. The proportion of stocks reduces with
time for all α. The same behavior can be observed by considering NIG distribution,
however saver tends to decide for more risky portfolios in the first years and then fast
change the portfolio into more conservative as it can be seen from Figure 7.2.
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Figure 7.1 Evolution of optimal choice θ for different levels of risk aversion coefficient
during the saving period considering normal distribution with (on the left) and without
applying regulations (on the right).
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Figure 7.2 Evolution of optimal choice θ for different levels of risk aversion coefficient
during the saving period considering NIG distribution with (on the left) and without
applying regulations (on the right).

Smaller α indicates riskier portfolio and thus implies a higher expected value of the
final wealth E(dt). The mean value E(dT ) is always higher when there are no govern-
mental limits. The shape of the empirical distribution of the final wealth dT for high
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Table 7.1 Properties of the final wealth distribution for different levels of risk aversion
coefficient considering normal distribution with (on the left) and without applying reg-
ulations (on the right).

α = 5 α = 9 α = 13
E(dT ) 5.17 4.44 4.11
Std(dT ) 1.55 0.81 0.52
S(dT ) 1.03 0.57 0.42
K(dT ) 4.86 3.45 3.28

Q10%(dT ) 3.43 3.47 3.47
Q50%(dT ) 4.92 4.36 4.07
Q90%(dT ) 7.23 5.50 4.79

α = 5 α = 9 α = 13
E(dT ) 6.13 4.85 4.34
Std(dT ) 2.22 1.02 0.63
S(dT ) 1.23 0.62 0.48
K(dT ) 5.79 3.65 3.44

Q10%(dT ) 3.69 3.63 3.57
Q50%(dT ) 5.75 4.74 4.30
Q90%(dT ) 8.98 6.19 5.18

α is characterized by higher and sharper peak implying higher concentration of the ob-
servations around the median. The standard deviation is therefore lower as well as the
skewness. On the hand, the 10% quantile is comparable for all α coefficients, however
the median and 90% quantile are much higher for lower α. The statistics of the final
wealth for normal distribution are summarized in Table 7.1 and for NIG distribution in
Table 7.2.

Table 7.2 Properties of the final wealth distribution for different levels of risk aversion co-
efficient considering NIG distribution with (on the left) and without applying regulations
(on the right).

α = 5 α = 9 α = 13
E(dT ) 6.13 4.87 4.35
Std(dT ) 2.28 1.01 0.62
S(dT ) 1.30 0.65 0.44
K(dT ) 5.91 3.89 3.57

Q10%(dT ) 3.68 3.65 3.61
Q50%(dT ) 5.70 4.77 4.31
Q90%(dT ) 9.15 6.18 5.16

α = 5 α = 9 α = 13
E(dT ) 8.19 5.47 4.67
Std(dT ) 3.62 1.27 0.75
S(dT ) 1.37 0.67 0.48
K(dT ) 6.50 3.92 3.48

Q10%(dT ) 4.31 3.96 3.75
Q50%(dT ) 7.51 5.34 4.60
Q90%(dT ) 12.90 7.11 5.67

7.3 Sensitivity to skewness and kurtosis

Considering the NIG distribution of the asset returns and portfolio returns has a strong
influence on the optimal choice of the saver in comparison to considering the normal
distribution. Here we analyze the impact of the second two moments of the assets on
optimal choice and the final wealth properties. We fix the properties of the bond, such
that we can better observe a change caused by just one model parameter. We consider the
bonds characteristic - mean, volatility, skewness and kurtosis and stocks characteristics
- mean and volatility to be fixed while the stock’s skewness and stock’s kurtosis will
change. We thus analyze the impact of the stock’s skewness - negative to positive - for
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different levels of stock’s kurtosis on the optimal choice of the portfolio and properties
of the final wealth.

The left side Figure 7.5 illustrates the optimal choice evolution for different values of
stock’s skewness, S(S) = −0.7, 0, 0.7 for K(S) = 6. The lower value of skewness leads to
more conservative decisions which directly relates to lower expected value of the wealth.
We can observe that the time point when the saver starts to add the bonds to portfolio
is the same for all skewness values. The same behavior but for dependence of stock’s
kurtosis is depicted on the right hand side. The skewness is set to S(S) = −0.2 and
kurtosis sequentially to K(S) = 4, 6, 8. The higher is the kurtosis the more conservative
portfolios are preferred.
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Figure 7.3 Evolution of optimal choice θ for different levels of stock’s skewness (on
the left) with K(S) = 6 and for different levels of stock’s kurtosis (on the right) with
S(S) = −0.2).

Higher skewness leads to higher expected wealth while the kurtosis lowers it. The
10% quantile increases with skewness and decreases with kurtosis. The same hold for
the 90% quantile.
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Figure 7.4 Evolution of the expected wealth at the final time horizon (with 10% and 90%
quantile) in dependence of the stock’s skewness (on the left) and kurtosis (on the right).

The numerical solution of the optimal decision problem depicted on the contour graph
(dependence of θ on time t and level of savings d) shows that the skewness move the
contours clockwise, Figure 7.5 on the left side, while for the kurtosis the contours move
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counterclockwise, on the right. It indicates that higher skewness supports higher propor-
tion of stocks in portfolio and on the contrary higher kurtosis supports higher proportion
of bonds.

0.45

0.45

0.5

0.5

0.5

0.55

0.55

0.6

0.6

0.6

0.65

0.65

0.65

0.7

0.7

0.7

0.75

0.75

0.75

0.8

0.8

0.8

0.85

0.85

0.85

0.9

0.9

0.9

0.95

0.95

0.95

1

1

1

t

d

0 5 10 15 20 25 30 35

2

4

6

8

10

12

14

0.45

0.5

0.5

0.55

0.55

0.6

0.6

0.6

0.65

0.65

0.65

0.7

0.7

0.7

0.7

0.75

0.75

0.75

0.8

0.8

0.8

0.85

0.85

0.85

0.9

0.9

0.9

0.95

0.95

0.95

1

1

1

t

d

0 5 10 15 20 25 30 35

2

4

6

8

10

12

14

(a) skewness of stock S = −0.7 (b) kurtosis of stock K = 4

0.55

0.6

0.6

0.6

0.65

0.65

0.65

0.7

0.7

0.7

0.75

0.75

0.75

0.8

0.8

0.8

0.85

0.85

0.85

0.9

0.9

0.9

0.95

0.95

0.95

1

1

1

t

d

0 5 10 15 20 25 30 35

2

4

6

8

10

12

14

0.45

0.45

0.5

0.5

0.55

0.55

0.6

0.6

0.6

0.65

0.65

0.65

0.7

0.7

0.7

0.7

0.75

0.75

0.75

0.8

0.8

0.8

0.85

0.85

0.85

0.9

0.9

0.9

0.95

0.95

0.95

1

1

1

t

d

0 5 10 15 20 25 30 35

2

4

6

8

10

12

14

(c) skewness of stock S = 0.7 (d) kurtosis of stock K = 8

Figure 7.5 Evolution of the optimal θ in dependence of the stock’s skewness and kurtosis.

8 Conclusion

We have presented an investment model with regular contributions for determining the
optimal investment opportunity. We have analyzed the model for needs of the risk
management in pension system formulated as a dynamic stochastic accumulation model
for determining the optimal value of the stock to bond proportion in the pension saving
decision. We aimed to introduce the fat tailed distributions for asset returns’ modeling
and analyze the impact on the saver’s preferences.

We have focused on the normal inverse Gaussian distribution among the generalized
hyperbolic distributions and studied the S&P500 Index in more detail and similarly to
findings of Onalan in [8], we have concluded that the log returns do not follow the normal
distribution. They are characterized by higher kurtosis than is typical for the normal
distribution and are skewed to the left. The NIG distribution has four parameters which
can be used to express first four moments. We have showed how the parameters as well
as the moments affect the density shape.
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The biggest drawback of NIG distribution follows directly from its convolution prop-
erty defined only for independent variables exhibiting same shape parameters which is a
very restrictive condition. We therefore study the behavior of generating the dependent
NIG random variables using the approach usually applied for generating the dependent
normally distributed variables, i.e by means of Choleski decomposition. We have an-
alyzed the properties of replicated time series defined by their moments and based on
our observations we have introduced the algorithm for generating such mixtures. The
crucial parameters showed to be the correlation and the kurtosis.

The NIG distribution exhibits a specific shape and requires also a special treatment by
numerical approximation of the formulated Belmann problem. The numerical procedure
has to be specified with a focus on needs of NIG distribution or generally distribution
with fat tails and high kurtosis. The fat tail requires bigger domain for the space grid
which might be computationally expensive. The need of the proper boundary condition
is therefore very strong. We derived a heuristic of a boundary condition specific for our
type of problem. We have also offered a special interpolation inside the grid based on
the shape of the utility function allowing the use of a less dense grid.

The results of our algorithm for the formulated problem suitable for distributions
with fat tails were provided with the numerical parameters adopted from [4] in order to
demonstrate the algorithm’s correctness. We calculated the next two moments of the
assets representing the stocks and bonds in portfolio and showed the impact of adding
the skewness and the kurtosis on the optimal choice of the saver during the saving time
period.

Considering the NIG distribution for the asset returns, the saver tends to keep the
maximal stock-to-bond proportion much longer than by assuming normal distribution,
however the choice in the last decision year is comparable. This causes that the expected
wealth grows faster in first years and in years, when the portfolio is more conservative,
the growth does not have to be so high to higher the absolute value of the savings. The
expected wealth by considering the NIG distribution is therefore higher than by normal
distribution.

The regulation introduced by the Government strongly influences the choice of the
saver who would by this parameter setting decide for more risky portfolio. The expected
final wealth is lower for regulated investments but lead to lower volatility. In our study
we have focus mainly on the distribution of the final accumulated wealth which is char-
acterized by positive skewness since the yearly contribution shifts the savings always in
a positive sense. From risk point of view it is more interesting to analyze the left tail
of the distribution, the value-at-risk measure that the volatility. From the distribution
shape for regulated and non-regulated case and calculated quantiles we can observe that
the regulation does not lower the risk. However the difference between the expected
value and VaR is higher for non-regulated case. Considering this risk measure the reg-
ulation can be understood as a defense from saver’s disappointment of not succeeding
the expectation and especially of achieving low value compared to expectation. The
more regulations influence the choice of the saver the higher is the difference in peak
settlement and quantiles of the final wealth distributions.

The same qualitative behavior can be observed by both examined distributions and
also for different risk aversion coefficients. As expected, with increasing risk aversion the
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investor tends to take more conservative decisions for same time and level of accumulated
sum. More conservative portfolio leads to lower expected final wealth and lower volatility.

The aim of the thesis was to study the impact of the skewness and the kurtosis of
the portfolio assets on the optimal choice of the investor and on his expectation. In our
sensitivity analysis we consider again the same numerical and model parameters. We fix
the properties of one asset and change the skewness and kurtosis of the second asset in
order to better observe a change caused by just one model parameter. We consider the
bonds characteristic - mean, volatility, skewness and kurtosis and stocks characteristics
- mean and volatility to be fixed while the stock’s skewness and stock’s kurtosis change.
We have showed that the lower value of skewness leads to more conservative decisions
leading to lower expected value of the wealth. The time point when the saver starts to
add the bonds to portfolio keeps the same for all skewness values. On the other hand
lower kurtosis asks for more risky portfolio.
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