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Abstract

In our research we focus on the modeling of portfolio returns with fat-tailed distributions

that have the property to exhibit extreme large skewness and kurtosis. We focus on the

normal-inverse Gaussian distribution and analyze the impact of higher moments on the

optimal choice of the portfolio composition. We consider a dynamic stochastic model of

Bellman type and discuss the problem of optimal choice of portfolio composition with

different level of risk dependent on proportion of risky - to - non-risky assets, especially

in application to pension management.

We propose a numerical scheme for calculation and perform a sensitivity analysis of

the descriptive statistics of asset returns on the accumulated sum at the final time as well

as in each time step during the saving. We compare the results considering the normal

distribution and NIG distribution with different skewness and kurtosis and discuss the

distribution of accumulated sum at the final time.

Keywords: dynamic optimization, Bellman equation, fat tail distribution, normal

inverse Gaussian distribution.



Abstrakt

V našej práci sa zameriavame na modelovanie výnosov portfólia pomocou rozdeleńı

s ťažkými chvostami, ktoré sa vyznačujú nadobudańım vysokých hodnôt šikmosti a

špičatosti. Zameriavame sa na normálne inverzné Gaussove rozdelenie a analyzujeme

dopad vyšš́ıch momentov na optimálnu vǒlbu zloženia portfólia. Uvažujeme dynam-

ický stochastický model Bellmanovho typu a rozoberáme problém optimálneho výberu

skladby portfólia s rôznou mierou rizika poṕısanou pomocou podielu rizikových a bezrizi-

kových akt́ıv v portfóliu. Model bol diskutovaný najma v kontexte aplikácie dôchodkového

sporenia.

Ponúkame numerickú schému pre výpočet formulovaného problému a analýzu citlivosti

popisných štatist́ık výnosov akt́ıv na kumulovanú sumu v konečnom čase, rovnako ako

v každom časovom kroku v priebehu sporenia. Porovnáme výsledky pri uvažovańı

normálneho rozdelenia a NIG rozdelenia výnosov pre rôzne úrovne šikmosti a špičatosti.

Predovšetkým sa zameriavame na rozdelenie konečného bohatstva.

Kľúčové slová: dynamická optimalizácia, Bellmanova rovnica, rozdelenie s ťažkými

chvostami, normálne inverzné Gaussove rozdelenie.
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Chapter 1

Symbols

It information about the history on the market
C0 initial capital given in units
C regular contribution value in units
θ vector of asset allocation in portfolio composition
Θ set of all optional portfolio composition θ
rθt return of the portfolio with θ composition at time t
Xt wealth at time t in units
T investment time horizon
ρt inflation or wage growth at time t
ϕ transaction costs
st accumulated sum at time t
wt wage at time t
τ regular contribution rate
dt ratio of accumulated sum and wage at time t, given as st

wt

U utility function
Vt value function
E(.) expectation of a random variable
Std(.) standard deviation of a random variable
V(.) variance of a random variable
S(.) skewness of a random variable
K(.) kurtosis of a random variable
eK(.) excess kurtosis of a random variable
ρ correlation of two random variables
Σ correlation matrix

3



Chapter 2

Introduction

2.1 Introduction

One of the most important problems faced by investors involve the allocation of their

wealth among different investment opportunities in a market consisting of risky assets.

Determination of optimal portfolios is a rather complex problem depending on the objec-

tive of the investor. The problem of optimizing the portfolio returns has been discussed

by many authors and the voluminous literature is devoted to solve such problem. The

most known solution for portfolio optimization has been introduced by Markowitz (1952)

and belongs to static portfolio optimization methods. The task to estimate the evolution

on the financial market has shown to be very difficult. Especially in the recent years

the financial markets are characterized by high volatility which causes extreme values of

asset prices and their returns. The distributions of many financial quantities were shown

to have heavy tails and exhibit skewness and other non Gaussian properties. These ob-

servations led to the new approach of modeling the asset returns by means of fat tailed

probability distribution.

In the dissertation thesis we study the impact of the choice of fat-tailed distribution

of asset returns when optimizing portfolio. We consider stochastic accumulation model

in application saving management discussed by Kilianová, Melicherč́ık and Ševčovič in

series of articles, see [29], [32], [43], [44]. We replace the modeling of returns by the

normal distribution with non symmetrical distribution typical for their fatter tails.

2.2 Literature overview

By the portfolio optimization especially the expected return of the investment and its

risk is taken into consideration. The optimizing criterion might involve also the other

consequent financial risk attributions.The aim of the portfolio management is to opti-

mize the performance by keeping the risk level relatively low depending on individual

4



CHAPTER 2. INTRODUCTION 5

preferences. The portfolio management went through long time evolution from static

and deterministic modeling to dynamic and stochastic modeling.

The mean-variance model is a optimization model for the single period portfolio se-

lection problem providing analytical solution for maximizing expected utility from the

wealth or minimizing the risk arising from portfolio. The analytic derivation of the

meanvariance efficient portfolio frontier is given by Merton [46]. This single period is

not sufficient for long-time investors and the necessity of adoption to economic market

conditions and investors changing preferences over time led to introduction of multi-

period methods with dynamic re-balancing.

2.2.1 Dynamic programming

Dynamic programming is the most powerful principle in optimization and is based on

breaking complex problems to smaller subproblems. It is a method conceived to solve

dynamic optimization models over time and can be applied in discrete and continuous

time models, deterministic and stochastic models, and finite and infinite horizon mod-

els. These optimization approaches are also described by Halická et al. in [25]. The

dynamic approach, however, is computationally quite expensive, since it is a brute-force

method that goes through all possible solutions to pick the best one. Exploiting early

exercise opportunities optimally requires going backward in time and the quantity at

any previous time can be calculated by backward induction using the Bellman equation.

Bringing uncertainty into problem transforms the problems into stochastic dynamic opti-

mization problems. The portfolio management is thus a problem that can be formulated

as multi-stage optimization problem and can be solved in different ways as discussed by

Brandimarte in [6]. In the book he describes the several numerical approaches used to

solve dynamic and stochastic problems using MATLAB.

Canakog̃lu and Ozekici [10] used the dynamic programming approach to obtain an

explicit characterization of the optimal policy for the optimal portfolio selection problem

where the investor maximizes the expected utility of the terminal wealth. The utility

function belongs to the HARA family. A tractable and realistic approach is provided by

using a Markov chain representing the returns of the assets. The use of a modulating

stochastic process as a source of variation in the model parameters and of dependence

among the model components has proved to be quite useful in operations research and

management science applications. They apply multi-period portfolio optimization by

considering investors with logarithmic and power utility supposing that the asset returns

all depend on a stochastic market depicted by a Markov chain.
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2.2.2 Multi-stage stochastic programming

The multistage stochastic programming is a popular technique to deal with uncertainty

in optimization models and therefore popular to solve the financial planning problems.

However, the need to adequately capture the underlying distributions leads to large prob-

lems that are usually beyond the scope of general purpose solvers. The personal financial

planning problem is characterized by three key elements. The problem is constrained

optimal decision problem with objective to maximize multi-attribute objective function

under possibly large number of constraints. The required inclusion of a risk preference

parameter naturally leads to an expected utility problem. The necessity of achievement

of intermediate targets as well as changing working conditions over time and the time

distribution of liabilities and income changes induce a dynamic decision problem. The

third key element is the stochastic behavior of the processes such as evolution of financial

markets. The sequence of actions taken in the phase of uncertainty need to be taken into

account within the given time frame. The effectiveness of any adopted strategy and the

achievement of the individuals objectives depend on a sequence of random events. The

long-term nature of the decision problem, furthermore, imposes a specific requirement

on the model of uncertainty, and specifically on the properties of the generated economic

and financial scenarios.

Celikyurt and Ozekici in [11] consider several multi-period portfolio optimization mod-

els where the market consists of a risk free asset and several risky assets. The returns

in any period are random with a mean vector and a covariance matrix that depend on

the prevailing economic conditions in the market during that period. The stochastic

behavior is described by a Markov chain with perfectly observable states. They offer a

solution for an auxiliary problem found by dynamic programming.

Numerical methods used to solve the problem of finding the optimal portfolio were

discussed in a large number of papers. Campbell and Viceira [8] and Barberis [3] use

numerical approximations to find optimal portfolios in a discrete setting. In continu-

ous time, Brennan, Schwartz and Lagnado [7] solve numerically the PDE for specific

parametrization of the utility function.

Dupačová and Sladký in [18] provide a comparison of multistage stochastic programs

with recourse and stochastic dynamic programs with discrete time parameter and with

a fixed finite horizon. The main distinction lies in the decision concept, in different

structures of their formulation and, consequently, in different solution methods. On the

contrary to the multistage stochastic programs, most of the motivation for the research on

dynamic programming models come from a class of operations research and engineering

applications where it is the decision rule that is primarily of interest and the horizon

is very long. Dupačová modeled the asset-liability management problem applied to the

specific model of a Czech pension fund using stochastic programming.
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2.2.3 Analytical solutions

Merton [45] introduced the methodology to attack the problem of a rational investor with

time additive preferences that chooses how to allocate his wealth between consumption

and the existing securities. The computation requires PDE solution that have a closed

form only in restrictive number of cases. Costa and Araujo in [16] derived analytically

an optimal control policy for an auxiliary problem, as well as the expected value and

variance of the investors wealth. The policy is obtained from the solution of a set of

interconnected Riccati difference equations.They provide necessary and sufficient condi-

tions for the solution of the generalized mean-variance problem, and a set of recursive

equations to derive the solution of the problem.

2.2.4 Probabilistic approach

The work of Yin et al. [52] develops an approximation procedure for portfolio selection

with bounded constraints. Based on the Markov chain approximation techniques, numer-

ical procedures are constructed for the utility optimization task. The problem is defined

as maximizing the terminal wealth under policy not allowing short positions. The wealth

evolution over time is given by PDE. The numerical solution comes from approximation

of the Markov chain by probabilistic methods, defining probability transition matrices

between the states, and does not need any analytic properties of the solutions of the

Hamilton-Jacobi-Bellman equations.

Detemple, Garcia and Rindisbacher [17] propose a simulation-based approach for op-

timal portfolio allocation in realistic environments with complex dynamics for the state

variables and large numbers of factors and assets. Cvitanic, Goukasian and Zapatero

introduced in [15] an optimization method purely based on Monte Carlo simulation.

They rely on the fact that the optimal portfolio is part of the standard deviation of the

wealth process and such standard deviation can be directly estimated. The method can

be applied to any time additive utility function and any parametrization of the asset

processes. The advantage of the Monte Carlo simulation is that it is very easy to im-

plement and converges very fast. Computing standard deviation through Monte Carlo

simulation has other applications in finance such as computation of hedge if an option.

2.2.5 Stochastic linear programming

Stochastic linear programming models are able to tackle portfolio management problems,

however the models are more difficult than simulation. SLP searches for the best solution,

given bounds on the variables, the constraints of the problem, and the objective func-

tion. The stochastic programming-based approaches for real space problems are often

computationally not tractable. However, due to algorithmic progress and technological

developments, nowadays relatively large models can be solved by SLP in reasonable time.
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A common approach to reduce the scenario space to a manageable size for multi-stage

stochastic programming problems is by using the Sample Average Approximation (SAA)

method based on Monte Carlo simulation. An analysis of stochastic dual dynamic pro-

gramming method applied to the constructed SAA problem is offered by Shapiro. A

viable and practical alternative to stochastic programming can be provided by policy

optimization where, given a set of possible scenarios, policy rules are directly associated

with individual scenarios and the resulting simulated policy distributions can be directly

evaluated. The range of possible decisions is thus limited through the introduction of

policy rules.

The asset returns often exhibit of the portfolios and taking into account realistic

properties of the assets returns exhibiting skewness and kurtosis.

2.2.6 Hamilton-Jacobi-Bellman approach

Munos and Moore in [47] discuss the necessity of introducing nonuniform discretization

of probabilistic space when solving optimal control problems. They consider variable

resolution discretizations to approximate the value function and the optimal control and

compare experimentally several splitting criteria. They observed that this approach

works well for 2D problems, however for more complex problems, they argue, uniform

grids perform better.

Al-Tamini, Lewis and Abu-Khalaf in [1] proved the convergence of value-iteration-

based heuristic dynamic programming (HDP) algorithm to the optimal control and

the optimal value function that solves the HJB equation appearing in infinite horizon

discrete-time nonlinear optimal control, assuming exact solution of the value update and

the action update at each iteration. They used standard neural networks allowing the

implementation of HDP without knowing the internal dynamics of the system.

The Halmilton-Jacobi-Bellman approach has been used for solving an optimization

problem formulated as dynamic accumulation model with application to pension saving

management, specially designed for the II. pillar of Slovak pension system, in series of

articles by Kilianová, Melicherč́ık, Ševčovič. All the models consider normal distribution

for the portfolio returns. The portfolios are usually represented by two asset types

- a risky and a non-risky asset. The numerical procedure for solving respective HJB

equation has been introduced and implemented [32]. Melicherč́ık, Ševčovič in cooperation

with Jakub́ık provided a sensitivity analysis for the dynamic stochastic accumulation

model for optimal pension saving management in [29]. Kilianová in her dissertation

thesis in [31] offered a derivation of a partial differential equation for solving the optimal

planning problem in pension model and Macová with Ševčovič showed how the portfolio

management problem can be formulated in terms of the solution to the Hamilton-Jacobi-

Bellman equation. Melicherč́ık and Ševčovič in [43] consider stock prices representing

the risky asset to be driven by a Brownian motion and a non-risky asset to follow one
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factor Cox-Ingersoll-Ross model.

The optimization problem given by HJB differential equation with terminal condition

can be transformed by Riccati transformation to a Cauchy problem and has been ana-

lyzed by Ishimura and Ševčovič [28]. Kilianová and Ševčovič in [34] offered an implicit

iterative finite volume numerical approximation scheme for solving transformed Cauchy

problem for the quasi-linear parabolic equation and optimize a portfolio consisting of

n = 30 assets.

This set of articles create an inspiration for extension of the models for distributions

exhibiting the fat tails.

2.3 Goals of the thesis

The main goal of the thesis is to study and implement the fat tailed distribution of the

returns into financial planning problems. We adopt the dynamic accumulation model

originally designed for the optimal saving management and consider fat tailed Normal-

Inverse-Gaussian distribution for the asset returns and the portfolio return. We aim to

analyze the pitfalls arising from considering the fat tailed distribution characterized by

exhibiting large kurtosis and introduce a stable numerical method for solving formulated

optimization problem.

We study the distribution of the final wealth and its properties for normal and for NIG

distribution. Our following aim is to provide a sensitivity analysis of the model to the

model parameters, especially to the parameters of the portfolio return distribution. We

focus on the dependency of final accumulated sum on portfolio descriptive statistics and

study the influence of a small change in one input parameters to final wealth descriptive

statistics and optimal choice.

2.4 Structure of the thesis

The thesis is structured as follows. In chapter 3 we discuss the investment model, model

with regular contributions and finally the model design for risk management in pension

funds. We formulate the maximization utility problem by means of Belmann equation.

The utility types and the risk aversion coefficients of the investor/saver are discussed in

chapter 4.

The aim of the thesis is to study the impact of considering the fat tailed distributions

for portfolio returns. In chapter 5 we introduce the family of generalized hyperbolic

distributions and focus on normal inverse Gaussian distribution for modeling the asset

returns. The motivation for the NIG distribution comes from Onalan [48] who analyzed

the historical time series of some indices and the suitability of the NIG distribution for

modeling their returns. We provide the similar study on the S&P 500 Index and show
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that the NIG can fit the empirical distribution in much better way than the normal dis-

tribution. In this chapter we analyze the NIG parameters, their influence on the density

shape and discuss the NIG properties. The NIG distribution can depict the skewness

and the kkurtosis of the asset returns in a very good way, however the convolution of

more NIG distributed random variables is not defined, which is one of its main draw-

backs leading to analysis of NIG mixtures in chapter 6. Here we propose the algorithms

for replicating the NIG correlated time series and define the approximation of a NIG

mixture.

The chapter 7 is devoted to the numerical solution of the formulated problem. We

focus on the needs of the fat tailed distribution and discuss the appropriate method

for integral approximation as well as method for interpolation and extrapolation the

function values inside and outside the suitably chosen grid.

The chapter 8 to chapter 10 offer the results for a pension planning problem, compar-

ison of optimal choice and expectation considering normal and NIG distributed portfolio

returns with and without the regulations introduced by the Government. We provide a

sensitivity analysis on the risk aversion coefficient and in chapter 10 we focus on sensi-

tivity of skewness and kurtosis on optimal choice, expectation and risk.



Chapter 3

Model formulation

In this section we introduce a portfolio management problem requiring the investment

solution leading to high performance with small risk. The model describes the problem

of an investor starting from initial capital with infinite time horizon. A special case

is related to pension fund management for clients who contribute regularly to selected

funds in order to maximize their pension after certain time horizon, at the retirement

time.

The model is based on the recovery of initial capital with the possibility of rebal-

ancing at each time step. We sequentially introduce the investment model, model with

regular contribution and model designed for pension planning. Finally, we formulate the

stochastic dynamic problem.

We consider a general investment model discussed by Ferguson and Gilstein in [22],

where an investor decides in every time step about the investment allocation among the

asset structure. We assume that the investor has information about the history of the

market denoted by It for each investment time t ∈ R+. The investor possesses capital

of C0 units, which he can invest in a finite set of investment opportunities, set of N

different assets. Let Xt for t ∈ R+ denote the capital of the investor at the beginning

of the time period. The decision of the investor is represented by N -dimensional vector

θt = (θ1
t , . . . , θ

N
t ), where θit represents the part of capital invested in the opportunity i at

time t. The investment vector θt is subject to constraints

N∑
i=1

θit ≤ 1, for t ∈ R+, (3.1)

representing that the investment can not exceed current capital. The additional con-

straint θit ≥ 0, for i = 1, 2, . . . , N and t ∈ R+ restricts the positions to long positions

only.

Let rft denote the risk free interest rate for the time period [t, t+∆t) and rit the return

of the investment opportunity i for time period [t, t+∆t). The interest rate rft for period

11



CHAPTER 3. MODEL FORMULATION 12

[t, t + ∆t) is known at time t, however, the return rit of the investment opportunity i

behaves in stochastic way caused by the market volatility. The information It contains

the history of interest rates rf and the history of opportunities returns ri for i = 1, . . . , N

until time t. The return over time interval of length ∆t is defined as rit+∆t =
1

∆t
ln
Xt+∆t

Xt

.

The investor’s capital is evolving in time according to equation

Xt+∆t = Xte
rθt∆t, (3.2)

X0 = C0, (3.3)

where rθt represents the return of the portfolio composed from risky opportunities i =

1, ..., N with weights θi and risk-free part 1− |θt| at time t expressed as

rθt =

(
1−

N∑
i=1

θit

)
rft +

N∑
i=1

θitr
i
t. (3.4)

The new investment decision θt is taken at time t in regards to the current information

It. The investment vector can be expressed as θt(C0, I0, I1, . . . , It), i.e. dependent on the

initial capital and the sequence of historical information. Vector θ depends implicitly on

the investor’s sequence of capital to that time, i.e. X0, . . . , Xt.

Remark 3.1. Two basic assumptions are made. It is assumed that the investor views the

world as a Bayesian and thus that the joint distribution of I1, I2, . . . , It given I0 is known

to him. Furthermore, it is assumed that the amount he invests in various opportunities

in period t has no influence on the course of the future market events Iτ for τ > t. More

precisely, it is assumed that the distribution of the future events is independent of his

current and past choices of the investments.

Remark 3.2. The return of the portfolio Y (as by Merton) is considered as a linear

combination of asset returns Yi represented in portfolio with weights w = w1, ...wN , i.e.

N∑
i=1

wi
dYi
Yi

=:
dY

Y
.

3.1 Model with regular contributions

The above introduced model considers one investment at the initial time and reinvest-

ment according to portfolio performance. The portfolio management problem may con-

tain the additional investments during the planned time period typical for saving ac-

counts. We formulate the model allowing the contributions to current capital on the

regular basis.
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The problem is defined as a finite horizon problem with horizon T and with portfolio

containing only long positions in assets from finite set of investment opportunities. We

consider an investor possessing an initial capital C0 and contributing regularly the value

of value C∆t in times corresponding to rebalance time points (the yearly contribution

corresponds to the value C). The wealth evolution Xt can be described as following

Xt+∆t = Xte
(r
θt
t −ρt)∆t + C∆t,

≡ Ft(Xt, θt, r
θt
t ), t ∈ [0, T ),

X0 = C0,

(3.5)

where rθt represents the return of portfolio with weights θt in the time period [t, t+ ∆t).

The portfolio can consist from risky (stocks), low-risky (bonds) and non-risky (inflation

linked bonds or cash) assets. The portfolio weights fulfill the condition
∑

i θ
i
t = 1 for

each t, i.e. the risk free assets are considered to be part of the portfolio with volatility

close to zero. The ρt > 0 corresponds e.g. to inflation rate.

Considering the transaction costs ϕ expressed as a part of traded volume, the wealth

evolution changes to

Xt+∆t = Xt(e
(r
θt
t −ρt)∆t − ϕ

∑
i

|∆θit|) + C∆t, t ∈ [0, T ),

X0 = C0,

(3.6)

where ∆θt = θt − θt−∆t represents the change in portfolio composition from time period

[t−∆t, t) to [t, t+ ∆t). Expression ϕ
∑
i

|∆θt| represents the part of the current capital

to be paid due to composition change of the portfolio.

3.2 Pension problem

Pension management problem is a special case of the model with regular contribution

adapted to the needs of pension planning. The pension problem is a long-term horizon

problem bound to the client’s salary, economic prediction for the salary growth and

restrictions introduced by Government. The pension problem suited for Slovak pension

system has been discussed by Ševčovič, Melicherč́ık and Kilianová in set of articles [29],

[32], [43], [44].

We suppose that the future pensioner deposits once a year a τ -part of his yearly salary

wt in a pension fund with composition expressed by θ with respect to the Governmental

restriction. Let us denote the accumulated sum at time t by st, t ∈ [0, T ), where T is
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the expected retirement time. Then the equations read as follows:

st+∆t = ste
r
θt
t ∆t + τwt+∆t∆t, t ∈ [0, T ),

s0 = τw0∆t,
(3.7)

where rθtt is the return dependent on portfolio composition θt in the time period [t, t+∆t).

The salary of the saver follows a deterministic process given by equation

wt+∆t = wte
ρt∆t,

where ρt denotes the wage growth at time t. We assume that the term structure of wage

growth is known and can be estimated by means of an econometric model.

After the retirement time T the pensioner usually strives to maintain his living stan-

dard. Therefore the accumulated saved amount, from the pensioner’s point of view, is not

really what he is interested in. The ratio of the cumulative sum sT and the yearly salary

wT , dT =
sT
wT

, is more important. Using the quantity dt =
st
wt

the budget-constraint

equations (3.7) can be reformulated as

dt+∆t = dte
(r
θt
t −ρt)∆t + τ∆t,

≡ Ft(dt, θ, r), t ∈ [0, T ),

d0 = τ∆t,

(3.8)

where rθt is the return of the fund with portfolio composition θt in time period [t, t+ 1),

and ρt denotes the wage growth in [t, t+ 1). T is the expected retirement time, [29].

3.3 Problem formulation

Investor’s satisfaction and risk attitude are often described by the utility function. The

set of investor’s opportunities is created by assets behaving in stochastic manner. We

suppose that the investor’s utility U with the risk aversion coefficient is known as well

as the asset distribution.

The choice of the opportunity i from the set of N assets depends on the investor’s

profile and his attitude to risk. Intuitively, the investor’s risk aversion decreases with his

wealth. Therefore, we formulate the problem in the way: at given level of investor’s risk

aversion we maximize the expected utility from his wealth at time T .

We define set Θ of all possible portfolio compositions as

Θ = {θt|
N∑
i=1

θit = 1, θit ≥ 0, ∀i = 1, ..., N}, ∀t ∈ [0, T ). (3.9)
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The investor decides at every time step t for portfolio composition θt according to

information It containing the history of all asset returns. We formulate the problem as

stochastic dynamic problem

max
θ∈Θ

E(U(XT )) (3.10)

subject to budget constraint given by (3.5).

We apply a fact from the theory of conditional expectations that a sequence of non-

decreasing information {It, t ∈ [0, T )} may be considered as a sequence of non-decreasing

σ-algebras. This allows the implementation of the Theorem 3.1 [50] of the tower law for

conditional expectations on (3.10).

Theorem 3.1 (Tower law for conditional expectations).

Let X be a random variable on a probabilistic space (Ω,F , P ) with E(|X|) < ∞. Let

G,H be σ-algebras with G ⊂ H ⊂ F . Then

E(X|G) = E(E(X|H)|G).

Using the law of iterated expectations

E(U(XT )) = E(E(U(XT )|It)) = E(E(U(XT )|It)) (3.11)

we conclude E(E(U(XT )|Xt)) to be maximal. Let us denote the investor’s intermediate

utility function at time t as

Vt(X) = max
θ∈Θ

E(U(XT )|Xt = X). (3.12)

Applying the Theorem 3.1 to the problem (3.12), we obtain the Bellman equation

Vt(X) = max
θ

E(Vt+∆t(Ft(X, θ, r)))

VT (X) = U(X).
(3.13)

The solution of (3.13) gives to the investor the information about the optimal port-

folio composition θ in every time t in dependency on the random variable representing

current wealth Xt. Supposing that the compound probability distribution of each port-

folio composition is known and is represented by density f θt , the equation (3.13) can be

rewritten into form

Vt(X) = max
θ

E(Vt+∆t(Ft(X, θ, r)))

= max
θ

∫
R
Vt+∆t(Ft(X, θ, r))f

θ
t (r)dr. (3.14)

According to Proposition 3.1 for Ft(X, θ, r) increasing in X the optimal solution exists
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and is unique. The solution denotes the decisions process for the optimal opportunity

choice in each decision time t. The proof for the normal distribution and two-dimensional

space is provided in [43]. Analogically, the proof can be provided for NIG distribution

and more dimensional space.

Proposition 3.1. Let U(X) be an increasing, strictly concave, C2 smooth function for

X > 0. Then for any t = 0,∆t, 2∆t . . . , T −∆t,

1. the function Vt(X) is increasing and strictly concave in X-variable;

2. there exists the unique argument θ̂t(X) of the maximum in (3.14).



Chapter 4

Utility function and risk aversion

The utility function is considered an appropriate measure of the usefulness of money, see

the works of Pratt [49], Gerber [24] or Markowitz [41]. Typically, if x is the wealth or a

gain of a decision-maker, U(x) expresses the utility or “moral value” of x. An important

part of the model is to define the right utility function U for the investor.

An utility function U : R→ R exhibits two basic properties:

(i) U(x) is an increasing function of x on (0,∞);

(ii) U(x) is a concave function of x.

Usual assumption is that the function U(x) is twice differentiable; then (i) and (ii)

state that U ′(x) > 0 and U ′′(x) < 0. The first property amounts to the evident require-

ment that more is better. The U ′ is referred to as a marginal utility. Several reasons

are given for the second property. One way to justify it is to require that the marginal

utility U(x) is a decreasing function of wealth x. This property is referred to as a risk

aversion.

4.1 Risk Aversion Functions

To a given utility function U(x) we associate a measure of Arrow-Pratt absolute risk

aversion coefficient given as a function

rA(x) = −U
′′(x)

U ′(x)
. (4.1)

We note that properties (i) and (ii) imply that rA(x) > 0. If the absolute risk aversion

coefficient does not depend on the wealth of the investor, a utility function U exhibits the

constant absolute risk aversion (CARA). An increasing absolute risk aversion function

rA(x) (IARA) denotes that the investor tends to invest in less risky portfolios when

17
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his wealth is increasing. The natural assumption is that most of the investors have

decreasing absolute risk aversion (DARA) [49].

The Arrow-Pratt relative risk aversion coefficient to a utility function U is defined as

rR(x) = −xU
′′(x)

U ′(x)
. (4.2)

Utility functions with constant relative risk aversion are called CRRA utility functions.

Similarly to absolute risk aversion function, DRRA denotes decreasing relative risk aver-

sion and IRRA increasing relative risk aversion. The advantage of this measure is that

it is still a valid measure of risk aversion, even if the utility function changes from risk-

averse to risk-loving with varying α. A constant RRA implies a decreasing ARA, but

the reverse is not always true.

CARA ARA = const. CRRA RRA = const
IARA ARA ↑ IRRA RRA ↑
DARA ARA ↓ DRRA RRA ↓

4.2 Used utility functions

We suppose two utility functions in our research, both of CRRA type. The first CRRA

power utility function with coefficient α > 0 representing the investor’s risk aversion is

given by

U(x) =
x1−α

1− α
. (4.3)

The second is adopted from Ševčovič and Melicherč́ık and Kilianová [31], [44] designed

for clients of pension management institutions. We suppose that the saver’s satisfaction

measure is represented by a CRRA utility U as a function of his wealth given as

U(x) =
1

1− α
(
(κx)1−α − 1

)
, (4.4)

where α > 0 is relative risk aversion of the future pensioner and κ is a constant rep-

resenting number of payments during specified time period, e.g. κ = 1
12

. Increasing α

implies that the pensioner is looking for less risky funds.
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4.3 Model property with CRRA utility functions

The model formulation (3.5) for C0 = C∆t allows to derive an interesting property that

the level of wealth is proportional to the contribution rate, i.e.

E(XλC
t ) = λE(XC

t ), (4.5)

for any t and α > 0. Process XC
t is evolving according to (3.5) with regular yearly

contribution of value C.

Suppose the utility function from section 4.2 and evolution of the wealth according

to (3.5). For Vt(x) we have

Vt(X) = max
θ

E(U(XT )|Xt = X),

= max
θ

E(Vt+∆t(Ft(X, θ, r)),

VT (X) = U(X)

and for the wealth evolution according to (3.5) we obtain that

F λC
t (λX, θ, r) = λXte

(rθt−ρt)∆t + λC∆t = λFC
t (X, θ, r).

Proposition 4.1. For any affine function FC
t linear in C and utility function given by

(4.3) or (4.4) it holds that

E(F λC
t ) = λE(FC

t ).

The proof has been originally stated in [29] by Jakub́ık, Melicherč́ık and Ševčovič for

normal distribution . Although the extension to arbitrary distribution is straightforward

we give it for reader’s convinience.

Proof 4.1. Investor utility

We first consider the utility (4.3)

U(x) =
x1−α

1− α
.

By means of a backward mathematical induction for t = T, T −∆t, . . . , 0 we prove that

the value function Vt(X) satisfies V λC
t (λX) = λ1−αV C

t (X) for ∀t,X and λ > 0.

For t = T we have

U(λX) =
(λX)1−α

1− α
= λ1−αU(X).
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Now we suppose that V λC
t+∆t(λX) = λ1−αV C

t+∆t(X). Then we have

V λC
t (λX) = max

θ
E[V λC

t+∆t(F
λC
t (λX, θ, r))]

= max
θ

E[V λC
t+∆t(λF

C
t (X, θ, r))]

= max
θ

E[λ1−αV C
t+∆t(λF

C
t (X, θ, r))]

= λ1−α max
θ

E[V C
t+∆t(λF

C
t (X, θ, r))]

= λ1−αV C
t (X),

for the time t. The optimal argument θ̂λCt (λX) as solution of maximization problem is

independent of λ > 0, i.e. θ̂λCt (λX) = θ̂Ct (X) since

max
θ

E[V λC
t+∆t(F

λC
t (λX, θ, r)] = max

θ
E[V λC

t+∆t(λF
C
t (X, θ, r)]

= max
θ

E[λ1−αV C
t+∆t(F

C
t (X, θ, r)]

= λ1−α max
θ

E[V C
t+∆t(F

C
t (X, θ, r)].

The stochastic variable XC
t defined recursively,

XC
t+∆t = Ft(X

C
t , θ

C
t (XC

t ), r
θCt
t ),

XC
0 = C∆t,

satisfies XλC
t = λXC

t , ∀t ∈ [0, T ]. The level of wealth as a stochastic variable is thus

proportional to the contribution. The expected value E(XC
t ) of the accrued wealth XC

t

is a linear function of λ, i.e. (4.5) holds.

Pensioner utility

The pensioner’s utility function is given by (4.4) characterized by a constant shift.

Following the same procedure it can be shown that V λC
t (λX) = λ1−αV C

t (X)− 1
1−α(1−

λ1−α), ∀t,X and λ > 0.

For VT (x) = U(x) we have

U(λx) =
1

1− α
(
(κλx)1−α − 1

)
=

1

1− α
(
(κx)1−α λ1−α − 1

)
=

1

1− α

(
(κx)1−α − 1

λ1−α + 1− 1

)
λ1−α
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=
1

1− α
(
(κx)1−α − 1

)
λ1−α +

1

1− α

(
1− 1

λ1−α

)
λ1−α

= λ1−αU(x)− 1

1− α
(1− λ1−α).

We now assume that V λC
t+∆t(λX) = λ1−αV C

t+∆t(X) − 1
1−α(1 − λ1−α), so for time t we

obtain

V λC
t (λX) = max

θ
E[V λC

t+∆t(F
λC
t (λX, θ, r))]

= max
θ

E[V λC
t+∆t(λF

C
t (X, θ, r))]

= max
θ

E
[
λ1−αV C

t+∆t(λF
C
t (X, θ, r))− 1

1− α
(1− λ1−α)

]
= λ1−αV C

t (X)− 1

1− α
(1− λ1−α),

where optimal portfolio composition θ̂ does not depend on λ. Therefore, for stochastic

variable xCt we have XλC
t = λXC

t and so (4.5). �



Chapter 5

Modeling of returns with fat-tailed

distribution

Portfolio optimization is based on trading of risk and return. The construction of port-

folios with minimum risk for a given return depends on two inputs: the choice of the risk

measure, and the probability distribution used to model returns. Although the normal

distribution for modeling returns was widely used for many years, we can find a volu-

minous literature concerning modeling returns with probability distribution which may

better take in account more extreme changes. It can be shown that for many assets the

returns do not behave “normally”. It has been observed that the fat tails are one of the

features of the asset returns distribution. Andersen, Bollerslev, Diebold, Ebens in [2]

show that the daily DJIA (Dow Jones Industrial Average) returns, have fatter tails than

the normal and, for the majority of the stocks, are also skewed.

Markowitz suggested to measure the risk of the portfolio returns by means of their

variances which involve the joint distribution of returns of all assets, see Chapman [13]

or Lederman [37]. Despite its simplicity and tractability, the Markowitz model has two

pitfalls:

• First, the probability distribution of each asset return is characterized only by its

first two moments.

• Second, it is generally insensitive to extreme events which may lead to losses caused

by their underestimation.

Value at Risk is considered to describe the extreme events much better. It turns out,

by a result of Embrechts, McNeil, and Straumann [19], that by using elliptical distribu-

tions for modeling asset return, managing risk with VaR is entirely equivalent to manag-

ing risk with the variance of the portfolio. The optimized portfolio composition given a

certain return will be the same as the traditional Markowitz portfolio composition. Only

the choice of distribution can affect the optimized portfolio. Elliptical distributions are

22
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generalizations of the multivariate normal distributions and share many of their tractable

properties [36]. This generalization of the normal family provides an attractive tool for

actuarial and financial risk management. However, the managers cannot neglect the

deviation from multivariate normal distribution. To model financial returns series also

other heavy tailed elliptical distributions can be used, such as t-Student and symmetric

generalized hyperbolic distribution, or non-elliptical distribution, such as the skewed t

distribution.

A fat-tailed distribution is a probability distribution that has the property to exhibit

extremely large skewness and kurtosis. The comparison is often made relative to the

ubiquitous normal distribution, which is considered to be a thin tail distribution, or to

the exponential distribution. Fat tail distributions have been empirically encountered

in a fair number of areas, not only finance and economics, but also physics, and earth

sciences. Fat tail distributions have power law decay in the tail of the distribution, but

do not necessarily follow a power law everywhere.

Definition 1. Random variable X with probability density function, fX(x), in form

fX(x) ∼ x−(1+α) as x→∞, α > 0

with 0 < α < 2, is said to have a fat tail if

Pr[X > x] ∼ x−α as x→∞, α > 0.

5.1 Generalized hyperbolic distribution

In this part we present the class of generalized hyperbolic distributions which has been

introduced in Barndorff-Nielsen. The GH distributions create a wide class of interesting

distributions including the normal inverse Gaussian distribution, the hyperbolic distri-

bution, the normal distribution, the skew t and the variance gamma distribution, see

Scott in [51]. Many of them are known as fat tailed distributions and are widely used in

many branches.

Definition 2 (Modified Bessel function of the third kind). The integral presentation of

the modified Bessel function of the third kind with index λ is given as

Kλ(x) =
1

2

∫ ∞
0

yλ−1e−
x
2

(y+y−1)dy, x > 0. (5.1)

The useful property of Bessel function is that Kλ(x) = K−λ(x).

Definition 3 (Generalized hyperbolic distribution). The random variable X has the gen-

eralized hyperbolic distribution, X ∼ GH(λ, α, β, µ, δ), if its probability density function
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(introduced by Barndorff-Nielsen in 1977) is given by

fGH(x|λ, α, β, µ, δ) =
(γ
δ
)λ

√
2πKλ(δγ)

eβ(x−µ)
Kλ− 1

2

(
α
√
δ2 + (x− µ)2

)
(√

δ2+(x−µ)2

α

) 1
2
−λ

(5.2)

where γ =
√
α2 − β2, Kλ is the modified Bessel function of the third kind, and x ∈ R.

The domain of variation of the parameters is µ, α ∈ R, and

δ ≥ 0, |β| < α if λ > 0 (5.3)

δ > 0, |β| < α if λ = 0 (5.4)

δ > 0, |β| ≤ α if λ < 0 (5.5)

Tails of the generalized hyperbolic distribution are considered as semi-heavy and follow

fGH(x|λ, α, β, µ, δ, γ) ∼ |x|λ−1e(∓α+β)x as x→ ±∞. (5.6)

Among special and limiting cases of the GH distribution we include hyperbolic dis-

tributions in particular for λ = 1 and the normal inverse Gaussian distributions when

λ = −1/2. The most useful representation of the GH distribution is a mean-variance mix-

ture of the generalized inverse Gaussian distribution, as discussed by Folks and Chikara

in [23] or by Hu [27].

We will focus on especially on normal inverse Gaussian (NIG) distribution inspired

by Eriksson, Ghysels and Wang [20] and Onalan [48].

5.2 The normal inverse Gaussian distribution

The NIG distribution is a special case of generalized hyperbolic distribution. It has

four parameters α, β, µ, δ specifying the shape of the density function. Barndorff-Nielsen

[4] defined the NIG distribution as a normal variance-mean mixtures when the mixture

distribution is a inverse Gaussian distribution.

Definition 4. The random variable X is normal inverse Gaussian distributed

NIG(α, β, µ, δ) if its probability density function is given by

f(x) =
α

π
exp{δ

√
α2 − β2 + β(x− µ)}

K1(αδ
√

1 + (x−µ
δ

)2)√
1 + (x−µ

δ
)2

(5.7)

where K1 denotes the modified Bessel function of the third kind, and the conditions for
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the parameters are α > 0, δ > 0, µ ∈ R, 0 ≤ |β| ≤ α.

Although the probability density function is fairly complicated, its moment generating

function takes a simple form [39]

MX(t) = exp[tµ+ δ(
√
α2 − β2 −

√
α2 − (β + t)2)].

Depending on the role of the parameters, we can divide them into two groups. The

first group of the parameters affects the shape. Here belong α and β. The other two

parameters µ and δ are scaling parameters of the distribution. The parameter α refers

to flatness of the density function. The greater α, the greater concentration of the prob-

ability mass around mean and the greater the peak of density function. The parameter

β determines a kind of skewness, for β = 0 we obtain symmetric distribution around

mean.. The scaling parameter µ is responsible for the shift of the density function and

the last parameter δ corresponds to the scale of the distribution. Small values narrow

the distribution down and larger ones make it wider as it can be seen on Figure 5.1.

Some values of NIG distribution parameters with corresponding moments are given in

Table 5.1.

Theorem 5.1. The first four moments, mean E, variance V, skewness S and excess

kurtosis eK, of the NIG distribution can be expressed using the four parameters as follows

E(X) = µ+ δ
β√

α2 − β2
(5.8)

V(X) = δ
α2

(α2 − β2)
3
2

(5.9)

S(X) = 3
β

α
√
δ
√
α2 − β2

(5.10)

eK(X) = 3
(1 + 4β

2

α2 )

δ(α2 − β2)
1
2

. (5.11)

Correspondingly, the parameters of the NIG distribution using the moments can be

expressed as stated in Theorem 5.2.

Theorem 5.2. Suppose that random variable X is NIG(α, β, µ, δ) distributed and its

mean, variance, skewness and excess kurtosis are denoted as E,V ,S and eK, respectively.
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Figure 5.1 Shape of density function of NIG distribution for different values of parameters
α, β and δ.

Then the parameters are related to the moments by

α =
3√
V

(3eK − 4S2)
1
2

(3eK − 5S2)
(5.12)

β = α
S

(3eK − 4S2)
1
2

(5.13)

δ = αV
(

1− β2

α2

) 3
2

(5.14)

µ = E− δ β√
α2 − β2

(5.15)

under condition that 3eK − 5S2 > 0.

The proof of the Theorem 5.2 can be find in section A.2.
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Table 5.1 The values of four moments of NIG distribution with different parameters.

α β µ δ E V S eK
0.1 0 0 1 0 10 0 30

1 -0.8 0 1 -1.33 4.63 -3.10 17.8
1 0 0 5 0 5 0 0.6
1 0 0 1 0 1 0 3

7.746 0 0 7.746 0 1 0 0.05

5.3 Properties of normal inverse Gaussian distribu-

tion

Proposition 5.1. The NIG class of densities has the following properties:

1. Scaling property: If X ∼ NIG(α, β, µ, δ), then Y = cX ∼ NIG(α
c
, β
c
, cµ, cδ).

2. Convolution property: If X1 ∼ NIG(α, β, µ1, δ1) and X2 ∼ NIG(α, β, µ2, δ2) are

independent, then the sum Y = X1 +X2 ∼ NIG(α, β, µ1 + µ2, δ1 + δ2).

3. Standardization: If X ∼ NIG(α, β, µ, δ), then variable Y =
X − µ
δ

has the Stan-

dard Normal Inverse Gaussian Distribution NIG(αδ, βδ, 0, 1).

5.4 Sensitivity of the NIG density shape on descrip-

tive statistics

For better illustration of the density shape in dependence of moments, we introduce the

small sensitivity analysis. We study influence of each of four moments E,V ,S,K on the

distribution characteristics such as mean, median and different quantiles while the other

three stay fixed. We propose Figure 5.2 depicting the change of the distribution shape.

The shape of the distribution can be seen on the cross-sections for each level of variance,

skewness and kurtosis.

The change of mean causes only the shift of the peak settlement while the shape

remains constant. On the other hand, the next three moments influence the shape in

a crucial way. Higher value of variance (Figure 5.2 (a), (b)) causes flattening of the

distribution. The median does not change while the other quantiles are increasing in

absolute value. The higher skewness (Figure 5.2 (c), (d)) shifts the median value down

and makes the right tail longer and left tail shorter. The kurtosis (Figure 5.2 (e),(f))

influences the height of the distribution peak, the higher value of kurtosis implies the

thinner and higher peak.
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5.5 Motivation for using normal inverse Gaussian

distribution

Onalan in his article [48] provided an empirical analysis of financial data, especially he

focused on S&P Index and VIX Index. He investigated the use of normal inverse Gaussian

distribution in financial risk management. He showed that the log-returns for both

indices strongly deviate from the normal distribution, since the skewness exhibits non-

zero value and kurtosis gains higher value than 3 which is typical for normal distribution.

In the paper, author estimated the values of distribution parameters and used them to

estimate Expected Shortfall and Value at Risk to the VIX and S&P500 Index. The

density of NIG distribution with estimated parameters values was close to the empirical

density of log returns, and in addition the tail behavior of probability distributions

revealed that the NIG density represents the fat tails of empirical data better than

normal density. He concluded that in the risk measurement the normal inverse Gaussian

model performs better than normal and historical Value at Risk (VaR) and Expected

Shortfall calculation methods.

5.5.1 Historical data of S&P500 Index

We have adopted the NIG model and analyze the fitness on the real data. In Figure 5.3

(a) we offer an illustration how the real data are actually fitted by the normal distribution

and the fat tailed distribution NIG. We have considered the daily data for S&P500 Index

in time period 02/01/2000 - 02/01/2014. The values of the first four moments were

obtained from the historical data series (as in section A.1). The annual mean value

of asset returns is 1.65% , the annual standard deviation is 20.87%, the skewness is

negative with value -0.17 and the kurtosis 10.7. The parameters of the NIG distribution

were calculated based on the values of the moments (using Theorem 5.2). As we can see,

the density of the NIG probability distribution seems to better fit the tails and the peak

than the normal distribution. The Figure 5.3 (b) represents Q-Q plot to compare the

empirical distribution with fitted NIG distribution by plotting their quantiles against

each other.

We can conclude that the log-returns of S&P500 Index follow the distribution with

higher kurtosis than 3, and more important, the distribution with non zero skewness.

We have computed the values of the first four moments on the yearly basis and showed

their values in Table 5.2 corresponding to time periods illustrated on Figure 5.4. We

present the average yearly values for the different time periods characterized by various

trends.

Analysis of the distribution of S&P500 Index returns and the results in Table 5.2

motivate us to provide the sensitivity analysis of different levels of skewness and kurtosis

on the final value of the accumulated sum.
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Figure 5.3 Histogram of log returns for daily data for S&P Index and density of proba-
bility distribution for time period Jan 2000 - Jan 2014 and corresponding Q-Q plot of log
returns for S&P index vs fitted NIG distribution. (The descriptive statistics obtained
from daily historical data are: yearly mean value is 1.65%, yearly standard deviation
20.87%, skewness -0.17 and excess kurtosis 7.7.)

Table 5.2 Descriptive statistics obtained from historical data series of S&P500 Index for
the time period 02/01/2000 - 02/01/2014.

2000 - 2003 2003 - 2008 2008 - 2009 2009 - 2014 2000 - 2014
Mean -15.77% 9.31% -43.85% 13.54% 1.65%
Std. dev. 23.39% 13.16% 41.13% 19.44% 20.87%
Skewness 0.1951 -0.1747 -0.0457 -0.2740 -0.1748
Kurtosis 4.1154 4.6763 6.6140 7.1379 10.7006

5.6 Drawbacks of NIG distribution

NIG distribution has the great property to describe the density shape of the variable in

very good way and depict its skewness and kurtosis. The replication is straightforward

from NIG distribution with parameters obtained by Theorem 5.2.

One of the main drawbacks follows directly from NIG convolution property (Theorem

5.1) defined only for independent variables exhibiting same shape parameters which is a

very restrictive condition. Considering more dimensional space of uncorrelated variables

leads to non-problematic replication exhibiting the pre-desribed values of mean, variance,

skewness and kurtosis. The problem appears when considering more dimensional space

of correlated NIG distributed variables. The higher the correlation and the higher the

skewness and kurtosis of the variables, the less precise replication.

Therefore we introduce the algorithms for generating mixtures created by correlated
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Figure 5.4 Evolution of S&P Index during time period 02/01/2000 - 02/01/2014 graph-
ically divided into four time periods (details in Table 5.2) characterized by different
trends.

NIG distributed variables in chapter 6.



Chapter 6

Mixture of NIG distributed time

series

The normal inverse Gaussian distribution possesses the property to approximate the

empirical distribution of real returns to a high degree. Considering a portfolio composed

from assets with NIG distributed historical returns it is necessary to create a mixture.

The normal inverse Gaussian distribution does not belong to class of infinitely divisible

distributions, i.e. the mixture of two or more NIG distributed variables does not have to

create NIG distributed variable unless the mixing variables share the shape parameters

α and β. This feature of NIG distribution causes difficulties when assuming a portfolio

composed from assets with NIG distributed returns. In general, it is not usual that

more assets follow distributions with same shape parameters. Therefore, we introduce a

procedure for approximation of parameters of NIG mixtures.

NIG+NIG 6= NIG

NIG+NIG ≈ NIG

Another issue arising by creating NIG mixtures follows from the properties of the

historical time series often exhibiting high correlation and their modeling (replication)

requires to take this correlation into consideration. In the next sections we offer two

algorithms for replicating the time series with pre-described four moments and correla-

tion.

6.1 Replication of time series: Choleski approach

Replication of the time series from pre-defined moments and correlation create an im-

portant part by generating the NIG mixtures. We first present an algorithm based on

Choleski decomposition in Table 6.1 commonly used by generating correlated normal

32
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random variables. Despite of the difference between the NIG and normal distribution

the algorithm gives for some set of parameters sufficiently precise results.

6.2 Properties of the replicated time series

If we consider independent NIG distributed time series with given first four moments,

the introduced algorithm can secure that the replicated time series will carry the same

features - same four moments. However, if the time series are correlated, the replicated

times series do not have to exhibit the pre-described values of the four moments and

correlation. We have provided an analysis regarding the correctness of replication of

asset returns when considering mixture of two correlated NIG distributed variables.

The differences between pre-described moments and moments of replicated time series

arise by correlating independent NIG time series in step 3. The correlation of replicated

time series is obtained by multiplying the independent time series by lower triangular

matrix calculated by Choleski decomposition, i.e. the realization of the second time series

is transformed to copy the influence caused by correlation. However, this transformation

degenerates the realization and so its features. We observe the following aspects.

• Higher level of correlation causes higher degeneration of replicated features, i.e. of

skewness and kurtosis of the second time series. Additionally, it is not possible to

transfer high correlation into replicated time series. The reproduced time series

are therefore less correlated than in original.

• Higher values of kurtosis of time series lower the ability to replicate the distribu-

tions and correlation correctly. If both time series share the kurtosis value, the

replication disposes with much better fit ability of correlation, skewness and kur-

tosis, than if the kurtosis of time series differs. In that case, usually the resulting

correlation does not correspond to the pre-described one.

• Skewness of the assets does not seem to influence the fitness of the moments.

The more detailed analysis of the observed dependencies of pre-described and repli-

cated time series properties by Choleski decomposition based algorithm is presented in

Table 6.2.

The presented algorithm for replicating two NIG processes is suitable only for assets

which returns’ distributions are not strongly correlated and do not dispose very high

kurtosis. Replication of the time series is thus not exact and requires an optimization

approach. For relatively low correlation the objective should be to find correlation satis-

fying the pre-described correlation and for higher correlation to find NIG parameters for

the second asset and correlation generating the time series satisfying the pre-described

moments and correlation.
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Table 6.1 CHOLESKI DECOMPOSITION BASED ALGORITHM

INPUT

Return of asset i (Ai): Ei = E(Ai),Vi = V(Ai),Si = S(Ai),Ki = K(Ai);

correlation matrix Σ = corr(i, j) for i, j = 1, ..., N.

ALGORITHM

1. calculate NIG parameters αi, βi, µi, δi for each asset i in portfolio

based on its four moments Ei,Vi,Si, eKi according to Theorem 5.2;

2. generate the random vectors Zi from the standard normal inverse

Gaussian distribution NIG(αiδi, βiδi, 0, 1) for each asset i = 1, . . . , N;

3. correlate the random vectors Zi by means of Choleski decomposition

as

Z̃ = LZ

where columns of matrix Z are created by vectors Zi and L denotes

the lower triangular matrix from Choleski decomposition (Σ = LL>)
of the correlation matrix

Σ = corr(i, j) for i, j = 1, . . . , N ;

Remark: It is important to note that the random vectors Zi
constructed in regards to Z1 loose their original properties, i.e.

the skewness and the kurtosis are not equal to initial moments.

The correlation is degenerated as well.

4. construct the correlated random vectors (sufficiently large) so

that the first two moments are exact as

Xi = δ̂iZ̃i + µ̂i

where coefficients δ̂i and µ̂i are defined as (according to

section A.3)

δ̂i =

√
Vi
V(Z̃i)

µ̂i =Ei − δ̂iE(Z̃i)

The vectors Xi for i = 1, . . . , N represent the replicated asset

returns.
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Table 6.2 Table of observed dependencies of pre-described and replicated time series
properties by Choleski decomposition based algorithm.

Skewness Kurtosis Corr |ρ| Consequence

S(A1) = 0 K(A1) = K(A2)
low X

S(A2) = 0 higher the higher correlation causes worse
fit of K(A2), higher K worse K(A2)

S(A1) 6= 0 K(A1) = K(A2)
low the higher the skewness of asset 2

|S(A2)|, the worse correlation
S(A2) 6= 0 higher the higher correlation |ρ|, the worse

S(A2) (and |K(A2)|)
S(A1) = 0 K(A1) 6= K(A2)

low correlation does not correspond to
pre-described correlation (≈ ρ/2 )

S(A2) = 0 higher worse correlation and worse K(A2)

S(A1) 6= 0 K(A1) 6= K(A2)
low correlation does not correspond to

pre-described correlation
S(A2) 6= 0 higher worse correlation and worse K(A2)

6.3 Replication of time series: Optimization approach

We assume a NIG mixture consisting from two assets, whose properties are given by their

first four moments and correlation. The aim is to generate the time series satisfying these

inputs. However, the replicated time series do not maintain the input properties and

thus the time series have to be generated by means of other parameters. The objective

is to find the set of parameters, that would replicate time series exhibiting pre-described

properties.

Since the transformation of the independent random variables to correlated variables

with given correlation by means of Choleski decomposition keeps the first variable un-

changed, we fix the realization of the first asset generated by following the steps in

Table 6.1 while the moments of the second asset and the correlation will be a subject

of optimization. The algorithm searches a set of 4 parameter - variance, skewness and

kurtosis for the second asset and correlation of asset 1 and asset 2 using the genetic

algorithm, that would replicate time series using the Choleski approach. This algorithm

is presented in Table 6.3.

The genetic algorithm is used because of the presence of the random generator for

Z2 in the objective function. The residual value can thus exhibit different values for the

same parameters. Any optimizing algorithm based on gradient method could be therefore

misleading. The boundaries for the optimizing parameters are set as ±25% around the

required moments for Asset 2 and [ρ,max(2ρ, 1)] for ρ > 0 and [min(−2ρ,−1), ρ] for

ρ < 0.

Remark 6.1. The use of the optimization based algorithm seem to be effective for time
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Table 6.3 OPTIMIZATION BASED ALGORITHM

INPUT

Return of asset 1 (A1):

E1 = E(A1),V1 = V(A1),S1 = S(A1),K1 = K(A1);

Return of asset 2 (A2):

E2 = E(A2),V2 = V(A2),S2 = S(A2),K2 = K(A2);

correlation of assets: ρ = corr(A1, A2).

ALGORTIHM SPECIFICATIONS

optimizing parameters: ρ̃, Ṽ2, S̃2, K̃2 ;

Remark: the mean value does not influence the shape of the

distribution and its optimization is not relevant (Ẽ2 = 0).
The other three moments influence the shape (as presented in

section 5.4) and therefore belong to optimizing parameters.

the objective function:

min
Ṽ2,S̃2,K̃2,ρ̃

R := (S2 − S̃2)2 + (K2 − K̃2)2 + (ρ− ρ̃)2. (6.1)

INITIALIZATION

initial moments for replicated Asset 2 (Ã2):

Ẽ2 = E(A2), Ṽ2 = V(A2), S̃2 = S(A2), K̃2 = eK(A2);

initial replicated correlation ρ̃ = ρ;

ALGORITHM

1. compute NIG parameters for A1 ⇒ α1, β1, µ1, δ1 for A1 generate Z1 as

Z1 ∼ NIG(α1δ1, β1δ1, 0, 1) and keep the realization fixed;

2. compute NIG parameters for Ã2 α̃2, β̃2, µ̃2, δ̃2 for Ã2 generate Z2 as

Z2 ∼ NIG(α2δ2, β2δ2, 0, 1);

3. correlate vectors Z1, Z2 as

Z = LZ with L =

(
1 0

ρ̃
√

1− ρ̃2

)
;

4. calculate the skewness and kurtosis of Z2 and correlation ρ of

Z1(≡ Z1), Z2;
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Remark: any scaling of vectors Z1, Z2 does not influence skewness,

kurtosis and correlation, see section A.3.

5. compute the residuals R of input and replicated properties and

find the minR (6.1) by repeating steps 2-5;

6. construct the correlated random vectors as

Xi = δ̂iZ̃i + µ̂i

where coefficients δ̂i and µ̂i are defined as (according to

section A.3);

δ̂i =

√
Vi
V(Z̃i)

, µ̂i = Ei − δ̂iE(Z̃i)

The vectors Xi for i = 1, . . . , N represent the replicated asset

returns.

series with relatively high correlation (|ρ| > 0.4) and different kurtosis. The effectiveness

of use of the genetic algorithm vanishes with decreasing correlation.

For |ρ| low the optimization based algorithm works effectively (sufficient replication

properties and short time) if the optimizing parameter is only correlation ρ and other

model parameters are fixed.

6.4 Generating NIG mixtures with predefined mo-

ments

We consider a portfolio consisting from N assets with NIG distributed returns, i =

1, . . . , N , with weights θ, where θ = (θ1, . . . , θN)T . We presume that the portfolio returns

are also NIG distributed, i.e. rθP ∼ NIG(αθ, βθ, µθ, δθ). To estimate the parameters

αθ, βθ, µθ, δθ of the portfolio returns, we first define an approximation of a NIG mixture.

Definition 5 (NIG approximation of mixture). Assume that ri ∼ NIG(αi, βi, µi, δi) for

i = 1, 2, . . . , N . Then for weighted mixture r =
∑N

i=1 θiri the aim is to find parameters

αθ, βθ, µθ, δθ of NIG distribution dependent on vector θ such that it holds

1. for θ = e the parameters agree exactly (e is a unit vector);

2. first four parameters of convex combination r =
∑N

i=1 θiri agree with four moments

of r for each θi ∈ [0, 1],
∑

i θi = 1.
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Table 6.4 NIG MIXTURE ALGORITHM

INPUT

Return of asset i (Ai): Ei = E(Ai),Vi = V(Ai),Si = S(Ai),Ki = K(Ai);

correlation matrix Σ = corr(i, j) for i, j = 1, ..., N.

ALGORITHM

1. replicate the asset returns Xi for i = 1, . . . , N by Choleski

decomposition based algorithm in Table 6.1 or by Optimization

based algorithm in Table 6.3;

2. compute the portfolio return as linear combination of asset

returns weighted according to composition θ, i.e. rθ =
∑N

i=1 θiXi;

3. compute the values of the first four moments E(rθ),V(rθ),S(rθ) and

K(rθ) for the vector rθ using Theorem A.2;

4. calculate NIG parameters using Theorem A.

Remark: It is assumed that the random vector rθ representing the

portfolio returns is also NIG distributed.

Assumption 6.1. We assume that for each asset i, i = 1, . . . , N the values of first four

moments of asset returns (Ei,Vi,Si, eKi) and the corresponding correlation matrix Σ are

known or can be calculated from real time series using Theorem A.2.

The algorithm is presented in Table 6.4.

6.5 Example

For the demonstration of the introduced algorithms we consider two time series of asset

returns represented by their first four moments and correlation given in Table 6.5 in

column ’pre-described’. Both time series are skewed and by one asset by observe high

excess kurtosis. The time series are correlated. This causes deviation of replicated

characteristics from original when applying the Choleski decomposition based algorithm

from Table 6.1. Especially the correlation is strongly deviated from required value.

Applying the Optimization based algorithm from Table 6.3, the replicated correlation

as well as the replicated skewness and kurtosis of returns of the second asset are closer

to pre-described values. The result of replication of both algorithms are presented in

Table 6.5.
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Table 6.5 Comparison of replicated characteristic using the Choleski algorithm from
Table 6.1 and Optimization algorithm from Table 6.3.

Pre-described
Replicated Replicated

Choleski algo Optimization algo

Asset 1

E 5% 5% 5%
Std 8.5% 8.5% 8.5%
S -0.10 -0.0968 -0.0971
K 3.5 3.4856 3.5014

Asset 2

E 10% 10% 10%
Std 25% 25% 25%
S -0.45 -0.4392 -0.4017
K 6 5.8804 6.1251

Correlation ρ -0.4 -0.1791 -0.41

The Figure 6.2 illustrates the dependence of the NIG parameters α, β, µ, δ of portfolio

return rθ composed from two assets - stock and bond - defined by their first four moments.

The composition is expressed through parameter θ representing the proportion of a stock

in portfolio. By θ = 0 we understand the portfolio consisting only from asset 1 and vice

verca θ = 1 indicates portfolio composed only from asset 2. The time series are replicated

by extended algorithm and exhibit the features from Table 6.5. Figure 6.3 illustrate the

dependence of portfolio return moments on asset proportion θ. The change in shape of

the distribution depicts Figure 6.1. The shape of portfolio return distribution for θ = 0

is the shape of the asset 1 return distribution and equally shape for θ = 1 is the asset 2

return distribution. Mean of the portfolio return is a linear combination of asset mean

returns. Variance (or standard deviation) is a concave function indicating existence of

a certain combination of asset 1 and asset 2 minimizing the volatility of the portfolio.

The extreme of skewness and kurtosis functions are acquired for same value of θ however

different from θ minimizing variance.
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Chapter 7

Numerical approximation of

stochastic dynamic optimization

problem

In this section we describe the numerical approximation procedure for solving the for-

mulated maximization problem (3.10) with dynamic constraints given by (3.5). The

numerical scheme for solving this problem has been described in details by Kilianová,

Melicherč́ık and Ševčovič e.g. in [32]. The proposed scheme has been constructed for

needs of implementation of normal distribution. The NIG distribution exhibits a specific

shape and requires also a special treatment for its numerical approximation. We describe

the numerical process with a focus on needs of use of NIG distribution or generally dis-

tribution with fat tails and high kurtosis.

The problem is formulated as a decision problem. In each time t the investor decides

for the stock-to-bond proportion θ according to the problem given by Bellman equation.

The problem to be solved in each time step t is to find the maximum over θ of the

integral ∫
R
Vt+∆t(xt+∆t)f

θ(r)dr. (7.1)

We construct an equidistant division {θj, j = 1, ..., nθ} of the interval [0, 1] where nθ
is sufficiently large. The restriction for non-negative θ follows from not allowed short

positioning in portfolio. By Proposition 3.1 there exists a unique argument of maximum

θ̂t(x) of (7.1). Hence we can find a unique θj such that the value of the integral (7.1) is

maximal. Further, we define an interval [xmin, xmax], where the final wealth would most

likely be. We construct an equidistant division of this interval {xi, i = 1, ..., nx}, where

x1 = xmin and xnx = xmax. The NIG distribution exhibiting fatter tails than the normal

distribution requires to consider wider space interval since the extreme return values are

more likely to occur. The interval division however should stay fine enough to depict
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the difference of the value function affected by the shape of the density function in two

neighboring points.

The algorithm for finding the optimal solution θ is as follows. The function VT (x) =

U(x) is given by (4.3). We compute the functional Vt recurrently from t = T −∆t down

to t = 0. In each time step we compute an approximate value of function V
θj
t (xi) in

discrete points xi and discrete points θj and set the maximal value over all θj as Vt(xi)

and the optimal θ̂t(xi) = θj. We repeat this computation for all points {xi|i = 1, ..., nx}.
The density function f θ is considered to be the density function of the portfolio

returns. When considering the NIG density function f θ the NIG parameters αθ, βθ, µθ

and δθ are as discussed in chapter 6. For normal distribution the formula for parameters

µθ and σθ is known and no approximation algorithm is needed.

The peak of the NIG density function can be due to the high kurtosis thin and high.

The classical trapezoidal rule with uniform spacing grid for approximating the definite

integral is not sufficient, since the grid should be denser in neighborhood of the center of

the peak. For the Bellman type integral with NIG distribution densities f θ we therefore

use the Legendre-Gauss quadrature1 with n > 0 nodes. The quadrature rule is based on

approximation of the integral by the weighted sum of function values at specified points

within the domain of integration. We consider interval Ir to be sufficiently large to cover

all non zero values, Ir = (rθ − 15σθ, rθ + 15σθ), using n = 50 nodes. The integral (7.1)

is approximated by
nr∑
k=1

Vt+∆t(xt+∆t)w
θ
kf

θ(rθk), (7.2)

where rθk ∈ Ir, k = 1, . . . , nr represent the nodes and wθk corresponding weights according

to Gauss-Lengedre quadrature for density function f θ of θ-mixture. The efficient interval

Ir for normal distribution or distributions with thinner tails can be much smaller.

As far as the values of function Vt are computed only in discrete points xi, we need

to define a proper approximation of the values ξ ∈ [xmin, xmax] as well as for values

outside of the defined interval. Especially, the approximation of Vt(ξ) in points outside

the space grid ξ > xmax require a special attention. We define the approximation of

Vt(ξ), ∀ξ ∈ [0,∞] as following

1. for ξ < xmin we set Vt(ξ) = Vt(xmin) (this restriction can be viewed as the bottom

value that has to be ensured);

2. for ξ > xmax, Vt(ξ) is set as (7.9);

3. for ξ ∈ [xmin, xmax] an interpolation of nearest neighboring grid points is calculated

as (7.10) or as (7.11).

1see Appendix B for more information
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7.1 Boundary conditions

The correct setting of the boundary condition creates a crucial part of the numerical

solution. The error caused by incorrect valuation of the value function outside the grid

accumulates by backward calculation and thus strongly influences the solution. In the

portfolio optimization problem the contour lines of optimal choice θ could be therefore

incorrectly curved.

The boundary condition for ξ > xmax set as Vt(ξ) = Vt(xmax) would require a large

value of xmax which would be very time consuming since the division of the interval

has to be dense. Another option is to use an extrapolation for approximation of Vt(ξ).

However, a decline in the rate of growth of the value function Vt (can be seen already

for VT (.) = U(.)) causes that the values obtained by extrapolation are strongly deviated

from the true values. The error accumulates therefore from the first step, for t = T .

These facts leaded to derivation of the heuristic of a boundary condition specific for our

type of problem.

For each space grid point xi and for each time grid point t we calculate the approxi-

mation of the functional given as

Vt(x) = max
θ

∫
R
Vt+∆t(xe

(rθ−ρ)∆t + C∆t)f θt (r)dr. (7.3)

For the final time horizon and utility function in form (4.3) we have the terminal condition

VT (x) = U(x) =
x1−α

1− α
.

We now assume that the value function Vt(x) is for each t a multiple of utility value

U(x) and can be expressed as

Vt(x) = βt
x1−α

1− α
, (7.4)

with terminal βT = 1 and βt > 0.

Substituting (7.4) into (7.3) we obtain

βtVt(x) = max
θ

∫
R
βt+∆tVt+∆t(xe

(rθ−ρ)∆t + C∆t)f θt (r)dr,

γ ≡ βt
βt+∆t

= min
θ

∫
R

(xe(rθ−ρ)∆t + C∆t)1−α

x1−α f θt (r)dr. (7.5)
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For evolution of βt we thus obtain a process

βt = γβt+∆t, for t = 0, ..., T −∆t,

βT = 1,

that can be simply expressed as

βt = γT−tβT ,

βT = 1,

implying that

Vt(x) = βt
x1−α

1− α
= γT−t

x1−α

1− α
= γT−tU(x). (7.6)

Lemma 7.1. For utility function in form (4.3) and wealth evolution given by (3.5), for

x→∞ the integral in (7.5) can be approximated as

lim
x→∞

∫
R

(
xe(rθ−ρ)∆t + C∆t

x

)1−α

f(r)dr =

∫
R
e(rθ−ρ)∆t(1−α)f(r)dr. (7.7)

For model without the contributions, i.e. C = 0, the solution is exact.

Proof 7.1. To prove the statement in Lemma 7.1 we use Lebesgue’s Dominated Conver-

gence Theorem. Assuming the utility function (4.3) with risk aversion coefficient α > 1

(1− α < 0), for each x and k ≥ 1 it holds(
e(rθ−ρ)∆t +

C∆t

x

)1−α

f(r) ≤ k(e(rθ−ρ)∆t)1−αf(r).

By simple operations we obtain that the inequality holds for all k ≥ 1

e(r−ρ)∆t +
C∆t

x
≥ k

1
1−α e(rθ−ρ)∆t,

e(rθ−ρ)∆t︸ ︷︷ ︸
>0

(
1− k

1
1−α

)
︸ ︷︷ ︸
≥0 for k≥1

≥ −C∆t

x
.

�
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We approximate the value of Vt(ξ) for ξ > xmax as

Vt(ξ) = βtU(ξ)

βt = γT−tβT

γ = min
θ

∫
R
e(rθ−ρ)∆t(1−α)f θ(r)dr.

(7.8)

For time dependent inflation/growth ρt, the function γt is also time dependent, i.e. the

approximation of Vt(ξ) is defined as

Vt(ξ) = βtU(ξ)

βt = γTγT−∆t · · · γt+∆tβT

γt = min
θ

∫
R
e(rθ−ρt)∆t(1−α)f θ(r)dr.

(7.9)

7.2 Interpolation of the value function

The value function of the point not lying on the grid has to be approximated by means

of the adjacent grid points. The value of the integral (7.3) for any ξ ∈ [xmin, xmax] can be

expressed by means of the interpolation of values Vt(xi) and Vt(xi+1) corresponding to

the closest grid points fulfilling ξ ∈ [xi, xi+1]. One option is to use the linear interpolation

for the approximation of the value Vt(ξ) as

Vt(ξ) ≈ Vt(xi) +
Vt(xi+1)− Vt(xi)

xi+1 − xi
(ξ − xi), (7.10)

where ξ here is generated by (3.5) and lies in some interval [xi, xi+1].

We offer another option based on copying the shape of the utility function and its

mapping to calculated values. We use the shape of the utility function and compute

Vt(ξ) as

Vt(ξ) = cξU(ξ),

cξ ≈ cxi +
cxi+1

− cxi
xi+1 − xi

(ξ − xi),
(7.11)

where cξ is calculated as a linear interpolation of ratios of Vt and U scaled according to

βt, i.e. cxi =
Vt(xi)

βtU(xi)
and cxi+1

=
Vt(xi+1)

βtU(xi+1)
. This approach enables the use of lower

space division nx than by the linear interpolation while achieving the same result.

Remark 7.1. Since the values inside and outside the space grid point should create a

continuous function, the values Vt(ξ) for ξ > xmax have to be parallel shifted such that
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the value Vt(xmax) equals to Vt(xmax) obtained by (7.9).

7.3 Numerical algorithm scheme

INPUT

Asset 1 (A1): E1 = E(A1),V1 = V(A1),S1 = S(A1), eK1 = eK(A1)

Asset 2 (A2): E2 = E(A2),V2 = V(A2),S2 = S(A2), eK2 = eK(A2)

correlation between Asset 1 and Asset 2 ρ = corr(A1, A2)

time horizon T, initial capital C0 and value of regular

contribution C

time- , θ- and space- discretization

ALGORITHM

1. generate replicating time series for returns of asset 1 and asset

2 according to algorithm presented in Table 6.4 (based on Choleski

algorithm in Table 6.1 or on Optimization algorithm in Table 6.3)

and compute NIG parameters for each θj , j = 1, ..., nθ

2. compute the optimal nodes (rjk) and weights (wjk) for density

function of θj-mixture for each j = 1, ..., nθ applying the

Gauss-Lengedre quadrature with 50 nodes k = 1, ..., 50

3. calculate the terminal value VT (X) = U(x) and set βT = 1 and t =
T −∆t

4. for each xi, i = 1, ..., nx and for each θj , j = 1, ..., nθ calculate V
θj
t (xi)

applying following set of steps

(a) calculate xt+∆t = xte
(rθj−ρt)∆t + C∆t ≡ ξθj for each j = 1, ..., nθ

(b) find interval [xi, xi+1] such that ξθj ∈ [xi, xi+1]

(c) set approximation value of Vt+∆t(ξ
θj ) as

i. Vt+∆t(xmin) for ξθj ≤ xmin;

ii. (7.9) for ξθj > xmax

iii. (7.11) for ξθj ∈ [xmin, xmax]
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(d) compute approximation for V
θj
t (xi) as

V
θj
t (xi) =

nr∑
k=1

Vt+∆t(ξ
θj )wjkf

θj (rjk)

(e) compute γ
θj
t as

γ
θj
t =

nr∑
k=1

1

1− α
U(e(rθj−ρt))wjkf

θj (rjk)

set Vt(xi) and optimal θ̂ at time t as

Vt(xi) = max
θj ,j=1,...,nθ

V
θj
t (xi)

θ̂(t, xi) = θj maximizing the above defined relation

set γt = min
θj ,j=1,...,nθ

γ
θj
t and βt as βt = γtβt+∆t

set t = t−∆t

5 if t ≥ 0 go to step 4

otherwise go to step 6

6 simulate (Monte Carlo) wealth evolution Xt according to

(3.5) and optimal decision θ̂(t,Xt)



Chapter 8

Results

In this chapter we examine the proposed numerical scheme on the saving management

problem designed for the II. pillar of the Slovak pension system. We follow the discussed

dynamic model in section 3.2 given by (3.7) and maximize the expected utility of the final

accumulated wealth of the pensioner. The numerical schemes for solving this problem

considering normally distributed portfolio returns have been already discussed in several

articles ([29], [32], [43], [44]).

To prove the correctness of our algorithm we adopt the model parameters and first

analyze the achieved results for normally distributed asset returns. The aim of this

chapter is not be actual, but to show that the achieved results are comparable to results

from the literature. We further calculate the required values for skewness and kurtosis of

the asset returns and repeat the procedure for the normal inverse Gaussian distribution.

We compare the trajectories of the expected wealth evolution during the investment

time and specially the optimal decision for portfolio composition for normal and for NIG

distributed portfolio returns. We analyze the distribution of the final wealth and its

properties and discuss the impact of the considered skewness and kurtosis of the asset

returns.

The considered portfolio is composed from two asset types. Non-risky assets are

represented by US 10Y Governmental bond and the risky assets (stocks) by S&P 500

Index. The model is suited for pension planning characterized by the Governmental

restriction on ratio of risky to non-risky assets during the saving period. We apply these

restrictions for both types of return distribution, i.e. normal and NIG, and conclude our

observations.

8.1 Historical time series

We consider the same time period Jan 1996 - Jun 2002 as in Kilianová et al. [32] for

time series representing the portfolio assets. The bond yield as a non-risky asset is

49
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characterized by small volatility which is 0.82% with expected return 5.16% per year.

On the other hand, the risky-assets offer higher yield but under higher risk. The S&P

500 Index in considered time period yields to 10.28% per year with volatility almost

17%. The correlation of their returns is -0.1151.

To apply the NIG distribution we calculate the other two moments, skewness and

kurtosis, for both assets. As we expected the bond returns are close to normal distri-

bution, with small skewness and small excess kurtosis, while the stock returns exhibit

typical negative skewness and high kurtosis.

The characteristics of the asset returns together with their replication obtained using

the Optimization based algorithm with one optimizing parameter ρ (Table 6.3) are pre-

sented in Table 8.1. The graphical illustration of asset evolution is drawn on Figure 8.1.
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Figure 8.1 Evolution of S&P Index and 10Y US Governmental bond yield during the
time period 02/01/1996 - 01/06/2002. (Source: yahoo finance)

The portfolio returns are constructed based on the asset returns and portfolio com-

position θ. The Figure 8.2 illustrates the dependence of the NIG parameters α, β, µ, δ of

the portfolio return rθ. The composition is expressed through parameter θ representing

the proportion of stocks in portfolio. By θ = 0 we understand the portfolio consisting

only from bonds and vice verca θ = 1 indicates portfolio composed only from stocks.

Figure 8.3 illustrates the dependence of portfolio return moments on stock-to-bond pro-

portion θ. The change in shape of the distribution depicts Figure 8.4. The shape of

portfolio return distribution for θ = 0 is the shape of the bond return distribution char-

acterized by a high peak since the variance is very low. Shape for θ = 1 is the stock

return distribution which is on the contrary much flatter.



CHAPTER 8. RESULTS 51

0 0.5 1
0

50

100

150

200

250

300

θ

α

Shape parameter α

0 0.5 1
−15

−10

−5

0

θ

β

Shape parameter β

0 0.5 1
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

θ

µ

Scaling parameter µ

0 0.5 1
0

0.05

0.1

0.15

0.2

θ

δ

Scaling parameter δ

Figure 8.2 Development of the NIG parameters α, β, µ, δ of portfolio return rθ as a
function of stock-to-bond proportion θ. (The replicated time series exhibit the features
from Table 8.1 in last column.)
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Figure 8.3 Development of the moment parameters E,V ,S and eK of portfolio return
rθ as a function of stock-to-bond proportion θ. (The replicated time series exhibit the
features from Table 8.1 in last column.)
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Table 8.1 Descriptive statistics obtained from historical data series of US 10Y Govern-
mental bonds and S&P500 Index for the time period 02/01/1996 - 01/06/2002 and their
replicated characteristic using the Optimization based algorithm with one optimizing
parameter ρ (Table 6.3).

Pre-described
Replicated

by Table 6.3

Bond

E 5.16% 5.16%
Std 0.82% 0.82%
S -0.05 -0.0503
K 3.6 3.5993

Stock

E 10.28% 10.28%
Std 16.90% 16.90%
S -0.24 -0.2448
K 5.92 5.9229

Correlation ρ -0.1151 -0.1153

8.2 Numerical parameters

The numerical parameters are adopted from [32] and are summarized in Table 8.2. We

consider a Slovak future pensioner whose retirement time T is in 40 years. According

to Slovak pension system (valid in 2006), he contributes into his saving account in II.

pillar every month 9% of his salary (the effective contribution is 8.91%). Without loss

of generality, we assume that he contributes only once a year 8.91% of his yearly salary.

Further we assume that the pension management institutions invest only into two assets -

stock and bond with characteristics stated in Table 8.1. The composition of the portfolio

is restricted by the Slovak Government by set Θ of all possible portfolio compositions as

θt =


[0, 0.8] if T − t > 15 (last 15 years of saving),

[0, 0.5] if T − t > 7 (last 7 years of saving),

0 otherwise.

(8.1)

The wage growth ρt in Slovakia was taken from a paper by Kvetan et al. [35]. The term

structure in shown in Figure 8.5.

The mean value E(dt) is obtained as an average from 10 000 simulated paths generated

for a portfolio with computed optimal stock-to-bond proportion θ̂t for each t = 0, . . . , T−
∆t.
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from bond and θ = 1 indicates 100% representation of stock. (The replicated time series
exhibit the features from Table 8.1 in last column.)

Period Wage growth ρt (%)
2006-2008 7.0
2009-2014 7.5
2015-2021 6.5
2022-2024 6.0
2025-2050 5.0
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Figure 8.5 Prediction of wage growth in SR (Source: Predictions of SAS).
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Table 8.2 Input parameters for the numerical computation.

Parameter Value
Time horizon T 40
Contribution rate τ 0.0891
Rebalancing time step (∆t) 1
Wage growth ρt Figure 8.5

Utility function type (4.3)
Risk aversion coefficient α 5

Discretization of θ (nθ) 100
Discretization of d (nx) 1 200
Range of wealth d [0.01,50]
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8.3 Normal distribution

We consider the normally distributed asset returns

Bonds rB ∼ N(µB, σ
2
B) µB = 0.0516;σB = 0.0082;

Stocks rS ∼ N(µS, σ
2
S) µS = 0.1028;σS = 0.1690;

corr(Bonds, Stocks) ρBS = −0.1151;

and normally distributed portfolio returns fulfilling the relations

Portfolio rθ ∼ N(µθ, (σθ)2)

µθ = θµS + (1− θ)µB;

σθ =
√
θ2µ2

S + 2ρBSθ(1− θ)µSµB + (1− θ)2µ2
B.

We have applied the numerical algorithm to obtain the results for the optimal choice

of stock to bond proportion θ̂ in portfolio in each time step t = 0, . . . , T −1. The optimal

choice for portfolio composition of the future pensioner has the characteristics that in the

early years, he prefers a high proportion of risky assets, which decreases with shortening

of time to retirement. The pensioner tends to decide for more conservative portfolios

in the last years of savings. The preferences change also in dependence on the current

accumulated wealth, i.e the higher accumulated sum the lower proportion of the risky

assets in portfolio. Due to the Governmental restrictions, the optimal choice is regulated

and the decision might be strongly affected.

The Figure 8.6 and Figure 8.7 capture this phenomenon in pair of graphs, 3D graph

and a respective contour graph, for optimal choice of proportion θ in dependence on time

t and accumulated sum d. As we can observe, by the current model setting, the first

Governmental restriction influences the choice only for some range of accumulated sum

d, however the second restriction affects the whole range. From contour graphs on the

right side it can be easily seen that the pensioner would rather decide for a mix of risky

and non-risky assets.

Figure 8.12 (a) illustrates the paths of the mean value E(dt) at time t for both cases,

applying the restrictions and not. The blue line represents the expected path for re-

stricted case leading to value 5.17, while the black line leading to value 6.13 illustrates

the path without applying any restriction. The dashed lines represent the 10% and

90% qunatiles, light blue lines belong to restricted case and light gray to non-restricted

case. The paths of optimal choice θt evolution are depicted on the right hand graph (b).

Again, the blue line represents the restricted case and black line the non-restricted case.

One can see that in both cases the saver starts with the most risky investment. Note

that the highest possible value of θ, when imposing the governmental regulation, is 0.8.

The biggest difference is observed in last 7 years, where by imposing the restrictions, the
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(a) optimal θ in 3D representation (b) optimal θ in contour representation

Figure 8.6 The optimal stock-to-bond proportion θ as a function of time and wealth with
normally distributed bond and stock returns applying the Governmental restrictions.

saver is not allowed to invest any part of his savings into risky assets. Here, we observe

a shift in E(dt).

The expected final wealth is higher for non-regulated investments and lead to higher

volatility. The distribution of the final accumulated wealth is characterized by high

positive skewness since the yearly contribution shifts the savings always in positive sense.

The empirical distribution is depicted on Figure 8.9 (a) while the right table (b) states

corresponding statistics. We keep the color marking - blue for case with restriction and

black for non-restricted case. Since both distributions are by model definition skewed

to the right, the volatility is not an appropriate risk measure. From risk point of view

it is more interesting to analyze the left tail of the distribution. We can see from the

distribution shape and from characteristics listed in the table, that already the 10%

quantile is higher for non-regulated case. Additionally, the mean value and the right tail

support the advantage of non-regulated investment decisions in comparison to introduced

regulations.
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Figure 8.7 The optimal stock-to-bond proportion θ as a function of time and wealth with
normally distributed bond and stock returns without restrictions.
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Figure 8.8 Evolution of the expected accumulated wealth with 10% and 90% quantiles
and the optimal θ proportion evolution (θt(E(dt))) considering normally distributed bond
and stock returns with (blue line) and without (black line) applying the Governmental
restrictions.
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Figure 8.9 Empirical distribution of the wealth at the final time horizon dT and corre-
sponding statistics when considering normally distributed bond and stock returns with
(blue line) and without (black line) applying the Governmental restriction.
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8.4 NIG distribution

We now consider normal inverse Gaussian distribution for asset returns and for portfolio

returns discussed in section 8.1. We apply the same numerical procedure as for the

normal distribution and analyze the behavior of the observed characteristic.

The NIG distribution is characterized by fatter tails than the normal distribution

with higher the concentration of the observations around the median. The negative

skewness present in stock representation indicates longer left tail and higher probability

of occurrence of a return much lower than the expectation.

The optimal θ choice with and without applying the regulation can be seen on Fig-

ure 8.10 and Figure 8.11, respectively. By both cases we can observe qualitatively same

behavior as by normal distribution. The pensioner prefers to invest in the first years

higher part of his savings in risky portfolio and with time closer to retirement and higher

accumulated sum, he tends to take more conservative decisions and increases the ratio

of non-risky assets. However, in comparison to normal distribution keeps higher ratio of

risky assets in first years and later reduces its ratio with faster pace.
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(a) optimal θ in 3D representation (b) optimal θ in contour representation

Figure 8.10 The optimal stock-to-bond proportion θ as a function of time and wealth
with NIG distributed bond and stock returns applying the Governmental restriction.

Figure 8.12 depicts the expected wealth evolution when applying the regulations,

drawn in blue line, and when not, drawn in black line. From the right hand graph we

can see the strong effect of the regulations on the decision. Again the regulation lead

to lower expected wealth but the value-at-risk on 10% level is higher for non-regulated

case. It suggests that the regulations do not lower the risk in this model setting and by

considering the NIG distribution for asset returns. The detailed statistics together with

the empirical distributions for both cases are stated in Figure 8.13.
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Figure 8.11 The optimal stock-to-bond proportion θ as a function of time and wealth
with NIG distributed bond and stock returns without any regulations.
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Figure 8.12 Evolution of the expected accumulated wealth with 10% and 90% quantiles
and the optimal θ proportion evolution (θt(E(dt))) considering NIG distributed bond
and stock returns with (blue line) and without (black line) applying the Governmental
restrictions.
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E(dT ) 6.13 8.19
Std(dT ) 2.27 3.62
S(dT ) 1.30 1.37
K(dT ) 5.91 6.5

Q10%(dT ) 3.68 4.31
Q50%(dT ) 5.70 7.51
Q90%(dT ) 9.15 12.9

(a) empirical distribution of dT (b) statistics of dT

Figure 8.13 Empirical distribution of the wealth at the final time horizon dT and corre-
sponding statistics when considering NIG distributed bond and stock returns with (blue
line) and without (black line) applying the Governmental restriction.

From Figure 8.12 (b) we can see another interesting observation coming from com-

parison of the optimal choice trajectory for normal and for NIG distribution. When

considering the NIG distribution, the investor tends to keep the maximal stock-to-bond

proportion much longer than by assuming normal distribution, however the choice in the

last year of saving is very similar.



Chapter 9

Sensitivity to risk aversion

coefficient

The risk aversion coefficient reflects the investor’s attitude to the risk. With increasing

risk aversion, we can expect that the investor will tend to take more conservative decisions

for same time and level of accumulated sum. In this chapter we provide a sensitivity

analysis of the model to level of risk aversion of the future pensioner. We analyze the

results for normal and for NIG distribution with and without applying the regulations.

In this chapter we want to show, how the risk aversion coefficient influences the

optimal choice of the saver and especially, how it influences the distribution of the final

wealth. In the previous chapter, we have already discussed the impact of the regulations

on the optimal choice, expectation and on the final wealth distribution properties, which

showed the advantage of non-regulated cases for normal and for NIG distribution. Here

we continue with comparison of regulated and non-regulated cases and focus on the

distribution properties to better understand the point of the regulations.

9.1 Normal distribution

As we expected higher risk coefficient leads to more conservative decisions. Figure 9.1

illustrates the trajectory of the optimal choice of the saver for tree different coefficient

levels α = 5, 9, 13. By both cases, with (a) and without (b) the regulations we observe

that the saver tends to reduce the risky part of the portfolio sooner for higher α. The

proportion of stocks reduces with time for all α.

Smaller α indicates riskier portfolio and thus implies a higher expected value of the

final wealth E(dt), see Figure 9.2. The mean value E(dT ) is always higher when there

are no governmental limits. The empirical distribution of the final wealth for different

coefficients α is illustrated on Figure 9.3. Generally, for both cases (a) and (b) the

decreasing α flattens the distribution shape. The shape for high α is characterized by
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Figure 9.1 Evolution of optimal choice θ for different levels of risk aversion coefficient
during the saving period considering normal distribution with and without applying
regulations.

higher and sharper peak implying higher concentration of the observations around the

median. The standard deviation is therefore lower as well as the skewness. On the

hand, the 10% quantile is comparable for all α coefficients, however the median and 90%

quantile are much higher for lower α.

According to the distribution properties listed in Table 9.1, the regulations and also

the high risk aversion do not help to reduce the risk from the view of value-at-risk (VaR)

in this model setting. If the risk would be measured as an absolute difference between the

expectation and VaR, then the regulation can be understood as a defense from saver’s

disappointment of not succeeding the expectation and especially achieving low value

compared to expectation.
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Figure 9.2 Evolution of the expected accumulated wealth for different levels of risk aver-
sion coefficient during the saving period considering normal distribution with and without
applying regulations.
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Figure 9.3 Shape of empirical distribution of the final wealth for different levels of risk
aversion coefficient considering normal distribution with and without applying regula-
tions.
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Table 9.1 Properties of the final wealth distribution for different levels of risk aversion
coefficient considering normal distribution.

α = 5 α = 9 α = 13
E(dT ) 5.17 4.44 4.11
Std(dT ) 1.55 0.81 0.52
S(dT ) 1.03 0.57 0.42
K(dT ) 4.86 3.45 3.28

Q10%(dT ) 3.43 3.47 3.47
Q50%(dT ) 4.92 4.36 4.07
Q90%(dT ) 7.23 5.50 4.79

α = 5 α = 9 α = 13
E(dT ) 6.13 4.85 4.34
Std(dT ) 2.22 1.02 0.63
S(dT ) 1.23 0.62 0.48
K(dT ) 5.79 3.65 3.44

Q10%(dT ) 3.69 3.63 3.57
Q50%(dT ) 5.75 4.74 4.30
Q90%(dT ) 8.98 6.19 5.18

(a) with regulation (b) without regulation
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9.2 NIG distribution

The results for the NIG distribution showed qualitatively same results as by consider-

ing the normal distribution. The evolution of the optimal choice θ depicts the saver’s

preference to switch faster to less risky portfolios when considering higher risk aversion

coefficient α, Figure 9.4. This behavior strongly affects the evolution of the expected

wealth that exhibits therefore smaller values, Figure 9.5. Figure 9.6 with Table 9.2 sim-

ilarly as by normal distribution imply, that the reduction in standard deviation with

increasing α (or with introducing regulations) is a consequence of a higher concentration

of observations around the peak and smaller skewness. However again the 10% quantile

is comparable for all α but median and 90% quantile are increasing for decreasing α. On

the other hand, the difference of expectation and Var(10%) decreases with higher risk

aversion or by introducing regulations, Figure 9.7.
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Figure 9.4 Evolution of optimal choice θ for different levels of risk aversion coefficient
during the saving period considering NIG distribution with and without applying regu-
lations.

9.3 Comparison: Normal vs. NIG distribution

NIG distribution can better map the asset returns distribution and thus better describe

the probabilities of occurrence of individual observations. The asset returns concentrate

more around the peak than the normal distribution is able to describe. The difference

in shape of the normal and NIG distribution causes the difference of optimal portfolio

choice in time and space. Considering NIG distribution the saver prefers to invest in

more risky portfolios especially in first years as it can be seen from trajectories of the
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Figure 9.5 Evolution of the expected accumulated wealth for different levels of risk aver-
sion coefficient during the saving period considering NIG distribution with and without
applying regulations.

θt(E(dt)) for all α and also from the contour graphs (Figure 8.7 (b) and Figure 8.11 (b)).

If we compare Figure 9.1 and Figure 9.4, we observe that the optimal choice in final time

is almost the same for normal and for NIG distribution (for respective α), but the pure

stock portfolio is held longer when considering NIG distribution. This is the reason for

faster growth of E(dt) in first years. The reduction of risky assets follows in subsequent

years faster. The comparison of results for normal and NIG distribution (for α = 9) can

be seen on Figure 9.8.
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Figure 9.6 Shape of empirical distribution of the final wealth for different levels of risk
aversion coefficient considering NIG distribution with and without applying regulations.
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Figure 9.7 Difference between the expectation and Var(10%) for different levels of risk
aversion coefficient considering NIG distribution with and without applying regulations.
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Table 9.2 Properties of the final wealth distribution for different levels of risk aversion
coefficient considering NIG distribution.

α = 5 α = 9 α = 13
E(dT ) 6.13 4.87 4.35
Std(dT ) 2.28 1.01 0.62
S(dT ) 1.30 0.65 0.44
K(dT ) 5.91 3.89 3.57

Q10%(dT ) 3.68 3.65 3.61
Q50%(dT ) 5.70 4.77 4.31
Q90%(dT ) 9.15 6.18 5.16

α = 5 α = 9 α = 13
E(dT ) 8.19 5.47 4.67
Std(dT ) 3.62 1.27 0.75
S(dT ) 1.37 0.67 0.48
K(dT ) 6.50 3.92 3.48

Q10%(dT ) 4.31 3.96 3.75
Q50%(dT ) 7.51 5.34 4.60
Q90%(dT ) 12.90 7.11 5.67

(a) with regulation (b) without regulation
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Figure 9.8 Comparison of optimal θ evolution and expected wealth E(dt) evolution for
normal (black line) and NIG (blue line) distribution for α = 9 without regulations.



Chapter 10

Sensitivity to skewness and kurtosis

Considering the NIG distribution of the asset returns and portfolio returns influences

the optimal choice of the saver in comparison to considering the normal distribution. We

have showed that the saver tends to decide for more risky portfolios in the first years

and then fast change the portfolio into more conservative.

In this chapter we analyze the impact of the second two moments of the assets on

optimal choice and the final wealth properties. We fix the properties of the asset that

is close to normal, such that we can better observe a change caused by just one model

parameter. We consider the bonds characteristic - mean, volatility, skewness and kurtosis

and stocks characteristics - mean and volatility to be fixed while the stock’s skewness

and stock’s kurtosis will change. We thus analyze the impact of the stock’s skewness -

negative to positive - for different levels of stock’s kurtosis on the optimal choice of the

portfolio and properties of the final wealth.

We provide this analysis to show that considering four moments really do influence

the saver’s preferences during the saving time period.

10.1 Numerical parameters

The used numerical parameters are the same as in chapter 8, i.e. we apply parameters

from Table 8.2. We do not consider any regulation. Statistics of bonds and stocks are

as in Table 10.1.

10.2 Sensitivity on stock’s skewness and kurtosis

In this analysis we focus on influence of one model parameter on the optimal choice and

wealth evolution and characteristics of the final wealth. We first analyze the sensitivity

of the stock’s skewness while the other parameters are kept fixed.
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Table 10.1 Properties of bonds and stocks used in sensitivity analysis.

Bond Stock
E 5.16% 10.28%
Std 0.82% 16.90%
S -0.05 [-0.7, 0.7]
K 3.6 [4,9]

ρ -0.1151
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Figure 10.1 Evolution of the expected wealth and optimal choice θ for different levels of
stock’s skewness, while the other parameters are fixed (K(S) = 6).

Figure 10.1 illustrates the wealth and optimal choice evolution for different values of

stock’s skewness, S(S) = −0.7, 0, 0.7 for K(S) = 6. The lower value of skewness leads to

more conservative decisions which directly relates to lower expected value of the wealth.

We can observe that the time point when the saver starts to add the bonds to portfolio

is the same for all skewness values.

The same behavior but for dependence of stock’s kurtosis is depicted on Figure 10.2.

The skewness is set to S(S) = −0.2 and kurtosis sequentially to K(S) = 4, 6, 8. The

higher is the kurtosis the more conservative portfolios are preferred.

The characteristics on the final wealth are listed in Table 10.2. Higher skewness leads

to higher expected wealth while the kurtosis lowers it. The 10% quantile increases with

skewness and decreases with kurtosis. The same hold for the 90% quantile as it is also

shown on Figure 10.3.
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Figure 10.2 Evolution of the expected wealth and optimal choice θ for different levels of
stock’s kurtosis, while the other parameters are fixed (S(S) = −0.2).

Table 10.2 Properties of the final wealth distribution for different levels of stock’s skew-
ness and stock’s kurtosis.

S(S) = −0.7 S(S) = 0 S(S) = 0.7 K(S) = 4 K(S) = 6 K(S) = 8
E(dT ) 8.96 9.33 10.04 9.23 9.15 8.97
Std(dT ) 3.74 4.27 5.17 4.10 4.01 3.89
S(dT ) 1.23 1.53 1.76 1.35 1.45 1.41
K(dT ) 5.84 7.16 7.74 6.29 6.83 6.87

Q10%(dT ) 4.91 4.92 4.98 4.91 4.89 4.83
Q50%(dT ) 8.30 8.45 8.88 8.54 8.40 8.23
Q90%(dT ) 13.81 14.82 16.34 14.52 14.22 13.96
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10.3 Optimal choice evolution

In this section we offer a series of contour graphs depicting the dependence of the optimal

choice θ on time t and level of savings d.

We can observe that for skewness the contours move clockwise, Figure 10.4 on the

left side, while for the kurtosis the contours move counterclockwise, Figure 10.4 on the

right. It indicates that higher skewness supports higher proportion of stocks in portfolio

and on the contrary higher kurtosis supports higher proportion of bonds.
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Figure 10.4 Evolution of the optimal θ in dependence of the stock’s skewness and kurtosis.
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10.4 Sensitivity on skewness and kurtosis in 3D

This section illustrates the sensitivity of the characteristics of the final wealth on stock’s

skewness and kurtosis while keeping the other parameters fixed. The following graphs

depict the dependencies that have been observed and discussed in this chapter but allow

to view for different combinations of skewness and kurtosis of the stock.

All the following graphs illustrate the estimated curve of order 3 through the calculated

points. Figure 10.5 offers the view on the E(dT ). Generally, the expectation grows with

skewness and declines with kurtosis. The relations are almost linear. The very same

behavior shows also the volatility V(dT ), Figure 10.6. Skewness of the final wealth on

Figure 10.7 and kurtosis of the final wealth on Figure 10.8 grow with the stock’s skewness

and also grow with the stock’s kurtosis.
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Figure 10.5 Dependence of expected wealth at the final time horizon E(dT ) in dependence
of the stock’s skewness and kurtosis.
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Figure 10.6 Dependence of wealth variane at the final time horizon V(dT ) in dependence
of the stock’s skewness and kurtosis.
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Figure 10.7 Dependence of wealth skewness at the final time horizon S(dT ) in dependence
of the stock’s skewness and kurtosis.
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Figure 10.8 Dependence of wealth kurtosis at the final time horizon K(dT ) in dependence
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Chapter 11

Conclusion

In the thesis we have presented an investment model with regular contributions for de-

termining the optimal investment opportunity. We have analyzed the model for needs

of the risk management in pension system formulated as a dynamic stochastic accu-

mulation model for determining the optimal value of the stock to bond proportion in

the pension saving decision. The model has been formulated by Kilianová, Melicherč́ık,

Ševčovič in series of articles [29], [31], [32], etc. The adopted model has been analyzed

considering the normally distributed returns. However, voluminous literature alerts that

by modeling returns more extreme changes should be taken into account. We aimed to

introduce the fat tailed distributions for asset returns’ modeling and analyze the impact

on the saver’s preferences.

We have focused on the normal inverse Gaussian distribution among the generalized

hyperbolic distributions and studied the S&P500 Index in more detail and similarly to

findings of Onalan in [48], we have concluded that the log returns do not follow the

normal distribution. They are characterized by higher kurtosis than is typical for the

normal distribution and are skewed to the left. The NIG distribution has four parameters

which can be used to express first four moments. We have showed how the parameters

as well as the moments affect the density shape.

The biggest drawback of NIG distribution follows directly from its convolution prop-

erty defined only for independent variables exhibiting same shape parameters which is a

very restrictive condition. We therefore study the behavior of generating the dependent

NIG random variables using the approach usually applied for generating the dependent

normally distributed variables, i.e by means of Choleski decomposition. We have an-

alyzed the properties of replicated time series defined by their moments and based on

our observations we have introduced the algorithm for generating such mixtures. The

crucial parameters showed to be the correlation and the kurtosis.

The NIG distribution exhibits a specific shape and requires also a special treatment by

numerical approximation of the formulated Belmann problem. The numerical procedure

has to be specified with a focus on needs of NIG distribution or generally distribution
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with fat tails and high kurtosis. Due to the high kurtosis the peak is thin and high

and the numerical approximation of the integral requires different approach than the

classical trapezoidal rule with uniform spacing grid. We offered the Legendre-Gauss

quadrature based on approximation of the integral by the weighted sum of function

values at specified points within the domain of integration. The next NIG property

- a fat tail requires bigger domain for the space grid which might be computationally

expensive. The need of the proper boundary condition is therefore very strong. Since

the linear extrapolation or the constant for points outside the grid showed to be not

sufficient, we have derived a heuristic of a boundary condition specific for our type of

problem. We have also offered a special interpolation inside the grid based on the shape

of the utility function allowing the use of a less dense grid.

The results of our algorithm for the formulated problem suitable for distributions

with fat tails were provided with the numerical parameters adopted from [32] in order

to demonstrate the algorithm’s correctness. We calculated the next two moments of the

assets representing the stocks and bonds in portfolio and showed the impact of adding

the skewness and the kurtosis on the optimal choice of the saver during the saving time

period.

Considering the NIG distribution for the asset returns, the saver tends to keep the

maximal stock-to-bond proportion much longer than by assuming normal distribution,

however the choice in the last decision year is comparable. This causes that the expected

wealth grows faster in first years and in years, when the portfolio is more conservative,

the growth does not have to be so high to higher the absolute value of the savings. The

expected wealth by considering the NIG distribution is therefore higher than by normal

distribution.

The regulation introduced by the Government strongly influences the choice of the

saver who would by this parameter setting decide for more risky portfolio. The expected

final wealth is lower for regulated investments but lead to lower volatility. In our study

we have focus mainly on the distribution of the final accumulated wealth which is char-

acterized by positive skewness since the yearly contribution shifts the savings always in

a positive sense. The volatility is therefore not an appropriate risk measure. From risk

point of view it is more interesting to analyze the left tail of the distribution, the value-

at-risk measure. From the distribution shape for regulated and non-regulated case and

calculated quantiles we can observe that the regulation does not lower the risk. How-

ever the difference between the expected value and VaR is higher for non-regulated case.

Considering this risk measure the regulation can be understood as a defense from saver’s

disappointment of not succeeding the expectation and especially of achieving low value

compared to expectation. The more regulations influence the choice of the saver the

higher is the difference in peak settlement and quantiles of the final wealth distributions.

The same qualitative behavior can be observed by both examined distributions and

also for different risk aversion coefficients. As expected, with increasing risk aversion the
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investor tends to take more conservative decisions for same time and level of accumulated

sum. More conservative portfolio leads to lower expected final wealth and lower volatility.

The aim of the thesis was to study the impact of the skewness and the kurtosis of

the portfolio assets on the optimal choice of the investor and on his expectation. In our

sensitivity analysis we consider again the same numerical and model parameters. We fix

the properties of one asset and change the skewness and kurtosis of the second asset in

order to better observe a change caused by just one model parameter. We consider the

bonds characteristic - mean, volatility, skewness and kurtosis and stocks characteristics

- mean and volatility to be fixed while the stock’s skewness and stock’s kurtosis change.

We have showed that the lower value of skewness leads to more conservative decisions

leading to lower expected value of the wealth. The time point when the saver starts to add

the bonds to portfolio keeps the same for all skewness values. On the other hand lower

kurtosis asks for more risky portfolio. The results of the sensitivity analysis are depicted

in detailed tables and set of figures illustrating the evolution of the optimal choice,

expected wealth, final wealth distribution and its properties. The optimal decision in

dependence on level of accumulated sum and on time are illustrated on the contour graphs

for different stock’s skewness and kurtosis and show the above described behavior. The

results are supported by 3D graphs expressing the dependence on different combinations

of stock’s skewness and kurtosis.

In our thesis we defined an algorithm for formulated problem suitable for distribution

also exhibiting fatter tails. We have showed that considering higher moments of the

portfolio assets influence the optimal decision of an investor and thus his expectations.
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Appendix A

NIG distribution and its parameters

The goal of this chapter is to analyze the NIG distribution. The NIG distribution belongs

to a family of generalized hyperbolic distributions. It is characterized by four parameters

α, β, µ, δ specifying the shape of the density function. Barndorff-Nielsen [4] defined the

NIG distribution as a normal variance-mean mixtures when the mixture distribution is

a inverse Gaussian distribution.

Definition 6. The random variable X is normal inverse Gaussian distributed

NIG(α, β, µ, δ) if its probability density function is given by

f(x) =
α

π
exp{δ

√
α2 − β2 + β(x− µ)}

K1(αδ
√

1 + (x−µ
δ

)2)√
1 + (x−µ

δ
)2

(A.1)

where K1 denotes the modified Bessel function of the third kind, and the conditions for

the parameters are α > 0, δ > 0, µ ∈ R, 0 ≤ |β| ≤ α.

The first four moments of the NIG distributed time series can be simply calculated

from the four NIG parameters as in

Theorem A.1. The first four moments, mean E, variance V, skewness S and excess

kurtosis eK, of the NIG distribution can be expressed using the four parameters as follows

E(X) = µ+ δ
β√

α2 − β2
(A.2)

V(X) = δ
α2

(α2 − β2)
3
2

(A.3)
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S(X) = 3
β

α
√
δ
√
α2 − β2

(A.4)

eK(X) = 3
(1 + 4β

2

α2 )

δ(α2 − β2)
1
2

. (A.5)

A.1 Moment computation

The first four moments can be calculated from the historical time series data. We state

the relations here for reader’s convenience.

Theorem A.2. We compute the four moments from the observed data xi for i = 1, ..., N

as

E =
1

N

N∑
i=1

xi = x̄ (A.6)

V =
1

N − 1

N∑
i=1

(xi − x̄)2 = σ̄2 (A.7)

S =
1

N

N∑
i=1

(
xi − x̄
σ

)3

(A.8)

eK =
1

N

N∑
i=1

(
xi − x̄
σ

)4

− 3 (A.9)

A.2 Derivation of NIG parameters

The first four moments are defined by means of the first four moments of the modeled

time series. Similarly, the four NIG parameters can be calculated under some conditions

from the first four moments. We offer here the derivation of NIG parameters from 5.2.

Proof A.1 (Derivation of NIG paramters). The relation for skewness in form (A.4) can

be transformed to

S2 = 9
β2

α2δ(α2 − β2)
1
2

.

Now we define ξ = β
α

, i.e. (α2 − β2)1/2 = α(1 − ξ2)
1
2 and substituting into previous

relation we obtain

S2 = 9
β2

αδ(1− ξ2)
1
2

. (A.10)
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The relation (A.5) by means of ξ can be modified as

eK = 3
1 + 4ξ2

αδ(1− ξ2)
1
2

⇒ 3

αδ(1− ξ2)
1
2

=
eK

1 + 4ξ2
(A.11)

Combining (A.10) and (A.11) we can write

S2 = 3ξ2 3

αδ(1− ξ2)
1
2

= 3ξ2 eK
1 + 4ξ2

It follows easily that

ξ =
S√

3eK − 4S2
(A.12)

Relation (A.3) can be expressed by ξ and (A.10) as

V =
δ

α(1− ξ2)
3
2

=
δ

α(1− ξ2)

1

(1− ξ2)
1
2

=
δ2S2

9ξ2(1− ξ2)

Than the δ is

δ =

√
V
S

3ξ(1− ξ2)
1
2 = 3

√
V 1√

3eK − 4S2

√
3eK − 5S2

√
3eK − 4S2

δ = 3
√
V
√

3eK − 5S2

3eK − 4S2

Substituting δ to (A.3) we obtain relation for α

α =
δ

V
1

(1− ξ2)
3
2

(A.13)

=
3√
V

(3eK − 5S2)
1
2

(3eK − 4S2)

(3eK − 4S2)
3
2

(3eK − 5S2)
3
2

(A.14)

=
3√
V

(3eK − 4S2)
1
2

(3eK − 5S2)
(A.15)

Finally we have α given by (A.15), δ from (A.13) given as δ = αV
(

1− β2

α2

) 3
2
, β as

product of αξ, where ξ is given by (A.12) and µ easily from (A.2) asM(X)− δ β√
α2−β2

.
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A.3 Fitness of mean and variance

We aim to construct a random variable Y by means of a random variable Z, Z ∼
NIG(αδ, βδ, 0, 1) with pre-defined EY and VY . For Y defined as Y = Zσ + r and for

arbitrary r, σ it holds

E(Y ) =E(Zσ + r) = E(Z)σ + r,

V(Y ) =V(Zσ + r) = V(Z)σ2,

S(Y ) =S(Zσ + r) = S(Z),

eK(Y ) =eK(Zσ + r) = eK(Z).

The constructed variable Y keeps the skewness and the kurtosis of Z and pre-defined

mean and variance of Y are obtained with the appropriate scaling and shifting of variable

Z as following

VY =V(Y ) = V(Z)σ̂2,

EY =E(Y ) = E(Z)σ + r̂.

The parameters r̂, σ̂ take the form

σ̂ =

√
VY
V(Y )

,

r̂ =EY − σ̂E(Y ).



Appendix B

Legendre-Gauss Quadrature

In this appendix we recall the details of Lengedre-Gauss quadrature for the reader’s

convenience. Legendre-Gauss quadrature is a numerical integration method also called

”the” Gaussian quadrature or Legendre quadrature described by Hildebrand in [26]. In a

general Gaussian quadrature rule, an definite integral of f(x) is first approximated over

the interval [1, 1] by a polynomial approximate function g(x) and a known weighting

function W (x), i.e. ∫ 1

−1

f(x)dx =

∫ 1

−1

W (x)g(x)dx.

In a case of Legendre-Gauss quadrature, the weighting function W (x) = 1 over the

interval [−1, 1], i.e. ∫ 1

−1

f(x)dx ≈
n∑
i=1

wif(xi).

The abscissas for quadrature order n are given by the roots of the Legendre polynomials

Pn(x), which occur symmetrically about 0. The weights are

wi = − An+1γn
AnP ′n(xi)Pn+1(xi)

=
An
An−1

γn−1

Pn−1(xi)P ′n(xi)
,

where An is the coefficient of xn in Pn(x). For Legendre polynomials,

An =
(2n)!

2n(n!)2
,

so
An+1

An
=

[2(n+ 1)]!

2n+1[(n+ 1)!]2
2n(n!)2

(2n)!
=

2n+ 1

n+ 1
.
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Additionally,

γn =

∫ 1

−1

[Pn(x)]2dx =
2

2n+ 1

implying that

wi = − 2

(n+ 1)Pn+1(xi)P ′n(xi)
=

2

nPn−1(xi)P ′n(xi)
.

Using the recurrence relation

(1− x2)P ′n(x) = −nxPn(x) + nPn−1(x) = (n+ 1)xPn(x)− (n+ 1)Pn+1(x)

gives

wi =
2

(1− x2
i )[P

′
n(xi)]2

=
2(1− x2

i )

(n+ 1)2[Pn+1(xi)]2
.

The weights wi satisfy
n∑
i=1

wi = 2, which follows from the identity

n∑
ν=1

1− x2
ν

(n+ 1)2[Pn+1(xν)]2
= 1.

The error term is

E =
22n+1(n!)4

(2n+ 1)[(2n)!]3
f (2n)(ξ).
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