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In this paper we introduce the knapsack problem for perishable inventories concerning the optimal dynamic allocation of a
collection of products to a limited knapsack. The motivation for designing such a problem comes from retail revenue
management, where different products often have an associated lifetime during which they can only be sold, and the managers
can regularly select some products to be allocated to a limited promotion space that is expected to attract more customers than
the standard shelves. Another motivation comes from scheduling of requests in modern multiserver data centers so that
quality-of-service requirements given by completion deadlines are satisfied. Using the Lagrangian approach we derive an
optimal index policy for the Whittle relaxation of the problem in which the knapsack capacity is used only on average.
Assuming a certain structure of the optimal policy for the single-inventory control, we prove indexability and derive an
efficient, linear-time algorithm for computing the index values. To the best of our knowledge, our paper is the first to provide
indexability analysis of a restless bandit with bi-dimensional state (lifetime and inventory level). We illustrate that these index
values are numerically close to the true index values when such a structure is not present. We test two index-based heuristics
for the original, nonrelaxed problem: (1) a conventional index rule, which prescribes to order the products according to their
current index values and promotes as many products as fit in the knapsack, and (2) a recently proposed index-knapsack
heuristic, which employs the index values as a proxy for the price of promotion and proposes to solve a deterministic
knapsack problem to select the products. By a systematic computational study we show that the performance of both
heuristics is nearly optimal, and that the index-knapsack heuristic outperforms the conventional index rule.
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1. Introduction
In this paper we introduce the knapsack problem for perish-
able inventories concerning the optimal dynamic allocation
of a collection of products to a limited knapsack. This is an
extension of the classic knapsack problem to a multiperiod
dynamic setting, in which units are allowed to randomly
disappear, so that the knapsack capacity can be reallocated in
every period. Such problems of stochastic dynamic resource
allocation arise in different fields (see, e.g., Jacko 2013).
For instance, modern data centers are composed of a large
number of servers (or virtual machines), which must be
allocated to a given set of requests to be scheduled so
that the quality-of-service contracts be satisfied (Yang et al.
2011, Dance and Gaivoronski 2012, Glazebrook et al. 2011).
Requests coming from different users are heterogeneous
and may be given as a number of subrequests (an “inven-
tory”) that must be completed sequentially before a specified
deadline. In the following we describe in more detail a
similar problem in the implementation of product promotion

for optimal revenue management in the retail industry. For
concreteness, we shall focus on this framework throughout
the paper.

1.1. Motivation

The main interest of retail companies is net revenue max-
imization. Managers are facing the problem of “proper”
choice of products to sell or proper setting of prices of sales
in order to obtain the maximal revenues. The assortment
in many branches is changing very fast and the products
can become “not topical” like seasonal products or can
get “obsolete” or “perished” by a deadline after which they
cannot be sold anymore and cause a cost (e.g., lost profit,
product removal costs, penalty, etc.).

The retailers are therefore dealing with a trade-off between
obtaining revenues from selling the products before their
deadlines and incurring deadline costs from perished products.
To maximize the expected revenue, the managers apply
different promotion techniques. One way is to use price
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discounts to attract customers and incentivize them to buy.
Of course, the price should not be permanently lower than
the marginal costs since it would lead to negative net profit,
so it must be increased once the demand accelerates. Such
dynamic pricing, however, often cannot be implemented
because of clauses in the contracts with suppliers or for
brand image strategic reasons. Although research studies
lead to mixed conclusions, retailers may also consider a
possible negative effect of ubiquitous dynamic pricing on
customer satisfaction and perception of price fairness. (See
Talluri and van Ryzin 2004, for an overview of theory and
practice of dynamic pricing.)

An alternative way is to advertise some of the products
without price changes, e.g., announce them on large posters
in front of the shop or to allocate them to a promotion
space close to cashiers or at display shelves, where they
can be more easily seen and bought. In this paper we
introduce a dynamic and stochastic revenue management
model, in which the prices do not change, but the dynamic
allocation of products to a limited promotion space is used
to increase the revenues. In the static (one-period) case this
would correspond to the knapsack problem (Dantzig 1957),
which is believed to be one of the easier np-hard problems
(Pisinger 2005). The principal possible implementation of
our revenue management model is in grocery stores and
supermarkets for product promotion, also known as display
shelves assortment. As a special case we cover a variant of
the dynamic assortment problem, whose practical importance
in addition to dynamic pricing has been shown recently by
Bernstein et al. (2011).

As another example of practical interest, consider an
assortment problem in a car shop offering cars of the same
brand or similar quality levels (so that brand effect is
negligible), where only a few cars can be allocated in the
showroom. Customers can see and even test the exhibits and
can decide either to buy one of them, or to buy another type
(which is not exhibited, but is offered), or, of course, not to
buy any car. Moreover, there are more units of every type
in the stock, which are for sale as well. Similar are shops
with furniture, where one can allocate entire “living-rooms,”
“kitchens,” “bathrooms,” etc. Customers can choose from the
offer of the product that is either exhibited or offered in a
shop catalog. The assortment question is Which product
types shall we exhibit in order to maximize the revenue?

Related problems of shelf-space allocation for perishing
inventories have been investigated in the literature moti-
vated by its practical relevance, and, typically, numerical
solution techniques were proposed because of the problem
complexity. Kar et al. (2001) and Bai and Kendall (2008)
considered a single-period problem of deteriorating inventory
and shelf-space allocation, which was optimally solved using
the generalized reduced gradient algorithm. Approximate
solutions such as greedy heuristics and metaheuristics were
used for similar problems by, e.g., Urban (1998), Bai et al.
(2008). Most of the literature considers random lifetimes

(see Goyal and Giri 2001, for a survey), which allows for
analytical approaches especially when the decay is exponen-
tial. We believe that because of the current regulation of
food safety and because of the existing outlet mechanisms in
other industries, it is more realistic to consider deterministic
lifetimes. Further, we focus on addressing the problem over
multiple periods of stochastic demand.

1.2. Modeling Approach

In this paper we present a model that we call the knapsack
problem for perishable inventories (KPPI). We consider a
collection of products, with a nonempty inventory, each of
which may be perishable by a finite deadline, or nonperish-
able. In each discrete time period, a decision maker must
select some of the products and decide how many units of
the selected products should be allocated to a knapsack with
limited volume.

We formulate the problem in the framework of Markov
decision processes (MDP) with a sample-path knapsack
capacity constraint. Because of this constraint, the dynamic
programming approach does not render an optimal solution
analytically, and numerically this approach is intractable
(curse of dimensionality). Because of such intractability, we
aim to obtain a well-grounded nearly optimal solution of the
problem. We therefore employ the Whittle relaxation (Whittle
1988), which is to relax the family of sample-path constraints
by a single one of allocating the knapsack capacity over the
planning horizon only in expectation.

Such a relaxed problem can then be solved optimally by
Lagrangian methods and the optimal solution to the Whittle
relaxation is, under certain conditions, an index policy. For
our problem it means that one can attach to each product an
index, which is a function of its current inventory level and
remaining lifetime, and then there is a particular value of the
Lagrangian multiplier such that it is optimal for the Whittle
relaxation to select all the products whose current index
value is larger than the value of the Lagrangian multiplier.
As usual for the Lagrangian multiplier, index values have
an economic interpretation of a fair charge, measuring the
efficiency, or the marginal rate of resource usage. Because
of the assumption of mutually independent product demands,
the index values can be obtained by solving optimally a
parametric single-product subproblem independently of other
products.

If the action space is binary, such problems are known as
restless bandits (Whittle 1988, Niño-Mora 2007), and exis-
tence of such index values (so-called indexability property)
must be established. For restless bandits, Whittle (1988)
showed that this allows to define a heuristic for the original,
nonrelaxed problem, called index rule, which prescribes to
order the products according to their current index values
and selects products until the resource capacity is filled. Such
a heuristic has been reported to have an exceptional perfor-
mance in a variety of problems (Niño-Mora 2007), it was
proved optimal under a frozen-if-not-allocated assumption for
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an infinite horizon problem with a single-capacity resource
in the celebrated work by Gittins (1979), and asymptoti-
cally optimal under certain technical assumptions in the
time-average case as both the number of products and the
resource capacity increase (Weber and Weiss 1990).

The challenge in our problem is then to study whether
and how such results extend to the case of finite horizon
(due to perishability), bi-dimensional state space (both
inventory level and remaining lifetime are taken into account),
and nonhomogeneous capacity utilization (due to different
product volumes).

1.3. Paper Structure and Contributions

In §2 we propose an MDP model of perishable product
with inventory. We further formulate the KPPI and then
relax and decompose the problem into parameterized single-
product subproblems. Section 3 is devoted to the study
of indexability of the problem, where, in §3.4, we prove
indexability and give a linear-time recursive characterization
of the index values under certain optimal policy structures.
The index values are obtained as a function of the product’s
deadline, inventory, profit margin, expected salvage value,
product’s volume, and selling probabilities with and without
promotion. We further implement a general algorithm for
testing indexability and for index computation, and we
conjecture based on our experiments that the subproblem
is indexable. Moreover, our experiments suggest that the
index values are numerically close to the ones computed
recursively.

Section 4 focuses on the solution to the original (nonre-
laxed) KPPI. In §4.1 we introduce the dynamic programming
formulation of KPPI to be used to compute an optimal policy
in tractable cases, which are found to be those with no more
than five products and planning horizon of no more than
32 periods. Employing the index values obtained in this
paper, we obtain in §4.2 the index rule and design a new
index-knapsack heuristic, which extends the one proposed in
Jacko (2013). This heuristic solves at every period a knapsack
problem, in which the index values are used as a proxy for
item prices, exploiting thus their economic interpretation as
the marginal rate of revenue from promotion.

The performance of the two heuristics is evaluated in a
systematic computational study in §5, which suggests their
near optimality, and further shows that the index-knapsack
heuristic (with suboptimality below 0.7%) outperforms the
classic index rule (with suboptimality below 3%) in all tested
instances. Section 6 concludes and the proofs are deferred
to the e-companion (available as supplemental material at
http://dx.doi.org/10.1287/opre.2014.1272).

From the methodological point of view, the results of this
paper contribute to several lines of research on the frontiers
of operations research and applied probability:

1. We significantly expand the modeling framework of
multiarmed bandits (Gittins 1979) and restless bandits

(Whittle 1988) to more general discretely divisible resource
allocation problems, and we design a new index-knapsack
heuristic for such problems with an outstanding performance.
We further generalize the model of Glazebrook and Minty
(2009), who studied nonrestless bandits with general resource
requirements and proposed a generalization of the Gittins
(1979) solution.

2. We characterize a new family of restless bandits that
are indexable. This is to the best of our knowledge the first
restless bandit model with a general bi-dimensional state, for
which indexability is analyzed; we are only aware of the
previous work in Jacko and Niño-Mora (2008), in which
model one of the state dimensions was only binary.

3. We develop a linear-time algorithm for computing
the index values in the above-mentioned case, to be con-
trasted with the general state-of-the-art algorithm for restless
bandits that take cubic time, i.e., two orders of magnitude
(both in lifetime and inventory level) higher complexity
(Niño-Mora 2007).

4. As a special case (when the product volume is unity and
the probability of selling the product is zero if not selected
for the knapsack), we obtain a linear-time characterization
of both the finite-horizon and infinite-horizon variants of the
Gittins index (Gittins 1979) for this model, which is two
orders of magnitude (both in lifetime and inventory level)
faster than the general state-of-the-art algorithm, which takes
cubic time (Niño-Mora 2011).

2. Modeling of Knapsack Problem for
Perishable Inventories

In this section we formally describe the problem and formu-
late it in MDP framework.

2.1. Problem

Consider a retailer that has available I ¾ 1 perishable
products, labeled by i ∈ I, with inventories of Ki ¾ 1
units of each product i. At every time period s ∈ H 2=
80111 0 0 0 1H − 19, where 1 ¶H ¶� is the planning horizon,
the retailer can decide what products to promote. Not all the
products can be promoted at the same time because the
promotion space (knapsack) has limited volume C > 0.
Every unit of product i has volume 0 <Wi ¶C and we will
typically have

∑

iKiWi �C. The retailer is dealing with a
problem of dynamic allocation of a subset of

∑

iKi product
units to a knapsack at every time period s.

Each product can only be sold during its lifetime, which
consists of periods 0111 0 0 0 1 Ti, where Ti ∈ 611H7 is the
deadline for all the units of product i at which they perish.
The product units can be sold until the end of period
Ti − 1, when they are removed as perished and cannot
be sold anymore. If a unit of product i is sold, it yields
an expected revenue (profit margin) Ri > 0 at that period.
Otherwise, a salvage value (revenue) is received in period Ti,
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whose expected value is denoted by �iRi for some (possibly
negative) coefficient �i ¶ 1. Revenues and the salvage value
are discounted over time with factor 0 ¶ �¶ 1.

2.2. MDP Model of Perishable Inventory with
Bernoulli Demand

For transparency, in the following we assume that only a
single unit of each product can be demanded by customers,
which is formalized by Bernoulli arrivals. We believe that
this assumption is almost without loss of generality, since
the length of the period can be taken arbitrarily small. As an
important consequence we have that it is enough to promote
at most one unit of each product in one time period, which
keeps the problem analytically tractable.

If product i is not promoted in a given period, then a unit
of this product is sold with probability 1−qi per period. If (a
unit of) product i is promoted (selected for the knapsack) in
a given period, then the probability of selling is increased
to 1 −pi (with 0 <pi <qi ¶ 1). In other words, pi is the
probability that no unit of product i is sold when promoted
in a period, and qi is the probability that no unit of product
i is sold when not promoted in a period; and the practically
more relevant products with qi > pi are interpreted as having
positive promotion power.

Inventory of Ki units of product i perishable at deadline
Ti is defined independently of other products as the tuple
4Ni1 4W

a
i 5a∈A1 4R

a
i 5a∈A1 4P

a
i 5a∈A5, where

• the state space is Ni 2= 4Ti ×Ki5∪ 809, where Ti 2=

811 0 0 0 1 Ti9, Ki 2= 811 0 0 0 1Ki9 and Ti × Ki is Cartesian
product of Ti and Ki; t ∈ Ti represents the number of
remaining periods before the deadline, and k ∈Ki represents
the remaining inventory (the number of remaining units) of
product i;

• the action space for states in Ti ×Ki is A 2= 80119.
Action 1 means to promote a unit of the product and action 0
means not to promote;

• the expected one-period capacity occupation (volume)
W a

i1n in state n under action a is as follows. For any state
n= 4t1 k5 ∈Ti ×Ki,

W 1
i1 4t1 k5 2=Wi1 W 0

i1 4t1 k5 2= 01 W 1
i10 =W 0

i10 2= 03

• the expected one-period revenue Ra
i1n in state n under

action a is as follows. For any state 4t1 k5, where k ∈Ki and
t ∈Ti\819,

R1
i1 4t1 k5 2=Ri41 −pi51

R1
i1 411 k5 2=Ri41 −pi5+��iRi4pi + k− 151 R1

i10 2= 01

R0
i1 4t1 k5 2=Ri41 − qi51

R0
i1 411 k5 2=Ri41 − qi5+��iRi4qi + k− 151 R0

i10 2= 03

• the one-period transition probability matrix P1 �Ni
i under

promoting for Ki = 2 is

0 41115 000 4Ti −1115 4Ti115 41125 000 4Ti −1125 4Ti125

0
41115
42115
0
0
0

4Ti115
41125
42125
0
0
0

4Ti125







































1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

1−pi pi 0 0 0 0 0 0 0
0
0
0 0

0 0 0 0 0 0 0 0 0
1−pi 0 0 pi 0 0 0 0 0

1 0 0 0 0 0 0 0 0
0 1−pi 0 0 0 pi 0 0 0

0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 1−pi 0 0 0 pi 0







































0

The matrix for larger Ki is obtained analogously using the
same matrix blocks. The one-period transition matrix P0 �Ni

i

can be obtained from P1 �Ni
i by replacing pi by qi.

To capture the dynamics of product i, we consider the state
process Xi4 · 5, where the state Xi4s5 ∈Ni at the beginning of
period s ∈H is Xi4s5= 4Ti − s1 k5, if s < Ti (i.e., the product
has not perished yet) and 0 <k¶Ki units of the product
still remain in the stock, and the state Xi4s5= 0 otherwise
(i.e., if all the units of product i have been sold (k = 0) or
perished (s ¾ Ti)).

2.3. Formulation of KPPI

Consider now the collection of I products with inventories.
Let çX1a be the space of randomized and nonanticipative poli-
cies depending on the joint state-process X4 · 5 2= 4Xi4 · 55i∈I
and deciding the joint action-process a4 · 5 2= 4ai4 · 55i∈I. Let
ƐÏ

0 denote the expectation over the state-process X4 · 5 and
over action process a4 · 5, conditioned on the initial joint
state X405= 4Ti1Ki5i∈I and on policy Ï ∈çX1a.

For any discount factor �, the KPPI problem is to find
a joint policy Ï maximizing the expected �-discounted
aggregate revenue starting from the initial period 0 subject
to the family of sample path knapsack capacity allocation
constraints, i.e.,

max
Ï∈çX1a

ƐÏ
0

[

∑

i∈I

H
∑

s=0

�sR
ai4s5

i1Xi4s5

]

subject to
∑

i∈I

W
ai4s5

i1Xi4s5
¶C

at each time period s ∈H0

(KPPI)

2.4. Relaxations and Decomposition

An exact dynamic programming formulation of the problem
is possible (see §4.1), however, its analytical solution is
inaccessible because of the sample path constraint. Even the
numerical resolution of this problem via dynamic program-
ming becomes quickly intractable because of the curse of
dimensionality. Therefore, we analyze the Whittle relaxation
of the problem via the Lagrangian approach (Whittle 1988).
Because of the mutual independence of the product demand,
this approach essentially allows to decompose the problem
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into tractable single-product parametric subproblems. This
approach has been developed in the literature following
Whittle (1988); see the general setting in Jacko (2009) for
more details.

Thus, the product-i parametric optimization subproblem
of expected total discounted net revenue is

max
�∈çXi1ai

{

Ɛ�
0

[ H
∑

s=0

�sR
ai4s5

Xi4s5

]

− � Ɛ�
0

[ H
∑

s=0

�sW
ai4s5

Xi4s5

]}

1 (1)

where, as before, Xi4s5 is the state of product i at time
period s and ai4s5 ∈ 80119 is action applied in time period s.
However, the optimization is now over all policies � ∈çXi1 ai

,
where çXi1 ai

is the space of randomized and nonanticipative
policies depending on the product-i state-process Xi4 · 5 and
deciding the product-i action-process ai4 · 5. The real-valued
parameter � that appears in the formulation is the Lagrangian
multiplier.

3. Optimal Dynamic Promotion of
Perishable Product with Inventory

In this section, we identify an optimal solution to the problem
of promoting a single perishable product when one must
pay for promoting. We interpret � as a cost of promoting
that must be paid for each space unit occupied in every
period in which the product is promoted. Since we are now
considering each product i in isolation, we drop the product’s
subscript i.

We focus on stationary deterministic policies, since it is
known from the MDP theory that there exists an optimal
policy that is stationary, deterministic, and independent of
the initial state (Puterman 2005, Chap. 6). Let S⊆T×K
be an S-active set representing a stationary policy, such
that all states with active action (action 1) belong to S
and states with passive action (action 0) to set 4T×K5\S.
Without loss of generality, action 0 is taken at state 0 (notice
that both actions have the same one-period consequence,
therefore the two actions are equivalent).

We define the expected total discounted revenue under
policy S if starting from state 4t1 k5 as

�S
4t1 k5 2= ƐS

4t1 k5

[ H
∑

s=0

�sR
ai4s5

Xi4s5

]

1 (2)

and the expected total discounted promotion work under
policy S if starting from state 4t1 k5 as

�S
4t1 k5 2= ƐS

4t1 k5

[ H
∑

s=0

�sW
ai4s5

Xi4s5

]

0 (3)

Let F 2= 2T×K be the family of all stationary policies.
Then (1) can be rewritten as the following optimization
problem

�∗

4T 1K5 2= max
S∈F

{

�S
4T 1K5 − ��S

4T 1K5

}

1 (4)

where �∗

4t1 k5 is called the value function.

3.1. General Properties of Optimal Solution

We first approach the problem by studying the Bellman
equation, which allows to characterize properties of the value
function and the optimal solution stated in the following two
theorems. The proofs are provided in the electronic com-
panion sections EC.1 and EC.2 (available as supplemental
material at opre.2014.1272), respectively.

Theorem 1 (Value Function Properties). The value
function is independent of T and K and it satisfies the
following:

(i) �∗
0 = 0;

(ii) if �¾ 0, then �∗

4t1 k5 ¾ 0 and �∗

4t1 k5 is nondecreasing
in k for all t;

(iii) if �∗

4s115 ¶ 0 for some s ( for which necessarily
� ¶ −41 − q5/�q), then �∗

4t1 k5 is nonincreasing in k ¾
max811 t − s + 19 for all t;

(iv) if � ¾ 0, then �∗

4t115 ¶ R and �∗

4t1 k5 − �∗

4t1 k−15 is
nonincreasing in k and all t;

(v) if �¶ 41 − q5/41 −�q5, then �∗

4t115 is nondecreasing
in t;

(vi) if �= 1 or �¶ 0, then �∗

4t1 k5 is nondecreasing in t
for all k;

(vii) �∗

4t1 k+15 −�∗

4t1 k5 = �t�R for all k¾ t.

Theorem 2 (Optimal Solution Properties). The opti-
mal solution is independent of T and K and it satisfies:

(i) for � ¾ 0: if it is optimal to promote in state 4t1 k5,
then it is optimal to promote in state 4t1 k+ 15;

(ii) for � ¾R4q−p541 −�5/4W41 −�q55 or for �¶
41 − q5/41 −�q5: if it is optimal to promote in state 4t115,
then it is optimal to promote in state 4t − 1115;

(iii) for �= 1 and � ¾ 0 or for � ¾ 4R/W54q −p5: if it
is optimal to promote in state 4t1 k5, then it is optimal to
promote in state 4t − 11 k5;

(iv) for �= 1 and � ¾ 0 or for 0 ¶ � ¶ 4R/W54q−p5: if
it is optimal to promote in state 4t − 11 k− 15, then it is
optimal to promote in state 4t1 k5;

(v) if � ¶ 4R/W54q − p541 −�t�5, then it is optimal
to promote in any state 4k1 t5 with k¾ t and if � ¾ 4R/W5
4q −p541 −�t�5, then it is optimal to not to promote in any
state 4k1 t5 with k¾ t.

It can also be observed directly from the Bellman equations
that the structure of the optimal policy (i.e., the family of
active sets S as � varies) does not depend on R1W , and the
value function depends on R1W only via their ratio R/W .
The claims of the two theorems provide an idea about the
complexity of the problem and diversity of the structure of
its optimal solution, strongly depending on whether �= 1 or
�< 1, the sign of � and the value of �.

3.2. Solvability by Index Policies

To better identify the optimal solution, we will be interested
in characterizing an optimal policy in terms of index values,
which indicate if the perishable product is worth promoting.
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Figure 1. A scheme of a general algorithm for computing
index values.

{Input R1W1�1K1T 1P0 �N1P1 �N1�}
S 2=T×K;
while S 6= �

pick n ∈ arg max8�S
n 2 n ∈S9;

�∗

n 2= �S
n ;

S 2=S\8n9;
end;
{Output 4�∗

n5n∈T×K9;

Definition 1 (Indexability). We say that �-parameter
problem (4) is indexable (or that the product is indexable),
if there exist unique values −�¶ �∗

n ¶� for all n ∈T×K
such that the following holds:

1. if �∗
n ¾ �, then it is optimal to promote in state n, and

2. if �∗
n ¶ �, then it is optimal not to promote in state n.

The function n 7→ �∗
n is called the 4Whittle5 index, and �∗

n’s
are called the 4Whittle5 index values.

Notice that the indexability property implies that for each
value of �, the problem is optimally solved by an S4�5-active
set (i.e., a stationary policy), and moreover these S4�5-active
sets monotonically diminish (by removing one or more
states from the set) as � grows. As a direct consequence of
Theorem 2(v), we have the following proposition.

Proposition 1. The index value of any state 4k1 t5 with
k¾ t is �∗

4k1 t5 = 4R/W54q −p541 −�t�5.

We can see that for t ¶ k the index �∗

4t1 k5 does not depend
on the actual inventory k. This is because at most one unit
of the product can be sold per period, so at most t units
can be sold before the product perishes, so the remaining
k− t units get surely perished. Thus t < k is a degenerate
case, in which a preceding inventory replenishment control
had failed or the realized demand in previous periods was
extremely low.

In general, one can test indexability of a product numeri-
cally and compute index values using a general algorithm
given in Niño-Mora (2007), whose fastest known implemen-
tation runs in O4T 3K35. The algorithmic scheme is presented
in Figure 1, where the complexity comes from computing
quantities �S

n at each step, which must also satisfy certain
properties in order to imply indexability (see the details
in section EC.3). According to our findings in numerical
experiments, we conjecture that all perishable products are
indexable. However, the structure of the optimal policy can
considerably differ depending on the sign of � and values of
parameters K1T 1p1q1�, as established in §3.1, and further
conjectured next.

Conjecture 1. The perishable product is indexable for
all values of the parameters K1T ¾ 1 and R> 01W > 0,
0 <p< q ¶ 1, �¶ 1, 0 ¶ �¶ 1.

However, the ordering in which the states are being
removed from the active sets may in general depend on

product parameters. This lack of universal structure compli-
cates the indexability analysis of the problem; nevertheless,
we study indexability and characterize the index values
for general families of products in the following three
subsections.

3.3. Myopic Policy

It is interesting to study problem (4) under the myopic
criterion, i.e., optimizing only the current period revenue,
which is obtained by setting �= 0. This leads to a policy,
which may provide a practical though suboptimal solution
for the original problem with �> 0.

Theorem 3 (Myopic Policy). Under the myopic criterion
(�= 0), (4) is optimally solved by the following policy:

1. if � ¶ 4R/W54q −p5, then it is optimal to promote in
all states 4t1 k5;

2. if � ¾ 4R/W54q −p5, then it is optimal not to promote
in all states 4t1 k5.

The myopic policy is thus en extremely simple index pol-
icy, yielding the optimality of two active sets: the empty set �

and the full set of states T×K, which is the trivial example
of the structure of optimal policies. Consequently, the corre-
sponding myopic index value is �MYOPIC

4t1 k5 = 4R/W54q−p5 for
all states 4t1 k5.

3.4. Nonpositive Expected Salvage Value

This subsection focuses on the case �¶ 0, for which we
identify a family of products that are provably indexable and
for which we provide an efficient algorithm for computation
of the index values.

As the simplest nontrivial example of the structure of
optimal policies, let us denote by F415 the strongly time-
monotonous family of nested active sets

F415 2= 8S415
4t1 k5 for all 4t1 k5 ∈T×K91

where S415
4t1 k5 2= 84s1 l52 4s < t and 1 ¶ l¶K5

or 4s = t and k < l¶K590

Figure 2 graphically illustrates two instances of stationary
policies S415

4t1 k5, and a product instance optimally solvable by
policies belonging to F415 is presented in Table 1.

The active sets belonging to F415 are such that if it is
optimal to promote at state 4t1 k5, then it is optimal to
promote at all the remaining periods regardless of the actual
inventory, and also at period t if the inventory was larger
than k. This family is very restrictive, but it gives a unique
and total ordering of active sets in which they monotonically
diminish.

However, we shall consider a more general, weakly time-
monotonous family F425 of active sets, for which the problem
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Figure 2. Illustration of the ordering of states by a strongly time-monotonous family F415 of nested active sets for a
particular value of parameter � (in this case the index values can be computed analytically by (5)).
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Notes. The state 4t1 k5 at which both actions are optimal (to be added to the optimal active set) is marked by a square, the states at which it is optimal to
promote (already in the active set) by stars, and the remaining states by dots. Set S415

4t1 k5 is the filled area. The figures correspond to 4t1 k5= 46135 (on the left)
and 4t1 k5= 48135 (on the right), respectively, of an instance with parameters T = 10; K = 10; W = 1; R= 1; �= −1/2; p = 009; q = 1; �= 004.

Table 1. A product instance solvable by policies in F415 illustrating the structure of the optimal active sets: for any state
4t1 k5, it is optimal to promote in states preceding it, and it is optimal not to promote in the remaining states.

4t1 k5 41135 41125 41115 42135 42125 42115 43135 43125 43115 44135 44125 44115

�
425
4t1 k5 = �∗

4t1 k5 650 650 650 590 590 588 554 554 551 532 532 529

4t1 k5 45135 45125 45115 46135 46125 46115 47135 47125 47115 48135 48125 48115

�
425
4t1 k5 = �∗

4t1 k5 519 519 517 512 511 510 507 507 506 504 504 503

Note. We further show that index values computed by the general algorithm and using the analytical characterization of �425
4t1 k5 are equal (T = 8,

K = 3, R = 11000, W = 1, �= −1/2, p = 0095, q = 1, �= 006).

can be solved analytically. The problem when considering
F415 is a special case of that with F425. We define

F425 2= 8S⊆T×K2 for all 4t1 k5 ∈S1 S⊇S425
4t1 k591

where S425
4t1 k5 2= 84s1 l52 1 ¶ s < t and

max811 k− 4t − s59¶ l¶ k90

Family F425 induces only a partial ordering of active sets in
which they monotonically diminish (in contrast to the total
ordering induced by F415). Figure 3 graphically illustrates
two instances of active sets S ∈F425, together with instances
of S425

4t1 k5. Note that S425
4t1 k5 is determined by the diagonal,

since the states strictly below the diagonal are irrelevant
because at most one product unit can be sold per period
because of Bernoulli demand.

The following theorem is the main theoretical result of
this paper. The proof is based on a work-reward analysis of
the value function and on properties of binomial numbers,
and, because of its extensive length, it is presented in
section EC.4.

Theorem 4 (Indexability Under F425). Suppose that
�¶ 0. If for every � there is an optimal active set that

belongs to F425, then the product is indexable, and the index
value for its state 4t1 k5 ∈T×K is

�
425
4t1k5

=



























































































�∗

4t1k5=
R

W
41−p5

[

1−
1−q+�4q−p5�t

1−p

]

1 t¶k

R

W
41−p5

[

1−

(

1−q+��t4q−p5pt−k

·

k−1
∑

i=0

(

t−k−1+i

i

)

41−p5i
)

·

(

1−p−4q−p5�k41−p5k

·

t−k−1
∑

i=0

(

k−1+i

i

)

4�p5i
)−1]

1 t>k

(5)

Let us introduce in the following two propositions the
recursive functions ft1k and gt1k that will be useful in the
computation of the index values (5).
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Figure 3. Illustration of the ordering of states by a weakly time-monotonous family F425 of nested active sets for a
particular value of parameter � (in this case the index values can be computed analytically by (5)).
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Note. The state 4t1 k5 at which both actions are optimal (to be added to the optimal active set) is marked by a square, the states at which it is optimal to
promote (already in the active set) by stars, and the remaining states by dots. Set S425

4t1 k5 is the filled area. The figures correspond to 4t1 k5= 46145 (on the left)
and 4t1 k5= 48165 (on the right), respectively, for an instance with parameters T = 10; K = 10; W = 1; R= 1; �= −1/2; p = 007; q = 1; �= 009.

Proposition 2 (Recursion for ft1 k). Let ft1 k denote the
function

ft1k 2=















�tpt−k
k−1
∑

i=0

(

t−k−1+i

i

)

41−p5i1 if t>k1

�t1 if t¶k1

(6)

Then ft1 k satisfies the following recursions:
(i) ft11 = �pft−111 for t > k1 k = 1,
(ii) ft1 k = �pft−11 k +�41 −p5ft−11 k−1 for t > k1 k > 1.

Proposition 3 (Recursion for gt1 k). Let gt1 k denote the
function

gt1k 2=















�k41 −p5k
t−k−1
∑

i=0

(

k− 1 + i

i

)

4�p5i1 if t > k1

01 if t ¶ k0

(7)

Then gt1 k satisfies the following recursions:
(i) gt11 = �pgt−111 +�41 −p5 for t > k1 k = 1,
(ii) gt1k = �pgt−11 k +�41 −p5gt−11 k−1 for t > k1 k > 1.

Because of these two propositions we have the following
result giving a linear (in number of states TK) algorithm
for computation of the index values. The improvement
in the time complexity of the algorithm is of two orders
of magnitude in both T and K, since the fastest known
implementation of the general algorithm for index values
computation requires O4T 3K35 elementary operations (see
the next subsection). Moreover, any algorithm must perform
at least O4TK5 elementary operations in order to compute TK
index values, and this bound is achieved by our algorithm.

Proposition 4 (Fast Index Values Computation). The
index values in (5) can be characterized by

�
425
4t1 k5 =

R

W
41 −p5

[

1 −
1 − q +�4q −p5ft1 k
1 −p− 4q −p5gt1 k

]

0 (8)

Moreover, the index values, for all t ∈T and k ∈K can be
computed using at most O4TK5 elementary operations.

We can observe several remarkable properties of the index
values.

Proposition 5 (Monotonicity). The monotonicity prop-
erties of index values in (5) are

(i) �
425
4t−11 k5 ¾ �

425
4t1 k5 ∀k¾ 11 ∀ t > 1;

(ii) �
425
4t1 k−15 ¶ �

425
4t1 k5 ∀k > 11 ∀ t ¾ 1;

(iii) �
425
4s1 l5 ¾ �

425
4t1 k5 ∀ l¾ k1 ∀ s ¶ t.

Next we give an index characterization for a nonperishable
product, obtained from index values (5) for perishable
product in the limit t → �.

Proposition 6 (Nonperishable Product). Under
assumptions of Theorem 4, the index for a nonperishable
product with inventory k ∈K is

�
425
4�1 k5 =



























R

W
41 −p561 − 41 − q5 · 41 −p− 4q −p5

· 4�41 −p5/41 −�p55k5−171 � < 1

01 �= 10

Figure 4 illustrates the convergence of index values of
perishable products as t grows, indicating that the formula
given in Proposition 6 may be used as an approximation of
the index value (5) for large t; see section EC.9 for more
details. Note also that for large k, �425

4�1 k5 converges in case
�< 1 to 4R/W54q −p5, which is the myopic index �MYOPIC

4t1 k5 .
That is, the myopic index value underestimates the efficiency
of promotion for low t, and it overestimates it for high t.
Nevertheless, it is a good approximation of the Whittle index
value when both t and k are large in case �< 1 (although
this is not true if �= 1).
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Figure 4. Illustration of convergence of the index values �
425
4t1 k5 as t grows in a product with parameters T = 50, K = 7,

W = 1, R= 1, �= −1/2, p = 007, q = 0085.
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Figure 5. Illustration of the ordering of states by the conjectured family F435 of nested active sets for a particular value of
parameter � (in this case we propose to use the analytical index (5) as an approximation of the exact one).
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Notes. The state 4t1 k5 at which both actions are optimal (to be added to the optimal active set) is marked by a square, the states at which it is optimal to
promote (already in the active set) by stars, and the remaining states by dots. Set S435

4t1 k5 is the filled area. The figures correspond to 4t1 k5= 47165 (on the left)
and 4t1 k5= 48155 (on the right), respectively, of an instance with parameters T = 10; K = 10; W = 1; R= 1; �= −1; p = 007; q = 0085; �= 0095.

However, F425 does not always characterize the optimal
policies entirely. We thus define a more relaxed, partially
ordered family of active sets

F435 2=8S⊆T×K2 for all 4t1k5∈S1S⊇S435
4t1k591 where

S435
4t1k5 2=84s1l52 1¶s<t and l4s5¶ l¶k1where

max811k−4t−s59¶ l4s5 is some real-valued

nondecreasing function over s∈ 611t−1790

Notice that we have S435
4t1 k5 ⊆S425

4t1 k5 ⊆S415
4t1 k5 for all 4t1 k5, and

therefore F415 ⊆F425 ⊆F435. The differences between these
sets can be easily seen from a comparison of Figures 2, 3,
and 5. The latter further illustrates the structure of active sets
of family F435. We conjecture that F435 always completely
characterizes the optimal polices.

Conjecture 2. If �¶ 0, then we believe the following is
true:

1. the index is nonincreasing in t for every k (i.e., Propo-
sition 5(i) holds);

2. family F435 contains an optimal policy, and function
l4s5 is convex for sufficiently low �, and it is concave for
�= 1;

3. if �= 1, then the structure of the optimal policy (i.e.,
the order of the added states to the active set S as �

decreases) does not depend on �.

Unfortunately, the index values under F435 cannot be
derived analytically, since the exact structure of optimal
policies is not easily identifiable. For practical purposes
we therefore propose to use the index values characterized
in §3.4 as approximate index values in general. Although
it is not guaranteed that optimal policies for any value of
� belong to family F425, the index values computed are
numerically close to those obtained by Theorem 4 according
to our numerical experiments. In particular, the relative
deviation of index values given by Theorem 4 from true
index values is below 1 % on average and below 5 % in the
worst case. See section EC.10 for more details.
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Two perishable product instances are presented in Tables 1
and 2, where the order of states is according to the index
values computed using the general algorithm, and index
values given by Theorem 4 are also shown for comparison.
In Table 1 a product optimally solvable by policies in family
F415 is shown, and strong time monotonicity holds (all the
states with shorter time to deadline are in the active set).
This instance therefore obeys the policy structures in both
F425 and F435, and the index values given by Theorem 4
equal to those computed numerically. In the more common
case, illustrated in Table 2, the structure of optimal policies
obeys family F425 only until state 45145 (including). Note
that until that row, the numerical and analytical index values
are equal. After that row, the optimal policy structure belongs
to F435, but not to F425. For instance, states 45135, 44125,
46145, 43115 (that lie on the same diagonal) would have to
be added in the order 43115, 44125, 45135, 46145 instead
in order to have policies belonging to F425; similarly, the
remaining states must also be reordered.

However, the numerical differences between index values
are very small and the only place in which the order of
states obtained by our index values differs from the true
order is having states 44125 and 46145 swapped. To sum up,
our index values may well approximate the true index values
despite assuming different structures of optimal policies.
This encourages us to implement our index characterization
by Theorem 4 in heuristics for KPPI in the following section.

3.5. Positive Expected Salvage Value

For the case 1 ¾ � > 0, we consider a complementary,
weakly counter-time-monotonous family F4−25 of active sets,
for which the problem can in part be solved analytically.
We define

F4−25 2= 8S⊆T×K2 for all 4t1 k5yS1 S∩S425
4t1 k5 = �90

Family F4−25 induces only a partial ordering of active sets
in which they monotonically diminish, but in the direction
contrary to the family F425. Figure 6 on the left graphically
illustrates one instance of active sets S ∈F4−25.

Analogously to Theorem 4 we can obtain a slightly weaker
result. The proof is provided in section EC.11.

Theorem 5 (Index Values Under F4−25). Suppose that
1 ¾ �> 0. If there is �0 such that for every � ¾ �0 there
is an optimal active-set S that belongs to F4−25, and if
the product is indexable, then the index value for its state
4t1 k5 ∈S with �∗

4t1 k5 ¾ �0 is

�
4−25
4t1k5 =



































































�∗

4t1k5=
R

W
4q−p561−��t71 t¶k

R

W
4q−p5

[

1−�k41−q5k

·

t−k−1
∑

i=0

(

k−1+i

i

)

4�q5i−��tqt−k

·

k−1
∑

i=0

(

t−k−1+i

i

)

41−q5i
]

1 t>k0

(9)

Analogously to the case �¶ 0, it is possible to obtain
a fast algorithm for computation of the index values and
establish monotonicity properties. We provide these results
and further discussion in section EC.12.

The main limitation of Theorem 5 is that it relies on the
assumption of existence of value �0. Indeed, in view of
Theorem EC.2 and the results in Jacko (2013), F4−25 may
not contain optimal policy for all values of � except for the
less practically relevant case �¾ 41 − q5/41 −�q5. However,
it is possible to observe numerically that such �0 often exists,
and so formula (9) characterizes those index values with
�∗

4t1 k5 ¾ �0.
Since the deadline T is fixed, it turns out that formula

(9) gives exact characterization of index values for all the
states with k large enough for a given t, or, equivalently,
for all the states with t small enough for given k. On the
other hand, Theorem EC.2 and the results in Jacko (2013)
give exact characterization of index values for all the states
with k = 1. Thus, relatively few states (in our numerical
experiments with T =K = 10 typically those with k = 213)
are left without exact characterization, and these could be
either approximated or computed exactly numerically.

If �> 0, the structure of the optimal policies is relatively
irregular, and we conjecture it has the following properties.

Conjecture 3. If �> 0, then we believe the following is
true:

1. For every k there is 1 ¶ tk ¶+� such that the index
is nondecreasing in t ¶ tk and nonincreasing in t ¾ tk, and
tk is increasing in k; moreover, the higher �, the higher tk’s,
and the higher �, the lower tk’s.

2. Once it is optimal to promote in state 41115 (i.e.,
� ¶R4q −p541 −��5/W ), then family F435 contains an
optimal policy, and function l4s5 is concave for all �.

3. If �= 1, then tk = 1 for all k and the structure of the
optimal policy (i.e., the order of the added states to the
active set S as � decreases) does not depend on �, and is
the same as when �¶ 0.

We remark that Theorem EC.2 implies that t1 = +�,
which is in line with 3(i), and would further imply tk = +�

for all k. Also, 3(ii) is in agreement with 4(iii)–(iv). Note
also that F4−25 ⊆F435. For illustration, see Figure 6 on the
right. Figure 6 on the left however does not satisfy that
property. This may be the case, for instance, of the problem
of car showroom exhibition, in which it might be more
profitable (as measured by the Whittle index value) to select
a new car model with low inventory than to select an older
car model with high inventory for the showroom.

4. Solutions to Knapsack Problem for
Perishable Inventories

In this section we return to the unrelaxed KPPI problem and
show how the index derived in the previous section can be
implemented in order to obtain a nearly optimal solution.
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Table 2. A product instance solvable by policies in F435 (but not by those in F415 or F425) illustrating the structure of the
optimal active sets: for any state 4t1 k5, it is optimal to promote in states preceding it, and it is optimal not to
promote in the remaining states.

4t1 k5 41145 41135 41125 41115 42145 42135 42125 43145 43135 42115 44145 43125

�∗
4t1 k5 91833 91833 91833 91833 91675 91675 91675 91525 91525 91402 91382 9,318

�
425
4t1 k5 91833 91833 91833 91833 91675 91675 91675 91525 91525 91402 91382 9,318

4t1 k5 44135 45145 45135 44125 46145 43115 46135 45125 44115 46125 45115 46115

�∗
4t1 k5 91228 91133 81780 81765 81758 81578 81253 81067 71647 71417 71053 6,799

�
425
4t1 k5 91228 91133 81749 81708 81746 81578 81129 71945 71647 71307 71053 6,799

Note. We further show the index values computed by the general algorithm (�∗

4t1 k5) and using the analytical characterization of �425
4t1 k5, highlighting

when they are not equal (T = 6, K = 4, R = 11000, W = 1, �= −1/2, p = 1/3, q = 1, �= 0095).

Figure 6. Illustration of the ordering of states by a weakly counter-time-monotonous family F4−25 of nested active sets for
a particular value of parameter � such that � ¾ �0 (on the left; in this case the index value can be computed
analytically by (9)) and such that � < �0 (on the right).

10
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t
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Notes. The state 4t1 k5 at which both actions are optimal (to be added to the optimal active set) is marked by a square, the states at which it is optimal to
promote (already in the active set) by stars, and the remaining states by dots. Set S425

4t1 k5 is the filled area. The figures correspond to 4t1 k5= 44135 (on the left)
and 4t1 k5= 49135 (on the right), respectively, of an instance with parameters T = 10; K = 10; W = 1; R= 1; �= 002; p = 007; q = 008; �= 0095.

4.1. Dynamic Programming Formulation and Exact
Solution of KPPI

We first outline an exact dynamic programming formulation
of the problem. Recall from §2.3 that X4s5 is the actual joint
state of all the products at period s ∈ 601H7. Let M4s5 be the
set of a possible joint states at time period s. In particular,
for s =H , we have a single possible joint state of having all
the products perished, so M4s5 = 809.

Then, the Bellman equation for the optimal value D
4s5
m

for each joint state m ∈M4s5 and period s ∈ 601H − 17 is as
follows:

D4s5
m = max

∑

i∈I zi4m1 s5Wi¶C

(

∑

i∈I

R
zi4m1 s5
i1mi

+�
∑

m′∈M4s+15

�z4m1 s5
m

· 6X4s + 15=m′7D
4s+15
m′

)

1

D4H5
m = 01 for m ∈M4H51

where z4m1 s5 2= 4zi4m1 s55i∈I is a vector of binary decision
variables denoting whether a unit of product i is selected
for promotion or not (i.e., zi4m1 s5 ∈ 80119), and moreover
such that zi4m1 s5= 0 if mi = 0 (i.e., product i cannot be
promoted if it is perished or sold out).

By �z4m1s5
m 6X4s+15=m′7 we understand the probability of

reaching the next-period joint state X4s+15=m′ conditional
on the actual-period joint state X4s5=m and on employing
actions according to z4m1 s5. This joint state dynamics
is, obviously, a result of selling (or not selling) particular
products and of their perishing.

In other words, D
4s5
m is the maximum expected total

discounted revenue over all possible combinations of actions
for the actual inventory m at time period s, according to the
knapsack capacity C . We are interested in value D

405
m∗ =2 Dmax

from the initial joint state m∗ 2= 44Ti1Ki55i∈I. Moreover, the
optimal policy is obtained by vectors z4m1 s5 2= 4zi4m1 s55i∈I
for each s and every m that maximize the right-hand side of
the Bellman equations.
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Thus, the above approach yields the exact solution to
KPPI. However, it is intractable because of the combinatorial
explosion of both the joint state space and the joint action
space given the knapsack constraint, which is known as
the curse of dimensionality. Indeed, in order to obtain an
optimal solution and an optimal policy, it is necessary to
obtain optimal policies for all possible future joint states
in all future periods. Our implementation of the dynamic
programming approach in Matlab leads to acceptable runtime
(of below 10 minutes per problem instance) only for up to
I = 5 products and up to horizon H = 32.

4.2. Heuristics for KPPI

Since the index captures the marginal rate of revenue from
promotion, we next propose to implement index values as “a
promotion price per volume unit.” Recall expression (5) for
the index calculation, which is to be used in the heuristics
as explained next.

Consider a period s ∈ 601H −17, at which the joint state is
X4s5. Let Ĩ⊆I be the set of products that are not perished
and at least one unit is available (according to X4s5), i.e.,
i ∈ Ĩ if and only if Xi4s5 6= 0. Then for all i ∈ Ĩ, an index
value by (5) exists, so we can define the following knapsack
problem prices:

v
4s5
i 2=Wi�

∗

i1Xi4s5
0 (10)

And we consider the following 0-1 knapsack problem to
solve

max
y4s5

∑

i∈Ĩ

y
4s5
i v

4s5
i

subject to
∑

i∈Ĩ

y
4s5
i Wi ¶C

y
4s5
i ∈ 80119 for all i ∈ Ĩ1

(KP)

where y4s5 2= 4y
4s5
i 5i∈Ĩ is a vector of binary decision variables

denoting whether a unit of product i is selected for promotion
or not.

We propose the following heuristics for solving KPPI:
• Index-knapsack 4IK5 heuristic. Calculate the prices

v
4s5
i for s = 0 and then solve the knapsack problem (KP)

optimally.
• Index rule 4IR5. Compute the index values �∗

i1Xi4s5
for

s = 0 and then select the products for promotion in greedy
manner (highest first) until either the capacity is filled or
there are no more products.

Notice that the computational complexity of these two
heuristics is dramatically lower than that of the optimal
solution via dynamic programming; in particular, they do
not suffer from the curse of dimensionality. Index rule is the
simpler one, since it only requires for each product to run a
linear-time algorithm computing the index values and then
sorting them. The index-knapsack (IK) heuristic requires to
compute the prices (at exactly the same time as computing the

index values), and then solving a single knapsack problem,
which can be solved in pseudo-polynomial time O4I ·C5
in the worst case and for which practically efficient exact
algorithms exist (Pisinger 2005).

We remark that index rule can be itself seen as a greedy
algorithm for the knapsack problem of IK heuristic, anal-
ogously to the Dantzig greedy algorithm for the classic
knapsack problem (Dantzig 1957). One can therefore expect
that IK heuristics should outperform index rule. Moreover,
the absolute difference in their performance can be arbitrar-
ily bad, but they should converge to each other as either
(i) product volumes of all the products become equal or
(ii) as problem granularity decreases (i.e., as both the number
of products and the knapsack capacity increase).

5. Experimental Study
We have studied performance of the two proposed heuristics,
comparing them to the optimal policy in numerical experi-
ments for a variety of model parameters. In this section we
present results of systematical computational experiments
in which we evaluate the suboptimality gap of the two
heuristics.

To summarize, the experimental study suggests near
optimality of both the index-knapsack heuristic and the index
rule. The former is, on average, always outperforming the
latter, often significantly. Moreover, the difference in the
performance of the index-knapsack heuristic with exact index
value and that with approximate index values is negligible.

5.1. Performance Evaluation Measures

By solving the KPPI optimally we obtain the maximizing
policy, which yields the optimal objective value Dmax. Via
backward recursion, the objective value of other policies is
obtained by employing the policy at each step, denoted by
D� for policy � . We next introduce performance evaluation
measures we use to report the experimental results.

The relative suboptimality gap of policy � , conventionally
used in literature, is defined as

rsg4�5=
Dmax −D�

Dmax
0 (11)

Clearly, as long as Dmax > 0, we have 0 ¶ rsg4�5¶+�,
where rsg4�5 = 0 is obtained by the maximizing policy.
However, if �i ¶ 0 for some of the products, we may have
Dmax ¶ 0 and therefore may also be rsg4�5 < 0 or a problem
of division by zero may appear. On the other hand, the
worst-case policy of leaving the knapsack empty may have
an objective value close to Dmax in some instances. We can
therefore conclude that this measure may overestimate the
quality of � by reporting small or negative values even for
the worst policies.

This motivates us to use another measure, the adjusted
relative suboptimality gap of policy �, defined as

arsg4�5=
Dmax −D�

Dmax −Dmin
1 (12)

where Dmin is the worst-case policy of leaving the knapsack
empty. With this measure we always have 0 ¶ arsg4�5¶ 1
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Figure 7. Mean adjusted relative suboptimality gap of IK heuristic (solid line) and IR heuristic (dashed line) in problems
with I = 2 (black line) and I = 3 (grey line) products.
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(as long as Dmax −Dmin 6= 0), and both limiting values can
be achieved.

5.2. Experimental Study Setting

For each pair 4I1H5, denoting the number of products
and the problem time horizon, respectively, such that I =

821314159 and H = 82141 0 0 0 1169 or I = 82139 and H =

8201241 0 0 0 1329, we have randomly generated 51000 (for
H ¶ 16) or 101000 (for H > 16) instances. We set �i = −1/2
for each product i and we assure that T1 2=H . For each
product we have randomly generated the number of units Ki

such that Ki ¶ Ti. To keep the instances tractable (solvable
in less than 10 minutes) we have also set Ki < 10 and
∑

iKi ¶ 20.
We assume Poisson arrivals of customers for each prod-

uct i, denoting by �0
i and �1

i the mean arrival rate for non-
promoted and for promoted product, respectively. We restrict
these values to 2/3Ki <�a

i Ti ¶ 2Ki for both a ∈ 80119, which
assures that the probability of selling all the units of product i
before the deadline for each product is within a reasonable
range, since �a

i Ti is the expected number of customer arrivals
during the product’s lifetime. The respective probabilities of
not selling any unit are qi = e−�0

i and pi = e−�1
i . Thus we

generate the following uniformly distributed parameters:

Wi ∈ 61012573 Ri ∈ 61015073 Ti ∈ 621H73

Ki ∈ 611max4Ti19573 �0
i 1�

1
i ∈

(

2
3
Ki

Ti
1

2Ki

Ti

]

0

Finally, a uniformly distributed knapsack volume C is
generated in the interval

C ∈

[

max8Wi93max
{

max8Wi9140% ·
∑

i

Wi

}]

0

We focus on the case �= 1, which is most likely to be
implemented in practice, but for �≈ 1 the results are similar,
and the performance of the heuristics improves as �→ 0.

5.3. Scenarios with Two or Three Products

We first describe the results of experiments with I = 2
and I = 3 products, which are computationally the most
accessible ones, and therefore can provide richer information.
Figure 7 presents the mean adjusted relative suboptimality
gap in identical sets of problem instances, where the numeri-
cally computed (exact) index was implemented in (a), and
the analytically computed (approximate) index was taken for
the two heuristics in (b). In all cases the mean gap is below
3%, and it is interesting to observe that the IK heuristic
significantly outperforms the index rule (IR). The difference
in performance is more prevalent for smaller time horizons,
and seems to diminish as the horizon grows. This behavior
suggests that the two heuristics become equivalent when the
time horizon is large enough. Moreover, Figure 7 indicates
that there is virtually no difference in performance between
implementing the approximate and the exact index values.

In Figure 8 we illustrate the structure of the optimal policy
and of the IK and IR heuristics in a particular problem
instance with I = 2 products and horizon H = 5, in which
only one product fits in the knapsack. The figures show the
switching curves of the respective policies. Whereas IK is
the same as the optimal policy, IR heuristics tend to promote
product 2 in more joint states. Note that the joint states in
which IR takes suboptimal action are sometimes several at
the same time to go. This is a typical situation that we have
observed when both I and H are small: IK is optimal in
more than 90% problem instances.

These results clearly indicate that the IK heuristic should
be the preferred choice in this setting. Note that solving
(KP) in the case of 2 or 3 products is a simple task and so
it brings virtually no computational overhead with respect
to IR.

5.4. Scenarios with Four or Five Products

With respect to the results of experiments with I = 4 and I =

5 products, we note that they become more computationally
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Figure 8. The structure of policies in a problem with parameters I = 2, T1 = T2 = 5, K1 = 5, K2 = 4, p1 = 005, p2 = 004,
q1 = 0065, q2 = 007, �1 = �2 = −1/2, �= 1, W1 = 16, W2 = 10, R1 = 32, R2 = 24, C = 20.
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Notes. Each block of K1 ×K2 points shows prescribed actions for a fixed number of time period to go, t = T1 = T2. A circle denotes promoting product 1, and
a bullet denotes promoting product 2. The horizontal axis of each block refers to states 4t1151 4t1251 0 0 0 1 4t1K15, and the vertical axis of each block refers to
states 4t1151 4t1251 0 0 0 1 4t1K25.

demanding as the horizon H grows, and so we were only able
to run experiments for H ¶ 16. The performance of the IK
and IR heuristics is shown in Figures 9 and 10, respectively,
where they are contrasted also with the results for I = 213.

Figure 9. Mean adjusted relative suboptimality gap of IK heuristic.

0.35

0.30 0.6

l = 2
l = 3
l = 4
l = 5

H = 2
H = 4
H = 6
H = 8
H = 10
H = 12
H = 14
H = 16

0.5

0.4

0.3

0.2

0.1

0

0.25

0.20

0.15

0.10

0.05

0
0 3

Number of products

ar
sg

 (
%

)

ar
sg

 (
%

)

Time horizon

(a) As functions of number of products I (b) As functions of horizon H

4 5 5 10 15 20 25 30

Figure 10. Mean adjusted relative suboptimality gap of IR heuristic.
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It is interesting to see that IK’s mean performance seems to
be insensitive to the number of products considered, and
remains extremely close to optimal (although there is an
approximately linear dependence on the problem horizon).
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On the other hand, IR’s dependence on the number of
products is inconclusive, but its performance improves with a
higher horizon and stabilizes relatively quickly (for H ¾ 10).

Finally we note that in these figures we exhibit heuristics
with exact index values. Their performance with approxi-
mate index values is similar, and slightly inferior for IR.
Nevertheless, IK significantly outperforms IR in all these
instances.

6. Conclusion
We have introduced a model for the problem of resource
allocation to inventories of perishable products and for-
mulated it as an extension of the restless bandit problem.
We have designed two index-based heuristics and shown in
numerical experiments their nearly optimal performance.
We have further derived an efficient algorithm for approx-
imately computing the index values. We believe that we
have provided an efficient, implementable solution to this
complex problem that is intractable for optimal solution.
This may both foster a further research in this direction
and be applicable in operations management in different
industries.

From the methodological point of view, our approach is a
natural generalization of the celebrated (optimal) Gittins
index policy for the multiarmed bandit problem (Gittins 1979)
(which requires frozen-if-not-allocated assumption, so it
cannot model finite-horizon problems), and the Whittle index
rule for the restless bandit problem (Whittle 1988) (which
assumes binary resource consumption Wi = 1, so it does not
model heterogeneous product volumes). Indeed, we provide
a model, solution approach and a new heuristic for general
discretely divisible resource allocation problems, which can
be viewed as an analogy of the extension by Glazebrook
and Minty (2009) of the Gittins index policy. Note that
the indexability property is still not completely understood
and considered somewhat mysterious (Jacko 2010, Gittins
et al. 2011). This paper contributes with the first indexability
analysis of an MDP with a general bi-dimensional state
space.

A challenge that deserves future research attention is to
develop indexability analysis and obtain index values for
MDPs where multiple actions are available. This paper gives
a step toward such multiaction problems. An interesting
extension would therefore be the problem, in which we
can promote more than only one unit of each product, as a
consequence of removing the Bernoulli arrivals assumption.

We have assumed in our model that the demand is inde-
pendent across products. This may be a limitation from a
product promotion point of view, where correlation between
the products’ demand often exists. For such a case, the
method of the Whittle and Lagrangian relaxation would
not lead to a decomposition of the problem into single
products, but into independent groups of products. This
brings the question of whether there is a way of defining
an index with optimality properties; we are not aware of

any research in this direction at all. Alternatively, one could
propose to heuristically modify the optimal single-product
index so that it captures interdependence: to increase it
if there are complementary products and to decrease it if
there are substitutable products with nonzero inventories.
Nevertheless, we believe that in many practical situations,
the numbers of complementary and substitutable products
can roughly be the same across products, so the index
values would be additively modified roughly by the same
constant, which means that the index rule would remain
roughly the same as in the case with independent products,
whereas the index-knapsack heuristic would lead to a slightly
different solution (tending to select for promotion a higher
number of products if complementary products prevail,
and a lower number of products if substitutable products
prevail). It would therefore be interesting to investigate the
performance of our two general-purpose heuristics as an
alternative solution in particular problems with dependent
demand when the optimal policy is intractable, e.g., Mahajan
and van Ryzin (2001), Bernstein et al. (2011). Our approach
should also be contrasted with ad-hoc proposals of indices
in choice-model literature, e.g., Golrezaei et al. (2014) and
with approximation algorithms, e.g., Levi and Shi (2013).

With respect to scheduling of requests in data centers,
the results of our paper can be applied as follows. The user
requests i ∈I given as a number of subrequests Ki requiring
per-slot processing capacity Wi that must be completed
sequentially before a deadline of Ti time slots are available
for scheduling. If scheduled on one of the standard servers
(or virtual machines), say, in a processor-sharing way, the
subrequest is completed with probability 1 − qi within a slot.
However, the limited processing capacity of C is available
for faster processing, which increases the probability of
completion of a subrequest to 1 −pi. For each subrequest
completed before the deadline, the data center earns an
expected revenue Ri, and for those completed after the
deadline, �iRi is obtained. The solution provided in this
paper indicates which requests should be processed by the
faster servers in order to maximize the expected revenue of
the data center. Finally, we believe that for this application it
may be rather appropriate to assume independence in the
completion of subrequests.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi.org/
10.1287/opre.2014.1272.
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