
Risk adjusted dynamic hedging strategies

Martin Harcek

Abstract The aim of the paper is to develop a dynamic portfolio hedging strategy
leading to an optimal wealth policy in a finite investment horizon while obeying
a risk constraint. The utility maximization problem is restricted by an upper bound
applied on the Conditional Value-at-Risk (CVaR) measure. We investigate the strat-
egy dynamics and properties in terms of the desired wealth distribution and risky
assets exposure.
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1 Market Settings

We consider a financial market with N risky assets with random returns and one risk-
free asset with deterministic yield. The dynamics of market prices follow the sys-
tem of N stochastic and one ordinary differential equations dS(t) = S(t)µ(t)dt +
S(t)σ(t)dw(t) and dB(t) = B(t)r(t)dt, where µ(t) is the vector of drifts, σ(t) is
the volatility matrix and r(t) is the deterministic bond yield. The process w(t) is an
N-dimensional standardised Brownian motion.

Let W (t) be a value of the portfolio at time t. The investor chooses the invest-
ment horizon T and the investment strategy θ(t), which represents the fraction of
wealth invested in each risky asset at time t ∈ (0,T ]. Then the portfolio value fol-
lows the stochastic differential equation dW (t) = W (t)θ(t)>

(
µ(t)dt +σdw(t)

)
+

W (t)
(
1−θ(t)>1

)
r(t)dt, where 1≡ (1,1, · · · ,1)>. We assume that market is com-

plete. Such an assumption implies (by Ito’s lemma) the existence of a unique state-
price density process ξ (t) given by dξ (t) = −ξ (t)r(t)dt− ξ (t)κ(t)>dw(t), where
ξ (0) = 1 and κ(t) = σ(t)−1 (µ(t)− r(t)1) is the Sharpe ratio process.
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2 Problem Statement

The coherent [1] and convex [3] risk measure Conditional Value-at-Risk (CVaR) is
defined as a conditional expectation of losses greater than the Value-at-Risk (VaR)
threshold. VaR is a widely used risk measure, technically it is equal to (1−α)-
quantile of the portfolio loss distribution (e.g. 99%)

CVaRα(W0−WT ) = E
[
W0−WT |W0−WT ≥VaRα(W0−WT )

]
≤ δW0

VaRα(W0−WT ) = {c ∈ R : P(W0−WT ≤ c) = 1−α} .

As the above statement is relatively complex, we substitute it by a more convenient
representation

Gα(W0−WT ,c) = c+
1
α

∫
∞

−∞

(W0−WT − c)+ dP(W0−WT ). (1)

The way of CVaR substitution is well described in [4]. We incorporate the risk con-
straint in terms of the terminal portfolio CVaR in the utility maximization problem,
hence define the CVaR Investor Optimization Problem:

max
WT ,c

E [u(WT )] s.t. E [ξTWT ]≤W0 and Gα(W0−WT ,c)≤ δW0, (2)

where Gα(W0−WT ,c) is given by (1), u(·) is the utility function, W0 is the initial
wealth, α and δ are given exogenously, ξT is defined in previous section and c ∈ R
is a variable to be optimized.

3 Optimal Investment Strategy

We solve the problem as a two-stage optimization procedure. The solution of the first
stage (Theorem 1) defines an optimal portfolio choice in the WT ×ξT space for each
given c. As a result of the second stage optimization, we obtain an optimum through
all possible settings of c by solving maxc∈RE

[
u
(
ŴT (c)

)]
. In our practical calcula-

tions we suppose that the investor’s preferences are well described by an iso-elastic
utility function given by u(x) = xp

p , p < 0 and the exogenous model parameters r
and κ are constant in time.

Theorem 1 (T -Time Optimal Portfolio Choice). Define

WT (c,y1,y2) = I(y1ξT )1{ξT<ξ}+(W0− c)1{ξ≤ξT<ξ}+ I (y1ξT − y2/α)1{ξ≤ξT },

where c ∈R, y1 > 0, y2 ≥ 0, I(·) is the inverse function of u′(·), 1{·} is the indicator
function, ξ = u′(W0− c)/y1 and ξ =

(
u′(W0− c)+ y2

α

)
/y1. Denote ŷ1 and ŷ2 to be

a solution of equation system
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E [ξTWT (c, ŷ1, ŷ2)] = W (0)

c+
1
α
E
[
(W0−WT (c, ŷ1, ŷ2)− c)+

]
= δW0 or ŷ2 = 0.

Then ∀c the problem (2) attains maximum at the point ŴT (c)≡WT (c, ŷ1, ŷ2).

Theorem 2 (t-Time Optimal Portfolio Choice). The wealth process of the solution
ŴT given by Theorem (1) is

W (t) =
y

1
p−1
1
ξt

e
p

p−1

(
lnξt+

(
‖κ‖2
2p−2−r

)
(T−t)

)
Φ(d3)

+
W0− c

ξt
elnξt−r(T−t)(

Φ(d2)−Φ(d1)
)
+

1
ξt

∫
∞

ξ

ξT

(
y1ξT −

y2

α

) 1
p−1

dP(ξT ),

where Φ(·) is the cumulative distribution function of N(0,1),

d1 =
lnξ−lnξt+(r− 1

2 ‖κ‖
2)(T−t)

‖κ‖
√

T−t
, d2 = d1 +

lnξ−lnξ

‖κ‖
√

T−t
and d3 = d1− p

p−1
‖κ‖

2

√
T − t.

By definition of the portfolio wealth process Wt and the optimal process of
the solution ŴT given by Theorem 2, the optimal dynamic strategy is given by

θ(t) = − (σ>)
−1

κ>

W (t)
∂W (t)
∂ξ (t) ξ (t) = − 1−p

W (t)θ B(t) ∂W (t)
∂ξ (t) ξ (t), where θ B(t) stands for the

benchmark investor strategy defined in [2] as θ B(t) = 1
1−p

(
σ>
)−1

κ>. Finally, we
can define the process q(t) as the exposure to risky assets relative to the benchmark
portfolio, that we use for further analyses: θ B(t)q(t) = θ(t).

4 Numerical Results

To represent a real world market we set the exogenous model parameters as follows:
α = 0.05,δ = 0.15, p = −1.5, κ = 0.4, ξ (0) = 1, W (0) = 1, r = 0.03 and T = 1.
In common model applications we observe three market-state intervals in which the
portfolio manager behaves differently. In good market states (low ξT ) the CVaR
portfolio payoff is similar to the benchmark payoff. In intermediate states the CVaR
portfolio is fully hedged to the level W0− ĉ and in the worst states (high ξT ) the
CVaR portfolio is only partially secured. As a result of our hedging strategy we
observe an adjusted distribution of the terminal portfolio value, indicating lower
probability mass concentrated in the left tail, i.e. the probability of attaining the
most severe losses is lower than that of the benchmark investor (Fig. 1).

In good states the exposition to risky assets is very similar to the benchmark
investor. As the market goes down, CVaR investor is selling out risky positions in
order to retain the portfolio value above the acceptable level of loss. In the worst
cases we observe a leverage effect: the investor opens relatively large positions in the
risky assets with the intention to rise the portfolio value back to the acceptable level.
The portfolio values before investment horizon can be evaluated as a response to the
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Fig. 1 Left: CVaR terminal portfolio payoff and benchmark terminal portfolio payoff, both as
functions of the state variable ξ (T ). Right: Distribution of the CVaR terminal value payoff for the
initial wealth W0 = 1.

dynamic investment strategy process θ(t). As time t approaches T , the convergence
to the terminal payoff is a necessary condition for the models consistency (Fig. 2).
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Fig. 2 Left: The dynamics of the relative risky assets exposition as a function of ξ (t). Right: CVaR
portfolio payoffs convergence to the terminal time shape; as functions of the state variable ξ (t).
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