
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Maximum Principle for In�nite Horizon

Discrete Time Optimal Control Problems

Dissertation Thesis

Study program: 9.1.9. Applied Mathematics

Supervising institution: Department of Applied Mathematics and Statistics

Supervisor: prof. RNDr. Pavel Brunovský, DrSc.

Bratislava 2016 Mgr. Mária Holecyová



Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Princíp maxima pre diskrétne úlohy

optimálneho riadenia na nekone£nom horizonte

Dizerta£ná práca

�tudijný program: 9.1.9. Aplikovaná matematika

�koliace pracovisko: Katedra aplikovanej matematiky a ²tatistiky

�kolite©: prof. RNDr. Pavel Brunovský, DrSc.

Bratislava 2016 Mgr. Mária Holecyová



Acknowledgement

Foremost, I would like to express my sincere gratitude to my advisor prof. RNDr. Pavel

Brunovský, DrSc. for the continuous support of my PhD study, for his patience, moti-

vation and immense knowledge. Undoubtedly, the thesis would not have been completed

without his guidance and unwavering belief that 'it certainly has to work this way we just

have to prove it'.

And I would like to thank to my family and friends whose encouragmenet and under-

stading helped me accomplish this study as well.

Thank you all.



Abstract

Mgr. Mária Holecyová: Maximum Principle for In�nite Horizon Discrete Time Opti-

mal Control Problems [Dissertation Thesis] Comenius University in Bratislava, Faculty of

Mathematics, Physics and Informatics, Department of Applied Mathematics and Statis-

tics, supervisor: prof. RNDr. Pavel Brunovský, DrSc., Bratislava, 2016, 76p.

The aim of this thesis is a method of deriving necessary conditions of the Potryagin

maximum principle type for in�nite-horizon discrete-time optimal control problems with

discount. Due to the discounted objective function, control and state variables are consid-

ered to be bounded sequences. We employ the tools of functional analysis and properties

of linear di�erence systems.

Firstly, we prove Fréchet di�erentiability of the objective function which allows us to

carry out a standard method of obtaining necessary conditions of optimality of variational

type. Then we apply the closed range theorem and formulate maximum principle in

functional form with adjoint variable from the space (`∞)∗ = `1 ⊕ `s. Then we show

that it can be rewritten to the standard form of Potryagin maximum principle for adjoint

variable belonging to `1 .

The most signi�cant results are conditions under which the assumptions of the closed

range theorem are satis�ed. For a problem with linear dynamics we require that the matrix

A has no eigenvalues on the unit circle and in case of general dynamics we formulate

exponential dichotomy as an assumption. We present special cases in which exponential

dichotomy can be e�ectively veri�ed. In addition, on a simple example we show that

without exponential dichotomy the assumption of closed range probably may not hold.

Keywords: optimal control, discrete time, in�nite horizon, Pontryagin maximum

principle, closed range theorem, `∞



Abstrakt

Mgr. Mária Holecyová: Princíp maxima pre diskrétne úlohy optimálneho riadenia na

nekone£nom horizonte [Dizerta£ná práca], Univerzita Komenského v Bratislave, Fakulta

matematiky, fyziky a informatiky, Katedra aplikovanej matematiky a ²tatistiky, ²kolite©:

prof. RNDr. Pavel Brunovský, DrSc., Bratislava, 2016, 76s.

Cie©om tejto práce je metóda pre odvodenie nutných podmienok optimality vo forme

Potrjaginovho princípu maxima pre diskrétne úlohy optimálneho programovania na neko-

ne£nom horizonte s diskontom. Predpokladáme, ºe stavová aj riadiaca premenná sú

ohrani£ené postupnosti, vyuºívame prostriedky funkcionálnej analýzy a vlastnosti lineárnych

diferen£ných rovníc.

Dokazujeme, ºe ú£elová funkcia je Fréchetovsky diferencovate©ná, £o nám umoº¬uje

uplatni´ ²tandardnú metódu pre formulovanie nutných podmienok optimality varia£ného

typu. �alej vyuºívame vetu o uzavretom obraze a formulujeme princíp maxima vo

funkcionálnom tvare s adjungovanou premennou z priestoru (`∞)∗ = `1 ⊕ `s. Následne

ukazujeme, ºe ho moºno prepísa´ do ²tandardnej formy Pontrjaginovho princípu maxima

pre adjungovanú premennú z priestoru `1.

Najvýznamnej²ím výsledkom ná²ho výskumu je formulácia podmienok, ktoré zaru£ujú

splnenie predpokladov vety o uzavretom obraze. V prípade lineárnej autonómnej dy-

namiky sta£í, aby matica A nemala vlastné £ísla leºiace na jednotkovej kruºnici, v prípade

v²eobecnej dynamiky formulujeme ako predpoklad exponenciálnu dichotómiu.

Na záver sa venujeme ²peciálnym prípadom, v ktorých je moºné overi´ existenciu ex-

ponenciálnej dichotómie a na jednoduchom prípade ukazujeme, ºe predpoklad uzavretého

obrazu nemusí bez exponenciálnej dichotómie plati´.

K©ú£ové slová: optimálne riadenie, diskrétny £as, nekone£ný horizont, Pontrjaginov

princíp maxima, veta o uzavretom obraze, `∞



Preface

"If every instrument could accomplish its own work, obeying or anticipating

the will of others... the shuttle would weave and the plectrum touch the lyre

without a hand to guide them, chief workmen would not need servants, nor

masters slaves." Aristotle, Politcs

The motivation for solving optimal control problems goes from the simplest mecha-

nisms we manipulate in everyday life to the most sophisticated ones in various �elds of

science. Although the discipline is quite young, it is considered to be invented only in

1950's by Pontryagin, we already have e�ective tools to solve a variety of optimal control

problems and with advancing progress more scienti�c applications from di�erent �elds

are appearing.

Currently, we distinguish between two main tools - Bellman's dynamical programming

originally developed for discrete time models and Potryagin maximum principle developed

for continuous time models. Our aim is to combine the Potryagin variational approach

with discrete-time in�nite-horizon models by applying the closed range theorem. In the

thesis we refer to two articles closely associated with this topic, but it is the diploma

thesis that stands at the beginning of our research. This is where my supervisor prof.

Pavel Brunovský �rst came with the idea of employing the closed range theorem.

Only thanks to his deep knowledge in various mathematical �elds, his creativity and

unceasing enthusiasm we managed to combine optimal control theory with functional

analysis and properties of linear di�erence equations which resulted in this thesis.
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Introduction

In economic optimal control models [2] as well as in physics [3], engineering [4] and many

other �elds it is often impossible to predict the length of the time horizon. Therefore an

objective function is formulated on in�nite horizon and especially in economic models it is

discounted. The discount ensures that the e�ect of the solutions to the objective function

decreases with passing time which solves the dilemma of setting the length of the horizon

as well as the �nal state.

We consider discrete-time problems on in�nite horizon with discounted objective func-

tion and we focus on establishing neccesary conditions of optimality in the spirit of Pon-

tryagin maximum principle which was originally devoloped for continuous-time models.

While for the continuous-time setting Pontryagin maximum principle can be easily

adapted for a wide class of problems, this is not the case of the discrete-time problems

unless extra convexity conditions are imposed. So instead of the maximum condition we

strive for a necessary condition of this maximum with less restrictive assumptions.

The current research on this topic is not rich. We found only two articles closely related

to our problem. In the �rst Blot and Chebbi [5] solved it as limit case of �nite horizon

problem. In the continous framework, the extension from �nite to in�nite horizon can

be obtained without any restrictions due to its invertible dynamics. However, in discrete

time invertibility is not ensured and therefore it has to be formulated as an additional

condition. Blot and Hayek [6] managed to formulate less strict conditions directly via

functional analysis. We adapt their approach, but while their results are based on Io�e-

Tihomirov theorem, we employ the closed range theorem. This idea �rst appeared in
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diploma thesis by Beran [7] but it was developed for non-discounted objective functions

and the research on conditions under which the theorem can be employed was incomplete.

The thesis is organized as follows. In the �rst chapter, we introduce the optimal

control problem which is considered thoughout the whole thesis as well as the closed

range theorem. The second chapter is devoted to an overview of previous results regarding

Potryagin principle from discrete-time in�nite-horizon view. It also describes a dual space

of the space of all bounded sequences `∞ and refers to the literature dealing with its

singular component. In the next chapters we prove that the considered objective function

is Fréchet di�erentiable and then we propose a method of obtaining the maximum principle

for problems with both linear autonomous and general dynamics. We apply the closed

range theorem and assume that the respective operator has closed range. In the �nal

chapter, we formulate condition under which this is the case by introducing exponential

dichotomy for di�erence equations.
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Chapter 1

Problem formulation

Our motivation comes mainly from macroeconomic optimal growth models [2], [8], [9],

[10] which often cannot predict the length of the time horizon, but assume that it is large.

Therefore a discount is added to the objective funtion and it is maximized on in�nite

horizon. In this case, we naturally expect that response {xt}∞t=0 and control {ut}∞t=0 are

bounded sequences, but do not vanish in in�nity necessarily. Hence, the problem we

consider has the following form:

J(x,u) =
T∑
t=0

δtf 0
t (xt, ut)→ max (1.1)

xt+1 = Ft(xt, ut) for all t ∈ N0 (1.2)

x0 = x̄, (1.3)

where x̄ and the discount δ ∈ (0, 1) are given, xt ∈ X ⊂ Rn, ut ∈ U ⊂ Rm, U open.

We denote x = {xt}∞t=0, u = {ut}∞t=0 and assume f 0
t ∈ C1(X × U,R) for all t ∈ N0

Ft ∈ C1(X × U,X) for all t ∈ N0. We call J objective function, Ft dynamics. xt state

variable and ut control variable. We assume (x,u) ∈ `n∞ × `m∞. And we put T =∞.

In case of �nite horizon (T < ∞) this is a standard problem of nonlinear program-

ming and it yields the following necessary condition of optimality [11], where a regularity

condition has to be ful�lled.
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CHAPTER 1. PROBLEM FORMULATION

De�nition 1.1. (Regularity condition) Denote It(ut) as the set of all indices k ∈

{1, ...,mt} for which pkt = 0, i.e. the set of indices for which the kth component of the

constraint pt is active. The optimal control problem (1.1) - (1.3) with T ∈ N ful�lls the

regularity condition in û, if for all t ∈ N0 the vectors

∂pkt
∂ut

(ût) for all k ∈ It(ût)

are lineary independent.

Theorem 1.1. (Necessary conditions of optimality, pseudo-Pontryagin maxi-

mum principle) Let û be an optimal control for the problem (1.1) - (1.3) with T < ∞

and let x̂ be its response. Let the regularity condition be ful�lled in û (De�nition 1.1).

Then there exists ψ0 ≥ 0, an adjoint variable ψ = {ψt}∞t+1, a vector χ ∈ Rl and vectors

λi ∈ Rmt for all t ∈ {0, ..., T − 1} such that (ψ0, χ) 6= 0 and for all t ∈ {0, ..., T − 1} the

variation condition

ψ0∂f
0
t

∂ut
(x̂t, ût) + ψTt+1

∂ft
∂ut

(x̂t, ût) + λTt
∂pt
∂ut

(ût) = 0 (1.4)

holds and the complementarity condition

λTt pt(ût) = 0, for λt ≤ 0, (1.5)

holds, as well. The adjoint variables and χ solve the adjoint equation

ψt =

(
∂f 0

t

∂xt
(x̂t, ût)

)T
+

(
∂ft
∂xt

(x̂t, ût)

)T
ψt+1 for all t, (1.6)

together with the transversality condition

ψk =

(
∂g

∂xt
(x̂k)

)T
χ. (1.7)
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CHAPTER 1. PROBLEM FORMULATION

In [11] this is called pseudo-Pontryagin maximum principle. Notice that variation

condition (1.4) and complementarity condition (1.5) are in fact a necessary condition of

maximum of ψ0f 0
t (x̂t, ut) + ψt+1Ft(x̂t, ut), i.e. they can be replaced

ψ0f 0
t (x̂t, ût) + ψt+1Ft(x̂t, ût) = max

ut∈Ut
(ψ0f 0

t (x̂t, ut) + ψt+1Ft(x̂t, ut)) for all t. (1.8)

However, in order that the equation holds futher assumptions are needed.

Theorem 1.2. (Pontryagin maximum principle for discrete time problems) Let

the conditions of Theorem 1.1 be ful�lled. Furthermore, assume that for all t = {0, ..., T −

1}

(i) the functions Ft are linear in ut,

(ii) the functions f 0
t are concave in ut,

(iii) the set U is convex,

Then there exists vector χ ∈ Rl, ψ0 ≥ 0, a sequence of adjoint variables ψ = {ψt}Tt=1 that

are a solution of the adjoint equation (1.6) and transversality condition (1.7) such that

ψ0f 0
t (x̂t, ût) + ψt+1Ft(x̂t, ût) = max

ut∈Ut
(ψ0f 0

t (x̂t, ut) + ψt+1Ft(x̂t, ut)) for all t. (1.9)

Pontryagin maximum principle was originally developed for continuous time problems

where it can be easily adapted for in�nite horizon problems. However, this is not the

case of discrete-time problems. Convexity condition might signi�cantly reduce the class

of solvable problems. So instead of the maximum condition we strive for a necessary

condition of maximum with less restrictive assumptions, i.e. pseudo-Pontryagin maximum

principle. For this purpose, we adapt the approach by Beran [7] who studied in�nite-

horizon discrete-time problems without discount. Whereas the natural space for the

controls/responses in the case without discount is `1, for the problem with discount it is

8



CHAPTER 1. PROBLEM FORMULATION

`∞ which has complicated dual space (`∞)∗ = `1 ⊕ `s, because the space `s cannot be

represented by sequences and thus it requires another approach.

The central role in our research plays the closed range theorem.

Theorem 1.3. Closed range theorem

Let X, Y be Banach spaces and T a closed linear operator from X to Y . Then the following

propositions are equivalent:

1. R(T ) is closed

2. R(T ∗) is closed

3. R(T ) = N (T ∗)⊥ = {y ∈ Y : 〈y∗, y〉 = 0 for all y∗ ∈ N (T ∗)}

4. R(T ∗) = N (T )⊥ = {x∗ ∈ X∗ : 〈x∗, x〉 = 0 for all x ∈ N (T )}.

Proof. The proof can be found in [12].

We will use only its reduced form 1 ⇒ 4. It allows us to establish pseudo-Potryagin

principle however condition of closed range has to satis�ed. Therefore we develop the

theory of exponential dichotomy for linear di�erence equations that is studied in Coppel

[14], Palmer [13] and derive conditions under which the pseudo-Potryagin principle holds.
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Chapter 2

Previous results

The aim of this chapter is to provide a brief review of the literature associated with our

research. It is devided into two sections. Firstly, we summarize current knowledge about

discrete time optimal control problems on in�nite horizon. The second part describes

methods which are being employed to deal with dual space of `∞.

2.1 Optimal Control Problems

Nowadays there are basically two solution methods in the optimal control theory - dy-

namic programming developed by Bellman and Pontryagin maximum principle. Dynamic

programming was originally developed for discrete-time optimal control problems, while

Pontryagin maximum principle was derived to solve continuous-time problems. Later, the

relation between the two methods has been explained.

In this work we focus on the Pontryagin maximum principle from the in�nite-horizon

discrete-time point of view. Compared to continuous time problems, in the discrete time

case Pontryagin maximum principle as a necessary condition of optimality requires extra

conditions as it shown in Chapter 1. Unless certain convexity conditions are imposed,

a necessary conditi on of maximum (in the sense of Theorem 1.1) is claimed instead of

a maximum condition (in the sense of Theorem 1.2). Hence, there are two di�erent ap-
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CHAPTER 2. PREVIOUS RESULTS 2.1. OPTIMAL CONTROL PROBLEMS

proaches, the �rst one focuses on establishing Pontryagin maximum principle for problems

that satisfy additional convexity assumptions and the second approach derive so-called

pseudo-Pontryagin maximum principle that requires less restrictive conditions, but it is

weaker. In the thesis, we focus on the second approach.

A short section dealing with the in�nite horizon discrete time problems is in Pontryagin

et. al [1]. It is studied as a limit case of the �nite horizon problem for T →∞. The e�ects

of the variations are transferred to a �xed time independent of t. Whereas in the �nite

horizon the time can be chosen as the terminal one, in the in�nite horizon case this is

impossible. Consequently, the e�ects of the variations have to be transferred backwards.

This is possible in continuous-time models due to its invertible dynamics. However, it can

not be applied on discrete-time problems unless extra conditions are imposed. Boltyanskii

in [15] initiated a systematic study of the discrete time framework, but mostly concerning

�nite horizon. He emphasizes the di�erences between the discrete-time setting and the

continuous-time setting for the Pontryagin principle and gives the �rst steps for a rigorous

treatment of the problem.

Later, discrete-time problems on in�nite horizon were studied in McKenzie [16], Michel

[19], Peleg-Ryder [20], all of them considering the concave case of optimal control problem.

Their results are extended in the paper by Blot and Chebbi [5], where the authors avoid

concavity assumptions and establish Pontryagin maximum principle. They solve the

problem with general dynamics and without discount, that is in our notation

J(x,u) =
∞∑
t=0

f 0
t (xt, ut)→ max (2.1)

xt+1 = Ft(xt, ut), t ∈ N0 (2.2)

x0 = x̄, (2.3)

where xt ∈ X ⊂ Rn, ut ∈ U ⊂ Rm, x = {xt}∞t=0, u = {ut}∞t=0, the initial state x̄ is given

and f 0
t : X × U → R and Ft : X × U → X.

They also consider two more problems where (2.1) is replaced by the following conditions

11



CHAPTER 2. PREVIOUS RESULTS 2.1. OPTIMAL CONTROL PROBLEMS

(i)

lim inf
T→∞

(
T∑
t=0

f 0
t (x̂t, ût)−

T∑
t=0

f 0
t (xt, ut)

)
≥ 0

(ii)

lim sup
T→∞

(
T∑
t=0

f 0
t (x̂t, ût)−

T∑
t=0

f 0
t (xt, ut)

)
≥ 0

The problems are solved in three steps consisting of reduction to a �nite horizon

problem, solving the latter and extension to in�nite horizon. Next, they formulate and

prove three theorems of the in�nite-horizon Pontryagin principle kind. According to the

�rst one, following assumptions have to be full�lled:

1. for all t ∈ N f 0
t is Lipshitz continuous1 near the solution (x̂t, ût) and is Clarke-

regular2 at (x̂t, ût),

2. for all t ∈ N Ft is di�erentiable at (x̂t, ût),

3. Ut is closed and regular at ût,

4. for all t ∈ N DxtFt(x̂t, ût) is invertible.

In the next theorem, the �rst condition is replaced by the assumption of strictly

di�erentiability of f 0
t for all t ∈ N. The last Pontryagin principle assumes that

1. for all t ∈ N f 0
t and Ft are partially di�erentiable at (x̂t, ût) with respect to the �rst

vector variable,

2. X is an open convex subset,

3. Michel condition: for all t ∈ N co At(x̂t, x̂t+1) ⊂ Bt(x̂t, x̂t+1) is ful�lled, where co

denotes the convex hull. When (xt, xt+1) ∈ X × X, At(xt, xt+1) is the set of the

points (λ, y) ∈ R × Rn, for which there exists u ∈ U such that λ ≤ F 0
t (xt, u) and

1 Given two metric spaces X,Y , a function f : X → Y is called Lipschitz continuous if there exists a
real constant K ≥ 0 such that, for all x1, x2 ∈ X, dY (f(x1), f(x2)) ≤ KdX(x1, x2).

2For the de�nition see e.g. [22].
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CHAPTER 2. PREVIOUS RESULTS 2.1. OPTIMAL CONTROL PROBLEMS

y = Ft(xt, u)− xt+1. Bt(xt, xt+1) is the set of (λ, y) ∈ R× Rn for which there exist

(u, v) ∈ U × Rn such that λ ≤ f 0
t (xt, u) and vhyh = F h

t (xt, u) − xht+1, for every

h = 1, ..., n.

Hence, except of the last theorem, regularity of DxtFt(x̂t, ût) is required that signi�cantly

reduces the framework of solvable problems.

Blot and Hayek in [6] build on these results trying to avoid the regularity condition,

they considered the space of all bounded sequences `∞. They establish Pontryagin max-

imum principle using analysis in Banach spaces instead of reduction to �nite-horizon

problems. They also manage to formulate su�cient conditions of optimality. In our

notation, they solve the following problem with general dynamics

J(x,u) =
∞∑
t=0

δtf 0(xt, ut)→ max

xt+1 = Ft(xt, ut), t ∈ N0

x0 = x̄,

(2.4)

Compared to the problem (2.1) - (2.3) from [5], they add discount δ ∈ (0, 1) to the

objective function and assume that (x,u) ∈ `n+m
∞ .

They obtain neccesary optimality conditions assuming that

1. for all u ∈ `m∞, the mapping x→ f 0(x, u) is of class C1 on X and for all t ∈ N, the

mapping x→ Ft(x, u) is di�erentiable on X,

2. for all t ∈ N, for all xt ∈ X, for all u
′
t, u

′′
t ∈ U, for all α ∈ 〈0, 1〉, there exists ut ∈ U

such that

f 0(xt, ut) ≥ αf 0(xt, u
′

t) + (1− α)f 0(xt, u
′′

t )

Ft(xt, ut) = αFt(xt, u
′

t) + (1− α)Ft(xt, u
′′

t ),
(2.5)

3. for any compact set C ⊂ X, there exists a constant KC such that for all t ∈ N, for

all x, x′ ∈ C, for all u ∈ U , ‖Ft(x, u)‖ ≤ KC and ‖DxtFt(x, u) − DxtFt(x
′, u)‖ ≤

KC‖x− x′‖,

13



CHAPTER 2. PREVIOUS RESULTS 2.1. OPTIMAL CONTROL PROBLEMS

4. there exists r > 0 such that B(x̂, r) ⊂ X ′, where X ′ is the set of the bounded

sequences which are in the interior of X, and for all (xt, ut) ∈ B(x̂, r)× U :

sup
t≥0
‖DxtFt(xt, ut)‖ < 1. (2.6)

We call conditions (2.5) the Io�e and Tihomirov condition [17] and they generalize

the usual convexity condition used to guarantee a strong Pontryagin maximum principle

(see Theorem 1.2). Blot and Hayek also consider an autonomous problem, which requires

weaker conditions, namely

1. for all u ∈ U , the mapping x→ f 0(x, u) is of class C1 on X,

2. for all t ∈ N, ∀xt ∈ X, ∀u
′
t, u

′′
t ∈ U, ∀α ∈ 〈0, 1〉, there exists ut ∈ U such that

f 0(xt, ut) ≥ αf 0(xt, u
′

t) + (1− α)f 0(xt, u
′′

t )

F (xt, ut) = αF (xt, u
′

t) + (1− α)F (xt, u
′′

t ),

3.

sup
t≥0
‖DxtF (x̂t, ût)‖ < 1. (2.7)

So, the regularity condition from Blot and Chebbi [5] is replaced by the supremum

condition (2.6) or (2.7).

In both papers, the authors choose the approach of establishing Pontryagin maximum

principle directly. As we have shown above, it requires extra conditions replacing the usual

convexity conditions from Theorem 1.2. However, our motivation comes from economic

problems that frequently do not satisfy them. Therefore we focus our attention on deriving

pseudo-Pontryagin maximum principle in the spirit of Beran [7]. He is motivated by Blot

and Hayek [6], but he considers the space `1 instead of `∞. Although, this space is not

suitable for the problems with discount which we study, his work provides signi�cant

results useful for our research.
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CHAPTER 2. PREVIOUS RESULTS 2.2. DUAL SPACE OF `∞

He considers the problem with both linear autonomous and general dynamics and later

he extends the results to the problem with constraint on u. Hence in comparison to the

problem (2.4), control variable ut ∈ int U , there is no discount and (x,u) ∈ `n1 × `m1 . The

problem is as follows

J(x,u) =
∞∑
t=0

f 0(xt, ut)→ max

xt+1 = Ft(xt, ut), t ∈ N0

x0 = x̄.

He also applies the closed range theorem (Theorem 1.3), but in the form 2 =⇒ 4.

He imposes the condition that L∗ = (σ −A∗,−B∗) has closed range and formulate the

necessary conditions of optimality in the form

∃ψ = {ψt}t∈N ∈ (`n1 )∗ = `n∞ : Dxtf(x̂t, ût) = ψt−1 − At∗ψt ∀t ∈ N0

Dutf(x̂t, ût) = −Bt
∗ψt ∀t ∈ N0,

where At = DxtFt(xt, ut) and Bt = DutFt(xt, ut) and A = (A0, A1, . . . ), B = (B0, B1, . . . )

and (σx)t = xt+1 for any t ∈ N0. However, the research on when the condition is satis�ed

is incomplete.

2.2 Dual Space of `∞

Following the approach of Beran [7], we can obtain a functional ψ satisfying

∃ψ ∈ (`n∞)∗ : DJ(x̂, û) = (π0,σ −A,−B)∗ψ, (2.8)

where π0(x,u) = x0.

However, ψ may not be represented by a sequence, as (ln∞)∗ = `n1 ⊕ `ns and elements

of `s are bounded additive scalar-valued measures on N.
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Remark 1. The elements of `s can be characterized as following: let e be the unit element

in `∞, i.e. et = 1 for all t, and let

G = {ψ ∈ (`∞)∗,ψe = 1}

M = {ψ ∈ G,ψeA = 0 or 1, for all A ⊂ N0},

where eA with elements

eAt =

1, if t ∈ A

0, if t /∈ A,

is called the indicator function of A. G is convex and compact in weak* topology on

`∗∞ induced by `∞ and M is the set of extreme points of G, i.e. its elements cannot be

expressed as a proper convex combinations of other distinct elements of G. Therefore it

can be shown that G is the weak* convex hull of M . Thus, the elements of `s are of the

form
n∑
t=0

αtψt αt ∈ R, ψ ∈M

and weak* limits of such sums. For the variety of examples of `s elements see e.g. Yosida

and Hewitt [12].

Dechert in [21] describes an interesting property of `s For ψ ∈M , let

Nψ = {A ⊂ N0,ψe
A = 1}.

Hence

ψ(xeA) = ψx(ψeA) = ψx x ∈ `∞, A ⊂ Nψ,

i.e. if for some A ⊂ Nψ the sequence x = {xt}t∈A converges to x0, then ψx = x0. As a

special case, if A ⊂ N0 is a �nite subset then AC ∈ Nψ for any ψ ∈M and so (yeA) = 0,

for all y ∈ `∞, hence

16
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ψ(x + yeA) = ψx for all x ∈ `∞.

This property is used in methods by Dechert [21], Blot and Hayek [6] and Le Van, Saglam

[18].

Blot and Hayek [6] applied the following lemma.

Lemma 2.1. If ψs ∈ `s, then there exists k ∈ R such that for all x ∈ c, ψsx =

k limt→∞ xt.

Proof. The proof can be found in [23].

We adapt this approach, therefore we describe the method by Blot and Hayek [6] more

thouroughly.

Firstly, they show that under the assumptions (2.5), (2.6), the mapping x→ J(x,u) is

of class C1 for all u, for all x∞ = {x∞t }t∈N ∈ `n∞, DxJ(x,u)x∞ =
∑∞

t=0 δ
tDxtf

0(xt, ut)x
∞
t .

They set F(x,u) = {Ft(xt, ut) − xt+1}t∈N0 , showing that F(x,u) ∈ `n∞. The supremum

condition (2.6) ensures that the mapping x→ F(x,u) is of class C1 for all u and for any

x∞ ∈ `n∞ DxF(x,u) = {DxtFt(xt, ut)x
∞
t − x∞t+1}t∈N0 . They also show that J,F ful�ll the

Io�e-Tihomirov condition (2.5).

Then they establish adjoint equation and strong Pontryagin maximum principle with

ψ ∈ (`∞)∗ in the following formulation

there exists ψ0 ∈ R, ψ0 ≥ 0,ψ ∈ (`∞)∗, not all zero, such that:

ψ0DxJ(x̂, û) +DxF(x̂, û)ψ = 0 (2.9)

(ψ0J + 〈ψ,F〉)(x̂, û) ≥ (ψ0J + 〈ψ,F〉)(x̂,u), for all u ∈ U. (2.10)

Then they split the adjoint variable into two parts ψ = ψ1 + ψs, where ψ1 ∈ `1 and

17
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ψs ∈ `s. So (2.9) can be rewritten to

∞∑
t=0

ψ0δ
tDxtf

0(x̂t, ût)x
∞
t +

∞∑
t=0

〈ψ1
t+1, DxtFt(x̂t, ût)x

∞
t 〉 −

∞∑
t=0

〈ψ1
t+1, x

∞
t+1〉

+ 〈ψs, {DxtFt(x̂t, ût)x
∞
t − x∞t+1}t∈N0〉 = 0, for all x∞ ∈ `n∞ with x∞0 = 0.

And they obtain

∞∑
t=0

〈ψ0δ
tDxtf

0(x̂t, ût) +DxtFt(x̂t, ût)ψ
1
t+1 − ψ1

t , x
∞
t 〉 =

−〈ψs, {DxtFt(x̂t, ût)x
∞
t − x∞t+1}t≥0〉, x∞ ∈ `∞ with x∞0 = 0.

(2.11)

Let z be chosen arbitrarily in Rn and let consider the sequence x∞ ∈ `∞ de�ned as

follows

x∞s =

z, if s = t

0, if s 6= t.

So one has DxsFs(x̂s, ûs)x
∞
s −x∞s+1 = 0 if s ≥ t+ 1, hence {DxsFs(x̂s, ûs)x

∞
s −x∞s+1}s∈N0 ∈

c0 ⊂ c.

Thus, according to the Lemma 2.1

〈ψs, {DxsFs(x̂s, ûs)x
∞
s − x∞s+1}s≥0〉 = 〈k, lim

s→∞
(DxsFs(x̂s, ûs)x

∞
s − x∞s+1)〉 = 0.

Therefore we have for all z ∈ Rn

〈ψ0δ
tDxtf

0(x̂t, ût) +DxtFt(x̂t, ût)ψ
1
t+1 − ψ1

t , z〉 = 0,

which implies ψ1
t = ψ0δ

tDxtf
0(x̂t, ût) +DxtFt(x̂t, ût)ψ

1
t+1, for all t ≥ 1.

18



Chapter 3

F-di�erentiability of the objective

function

In this chapter, we show that the objective function J(x,u) =
∑∞

t=0 δ
tf 0(xt, ut) is Fréchet

di�erentiable. At �rst, we de�ne the di�erentiability and lemmas, then we prove the

proposition.

De�nition 3.1. Let J : U → Y , where X, Y are Banach spaces and U ⊂ X is open. Let

x ∈ U and h ∈ X. The directional derivative at x of a function J(x) along vector h is

de�ned by

∂hJ(x) = lim
τ→0

1

τ
[J(x+ τh)− J(x)],

if it exists.

De�nition 3.2. Let J : U → Y , where X, Y are Banach spaces and U ⊂ X is open, let

x ∈ U and let ∂hJ(x) exists for all h. We call the function J Gâteaux di�erentiable in x

if the map h→ ∂hJ(x) is linear and bounded. It is de�ned by

dJ(x)h = ∂hJ(x).
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De�nition 3.3. Let J : U → Y , where X, Y are Banach spaces and U ⊂ X is open, let

x ∈ U . We call the function J Fréchet di�erentiable in x if there exists a linear bounded

operator DJ(x) such that

lim
‖h‖→0

1

‖h‖
[J(x+ h)− J(x)−DJ(x)h] = 0.

Lemma 3.1. (Hadamard's lemma)

Let X, Y be Banach spaces and f : U → Y be a Gâteaux di�erentiable mapping. If

x+ ηh ∈ U for η ∈ 〈0, 1〉, then one has

f(x+ h)− f(x) =

∫ 1

0

df(x+ ηh)hdη =

[∫ 1

0

df(x+ ηh)dη

]
h,

where the integral is Riemann.

Proof. Let denote F (η) = f(x+ηh), where η ∈ 〈0, 1〉. Then F (1)−F (0) = f(x+h)−f(x)

and F is di�erentiable, so

f(x+ h)− f(x) = F (1)− F (0) =

∫ 1

0

F ′(η)dη.

As f is Gâteaux di�erentiable mapping we have

∫ 1

0

F ′(η)dη =

∫ 1

0

∂hf(x+ ηh)dη =

∫ 1

0

df(x+ ηh)hdη.

Lemma 3.2. Let J : U → Y , where X, Y are Banach spaces and U ⊂ X is open, let

x ∈ U . If J is Gâteaux di�erentiable and the Gâteaux derivative is continuous on a

neighborhood V of x, then J is Fréchet di�erentiable at x.

Proof. Since dJ is continuous, for a given ε, there exists δ > 0 such that if k ∈ X, ‖k‖ ≤ δ,
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CHAPTER 3. F-DIFFERENTIABILITY OF THE OBJECTIVE FUNCTION

then J(x+ k) ∈ U and

‖∂hJ(x+ k)− ∂hJ(x)‖ = ‖[dJ(x+ k)− dJ(x)]h‖ ≤ ε‖h‖,

for all h ∈ X. Let ‖h‖ ≤ δ, then according to Hadamard's lemma we have

‖J(x+ h)− J(x)− dJ(x)h‖ =

∥∥∥∥∫ 1

0

dJ(x+ ηh)dηh− dJ(x)h

∥∥∥∥
=

∥∥∥∥∫ 1

0

[dJ(x+ ηh)− dJ(x)]hdη

∥∥∥∥ ≤ ∥∥∥∥∫ 1

0

[dJ(x+ ηh)− dJ(x)]dη

∥∥∥∥ ‖h‖ ≤ ε‖h‖.

Proposition 3.1. The function J : `np × `np → R, p ∈ 〈1,∞〉, de�ned by J(x,u) =∑∞
t=0 δ

tf 0(xt, ut), where xt ∈ X ⊂ Rn, ut ∈ U ⊂ Rm and f 0 ∈ C1(X × U,R) is Fréchet

di�erentiable.

Proof. We carry out the proof in three steps. Firstly, we show that there exists ∂hJ(x,u)

for all h ∈ `n+m
p . Then we prove that the map h→ ∂hJ(z) is linear and bounded, thus it

is Gâteaux di�erentiable. Finally, we show that it is Fréchet di�erentiable.

Let us simplify (x,u) = z and (xt, ut) = zt, h = {ht}t∈N0 . Since x ∈ `np and u ∈ `mp ,

the conditions
∞∑
t=0

|xt|p <∞,
∞∑
t=0

|ut|p <∞ for p ∈ 〈1,∞)

or

sup
t∈N0

|xt| <∞, sup
t∈N0

|ut| <∞ for p =∞

are ful�lled. So |xt| < ∞, |ut| < ∞ for all t. Hence there exist compact sets X0 and U0

such that xt ∈ X0, ut ∈ U0. As a continuous function on compact set is bounded, we have

|Dxtf
0| < C

|Dutf
0| < C on X0 × U0, for some C > 0,

21



CHAPTER 3. F-DIFFERENTIABILITY OF THE OBJECTIVE FUNCTION

so

|Dztf
0| ≤ |Dxtf

0|+ |Dutf
0| < 2C. (3.1)

And using the same argumentation Dxtf
0, Dutf

0 and so Dztf
0 are also uniformly contin-

uous.

1. We will show that there exists directional derivative of J(z) along any h ∈ `n+m
p .

∂hJ(z) = lim
τ→0

1

τ
[J(z + τh)− J(z)]

= lim
τ→0

1

τ

[
∞∑
t=0

δtf 0(zt + τht)−
∞∑
t=0

δtf 0(zt)

]

= lim
τ→0

1

τ

∞∑
t=0

δt
[
f 0(zt + τht)− f 0(zt)

]
.

We want to interchange the summation and limit, so that we obtain ∂hJ(z) =
∑∞

t=0 ∂htf(zt).

Therefore we prove absolute convergence of the series. For τ su�ciently small one has

(zt + ητht) ∈ X0 ×U0. Therefore we can employ Lemma 3.1 (Hadamard's lemma) and in

case p = 1 we obtain

∞∑
t=0

|δt[f 0(zt + τht)− f 0(zt)]| =
∞∑
t=0

|δt(τht)
∫ 1

0

Dztf
0(zt + η(τht))dη|

=
∞∑
t=0

δt|τht|.
∣∣∣∣∫ 1

0

Dztf
0(zt + ητht)dη

∣∣∣∣
≤ 2C

∞∑
t=0

δt|τht|
∣∣∣∣∫ 1

0

dη

∣∣∣∣ = 2C
∞∑
t=0

δt|τ ||ht|

= 2C|τ |
∞∑
t=0

δt|ht| ≤
2C|τ |
1− δ

∞∑
t=0

|ht| =
2C|τ |
1− δ

‖h‖1 <∞.

In case p ∈ (1,∞〉 we proceed similarly and we employ Hölder inequality assuming

that 1
p

+ 1
q

= 1 and for p =∞ we de�ne 1
p

= 0.
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∞∑
t=0

|δt[f 0(zt + τht)− f 0(zt)]| =
∞∑
t=0

∣∣∣∣δtτht ∫ 1

0

Dztf
0(zt + η(τht))dη

∣∣∣∣
≤ ‖h‖p

(
∞∑
t=0

∣∣∣∣δtτ ∫ 1

0

Dztf
0(zt + η(τht))dη

∣∣∣∣q
) 1

q

≤ ‖h‖p

(
∞∑
t=0

∣∣∣∣δtτ ∫ 1

0

2Cdη

∣∣∣∣q
) 1

q

= ‖h‖p2C|τ |

(
∞∑
t=0

δtq

) 1
q

= 2C|τ |
(

1

1− δq

) 1
q

‖h‖p <∞

Now, we can interchange limit and summation and we obtain

∂hJ(z) =
∞∑
t=0

∂htδ
tf 0(zt) =

∞∑
t=0

δtDztf
0(zt)ht.

Thus ∂hJ(z) exists.

2. Now, we prove that the map h→ ∂hJ(z) is linear and bounded.

To check linearity we write

∂αh+βgJ(z) =
∞∑
t=0

δtDztf
0(zt)(αht + βgt) =

∞∑
t=0

δtDztf
0(zt)(αht) +

∞∑
t=0

δtDztf
0(zt)(βgt)

= α
∞∑
t=0

δtDztf
0(zt)ht + β

∞∑
t=0

δtDztf
0(zt)gt = α∂hJ(z) + β∂gJ(z)

Next, we prove boundness in case p = 1

|∂hJ(z)| ≤

∣∣∣∣∣
∞∑
t=0

δtDztf
0(zt)ht

∣∣∣∣∣ ≤
∞∑
t=0

δt
∣∣Dztf

0(zt)ht
∣∣

≤ 1

1− δ

∞∑
t=0

|Dztf
0(zt)||ht| ≤

2C

1− δ
‖h‖1 <∞.

And �nally we show that if p ∈ (1,∞〉 the map is bounded as well. Again, we apply
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Hölder inequality.

|∂hJ(z)| ≤

∣∣∣∣∣
∞∑
t=0

δtDztf
0(zt)ht

∣∣∣∣∣ ≤
∞∑
t=0

∣∣δtDztf
0(zt)ht

∣∣ ≤ ‖h‖p( ∞∑
t=0

|δtDztf
0(zt)|q

) 1
q

≤ ‖h‖p2C

(
∞∑
t=0

δt

) 1
q

= ‖h‖p2C
(

1

1− δq

) 1
q

<∞.

So, J is Gâteaux di�erentiable for any p ∈ 〈1,∞〉.

3. To show that J is also Fréchet di�erentiable we employ Lemma 3.2.

We have to prove that the Gâteaux derivative is continuous, i.e. for a given ε > 0, there

exists δ > 0, such that for all y ∈ `n+m
p , if (z− y) ∈ X, ‖z− y‖p < δ then

|∂hJ(z)− ∂hJ(y)| ≤ ε‖h‖p, (3.2)

for all h ∈ `n+m
p . For p ∈ 〈1,∞) we have

|zt − yt| ≤

(
∞∑
t=0

|zt − yt|p
)1/p

= ‖z− y‖p < λ

and for p =∞

|zt − yt| ≤ sup
t∈N0

|zt − yt| = ‖z− y‖∞ < λ.

Thus, for any p we have |zt − yt| < λ.

We have already shown that Dztf is uniformly continuous on X0 × U0, so for a given

ε > 0 there exists λ > 0 such that if |zt − yt| < λ then

|Dztf(zt)−Dytf(yt)| ≤ ε∗ on X0 × U0.
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We can rewrite the left side of inequality (3.2) to

|∂hJ(z)− ∂hJ(y)| =

∣∣∣∣∣
∞∑
t=0

δtDztf
0(zt)ht −

∞∑
t=0

δtDytf
0(yt)ht

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
t=0

δt[Dztf
0(zt)−Dytf

0(yt)]ht

∣∣∣∣∣
Next, for p = 1 we employ the uniform continuity and write∣∣∣∣∣

∞∑
t=0

δt[Dztf
0(zt)−Dytf

0(yt)]ht

∣∣∣∣∣ ≤
∞∑
t=0

∣∣δt[Dztf
0(zt)−Dytf

0(yt)]ht
∣∣

≤ 1

1− δ

∞∑
t=0

∣∣[Dztf
0(zt)−Dytf

0(yt)]
∣∣ |ht|

≤ ε∗

1− δ

∞∑
t=0

|ht| =
ε∗

1− δ
‖h‖1.

Applying Hölder inequality we have for p ∈ (1,∞〉∣∣∣∣∣
∞∑
t=0

δt[Dztf
0(zt)−Dytf

0(yt)]ht

∣∣∣∣∣ ≤
∞∑
t=0

∣∣δt[Dztf
0(zt)−Dytf

0(yt)]ht
∣∣

≤ ‖h‖p

(
∞∑
t=0

∣∣δt[Dztf
0(zt)−Dytf

0(yt)]
∣∣q) 1

q

≤ ε∗‖h‖p

(
∞∑
t=0

δtq

) 1
q

= ε∗‖h‖p
(

1

1− δq

) 1
q

By setting ε = ε∗
(

1
1−δq

) 1
q we obtain the required inequality.
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Chapter 4

The Method

In this chapter we desribe the method establishing the pseudo-Pontryagin maximum prin-

ciple for discrete-time optimal control problems on in�nite horizon. At �rst we consider

the problem with linear autonomous dynamics, then we extend our results to general

dynamics.

4.1 The Linear Autonomous Problem

We describe our method on the in�nite-horizon discrete-time optimal control model with

linear autonomous dynamics

J(x,u) =
∞∑
t=0

δtf 0(xt, ut)→ max (4.1)

xt+1 = Axt +But + d for all t ∈ N0 (4.2)

x0 = x̄, (4.3)

where x̄,d ∈ Rn, n × n matrix A, n ×m matrix B and discount δ ∈ (0, 1) are given.

We denote xt ∈ Rn = X, x = {xt}∞t=0, ut ∈ Rm = U u = {ut}∞t=0, objective function

f 0 ∈ C1(X × U,R).
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Firstly, we construct perturbations along the optimal solution, then we formulate

necessary conditions of optimality.

Let (x̂, û) be optimal solution of problem (4.1) - (4.3). A pair (α,β) ∈ `n+m
∞ is called

admissible, if for all ε > 0 it holds

x̂0 + εα0 = x̄

x̂t+1 + εαt+1 = A(x̂t + εαt) +B(ût + εβt) + d for all t ∈ N0,

i. e. {x̂t + εαt, ût + εβt} satis�es (4.2) and (4.3).

Because of (4.3), one has α0 = 0. Next, we apply equation x̂t+1 = Ax̂t +Bût + d and

the system can be rewritten to

α0 = 0

αt+1 = Aαt +Bβt for all t ∈ N0.

From the de�nition of an admissible vector, J(x̂ + εα, û + εβ) cannot increase with

ε (≥ 0) from the maximum. We have already shown that J is Fréchet di�erentiable in

`n+m
∞ (Proposition 3.1), therefore

∂

∂ε
J(x̂ + εα, û + εβ)|ε=0 ≤ 0

∂

∂ε
J(x̂− εα, û− εβ)|ε=0 ≤ 0

(4.4)

As ∂
∂ε
J(x̂− εα, û− εβ)|ε=0 = − ∂

∂ε
J(x̂ + εα, û + εβ)|ε=0, (4.4) can be rewritten to

0 =
∂

∂ε
J(x̂ + εα, û + εβ)|ε=0 =

∞∑
t=0

δt[Dxtf
0(x̂t, ût)αt +Dutf

0(x̂t, ût)βt]

= DJ(x̂, û)(α,β)ᵀ.

This notation can be simpli�ed by de�ning A, B and by introducing a vector of shift
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operators σ, such that (Aα)t = Aαt, (Bβ)t = Bβt and (σα)t = αt+1 and we obtain

α0 = 0 (4.5)

(σ −A)α−Bβ = (σ −A,−B)(α,β)ᵀ = 0. (4.6)

Remark 2. Let us de�ne an operator π0 = (πx0 ,0) such that π0(x,u)ᵀ = x0 and an

operator L : `n∞ × `m∞ → `n∞, L = (π0, (σ −A,−B)). Then conditions (4.5) and (4.6) can

be replaced by L(α,β)ᵀ = 0 or (α,β) ∈ N (L).

In order to apply closed range theorem, L needs to be bounded.

Proposition 4.1. Let A and B be general linear operators. Then L : `np × `mp → `np ,

L = (π0, (σ −A,−B)) is bounded linear operator for any p ∈ 〈0,∞〉.

Proof. The proof of linearity is trivial. We prove that σ,A,B and π0 are bounded, hence

L is bounded.

‖π0‖ = sup
‖x‖p=1

‖π0x‖p = sup
‖x‖p=1

|x0| ≤ 1

‖σ‖p = sup
‖x‖p=1

‖σx‖p = sup
‖x‖p=1

‖(x1, x2, . . . )‖p ≤ sup
‖x‖p=1

‖x‖p = 1

As A = (A1, A2, . . . ), where At are n× n matrix, ‖At‖ ≤M <∞ for all t ∈ N

‖A‖p = sup
‖x‖=1

‖Ax‖p = sup
‖x‖p=1

(
∞∑
t=0

|Atxt|p
) 1

p

≤ sup
‖x‖p=1

(
∞∑
t=0

|At|p|xt|p
) 1

p

≤M sup
‖x‖=1

‖x‖p = M,

in case p 6=∞ and if p =∞

‖A‖∞ = sup
‖x‖∞=1

sup
t≥0
|Atxt| ≤M sup

‖x‖∞=1

‖x‖∞ = M

And by the same argumentation B is bounded.
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Theorem 4.1. (Necessary conditions of optimality)

Assume that the operator L = (π0,σ −A,−B) has closed range. Then DJ(x̂, û)(α,β)ᵀ =

0 for all admissible (α,β) if only if there exists φ ∈ (`∞)∗ such that

DJ(x̂, û) = L∗φ (4.7)

Moreover, if one has φ = ψ + φs, where ψ = {ψt}t∈N0 ∈ `1 and φs ∈ `s, then

DJ(x̂, û)(α,β)ᵀ = 0 for all admissible (α,β) if

Dxtf
0(x̂t, ût) = ψt−1 − δA∗ψt for all t ∈ N

Dutf
0(x̂t, ût) = −δB∗ψt for all t ∈ N0.

(4.8)

Proof. At �rst, we show that there exists ψ ∈ (`∞)∗ such that equation (4.7) holds, then

we show that in terms it can be rewritten to the system (4.8).

According to the Proposition 4.1 L = (π0, (σ −A,−B)) is bounded and by the as-

sumption it has closed range. Hence according to the closed range theorem (Theorem

1.3)

R(L∗) = {x∗ ∈ X∗ : 〈x∗, (α,β)〉 = 0 for all (α,β) ∈ N (L)},

so DJ(x̂, û) ∈ R(L∗), i.e. there exists φ ∈ (`∞)∗ such that DJ(x̂, û) = L∗φ. Hence

DxJ(x̂, û)− (πx0 ,σ −A)∗φ = 0

DuJ(x̂, û) + (0,B)∗φ = 0.

So the �rst part of the theorem is proved.

For any sequences x ∈ `n∞ and u ∈ `m∞

DxJ(x̂, û)x− 〈(πx0 ,σ −A)∗φ,x〉 = DxJ(x̂, û)x− 〈φ, (πx0 ,σ −A)x〉 = 0

DuJ(x̂, û)u + 〈(0,B)∗φ,u〉 = DuJ(x̂, û)u + 〈φ, (0,B)u〉 = 0.
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Now, we split φ ∈ (`∞)∗ = `1 ⊕ `s to φ = φ1 + φs such that φ1 ∈ `1 and φs ∈ `s.

DxJ(x̂, û)x− 〈φ1, (πx0 ,σ −A)x〉 = 〈φs, (πx0 ,σ −A)x〉

DuJ(x̂, û)u + 〈φ1, (0,B)u〉 = 〈φs,−(0,B)u〉.

Consider the sequences xτ = {xτt }t∈N and uτ = {uτt }t∈N such that

xτt =

zx, if t = τ

0, if t 6= τ, τ ∈ N
uτt =

zu, if t = τ

0, if t 6= τ, τ ∈ N0

where zx ∈ Rn and zu ∈ Rm are chosen arbitrary. Then

(σ − A)xt
τ = 0n

−Butτ = 0m

for all t ≥ τ + 1, where 0n = (0, 0, . . . , 0) ∈ X and 0m = (0, 0, . . . , 0) ∈ U . Hence

(πx0 ,σ −A)xτ ∈ c0 ⊂ c and −(0,B)uτ ∈ c0 ⊂ c. By Lemma 2.1 there exist k1, k2 ∈ R

such that

〈φs, (πx0 ,σ −A)xτ 〉 = 〈k1, lim
t→∞

(σ − A)xt
τ 〉 = 〈k1, 0n〉 = 0

〈φs,−(0,B)uτ 〉 = 〈k2, lim
t→∞
−Butτ 〉 = 〈k2, 0m〉 = 0.

We have for all τ ∈ N and all zx ∈ X

0 = DxJ(x̂, û)xτ − 〈(πx0 ,σ −A)∗φ1,xτ 〉

= φ0x
τ
0 +

∞∑
t=0

(
δτDxτf

0(x̂τ , ûτ )− φ1
τ + A∗φ1

τ+1

)
xτt

=
(
δτDxτf

0(x̂τ , ûτ )− φ1
τ + A∗φ1

τ+1

)
zx
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by the same argumentation for all τ ∈ N0 and all zu ∈ U

0 = DuJ(x̂, û)uτ + 〈φ1, (0,B)∗uτ 〉

=
∞∑
t=0

(
δtDutf

0(x̂t, ût) +B∗φ1
t+1

)
uτt

=
(
δτDuτf

0(x̂τ , ûτ ) +B∗φ1
τ+1

)
zu,

which implies that

δtDxtf
0(x̂t, ût)− φ1

t + A∗φ1
t+1 = 0 for all t ∈ N

δtDutf
0(x̂t, ût) +B∗φ1

t+1 = 0 for all t ∈ N0.

Finally if we put ψt =
φ1t+1

δt+1 , we obtain the required equation.

4.2 The Problem with General Dynamics

In this section, we replace the linear autonomous dynamics (4.2) by generalized dynamics

Ft ∈ C1(X × U,R) for all t ∈ N0, i.e. we consider the problem

J(x,u) =
∞∑
t=0

δtf 0(xt, ut)→ max (4.9)

xt+1 = Ft(xt, ut) for all t ∈ N0 (4.10)

x0 = x̄. (4.11)
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Denote

DxtF (x̂t, ût) = At for all t ∈ N0

DutF (x̂t, ût) = Bt for all t ∈ N0

(A0, A1, ...) = A

(B0, B1, ...) = B

L = (π0, (σ −A,−B)), L : `n∞ × `m∞ → `n∞.

Again, we construct pertubations along the optimal solution, i.e. curves that start

from the optimal solution, their directions are given and conditions (4.10), (4.11) are

ful�lled.

De�nition 4.1. We call a pair (α,β) ∈ `n∞×`m∞ an admissible vector if there exist ε0 > 0

and di�erentiable curves p(ε0) = {pt(ε0)}t∈N0 , q(ε0) = {pt(ε0)}t∈N0 , where

pt : 〈0, ε0)→ X

qt : 〈0, ε0)→ U

for all t ∈ N0 such that the following conditions hold

i) p(0) = q(0) = 0

ii) p′(0) = α and q′(0) = β

iii) for each ε ∈ 〈0, ε0) and t ∈ N0

p0(ε) = 0

x̂t+1 + pt+1(ε) = Ft(x̂t + pt(ε), ût + qt(ε))

and (x̂ + p(ε), û + q(ε)) ∈ `n∞ × `m∞.
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If in any direction there exist an admissible perturbation curve, we can use it to derive

the necessary conditions of optimality as in the case of linear autonomous dynamics.

In the following proposition we state under which conditions this is the case. In order

to prove it we apply implicit function theorem, bounded inverse theorem and following

lemma.

Lemma 4.1. Let X, Y be vector spaces, T : X → Y be a linear map and C be a closed

complement of N (T ) in X. Then the map T : C → R(T ) is an isomorphism. Futhermore,

this map is also called a restriction of a map T to C and denoted by T |C.

Proof. We have to show that the map T |C is injective and surjective, so it is an isomor-

phism. Injectivity follows from

N (T |C) = N (T ) ∩ C = {0}.

And as X = C ⊕ N (T ), one has R(T |C) = T (C) = T (C ⊕ N (T )) = T (X) = R(T ).

Hence it is surjective.

Theorem 4.2. (Bounded inverse theorem) Let X, Y be vector spaces, T : X → Y be

a bounded linear operator that is one-to-one. Then the inverse map T−1 : Y → X is

continuous.

Proof. The theorem is in fact a corrolary to open mapping theorem and its proof can be

found in Rudin [25].

Theorem 4.3. (Implicit function theorem) Let X, Y, Z be Banach spaces, U ⊂ X, V ⊂ Y

open, F : U × V → Z be Cr, r ∈ (0,∞〉, (x0, y0) ∈ U × V , Θ(x0, y0) = 0. Let us assume

that DytΘ(x0, y0) has a continuous inverse operator. Then there exists a neighbourhoood

U0 × V0 ⊂ U × V of (x0, u0) and a function θ ∈ Cr(U0, V0) such that θ(x0) = y0 and

Θ(x, y) = 0 for (x, y) ∈ U0 × V0 hold if only if y = θ(x). Futhermore one has

Dθ(x0) = −[DytΘ(x0, y0)]−1DxtΘ(x0, y0).
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Proof. The proof can be found in [24].

Proposition 4.2. Let us assume that L has a closed complement to its null space. Then

each vector (α,β) ∈ N (L) is admissible.

Proof. We apply implicit function theorem with X = R, Z = `n∞ and Y a closed com-

plement to the null space of L. Any pair (x,u) ∈ `n+m
∞ can be seperated to the sum of

(α,β) ∈ N (L) and (a,b) ∈ Y . We �x (α,β) and construct curves p,q such that

p(ε) = εα+ a(ε), a : 〈0, ε0)→ Y,

q(ε) = εβ + b(ε), b : 〈0, ε0)→ Y

and we prove that these curves ful�ll the conditions (i)-(iii) from De�nition 4.1. We de�ne

function Θ = (T0, T ) : X × Y → Z such that

T0(ε, (a,b)) = (εα0 + v0 + x̂0)− x̄

T (ε, (a,b)) = σ(εα+ a(ε) + x̂)− F(εα+ a(ε) + x̂, εβ + b(ε) + û),

where (F(x,u))t = Ft(xt, ut) and (x̂, û) is an optimal solution. Next, we set (x0, y0) =

(0, (0n,0m)), where 0n = (0n, 0n, . . . ), 0m = (0m, 0m, . . . ) and prove that assumptions of

the implicit function theorem are ful�lled.

As (x̂, û) ful�ll state and initial conditions (4.10) - (4.11), we have

T0(0, (0n,0m)) = x̂0 − x̄ = 0n

T (0, (0n,0m)) = σx̂− F(x̂, û) = 0n.

Since Ft ∈ C1 it follows that the function Θ ∈ C1. In order to prove thatD(a,b)Θ(0, (0n,0m))
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has continuous inverse, we compute

D(a,b)T0(0, (0n,0m)) = π0|Y

D(a,b)T (0, (0n,0m)) = (σ −DxF(x̂, û)−DuF(x̂, û))|Y = (σ −A,−B)|Y ,

So

D(a,b)Θ(0, (0n,0m)) = (π0, (σ −A,−B))|Y = L|Y

and by Lemma 4.1 it is an isomorphism as Y is a closed complement and by Theorem 4.2

it has a continuous inverse operator.

Hence according to the Implicit function theorem (Theorem 4.3) there exists a neigh-

bourhood X0 × Y0 ⊂ X × Y of (0, (0n,0m)) and a di�erentiable function θ : X0 → Y0,

such that θ(ε) = (a(ε),b(ε)) if only if

θ(0) = (0, 0)

T0(ε, (a(ε),b(ε))) = 0

T (ε, (a(ε),b(ε))) = 0n, for all ((ε, (a(ε),b(ε)))) ∈ X0 × Y0.

Since for all ε ∈ X0 (a(ε),b(ε)) ∈ Y0 ⊂ `n∞ × `m∞

p(ε) + x̂ = a(ε) + εα+ x̂ ∈ `n∞

q(ε) + x̂ = b(ε) + εβ + û ∈ `m∞,

So far we have proven that properties (i) and (iii) of an admissible vector are ful�lled,

so it is left to prove (ii) that the direction of the curves are (α,β). Again, we apply

implicit function theorem and compute

θ′(0) = (a′(0),b′(0)) = −[D(a,b)Θ(0, (0n,0m))]−1[DεΘ(0, (0n,0m))].

35



CHAPTER 4. THE METHOD 4.2. THE PROBLEM WITH GENERAL DYNAMICS

So we have to �nd directional derivative DεΘ(0, (0n,0m)).

DεT0(0, (0n,0m)) = α0 = 0

DεT (0, (0n,0m)) = (σα+ v′(ε)

−DxtF(εα+ a(ε) + x̂, εβ + b(ε) + û)(α+ a′(ε))

−DutF(εα+ a(ε) + x̂, εβ + b(ε) + û)(β + b′(ε)))|(ε,(a,b))=(0,(0n,0m))

= σα−Aα−Bβ = (σ −A,−B)(α,β)ᵀ

As (α,β) is in the null space of L

DεΘ(0, (0n,0m)) = L(α,β)ᵀ = (0,0n).

Therefore

θ′(0) = (a′(0),b′(0)) = (0n,0m).

Finally we prove property (ii)

p′(0) = α+ a′(0) = α+ 0n = α

q′(0) = β + b′(0) = β + 0m = β.

Next, we proceed as in the problem with linear autonomous dynamics. If (α,β) is

admissible and (x̂, û) is an optimal solution then

∂

∂ε
J(x̂ + εα, û + εβ)|ε=0 ≤ 0

∂

∂ε
J(x̂− εα, û− εβ)|ε=0 = − ∂

∂ε
J(x̂ + εα, û + εβ)|ε=0 ≤ 0

(4.12)
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Hence, again we have

0 =
∂

∂ε
J(x̂ + εα, û + εβ)|ε=0 =

∞∑
t=0

δt[Dxtf
0(x̂t, ût)αt +Dutf

0(x̂t, ût)βt]

= DJ(x̂, û)(α,β)ᵀ.

and the necessary conditions are analogous.

Theorem 4.4. (Necessary conditions of optimality) Assume that the operator L has closed

range. Then DJ(x̂, û)(α,β)ᵀ = 0 for all admissible (α,β) if only if there exists φ ∈ (`∞)∗

such that

DJ(x̂, û) = L∗φ (4.13)

Moreover, if one has φ = ψ + φs, where ψ = {ψt}t∈N0 ∈ `1 and φs ∈ `s, then

DJ(x̂, û)(α,β)ᵀ = 0 for all admissible (α,β) if

Dxtf
0(x̂t, ût) = ψt−1 − δA∗tψt for all t ∈ N

Dutf
0(x̂t, ût) = −δB∗tψt for all t ∈ N0.

(4.14)

Proof. As A, B are general linear operators, by the Proposition 4.1 L is bounded. Next,

we proceed analogously to the proof of the Theorem 4.1.
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Chapter 5

Closed Range of L

In the previous chapter, we assumed that the operator L : `n∞ × `m∞ → `n∞, L = (π0, (σ −

A,−B)) has closed range and that the complement to its null space exists and is closed

as well. Now we show under which conditions this is the case. At �rst we explore the

autonomous system, i.e. where matrices At, Bt are constant for any t, then we derive

conditions for the nonautonomous system. In both cases we consider L : `np × `mp → `np ,

p ∈ 〈1,∞〉.

5.1 Autonomous system

In this section we only consider matrix A that has no eigenvalues on the unit circle and

prove that range of L and complement to null space of L are closed.

Proposition 5.1. If the eigenvalues of A do not lie on the unit circle, there exists a

projection matrix P , such that PA|R(P ) has eigenvalues outside the unit circle, (I −

P )A|R(I−P ) has eigenvalues inside the unit circle, hence it is regular. Moreover, there

exist C ≥ 1 and λ ∈ (0, 1) such that

1. ‖(PA|R(P ))
t−s‖ < Cλt−s, for all t ≥ s,

2. ‖((I − P )A|R(I−P ))
−(s−t)‖ < Cλs−t, for all t < s.
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Proof. For the sake of simplicity, we drop the subscript and write PA instead of PA|R(P )

and QA insead of (I − P )A|R(I−P ). We denote by P the projection to the generalized

eigenspaces of A corresponding to the eigenvalues inside the unit cirle, so I−P = Q is the

projection to the generalized eigenspaces of A corresponding to the eigenvalues outside

the unit cirle. Then spectral radius ρ(PA)

ρ(PA) = max{|λ|, λ ∈ sp(PA)} < 1,

and

min{|λ|, λ ∈ sp(QA)} > 1.

So QA is a regular matrix and there exists its inverse and its spectral radius

ρ((QA)−1) = max{|λ|, λ ∈ sp((QA)−1)} = max

{
1

|λ|
, λ ∈ sp(QA)

}
< 1.

It is left to show that if ρ(D) < 1, then ‖Dt‖ < cµt for any t ∈ N, where c > 0 and

µ ∈ (0, 1).

Any matrix D is similar to a matrix in Jordan canonical form J which has eigenvalues

of D on its diagonal, 1 or 0 on the superdiagonal and zero everywhere else, i.e. there

exists a matrix M1 such that D = M1JM
−1
1 .

Let us denote

J(λ, ε) =



λ ε 0 0 . . . 0

0 λ ε 0 . . . 0

0 0 λ ε . . . 0

0 0 0 λ
. . . 0

...
...

...
... . . . ...

0 0 0 0 . . . λ


,

so that J(λ, 1) is a standard Jordan block for an eingenvalue λ. If λ is not a multiple

eigenvalue, then J(λ, ε) = (λ) for any ε > 0.
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J(λ, 1) is then similar to the matrix J(λ, ε), where ε can be chosen arbitrary, i.e.

M(λ, ε)J(λ, 1) = J(λ, ε)M(λ, ε),

where

M(λ, ε) =



1 1 1 1 . . . 1

0 1
ε

1
ε

1
ε

. . . 1
ε

0 0 1
ε2

1
ε2

. . . 1
ε2

0 0 0 1
ε3

. . . 1
ε3

...
...

...
... . . . ...

0 0 0 0 . . . 1
εn−1


if λ is a multiple eigenvalue and M = 1 otherwise.

So there exists an invertible matrix Mε such that

D = M1M
−1
ε JεMεM

−1
1 ,

where Jε is a block diagonal matrix with blocks J(λi, ε) for each λi ∈ sp(D) and Mε

consists of the corresponding matrices M(λ, ε).

Then

‖Dt‖ = ‖M1M
−1
ε J tεMεM

−1
1 ‖ ≤ ‖M1‖‖M−1

1 ‖‖Mε‖‖M−1
ε ‖‖J tε‖

≤ ‖M1‖‖M−1
1 ‖‖Mε‖‖M−1

ε ‖‖J tε‖1 ≤ c‖J tε‖1.

It is left to show that ‖J tε‖1 is bounded by some µt, µ ∈ (0, 1).
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By straightforward calculation

J(λ, ε)t =



λt
(
t
1

)
λt−1ε

(
t
2

)
λn−1ε2 . . .

(
t

n−1

)
λt−n+1εn−1

0 λt
(
t
1

)
λt−1ε . . .

(
t

m−2

)
λt−m+2εn−2

0 0 λt . . .
(

t
n−3

)
λt−n+3εn−3

...
...

... . . . ...

0 0 0 . . . λt


,

where for our convinience we de�ne
(
t
s

)
= 0, if s > t. Hence if n is maximum multiplicity

of the eigenvalues of D, then

‖J tε‖ ≤ ‖J tε‖1 ≤
min{t,n−1}∑

i=0

(
t

i

)
εi (ρ(D))t−i ≤

t∑
i=0

(
t

i

)
εi (ρ(D))t−i = (ε+ ρ(D))t.

If we choose ε su�ciently small, then µ = ε+ ρ(D) < 1 and

‖Dt‖ ≤ c‖Jε‖1 ≤ cµt.

As both PA and (QA)−1 have eigenvalues inside the unit circle, they satisfy the

following inequalities for any t > s

‖PAt−s‖ ≤ c1µ
t−s
1

‖(QA)s−t‖ ≤ c2µ
t−s
2 .

Then we choose C = max{1, c1, c2}, λ = max{µ1, µ2} so that we proved the claim.

Below, we use the notation A− = PA|R(P ) and A+ = (I − P )A|R(I−P ), B− = PB

and B+ = (I − P )B . If z ∈ `np , then we may write z = z− ⊕ z+, where z− = Pz and

z+ = (I − P )z. The dimension of R(P ) is n1 and the dimension of R(I − P ) is n2, such
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that n = n1 + n2. And we de�ne (A−)0 = I. Next, we de�ne

Ψ(t, s) =

(A−)t−s if t ≥ s

((A+)−1)s−t if t < s.

Note that for any T ∈ 〈t, s〉

Ψ(t, T )Ψ(T, s) = Ψ(t, s).

Theorem 5.1. L has closed range and closed complement to its null space.

Proof. In order to prove that L has closed range, we have to prove that the set of those

z = {zt}t∈N0 for which there exist v = {vt}t∈N0 , w = {wt}t∈N0 such that

v0 = z0

vt+1 − Avt −Bwt = zt, for all t ∈ N
(5.1)

is closed. Applying our notation the equations (5.1) can be split into two sets of equations

v−0 = z−0 v+
0 = z+

0

v−t+1 − A−v−t −B−wt = z−t v+
t+1 − A+v+

t −B+wt = z+
t .

By L− : `n1
∞ × `m∞ → `n1

∞ , L+ : `n2
∞ × `m∞ → `n2

∞ denote the operators L− = (π−0 ,σ
− −

A−,−B−) and L+ = (π+
0 ,σ

+ − A+,−B+), where π−0 , π
+
0 are operators π0 de�ned on

respective spaces and σ−, σ+ are σ de�ned on respective spaces. Note that R(L) =

R(L−)⊕R(L+).
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The �rst system leads to

v−0 = z−0

v−1 = A−v−0 +B−w0 + z−0 = B−w−0 + A−z−0 + z−0

v−2 = A−v−1 +B−w1 + z−1 = A−(A−z−0 +B−w0 + z−0 ) +B−w−1 + z−1
...

v−t = (A−)tz−0 +
t−1∑
s=0

(A−)
t−s−1

(B−ws + z−s ) = Ψ(t, 0)z−0 +
t−1∑
s=0

Ψ(t, s+ 1)(B−ws + z−s ).

And analogously it can be shown that for t < T then

v+
T = Ψ(T, t)v+

t +
T−1∑
s=t

Ψ(T, s+ 1)(B+ws + z+
s )

Ψ(T, t)v+
t = v+

T −
T−1∑
s=t

Ψ(T, s+ 1)(B+ws + z+
s )

v+
t = Ψ(t, T )v+

T −
T−1∑
s=t

Ψ(t, T )Ψ(T, s+ 1)(B+ws + z+
s )

v+
t = Ψ(t, T )v+

T −
T−1∑
s=t

Ψ(t, s+ 1)(B+ws + z+
s )

And for T →∞

v+
t = −

∞∑
s=t

Ψ(t, s+ 1)(B+ws + z+
s ) t ≥ 1.
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In summary, if z = L(v,w)ᵀ, then v,w ∈ `n+m
p , z ∈ `np and

v−t = Ψ(t, 0)z−0 +
t−1∑
s=0

Ψ(t, s+ 1)(B−ws + z−s ) t ≥ 1 (5.2)

v−0 = z−0 (5.3)

v+
t = −

∞∑
s=t

Ψ(t, s+ 1)(B+ws + z+
s ) t ≥ 1 (5.4)

v+
0 = z+

0 = −
∞∑
s=0

Ψ(0, s+ 1)(B+ws + z+
s ). (5.5)

From the construction of the solutions v it is clear, that they are unique. Next we prove

that for a given z ∈ R(L) we obtain a unique solution (v,w) so that R(L) and NC(L)

are isomorphic. Then we show that they are closed.

Firstly, we show that for a given z+ ∈ `n2
p there exists a solution (v+,w+) such that

(5.4) and (5.5) hold.

The space of all z+
0 is n2-dimensional, so

W =

{
∞∑
s=0

Ψ(0, s+ 1)B+ws : w ∈ `mp

}

has �nite dimension d < n2 as it is its subspace. Let us denote by ξ1, . . . , ξd, its basis

vectors. Then there exist w(j) = {w(j)
t }∞t=0 ∈ `np for all j ∈ {1, . . . , d} such that

∞∑
s=0

Ψ(0, s+ 1)B+w(j)
s = ξj.

Then (5.5) is ful�lled if only if z+
0 +

∑∞
s=0 Ψ(0, s + 1)z+

s ∈ W . Therefore for a given

z+ ∈ R(L+) there exists α1, . . . , αd such that z+
0 +

∑∞
s=0 Ψ(0, s + 1)z+

s =
∑d

j=1 αjξj.

Denote the space of such z+ ∈ Z+ ⊂ `n2
p . Then
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z+
0 +

∞∑
s=0

Ψ(0, s+ 1)z+
s =

d∑
j=1

αjξj

=
d∑
j=1

αj

∞∑
s=0

Ψ(0, s+ 1)B+w(j)
s

=
∞∑
s=0

Ψ(0, s+ 1)
d∑
j=1

αjw
(j)
s

And so we set

w =
d∑
j=1

αjw
(j)

v+
0 = z+

0

v+
t = −

∞∑
s=t

Ψ(t, s+ 1)(z+
s +B+ws) t ≥ 1.

And for a given z− ∈ R(L−) we obtain

v−0 = z−0

v−t = Ψ(t, 0)z−0 +
t−1∑
s=0

Ψ(t, s+ 1)(z−s +B−ws), t ≥ 1.

As w is a linear combination of w(j) ∈ `mp it belongs to `mp as well. Next, we show

that v = v− ⊕ v+ ∈ `np . For p ∈ 〈1,∞) we obtain

|v−t |p =

∣∣∣∣∣(Ψ(t, 0) + Ψ(t, 1))(z−0 +B−w0) +
t−1∑
s=1

Ψ(t, s+ 1)
(
z−s +B−ws

)∣∣∣∣∣
p

≤

(
(Cλt + Cλt−1)|z−0 +B−w0|+

t−1∑
s=1

Cλt−s−1|z−s +B−ws|

)p

≤ Cp

(
2λt−1|z−0 +B−w0|+

t−1∑
s=1

λt−s−1|z−s +B−ws|

)p

≤ (2C)p

(
t−1∑
s=0

λt−s−1|z−s +B−ws|

)p

, t ≥ 1.
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and

|v+
t |p =

∣∣∣∣∣
∞∑
s=t

Ψ(t, s+ 1)(zs +B+ws)

∣∣∣∣∣
p

≤ Cp

(
∞∑
s=t

λs−t+1|zs +B+ws|

)p

.

In case p > 1 we apply Jensen's inequality

(∑∞
s=0 λ

t−s−1|z−s |∑∞
s=0 λ

t−s−1

)p
≤
∑∞

s=0 λ
t−s−1|z−s |p∑∞

s=0 λ
t−s−1

.

Hence, we have

‖v−‖p ≤

(
∞∑
t=1

|v−t |p
) 1

p

≤ 2C

(
∞∑
t=1

(
t−1∑
s=0

λt−s−1|z−s +B−ws|

)p) 1
p

≤ 2C

 ∞∑
t=1

(
t−1∑
s=0

λt−s−1

)p−1 t−1∑
s=0

λt−s−1|z−s +B−ws|p
 1

p

= 2C

(
∞∑
t=1

(
1− λt

1− λ

)p−1 t−1∑
s=0

λt−s−1|z−s +B−ws|p
) 1

p

≤ 2C

(
1

1− λ

) p−1
p

(
∞∑
t=1

t−1∑
s=0

λt−s−1|z−s +B−ws|p
) 1

p

≤ 2C

(
1

1− λ

) p−1
p

(
∞∑
s=0

|z−s +B−ws|p
∞∑

t=s+1

λt−s−1

) 1
p

≤ 2C

1− λ

(
∞∑
s=0

|z−s +B−ws|p
) 1

p
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Next, we apply Minkowski's inequality

‖v‖p ≤
2C

1− λ

(
∞∑
s=0

|z−s +B−ws|p
) 1

p

≤ 2C

1− λ
(
‖z‖p + ‖B−‖p‖w‖p

)
<∞

and

‖v+‖p =

(
∞∑
t=0

|v+
t |p
) 1

p

≤ C

(
∞∑
t=0

(
∞∑
s=t

λs−t+1|z+
s +B+wt|

)p) 1
p

≤ C

(
∞∑
t=0

(
λ

1− λ

)p−1 ∞∑
s=t

λs−t+1|z+
s +B+ws|p

) 1
p

= C

(
λ

1− λ

) p−1
p

(
∞∑
t=0

∞∑
s=t

λs−t+1|z+
s +B+ws|p

) 1
p

= C

(
λ

1− λ

) p−1
p

(
∞∑
s=0

|z+
s +B+ws|p

s∑
t=0

λs−t+1

) 1
p

≤ C

(
λ

1− λ

) p−1
p

(
∞∑
s=0

|z+
s +B+wt|p

∞∑
t=1

λt

) 1
p

≤ Cλ

1− λ

( ∞∑
s=0

|z+
s |p
) 1

p

+

(
∞∑
s=0

|B+wt|p
) 1

p


≤ Cλ

1− λ
(
‖z+‖p + ‖B+‖p‖w‖p

)
<∞.

In case p = 1 we obtain

‖v−‖1 ≤ 2C
∞∑
t=1

t−1∑
s=0

λt−s−1|z−s +B−ws| ≤ 2C
∞∑
s=0

|z−s +B−ws|
∞∑

t=s−1

λt−s−1

≤ 2C

1− λ
(
‖z−‖1 + ‖B−‖1‖w‖1

)
<∞

and
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‖v+‖1 ≤ C

∞∑
t=0

(
∞∑
s=t

λs−t+1|z+
s +B+ws|

)
≤ C

∞∑
s=0

|z+
s +B+wt|

∞∑
t=1

λt

≤ Cλ

1− λ
(
‖z+‖1 + ‖B+‖1‖w‖1

)
<∞.

Finally, for p =∞ we have

‖v−‖∞ = sup
t∈N
|v−t | ≤ 2C sup

t∈N

t−1∑
s=0

λt−s−1|z−s +B−ws| ≤ 2C sup
t∈N
|z−t +B−ws| sup

t∈N

t−1∑
s=0

λt−s−1

≤ 2C

1− λ
(
‖z−‖∞ + ‖B−‖∞‖w‖∞

)
<∞.

‖v+‖∞ = sup
t∈N
|v+
t | ≤ C sup

t∈N

∞∑
s=t

λs−t+1|z+
s +B+wt| ≤ C sup

t∈N
|z+
t +B+wt| sup

t∈N

∞∑
s=t

λs−t+1

≤ Cλ

1− λ
(
‖z+‖∞ + ‖B+‖∞‖w‖∞

)
<∞.

We proved that v = v− ⊕ v+ ∈ `np , it is unique for a given z,w and w ∈ `mp is unique

for a given z ∈ Z+, hence L is one-to-one and its range is isomorphic to complement to

its null space. Futhermore, we have shown that R(L+) = Z+ and R(L−) = `n1
p .

The space Z+ has �nite codimension, so it is closed as well as `n1
p . Hence R(L) is

closed and due to their isomorphism NC(L) is closed as well.

This completes the proof.

5.2 Nonautonomous system

De�nition 5.1. (Exponential Dichotomy)

Let us consider a linear di�erence equation

vt+1 = Atvt +Btwt + zt, (5.6)

with an initial condition v0 = z0 where v = {vt}t∈N ∈ `np , w = {wt}t∈N ∈ `mp p ∈ 〈1,∞〉,
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t ∈ N and At are n× n matrices. We say that the linear di�erence equation (5.6) has an

exponential dichotomy on N if there exist C ≥ 1, λ ∈ (0, 1) and a family of projections

Pt, t ∈ N such that

1. Pt+1At = AtPt, i.e. they commute,

2.

‖Pt‖ ≤ C (5.7)∥∥∥∥∥
s∏

i=t−1

A−j

∥∥∥∥∥ ≤ Cλt−s for all t ≥ s, (5.8)

where A−t = Pt+1At|R(Pt),

3. A+
j = (I − Pt+1)At|R(I−Pt) = Qt+1At|R(Qt) are invertible for all t ∈ N and

∥∥∥∥∥
s−1∏
i=t

(A+
j )−1

∥∥∥∥∥ ≤ Cλs−t, for all t < s. (5.9)

For the sake of simplicity, let us denote

Ψ(t, s) =


∏s

i=t−1A
−
j , if t ≥ s∏s−1

i=t (A+
j )−1 if t < s.

so that equations (5.8), (5.9) can be rewritten to

‖Ψ(t, s)‖ ≤ Cλ|t−s|.

Note that in case At are constant for all t ∈ N0,

Ψ(t, s) =

(A−)t−s, if t ≥ s

(A+)t−s if t < s.
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Theorem 5.2. Let the linear di�erence equation (5.6) have an exponential dichotomy on

N and Bt be bounded for all t. Then the operator L has closed range.

Proof. Assume that linear di�erence equation (5.6) has an exponential dichotomy with

constants C, λ and a family of projection matrices Pt, I−Pt = Qt, t ∈ N and let z ∈ R(L).

As vt can be rewritten as (Pt +Qt)vt = Ptvt +Qtvt the system (5.6) leads to two systems

of equations

P0v0 = P0z0

Pt+1vt+1 = Pt+1Atvt + Pt+1Btwt + Pt+1zt

(5.10)

Q0v0 = Q0z0

Qt+1vt+1 = Qt+1Atvt +Qt+1Btwt +Qt+1zt.
(5.11)

As Qt are projection matrices and they commute, i.e. Qt+1At = Q2
t+1At = Qt+1AtQt, the

last equation (5.11) can be rewritten to

Qt+1vt+1 = Qt+1AtQtvt +Qt+1Btwt +Qt+1zt

Qtvt = (Qt+1At)
−1(Qt+1vt+1 −Qt+1Btwt −Qt+1zt)

Denote Pt+1zt = z−t , Qt+1zt = z+
t , Ptvt = v−t , Qtvt = v+

t and Pt+1Bt = B−t , Qt+1Bt = B+
t

for any t ∈ N, so that we may write

v−0 = z−0 v+
0 = z+

0

v−t+1 − A−t v−t −B−t w−t = z−t v+
t = (A+

t )−1(v+
t+1 −B+

t w
+
t − z+

t ).
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Then again as in the Proposition 5.1 it can be inductively shown that

v−t = Ψ(t, 0)z−0 +
t−1∑
s=0

Ψ(t, s+ 1)(z−s +B−s ws)

v+
t = −

∞∑
s=t

Ψ(t, s+ 1)(z+
s +B+

s ws)

v+
0 = z+

0 = −
∞∑
s=0

Ψ(0, s+ 1)(z+
s +B+

s ws).v
−
0 = z−0

For the rest of the proof we proceed as in the proof of the Proposition 5.1 applying

inequalities
∞∑
s=0

|Bsws|p ≤ sup
s≥0
‖Bs‖p

∞∑
s=0

|ws|p, for p ∈ 〈0,∞)

and for p =∞

sup
s≥0
|Bsws| ≤ sup

s≥0
‖Bs‖ sup

s≥0
|ws| = ‖w‖∞ sup

s≥0
‖Bs‖.

5.3 Special Cases

Proposition 5.2. If matrices At converge to a matrix A∞ such that its eigenvalues do

not lie on the unit circle, the linear di�erence equation (5.6) has an exponential dichotomy

on N.

Proof. In progress.

Proposition 5.3. If matricesAt are periodic with period T and the matrixA = ATAT−1 . . . A1

has no eigenvalues on unit cirle and it is regular, then the linear di�erence equation (5.6)

has exponential dichotomy on N.

Proof. Let At be periodic with minimum period T , i.e. At+T = At for all t ∈ N and let

Ak = A(1+k)TA(1+k)T−1 . . . AkT+1, k ∈ N0,
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then Ak is constant for any k.

We can rewrite the linear di�erence equations into

vt+1 = Atvt +Btwt

vt+2 = At+1Atvt + At+1Btwt +Bt+1wt+1

...

vt+T+1 = At+T . . . At+1Atvt +
t+T−1∑
s=t

At+T . . . As+1(Bsws) +Bt+Twt+T .

If we denote

νk = vkT+1

ξk = (B1+(k−1)Tw1+(k−1)T , B2+(k−1)Tw2+(k−1)T , . . . , B1+kTw1+kT )>

B = (A1+kTAkT . . . A2+(k−1)T , A2+kTAkT . . . A3+(k−1)T , . . . , A1+kT , I)

for any k ∈ N, then the system can be rewritten to an autonomous system

νk+1 = Aνk + Bξk.

According to Proposition 5.1, there exist projection matrices P , Q = I − P and

λ ∈ (0, 1), CA ≥ 1 such that

‖PA|t−sR(P )‖ < CAλ
t−s, if t ≥ s (5.12)

‖QA|t−sR(Q)‖ < CAλ
s−t, if t < s. (5.13)

Again, we will leave out the subscripts R(P ) and R(Q). As A is regular, all the

matrices At are regular and we can de�ne a family of matrices

Pt =

(
1∏

i=t−1

Ai

)
P

(
t−1∏
i=1

A−1
i

)
, for all t ≥ 1.
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Then for all t ≥ 1

Qt =

(
1∏

i=t−1

Ai

)
Q

(
t−1∏
i=1

A−1
i

)

=

(
1∏

i=t−1

Ai

)
I

(
t−1∏
i=1

A−1
i

)
−

(
1∏

i=t−1

Ai

)
P

(
t−1∏
i=1

A−1
i

)
= I − Pt

and Pt are projection matrices

P 2
t =

(
1∏

i=t−1

Ai

)
P

(
t−1∏
i=1

A−1
i

)(
1∏

i=t−1

Ai

)
P

(
t−1∏
i=1

A−1
i

)
=

(
1∏

i=t−1

Ai

)
P 2

(
t−1∏
i=1

A−1
i

)

=

(
1∏

i=t−1

Ai

)
P

(
t−1∏
i=1

A−1
i

)
= Pt,

they commute

Pt+1At =

(
1∏
i=t

Ai

)
P

(
t∏
i=1

A−1
i

)
At = At

(
1∏

i=t−1

Ai

)
P

(
t∏
i=1

A−1
i

)
A−1
t At = AtPt

and they are periodic with period T

Pt+T =

(
1∏

i=t+T−1

Ai

)
P

(
t+T−1∏
i=1

A−1
i

)
=

(
T+1∏

i=t+T−1

Ai

)
APA−1

(
t+T−1∏
i=T+1

A−1
i

)

=

(
1∏

i=t−1

Ai

)
PAA−1

(
t−1∏
i=1

A−1
i

)
=

(
1∏

i=t−1

Ai

)
P

(
t−1∏
i=1

A−1
i

)
= Pt.

Hence

‖Pt‖ ≤ max
i∈{1,2,...,T}

‖Pi‖ = CP .
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It is left to show that for any t, s ∈ N, t > s∥∥∥∥∥
s∏

i=t−1

A−i

∥∥∥∥∥ < Cλt−s (5.14)∥∥∥∥∥
t−1∏
i=s

(A+
i )−1

∥∥∥∥∥ < Cλt−s, (5.15)

where λ ∈ (0, 1) and C ≥ 1.

We split the proof into two parts.

1. Let us assume that t− s > T .

As projection matrices Pt commute, ‖Pt−1At−1 . . . As‖ = ‖At−1 . . . Pk+1Ak . . . As‖

for any k ∈ 〈s+ 1, t) ∩ N.

Denote α = b t
T
c − d s

T
e ≥ t− s− 2T , then∥∥∥∥∥

s∏
i=t−1

A−i

∥∥∥∥∥ = ‖PtAt−1 . . . As‖

= ‖At−1 . . . Ab t
T
cT+1PAαAd sT eT . . . As‖

≤ ‖At−1‖ . . . ‖Ab t
T
cT+1‖‖PAα‖Ad sT eT‖ . . . ‖As‖ ≤ C2

ΠCAλ
α

≤ C2
ΠCAµ

t−s−2T = C2
ΠCAλ

−2Tλt−s,

where CΠ = ‖AT‖‖AT−1‖ . . . ‖A1‖.

2. Let 0 < t− s ≤ T , then∥∥∥∥∥
s∏

i=t−1

A−i

∥∥∥∥∥ ≤ ‖Pt‖‖At−1‖ . . . ‖As‖

≤ CPCΠ = CP
CΠ

λt−s
λt−s ≤ CP

CΠ

λT
λt−s

If we put C = max{1, C2
ΠCAλ

−2T , CΠCPλ
−T}, we obtain the required inequality.

The proof for the inequality (5.15) is analogous.
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Proposition 5.4. If the linear di�erence equation (5.6) has an exponential dichotomy on

N\K, where K = {1, . . . , T}, then it has exponential dichotomy on N.

Proof. Let (5.6) have an exponential dichotomy on N\K with projections Pt, Qt constants

C1 ≥ 1 and λ ∈ (0, 1) . Next, we de�ne

R(Pt) =

{
v ∈ Rn :

s∏
i=T−1

Atv ∈ R(PT )

}

R(Qt) =

{
v ∈ Rn :

T−1∏
i=t

A−1
t v ∈ R(QT )

}
.

Next, for any t, s < T we de�ne

Ψ(t, s) =


∏s

i=t−1At|R(Pt), if t ≥ s∏s−1
i=t A

−1
t |R(Qt) if t < s.

Let C2 = supt∈〈0,T 〉{‖Ψ(t, T )‖, ‖Ψ(T, t)‖}. Then

‖Ψ(t, s)‖ ≤ ‖Ψ(t, T )‖‖Ψ(T, s)‖ ≤ C1C2λ
t−T

≤ C1C2λ
s−Tλt−s ≤ C1C2λ

−Tλt−s, if s ≤ T ≤ t

‖Ψ(t, s)‖ ≤ ‖Ψ(t, T )‖‖Ψ(T, s)‖ ≤ C1C2λ
s−T

≤ C1C2λ
t−Tλs−t ≤ C1C2λ

−Tλs−t, if t ≤ T ≤ s.

Hence the equation (5.6) has exponential dichotomy on N with C = max{C1, C1C2λ
−T}

and λ ∈ (0, 1).

Finally, in the following example we show that if the system (5.6) does not possess

exponential dichotomy, L may not have closed range.

Example 1. We assume linear autonomous dynamics and A = 1, B = 0, so that the
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CHAPTER 5. CLOSED RANGE OF L 5.3. SPECIAL CASES

state can be rewritten as xt+1 = xt. Then

R(L) = {z ∈ `1
∞ : zt = xt+1 − xt,x ∈ `1

p}.

For a given ε > 0, we choose zε such that zε0 = 0 and zεt = t−(1+ε) for t ≥ 1. Then

corresponding xε is given as xε0 = 0 and xεt =
∑t−1

s=2(s − 1)−(1+ε), t ≥ 1. So while

zε,xε ∈ `1
∞ and lim

ε→0
zt
ε = t−1, so lim

ε→0
zε ∈ `1

∞, but lim
ε→0

xε /∈ `1
∞. Therefore R(L) is not

closed.
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Conclusion

We focused on in�nite-horizon, discrete-time optimal control problems and established

necessary conditions of optimality of Potryagin maximum principle type. We considered

problems with linear autonomous dynamics xt+1 = Axt + But + d and general dynamics

xt+1 = Ft(xt, ut).

Current literature associated with our research gave us two main results. Blot and

Chebbi [5] established the maximum principle in the space `1 with objective function

without discount by reduction to �nite horizon and imposed the condition that At =

DxtFt(x̂t, ût) are invertible for all t. Later, Blot and Hayek [6] considered the same

problem as we did and via tools of functional analysis formulated condition

sup
t∈N0

‖At‖∞ < 1.

We also employed direct approach rather than reduction to �nite horizon and faced

four main challenges. At �rst, we had to prove that the objective function is Fréchet

di�erentiable. Then by standard method of constructing perturbations along the optimal

solution, we derived necessary conditions of optimality with adjoint variable belonging

to the dual space of `∞, (`∞)∗ = `1 ⊕ `s. We managed to circumvent its non-sequential

component `s. The most signi�cant results are described in the last chapter where we

formulate assumptions under which the necessary conditions hold, i.e. when the operator

L has closed range. Moreover, in the case of general dynamics we had to show that its

null space is complemented and the complement is closed.
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In the case of linear autonomous dynamics xt+1 = Axt + But + d, it is su�cient that

A has no eigenvalues on the unit circle. In case of general dynamics, the assumption is

formulated as exponential dichotomy, i.e. there exist C ≥ 1, λ ∈ (0, 1) and bounded

projection matrices Pt such that

‖Ψ(t, s)‖ ≤ Cλ|t−s|, for any t, s ∈ N0,

where

Ψ(t, s) =


∏s

i=t−1 Pt+1At|R(Pt), if t ≥ s∏s−1
i=t (I − Pt+1)A−1

t |R(I−Pt) if t < s.

In comparison to the previous results, we managed to formulate the maximum principle

with ψ0 = 1. In Blot, Hayek [6] they proved that their ψ0 is non-zero, however Blot,

Chebbi [5] did not exclude this possibility.

In �nite horizon problems without terminal constraints the transversality condition is

ψT = 0. In our case, we do not have a terminal condition as our response is from `∞

and we obtain the condition ψ ∈ `1, i.e.
∑∞

t=1 |ψt| <∞ which might be understood as a

transversality condition in case of the in�nite horizon problems.

While the condition of exponential dichotomy extends the framework of problems for

which the maximum principle hold, we could not formulate it as an equivalence. However,

we found an example where exponential dichotomy is not satis�ed and the range of L is

not closed, hence the closed range theorem cannot be applied.

The thesis ends with the examples of systems having exponential dichotomy, but there

is de�nitely still a lot of space for future development of the presented framework. More-

over, further research can also be conducted in order to examine necessity of condition of

exponential dichotomy.
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Appendix A

Basic Concepts in Functional Analysis

As we consider in�nite horizon problems, we have to work with in�nite sequences

and their spaces. Therefore, an understanding of basic principles of functional analysis

is neccesary for our research. In Appendix we summarize the basic concepts, principles

and methods of functional analysis ussed in the thesis. We go though Banach spaces and

operators on them, dual spaces. Most of the theory comes from the books [26], [27] and

[28].

A.1 Metric and Banach Spaces

This section is devoted to metric, linear normed and Banach spaces. We give the de�nition

of the spaces, illustrate them by several examples and describe some of their properties.

We also introduce the space of all bounded sequences `n∞ and other `np spaces that are

crucial for the thesis.

De�nition A.1. Metric space

LetX be a nonempty set and d : X×X → R be a real function such that for all x, y, z ∈ X

one has

(i) d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y (positivity)

(ii) d(x, y) = d(y, x) (symmetry)

62



(iii) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

The pair (X, d) is called a metric space and the function d a metric.

Example 2. Let `n∞ be the set of sequences x = {xt}∞t=0, xt ∈ Rn such that

sup
t∈N0

|xt| <∞

where | · | is a norm in the space Rn, n ∈ N. So it is a space of all bounded sequences.

Denote

d(x,y) = sup
t∈N0

|xt − yt| for all x,y ∈ `n∞.

Then (`n∞, d) is a metric space.

Example 3. For p ∈ 〈1,∞) we introduce the set `np of sequences x = {xt}∞t=0, xt ∈ Rn

such that
∞∑
t=0

|xt|p <∞

where | · | is a norm in the space Rn, n ∈ N. Denote

d(x,y) =

(
∞∑
t=0

|xt − yt|p
) 1

p

for all x,y ∈ `np .

(`np , d) is also a metric space.

De�nition A.2. Let (X, d) be a metric space. A Cauchy sequence is a sequence {x(n)}∞n=0,

x(n) ∈ X for all n ∈ N0 such that for all ε > 0 there is Nε ∈ N such that for all n,m > Nε

d(x(n), x(m)) < ε.

De�nition A.3. Ametric space is complete if all Cauchy sequences in this space converge.

Proposition A.1. If (X, d) is a metric space and {x(n)}∞n=0 is its Cauchy sequence, then

{x(n)}∞n=0 is bounded in X, i.e. there exists y ∈ X and C ∈ R such that d(x(n), y) ≤ C

for all x(n) ∈ {x(n)}∞n=0.



De�nition A.4. Let (X, d) be a metric space. Ametric subspace (Y, dY ) of (X, d) consists

of a subset Y ⊂ X whose metric dY is the restriction of d to Y , that is dY (x, y) = d(x, y)

for all x, y ∈ Y .

Whenever we talk about a subspace Y of a metric space (X, d), we always consider it

in terms of properties of the corresponding metric subspace (Y, dY ).

De�nition A.5. A subset Y of a metric space (X, d) is closed if it contains all its limit

points, i.e. for all {x(n)}∞n=0, x
(n) ∈ Y such that if x(n) n→∞−−−→ x̄, then x̄ ∈ Y .

De�nition A.6. Normed linear space

Let X 6= ∅ be a vector space and ‖·‖ : X → R be a real function such that for all x, y ∈ X

(i) ‖x‖ ≥ 0 and ‖x‖ = 0⇔ x = 0

(ii) ‖λx‖ = |λ|‖x‖ for every svalar λ

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The pair (X, ‖ · ‖) is a normed linear space space and function ‖ · ‖ is a norm.

Proposition A.2. Let (X, d) be a normed linear space and de�ne d(x, y) = ‖x− y‖ for

all x, y ∈ X. Then (X, ‖ · ‖) is a metric space.

Example 4. The spaces `np , where p ∈ 〈1,∞) and `n∞ are normed linear spaces, if we

de�ne the norms

‖x‖∞ = sup
t∈N0

|xt|

‖x‖p =

(
∞∑
t=0

|xt|p
) 1

p

p ∈ 〈1,∞)

respectively.



De�nition A.7. Banach space

Let (X, ‖·‖) be a normed linear space. If the corresponding metric space (X, d) is complete

we say (X, ‖ · ‖) is a Banach space. (In the thesis, we left out the symbol ‖ · ‖ in the

notation of the normed spaces).

Proposition A.3. The spaces `np , where p ∈ 〈1,∞〉 are Banach spaces.

Remark 3. In literature, spaces c and c0 are often cited. c ⊂ `∞ is a space of convergent

sequences and c0 ⊂ `∞ is a space of sequences converging to 0. Both are Banach spaces.

A.2 Operators

De�nition A.8. Let X, Y be normed linear spaces. By an operator T from X to Y we

understand a map T : X ⊃ D(T ) → Y . D(T ) to be called domain of T . (In the thesis,

we consider D(T ) = X unless it is stated otherwise.)

Banach spaces and operators acting upon them form the basis of functional analysis. In

this section we summarize necessary de�nitions and theorems associated with operators.

De�nition A.9. The range R(T ) of operator T : X → Y is the subset of Y of the values

of T :

R(T ) = {y ∈ Y, y = T (x) for some x ∈ D(T )}.

De�nition A.10. The null space N (T ) of operator T : X → Y

N (T ) = {x ∈ D(T ), T (x) = 0}.

Example 5. Let X be a linear space. The identity operator I : X → X is de�ned by

I(x) = x for all x ∈ X.

Addition and scalar multiplication of operators are de�ned similarly to that of standard

functions.



De�nition A.11. Let T1 and T2 be mappings from normed space X to normed space Y .

We de�ne operator T1 + T2 : X → Y with the domain D(T1 + T2) = D(T1) ∩ D(T2) and

the rule

(T1 + T2)(x) = T1(x) + T2(x) for all x ∈ D(T1 + T2).

Let λ ∈ R. We de�ne operator λT1 : X → Y with the domain D(T1) and the rule

(λT1)(x) = λT1(x) for all x ∈ D(T1).

De�nition A.12. Let X, Y be normed spaces and T : X → Y be a map between them.

T is called linear or homomorphism if

T (αx+ βy) = αT (x) + βT (y),

for all x, y ∈ X and α, β ∈ R.

Example 6. The operator σ : X → X, whereX is Banach space, de�ned by σ(x0, x1, x2, ...) =

(x1, x2, ...) is called shift operator (sometimes it is called left shift operator as the shift is

taken from the right to the left). For �nite vector x ∈ X we de�ne σ(x0, x1, x2, ..., xn) =

σ(x1, x2, ..., xn, 0). Shift operator is linear as

σ(α(x0, x1, x2, ...) + β(y0, y1, y2, ...)) = σ((αx0, αx1, αx2, ...) + (βy0, βy1, βy2, ...)) =

(αx1, αx2, ...) + (βy1, βy2, ...) = α(x1, x2, ...) + β(y1, y2, ...) =

ασ(x0, x1, x2, ...) + βσ(y0, y1, y2, ...).

De�nition A.13. Let X, Y be normed spaces and T : X → Y be a map between them.

T is called continuous in x ∈ X, if

∀ε > 0 ∃δ > 0 : ‖x− y‖X < δ ⇒ ‖T (x)− T (y)‖Y < ε

T is said to be continuous if it is continuous over its domain D(T ).



De�nition A.14. Let X, Y be normed spaces and T : X → Y be a map between them.

T is called bounded if there exists a constant C > 0 such that

‖T (x)‖Y ≤ C‖x‖X for all x ∈ X.

De�nition A.15. Let X, Y be normed spaces and T : X → Y be a map between them.

T is called closed if every sequence {x(n)}∞n=0 ∈ X converging to x ∈ X holds

lim
n→∞

T (x(n)) = T (x).

Proposition A.4. Let X, Y be normed spaces and T be a linear operator between them.

Then T is continuous if and only if it is bounded.

De�nition A.16. Let T be a bounded linear operator from a normed space X to a

normed space Y . The norm of T is de�ned as

‖T‖ = sup
‖x‖X=1

‖T (x)‖Y .

We denote the linear space of all bounded operators from X to Y with the norm ‖ · ‖

by B(X, Y ).

Remark 4. The norm of an operator satis�es the properties of norm de�ned in De�nition

A.6.

Remark 5. The operator norm is the smallest C from the de�nition of boundness (Def-

inition A.14), i.e.

‖T (x)‖Y ≤ ‖T‖‖x‖X for all x ∈ X.

Therefore, in order to prove boundness of an operator T , it is su�cient to prove that its

norm is �nite.

De�nition A.17. Let X, Y be Banach spaces and T : X → Y. Then T is called



1. injective if T (x) = T (y) implies x = y,

2. surjective if R(T ) = Y,

3. a bijection if it is both injective and surjective,

4. an isomorphism if it is a bijective homomorphism.

A.3 Dual Spaces

De�nition A.18. Let X be a normed space. A linear operator x∗ : X → R is called

linear functional and we de�ne < x∗, x >= x∗(x) and ‖x∗‖ = sup‖x‖=1 x
∗(x). The space

of all continuous linear functionals from X to R is called dual space of X and is denoted

by X∗.

To distinguish X from X∗ we occasionally call the former primal space. This section

describes the concept of dual spaces on Banach spaces and identify dual spaces for `np ,

p ∈ 〈1,∞〉.

Proposition A.5. The dual space of a normed space X is a Banach space.

De�nition A.19. Let X, Y be Banach spaces and T ∈ B(X, Y ). We de�ne the dual

operator or adjoint operator T ∗ ∈ B(Y ∗, X∗) for y∗ ∈ Y ∗ by

T ∗(y∗)(x) = y∗(T (x)) for all x ∈ X.

De�nition A.20. A Banach space X is re�exive, if (X∗)∗ = X.

Proposition A.6. For p ∈ (1,∞), the dual space of `p is `q with q such that 1
q

= 1− 1
p
.

Proposition A.7. The dual space of `1 is `∞.

Proposition A.8. (`∞)∗ = `1 ⊕ `s, i.e. `∞, `1 are not re�exive.



A.4 Convergence

Closed and bounded sets of the in�nite dimensional normed linear spaces are not nec-

essarily sequentially compact, i.e. a bounded sequence may not contain a convergent

subsequence. However, convergence can frequently be replaced by a weaker concept.

De�nition A.21. Let X be a normed linear space and sequence {x(n)}∞n=1 such that

x(n) ∈ X.

1. We say that {x(n)}∞n=0 converges strongly to x, x(n) → x, if

lim
n→∞

‖x(n) − x‖ = 0.

2. We say that {x(n)}∞n=0 converges weakly to x, x(n) w−→ x, if

lim
n→∞
〈x∗, x(n)〉 = 〈x∗, x〉 for all x∗ ∈ X∗.

3. We say that {x∗(n)}∞n=0 ∈ X∗ converges weakly* to x∗, x∗(n) w∗−→ x∗, if

lim
n→∞
〈x∗(n), x〉 = 〈x∗, x〉 for all x ∈ X.

Remark 6. Suppose that X is a normed space and the sequence {x(n)}∞n=0, x
(n) ∈ X

converges strongly. Then it also converges weakly, i.e. if x(n) → x, then x(n) w−→ x.

It is because we have for all x∗ ∈ X∗ , |〈x∗, x(n)〉 − 〈x∗, x〉| ≤ ‖x∗‖‖x(n) − x‖. Since

‖x(n) − x‖ → 0, |〈x∗, x(n)〉 − 〈x∗, x〉| → 0, as well.



Appendix B

Important inequalities

In the thesis we applied several inequalities. We summarize them in this chapter.

Proposition B.1. (The Hölder inequality)

Let p, q ∈ 〈1,∞〉 be such that
1

p
+

1

q
= 1

where we de�ne 1
∞ = 0 and let x ∈ `p, y ∈ `q. Then xy ∈ `1 and

‖x,y‖1 ≤ ‖x‖p‖y‖q.

Proposition B.2. (The Minkowski inequality)

Let p ∈ 〈1,∞〉 and x,y ∈ `p then

‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Proposition B.3. (The Jensen's inequality) Let f : R→ R be a convex function, xt be

in its domain and at be positive weights for all t ∈ N0. Then

f

(∑∞
t=0 atxt∑∞
t=0 at

)
≤
∑∞

t=0 atf(xt)∑∞
t=0 at

.
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