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Abstract

Mgr. Maria Holecyova: Mazimum Principle for Infinite Horizon Discrete Time Opti-
mal Control Problems |Dissertation Thesis| Comenius University in Bratislava, Faculty of
Mathematics, Physics and Informatics, Department of Applied Mathematics and Statis-
tics, supervisor: prof. RNDr. Pavel Brunovsky, DrSc., Bratislava, 2016, 76p.

The aim of this thesis is a method of deriving necessary conditions of the Potryagin
maximum principle type for infinite-horizon discrete-time optimal control problems with
discount. Due to the discounted objective function, control and state variables are consid-
ered to be bounded sequences. We employ the tools of functional analysis and properties
of linear difference systems.

Firstly, we prove Fréchet differentiability of the objective function which allows us to
carry out a standard method of obtaining necessary conditions of optimality of variational
type. Then we apply the closed range theorem and formulate maximum principle in
functional form with adjoint variable from the space ({)* = ¢; @ {;. Then we show
that it can be rewritten to the standard form of Potryagin maximum principle for adjoint
variable belonging to ¢; .

The most significant results are conditions under which the assumptions of the closed
range theorem are satisfied. For a problem with linear dynamics we require that the matrix
A has no eigenvalues on the unit circle and in case of general dynamics we formulate
exponential dichotomy as an assumption. We present special cases in which exponential
dichotomy can be effectively verified. In addition, on a simple example we show that
without exponential dichotomy the assumption of closed range probably may not hold.

Keywords: optimal control, discrete time, infinite horizon, Pontryagin maximum

principle, closed range theorem, £,



Abstrakt

Mgr. Maria Holecyova: Princip maxima pre diskrétne ilohy optimdlneho riadenia na
nekoneénom horizonte |Dizertaéna pracal, Univerzita Komenského v Bratislave, Fakulta
matematiky, fyziky a informatiky, Katedra aplikovanej matematiky a Statistiky, skolitel:

prof. RNDr. Pavel Brunovsky, DrSc., Bratislava, 2016, 76s.

Cielom tejto prace je metoda pre odvodenie nutnych podmienok optimality vo forme
Potrjaginovho principu maxima pre diskrétne tlohy optimélneho programovania na neko-
nec¢nom horizonte s diskontom. Predpokladame, Ze stavova aj riadiaca premennd su
ohranic¢ené postupnosti, vyuzivame prostriedky funkcionalnej analyzy a vlastnosti linearnych
diferen¢nych rovnic.

Dokazujeme, Ze ucelova funkcia je Fréchetovsky diferencovatelna, ¢o ndm umoziuje
uplatnit standardnt metodu pre formulovanie nutnych podmienok optimality varia¢ného
typu. Dalej vyuzivame vetu o uzavretom obraze a formulujeme princip maxima vo
funkciondlnom tvare s adjungovanou premennou z priestoru ({o)* = ¢; @ 5. Nasledne
ukazujeme, Ze ho moZno prepisat do Standardnej formy Pontrjaginovho principu maxima
pre adjungovani premennd z priestoru /.

Najvyznamnejsim vysledkom nasho vyskumu je formulacia podmienok, ktoré zarucuja
splnenie predpokladov vety o uzavretom obraze. V pripade linearnej autondémnej dy-
namiky staci, aby matica A nemala vlastné ¢isla leziace na jednotkovej kruznici, v pripade
vSeobecnej dynamiky formulujeme ako predpoklad exponencidlnu dichotémiu.

Na zaver sa venujeme Specidlnym pripadom, v ktorych je mozné overit existenciu ex-
ponencidlnej dichotémie a na jednoduchom pripade ukazujeme, ze predpoklad uzavretého
obrazu nemusi bez exponencialnej dichotémie platit.

Kracové slova: optimélne riadenie, diskrétny ¢as, nekoneény horizont, Pontrjaginov

princip maxima, veta o uzavretom obraze, /.,



Preface

"If every instrument could accomplish its own work, obeying or anticipating
the will of others... the shuttle would weave and the plectrum touch the lyre
without a hand to guide them, chief workmen would not need servants, nor

masters slaves.”  Aristotle, Politcs

The motivation for solving optimal control problems goes from the simplest mecha-
nisms we manipulate in everyday life to the most sophisticated ones in various fields of
science. Although the discipline is quite young, it is considered to be invented only in
1950’s by Pontryagin, we already have effective tools to solve a variety of optimal control
problems and with advancing progress more scientific applications from different fields
are appearing.

Currently, we distinguish between two main tools - Bellman’s dynamical programming
originally developed for discrete time models and Potryagin maximum principle developed
for continuous time models. Our aim is to combine the Potryagin variational approach
with discrete-time infinite-horizon models by applying the closed range theorem. In the
thesis we refer to two articles closely associated with this topic, but it is the diploma
thesis that stands at the beginning of our research. This is where my supervisor prof.
Pavel Brunovsky first came with the idea of employing the closed range theorem.

Only thanks to his deep knowledge in various mathematical fields, his creativity and
unceasing enthusiasm we managed to combine optimal control theory with functional

analysis and properties of linear difference equations which resulted in this thesis.
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Introduction

In economic optimal control models [2] as well as in physics [3], engineering [4] and many
other fields it is often impossible to predict the length of the time horizon. Therefore an
objective function is formulated on infinite horizon and especially in economic models it is
discounted. The discount ensures that the effect of the solutions to the objective function
decreases with passing time which solves the dilemma of setting the length of the horizon
as well as the final state.

We consider discrete-time problems on infinite horizon with discounted objective func-
tion and we focus on establishing neccesary conditions of optimality in the spirit of Pon-
tryagin maximum principle which was originally devoloped for continuous-time models.

While for the continuous-time setting Pontryagin maximum principle can be easily
adapted for a wide class of problems, this is not the case of the discrete-time problems
unless extra convexity conditions are imposed. So instead of the maximum condition we
strive for a necessary condition of this maximum with less restrictive assumptions.

The current research on this topic is not rich. We found only two articles closely related
to our problem. In the first Blot and Chebbi [5] solved it as limit case of finite horizon
problem. In the continous framework, the extension from finite to infinite horizon can
be obtained without any restrictions due to its invertible dynamics. However, in discrete
time invertibility is not ensured and therefore it has to be formulated as an additional
condition. Blot and Hayek [6] managed to formulate less strict conditions directly via
functional analysis. We adapt their approach, but while their results are based on Ioffe-

Tihomirov theorem, we employ the closed range theorem. This idea first appeared in



diploma thesis by Beran [7] but it was developed for non-discounted objective functions
and the research on conditions under which the theorem can be employed was incomplete.

The thesis is organized as follows. In the first chapter, we introduce the optimal
control problem which is considered thoughout the whole thesis as well as the closed
range theorem. The second chapter is devoted to an overview of previous results regarding
Potryagin principle from discrete-time infinite-horizon view. It also describes a dual space
of the space of all bounded sequences /., and refers to the literature dealing with its
singular component. In the next chapters we prove that the considered objective function
is Fréchet differentiable and then we propose a method of obtaining the maximum principle
for problems with both linear autonomous and general dynamics. We apply the closed
range theorem and assume that the respective operator has closed range. In the final
chapter, we formulate condition under which this is the case by introducing exponential

dichotomy for difference equations.



Chapter 1

Problem formulation

Our motivation comes mainly from macroeconomic optimal growth models [2], [§], [9],
[10] which often cannot predict the length of the time horizon, but assume that it is large.
Therefore a discount is added to the objective funtion and it is maximized on infinite
horizon. In this case, we naturally expect that response {z;:}:°, and control {u;};°, are
bounded sequences, but do not vanish in infinity necessarily. Hence, the problem we

consider has the following form:

T
J(x,u) = Zétff(xt,ut) — max (1.1)
t=0
Tiy1 = Ft(l't,ut) for all ¢t € NO (12)
To = i’, (13)

where Z and the discount § € (0,1) are given, v, € X C R", u;, € U C R™, U open.
We denote x = {z:}2,, u = {w}2, and assume f) € CY(X x U,R) for all t € N,
F, € CYX x U, X) for all t € Ng. We call J objective function, F; dynamics. ; state
variable and u; control variable. We assume (x,u) € (2, x ¢Z. And we put T = co.

In case of finite horizon (T' < oo) this is a standard problem of nonlinear program-
ming and it yields the following necessary condition of optimality [I1], where a regularity

condition has to be fulfilled.



CHAPTER 1. PROBLEM FORMULATION

Definition 1.1. (Regularity condition) Denote I;(u;) as the set of all indices k €
{1,...,m;} for which p¥ = 0, i.e. the set of indices for which the k' component of the
constraint p; is active. The optimal control problem (1.1)) - (1.3) with 7" € N fulfills the

reqularity condition in 4, if for all t € Ny the vectors

o k
a%(ﬁf) for all k € I,(i)

are lineary independent.

Theorem 1.1. (Necessary conditions of optimality, pseudo-Pontryagin maxi-
mum principle) Let G be an optimal control for the problem - with T < oo
and let X be its response. Let the regularity condition be fulfilled in G (Definition [1.1]).
Then there exists 1o > 0, an adjoint variable ¥ = {;}5%,, a vector x € R' and vectors
Xi € R™ for allt € {0,...,T — 1} such that (o, x) # 0 and for all t € {0,...,T — 1} the

variation condition

of? af dp
o’ 8utt( 6 ) + 1/’t+1a = (B, ) + )‘tTaui( ) =0 (1.4)
holds and the complementarity condition
)\tTpt(th) = O,fO?" )\t S O, (15)

holds, as well. The adjoint variables and x solve the adjoint equation

T T
by = (gfo (:et,at)) + (gft (xhat)) Yevr  for allt, (1-6)

together with the transversality condition

o= (L) 17)



CHAPTER 1. PROBLEM FORMULATION

In [I1] this is called pseudo-Pontryagin maximum principle. Notice that variation
condition (1.4) and complementarity condition (1.5 are in fact a necessary condition of

maximum of Y° (&, us) + Vi1 Fr(24, uz), i.e. they can be replaced

ﬂ’ofto(fta Uy) + Ve Fy (24, 1) = ma (woff(i"t,ut) + Y1 Fy (T, uy))  for all ¢ (1.8)

X
ut €U
However, in order that the equation holds futher assumptions are needed.

Theorem 1.2. (Pontryagin mazximum principle for discrete time problems) Let

the conditions of Theorem be fulfilled. Furthermore, assume that for allt = {0,...,T —
1}

(i) the functions F; are linear in uy,
(ii) the functions f0 are concave in uy,
(iii) the set U is convet,

Then there exists vector x € R, 1y > 0, a sequence of adjoint variables ¥ = {1}, that
are a solution of the adjoint equation and transversality condition such that

l/JOft()(i't, at) + wt—i-lFt('ft; ﬂt) = maX(woftO(QA?t, Ut) + 1/)t+1Ft(QA7t, Ut)) fO’F all t. (19)

ut €U

Pontryagin maximum principle was originally developed for continuous time problems
where it can be easily adapted for infinite horizon problems. However, this is not the
case of discrete-time problems. Convexity condition might significantly reduce the class
of solvable problems. So instead of the maximum condition we strive for a necessary
condition of maximum with less restrictive assumptions, i.e. pseudo-Pontryagin maximum
principle. For this purpose, we adapt the approach by Beran [7] who studied infinite-
horizon discrete-time problems without discount. Whereas the natural space for the

controls/responses in the case without discount is ¢;, for the problem with discount it is



CHAPTER 1. PROBLEM FORMULATION

l~ which has complicated dual space ({s)* = {1 @ {5, because the space {; cannot be
represented by sequences and thus it requires another approach.

The central role in our research plays the closed range theorem.

Theorem 1.3. Closed range theorem
Let XY be Banach spaces and T a closed linear operator from X to'Y . Then the following

propositions are equivalent:
1. R(T) is closed
2. R(T™) is closed
3. R(T)=N(T)*t={yeY:(y,y) =0 for all y* € N(T*)}
4. R(T*) = N(T)* ={a* € X*: (x*,2) =0 for all x € N(T)}.
Proof. The proof can be found in [12]. O

We will use only its reduced form 1 = 4. It allows us to establish pseudo-Potryagin
principle however condition of closed range has to satisfied. Therefore we develop the
theory of exponential dichotomy for linear difference equations that is studied in Coppel

[14], Palmer [I3] and derive conditions under which the pseudo-Potryagin principle holds.



Chapter 2

Previous results

The aim of this chapter is to provide a brief review of the literature associated with our
research. It is devided into two sections. Firstly, we summarize current knowledge about
discrete time optimal control problems on infinite horizon. The second part describes

methods which are being employed to deal with dual space of /..

2.1 Optimal Control Problems

Nowadays there are basically two solution methods in the optimal control theory - dy-
namic programming developed by Bellman and Pontryagin maximum principle. Dynamic
programming was originally developed for discrete-time optimal control problems, while
Pontryagin maximum principle was derived to solve continuous-time problems. Later, the
relation between the two methods has been explained.

In this work we focus on the Pontryagin maximum principle from the infinite-horizon
discrete-time point of view. Compared to continuous time problems, in the discrete time
case Pontryagin maximum principle as a necessary condition of optimality requires extra
conditions as it shown in Chapter 1. Unless certain convexity conditions are imposed,
a necessary conditi on of maximum (in the sense of Theorem [1.1)) is claimed instead of

a maximum condition (in the sense of Theorem [1.2)). Hence, there are two different ap-

10



CHAPTER 2. PREVIOUS RESULTS 2.1. OPTIMAL CONTROL PROBLEMS

proaches, the first one focuses on establishing Pontryagin maximum principle for problems
that satisfy additional convexity assumptions and the second approach derive so-called
pseudo-Pontryagin maximum principle that requires less restrictive conditions, but it is
weaker. In the thesis, we focus on the second approach.

A short section dealing with the infinite horizon discrete time problems is in Pontryagin
et. al [I]. It is studied as a limit case of the finite horizon problem for T — co. The effects
of the variations are transferred to a fixed time independent of t. Whereas in the finite
horizon the time can be chosen as the terminal one, in the infinite horizon case this is
impossible. Consequently, the effects of the variations have to be transferred backwards.
This is possible in continuous-time models due to its invertible dynamics. However, it can
not be applied on discrete-time problems unless extra conditions are imposed. Boltyanskii
in [15] initiated a systematic study of the discrete time framework, but mostly concerning
finite horizon. He emphasizes the differences between the discrete-time setting and the
continuous-time setting for the Pontryagin principle and gives the first steps for a rigorous
treatment of the problem.

Later, discrete-time problems on infinite horizon were studied in McKenzie [16], Michel
[19], Peleg-Ryder [20], all of them considering the concave case of optimal control problem.
Their results are extended in the paper by Blot and Chebbi [5], where the authors avoid
concavity assumptions and establish Pontryagin maximum principle. They solve the

problem with general dynamics and without discount, that is in our notation

J(x,u) = tho(xt,ut) — max (2.1)
t=0

Ti41 = Ft(.']ft,ut), te NO (22)

Ty = J_,’, (23)

where z; € X CR", uy € U C R™, x = {:}°,, u = {us}:2,, the initial state z is given
and f): X xU —>Rand F, : X x U — X.
They also consider two more problems where ({2.1)) is replaced by the following conditions

11



CHAPTER 2. PREVIOUS RESULTS 2.1. OPTIMAL CONTROL PROBLEMS

The problems are solved in three steps consisting of reduction to a finite horizon
problem, solving the latter and extension to infinite horizon. Next, they formulate and
prove three theorems of the infinite-horizon Pontryagin principle kind. According to the

first one, following assumptions have to be fullfilled:

1. for all t € N f? is Lipshitz continuouq|| near the solution (&, ;) and is Clarke-

regulaif| at (&, @),
2. for all t € N F; is differentiable at (2, uy),
3. Uy is closed and regular at u,
4. for all t € N D,, Fy(Z4,1y) is invertible.

In the next theorem, the first condition is replaced by the assumption of strictly

differentiability of f? for all ¢+ € N. The last Pontryagin principle assumes that

1. for all t € N f? and F; are partially differentiable at (2, @;) with respect to the first

vector variable,
2. X is an open convex subset,

3. Michel condition: for all t € N co Ay(Zy, T441) C Bi(Zy, T441) is fulfilled, where co
denotes the convex hull. When (4, z;11) € X x X, Ai(xy,x441) is the set of the
points (A\,y) € R x R™, for which there exists u € U such that A\ < F?(z;,u) and

1 Given two metric spaces X,Y, a function f : X — Y is called Lipschitz continuous if there exists a
real constant K > 0 such that, for all z1,z0 € X, dy (f(x1), f(z2)) < Kdx (21, x2).
2For the definition see e.g. [22].

12



CHAPTER 2. PREVIOUS RESULTS 2.1. OPTIMAL CONTROL PROBLEMS

y = Fy(zy,u) — x441. Bi(wy, w4q) is the set of (A, y) € R x R™ for which there exist
(u,v) € U x R™ such that A\ < fX(z;,u) and v"y" = F}(x,,u) — 2, ,, for every

h=1,..n.

Hence, except of the last theorem, regularity of D,, F;(Z4, 4;) is required that significantly
reduces the framework of solvable problems.

Blot and Hayek in [6] build on these results trying to avoid the regularity condition,
they considered the space of all bounded sequences /... They establish Pontryagin max-
imum principle using analysis in Banach spaces instead of reduction to finite-horizon
problems. They also manage to formulate sufficient conditions of optimality. In our
notation, they solve the following problem with general dynamics

J(x,u) = Zétfo(mt,ut) — max
t=0
i1 = Fi(xg, u), t € Ny (2.4)

J]():j],

Compared to the problem (2.1) - (2.3) from [5], they add discount 6 € (0,1) to the
objective function and assume that (x,u) € £,

They obtain neccesary optimality conditions assuming that

1. for all u € £, the mapping * — f°(z,u) is of class C!' on X and for all ¢ € N, the

mapping © — Fi(z,u) is differentiable on X,

2. for all t € N, for all z, € X, for all u,,u, € U, for all o € (0,1), there exists u;, € U
such that

ol ue) > af(veuy) + (1 — @) fOze, u;)

17

| (2.5)
Fy(zy,up) = aFy(zg,uy) + (1 — a) Fy(zg, uy ),

3. for any compact set C' C X, there exists a constant Ko such that for all ¢t € N, for
all z,2’ € C, for all w € U, ||Fy(z,u)|| < K¢ and ||D,, Fy(x,u) — D, Fi(2',u)|| <

Kellw — 2]

13



CHAPTER 2. PREVIOUS RESULTS 2.1. OPTIMAL CONTROL PROBLEMS

4. there exists » > 0 such that B(z,r) C X', where X’ is the set of the bounded

sequences which are in the interior of X, and for all (x4, u;) € B(&,7) x U:

sup || Dy, Fy(xe, ug)|| < 1. (2.6)
>0

We call conditions (2.5 the Ioffe and Tihomirov condition [17] and they generalize
the usual convexity condition used to guarantee a strong Pontryagin maximum principle
(see Theorem . Blot and Hayek also consider an autonomous problem, which requires

weaker conditions, namely
1. for all u € U, the mapping z — f°(z,u) is of class C' on X,

2. forallt € N, Vz; € X, Vu;, u;/ € U, Va € (0,1), there exists u; € U such that

1

fo(xh ut) > O‘fo(xt?u;) + (1 - Oé)f()(l’t, ut)

Flap,u) = aF(x,u,) + (1 — @) F(x,u, ),

sup || Dy, F (24, 1) || < 1. (2.7)
>0

So, the regularity condition from Blot and Chebbi [5] is replaced by the supremum
condition or ([2.7).

In both papers, the authors choose the approach of establishing Pontryagin maximum
principle directly. As we have shown above, it requires extra conditions replacing the usual
convexity conditions from Theorem [I.2] However, our motivation comes from economic
problems that frequently do not satisfy them. Therefore we focus our attention on deriving
pseudo-Pontryagin maximum principle in the spirit of Beran [7]. He is motivated by Blot
and Hayek [6], but he considers the space ¢; instead of ¢,,. Although, this space is not
suitable for the problems with discount which we study, his work provides significant

results useful for our research.

14



CHAPTER 2. PREVIOUS RESULTS 2.2. DUAL SPACE OF /

He considers the problem with both linear autonomous and general dynamics and later
he extends the results to the problem with constraint on u. Hence in comparison to the
problem (22.4)), control variable u; € int U, there is no discount and (x,u) € ¢} x ¢". The

problem is as follows

J(x,u) = Zfo(xt,ut) — max
=0
T = Fy(,ue), € No

Trog=T.

He also applies the closed range theorem (Theorem , but in the form 2 — 4.
He imposes the condition that £* = (6 — A*, —B*) has closed range and formulate the

necessary conditions of optimality in the form

dp = {lpt}teN € (5?)* = 520 : thf(ft, fbt) =1 —AfYy VteN,
Dy, f(Z4,0:) = =By Vt € Ny,

where A; = D,, Fy(zy,u,) and By = Dy, Fy(zy,u;) and A = (Ag, Ay,...), B=(By, B1,...)
and (ox); = x4, for any ¢t € Ny. However, the research on when the condition is satisfied

is incomplete.

2.2 Dual Space of /

Following the approach of Beran [7], we can obtain a functional v satisfying
T € (") : DI, 1) = (10,0 — A, —~B)*p, (2.8)

where my(x, u) = .
However, @ may not be represented by a sequence, as (I2)* = (] & {2 and elements

of ¢, are bounded additive scalar-valued measures on N.

15



CHAPTER 2. PREVIOUS RESULTS 2.2. DUAL SPACE OF /

Remark 1. The elements of /; can be characterized as following: let e be the unit element

in (o, i.e. ¢, =1 for all t, and let

G={y € (lx)" e =1}
M = {3 € G,ape” =0or 1, forall A C Ny},

where e? with elements
s 1, ifte A
e =
0, iftée A
is called the indicator function of A. G is convex and compact in weak™ topology on
¢ induced by ¢, and M is the set of extreme points of GG, i.e. its elements cannot be
expressed as a proper convex combinations of other distinct elements of GG. Therefore it

can be shown that G is the weak™® convex hull of M. Thus, the elements of ¢, are of the

form

Zatwt OétER,’leM

t=0
and weak™ limits of such sums. For the variety of examples of /, elements see e.g. Yosida

and Hewitt [12].

Dechert in [21] describes an interesting property of £, For 1p € M, let
N1/, = {A - NU,’l,Z)GA = 1}

Hence

p(xe?) = Px(pe?) = pr x €y, A C Ny,

i.e. if for some A C N, the sequence x = {;}+ca converges to xo, then ¥x = xg. As a
special case, if A C Ny is a finite subset then A® € Ny, for any ¢ € M and so (ye?) =0,

for all y € /., hence

16



CHAPTER 2. PREVIOUS RESULTS 2.2. DUAL SPACE OF /

P(x +yet) =x forall x € (.

This property is used in methods by Dechert [21], Blot and Hayek [6] and Le Van, Saglam
[18].
Blot and Hayek [6] applied the following lemma.

Lemma 2.1. If ¢¥° € (g, then there exists k € R such that for all x € ¢, YP°x =

k hmt_>oo Tt.
Proof. The proof can be found in [23]. O

We adapt this approach, therefore we describe the method by Blot and Hayek [6] more
thouroughly.

Firstly, they show that under the assumptions (2.5), (2.6)), the mapping x — J(x,u) is
of class C! for all u, for all x*° = {2 }ey € 02, Dy J(x,0)x> = > 2 6 Dy, fO(4, ue)25°.
They set F(x,u) = {Fi(x;,us) — Tey1 beny, showing that F(x,u) € ¢”. The supremum
condition ensures that the mapping x — F(x,u) is of class C! for all u and for any
x>* € 13, DiF(x,u) = {D,, Fy(z¢, up) x5 — 255 hen,- They also show that J, F fulfill the
Toffe-Tihomirov condition ([2.5).

Then they establish adjoint equation and strong Pontryagin maximum principle with
P € ({5)* in the following formulation
there exists ¥y € R,y > 0,1 € ({«)*, not all zero, such that:

(Yo + (¢, F)) (%, 1) > (o] + (4, F))(X,u), foraluel. (2.10)

Then they split the adjoint variable into two parts ¢ = 4’ + 1°, where ' € ¢ and

17



CHAPTER 2. PREVIOUS RESULTS 2.2. DUAL SPACE OF /

P® € U, So (2.9) can be rewritten to

oo
t
E ¢05 Da:tf (ZEt,Ut ZEt + g ¢t+1nytFt xtaut th § 77ZJ15—&-17$1§—|-1
t=0 t=0 t=0

+ (Y, { Dy Fy (T4, ) 27° — 591 heny) = 0, for all x> € £ with z5° = 0.

And they obtain

D (00" Dy, fO(#4, @) + Do Fyl, )by, — 0, 27°) =
=0 (2.11)

— (W A Dy, Fi(@y, 1) 2y — 2351 his0), X € Lo with 257 = 0.

Let z be chosen arbitrarily in R™ and let consider the sequence x> € /., defined as

follows

z, ifs=t
0, ifs#t.

So one has D, Fy(Zs,Us)z? —235, = 0if s > t+1, hence { D, Fy(Zs, Us) 2 — 235, Foen, €
co Cc.

Thus, according to the Lemma
(W A Da, Fs(&s, U5) 2" — 231 }s0) = <k,sh_>fgo(stFs(i"s, is)ry —135,)) = 0.

Therefore we have for all z € R"

<¢05tD$tf0(i.t7 @t) + D:vtFt(fm @t)l/)tlu - %1; Z> =0,

which implies 1} = 108" Dy, fO(&4, i) 4+ Dy, Fy(&1, )L, for all £ > 1.
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Chapter 3

F-differentiability of the objective

function

In this chapter, we show that the objective function J(x,u) = > "2, &' f(z4, us) is Fréchet
differentiable. At first, we define the differentiability and lemmas, then we prove the

proposition.

Definition 3.1. Let J : U — Y, where X,Y are Banach spaces and U C X is open. Let
x € U and h € X. The directional derivative at x of a function J(x) along vector h is

defined by

OpJ () = lim l[J(x +7h) — J(z)],

T—=0 T

if it exists.

Definition 3.2. Let J : U — Y, where X, Y are Banach spaces and U C X is open, let
x € U and let 0, J(x) exists for all h. We call the function J Gateaur differentiable in x
if the map h — 0, J(z) is linear and bounded. It is defined by

dJ(z)h = Oy J(x).

19



CHAPTER 3. F-DIFFERENTIABILITY OF THE OBJECTIVE FUNCTION

Definition 3.3. Let J : U — Y, where X, Y are Banach spaces and U C X is open, let
x € U. We call the function J Fréchet differentiable in x if there exists a linear bounded

operator D.J(z) such that

J(x+h)— J(x) — DJ(x)h] = 0.

lim —
Ih]=0 ||A]] |

Lemma 3.1. (Hadamard’s lemma)
Let XY be Banach spaces and f : U — Y be a Gdateaux differentiable mapping. If
z+nheU forne(0,1), then one has

1

o+ = 1) = [ e+ amndy = [ [ drtenman

where the integral is Riemann.

Proof. Let denote F'(n) = f(x+nh), where n € (0,1). Then F(1)—F(0) = f(z+h)— f(x)

and F is differentiable, so

fle+h) — f(x) = F(1) — F(0) = / F(n)dn.

As f is Gateaux differentiable mapping we have

| Fin= [ outtasanan= [ ate+amnan

]

Lemma 3.2. Let J : U — Y, where X,Y are Banach spaces and U C X s open, let
x € U. If J is Gateaur differentiable and the Gdateauzr derivative is continuous on a

neighborhood V' of x, then J is Fréchet differentiable at x.

Proof. Since dJ is continuous, for a given ¢, there exists § > 0 such that if k € X, ||k]| < 0,
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CHAPTER 3. F-DIFFERENTIABILITY OF THE OBJECTIVE FUNCTION

then J(z + k) € U and
10n (2 + k) = O (2)]| = [[[dJ (2 + k) = dJ(x)]h]] < e][Al]
for all h € X. Let ||h|| <9, then according to Hadamard’s lemma we have

| (z +h) = J(2) = dJ(2)h]| = ‘

1
/ dJ(x + nh)dnh — dJ(a:)hH
0

/Ol[dJ(x+77h) - dJ(x)]dnH 1Al < e|lh])-

/O 1[dJ(x +nh) — dJ(x)]hdnH <

]

Proposition 3.1. The function J : £; x {7 — R, p € (1,00), defined by J(x,u) =
Yoo 00 f (@, ug), where 2, € X C R™, uy € U C R™ and f° € C'(X x U,R) is Fréchet
differentiable.

Proof. We carry out the proof in three steps. Firstly, we show that there exists dyJ(x, u)
for all h € £77™. Then we prove that the map h — 0,.J(z) is linear and bounded, thus it
is Gateaux differentiable. Finally, we show that it is Fréchet differentiable.

Let us simplify (x,u) = z and (4, u;) = 2, h = {h; }en,. Since x € £ and u € (",
the conditions

Z |z P < oo,z |ueP < oo for p € (1, 00)

t=0 t=0

or

sup |x¢| < oo, sup |us| < oo for p = oo
teNy teNg

are fulfilled. So |z:| < 0o, |us| < oo for all t. Hence there exist compact sets Xy and U

such that x; € Xo, u; € Uy. As a continuous function on compact set is bounded, we have

|D$tf0| < C

|D,,f°| < C  on Xy x Uy, for some C > 0,
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CHAPTER 3. F-DIFFERENTIABILITY OF THE OBJECTIVE FUNCTION

SO
1D, fI < D, 1 + [ D, 0] < 2C (3.1)

And using the same argumentation D, f°, D,, f° and so D, f° are also uniformly contin-
uous.
1. We will show that there ezists directional derivative of J(z) along any h € E;”m.

OnJ (2) = lim ~[J(z + 7h) — J(z)

=0 T

= hm Zétfo 2 + Thy) icstfo(z
= lim — Z(St [z + The) — f2(20)] -

We want to interchange the summation and limit, so that we obtain O J(z) = ;= On, f(2t)-
Therefore we prove absolute convergence of the series. For 7 sufficiently small one has
(2¢ + n7hy) € Xo X Uy. Therefore we can employ Lemma [3.1] (Hadamard’s lemma) and in

case p = 1 we obtain

Z 67 [F° (2 + The) = f(20)]| = Z |0°(7he) / D, f*(z +n(Thy))dn|
=0 =0

/ thfo(zt + nrht)dn‘
0

1 o0
/ dn‘ — 20y 8]
t=0

20|7| & 2C|T
= zcmz(styht < _'(S‘thg = 1_|5‘Hhul < 00
t=

== Z(St‘Tht|.
t=0

< 2025t|mt|

In case p € (1,00) we proceed similarly and we employ Holder inequality assuming

thatZl)%—%:landforp:oowedeﬁneI%:O.
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CHAPTER 3. F-DIFFERENTIABILITY OF THE OBJECTIVE FUNCTION

D 18 Oz A+ The) = fO(20)] :Z 5tmt/ D., f° zt+n(rht))dn‘

o0 1
< [, (Z 5t7'/0 D, f*(z + n(Thy))dn

q)q
t=0
1 q i 00
sHth< 5t7/0 20d?7) = ||h|[,2C|7| <Z5tq>
= t=0

1 q
—20lrl ({25 ) Il <o

Now, we can interchange limit and summation and we obtain

Q=

TMg

Zaht(st INED) Z(Stth FO(z)hy

t=0
Thus OnJ(2z) exists.
2. Now, we prove that the map h — 0,J(2z) is linear and bounded.

To check linearity we write

Oon+gJ ( ZétDth (z)(ahy + Bgr) = > 6D, fO(z0)(ahe) + Y 8 Do f(21) (Bg)
t=0 t=0

=« Z 8'D., fO(z)hy + B Z 8'D., fO(2)g: = adnJ (z) + OgJ (2)
t=0 t=0

Next, we prove boundness in case p =1

0nJ (2)] < Z5tthfo(Zt)ht < Z5t’thf (Zt)ht’
t=0 t=0
1 « 20
< TZ D f2 ()| ] < HhHl < 0.

t=0

And finally we show that if p € (1, 00) the map is bounded as well. Again, we apply
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CHAPTER 3. F-DIFFERENTIABILITY OF THE OBJECTIVE FUNCTION

Holder inequality.

1
q

|00/ (2)] < <D 0D fOz)he] < |l (Z \5tthf°(zt)lq>

0 3 ]
< In,2c (Z«St) ~ ;20 (125 ) " <

t=0

Z (Stthfo(Zt)ht
t=0

So, J is Gateaux differentiable for any p € (1, c0).

3. To show that J is also Fréchet differentiable we employ Lemma [3.3
We have to prove that the Gateaux derivative is continuous, i.e. for a given € > 0, there

exists 0 > 0, such that for all y € {57, if (z —y) € X, ||z — y||, < § then
|00 (2) — O (y)] < el|hl|,, (3.2)

for all h € £;7™. For p € (1,00) we have

00 1/p
12— < (Zm—mp) — Jlz— yll, < A

t=0

and for p = oo

|zt — ] < sup |ze =y = |2 — ¥loo < A
teNg

Thus, for any p we have |z — yi| < \.
We have already shown that D,, f is uniformly continuous on Xy x Uy, so for a given

e > 0 there exists A > 0 such that if |z, — ;| < A then

|D., f(z) — Dy, f(y)| <e*  on Xy x Up.
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We can rewrite the left side of inequality (3.2) to

00T (2) — OuJ(y)] = | > 8D, f2(20)he — Y 6" Dy, £ () e
t=0 t=0

- Z(St[thfo(Zt) — Dy, [ (ye)] e

t=0

Next, for p = 1 we employ the uniform continuity and write

WE

Z 5t[Dth0(Zt) - Dytfo(yt)]h’t < ‘5t[Dth0(zt) - Dytfo(yt)]ht‘
t=0

t

HDthO(Zt) - Dytfo(yt>” | Pt

IN
-
(@9
1

1 —
t=0
£ — e*
< hy| = hil;.
< 75 2l = 7l

Applying Hoélder inequality we have for p € (1, 00)

< [0 (=) = Dy f (o)l

t=0

< |n], (Z |6 (D20 (=) — Dytf°<yt>l\q)

S 6D, £2(2) = Dy £ (o) e
t=0

t=0
* - tq ‘ * 1 a
<&, | D 6] =<, T34
t=0

we obtain the required inequality.

Q=

By setting ¢ = &* (ﬁ)

25
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Chapter 4

The Method

In this chapter we desribe the method establishing the pseudo-Pontryagin maximum prin-
ciple for discrete-time optimal control problems on infinite horizon. At first we consider
the problem with linear autonomous dynamics, then we extend our results to general

dynamics.

4.1 The Linear Autonomous Problem

We describe our method on the infinite-horizon discrete-time optimal control model with

linear autonomous dynamics

J(x,u) = Z 68 fO(z4, ur) — max (4.1)
t=0

Tiy1 = Axt —+ But + d fOI' all t e NO (42)

Ty = ZZ’, (43)

where Z,d € R", n X n matrix A, n x m matrix B and discount ¢ € (0,1) are given.
We denote z; € R" = X, x = {1}, ws € R™ = U u = {w}2,, objective function

e CHX x U,R).
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CHAPTER 4. THE METHOD 4.1. THE LINEAR AUTONOMOUS PROBLEM

Firstly, we construct perturbations along the optimal solution, then we formulate
necessary conditions of optimality.
Let (%,1) be optimal solution of problem (4.1)) - (4.3). A pair (o, 3) € £™ is called

admissible, if for all £ > 0 it holds

To+eag =17

i’t+1 + €Oét+1 = A(i’t + €Oét) + B(ﬂt + Eﬂt) + d fOI‘ all t e NO,

1. e. {&; +ecay, Uy + £} satisfies (4.2)) and (4.3)).

Because of (4.3)), one has ap = 0. Next, we apply equation Z;,1 = A%, + Bt, + d and

the system can be rewritten to

OéOIO

a1 = Aoy + Bf, for all t € N.

From the definition of an admissible vector, J(X + ca, 1 + ¢3) cannot increase with
e (> 0) from the maximum. We have already shown that J is Fréchet differentiable in
™ (Proposition [3.1), therefore

2J()“c +ea,0+¢8)].—0 <0

%8 (4.4)
5c) (& —eoi—ef)l.0 <0

As %J(f( —ea, 0 —ef)|.—0 = —%J(f{ +ea,t+ efB)|.—o, 1) can be rewritten to

a . . 0 o o
0= &J(X e, U4 eB)]cm0 = Z 6Dy, 2 (24, )t + Dy, f2 (24, 1) B

t=0

— DJ(%,1)(c, B)T.

This notation can be simplified by defining A, B and by introducing a vector of shift

27



CHAPTER 4. THE METHOD 4.1. THE LINEAR AUTONOMOUS PROBLEM

operators o, such that (Aa); = Aoy, (BB); = Bf; and (o«); = ay41 and we obtain

Qp = 0 (45)
(0 —A)a—BB = (0 — A, —B)(a, )" = 0. (4.6)

Remark 2. Let us define an operator my = (7§,0) such that my(x, u)T = 1z and an
operator L : (% x (7 — (2 L = (my, (00 — A, —B)). Then conditions and (4.6) can
be replaced by L(a, 3)T =0 or (o, 3) € N(L).

In order to apply closed range theorem, £ needs to be bounded.

Proposition 4.1. Let A and B be general linear operators. Then £ : £ x (7' — (7,
L = (m, (6 — A, —B)) is bounded linear operator for any p € (0, 00).

Proof. The proof of linearity is trivial. We prove that o, A, B and 7y are bounded, hence
L is bounded.

Imoll = sup |[|mox|[, = sup [zo| <1
[x[lp=1 lIxllp=1

loll, = sup [lox[, = sup [[(z1,22,...)[[, < sup [z, =
lIx|[p=1 lIx|[p=1 lIx[lp=1

As A = (Ay, Ag,...), where A; are n X n matrix, |4 < M < oo forallt € N

[All, = sup IIAXIIp— Sup (Z IAt:Et|p>

[l]|=1 lIx[lp=1

1
o P
< sup <Z !At|p!$t|p> <M sup |x|l, =M
=0

lIx[[p=1 [[z]|=1

in case p # oo and if p = o0

|A|lcc = sup sup\Ata;t| <M sup [|X[|o =M

l[x[[o=1 t= ]| oo =1
And by the same argumentation B is bounded. m
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Theorem 4.1. (Necessary conditions of optimality)
Assume that the operator L = (7o, — A, —B) has closed range. Then DJ(%x,10)(c, 3)7
0 for all admissible (a, B) if only if there exists ¢ € ({)* such that

DJ(%,0) = L (4.7)

Moreover, if one has ¢ = 1 + @¢°, where ¢ = {Uhen, € 1 and ¢° € L, then
DJ(x,0)(a, 3)T = 0 for all admissible (o, 3) if

Dxtfo(ft,lzt) =1 — 0A™Y; for allt € N 48)

Dy, fO(&4,4,) = —6 B, for all t € N,.

Proof. At first, we show that there exists 1 € ({o)* such that equation (4.7)) holds, then
we show that in terms it can be rewritten to the system (4.8]).
According to the Proposition L = (m, (00 — A, —B)) is bounded and by the as-

sumption it has closed range. Hence according to the closed range theorem (Theorem

3
R(L) ={z* € X*: (2", (a0, 3)) = 0 for all (a,3) € N(L)},

so DJ(X,0) € R(L*), i.e. there exists ¢ € ({)* such that DJ(%,10) = L*¢. Hence

DyJ(k,0) — (nj,0 —A)*"¢ =0
DuJ(%,1) + (0,B)*¢ = 0.

So the first part of the theorem is proved.

For any sequences x € ¢}, and u € (7

DyJ(%,0)x — (7], 0 — A)"¢,x) = Dy J (X, 0)x — (¢, (15,0 — A)x) =0
DyJ(%X,0)u+ ((0,B)*¢,u) = D, J(X,0)u+ (¢, (0,B)u) = 0.
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Now, we split ¢ € (lo0)* = £, @ L to ¢ = ¢* + ¢° such that ¢' € £ and ¢° € /,.

ij(iv ﬁ)X - <¢17 (ﬂ-g’ g — A)X> = <¢Sv (Wga o — A)X>

Du‘](j\(a ﬁ)u + <¢17 (07 B)u> = <¢S7 _(07 B)u>
Consider the sequences x™ = {2] }1eny and u” = {u] }4en such that

Zg, ift=7 2y, ft=r1
Ty = Uy =

0, ift##r,7€eN 0, ift#7,7€Ny

where z, € R" and 2, € R™ are chosen arbitrary. Then

(O' — A).TtT = On

—BUtT = Om

for all ¢ > 7+ 1, where 0, = (0,0,...,0) € X and 0, = (0,0,...,0) € U. Hence
(g0 — A)X™ € ¢y C c and —(0,B)u” € ¢y C ¢. By Lemma [2.1] there exist ki, ko € R
such that

(", (5.0 = A7) = (b Jim (0 = A7) = (b1.0,) =0

<¢s7 _(Oa B)uT> = <k27tli>rg _ButT> = <k27 Om> = 0.

We have for all 7 € N and all z, € X

= Goxy + Y (67D, [0, 10r) — § + A"GL, ) 2]

(5TDﬂch0 fT? UAT) - ¢71— + A” 71—+1) Rz
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by the same argumentation for all 7 € Ny and all z, € U
0= DyJ(%,a)u” + (¢', (0,B)*u")
= Z 5tDutf0(sEt,u}) + B*gzﬁtlﬂ) U
t=
( $T7UT> +B*¢T+1) Zus

which implies that

8" Dy, [0, 1) — ¢} + A*¢L,, = 0 for all t € N

8 Doy, fO(d4,40,) + B*¢L,, = 0 for all t € N,

Finally if we put ¢; = ?ﬁﬂ, we obtain the required equation. O

4.2 The Problem with General Dynamics

In this section, we replace the linear autonomous dynamics (4.2]) by generalized dynamics

F, € CY(X x U,R) for all t € Ny, i.e. we consider the problem

Z 8" fO(xy, uy) — max (4.9)
Tir1 = Ft(xt,ut) for all ¢t € N(] (410)
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Denote

D, F(2¢,u,) = Ay for all t € Ny
D, F(z,u,) = By forallt € Ny
(Ag, A1, ...) = A
(Bo,B1,..) =B
L= (m,(c—A,-B)), L:0L x{2 —/.

Again, we construct pertubations along the optimal solution, i.e. curves that start

from the optimal solution, their directions are given and conditions (4.10), (4.11]) are
fulfilled.

Definition 4.1. We call a pair (o, 3) € (2 x (7 an admissible vector if there exist g > 0

and differentiable curves p(eg) = {p:(€0) heng, a(€0) = {p:(€0) hten,, Where

pe:(0,80) > X

q :(0,e0) > U

for all ¢ € Ny such that the following conditions hold

ii) p'(0) = a and q'(0) =3

iii) for each € € (0,¢0) and ¢t € Ny

po(e) =0

Tig1 + Pey1(e) = Fo(Z + pele), U + q4(€))

and (X +p(e),a+q(e)) € 02, x (7.
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If in any direction there exist an admissible perturbation curve, we can use it to derive
the necessary conditions of optimality as in the case of linear autonomous dynamics.
In the following proposition we state under which conditions this is the case. In order
to prove it we apply implicit function theorem, bounded inverse theorem and following

lemma.

Lemma 4.1. Let X,Y be vector spaces, T : X — Y be a linear map and C be a closed
complement of N'(T) in X. Then the map T : C — R(T) is an isomorphism. Futhermore,

this map is also called a restriction of a map T to C and denoted by T|c.

Proof. We have to show that the map T'|¢ is injective and surjective, so it is an isomor-

phism. Injectivity follows from
N(T|c) =N(T)NnC ={0}.

And as X = C & N(T), one has R(T|c) = T(C) = T(C e N(T)) = T(X) = R(T).

Hence it is surjective. O

Theorem 4.2. (Bounded inverse theorem) Let XY be vector spaces, T : X — Y be
a bounded linear operator that is one-to-one. Then the inverse map T—' 1Y — X is

continuous.

Proof. The theorem is in fact a corrolary to open mapping theorem and its proof can be

found in Rudin [25]. O

Theorem 4.3. (Implicit function theorem) Let XY, Z be Banach spaces, U C X,V CY
open, F': U XV — Z be C", r € (0,00), (xo,y0) € U XV, O(xg,y0) = 0. Let us assume
that Dy, ©(x0,y0) has a continuous inverse operator. Then there exists a neighbourhoood
Up x Vo C U XV of (xo,up) and a function 6 € C"(Uy, Vo) such that 0(xy) = yo and
O(z,y) =0 for (z,y) € Uy x Vi hold if only if y = 0(x). Futhermore one has

D(z0) = —[Dy,0(x0,y0)] ' Dy, O(z0, Yo)-
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Proof. The proof can be found in [24]. O

Proposition 4.2. Let us assume that £ has a closed complement to its null space. Then

each vector (e, B) € N(L) is admissible.

Proof. We apply implicit function theorem with X = R, Z = {2 and Y a closed com-
plement to the null space of £. Any pair (x,u) € £Z™ can be seperated to the sum of

(a, 8) e N(L) and (a,b) € Y. We fix (o, 3) and construct curves p, q such that

ple) =ca+a(e), a:(0,5)—Y,

q(e) =eB+Db(e), b:(0,e) =Y

and we prove that these curves fulfill the conditions (i)-(iii) from Definition We define
function © = (T, T) : X x Y — Z such that

To(g, (a,b)) = (eag + vo + Z9) — T

T(e,(a,b)) = o(ca+ a(e) + X) — F(ea + a(e) + X,e08 + b(e) + 1),

where (F(x,u)); = Fy(x,u;) and (%X,10) is an optimal solution. Next, we set (zq,yo) =
(0,(0,,0,,)), where 0,, = (0,,,0,,...), 0,, = (0, 0, . . . ) and prove that assumptions of
the implicit function theorem are fulfilled.

As (%x,1) fulfill state and initial conditions (4.10)) - (4.11)), we have

T0<07 (0n7 0m)) = i'() —r = On

7(0,(0,,0,,)) = ox — F(x,1) =0,,.

Since F; € C' it follows that the function © € C. In order to prove that D, 1,)O(0, (0,,,0,,))
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has continuous inverse, we compute

D(a,b)TU(Ov (071’ Om)) = WO’Y

D@awT'(0,(0,,0,)) = (60 — DyF(%x,0) — DF(%x,1))ly = (0 — A, -B)|y,

So
D(a1)©(0,(0,,0,,)) = (m, (0 — A, =B))|ly = L]y

and by Lemma [4.1]it is an isomorphism as Y is a closed complement and by Theorem
it has a continuous inverse operator.

Hence according to the Implicit function theorem (Theorem there exists a neigh-
bourhood Xy x Yy € X x Y of (0,(0,,0,,)) and a differentiable function 6 : Xy — Y,
such that 6(e) = (a(e), b(e)) if only if

6(0) = (0,0)
To(e, (a(e), b(e))) = 0
T(e,(a(e),b(e))) = 0,, for all ((¢, (a(e),b(e)))) € Xy x Y.

Since for all € € X (a(e),b(e)) € Yo C 02 x {7

p(e) ale)+ea+x €l
5

q(e)

+X
+X

b(e)+eB+aell,

So far we have proven that properties (i) and (iii) of an admissible vector are fulfilled,
so it is left to prove (ii) that the direction of the curves are (a,3). Again, we apply

implicit function theorem and compute

0'(0) = (2'(0), b'(0)) = ~[Da)©(0, (04, 0,1,))] " [D-6(0, (05, 0,1))]-
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So we have to find directional derivative D.©(0, (0,,0,,)).

D.Ty(0,(0,,0,,)) = ag = 0

D.T(0,(0,,0,,)) = (ca+ /()
— D, Flea+a(e) +X,e8+b(e) + 0)(a + a'(g))
— D, F(ea +a(e) +%,e8 + b(e) + 0)(8 + b'(¢)))|(,(a,5))=(0,00,0,))
=oca—-Aa—-BB=(0c—-A, -B)(a,p)

As (e, 3) is in the null space of £
D.©(0,(0,,0,,)) = L(a,8)" = (0,0,).

Therefore
0'(0) = (a'(0),b'(0)) = (0, 0,).
Finally we prove property (ii)
pP0)=a+a(0)=a+0,=a
q'(0) =B +Db'(0) =B +0,, = B.
[

Next, we proceed as in the problem with linear autonomous dynamics. If (a, 3) is
admissible and (X, 1) is an optimal solution then
J . .
—JX+ea,i+eB)|c=0 <0

Oe
9 (4.12)

0
(& = 20— 2B)|emg = — - T (& + 20,6+ )] <0
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Hence, again we have
o . . = . .
0= 5 J(%X+ea,ii+eB)l—o = > 8D fO(&1, ) + Dy, fO(&1, ) By)
=0

= DJ(%, 1) (e, B)T.

and the necessary conditions are analogous.

Theorem 4.4. (Necessary conditions of optimality) Assume that the operator L has closed
range. Then DJ(X,0)(a, B)T = 0 for all admissible (c, B) if only if there exists ¢ € ({o)*
such that

DJ(x,0) = L"¢ (4.13)
Moreover, if one has ¢ = 1 + @¢°, where ¢ = {P}hen, € 1 and ¢° € Ly, then

DJ(x,0)(a, B)T = 0 for all admissible (o, B) if

D, fO(%4, 1) = 1 — ATy for allt € N
(4.14)

Dy, fO(&4,4,) = —6 B4, for all t € N,.

Proof. As A, B are general linear operators, by the Proposition L is bounded. Next,

we proceed analogously to the proof of the Theorem 4.1 O
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Chapter 5

Closed Range of L

In the previous chapter, we assumed that the operator £ : 0% x {7 — (7 L = (mo, (0 —
A, —B)) has closed range and that the complement to its null space exists and is closed
as well. Now we show under which conditions this is the case. At first we explore the
autonomous system, i.e. where matrices A;, B; are constant for any ¢, then we derive
conditions for the nonautonomous system. In both cases we consider £ : £ X £ — [,

p € (1,00).

5.1 Autonomous system

In this section we only consider matrix A that has no eigenvalues on the unit circle and

prove that range of £ and complement to null space of £ are closed.

Proposition 5.1. If the eigenvalues of A do not lie on the unit circle, there exists a
projection matrix P, such that PA|gpy has eigenvalues outside the unit circle, (I —
P)A|r—p) has eigenvalues inside the unit circle, hence it is regular. Moreover, there

exist C' > 1 and A € (0,1) such that
L. [[(PAlrp) % < CX7%, forallt>s,
2. [|[(I = P)Alrg—p)~ Y| < CX*7, forall t <s.
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Proof. For the sake of simplicity, we drop the subscript and write PA instead of PA|zp)
and QA insead of (I — P)A|g(—p). We denote by P the projection to the generalized
eigenspaces of A corresponding to the eigenvalues inside the unit cirle, so I — P = @ is the
projection to the generalized eigenspaces of A corresponding to the eigenvalues outside

the unit cirle. Then spectral radius p(PA)
p(PA) = max{|A|, A € sp(PA)} < 1,

and

min{|A|, A € sp(QA)} > 1.
So QA is a regular matrix and there exists its inverse and its spectral radius

1

|)\|,)\ € sp(QA)} <1

p((QA) ™) = max{|A|, A € sp((QA) 1)} = m{

It is left to show that if p(D) < 1, then ||D'|| < cu’ for any ¢ € N, where ¢ > 0 and
pe (0,1).

Any matrix D is similar to a matrix in Jordan canonical form J which has eigenvalues
of D on its diagonal, 1 or 0 on the superdiagonal and zero everywhere else, i.e. there
exists a matrix M; such that D = Mlefl.

Let us denote

A e 00 0

0 X e O 0

0 0 X ¢ 0
J(A,g): )

00 0 A 0

00 00 ... A

so that J(A, 1) is a standard Jordan block for an eingenvalue A. If X\ is not a multiple
eigenvalue, then J(\, ¢) = () for any € > 0.
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J(A, 1) is then similar to the matrix J(\,¢), where € can be chosen arbitrary, i.e.

M\ e)J(\1) = T\ e)M(\,2),

where
111 1 1
o L L1 1 1
00 5 = =
M()\,g): & & €
00 0 % =
000 0 ... =X

if \ is a multiple eigenvalue and M = 1 otherwise.

So there exists an invertible matrix M, such that
D= MM J.M_M;,

where J. is a block diagonal matrix with blocks J(\;,¢) for each A; € sp(D) and M.
consists of the corresponding matrices M (A, g).

Then

1D} = | M M TEMM | < (I MMM
< MM MM < el T

It is left to show that ||J!]|; is bounded by some u, 4 € (0,1).
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By straightforward calculation

XX (AT L (A

0 M (DA re o (L) AT 2en 2
JNe)Y = 1|0 0 A o (PN enTs

0 0 0 A

where for our convinience we define (Z) =0, if s > t. Hence if n is maximum multiplicity

of the eigenvalues of D, then

min{t,n—1} t
<< (e oo < X (1) o) = e+ o)y

If we choose ¢ sufficiently small, then = ¢+ p(D) < 1 and

1D < ell el < et
As both PA and (QA)~! have eigenvalues inside the unit circle, they satisfy the

following inequalities for any ¢ > s

IPA™ < eapiy™

QA ™[I < capy™.

Then we choose C' = max{1, ¢y, co}, A = max{puq, 2} so that we proved the claim. ]

Below, we use the notation A~ = PA|gp) and AT = (I — P)A|g—-p), B~ = PB
and B = (I — P)B . If z € {}, then we may write z = 2z~ @ z*, where z~ = Pz and

z* = (I — P)z. The dimension of R(P) is n; and the dimension of R(I — P) is ns, such
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that n = ny + ny. And we define (A7)° = I. Next, we define

(A7) ift>s

(AT) )t ift < s.

U(t,s) =

Note that for any T' € (¢, s)

U(t, T)U(T, s) = T(t, s).

Theorem 5.1. L has closed range and closed complement to its null space.

Proof. In order to prove that £ has closed range, we have to prove that the set of those

z = {2 hen, for which there exist v = {v; }1en,, W = {w; }en, such that

Vo = 20

(5.1)
Vi1 — Avt — Bwt = Zt, for all ¢ € N

is closed. Applying our notation the equations (5.1)) can be split into two sets of equations

Yo = %o Vo =%
v — ATy — BTwy =z vy — AT — BTwy = 2
By L7 : 0 x 07 — (", LT 072 x (7 — (72 denote the operators L~ = (ny, 0~

A, —-B7) and LT = (nf,0" — AT, —B™), where 7,7 are operators 7y defined on

respective spaces and o~, o© are o defined on respective spaces. Note that R(L) =
R(LT) B R(LT).
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The first system leads to

vy =A" vy + B wy+ 2y =B wy +A 2 + 2

vy =ATv] + B wy + 2 = AT (ATz5 + B wy+ 25 ) + B w] + 21

vy = (A7)'z + i (AN B w, + 27) = U(t,0)z + 2_: U(t, s+ 1) (B ws + 2] ).

s=0 s=0
And analogously it can be shown that for ¢ < T' then

-1
vi = U(T, t)v) + Z U(T, s+ 1)(Btw, + z))
s=t
-1

(T, tyof =vf = > U(T, s+ 1)(Bw, + 2))

s=t
T—1
v =W, Tof =Y U(t,T)U(T, s + 1)(Brw, + 2])
T_l

v =V(t, T)vf: — Z U(t, s+ 1)(Btw, + 27)
s=t

And for T — o0
v = —Z\IJ(t,s + 1) (Btw, +2) t>1.
s=t
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In summary, if z = L(v,w)T, then v,w € 57, z € £} and

t—1
vy =U(t0)zg + > U(t,s+1)(Bw,+2z;) t>1 (5.2)
s=0
Vg = 2o (5.3)
vf = — Z U(t,s+ 1)(Btw, +2z7) t>1 (5.4)
s=t
v =20 ==Y V(0,5 +1)(BTw, + 2. (5.5)

From the construction of the solutions v it is clear, that they are unique. Next we prove
that for a given z € R(L) we obtain a unique solution (v, w) so that R(£) and N (L)
are isomorphic. Then we show that they are closed.

Firstly, we show that for a given z* € £7? there exists a solution (v, w™) such that

and hold.

The space of all zg is ny-dimensional, so

W = {Z U(0,s+1)Btwy:w e fpm}
s=0

has finite dimension d < no as it is its subspace. Let us denote by &i,...,&,, its basis

vectors. Then there exist w/) = {ng)}toio € (y for all j € {1,...,d} such that
W0, 5+ 1)B ) = ¢
s=0

Then (5.5)) is fulfilled if only if z§ + > oo U(0,s 4+ 1)zf € W. Therefore for a given
z" € R(LT) there exists aq,...,aq such that z5 + > oo U(0,s + 1)z} = Z?Zl a;&;.

Denote the space of such z* € Z* C (2. Then
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[ d
Z(—)i_ + Z \I/(O, s + 1)2: = Z Oéjfj
s=0 j=1
d )
=> a;y (0,5 +1)Brwl)
j=1 s=0
) d
=> 00,5+ 1)> auw
s=0 j=1

And so we set

d
_ )
W = E ;W
j=1
+ o+
Vg = %

And for a given z= € R(L~) we obtain

t—1
vy =U(0)z5 + Y Ut s+1)(z; + B w,), t>1.
s=0
As w is a linear combination of w\/) € £ it belongs to £ as well. Next, we show
that v =v~ @ vt € (7. For p € (1,00) we obtain
t—1

(T(,0) + U(t, 1)) (zg + B wo) + »_ U(t,s+1) (25 + B w,)

s=1

P
oy P =

s=1

t—1 p
< ((CM + CXNY |25 + B wo| + Z CAX= 2o + B_ws|>

t—1 p
<C? <2x\t_1|zo_ + B wy| + Z N5l m 4 B_w5|>

s=1
t—1 p
< (20 (Z D U P Bws]) . t>1
s=0
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and

p
o 17 =

> U(t, s+ 1)(z + BT w,)
s=t

00 p
<P (Z )\sft+1|zs + B+w8\> )

s=t

In case p > 1 we apply Jensen’s inequality

Do N2 N g A e P
<
Z;X;O /\t—s—l — Z:io >\t—5—1 '

Hence, we have

t—1 p %
Z Ao 4 B_ws|> )

s=0

vol, < <Z|Ut_|p> <20}
t=1

hSAT=

00 t—1 p—1 t—1
<20 ) < )\t31> > XNTTer + Bw, P

s=0

AN i
N5 20 4+ B w, P
2 A

=0

p=1 oo t—1
1 P t—s—1|.,— —
< 2C m (Z A |ZS + B ws|p>

t=1 s=0

=)
<2 (7)™ (S emwr 3 )

s=0 t=s+1

I
[\
Q
e
VN
—_|
|||
>

»

P

3=
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Next, we apply Minkowski’s inequality

=

vl < = (Dz + B ws|p>

2C
< =5 (Il + 1B~ hliwll,) <
and
||V+||p: <Z|Ut+|p> < C’( ( /\s t+1|Z + BTw |> )
t=0 t=0 s=t
1
[e’¢) p 1 oo P
<C (Z (1 A Z/\S ey +B+ws|p>
t=0
_C (1 A )\) z ZZ)\S—t+1|z: +B+w5|p>
t=0 s=t
p—1 7
A\ (S - ’
= C( /\) Z |Zs+ + B+ws’pz>‘8t+l>
L - 5=0 t=0
<o) (S erargy)
t=1

Y /\ (Zw‘p) +<§:B+wt”>;

s=0

CA
T U=l + 1B [l wllp) < o

IA

In case p = 1 we obtain

oo t—1

v~ ||1<ZC’ZZ/V ez + B~ w5|<202|z + B~ w,| Z \E—s—1

t=1 s=0 t=s—1

2C
< 7 (=7l + 1B7[lllwlh) <

and
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Vb <C) (Z AT B+ws|) <O |z +BTw| Y N
t=0 =t s=0 t=1

CA
< = (Il + 1B llwils) < oc.

Finally, for p = oo we have

-1 t—1
[V [|oe = sup |v; | < QCsupZ N5 2o+ Bow,| < 2Csup |z + B w,) Supz DA
teN teN “=7 teN teN <=
2C

(1 oo + 1B el wloe) < o0

IN

o0 oo
[V 1loe = sup v7'] < Cstlelgzks’t“bi + Brwi| < Csup |z + B sup »_ A+

teN

s=t s=t

CA
< =

< 2 (2 oo + 1B el wloe) < 0.

We proved that v=v- @ v" € {7, it is unique for a given z, w and w € (' is unique
for a given z € Z*, hence L is one-to-one and its range is isomorphic to complement to
its null space. Futhermore, we have shown that R(L") = Z% and R(L™) = £3*.

The space Z* has finite codimension, so it is closed as well as (. Hence R(L) is
closed and due to their isomorphism N (L) is closed as well.

This completes the proof.

]
5.2 Nonautonomous system
Definition 5.1. (Exponential Dichotomy)
Let us consider a linear difference equation
Vep1 = Aoy + Bywg + 24, (5.6)

with an initial condition vy = 2o where v = {v; }1en € £, W = {w; }ien € £ p € (1,00),
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t € N and A; are n x n matrices. We say that the linear difference equation (5.6) has an
exponential dichotomy on N if there exist C' > 1, A € (0,1) and a family of projections
P;,t € N such that

1. P11 Ay = AP, i.e. they commute,

|2 <C (5.7)

IT 4

i=t—1

< ON* forall t > s, (5.8)

where A7 = P 1A r(py),
3. Aj = (I = Pi1)Atlra-p) = Qi1 At|r(q,) are invertible for all ¢ € N and
s—1

[TeahH™

i=t

<N forall t < s. (5.9)

For the sake of simplicity, let us denote

I, 4, ift>s

U(t,s) =
[0 (AN ift<s.

so that equations (5.8)), (5.9) can be rewritten to
|W(t, s)|| < O3l
Note that in case A; are constant for all ¢t € Ny,

(A7), ift > s
U(t,s) =
(AT)i=s if t < s.
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Theorem 5.2. Let the linear difference equation have an exponential dichotomy on
N and B; be bounded for all t. Then the operator L has closed range.

Proof. Assume that linear difference equation (5.6) has an exponential dichotomy with
constants C, X and a family of projection matrices P, [ — P, = Q,t € Nand let z € R(L).
As vy can be rewritten as (P, 4+ Q;)vy = Pyvy + Qv the system (5.6) leads to two systems

of equations

Pyvg = Pozo
(5.10)
Pi1v = P A + P Bowy + Pz
Qovo = QUZO
(5.11)

Q10141 = Qey1 A + Qi1 Brwy + Qri12.

As @, are projection matrices and they commute, i.e. Q1A = Q7,1 Ay = Q111 AQy, the

last equation ([5.11]) can be rewritten to

Q1410141 = Qe1AiQuvr + Qi1 Brwy + Qi1
Qv = (Qr1A:) " (Qr1vi1 — Qiy1 Brwy — Qui12t)

— — ot — o — ot _ p— _ pt
Denote P12t = 2z, Qeir2e = 21, Povg = v, Qg = v and P11 By = B, Qi1 By = By

for any t € N, so that we may write

- - + _ o+

Vg = % Vg = %
- - —_ - + o A\—17, 4 +, 4 +
Ut+1_AtUt — Byw, =z Uy _(At) (Ut+1_Bt Wy — % )
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Then again as in the Proposition [5.1] it can be inductively shown that

t—1
vy =U(t,0)z5 + > U(ts+1)(2; + Byw,)

s=0

v = — Z U(t, s+ 1)(z + Bfw,)

s=t

vy =24 = — Z\IJ(O, s+ 1)(z + Bfw,) vy = 25
s=0

For the rest of the proof we proceed as in the proof of the Proposition applying

inequalities

Do 1Banf” < sup | B* Y il for p € {0.00)
s=0 sZ s=0

and for p = oo

sup | Bws| < sup || By || sup [ws| = ||w||o sup || B]|.
s>0 s>0 s>0 s>0

5.3 Special Cases

Proposition 5.2. If matrices A; converge to a matrix A, such that its eigenvalues do
not lie on the unit circle, the linear difference equation (5.6) has an exponential dichotomy
on N.

Proof. In progress. O]

Proposition 5.3. If matrices A; are periodic with period 1" and the matrix A = A7 Ar_1 ... Ay
has no eigenvalues on unit cirle and it is regular, then the linear difference equation (/5.6)

has exponential dichotomy on N.

Proof. Let A; be periodic with minimum period 7', i.e. A, = A, for all t € N and let

A = AqseyrAasryr—1 - - - Arrgr, k € No,
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then Ay is constant for any k.

We can rewrite the linear difference equations into

V1 = Ay + Bawy

Vo = A1 Avoy + Ay Bowy + Biyqwig

t+T—1
Vg1 = Apyr o A Ayoy + Z Appr ... Aga(Bsws) + Biprwigr.
s=t
If we denote
Vi = Vkr41
Sk = (Bl+(k—1)Tw1+(k—1)T, BQ+(k—1)Tw2+(k—1)Ta e ,Bl+kTw1+kT)T

B = (AikrApr - - Asy o1y, Aosrr Awr - - - Aspe—yrs - - - Argiers 1)
for any k € N, then the system can be rewritten to an autonomous system
Vg1 = Avy + B

According to Proposition there exist projection matrices P, Q = I — P and
A€ (0,1),Cy4 > 1 such that

[ PAfGpll < CaN, if t > s (5.12)

QAR | < CaX™, if t < s. (5.13)

Again, we will leave out the subscripts R(P) and R(Q). As A is regular, all the

matrices A; are regular and we can define a family of matrices

1 t—1
P, = (H Ai> P <HA;1> , forall t > 1.
=1

i=t—1
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Then for all t > 1

o (110)e ()
() (M) (1) (M) oo
and P, are projection matrices
(e (i) (31 o) (T - (114 = (1)
(i) fie) -

they commute

1 t 1 t
P A = (H Ai) P (H A;1> A = A, ( 11 AZ-) P (H A;1> A7YA, = AP,
1=t =1 %

i=1

and they are periodic with period T'

1 t+1T—1 T+1 t+T—1
Piyr = ( 11 Ai> P( 11 A;l) — ( 11 AZ) APA™? ( 11 A;l)
i=t+T1T—1 =1 i=t+1T—1 i=T+1

(e (T = (1L (I )

Hence

IPAI < _max (1P =Cp.
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It is left to show that for any ¢t,s € N, ¢t > s

IT 4| <cx— (5.14)
i=t—1
t—1
[TanH | < ex—, (5.15)
where A € (0,1) and C > 1.
We split the proof into two parts.
1. Let us assume that t —s > T.
As projection matrices P, commute, ||P_1A; 1... Asl| = ||Aim1 .. Pep1 Ak - As|

for any k € (s+1,¢) N N.

Denote a = || — [%] > ¢t — s — 2T, then

14

i=t—1

- HPtAtfl .. ASH

— “At,1 P AL%JT«FIPAQA’—%]T “e . AS”
<Al 1A I PA Azl - AL < CROAN

S C%OAMt—s—ZT — C%CA)\_2T)\t_S,

where CH = ||AT||||AT_1|| e ||A1H

2. Let 0 <t —s <T, then

LT A7|[ < 1P A-All - 1A

i=t—1

CH )\t—s S Cp@)\t_s

)\t—s /\T

< CpCn =0Cp

If we put C' = max{1, CZC4A"21,CyCpA~T}, we obtain the required inequality.
The proof for the inequality (5.15) is analogous. O
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Proposition 5.4. If the linear difference equation (/5.6) has an exponential dichotomy on
N\ K, where K = {1,...,T}, then it has exponential dichotomy on N.

Proof. Let (5.6) have an exponential dichotomy on N\ K" with projections Py, Q); constants
Cy>1and X € (0,1) . Next, we define

R(P) = {v e R": f[ Aw € R(PT)}

R(Qy) = {v eR™: 1:[ ATty € R(QT)} .

=t

Next, for any ¢, s < T we define

Hf:t—l At|R(Pt)7 ift>s

H;:tl At_1|R(Qt) if t <s.

U(t,s) =

Let Cy = Supte(O,T){H\Ij(tv T)Hu ”\II<T7 t)“} Then

UL, 8)|| < [T, TIE(T, )] < CLCAT

< CLONTINTS S CLON TN if s <T <t
1@, s)| < W, DT, s)|| < CLCAT

< CLONTINTE < CLON TN ift < T <os.

Hence the equation (5.6)) has exponential dichotomy on N with C' = max{C}, C;Co\~T}
and A € (0,1).
]

Finally, in the following example we show that if the system ({5.6) does not possess

exponential dichotomy, £ may not have closed range.

Example 1. We assume linear autonomous dynamics and A = 1, B = 0, so that the
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state can be rewritten as x;.1 = x;. Then
R(L) =1z € Eio D2 = Ty — T, X € f;}.

For a given ¢ > 0, we choose z° such that 2§ = 0 and 2{ = =0+ for ¢ > 1. Then

corresponding x° is given as x5 = 0 and 2 = Y'_i(s — 1)"(%9) ¢t > 1. So while

z°,x° € (! and lim2° = ¢! so limz® € £._, but limx® ¢ (. . Therefore R(L) is not
e—0 e—0 e—

closed.
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Conclusion

We focused on infinite-horizon, discrete-time optimal control problems and established
necessary conditions of optimality of Potryagin maximum principle type. We considered
problems with linear autonomous dynamics z;,; = Ax; + Bu; + d and general dynamics
T = Fy(ag, ug).

Current literature associated with our research gave us two main results. Blot and
Chebbi [5] established the maximum principle in the space ¢; with objective function
without discount by reduction to finite horizon and imposed the condition that A; =
D, Fi(&;, 1) are invertible for all t. Later, Blot and Hayek [6] considered the same

problem as we did and via tools of functional analysis formulated condition

sup || Ao < 1.
teNp

We also employed direct approach rather than reduction to finite horizon and faced
four main challenges. At first, we had to prove that the objective function is Fréchet
differentiable. Then by standard method of constructing perturbations along the optimal
solution, we derived necessary conditions of optimality with adjoint variable belonging
to the dual space of l, ({o)* = 1 @ {;. We managed to circumvent its non-sequential
component ¢;. The most significant results are described in the last chapter where we
formulate assumptions under which the necessary conditions hold, i.e. when the operator
L has closed range. Moreover, in the case of general dynamics we had to show that its

null space is complemented and the complement is closed.
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In the case of linear autonomous dynamics x;.1 = Az, + Buy + d, it is sufficient that
A has no eigenvalues on the unit circle. In case of general dynamics, the assumption is
formulated as exponential dichotomy, i.e. there exist C' > 1, A € (0,1) and bounded

projection matrices P; such that

[W(t,s)]| < CAF=*l. for any t,s € Ny,

where

[T=i 1 P Adlrep,s ift>s

Hj;tl(j - P1£+1)At_1|72(1_pt) ift < s.

U(t,s) =

In comparison to the previous results, we managed to formulate the maximum principle
with ¢y = 1. In Blot, Hayek [6] they proved that their ¢y is non-zero, however Blot,
Chebbi [5] did not exclude this possibility.

In finite horizon problems without terminal constraints the transversality condition is
Yr = 0. In our case, we do not have a terminal condition as our response is from /.,
and we obtain the condition ¥ € 41, i.e. >_,°, [¢] < oo which might be understood as a
transversality condition in case of the infinite horizon problems.

While the condition of exponential dichotomy extends the framework of problems for
which the maximum principle hold, we could not formulate it as an equivalence. However,
we found an example where exponential dichotomy is not satisfied and the range of L is
not closed, hence the closed range theorem cannot be applied.

The thesis ends with the examples of systems having exponential dichotomy, but there
is definitely still a lot of space for future development of the presented framework. More-
over, further research can also be conducted in order to examine necessity of condition of

exponential dichotomy.
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Appendix A

Basic Concepts in Functional Analysis

As we consider infinite horizon problems, we have to work with infinite sequences
and their spaces. Therefore, an understanding of basic principles of functional analysis
is neccesary for our research. In Appendix we summarize the basic concepts, principles
and methods of functional analysis ussed in the thesis. We go though Banach spaces and
operators on them, dual spaces. Most of the theory comes from the books [20], [27] and
[28].

A.1 Metric and Banach Spaces

This section is devoted to metric, linear normed and Banach spaces. We give the definition
of the spaces, illustrate them by several examples and describe some of their properties.
We also introduce the space of all bounded sequences 7, and other £ spaces that are

crucial for the thesis.

Definition A.1. Metric space
Let X be anonempty set and d : X x X — R be a real function such that for all z,y, z € X

one has
(i) d(z,y) > 0 and d(z,y) = 0 < x = y (positivity)

(ii) d(z,y) = d(y,r) (symmetry)
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(iii) d(x,y) < d(z,z)+d(z,y) (triangle inequality)
The pair (X, d) is called a metric space and the function d a metric.

Example 2. Let (7 be the set of sequences x = {z:}7°,, ©+ € R" such that

sup || < oo
teNp

where | - | is a norm in the space R" n € N. So it is a space of all bounded sequences.
Denote

d(x,y) =sup |x; —y;| forall x,y € (2.
teNg

Then (£, d) is a metric space.

Example 3. For p € (1,00) we introduce the set 7 of sequences x = {z,}2,, v, € R"

such that
o
Z |z|P < o0
=0

where | - | is a norm in the space R", n € N. Denote

d(x,y) = <Z |z — yt|p> for all x,y € £}.
=0

(€3, d) is also a metric space.

Definition A.2. Let (X, d) be a metric space. A Cauchy sequence is a sequence {x(™}>
2" € X for all n € Ny such that for all € > 0 there is N. € N such that for all n,m > N.

d(z™ 2M) < ¢.
Definition A.3. A metric space is complete if all Cauchy sequences in this space converge.

Proposition A.1. If (X, d) is a metric space and {z(™ o o 1s its Cauchy sequence, then
{z(M}> is bounded in X, i.e. there exists y € X and C' € R such that d(z™,y) < C

for all 2™ € {zM}> .



Definition A.4. Let (X, d) be a metric space. A metric subspace (Y, dy ) of (X, d) consists
of a subset Y C X whose metric dy is the restriction of d to Y, that is dy (x,y) = d(x,y)
forall z,y € Y.

Whenever we talk about a subspace Y of a metric space (X, d), we always consider it

in terms of properties of the corresponding metric subspace (Y, dy ).

Definition A.5. A subset Y of a metric space (X, d) is closed if it contains all its limit
points, i.e. for all {z(™}> . (™ €Y such that if 2" 22> 7z then 7 € Y.

n=0>

Definition A.6. Normed linear space

Let X # () be a vector space and ||-|| : X — R be a real function such that for all x,y € X
(i) ||| >0 and ||z]| =0 2=0

(ii) || x| = [M|||z]| for every svalar A

(i) flz +yll < llzll + llyll

The pair (X, || - ||) is a normed linear space space and function || - || is a norm.

Proposition A.2. Let (X, d) be a normed linear space and define d(x,y) = ||z — y|| for
all z,y € X. Then (X, || -||) is a metric space.

n

v, Where p € (1,00) and (7 are normed linear spaces, if we

Example 4. The spaces ¢

define the norms

[1X[Joc = sup ||
teNp

1
1%l = (Z \ﬂftlp> p € (1,00)
t=0

respectively.



Definition A.7. Banach space
Let (X, ||-||) be a normed linear space. If the corresponding metric space (X, d) is complete
we say (X, || -]|) is a Banach space. (In the thesis, we left out the symbol || - || in the

notation of the normed spaces).
Proposition A.3. The spaces {}, where p € (1,00) are Banach spaces.

Remark 3. In literature, spaces ¢ and ¢q are often cited. ¢ C /, is a space of convergent

sequences and ¢y C f, is a space of sequences converging to 0. Both are Banach spaces.

A.2 Operators

Definition A.8. Let X,Y be normed linear spaces. By an operator T from X to Y we
understand a map 7' : X D D(T) — Y. D(T) to be called domain of T. (In the thesis,

we consider D(T') = X unless it is stated otherwise.)

Banach spaces and operators acting upon them form the basis of functional analysis. In

this section we summarize necessary definitions and theorems associated with operators.

Definition A.9. The range R(T') of operator T': X — Y is the subset of Y of the values
of T
R(T)={y €Y,y =T(x) for some x € D(T)}.

Definition A.10. The null space N(T') of operator T : X — Y
N(T)={z e D(T), T(x) =0}.
Example 5. Let X be a linear space. The identity operator I : X — X is defined by
I(x)=x forallz e X.

Addition and scalar multiplication of operators are defined similarly to that of standard

functions.



Definition A.11. Let 7 and 75 be mappings from normed space X to normed space Y.
We define operator 77 + Ty : X — Y with the domain D(T} + T3) = D(T1) N D(T3) and
the rule

(Ty + Ty)(x) = Ti(z) + To(z) for all x € D(T) + T).

Let A € R. We define operator AT; : X — Y with the domain D(7}) and the rule

(A7) (z) = M1 (z)  for all x € D(T7).
Definition A.12. Let X,Y be normed spaces and T : X — Y be a map between them.
T is called linear or homomorphism if

T(ax + fy) = oT'(x) + T (y),

forall z,y € X and o, 5 € R.

Example 6. The operator o : X — X, where X is Banach space, defined by o(xg, z1, 29, ...) =
(21, 29, ...) is called shift operator (sometimes it is called left shift operator as the shift is
taken from the right to the left). For finite vector x € X we define o(zq, x1, X2, ..., ;) =

o(xq,x9, ..., Ty, 0). Shift operator is linear as

U(Oé($0,$1,$27 ) + 6(y07y17y27 )) = U((Oéxm(mhaxza ) + (5y0;ﬁ9175y27 )) =
(a1, axg, ...) + (Byr, Bya, ...) = alx1, 2, ...) + B(y1, yo, -..) =

ao(xo, T1, T2, ..) + Bo(Yo, Y1, Y2, ---)-
Definition A.13. Let X,Y be normed spaces and T : X — Y be a map between them.
T is called continuous in x € X, if
Ve>036>0: |z —yllx <d=|T(x)-TW)lly <c¢

T is said to be continuous if it is continuous over its domain D(T)).



Definition A.14. Let X,Y be normed spaces and T : X — Y be a map between them.

T is called bounded if there exists a constant C' > 0 such that
IT(x)|ly <C|lz||x forall ze X.

Definition A.15. Let X, Y be normed spaces and T : X — Y be a map between them.

T is called closed if every sequence {z(™}>° € X converging to z € X holds

lim T(z™) = T(x).

n—o0

Proposition A.4. Let X,Y be normed spaces and T be a linear operator between them.

Then T is continuous if and only if it is bounded.

Definition A.16. Let T be a bounded linear operator from a normed space X to a

normed space Y. The norm of T is defined as

1T = sup [T (z)[ly-

|£E X:1

We denote the linear space of all bounded operators from X to Y with the norm || - ||

by B(X,Y).

Remark 4. The norm of an operator satisfies the properties of norm defined in Definition

(A6l

Remark 5. The operator norm is the smallest C' from the definition of boundness (Def-

inition [A.14)), i.e.

T (x)|ly < ||T||||z]|x forall z € X.

Therefore, in order to prove boundness of an operator 7', it is sufficient to prove that its

norm is finite.

Definition A.17. Let X,Y be Banach spaces and T': X — Y. Then T is called



1. injective if T'(x) = T'(y) implies = y,
2. surjective if R(T) =Y,
3. a bijection if it is both injective and surjective,

4. an wsomorphism if it is a bijective homomorphism.

A.3 Dual Spaces

Definition A.18. Let X be a normed space. A linear operator x* : X — R is called
linear functional and we define < z*,x >= z*(z) and ||z*| = sup, =, z*(z). The space
of all continuous linear functionals from X to R is called dual space of X and is denoted

by X*.

To distinguish X from X* we occasionally call the former primal space. This section
describes the concept of dual spaces on Banach spaces and identify dual spaces for (7,

p € (1,00).

Proposition A.5. The dual space of a normed space X is a Banach space.

Definition A.19. Let X,Y be Banach spaces and T € B(X,Y). We define the dual
operator or adjoint operator T* € B(Y*, X*) for y* € Y* by

T*(y")(z) =y*(T(z)) forallz e X.

Definition A.20. A Banach space X is reflexive, if (X*)* = X.
Proposition A.6. For p € (1,00), the dual space of ¢, is ¢, with ¢ such that % =1- 1—1).

Proposition A.7. The dual space of /; is {..

Proposition A.8. ({,)* = {1 @ {,, i.e. l,; are not reflexive.



A.4 Convergence

Closed and bounded sets of the infinite dimensional normed linear spaces are not nec-
essarily sequentially compact, i.e. a bounded sequence may not contain a convergent

subsequence. However, convergence can frequently be replaced by a weaker concept.

Definition A.21. Let X be a normed linear space and sequence {z(™}>°  such that

" e X.

1. We say that {z(™}>°  converges strongly to z, ™ — , if

lim ||z™ — z|| = 0.
n—oo

2. We say that {2} converges weakly to z, z™ % z, if

lim (z*, ™) = (z*, ) for all 2* € X*.
n—oo

w*

3. We say that {2*("} € X* converges weakly* to x*, 2*(") =5 o* if

lim (2" z) = (2*,2) forall z € X.

n—oo

o0

Remark 6. Suppose that X is a normed space and the sequence {x(")}n:07 ™ e X
converges strongly. Then it also converges weakly, i.e. if 2™ — 2, then 2™ 5 2.
It is because we have for all z* € X* | [(z*,2™) — (z*,2)| < ||z*||[|]z™™ — z]|. Since

[ — ] = 0, | (", 20} — {a*, 2)| = 0, as well.



Appendix B

Important inequalities

In the thesis we applied several inequalities. We summarize them in this chapter.
Proposition B.1. (The Holder inequality)
Let p,q € (1,00) be such that

__|__:1
p q

where we define é =0andletx e/, y €, Then xy € ¢; and

1yl < lIxlpllylo-

Proposition B.2. (The Minkowski inequality)
Let p € (1,00) and x,y € ¢, then

I+l < il + Iyl

Proposition B.3. (The Jensen’s inequality) Let f : R — R be a convex function, x; be

in its domain and a; be positive weights for all ¢ € Ny. Then

Z;}io atxt) Ztoio af ()
f( Srea ) S Srea
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