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Dizertačná práca sa zaoberá rizikom a zahrnutím rizika do optimálnej vol’by
portfólia. Ciel’om práce je preskúmat’ vplyv rizika na správanie investora.

V prvej časti definujeme problém vol’by portfólia s rizikovým ohraničením na
infímum konečného majetku investora. Následne na numerickom príklade ana-
lyzujeme zmenu správania investora, ktorý je vystavený rizikovému ohraničeniu.

V druhej časti dizertačnej práce zahrnieme riziko do modelu na oceňovanie
opcií. Zameriame sa na riziko vyplývajúce z nedokonalého zabezpečenia syn-
tetického portfólia ako aj na riziko bankrotu obchodného partnera. V numeri-
ckej analýze modelu ukážeme, že model dokáže vysvetlit’ aj takzvaný “volatility
smile”, nekonštantný priebeh implikovanej volatility. Následne na tomto mode-
li ilustrujeme problém integrovanej a čiastočnej analýzy trhového a kreditného
rizika a ukážeme za akých podmienok čiastočná analýza rizika nepodcení sku-
točné riziko.

V tretej časti dizertačnej práce analyzujeme agregáciu časových radov. Za-
meriame sa na agregáciu časových radov počas dlhšieho obdobia a na optimálnu
vol’bu frekvencie dát. Podrobnejšie sa zaoberáme agregáciou GARCH modelov a
ich podmienenou varianciou a kurtosisom (špicatost’ou). Odvodíme limitné vlast-
nosti podmienenej variance a kurtosisu, ked’ sa časový horizont blíži k nekonečnu.
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The dissertation thesis deals with risk and integration of risk to the portfolio
selection problem. The goal of the dissertation thesis is to explore the influence
of risk on investor’s behavior.

In first part we formalize the portfolio selection problem with risk constraint
on the final infimum wealth of investor. We then analyse behavior of the investor
under the presence of the risk constraint on a numerical example.

In second part of the dissertation we integrate the risk generated by imperfect
portfolio hedging and from the possibility of default of the counterparty, into the
option pricing model. We numerically analyse the model and show its ability to
explain volatility smile. We illustrate the problem of integrated versus separated
analysis of credit and market risk and show when the separated analysis will not
underestimate the overall risk.

In the last part of the dissertation we focus on aggregation of time series mod-
els. We deal with the aggregation of time series over longer time horizon and with
the choice of optimal data frequency. We analyse the aggregation of GARCH
model and its conditional variance and kurtosis. We derive the limits behavior of
conditional variance and kurtosis when the time horizon goes to infinity.



Foreword

Risk was always a key concept in portfolio selection problems. One of the
goals of portfolio selection is to minimise the risk of the portfolio. In some mod-
els it is even possible to reduce the risk completely. Such a reduction is usually
possible only with respect to one source of risk.

There can be many different source of risk in a portfolio: risk from volatile
nature of the equities, credit risk due to default of the counterparty, imperfect
hedging, missspecification of the time series models, ...

It is important to study and understand these risks, even if we will never be
able to control or reduce these risks completely. The understanding of the risk
can help us to better choose from different investment possibility, from different
strategies or regulation conditions.

The goal of this thesis is to explore the influence of risk on investor’s behavior.
We will focus on longer time horizon as for the short time period and one period
models is the influence of risk relatively well known.

Martin Jandačka, Fall 2009
Author
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Chapter 1

Introduction

Risk was always a key concept in portfolio selection. In one period portfolio se-
lection models (see e.g. [75], [76], [94], [98]) risk, measured as variance of return,
has the same importance as return. In multi-period portfolio selection, however,
risk mainly appeared only in the utility function encoding the risk behavior of the
investor. Multi-period portfolio selection is a prominent topic in finance for almost
forty years. The vast body of literature can be classified along several criteria:

- continuous time (see e.g. [3, 14, 30, 36, 57, 63, 74, 79, 80, 83, 97]) versus
discrete time models (see e.g. [31, 48]),

- investment-consumption models (see e.g. [3, 27, 31, 36, 49, 57, 74, 79, 80,
83]) versus pure investment models (see e.g. [14, 30, 81, 97]),

- single asset (see e.g. [36, 48, 61, 74, 79, 80, 97]) versus multi asset models
(see e.g. [3, 14, 27, 30, 31, 57, 63, 81, 83]),

- models without transaction costs (see e.g. [48, 49, 68, 79, 80]) versus mod-
els with transaction costs (see e.g. [3, 14, 27, 30, 31, 36, 57, 63, 74, 81, 83])
or brokerage fees (see e.g. [97]),

- asset prices following Brownian motion versus more general stochastic pro-
cesses (see e.g. [34, 44, 64, 89]),

- complete versus incomplete market models (see e.g. [49, 61, 71, 72]).

In this multi-period literature the concept of risk plays a marginal role. There is,
however, substantial work on one-period portfolio selection under risk constraints
other than variance, see [47] and reference therein. Usually in the multi-period
setting, risk enters via utility functions, which encode the risk attitude of the in-
vestor, or via short selling constraints, which restrict the portfolio value to be
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positive, or via margin requirements. In contrast to this literature we put central
emphasis on risk constraints formulated as restrictions on economic capital.

Financial institutions usually have no specified utility function. Rather they
have some economic capital at their disposal and try to conduct business so as
to maximize profits making sure that their economic capital is sufficient for the
business. How much economic capital is needed for some business is described
by risk measures. Coherent one-period risk measures were introduced some time
ago [6, 37, 45]. Recently the concept of coherent risk measure has been extended
to a multiperiod setting [7, 28, 29, 100]. In such a framework it is possible to pose
the portfolio selection problem faced in reality by many financial institutions: In
markets with stochastic prices and transaction costs, choose a portfolio strategy
which maximizes expected long term growth and ensures that economic capital is
sufficient at all times.

In Chapter 3 we specify the stochastic control problem with the risk con-
straints. We introduce the limit control strategies and regions of no transaction
for this problem and discuss a simplified numerical approximation method, which
displays some of the key phenomena of stochastic control problems with dynamic
risk constraints. The optimisation problem we consider is relevant not only for
portfolio management but also for risk measurement. Integrating credit and mar-
ket risk requires the choice of one common time horizon for credit and market
risk. This usually will be the longer time horizon of credit risk, e.g. one year.
When determining the profit-loss distribution of market risk on such a long time
horizon, we cannot assume anymore that the trading book is largely the same at
the end of the time horizon. This crucial assumption is usually made in calculation
of market risk on short time horizons of a day or a week. Without this assumption
the rebalancing behavior of the portfolio manager has to be taken into account
when determining the portfolio distribution. Within a time horizon of one year
the portfolio manager receives new information about the market and has the op-
portunity to sell and buy assets. For evaluation purposes not the actual rebalancing
strategy but the optimal rebalancing strategy is relevant. To determine the optimal
rebalancing strategy is exactly the topic of Chapter 3, parts of this chapter were
published in [22].

The standard option pricing theory is derived by complete elimination of risk
from hedged portfolio (see Black and Scholes [15, 16]), which is possible due
to the non existing transaction costs in this model. In the past years, the Black–
Scholes equation and its generalizations for pricing derivatives has attracted a lot
of attention from both theoretical as well as practical point of view. According
to the classical Black-Scholes theory [12, 15, 16, 51, 66, 92, 101] the present
cost of an option equals to the initial value of a solution to the so called Black-
Scholes equation. This theory is capable of valuing options and other derivative
securities over moderate time intervals in which transaction costs and the risk
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from a volatile portfolio are negligible. On the other hand, if transaction costs
like e.g. bid-ask spreads are taken into account the classical Black-Scholes theory
is no longer valid. In order to maintain delta hedge one has to make frequent
portfolio adjustments yielding thus substantial increase in transaction costs. On
the other hand, rare portfolio adjustments leads to increase of the risk from a
volatile (unprotected) portfolio.

One of the interesting problems in the modelling of pricing of financial deriva-
tives is the question how to incorporate both transaction costs and risk arising from
a volatile portfolio into the governing equation. In [65], M. Kratka derived a math-
ematical model for pricing derivative securities in the case when both transaction
costs as well as the risk from a volatile portfolio are taken into account. The
model is based on the Black-Scholes parabolic PDE in which transaction costs
are described by Leland’s approach (see e.g. [9, 51, 66, 70]) whereas the risk
from a volatile portfolio is described by the average value of the variance of the
synthetized portfolio.

In Chapter 4 we revisit Kratka’s approach in order to derive a model which
is mathematically well posed and scale invariant. We will extend the model by
the possibility of default of counterparty and compare the integrated model with
adding up the market and credit risk, which is often seen as conservative risk as-
sessment. Recent author’s paper (see [24]) shows that separating the market and
credit risk can lead to significant underestimation of the integrated risk. We will
show when the separated analysis of the market and credit risk will not underes-
timate the overall risk. We present qualitative analysis of the governing equation
and we derive a robust numerical scheme. We perform extensive numerical test-
ing of the model and compare the results to real option market data. We also
introduce a concept of the so-called implied RAPM volatility and implied risk
premium coefficient. These results for option model without default probability
and the dividends were published in [53].

In any model of portfolio selection or option pricing the fundamental position
have estimation of the model and time series parameters. With higher frequency
data being increasingly available and attention focusing on longer time horizons
we face the choice whether or not to use the higher frequency data available in
long term analysis. At first sight it seems clear that it should be used. If we re-
stricted ourselves to the low frequency data we either would have very few data
points or use very old historical data for getting reliable parameter estimates. Nei-
ther is desirable. On the other hand, when we use the higher frequency data the
time horizon of the forecast is several time steps ahead. A long term analysis then
has to analyse the distribution arising from aggregating the high frequency model
over several time steps. This motivates our analysis of aggregated distributions.
We concentrate our analysis on GARCH model as introduced by Bollerslev [17].
The approach we take is to estimate a strong GARCH model for single time steps
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of suitable length and then aggregate over sufficiently many time steps to arrive at
the desired time horizon. Drost and Nijman [39] in a landmark paper showed that
the temporal aggregation of a strong GARCH process is in general not a strong
GARCH. Therefore they introduced the larger classes of semi-strong and weak
GARCH models. For semi-strong GARCH processes the mean and variance of
innovations are determined, but other properties of the distribution of innovations
are not determined. In particular, the innovations need not be independent or iden-
tically distributed. For weak GARCH processes not even the mean and variance
are determined, we just have a linear predictors.

Weak GARCH processes have the advantage of aggregating to weak GARCH
processes, but for purposes of risk management they do not convey much infor-
mation. For mean and variance they only specify the best linear predictor, other
properties of the distribution are not specified at all. In risk management we of-
ten need more information about the conditional distribution: quantiles, higher
moments, and for risk measures like Expected Shortfall even the full distribution
function in the tails. This information is not specified by semi-strong or weak
but only by strong GARCH processes. For this reason we will focus on analy-
sis of the aggregated distribution of strong GARCH processes accepting that this
aggregated distribution is itself not a strong GARCH process, but we will derive
the properties of higher moments of aggregated time series also for more general
semi-strong GARCH process.

In Chapter 5 we do not deal with contemporaneous aggregation, as do for ex-
ample Nijman and Sentana [84]. Drost and Werker [40] define continuous time
GARCH processes which exhibit weak GARCH behavior at all discrete frequen-
cies. They show that the discrete time GARCH processes arising from the ob-
servation of continuous time GARCH processes have excess kurtosis even if the
continuous time process does not. In our paper we also describe a similar phe-
nomenon: The processes arising from an aggregation of strong GARCH processes
have excess kurtosis even if the basic process does not. But obviously the class of
processes we consider do not satisfy the assumptions of continuous time GARCH.
Meddahi and Renault [78] also investigate the temporal aggregation of volatility
models. They consider a class of processes more general than weak GARCH,
which works even if fourth moments are not finite. Our expressions for the vari-
ance of the aggregated conditional distribution (Theorems 5.1 and 5.2) do not
assume either that fourth moments are finite, but the analysis of the kurtosis of
the aggregated conditional distribution assumes innovations to be symmetric and
have finite fourth moments. Baillie and Bollerslev [10] investigate conditional
mean and variance (but not conditional kurtosis) of GARCH error distributions
and specify all unconditional moments of the error distribution. However, they do
not analyse conditional kurtosis. The chapter is part of working paper [23].
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Chapter 2

Goals of the thesis

Risk was always a key concept in portfolio management. In portfolio selection
model risk appears in the utility function encoding the risk behavior of the in-
vestor. In one period model risk constraint and their influence on the investor
behavior is well explored. Recently the concept of coherent risk measure has
been extended to a multiperiod setting. This allow us to explore the problem of
dynamic multiperiod portfolio selection problem under risk constraint.

Risk also plays the crucial role in the pricing of the options. In the well-
known Black-Scholes theory risk is completely eliminated from the portfolio by a
continuous hedge. This theory is capable of valuing options and other derivative
securities over moderate time intervals in which transaction costs and the risk
from a volatile portfolio are negligible. On the other hand, over the longer time
period, the transaction costs can not be ignored. Imperfect hedge of the synthetic
portfolio will result in increase of the risk from a volatile portfolio. This risk
must be taken into the account on the longer time intervals. Additionally the
unprotected portfolio must not be the only source of the risk for the investor. The
investor can be subject to the default of counterparty which can open previously
well hedged positions of investor.

For dynamic portfolio the properties of the portfolio over short period are
equally important as the properties of the portfolio over longer time horizon. The
short period properties of time series are important for hedge of the portfolio. On
the other hand for risk analysis of static portfolio we usually need to know the
properties of win/loss distribution over longer time horizon. The question arise
whether or not to use the higher frequency data available in long term analysis.
For static portfolio the calculation of risk over longer time interval require the
choice of time series model which capture the properties of the given variables on
the end of the time horizon.

Our goal is to explore the influence of risk on investor’s behavior. We will
focus on the longer time horizon as for the short period, resp. one period, mod-
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els is the influence of the risk relatively well known. We will mainly explore the
problem of risk in multi period dynamic portfolio selection, the risk in synthetic
portfolio for option pricing over longer time intervals and problem of time fore-
casting over a longer time horizon.

Most of the results of this dissertation thesis were already published in recent
papers [22, 23, 24, 25, 53] co-authored by me.
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Chapter 3

Portfolio selection with transaction
costs under risk constraints

In this chapter we formalize the following portfolio selection problem: An in-
vestor subject to proportional transaction costs allocates funds to multiple stocks
and a bank account, to maximize the expected growth rate of the portfolio value
under a risk constraints.

The chapter is structured as follows. In Section 3.1 we specify the stochastic
control problem with the risk constraints. Limit control strategies and regions
of no transaction for the problem are introduced in Section 3.2. In Section 3.3
strongly simplified numerical example for risk in form of Expected Shortfall (ES)
is discussed, which nevertheless displays some of the key phenomena of stochastic
control problems with dynamic risk constraints. These results were published in
[22].

3.1 The Stochastic Control Problem
We assume the investor operates on a market of one riskless bond (“bank”) with
constant interest rate r and m different stocks. The evolution of the riskless bond
B is given by

dB(t) = Brdt. (3.1)

The evolution of stock price S(t) is described by an m-dimensional Wiener pro-
cess W (t) as

dSi(t) = Si(t)

(
µidt+

m∑
j=1

σijdWj(t)

)
, i = 1, ...,m. (3.2)
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Here σ is a m ×m positive definite matrix representing the covariance structure
and µ represents the drift. The covariance matrix is σ′σ, where σ′ denotes the
transpose of matrix σ.

The investor has initially x0 Euros invested in the bank and (x1, ..., xm) Euros
invested in the stocks 1, ...,m. He can control his portfolio composition by buying
and selling arbitrarily large or small amounts of stock from his bank account at
any time, exchanging directly one stock against the other is not allowed. His
portfolio selection strategy π is described by control processes Z(t), U(t). Here
the i-th component of U(t) represents the cumulative amount of money obtained
from selling stock i before incurring transaction costs. The i-th component ofZ(t)
represents the cumulative amount of money used to buy stock i before incurring
transaction costs.

Buying and selling stock incur proportional transaction costs. Let

Cb = (Cb1, ..., Cbm) ≥ 0,

Cs = (Cs1, ..., Csm) ≥ 0

be vectors of proportional transaction costs for buying and selling. Buying one
Euro worth stock i will cost (1 + Cbi) Euro in cash from the bank. Selling one
Euro worth of stock iwill result in (1−Csi) Euro in cash that is added to the bank.

Given the portfolio strategy π in terms of buy and sell processes Z(t), U(t)
the cotrolled evolution of values V π

0 of investment in bond and V π
i of investment

in stocks follows the stochastic differential equations

dV π
0 (t) = V π

0 (t)rdt− (1 + Cb) · dZ(t) + (1− Cs) · dU(t) (3.3)

dV π
i (t) = V π

i (t)

(
µidt+

m∑
j=1

σijdWj(t)

)
+ dZi(t)− dUi(t). (3.4)

Here · denotes the standard dot product, e.g. (1 + Cb) · dZ(t) =
∑m

i=1(1 +
Cbi)dZi(t), and 1 denotes a vector of ones. Since the investor starts with x0 Euros
invested in the bank and x := (x1, ..., xm) Euros invested in stocks 1, ...,m we
have V π

0 (0) = x0 and V π
i (0) = xi. We can rewrite equation (3.4) in vector

notation V π = (V π
1 , ..., V

π
m),

dV π(t) = V π(t) ∗ (µdt+ σdW (t)) + dZ(t)− dU(t).

Here ∗ denotes componentwise multiplication of vectors, x ∗ y := (x1y1, ...,
xmym).
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The total market value p of the portfolio (V π
0 , ..., V

π
m) can be defined as sum:

p(V π
0 (t), V π(t)) = V π

0 (t) +
m∑
i=1

V π
i (t)

= x0 +
m∑
i=1

xi +

t∫
0

(
rV π

0 (s) +
m∑
i=1

µiV
π
i (s)

)
ds (3.5)

+

t∫
0

m∑
i,j=1

V π
i σijdWj(s)−

m∑
i=1

CbiZi(t)−
m∑
i=1

CsiUi(t),

or in vector notation

p(V π
0 , V

π(t)) = (V π
0 , V

π(t)) · 1

= (x0, x) · 1 +

t∫
0

(r, µ) · (V π
0 (s), V π(s))ds (3.6)

+

t∫
0

V π · (σdW (s))− Cb · Z(t)− Cs · U(t).

We define the net value of portfolio (V π
0 , ..., V

π
m) as the total market value of port-

folio after transfer of all stock wealth to the bond

P (V π
0 , V

π) := V π
0 +

m∑
i=1

min[(1− Csi)V π
i , (1 + Cbi)V

π
i ]. (3.7)

In our approach, the risk is measured by a dynamic risk measure ρ correspond-
ing to a risk-adjusted value measure v = −ρ. A coherent risk measure (see i.e.
[1, 6]) is defined by a set of coherency axioms as

Definition 3.1. Consider a set V of real-valued random variables. A function
ρ : V → R is called risk measure if it is
(i) monotonous:

X, Y ∈ V, Y ≥ X ⇒ ρ(Y ) ≤ ρ(X),

(ii) sub-additive:

X, Y,X + Y ∈ V ⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y ),

(iii) positively homogenous:

X ∈ V, h > 0, hX ∈ V ⇒ ρ(hX) = hρ(X),
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(iv) translation invariant:

X ∈ V, a ∈ R, X + a ∈ V ⇒ ρ(X + a) = ρ(X)− a.

In a continuous time setting dynamic risk measures were introduced by Cheridito
et al. [28, 29]. A strategy π is admissible for a starting point x if it is F-adapted
and the controlled process V π to which this strategy leads has positive risk ad-
justed value, i.e. v(pπ) ≥ 0, or negative risk, i.e. ρ(pπ) ≤ 0.

We assume the dynamic risk measure ρ is derived from an one-period risk
measure ρ0 via

ρ(X) = ρ0

(
inf

t∈[0,∞]
Xt

)
. (3.8)

This implies that if ρ(X) ≤ 0 then ρ0(Xt) ≤ 0 for all t. Therefore the strategy π
must be admissible for all times with respect to risk measure ρ0. Then the static
risk adjusted value of controlled wealth will always be positive. Associated in
a one-to-one way to the static coherent risk measure ρ0 is a norm-closed convex
cone C ⊂ L∞(Ω,F , P ), see Delbaen [37], Theorem 2.3. C is the set of all real
valued random variables X , representing profits and loses of portfolios, for which
ρ(X) ≤ 0. A strategy πt = (Zt, Ut) is acceptable for a starting point x ∈ C if
and only if V π

0 , V
π remains in C for all times. Denote Aρx the set of all strategies

which satisfy the risk constraint ρ(V π) ≤ 0 for the starting point (x0, x).
The objective of the investor is to maximize the long-term average expected

growth of the portfolio value by using an optimal admissible strategy. The goal
function is

lim
T→∞

E(log(P (V π
0 , V

π)))/T. (3.9)

The stochastic control problem is to find the admissible strategy which for a given
starting point x maximizes the long term growth rate where the process under
control π follows the dynamic (3.4).

3.2 Limit control strategies and regions of inaction
For portfolio selection problem under transaction costs optimal strategies can be
usually identified with control limit strategies [3, 36, 95, 97]. The control limit
strategy with the control limits [Ai, Bi] looks as follows. If the proportion of the
stock i is below the limit Ai the strategy is to buy the minimal amount of the stock
necessary to bring the proportion of the stock i back to Ai. We are in the buy
region Bi of the the stock i. If the proportion of the stock i is above the limit
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Bi the strategy is to sell the minimal amount of the stock necessary to bring the
proportion of the stock i back to Bi. We are in the sell region Si of the stock
i. If the proportion of the stock i is in the interval [Ai, Bi] the stock i is neither
bought nor sold. We are in the no transaction region NTi of the stock i. If for
all the stocks i the proportions are in [Ai, Bi], we do not buy or sell any stock.
This define the no transaction region NT . The regions of inaction for the stock i
contain the optimal stock proportion in the absence of transaction costs.

These concepts carry over almost unchanged to the stochastic control problem
with coherent risk constraints. The main difference is that the no transaction re-
gions are not only defined by the trade-off between expected return to be gained
and transaction costs to be paid, but also by the risk constraint. Intuitively, the no
transaction region determined by considerations of expected return maximisation
may but need not overlap with the region satisfying the risk constraint. If it does
not overlap the investor is required to perform risk reducing transactions even if
he would not make any transactions to improve return.

The optimal proportions are closely related to Merton’s [80] optimal propor-
tions (σσ′)−1(µ − r1)/γ for an investor optimising expected utility u(c) = c1−γ

1−γ
from consumption c. Here γ is the coefficient of relative risk aversion and 1 rep-
resents vectors with all elements equal to one. In the presence of transaction costs
it is not feasible any more to trade continuously in order to maintain the optimal
stock proportions. The limit control strategies with their transaction regions are a
natural response to the imposition of transaction costs.

For dynamic portfolio optimisation problems in the presence of transaction
costs there are some traditional main solution techniques:

- Approximate solution of temporally and/or spatially discretized versions of
the stochastic control problem with scenario trees [2, 11, 19, 56, 73, 91]

- Martingale Techniques [32, 60, 86]

- Stochastic Duality Theory [33, 34, 35, 49, 50, 64, 89]

- Finite difference PDE solution methods of the corresponding HJB-equation
[20, 21, 102]

- Markov chain approximations [82]

These approaches have been applied to various forms of portfolio selection prob-
lems, but not yet to the problem with coherent risk constraints, as introduced
above. In the following section we will give a simple technique to approximate
solution to the stochastic control problem with coherent risk constraints based on
the approximation with scenario trees and we will discuss the first impression of

12



- how the risk constraints affect expected return and risk,

- how the possibility to rebalance the portfolio affects risk.

3.3 A numerical example of portfolio selection un-
der transaction costs and expected shortfall con-
straints

We consider an investor who choose only between the bank and one stock on
a finite time horizon, with 10 discrete equally spaced points in time in which
investor can hedge his portfolio by selling or buying stocks. The evolution of
the stock value is approximed by a binomial tree. In the first setting, which we
include for comparison, the investor cannot make any transactions at intermediate
time and he will have the same amount of stocks and “bonds” through all time
steps. In the other setting the investor can make transactions at these 10 points in
time. In second setting the investor follows a portfolio selection strategy which
aims at maximising the expectation value of the log-return of the portfolio, the
only constraint being that he cannot sell short the bond or the stock. In the third
setting the investor also tries to maximize the expected value of the log-return,
but is subject to the constraint that from one time step to the next the Expected
Shortfall (ES) be smaller then 3% of the current portfolio value.

Definition 3.2. Expected shortfall with 100(1− α)% confidence level is defined
as

ES1−α = −E[X|x ≤ xα], (3.10)

where xα denotes 100α%-percentile of the profit/loss distribution of X .

In this setting the investor is given some economic capital and is allowed to
make only transactions which require at most this amount of economic capital. To
calculate the behavior of the investor in the third setting we go backward through
the tree and in every node calculate the no transaction region.

The following Table 3.1 and 3.2 represent the resulting expected return and
risk numbers. The proportional transaction costs for buying stock are equal to
transaction costs for selling stocks and are equal to 0.5% and 0.1% resp., the
risk free interest rate r over the time horizon is 2%, the stock has a log-normal
distribution with µ = 0.05 over the ten periods time horizon and σ = 0.2. The
first two columns give the ratio of bonds and stocks in the initial portfolio. The
expected return numbers are given in the last three columns of Table 3.1. The third
column gives the expected returns when no transactions are possible. The fourth
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column gives expected returns of an investor subject only to a no-short-selling
constraint, the last column gives expected returns for an investor subject to the ES
constraint.

With transaction costs at 0.5% we observe that expected returns are lowest for
the investor who is subject to the ES constraint, as long as the initial portfolio
less than roughly 50% bonds. As the number of bonds in the initial portfolio
increase the return diminishing effect of the ES constraints becomes smaller until
at an initial position of roughly 50% bonds the expected return of the investor
subject to the ES constraint is higher than for the investor not able to perform any
transactions. The investor subject only to the no-short-selling constraint achieves
highest expected returns. The expected returns of the investor subject only to the
no-short-selling constraint are higher then those of the investor subject to the ES
constraint by about 0.03 to 0.27 percentage points.

When transaction costs are only at 0.1% the expected returns improve in the
two settings which allow intermediate transactions. Comparing the Tables 3.1a
and 3.1b we see that for the investor subject only to the no-short-selling constraint
expected returns are considerably higher at 0.1% than at 0.5% transaction costs
when the initial portfolio consists primarily of bonds. This is because at low
transaction costs the investor can redirect his investment into stocks with smaller
loss given by transaction costs. When the initial portfolio consists primarily of
stocks expected returns are not improved by lower transaction costs because it
is not necessary to shift from bonds into stocks. For the investor subject to the
ES constraint expected returns are consistently higher when transactions costs are
lower, for all initial portfolios. With low transactions costs expected returns of
the investor subject to the ES constraint hardly depend on the initial portfolio.
This can be explained by the fact that the ES constraint and the goal to maximize
expected log-returns force the investor quickly achieve a portfolio with roughly
50% stocks.

Table 3.2 gives the ES numbers of the three investors. The third column gives
the total ES over the time horizon when no transaction are possible. The fourth
column gives the total ES of an investor subject only to a no-short-selling con-
straint, the last column gives expected returns for an investor subject to the ES
constraint of 3% at each time step. We observe that for initial portfolios consist-
ing primarily of stock, ES is highest when no transactions are possible, and lowest
when the ES constraint is in force. For initial portfolios risk consisting primarily
of bonds, ES is lowest when no transactions are possible, and highest when only
the no-short-selling constraint is in force. This is due to the fact that the optimal
portfolio with only the no-short-selling constraint in force carries 20−30% bonds.
Without transaction possibilities and an initial position of more 40% bonds risk is
lower, and so is expected return. Under the ES constraint, total ES does depend
significantly on the initial composition of the portfolio. It is between one half
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Table 3.1: Maximal expected returns achievable without transactions (column 3), with transac-
tions subject only to a no-short-selling constraint (column 4), and with transactions subject to an
ES constraint (column 5). Column 1 and 2 give the proportions of bonds and stocks in the initial
portfolio. The risk free interest rate r is 2% over 10 periods, the stock has log-normal distribution
with µ = 0.05 and σ = 0.2.

(a) 0.5% transaction costs
initial value expected return

bonds stocks no trnsct no short-sell. ES cnstr
0.1 0.9 0.0281 0.0281 0.0254
0.2 0.8 0.0284 0.0284 0.0259
0.3 0.7 0.0284 0.0284 0.0264
0.4 0.6 0.0280 0.0280 0.0269
0.5 0.5 0.0273 0.0275 0.0272
0.6 0.4 0.0262 0.0270 0.0267
0.7 0.3 0.0248 0.0265 0.0262
0.8 0.2 0.0229 0.0260 0.0257
0.9 0.1 0.0208 0.0255 0.0252

(b) 0.1% transaction costs
initial value expected return

bonds stocks no trnsct no short-sell. ES cnstr
0.1 0.9 0.0281 0.0281 0.0270
0.2 0.8 0.0284 0.0284 0.0271
0.3 0.7 0.0284 0.0284 0.0272
0.4 0.6 0.0280 0.0283 0.0273
0.5 0.5 0.0273 0.0282 0.0274
0.6 0.4 0.0262 0.0281 0.0273
0.7 0.3 0.0248 0.0280 0.0272
0.8 0.2 0.0229 0.0279 0.0271
0.9 0.1 0.0208 0.0278 0.0270

and three quarters of the ES numbers when only the no-short-selling constraint
is in force. This compares to expected returns lowered by 1 − 10% when the ES
constraint is introduced.

With lower transaction costs this picture does not change qualitatively, as Ta-
ble 3.2(b) shows. Under the mere no-short-sell constraint ES numbers are higher
when transaction costs are lower and the initial portfolio carries primarily bonds.
This is due to the incentive to shift to stock more quickly when transactions costs
are lower. Under the ES constraint, total ES is higher when transactions costs are
lower, but again does depend significantly on the initial composition of the port-
folio. The higher total ES is caused by increased incentive to shift to stock when
transaction costs are low.

The temporal evolution of no transaction regions are shown in Table 3.1. The
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Table 3.2: ES at 0.5% and 0.1% transaction costs:

(a) 0.5% transaction costs
initial value Expected Shortfall (95% conf.int.)

bonds stocks no trnsct no short-sell. ES cnstr
0.1 0.9 0.263-0.279 0.257-0.273 0.141-0.149
0.2 0.8 0.232-0.246 0.227-0.241 0.143-0.153
0.3 0.7 0.200-0.213 0.196-0.208 0.144-0.154
0.4 0.6 0.169-0.180 0.170-0.180 0.138-0.147
0.5 0.5 0.138-0.147 0.170-0.181 0.136-0.145
0.6 0.4 0.107-0.114 0.172-0.183 0.137-0.146
0.7 0.3 0.075-0.080 0.173-0.183 0.137-0.145
0.8 0.2 0.044-0.048 0.174-0.184 0.136-0.144
0.9 0.1 0.013-0.015 0.174-0.185 0.140-0.148

(b) 0.1% transaction costs
initial value Expected Shortfall (95% conf.int.)

bonds stocks no trnsct no short-sell. ES cnstr
0.1 0.9 0.253-0.267 0.253-0.267 0.155-0.166
0.2 0.8 0.223-0.236 0.223-0.236 0.149-0.159
0.3 0.7 0.193-0.236 0.204-0.216 0.151-0.161
0.4 0.6 0.162-0.172 0.204-0.216 0.150-0.160
0.5 0.5 0.132-0.140 0.204-0.216 0.153-0.163
0.6 0.4 0.102-0.109 0.204-0.216 0.156-0.166
0.7 0.3 0.072-0.077 0.204-0.216 0.152-0.162
0.8 0.2 0.042-0.045 0.205-0.217 0.154-0.165
0.9 0.1 0.012-0.013 0.205-0.217 0.149-0.159
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(a) With no-short-selling constraint (b) With ES constraint

Figure 3.1: Temporal evolution of no transaction regions at 0.5% transaction costs (black, solid
line) and at 0.1% (red, dashed line). Figure 3.1(a) shows the no transaction region for the investor
subject only to the no-short-selling constraint. Figure 3.1(b) shows the no transaction region for the
investor subject to the ES constraint. When transaction costs are higher no transaction regions in
general include portfolios with higher proportions of bonds. This is due to the lacking incentive to
move into stock when transaction costs are high. We observe the well-known fact that towards the
end of the investment it is optimal to be more conservative and increase the investment in bonds.
For an investor subject only to the no-short-selling constraint, we see that at lower transaction
costs it is better to be less conservative and invest more into stock. For an investor subject to the
ES constraint at low 0.1% transaction costs the no transaction region in the early stages is very
narrow, at roughly 48% bonds. At higher 0.5% transactions costs the no transaction region of the
investor with the ES constraint is wider.

upper and lower boundary of the no transaction region are shown for 0.5% trans-
action costs (black, solid line) and at 0.1% (red, dashed line). Figure 3.1(a) shows
the no transaction region for the investor subject only to the no-short-selling con-
straint. Figure 3.1(b) shows the no transaction region for the investor subject to
the ES constraint. In general no transaction regions include portfolios with higher
proportions of bonds when transaction costs are higher. This is due to the lack-
ing incentive to move into stock when transaction costs are high. We observe the
well-known fact that towards the end of the investment it is optimal to be more
conservative and increase the investments in bonds. For an investor subject only
to the no-short-selling constraint, we see that at lower transaction costs it is better
to be less conservative and invest more into stock. For an investor subject to the
ES constraint at low 0.1% transaction costs the no transaction region in the early
stages is very narrow, at roughly 48% bonds. At higher 0.5% transactions costs
the no transaction region of the investor with the ES constraint is wider.
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Chapter 4

Risk adjusted pricing methodology

One of the interesting problems in the modeling of pricing of financial derivatives
is the question how to incorporate both transaction costs and risk arising from a
volatile portfolio into the governing equation. In [65], M. Kratka derived a math-
ematical model for pricing derivative securities in the case when both transaction
costs as well as the risk from a volatile portfolio are taken into account. The
model is based on the Black-Scholes parabolic PDE in which transaction costs
are described by Leland’s approach (see e.g. [9, 51, 66, 70] whereas the risk from
a volatile portfolio is described by the average value of the variance of the syn-
thetized portfolio. Transaction costs as well as the volatile portfolio risk depend
on the time-lag between two consecutive transactions. Minimizing the total costs
functional yields the optimal length of the hedge interval. It also gives us a new
strategy for hedging derivative securities. This strategy is associated with a so-
lution to a fully nonlinear parabolic equation with varying diffusion coefficient.
In this chapter we revisit Kratka’s approach in order to derive a model which is
mathematically well posed and is scale invariant. These two important features
were missing in the original Kratka’s model. The key idea of our modification of
Kratka’s approach consists in a slightly different definition of the risk measure.
Furthermore we will extend the model with the possibility of default of counter-
party. We will show the importance of integration of default on comparison of
integrated vs. separated market and credit risk. The resulting governing equa-
tion is scale invariant and it can be mathematically treated. We present qualitative
analysis of the governing equation and we derive a robust numerical scheme. We
perform extensive numerical testing of the model and compare the results to real
option market data. We also introduce a concept of the so-called implied RAPM
volatility and implied risk premium coefficient. Implied quantities are computed
for large option data sets. We discuss how they can be used in qualitative analysis
of option market data.

The chapter is organized as follows. In section 4.1 we derive a scale invariant
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risk adjusted model for pricing options on assets. We follow the original Leland’s
and modified Kratka’s approach in order to incorporate both transaction costs as
well as the risk value arising from a volatile portfolio and the risk from default of
counterparty. Based on this model it turns out that prices of options are solutions
to a fully nonlinear parabolic partial differential equation. We discuss optimal
time interval between consecutive portfolio adjustments. We also show scale in-
variance of the model. In section 4.2 we analyze the resulting nonlinear partial dif-
ferential equation. We focus our attention on qualitative aspects of a solution. We
also show how to transform the governing fully nonlinear parabolic equation into
a quasilinear parabolic equation for the Gamma factor. For such a system of equa-
tions we can construct an effective numerical discretization scheme allowing us
to find an approximate solution. Qualitative properties of the full space-time dis-
cretization scheme are analyzed in section 4.3. Next section 4.4 contains results of
numerical simulation and comparison of results based on the RAPM model to real
market data. We also show how to calibrate the model. Implied RAPM volatility
and implied risk premium are introduced. Finally, we present several numerical
experiments comparing computational results to real option market data and take
a detailed look on the separated vs. integrated analysis of market and credit risk.
The RAPM model for the case when no default can occurs and no dividend are
paid was published in author’s paper [53] and the results on separated vs. in-
tegrated analysis of market and credit risk for loan portfolio were published in
author’s paper [24].

4.1 Derivation of a scale invariant RAPM model
Before describing the derivation of the RAPM model, we discuss first the basic
assumptions we will be making. Throughout this chapter we assume that the asset
price S = S(t), t ≥ 0, follows a geometric Brownian motion with a drift µ and
standard deviation σ > 0, i.e.

dS = µSdt+ σSdW

where dW denotes the differential of the standard Wiener process. Additionally
the investor can invest to risk free zero coupon bonds B which evolution in time
is given by equation B(t) = B(0)ert, where r denotes risk free interest rate.
Respectively we can write this equation in differential form

dB = rBdt. (4.1)

Similarly as in the derivation of the classical Black-Scholes equation we construct
a synthetized portfolio Π consisting of one option with the price V , δ assets with
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the price S per one asset and α risk free zero coupon bonds with a price B

Π = V + δS + αB. (4.2)

We recall that the key idea in the Black-Scholes theory is to examine the differen-
tial of equation (4.2)

dΠ = dV + Sdδ + δdS +Bdα + αdB. (4.3)

In a self financed strategy no additionally investment is used to rehedge the port-
folio. To buy a stocks the investor must sell corresponing amount of the bonds.
In world without transaction costs, without dividend and without a risk from non-
perfect hedging the selffinancing strategy can be expressed as

Sdδ +Bdα = 0. (4.4)

For the asset paying continuous dividends the investor earn additionaly amount
DSdt in time intervat dt for each stock in his portfolio. He can use these money
to buy additional stocks or bonds. The condition for selffinancing strategy then
becomes

Sdδ +Bdα = δDSdt. (4.5)

The equation (4.5) does not include the transaction costs which must investor pay
for each transaction. We will denote rTCSdt the transaction costs which results
from rehedging the portfolio on time interval dt. In presence of nontrivial transac-
tion costs, continuous adjustment of portfolio may lead to infinite total transaction
costs, while adjustment of portfolio in discrete times leads to additional risk in
portfolio. The selffinanced strategy must include also the risk premium rV . This
risk premium can be interpretted either as the premium which must the investor
get to willingly invest in a risky portfolio, reps. as the amount which is needed to
buy an insurrence for this risk. The selffinancing strategy including the dividends,
transaction costs and the portfolio volatility risk premium can be written as

dδS + dαB = δDSdt− rTCSdt− rV Sdt. (4.6)

Applying this self financed strategy on equation (4.3) gives the differential of the
portfolio value as

dΠ = dV + δdS + αdB + δDSdt− (rTC + rV )Sdt. (4.7)

The differential of risk free zero coupon bond dB is given by equation (4.1) as
rBdt. From equation (4.2) we can express the term αB under zero investment
strategy as

αdB = αrBdt = −r(V + δS)dt. (4.8)
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In the classical Black-Scholes theory the option price V (S, t) from equation (4.3),
resp. equation (4.7) in case of RAPM model, is differentiated by using Itô’s for-
mula (see e.g. chapter 2.4.2 in [66])

dV = ∂tV dt+
1

2
σ2S2∂2

SV φ
2dt+ ∂SV dS, (4.9)

where φ is normally distributed with zero mean and unit variance. In the classical
Black-Scholes theory no default is possible and the Itô’s formula can be used.
However in the presence of the possibility to default we can apply the Itô’s formula
only on interval where no default is generated. In our model we assume that the
counterparty for the options can default. In case of default the value of options will
change discontinuously, depending on the recovery rate. More precissly we will
denote the probability of default on time interval dt as ρdt. Under the assumption
that, the defaults are independent on history, the probability of default pd on time
interval [0, t] simplifies to

pd(t) = 1− e−ρt. (4.10)

We assume that in case of default, the investor will recover the losses only par-
tially. We assume that the default will influence only the options. In case of default
investor will recover RRV from his investment in option insted of V , which rep-
resent the options price in case of no default. Here RR denotes recovery rate. In
case of default the total investment in options will be discontinuous as

lim
dt→0+

(Vt+dt − Vt) = (RR − 1)Vt. (4.11)

However this loss will be generated only with probability ρdt and therefore its
contribution to expected change of the option investment in case of default is

lim
dt→0+

ρdt(Vt+dt − Vt) = −ρdt(1−RRVt). (4.12)

Therefore for small time intervall dt the contribution to the expected change of
options investment will be −ρ(1−RRV )dt. This contribution is achieved in case
of default. The counterparty will not default with probability 1 − ρdt, in which
case the contribution to the expected change of options investment is (1−ρdt)dV ,
in this case we can apply Itô’s lema on dV . The conditional expected value of the
change of options investment in the lowest approximation order becomes

E[dV |dS] = −ρ(1−RR)V dt+ ∂tV dt+
1

2
σ2S2∂2

SV φ
2dt+ ∂SV dS. (4.13)

Our next goal is to show how the transaction costs rTC and the risk premium rV
depend on other quantities, like e.g. σ, S, V and derivatives of V .
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Modeling transaction costs
In practice, we have to adjust our portfolio by frequent buying and selling of
assets. In the presence of nontrivial transaction costs, the continuous portfolio
adjustment may lead to infinite total transaction costs. A natural way how to
consider transaction costs in the frame of the Black-Scholes theory is to follow
well known Leland’s approach [70]. In what follows we recall crucial lines of
the derivation of Leland’s model in order to show how to incorporate effect of
transaction costs into the governing equation. More precisely, we will derive the
coefficient of transaction costs rTC occurring in (4.6).

Let us denote byC the round trip transaction cost per unit dollar of transaction.
Then

C = (Sask − Sbid)/S (4.14)

where Sask and Sbid are the so-called Ask and Bid prices of the asset, i.e. the mar-
ket price offers for selling, resp. for buying assets, which include all additionally
costs for transaction. Here S = (Sask + Sbid)/2 denotes the mid value. It means
that the transaction costs are given by the value C|k|S/2 where k is the number of
sold assets (k < 0) or bought assets (k > 0). The number of stocks in portfolio is
given by δ and the number of sold or bought assets are given by change of δ, i.e.
k = ∆δ. Using the Itô’s formula on δ as function of S and t we get in the lowest
order approximation

∆δ = σS∂Sδ∆W. (4.15)

If portfolio adjustments follow the so-called δ-hedging strategy then δ = −∂SV
and so, in the lowest order approximation in ∆t, we obtain

∆δ = −σS∂2
SV∆W. (4.16)

Since W is the Wiener process with ∆W ∼ N(0,∆t) we have E(|∆W |) =√
2/π
√

∆t. If ∆t is small compared to T − t Leland in [70] proved that we can
take |∆W | ≈ E(|∆W |) and thus the coefficient rTC of transaction costs is given
by the formula:

rTC =
CσS√

2π

∣∣∂2
SV
∣∣ 1√

∆t
. (4.17)

Clearly, increasing the time-lag ∆t between portfolio adjustments decreases trans-
action costs. Therefore, in order to minimize transaction costs we have to take a
larger time-lag ∆t. On the other hand, as it will be obvious from the next section,
choosing a larger time-lag ∆t could lead to a higher investor’s exposition to the
risk from an unprotected portfolio.
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Modeling risk from a volatile portfolio
In this section we focus our attention to the question how to include the risk from
a volatile portfolio into the model. In the case the portfolio consisting of options
and assets is highly volatile, an investor usually asks for a price compensation.

The risk of a fluctuating portfolio can be measured by the variance in relative
increments of the replicating portfolio Π = V + δS + αB, i.e. by the term
V ar((∆Π)/S). Therefore it is convenient to define the measure of the portfolio
volatility risk rV P as follows:

rV P = R
V ar

(
∆Π
S

)
∆t

. (4.18)

In other words, rV P is proportional to the variance of the relative change of the
portfolio per time interval ∆t. The constantR is the so-called risk premium coeffi-
cient. It represents the marginal value of investor’s risk exposition. Now applying
Itô’s formula to the differential ∆Π we obtain

∆Π = (∂SV + δ)σS∆W +
1

2
σ2S2Γ(∆W )2 + G

where Γ = ∂2
SV and G is a deterministic term, i.e E(G) = G. Additionaly we

assume that this risk premium cover only the risk of volatile portfolio when the
counterparty does not default. Thus

∆Π− E(∆Π) = (∂SV + δ)σSφ
√

∆t+
1

2
σ2S2Γ(φ2 − 1)∆t

where φ is a random variable with standard normal distribution with zero mean
and unit variance such that ∆W = φ

√
∆t. Hence the variance of the change ∆Π

in the portfolio Π can be computed as follows:

V ar(∆Π) = E
[
E
[
(∆Π− E(∆Π))2

∣∣ dS]
]

= E

[(
(∂SV + δ)σSφ

√
∆t+

1

2
σ2S2Γ

(
φ2 − 1

)
∆t

)2
]

=
1

2
σ4S4Γ2∆t2 + (∂SV + δ)2σ2S2∆t . (4.19)

Substituting (4.19) into equation (4.18) we get the following form of risk premium

rV P =
1

2
Rσ4S2Γ2∆t+R(∂SV + δ)2σ2. (4.20)

Similarly, as in the derivation of transaction costs measure rTC we assume δ-
hedging of the portfolio adjustment, i.e. we choose δ = −∂SV . Note that the
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choice δ = −∂SV minimise the risk of portfolio and therefore also the risk pre-
mium, which will be reduced to

rV P =
1

2
Rσ4S2Γ2∆t . (4.21)

It means that increase in the time-lag ∆t between consecutive transactions leads
to a linear increase of the risk from a volatile portfolio. In other words, larger time
interval ∆t means higher risk exposition for an investor.

Gamma hedging strategy based on the RAPM model
The total risk premium rR = rTC + rV P consists of two parts: transaction costs
premium rTC and the risk from a volatile portfolio premium rV P defined as in
(4.17) and (4.21), resp. An investor usually seeks for a minimal value of the total
risk premium rR. To this end, an investor has to choose an optimal time-lag ∆t
between consecutive portfolio adjustments. As both rTC as well as rV P depend
on the time-lag ∆t so does the total risk premium rR. In order to find an optimal
value of ∆t we have to minimize the function

∆t 7→ rR = rTC + rV P =
C|Γ|σS√

2π

1√
∆t

+
1

2
Rσ4S2Γ2∆t .

A graph of the function ∆t 7→ rR is depicted in Fig. 4.1. The minimum of the
function ∆t 7→ rR is attained at the time-lag

∆topt =
K2

σ2|SΓ| 23
where K =

(
C

R

1√
2π

) 1
3

. (4.22)

For the minimal value of the function ∆t 7→ rR(∆t) we have

rR(∆topt) =
3

2

(
C2R

2π

) 1
3

σ2|SΓ|
4
3 . (4.23)

Since S follows the geometric Brownian motion we have, in the lowest order
approximation w.r. to ∆t

E(|∆S|/S) = σE(|∆W |) =

√
2

π
σ
√

∆t .

As a consequence from minimizing of the total risk premium rR we can conclude:

Corollary 4.1. The optimal hedging strategy.
If |∆S|/S ≈ K

√
2
π
|SΓ|− 1

3 in the sense of expected values then adjustment of
the portfolio is required. The portfolio is adjusted according to δ-hedging.
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Figure 4.1: The total risk premium rR = rTC + rV P as a function of the time-lag ∆t between
two consecutive portfolio adjustments.

Risk adjusted Black-Scholes equation
In previous sections we have shown that taking into account both transaction costs
as well as risk from a volatile portfolio into the equation for the change ∆Π of the
portfolio Π we obtain

∆Π = ∆V + δ∆S + (δDS − rV − rδS − rRS)∆t

where rR represents the total risk premium, rR = rTC + rV P . On the other hand,
the investor create the portfolio with zero investment and also zero investment is
needed for rehedging the portfolio. By the no-arbitrage principle the expected
value of change in the portfolio ∆Π must be equal to zero. Additionally with
equation (4.13) we finally obtain following generalization of the Black-Scholes
equation for valuing options:

∂tV +
σ2

2
S2∂2

SV = (r + ρ(1−RR))V + (D − r)S∂SV + rRS.

Taking the optimal value of the total risk coefficient rR derived in (4.23) we obtain
that the option price is a solution to the following nonlinear parabolic equation:

(Risk adjusted Black-Scholes equation)

∂tV +
σ2

2
S2Γ

(
1− υ(SΓ)

1
3

)
= (r + ρ(1−RR))V + (D− r)S∂SV (4.24)

where

Γ = ∂2
SV and υ = 3

(
C2R

2π

) 1
3

. (4.25)
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Here and after we will denote by x
1
3 the signed power function, defined as: xp =

|x|p−1x = |x|psign(x) for all x ∈ R, p > 0. In the case there are either no
transaction costs (C = 0) or no risk from the volatile portfolio (R = 0) we
have υ = 0 if additionally there is no default possibility (ρ = 0) or we have
full recovery in case of default (RR = 1) then the equation (4.24) reduces to the
original Black-Scholes linear parabolic equation

∂tV +
σ2

2
S2Γ = rV + (D − r)S∂SV . (4.26)

Behavior near the exercise time
Our next goal is to analyze the behavior of the option price V = V (S, t) near
the exercise time T , i.e. when T − t is small. Recall that we have followed
Leland’s methodology in modeling transaction costs. In this approach one has to
assume that the time-lag ∆t between consecutive portfolio adjustments is small
compared to T − t (see [51, 66, 70]). A natural way how to satisfy the condition
∆topt � T − t is to disallow portfolio adjustments when the time t is close to
the exercise time T . Hence it is convenient to assume that V = V (S, t) is a
solution to the classical Black-Scholes equation (4.26) for times t close to T . The
same kind of approximation is used in [46]. More precisely, we will assume that
V = V (S, t) is a solution to the Black-Scholes equation (4.26) on some small
time interval (T − τυ, T ) whereas V (S, t) solves the Risk adjusted Black-Scholes
equation (4.24) on (0, T − τυ) where 0 < τυ � T . There is another, purely
mathematical, justification for such an assumption. Equation (4.24) is a parabolic
PDE if and only if the function

β(H) =
σ2

2
(1− υH

1
3 )H (4.27)

is an increasing function in the variable H := SΓ = S∂2
SV . Hence, in order to

verify parabolicity of (4.24), we have to assume

SΓ <

(
3

4υ

)3

. (4.28)

However, if we consider either Call or Put options on assets paying no dividends
then the term SΓ = S∂2

SV (S, t) becomes infinite at S = X for t → T− and
the above condition is violated. For both Call and Put options we have the same
expression for the term SΓ,

SΓ =
N ′(d)

σ
√
T − t

, d =
ln(S/X) + (r + σ2

2
)(T − t)

σ
√
T − t

, (4.29)
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where N ′(d) = 1√
2π
e−d

2/2 is the density function of the standard normal distribu-
tion.

As it is usual in the theory of nonlinear diffusion (see e.g. [58, 59]) the idea
how to overcome this difficulty is to modify the function β(H) = (1−υH 1

3 )H for
large values of H = SΓ and then to prove á priori bounds of a solution enabling
us to conclude that the solution of the modified equation satisfies the original
equation on (0, T − τυ). We first modify the function m(H) = υH

1
3 for large

values of H as follows:

mε(H) =

{
υH

1
3 if H < κυ =

(
3(1−ε)

4υ

)3

;

(1− ε)
(
1− κυ

4H

)
otherwise,

(4.30)

where 0 < ε� 1 is a small regularization parameter. With this regularization the
function

βε(H) =
σ2

2
(1−mε(H))H (4.31)

is C1 continuous, and, moreover

βε(H) =
σ2

2

(
1− υH

1
3

)
H for H < κυ . (4.32)

and

β′ε(H) =
σ2

2
ε > 0 for H ≥ κυ . (4.33)

Recall that we have to assume that V (S, t) is a solution to the Black-Scholes
equation (4.26) for t ∈ (T − τυ, T ) where 0 < τυ � 1 is small. Hence, for both
Call and Put options, it follows from (4.29) that

lim
t→T−τ+

υ

max
S>0

S∂2
SV (S, t) = lim

t→T−τ+
υ

1/
√

2πσ2(T − t) = κυ

provided that the switching time 0 < τυ < T is defined as follows:

τυ =
1

2πσ2κ2
υ

. (4.34)

Remark 4.1. We also remind ourselves that the terminal pay-off for a Call option
at t = T is given by V (S, T ) = max(S−X, 0) whereas V (S, T ) = max(X−S, 0)
for a Put option. Here and after X denotes the exercise price and T stands for
the exercise time. Furthermore, a Call option price V (S, t) is subject to boundary
conditions V (0, t) = 0, V (S, t)→ S as S →∞, t ∈ (0, T ), and, Put option price
satisfies: V (0, t) = Xe−r(T−t), V (S, t)→ 0 as S →∞.
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Having modified the function β we are in a position to introduce a notion of a
solution to the Risk adjusted Black-Scholes equation.

Definition 4.1. By a solution to the Risk adjusted Black-Scholes equation we mean
a continuous function V = V (S, t), S ∈ (0,∞), t ∈ (0, T ), satisfying boundary
conditions, the terminal payoff condition at t = T , and such that

a) V (S, t) is a classical (smooth) solution to the Black-Scholes equation

∂tV +
σ2

2
S2Γ = rV + (D − r)S∂SV , S > 0 ,

on the time interval (T − τυ, T ).

b) V (S, t) is a classical (smooth) solution to the equation

∂tV +Sβε(SΓ) = (r+ρ(1−RR))V +(D−r)S∂SV , S > 0 , (4.35)

on the time interval t ∈ (0, T − τυ).

Scale invariance property
The governing equation (4.24) as well as (4.35) have the scale invariance property.
Indeed, let us multiply the asset and option prices by the same scaling factor κ >
0, i.e. we take S̃ = κS, Ṽ = κV . Then S̃Γ̃ = S̃∂2

S̃
Ṽ = S∂2

SV = SΓ. i.e. the term
SΓ remains unchanged after scaling of S and V by the factor κ > 0. Therefore
the scaled option price Ṽ satisfies the same governing equation (4.24) in which
we change the variable S to S̃. This is a very important property of the governing
equation which was missing in original Kratka’s approach based on a different
definition of the risk coefficient rV P measuring volatility of the portfolio. More
precisely, in [65] the risk measure was defined as follows:

rV P = R
V ar(∆Π)

∆t
.

The equation for valuing the price of an option then reads as:

∂tV +
σ2

2
S2
(

1− υΓ
1
3

)
Γ = r (V − S∂SV ) .

However, this equation is not scale invariant with respect to the scaling: V ↔
κV, S ↔ κS.
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4.2 Analysis of the RAPM model
The idea how to analyze and solve equation (4.35) is based on transformation
technique. As it is usual in similar circumstances (see e.g. [51, 66]) we consider
the change of independent variables:

x := ln(S/X) , x ∈ R , τ := T − t , τ ∈ (0, T ) .

As equation (4.35) contains the term SΓ = S∂2
SV it is convenient to introduce

the following transformation:

H(x, τ) := SΓ = S∂2
SV (S, t) .

Recall that the option price V (S, T − τ) for 0 < τ ≤ τυ can be valuated by an
explicit formula for both Call and Put options, resp. (see e.g. [51, 66]). More
precisely, the valuation formulae for pricing European Call and Put options read
as follows:

Vec(S, T − τ) = SN(d1)−Xe−rτN(d2) ,

Vep(S, T − τ) = Xe−rτN(−d2)− SN(−d1) ,

where d1 = (ln(S/X) + (r + σ2/2)τ)/(σ
√
τ), d2 = d1 − σ

√
τ .

Therefore the H(x, τ) for 0 < τ ≤ τυ becomes

H(x, τ) =
N ′(d1)

σ
√

(τ)
, d1 =

x+ (r + σ2/2)τ

σ
√

(τ)
. (4.36)

Valuation formula for option price
Suppose for a moment that the function SΓ is already known. Setting

H(x, τ) = SΓ(S, t) (4.37)
U(x, τ) = e(r+ρ(1−Rr))(T−t)V (S, t), (4.38)

with τ = T − t and x = ln S
X
− (D− r)τ we get from (4.24) differential equation

for U(x, τ) in a simple form

∂τU = Xex+(D+ρ(1−RR))τβ(H(x, τ)). (4.39)

Value of U(x, τυ) is given by the initial condition on V in time T − τυ. With the
initial condition U(x, τ) one can integrate (4.39) as

U(x, τ) = U(x, τυ) +

τ∫
τυ

Xex+(D+ρ(1−RR))θβ(H(x, θ))dθ. (4.40)

Applying the inverse transform to (4.38) finally we get the option price.
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Γ equation
Next we derive an equation for the functionH on time interval (τυ, T ). It turns out
that the function H(x, τ) is a solution to a nonlinear parabolic equation subject to
the initial and boundary condition. More precisely, by taking the second derivative
of (4.24) with respect to x, we obtain, after some calculation, that H = H(x, τ)
is solution to the quasilinear parabolic equation

∂τH = ∂2
xβε(H) + ∂xβε(H)− (D + ρ(1−RR))H + (r −D)∂xH. (4.41)

Henceforth, we will refer to (4.41) as Γ equation. A solutionH to (4.41) is subject
to the initial condition at τ = τυ:

H(x, τυ) = H̃(x), x ∈ R, (4.42)

where H̃(x) = N ′(d1)/(σ
√
τυ) (see (4.36)). In the case of Call or Put options,

the function is subject to boundary conditions at x = ±∞,

H(−∞, τ) = H(∞, τ) = 0, τ ∈ (0, T ). (4.43)

Next we show useful bounds for a solutionH to the Γ equation (4.41). Notice that
for any constant c the function

Hc(x, τ) = ce−(D+ρ(1−RR))(τ−τυ) (4.44)

is a solution to (4.41), where the term D + ρ(1 − RR) is by its definition non-
negative. For this solution of the Γ equation we get

H0(x, τυ) ≤ H̃(x) ≤ Hκυ(x, τυ), for any x ∈ R. (4.45)

From the classical maximum principle for parabolic equation (see [87]) follows
that a solution H(x, τ) to the initial-boundary problem (4.41)-(4.43) satisfies the
estimate

0 ≤ H(x, τ) ≤ Hκυ(x, τ) ≤ κυ, for any x ∈ R, τ ∈ (τυ, T ) (4.46)

The above estimate enable us to conclude that a solution V (S, t) to the risk-
adjusted Black-Scholes equation (see Definition 4.1) is indeed a solution to (4.24)
on time interval t ∈ (0, T − τυ).

4.3 Numerical scheme for full space-time discretiza-
tion

In this section we describe a full space-time discretization scheme for solving
(4.41) and (4.40). The idea of construction of a numerical approximation to (4.41)
is based on the finite-volume method (see, e.g., [43]).
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Discretization of the Γ equation
In order to find a numeric solution to (4.41), we have to restrict ourselves to a finite
spatial interval x ∈ (−L,L) whereL > 0 is sufficiently large. Since S = Xex, we
have restricted the interval of asset values to S ∈ (Xe−L, XeL). From practical
point of view, it is therefore sufficient to takeL ≈ 1.5 in order to include important
values of S. Subsequently, we have also to modify boundary conditions (4.43).
Instead of (4.43), we will consider Dirichlet boundary conditions at x = ±L, that
is,

H(−L, τ) = H(L, τ) = 0, τ ∈ (τυ, T ). (4.47)

We take a uniform division of the time interval [0, T ] with a time step k = T/m
and a uniform division xi = ih, i = −n, ..., n, of the interval [−L,L] with a step
h = L/n. To construct numerical approximation of a solution H to (4.41), we
derive a system of difference equations corresponding to (4.41) to be solved at
every discrete time step. Difference equations involve discrete values of Hj

i ≈
H(ih, jk) where j = p, ...,m. Here the index p corresponds to the initial time τυ,
that is τυ ≈ pk. We choose the time step k less then ∆topt (see (4.22)).

Our numerical algorithm is semi-implicit in time. It means that all nonlinear
terms in equations are treated from the previous time step whereas linear terms
are solved at the current time level. In order to guarantee stability of the scheme,
we assume the CLF condition (see [52]) for the time step k and spatial step h:
(k/h2)λ+ < 1/2. Such a discretization leads to a solution of linear systems of
equations at every discrete time level. Now, by replacing the time derivative by the
time difference, approximating H in nodal points by the average value of neigh-
boring segments, collecting all linear terms at the new time level j, and taking all
the remaining terms from the previous time level j − 1, we obtain a tridiagonal
system subject to homogeneous Dirichlet boundary conditions imposed on new
discrete values of Hj:

ajiH
j
i−1 + bjiH

j
i + cjiH

j
i+1 = dji , Hj

−n = 0, Hj
n = 0, (4.48)

for i = −n+ 1, ..., n− 1, and j = p+ 1, ...,m, where Hp
i = H̃(xi) and

aji = − k

h2
β′ε(H

j−1
i−1 ) +

k

h
(r −D), (4.49)

bji = 1− (aji + cji ), (4.50)

cji = − k

h2
β′ε(H

j−1
i ), (4.51)

dji = (1− k(D + ρ(1−RR)))Hj−1
i +

k

h
(βε(H

j−1
i )− βε(Hj−1

i−1 )). (4.52)

Since triagonal systems admit a simple LU-matrix decomposition, we can
solve the above tridiagonal system in every time step in a fast and effective way.
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Computation of option prices
Equation (4.40) is simple updating formula once a numerical approximation of a
solution H(x, τ) to Γ equation is known. We can use a simple trapezoidal rule
for numerical integration of equation (4.40), when the value of a function H at a
spatial point x ∈ [xi, xi+1] is computed by a linear approximation of H using the
neighboring values Hi, Hi+1.

4.4 Computational results
The purpose of this section is to discuss application of the Risk adjusted pricing
methodology to the real market option price data. We introduce a concept of the
so-called implied RAPM volatility σRAPM and implied risk premium coefficient
R. Furthermore, we discuss the volatility smile phenomenon and explanation of
this paradox within the frame of RAPM model. In the first part of this section we
will focus on the RAPM model with zero default probability and in the second
part we will explore the influence of the presence of default probability to the
options prices.

Volatility smile explained
One of the most striking phenomena in the Black-Scholes theory is the so-called
volatility smile phenomenon. Notice that derivation of the classical Black-Scholes
equation (4.26) relies on the assumption on a constant value of the volatility pa-
rameter σ. On the other hand, as it was documented by many examples obtained
from real market data (see e.g. [8, 42, 55, 99]) this assumption is often violated.
More precisely, the implied volatility σimpl is no longer constant and it may de-
pend on the asset price ratio S/X as well as the time t. Typically, the dependence
S 7→ σimpl has a convex shape. Clearly, the concept of the implied volatility is one
of the weakest points in the Black-Scholes theory because the implied volatility is
being computed from a model which is based on the constant volatility assump-
tion.

In the Risk adjusted pricing methodology approach we are yet able to explain
volatility smile without breaking the RAPM model. The risk adjusted Black-
Scholes equation (4.24) can be viewed as an equation with variable volatility co-
efficient, i.e.

∂tV +
σ̄2(S, t)

2
S2Γ = r̄V − (r̄ − D̄)S∂SV

where Γ = ∂2
SV , r̄ = r + ρ(1 − RR), D̄ = D + ρ(1 − RR) and the volatility
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Figure 4.2: Explanation of the volatility smile. The dependence of σ̄(S, t) on S is depicted in
(a) for t close to the expiration T and in (b) for time 0 < t << T . The function (S, t) 7→ σ̄(S, t)
is shown in (c).

σ̄2(S, t) depends itself on a solution V = V (S, t) as follows:

σ̄2(S, t) = σ2
(
1− υ(SΓ)1/3

)
.

In Fig. 4.2 we show the dependence of the function σ̄(S, t) on the asset price S
and time t. It should be obvious that the function S 7→ σ̄(S, t) has a convex shape
near the exercise price X . We have used the RAPM model in order to compute
values of Γ = ∂2

SV . We choose µ = 0.2, σ = 0.3, r = 0.011, T = 0.5, D = 0 and
ρ = 0.

Modeling Bid - Ask spreads of option values
In real market quotes data sets there are listed two different option prices Vbid <
Vask called Bid and Ask price representing thus offers for buying and selling op-
tions, respectively (see [85]). In our approach of derivation of RAPM model the
asset transaction costs as well as the risk from unprotected portfolio were on the
side of a holder of an option because he/she has to keep a fixed amount of options
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Figure 4.3: A comparison of bid and ask option prices computed by means of the RAPM model.
The dotted line in the middle is options price computed from the Black-Scholes equation. We
choose (a) σ = 0.3, υ = 0.2, r = 0.011, X = 25, D = 0, ρ = 0 and T = 1 and (b) T = 0.3.

and has to adjust portfolio by buying or selling assets. Having assumed such a
long option position the solution to the RAPM model (4.24) corresponds to the
Bid option price Vbid. If we switch to the short positioned option we transfered
both transaction costs and the risk from unprotected portfolio to the buyer of an
option. In this setting we just changed the governing equation slightly - the co-
efficient υ has a reverse sign. It means that the RAPM equation modeling higher
Ask option prices reads as follows:

∂tV +
σ2

2
S2
(

1 + υ(SΓ)
1
3

)
Γ = r̄V + D̄S∂SV . (4.53)

The above PDE can be numerically computed exactly in the same way as the
RAPM equation (4.24) for the bid option price. In fact, we only change the sign
of the coefficient υ in our numerical scheme. Let us denote V (S, t;σ, υ) the value
of a solution to (4.24). In order to calibrate RAPM model we seek for the pair
(σRAPM , R) such that Vbid = V (S, t;σ, υ) and Vask = V (S, t;σ,−υ). It leads us
to the following definition of implied RAPM volatility and risk premium coeffi-
cient.

Definition 4.2. Let Vbid, Vask denote the market option data for the Bid and Ask
option price. By the implied RAPM volatility σRAPM and implied RAPM risk
premium coefficient R we mean the unique values of σ and R such that Vbid =
V (S, t;σRAPM , υ) and Vask = V (S, t;σRAPM ,−υ) where υ = 3(C2R/(2π))1/3

and C > 0 is the asset transaction cost rate.

In figure 4.3 we show a comparison of Vbid and Vask options prices to the Call
option payoff diagram. We also show the solution to the classical Black-Scholes
equation (4.26) lying on between Vbid and Vask prices. Notice that a solution σ
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to the equation Vmid = V (S, t;σ, tυ, 0), where Vmid = (Vbid + Vask)/2 is just the
usual implied volatility σimpl (see [66]).

Remark 4.2. In modeling bid-ask spreads, we have unambiguously associated
a long positioned option with a lower bid price, and a short positioned option
with a higher ask price. In a real market, it need not be so easy to switch costs
and the risk to the other side of the contract. A consistent way how to calibrate
the RAPM model should be to work with either one of Vbid or Vask and stick to
it. It turned out from the calibration of implied pairs (σRAPM , R) that σRAPM is
very close to the Black-Scholes implied volatility σimpl, their relative difference
being less than 5.10−3 (see section Example of calibration of the RAPM model).
Of course they need not coincide as the governing parabolic equation is nonlin-
ear and so 1

2
(V (S, t;σ, tυ,−υ) + V (S, t;σ, tυ, υ)) 6= V (S, t;σ, tυ, 0), in general.

Nevertheless, from practical point of view, we may take σRAPM ≈ σimpl leading
to calibration of the remaining parameter υ (and subsequently R) from the single
equation Vbid = V (S, t;σ, tυ, υ) only.

In order to find a pair (σRAPM , R) of the implied volatility and risk pre-
mium R, we have to solve the following system of nonlinear equations F (σ, υ) =
(Vbid, Vask), where the mapping F : R2 → R2 is defined as

F (σ,R) = (V (s, t;σ, tυ, υ), V (s, t;σ, tυ,−υ)). (4.54)

To find a solution to (4.54), we make use of the iterative Newton-Kantorovich
method (see [4]),

yn+1 = yn − [F ′(yn)]−1F (yn), n = 0, 1, ..., (4.55)

where yn = (σn, Rn) and F ′ is the derivative of F . Taking a good initial ap-
proximation (σ0, R0) of an implied pair, the Newton-Kantorovich sequence yn =
(σn,n ) defined as in (4.55) converges to a solution (σ,R) of (4.54). In practice, we
replace partial derivatives in the Jacobe matrix F ′ by their central difference ap-
proximations. Notice that the overall complexity of a single Newton-Kantorovich
step is therefore 10 times the complexity of computation of a particular RAPM
option price V (S, t;σ, tυ, υ). In our experiments to follow, we needed (in aver-
age) 5− 15 steps in the Newton-Kantorovich scheme in order to find a solution to
(4.54) with accuracy less than 0.1% of the option price.

Example of calibration of the RAPM model
In this section, we summarize results of several numerical experiments and com-
parison of results to market option datasets. We focus on calibration of the RAPM
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model. The main goal is to analyze time series of option prices and to compute the
implied RAPM volatility σRAPM and risk premium coefficient R. The analyzed
datasets consisted of several hundreds of option prices for different exercise prices
X and exercise times T . These results were part of the author’s paper [53].

As an example we considered sample datasets for Microsoft Corporation. In
all studied cases, we computed the implied RAPM volatilities and risk premium
coefficients. We considered a flat interest rate r = 0.02 and a constant trans-
action cost coefficient C = 0.01. We also compared implied RAPM volatil-
ities to standard implied volatilities σimpl computed by means of the classical
Black-Scholes equation (4.26). It turned out that time series of σRAPM and σimpl
are almost perfectly correlated with correlation higher than 0.99. On the other
hand, in all studied cases we have σRAPM > σimpl with the relative difference
(σRAPM − σimpl)/σRAPM less then 0.005. Notice that we have considered only
Call option price records in which Vbid > Sbid −X .

In Figures 4.4a and 4.4b, we present the behavior of the mid value asset price
S = (Sbid + Sask)/2 during April 4, 2003. We choose three Call options with the
same expiration date T=April 19, 2003, and different expiration prices X = 23,
X = 25, X = 30. The behavior of the implied volatility σRAPM and implied risk
premium R is depicted Figures 4.4c and 4.4d. For Call options with expiration
prices X = 25 and X = 30, implied risk coefficients are almost constant during
the day except for the initial shock for the option withX = 30. On the other hand,
implied risk coefficients for Call option with expiration price X = 23 as well as
all implied volatility σRAPM are highly volatile during this day. The lowest risk
(measured by R) is achieved by holding the Call option on X = 25. These results
could indicate that holding X = 25 Call option is less risky compared to other
analyzed call options.

In Figures 4.5a and 4.5b, we present analogous results for Microsoft stocks
and Call options having a longer expiration date T=January 22, 2005. Again we
choose three Call options with different expiration prices X = 20, X = 25 and
X = 30. The behavior of the implied volatility σRAPM and implied risk premium
R is depicted Figures 4.5c and 4.5d. Similarly as in Figure 4.4, Call options
with expiration prices X = 25 and X = 30 have almost constant implied risk
coefficients. Interestingly enough, in the first half of the day, the implied risk
coefficient R for the Call option with X = 20 is much higher compared to those
corresponding to X = 25 and X = 30, respectively. During the second part of
the day, it is jumping up and down between them. It could give some indication
to an investor that the portfolio consisting of X = 25 Call options is less risky.

Finally, in Figure 4.6 we present one-week behavior of implied volatilities
and risk premium coefficients for the Microsoft Call option on X = 25 expiring
at T=April 19, 2003. In the beginning of the investigated period, the risk premium
coefficient R was rather high and fluctuating. On the other hand, it tends to a flat
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value of R ≈ 5 at the end of the week.

Default probability in the RAPM model
In classical Black-Scholes model the derivative depends only on the stock prop-
erties and are not specific to a counterparty. Integration of the default possibility
to the pricing model made the derivative dependend also on the investors specific
paramaters, default intensity ρ and recovery rate RR.

In the case υ = 0 the RAPM will reduce to Black-Scholes model with inte-
grated default possibility. In this case we can express the options price as

V (S, τ) = e−ρ(1−RR)τBS(S, τ), (4.56)

where BS(S, τ) represents the solution to the classical Black-Scholes model. We
should remind that equation (4.56) holds only if υ = 0, otherwise the non-linearity
of RAPM model make this kind of transformation impossible. The price of such
a options is decreased by the possibility of default. The higher the default proba-
bility (resp. the smaller recovery rate) the lower the price of option.

In Figure 4.7 we present the comparison of option price calculated with Black-
Scholes equation and option price calculated with equation (4.56). We see that
the absolute difference between the option prices is increasing with stock price S,
while the relative difference is constant. As we calculate the European type of call
options the option price will be under the payoff diagram for high value of stock
S, resp. for high default intensity ρ.

The highest influence have the integration of default possibility on nearly per-
fectly hedged portfolios (see author’s paper [24, 25] for case of loan portfolio and
integrated versus separated market and credit risk analysis). Such a portfolio is
displayed on the Figure 4.8. The portfolio consist of a long position of call option
and a short position of call option. We should remind that the impact of default
probability is not symmetric on short and long position. For the long position a
default will generate a loss of the option price. However for the short position
a default of counterparty will not change our payment obligation. We see that
the portfolio is perfectly hedged only for ρ = 0. In such case a change of stock
price S will not change the portfolio value. Similar for a low value of stock price
S any reasonable change of ρ will not influence the portfolio value. These two
kind of analysis correpsond to separated credit and market risk calculation. On
the other hand we can see that a joint move of stock price S and default intensity
ρ can influence a high loss of portfolio. On the Figure 4.8 we can see that this
joint move of risk factors (integrated risk analysis) can have much higher impact
on portfolio value than a sum of portfolio changes in stock and default intensity
directions. The equality between separated approximation of credit and market
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Figure 4.4: Intraday behavior of Microsoft stocks (April 4, 2003) and shortly expiring Call
options with expiry date April 19, 2003, with computed implied volatilities σRAPM and risk
premium coefficients R.

38



9

7

5

3

V

Time

9
:5
9

10
:2
5

10
:4
9

11
:1
4

11
:4
0

12
:4

12
:2
9

12
:5
4

13
:1
9

13
:4
5

14
:9

14
:3
4

15
:0

15
:2
4

15
:4
9

16
:1
4

X= 20

X= 25

X= 30

25.9

25.5

25.1

24.7

S

Time

9
:5
9

10
:2
5

10
:4
9

11
:1
4

11
:4
0

12
:4

12
:2
9

12
:5
4

13
:1
9

13
:4
5

14
:9

14
:3
4

15
:0

15
:2
4

15
:4
9

16
:1
4

0.41
0.40
0.39
0.38
0.37
0.36

σ

Time

9
:5
9

10
:2
5

10
:4
9

11
:1
4

11
:4
0

12
:4

12
:2
9

12
:5
4

13
:1
9

13
:4
5

14
:9

14
:3
4

15
:0

15
:2
4

15
:4
9

16
:1
4

X= 20
X= 25

X= 30

9

7

5

3

1

Time

R

9
:5
9

10
:2
5

10
:4
9

11
:1
4

11
:4
0

12
:4

12
:2
9

12
:5
4

13
:1
9

13
:4
5

14
:9

14
:3
4

15
:0

15
:2
4

15
:4
9

16
:1
4

X= 25
X= 20
X= 30

Figure 4.5: Intraday behavior of Microsoft stocks (April 17, 2003) and Call options with long
expiration date January 22, 2005, with computed implied volatilities σRAPM and risk premium
coefficients R.
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Figure 4.6: One week behavior of Microsoft stocks (March 20-27, 2003) and Call options
with expiry date April 19, 2003, with computed implied volatilities σRAPM and risk premium
coefficients R.
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Figure 4.8: Graph shows the value of portfolio consisting from one short and one long position.
The change of portfolio value is more significant when both risk factor can move, what repre-
sents the integrated risk, while move in one direction, corresponding with market risk (move in S
direction) and credit risk (move in ρ direction), are neglible.

risk and integrated risk can be assured if and only if the portfolio value can be
separated as V (S, ρ) = f(S) + g(ρ). And only in this case the subaditivity of
coherent risk measures with respect to credit and market risk can be assured (see
author’s paper [25]). Therefore is necessary to have the possibility to model the
price of derivative also for counterparty which can default.

The following proposition summarize when we can assure that the integrated
risk is not underestimated by separated risk analysis. Although the proofs of the
following results can be found in author’s paper [25] for less general case, we
provide them for readers convenience. In these proposition function f represents
the profit/loss distribution of portfolio and X represent the scenarios. In our case
of market vs. credit risk analysis theX would consists of stock price S and default
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density ρ. For sake of simplicity we will use following short notations

X i
n = (xi1, ..., x

i
n),

fn(i1...in) = fn(xi11 , x
i2
2 , ..., x

in
n ), ij ∈ {0, 1}, j = 1, ..., n,

fnj = fn(i1...in), ik =

{
1 k = j
0 k 6= j

,

fnjk = fn(i1...in), il =

{
1 l ∈ {j, k}
0 l /∈ {j, k} ,

fnΩ = fn(X1
n),

fn∅ = fn(X0
n).

Proposition 4.1. Assume we have groups of risk factors Ik for k = 1, ..., s and
each risk factor is exactly in one group. If the function fn : Rn → R have
continuous second order derivatives, then the sub-additivity with respect to the
groups of risk factors Ik

ρ
(
fnΩ − fn∅

)
≤

s∑
k=1

ρ
(
fnIk − f

n
∅
)

(4.57)

holds for all coherent risk measures ρ and for all X0
n if and only if the function fn

is separable with respect to the groups of risk factors Ik

fnΩ(X) =
s∑

k=1

gk(XIk). (4.58)

Following propositions will help us to prove proposition 4.1.

Proposition 4.2. Let fn : Rn → R, with scenarios X0
n, X

1
n ∈ Rn, have continu-

ous second order derivatives, then the value of function fn in scenario X1
n can be

calculated as

fn(1...1) =
n∑
i=1

fni − (n− 1)fn(0...0) +
∑

1≤i<j≤n

Inij, (4.59)

where

Inij =

x1
i∫

x0
i

x1
j∫

x0
j

∂2fn

∂xi∂xj
(x0

1, x
0
2, ..., ui, x

0
i+1, ..., uj, x

1
j+1, ..., x

1
n)dujdui, (4.60)

for 1 ≤ i < j ≤ n.
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Proof of proposition 4.2. For n = 1 the equation (4.59) reduce to

f 1(1) = f 1(1). (4.61)

While the case n = 1 is sufficient basis for mathematical induction, in the induc-
tive step we will use also the equation (4.59) for n = 2, therefore we need to proof
it separately from inductive step. For n = 2 we get

f 2(x1
1, x

1
2) = f 2(x0

1, x
1
2) +

x1
1∫

x0
1

∂f 2

∂x1

(u1, x
1
2)du1

= f 2(x0
1, x

1
2) +

x1
1∫

x0
1

∂f 2

∂x1

(u1, x
0
2) +

x1
2∫

x0
2

∂2f 2

∂x2∂x1

(u1, u2)du2du1

= f 2
1 + f 2

2 − f 2(00) + I2
12, (4.62)

what proves the equation (4.59) for n = 2.
With equation (4.59) proved for n ∈ {1, 2} we can continue with the induction
step. Assume that the proposition holds for n, then the proposition holds also for
function hn : Rn → R defined as

hn(x1, ..., xn) = fn+1(x1, ..., xn, x
1
n+1)

and by equation (4.59) for function hn we get

fn+1(1...11) =
n∑
i=1

fn+1
i(n+1) − (n− 1)fn+1(0...01) +

∑
1≤i<j≤n

In+1
ij . (4.63)

Define function gn+1
i(n+1) : R2 → R as

gn+1
i(n+1)(x

1
i , x

1
n+1) = fn+1

i(n+1),

applying equation (4.62) we get

fn+1
i(n+1) = fn+1

i + fn+1
n+1 − fn+1(0...0) + In+1

i(n+1) (4.64)

Substituting equation (4.64) into the equation (4.63) we get

fn+1(1...1) =
n∑
i=1

(
fn+1
i + fn+1

n+1 − fn+1(0...0) + In+1
i(n+1)

)
−(n− 1)fn+1

n+1 +
∑

1≤i<j≤n

In+1
ij

=
n+1∑
i=1

fn+1
i − nfn+1(0...0) +

∑
1≤i<j≤n+1

In+1
ij , (4.65)
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what is equation (4.59) for n + 1 and together with equation (4.61) and (4.62)
proofs the proposition 4.2.

The proposition 4.2 gives a simple approximation of the change of function
fn between two point X0

n, X
1
n ∈ Rn in form

fn(1...1)− fn(0...0) ≈
n∑
i=1

(fni − fn(0...0)) . (4.66)

The error which we make using this approximation can be calculated as

ε =
∑

1≤i<j≤n

Inij. (4.67)

In case of portfolio risk analysis and function fn representing value of portfo-
lio, left side of equation (4.66) represent portfolio profit/loss when moving from
scenario X0

n to scenario X1
n, while the right side is the sum of contribution of in-

dividual risk factors. The error term ε gives then the interaction between the risk
factors and it can be by definition approximated as

|ε| ≤ K
(n− 1)n

2
||X1

n −X0
n|| (4.68)

if the absolute value of second order mixed derivatives are bounded by constantK.
As a consequence of this approximation of error terms, the approximation (4.66)
is exact when the second ordered mixed derivatives are zero, resp. when the cross-
dependence of the risk factors is vanishing. The following proposition summarize
these results.

Proposition 4.3. Let fn : Rn → R have continuous second order derivatives,
then

fn(1...1)− fn(0...0) =
n∑
i=1

(fni − fn(0...0)) (4.69)

holds for all pairs X0
n, X

1
n ∈ Rn if and only if the function fn can be written as

fn(x1, x2, ..., xn) =
n∑
i=1

gi(xi). (4.70)

Lema 4.1. Let fn : Rn → R have continuous second order derivatives, then

fn(1...1)− fn(0...0) =
n∑
i=1

(fni − fn(0...0)) (4.71)
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holds ∀X0
n, X

1
n ∈ Rn if and only if ∀X ∈ R and ∀(i, j) ∈ J , where J = {(i, j) :

1 ≤ i < j ≤ n}

∂2fn

∂xi∂xj
(X) = 0. (4.72)

Proof of lema 4.1. The if part of the lema follows directly from definition of Inij
and proposition 4.2. If ∀X ∈ R,∀(i, j) ∈ J : ∂2fn

∂xi∂xj
(X) = 0, then by definition

of Inij , equation (4.60), we have Inij = 0 for (i, j) ∈ J and equation (4.59) from
proposition (4.2) is reduced to equation (4.71).
The proof of the only if part follows. If ∃X ∈ R : ∂2fn

∂xi∂xj
(X) > 0 (< 0), then from

the continuity of ∂2fn

∂xi∂xj
we can construct such a neighborhood O(X) of scenario

X that ∀Y ∈ O(X) : ∂2fn

∂xi∂xj
(Y ) > 0 (< 0). Taking two scenarios from this

neighborhood X0
n, X

1
n ∈ O(X) such, that x0

k < x1
k for k ∈ {i, j} and x0

k = x1
k

for k /∈ {i, j}, then from definition of Inij we get Inij < 0(> 0) and Inkl = 0 for
(k, l) 6= (i, j). From proposition 4.2, equation (4.59), we get

fn(1...1)− fn(0...0) <
n∑
i=1

(fni − fn(0...0)) ,

when ∂2fn

∂xi∂xj
> 0, resp.

fn(1...1)− fn(0...0) >
n∑
i=1

(fni − fn(0...0)) ,

when ∂2fn

∂xi∂xj
< 0.

Note that choosing x0
i > x1

i instead of x0
i < x1

i , resp. switching X0
n and X1

n

will result in opposite inequality. As a consequence if ∃X ∈ R : ∂2fn

∂xi∂xj
(X) 6= 0

then there exists scenarios X0
n, X

1
n ∈ Rn such that

fn(1...1)− fn(0...0) <
n∑
i=1

(fni − fn(0...0))

and there exists scenarios X̃0
n, X̃

1
n ∈ Rn such that

fn(1̃...1̃)− fn(0̃...0̃) >
n∑
i=1

(
fn
ĩ
− fn(0̃...0̃)

)
and neither inequality can be assured.
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Proof of proposition 4.3. Given the lema 4.1, we need to prove that ∀X ∈ Rn,
i 6= j : ∂2fn

∂xi∂xj
(X) = 0 if and only if the function fn can be separated as

fn(x1, ..., xn) =
n∑
i=1

gi(xi). (4.73)

The if part is quite trivial. If the function fn is separable as defined in equa-
tion 4.73 then ∂fn

∂xi
(X) = g′i(xi), where gi(xi) is constant with respect to xj for

i 6= j and therefore ∀X ∈ Rn, i 6= j : ∂2fn

∂xi∂xj
(X) = 0.

The only if part becomes the interesting part of the proposition and we will prove
it with mathematical induction. Assume that

∀X ∈ Rn, i 6= j :
∂2fn

∂xi∂xj
(X) = 0 (4.74)

then for n = 2 from equation (4.74) we get ∂f2

∂x1
(X) = h(x1), resp. f 2(X) =

H(x1) + g2(x2). Choosing g1(x1) = H(x1) we finaly get the equation (4.73) for
n = 2

f 2(X) =
2∑
i=1

gi(xi), (4.75)

which is sufficient basis for mathematical induction. As next we will continue
with the induction step.
Assume that the proposition holds for n. We will first show that the function
fn+1(X) can be written as

fn+1(X) = uj(x1, xj, ..., xn+1) + vj(x2, ..., xn+1), (4.76)

for j = 2, ..., n+ 1.
For j = 2 we can take u2 = fn+1 and v2 = 0.
Now assume that the separation is possible till j, then we have

fn+1(X) = uj(x1, xj, ..., xn+1) + vj(x2, ..., xn+1). (4.77)

As the function vj does not depend on the variable x1 we get we get

∂2fn+1

∂x1∂xj
=

∂2uj
∂x1∂xj

(4.78)

what equals to zero, based on equation (4.74). Therefore we can apply equa-
tion (4.75) on function ṽj(x1, xj) defined as ṽj(x1, xj) = uj(x1, xj, ..., xn+1) and
we get

uj(x1, xj, ..., xn+1) = uj+1(x1, xj+1, ..., xn+1) + hj(xj, ..., xn+1). (4.79)
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Denoting vj+1 = vj + hj we get

fn+1(X) = uj+1(x1, xj+1, ..., xn+1) + vj+1(x2, ..., xn+1). (4.80)

For j = n+ 1 this gives

fn+1(X) = un+1(x1, xn+1) + vn+1(x2, ..., xn+1). (4.81)

As vn+1 does not depend on variable x1, we get from equation (4.74) that

∂2un
∂x1∂xn+1

=
∂2fn+1

∂x1∂xn+1

= 0. (4.82)

Again we can apply the equation (4.75) on the function un+1

un+1(x1, xn+1) = g1(x1) + h(xn+1). (4.83)

Finally we get

fn+1(X) = g1(x1) + vn+2(x2, ..., xn+1). (4.84)

The function vn+2 is function of n variables with all mixed second orders deriva-
tives equals to zero and therefore we can apply the assumption of the induction
step what implies

fn+1(X) =
n+1∑
i=1

gi(xi). (4.85)

We define maximum loss contribution (MLC) as

MLC(i) :=
fni − fn(0...0)

fn(1...1)− fn(0...0)
, (4.86)

for fn(0...0) 6= fn(1...1). As a consequency of proposition 4.3

n∑
i=1

MLC(i) = 1 (4.87)

holds for all X0
n and all plausibility domains if and only if the function fn can be

separated as

fn(x1, ..., xn) =
n∑
i=1

gi(xi), (4.88)
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resp. if and only if the second order derivatives equals zero.
In risk analysis a class of risk is usually not function of one variable, reps.

risk factors but is often calculated as risk achieved by change of a group of risk
factors. As example the market risk will be the risk given by change of market risk
factors (i.e. stock prices, exchange rates,...). Following proposition generalise the
proposition 4.2 to case of groups of risk factors.

Proposition 4.4. Assume we have groups of risk factors Ik for k = 1...s, where
each risk factor is exactly in one group. Then if function f : Rn → R has contin-
uous second order derivatives then for any two scenarios X0

n, X
1
n ∈ R we get

fnΩ − fn∅ =
s∑

k=1

(
fnIk − f

n
∅
)

+
∑

1≤k<l≤s

Ĩskl, (4.89)

where

fnS = fn(i1...in), ik =

{
1 k ∈ S
0 k /∈ S , (4.90)

Ĩskl =

1∫
0

1∫
0

∑
k∈Ik,l∈Il

(x1
k − x0

k)(x
1
l − x0

l )
∂2fn

∂xk∂xl
(y1, ..., yn)dudv, (4.91)

where

yi =


x0
i + u(x1

i − x0
i ) i ∈ Ik,

x0
i + v(x1

i + x0
i ) i ∈ Il,

x1
i i > max(Il),
x0
i otherwise.

. (4.92)

Proof of proposition 4.4. Define a function f̃ : Rs → R as

f̃(Y ) = f(g1(y1), ..., gs(ys)), (4.93)

where functions gk represents paths between scenarios X0
Ik

and X1
Ik

, resp. the
functions gk are two times differentiable with gk(0) = X0

Ik
and gk(1) = X1

Ik
. The

proposition 4.2 for function f̃ becomes

fnΩ − fn∅ =
s∑

k=1

(
fnIk − f

n
∅
)

+
∑

1≤k<l≤s

Ĩskl, (4.94)

where Ĩskl depends on the paths, which are defined by the functions gk. Choosing
the shortest and linear path between X0

Ik
and X1

Ik
as

gk(t) = X0
Ik

+ t
(
X1
Ik
−X0

Ik

)
(4.95)
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we get the Ĩskl for 1 ≤ k < l ≤ s in form

Ĩskl =

1∫
0

1∫
0

∑
i∈Ik,j∈Il

(x1
i − x0

i )(x
1
j − x0

j)
∂2fn

∂xi∂xj
(y1, ..., yn)dudv. (4.96)

Similar as proposition 4.2 gives approximation of change of the function fn

by the change given by individual risk factors, the proposition 4.4 gives the ap-
proximation by the changes given by groups of risk factors.

Proposition 4.5. Assume we have groups of risk factors Ik for k = 1...s, where
each risk factor is exactly in one group. Then if function f : Rn → R has contin-
uous second order derivatives then

fnΩ − fn∅ =
s∑

k=1

(
fnIk − f

n
∅
)

(4.97)

hold ∀X0
n, X

1
n ∈ Rn if and only if function fn can be separated as

fnΩ(X) =
s∑

k=1

gk(XIk), (4.98)

resp. if and only if ∀X ∈ Rn

∂2fn

∂xi∂xj
(X) = 0, (4.99)

for each i ∈ Ik and each j ∈ Il, with k 6= l.

Proof of proposition 4.5 is identical to proof of proposition 4.3, when we use the
paths between the scenarios as in the proof of proposition 4.4.

In propositions 4.2-4.5 we analyzed the approximation of function by changes
of individual risk factors, reps. by changes of groups of risk factors. Given these
propositions we can investigate the subadditivity with respect to a groups of risk
factors for coherent risk measures. The proof of proposition 4.1 follows.

Proof of proposition 4.1. Based on proposition 4.5 the equation (4.58) imply
that

fnΩ − fn∅ =
s∑

k=1

(
fnIk − f

n
∅
)
. (4.100)
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Assuming coherent risk measure ρ imply the subadditivity of this risk measure in
sense

ρ(X + Y ) ≤ ρ(X) + ρ(Y ). (4.101)

Applying this s− 1 times on equation (4.100) we get

ρ
(
fnΩ − fn∅

)
≤

s∑
i=1

ρ
(
fnIk − f

n
∅
)
. (4.102)

Assume that the function fn is not separable, then based on proposition 4.5 there
∃X, k, l, i, j : k 6= l, i ∈ Ik, j ∈ Il, that ∂2fn

∂xi∂xj
(X) 6= 0. Based on proof of

lema 4.1 there exists such X0
n and X1

n that

fnΩ − fn∅ >
s∑

k=1

(
fnIk − f

n
∅
)
. (4.103)

Taking ρX1
n

as maximum loss with plausibility domain equals to points, namely
X1
n we get

ρX1
n

(
fnΩ − fn∅

)
≥

s∑
i=1

ρX1
n

(
fnIk − f

n
∅
)
, (4.104)

for coherent risk measure ρX1
n
.
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Chapter 5

Temporal aggregation of GARCH
models

In models of portfolio selection or option pricing the fundamental position has es-
timation of the model and time series parameters. The choice of time series mod-
els and calibration of these models influence also the results of portfolio selection
problem discussed in Chapter 3 and the results of option pricing model discussed
in Chapter 4. With higher frequency data being increasingly available and atten-
tion focusing on longer time horizons we face the problem whether or not to use
the higher frequency data available in the long term analysis. At first sight it seems
clear that it should be used. If we restricted ourselves to the low frequency data
we either would have very few data points or use very old historical data for get-
ting reliable parameter estimates. Neither is desirable. On the other hand, when
we use the high frequency data the time horizon of the forecast is several time
steps ahead. The long term analysis then has to calculate the distribution arising
from aggregating the high frequency model over several time steps. With the high
frequency model even the estimation error will be aggregated and can neglect the
advantage of having many historic data for estimation. This motivates our analysis
of aggregated distributions. We concentrate our analysis on GARCH model as in-
troduced by Bollerslev [17]. The approach we take is to estimate a strong GARCH
model for single time steps of suitable length and then aggregate over sufficiently
many time steps to arrive at the desired time horizon. Drost and Nijman [39] in a
landmark paper showed that the temporal aggregate of a strong GARCH process
is in general not a strong GARCH. Therefore they introduced the larger classes
of semi-strong and weak GARCH models. For semi-strong GARCH processes
the mean and variance of innovations are determined, but other properties of the
distribution of innovations are not determined. In particular, the innovations need
not be independent or identically distributed. For weak GARCH processes not
even the mean and variance are determined, we just have a linear predictor. Weak
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GARCH processes have the advantage of aggregating to weak GARCH processes,
but for purposes of risk management they do not convey much information. For
mean and variance they only specify the best linear predictor, other properties of
the distribution are not specified at all. In risk management we often need more
information about the conditional distribution: quantiles, higher moments, and
for risk measures like Expected Shortfall even the full distribution function in the
tails. To calculate the distribution of tails of aggregated random variable one need
the full distribution of non-aggregated model. This information is not specified
by semi-strong or weak but only by strong GARCH processes. For this reason we
will focus on analysis of the aggregated distribution of strong GARCH processes
accepting that this aggregated distribution is itself not a strong GARCH process,
but we will derive some of the properties of higher moments of aggregated time
series also for more general semi-strong GARCH process. These results are part
of the working paper [23]. As first we recall the definition of strong, semi-strong,
and weak GARCH processes as introduced in [39].

Definition 5.1. Let {ht, t ∈ Z} be defined as the stationary solution of

ht = ψ + αε2t−1 + βht−1.

A time series {εt, t ∈ Z} is said to be generated by a strong GARCH(1,1) process
if ψ, α, β can be chosen in such a way that

ξt := εt/
√
ht ∼ D(0, 1) i.i.d.,

(5.1)

where D(0, 1) is some fixed distribution of errors with zero mean and unit vari-
ance. The series {εt, t ∈ Z} is said to be generated by a semi-strong GARCH(1,1)
process if

E[εt|It−1] = 0,

E[ε2t |It−1] = ψ + αε2t−1 + βht−1 = ht, (5.2)

where the information set It−1 := {εt−1, εt−2, . . .} describes the information avail-
able at time t − 1. A time series {εt, t ∈ Z} is said to be generated by a weak
GARCH(1,1) process if

P [εt|εt−1, εt−2, ...] = 0,

P [ε2t |εt−1, εt−2, ...] = ψ + αε2t−1 + βht−1 = ht, (5.3)

where P [xt|εt−1, εt−2, ...] denotes the best linear prediction of xt in terms of 1,
εt−1, εt−2 , ... ,ε2t−1, ε

2
t−2, .... Furthermore we assume ψ, α, β > 0 for volatility to

be positive and α + β < 1 in order to ensure stationarity of the process.
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We will consider both stock random variable and flow random variable for the
aggregation. The difference between the stock and flow random variable is in the
way how they aggregate. An example of stock random variables are the stock
prices or the wealth of a person. For stock random variable only the last observed
value within the aggregation period is of interest. We will denote the aggregation
of stock random variable εt over m time periods as ε(m)t, which we define as

ε(m)t := εt+m. (5.4)

An example of flow random variable are the log returns of stock prices or the
income of a person. For flow random variable the aggregation is given by the
sum of all observed values within the aggregation period. We will denote the
aggregation of flow random varialbe εt over m time periods as ε[m]t, which is
defined as

ε[m]t :=
m∑
i=1

εt+i. (5.5)

Unlike the definition of aggregation addopted by Drost and Nijman we use slightly
different definition for aggregated stock variable, which covers also the Drost and
Nijman definition for t := (t̃ − 1)m. Similar our definition of aggregated flow
variable covers the Drost and Nijman definition for t := mt̃. This alternative
definition simplify the proof as it allows for simpler recurrent calculation of ag-
gregated variance and kurtosis. This results from the possibility of overlapping
aggregation.

The densities of the conditional aggregated distribution can be calculated ex-
plicitly for both flow and stock random variables. For a flow variable the probabil-
ity density function of m-period aggregation under the assumption, that the whole
non aggregated history is known, is

fε[m]t|It(y) =

∞∫
−∞

...

∞∫
−∞

dεt+1 ... dεt+m−1 (5.6)

fεt+m|It+m−1

(
y −

m−1∑
i=1

εt+i

)
m−1∏
i=1

fεt+i|It+i−1
(εt+i).

Here It represents the information set available in time t. Information set It+i
inherit all the information from information in It+i−1 and additionally the value
of the process in time t+ i, which is εt+i.

For a stock variable the probability density function of m-period aggregation
under the assumption, that the whole non aggregated history is known (ε(m)t|It
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corresponds to m-step ahead forecast), is

fε(m)t|It(y) =

∞∫
−∞

...

∞∫
−∞

dεt+1 ... dεt+m−1 (5.7)

fεt+m|It+m−1 (y)
m−1∏
i=1

fεt+i|It+i−1
(εt+i).

This equation can also be found in Andersen et al. [5, eq. (3.26)]. The aggregated
density functions of equations (5.6), (5.7) are the basis of risk measurement at
the aggregated time level. Apart from realizations not being serially independent
the density functions do not necessarily have the same form as the density of one
period returns. These are the reasons why the aggregated realizations of strong
GARCH are not in generally strong GARCH.

In Section 5.1 we study the kurtosis and variance of the conditional aggregated
distributions of equations (5.6), (5.7). We also analyse the limit behavior of con-
ditional variance and kurtosis when aggregating over sufficiently many time steps
in the Section 5.2. It turns out that in the limit of infinitely many aggregation
steps (corresponding to an infinite time horizon) the conditional aggregated kur-
tosis approaches three (resp. a different constant, for stock variables) or infinity
depending on whether or not a simple inequality in term of the GARCH parame-
ters ψ, α, β (and additionally κ, for flow variables) is satisfied. In Section 5.3 we
deal with the optimal data frequency for strong GARCH processes.

5.1 Conditional variance and kurtosis
Now we can specify the conditional variance and conditional kurtosis of the ag-
gregated GARCH (1,1) processes for stock and flow variables.

Theorem 5.1. Assume εt is a stock variable following a semi-strong GARCH pro-
cess. Then the conditional variance of the m-step distribution ε(m)t := εt+m is
given by

Var(ε(m)t|It) = σ2
u + (α + β)m−1

(
ht+1 − σ2

u

)
, (5.8)

where σ2
u is the unconditional variance of one period returns, σ2

u = ψ/(1−α−β).
If innovations ξt are independent, have symmetric distribution and have finite
fourth moments κ, then the conditional fourth moments of the m-step distribution
ε(m)t can be written recursively as

E(ε4(m)t|It) = κψ2 + γE(ε4(m−1)t|It) (5.9)
+2ψκ(α + β)Var(ε(m−1)t|It),
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where κ is the unconditional kurtosis of innovations ξt (which equals the condi-
tional kurtosis of εt) and

γ := α2κ+ β2 + 2αβ.

Non-recursively the fourth moment of the aggregated distribution is given by

E(ε4(m)t|It) = γm−1κh2
t+1 +

κψ2 + 2ψκ(α + β)σ2
u

1− γ
(1− γm−1)

+2ψκ(α + β)
ht+1 − σ2

u

α + β − γ
(
(α + β)m−1 − γm−1

)
, (5.10)

when γ /∈ {1, α + β}.

Proof of Theorem 5.1. By the law of iterated expectations we can express con-
ditional variance as

Var(ε(m)t|It) = E(E(ε2t+m|It+m−1)|It) = E(ht+m|It). (5.11)

Therefore

Var(ε(m)t|It) = E(ψ + αε2t+m−1 + βht+m−1|It)
= ψ + αE(ε2t+m−1|It) + βE(ht+m−1|It).

Applying equation (5.11) to m− 1 we get

Var(ε(m)t|It) = ψ + (α + β) Var(εt+m−1|It)

= ψ
m−2∑
i=0

(α + β)i + (α + β)m−1ht+1

= ψ
1− (α + β)m−1

1− (α + β)
+ (α + β)m−1ht+1

= σ2
u + (α + β)m−1

(
ht+1 − σ2

u

)
which proves equation (5.8). Now consider the fourth moments. By the definition
of ε(m)t for stock variables we have

E(ε4(m)t|It−1) = E(ε4t+m|It) = E(ξ4
t+mh

2
t+m|It).

Furthermore, since by the assumption of the theorem the ξt+m is independent on
the ht+m, as the ht+m is generated by previous realization of the innovations, and
the fourth moment of innovation ξt+m is equal to κ, we get

E(ε4(m)t|It) = E(ξ4
t+m|It)E(h2

t+m|It) = κE(h2
t+m|It).
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Reasoning as in equation (5.11), and using the definition of ht we get

E(ε4(m)t|It) = κE((ψ + αε2t+m−1 + βht+m−1)2|It)
= κψ2 + κ2αβE(ε2t+m−1ht+m−1|It)

+κα2E(ε4t+m−1|It) + κβ2E(h2
t+m−1|It)

+2κψ
(
αE(ε2t+m−1|It) + βE(ht+m−1|It)

)
= κψ2 + 2αβE(ε4(m−1)t|It)

+κα2E(ε4(m−1)t|It) + β2E(ε4(m−1)t|It)
+2κψ(α + β)Var(ε(m−1)t|It)

= κψ2 + (κα2 + β2 + 2αβ)E(ε4(m−1)t|It)
+2κψ(α + β)Var(ε(m−1)t|It)

which proves equation (5.9).

Theorem 5.2. Assume εt is a flow variable following a semi-strong GARCH pro-
cess. Then the conditional variance of the aggregated flow variable ε[m]t :=∑m

i=1 εt+i is given by

Var(ε[m]t|It) = mσ2
u +

1− (α + β)m

1− (α + β)
(ht+1 − σ2

u), (5.12)

where σ2
u is the unconditional variance of one period returns εt, σ2

u = ψ/(1−α−
β). If innovations ξt are independent, have symmetric distribution and have finite
fourth moment equal to κ, then the conditional fourth moments of the aggregated
variable ε[m]t can be written as

E(ε4[m]t|It) = B
m−1∑
i=0

Aib, (5.13)

where B := (1, ht+1, h
2
t+1, 0, 0), b′ := (0, 0, κ, 0, 6), and

A =


1 ψ ψ2 0 0
0 α + β 2ψ(α + β) 1 ψ
0 0 κα2 + 2αβ + β2 0 κα + β
0 0 0 1 ψ
0 0 0 0 α + β

 .
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Proof of Theorem 5.2. To prove equation (5.12) one calculates

E(ε2[m]t|It) = E

(εt+m +
m−1∑
i=1

εt+i

)2
∣∣∣∣∣∣ It


= E

(
(
m−1∑
i=1

εt+i)
2 + 2εt+m(

m−1∑
i=1

εt+i)
2 + ε2t+m

∣∣∣∣∣ It
)

= E(ε2[m−1]t|It) + E(ε2t+m|It).

The first term of the equation represent the variance of aggregated flow variable
overm−1 periods, while the second term of the equation represent the aggregation
of stock variable over m periods, which is given in equation (5.8). We get

E(ε2[m]t|It) = E(ε2[m−1]t|It) + σ2
u + (α + β)m−1(ht+1 − σ2

u)

=
m−1∑
i=0

(
σ2
u + (α + β)i(ht+1 − σ2

u)
)

= mσ2
u +

1− (α + β)m

1− (α + β)
(ht+1 − σ2

u).

This proves equation (5.12).

Instead of proving equation (5.13) we show the equivalent

E(ε4[m]t|It−1) = BYm, (5.14)

with

Yi+1 = AYi + b, for i ≥ 0 (5.15)
Y ′0 = (0, 0, 0, 0, 0) (5.16)

and b′ = (0, 0, κ, 0, 6), B = (1, ht+1, h
2
t+1, 0, 0).

We will denote the components of Yi as Yi = (Yi1, Yi2, Yi3, Yi4, Yi5)′. By mathe-
matical induction with respect to i we will show that

E(ε4[m]t|It) = E

(
Yi1 + Yi2ht+1+m−i + Yi5ht+1+m−i(

m−i∑
j=1

εt+j)
2

+Yi3h
2
t+1+m−i + Yi4(

m−i∑
j=1

εt+j)
2 + (

m−i∑
j=1

εt+j)
4

∣∣∣∣∣ It
)

(5.17)
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holds for i = 0, 1, ...,m. For i = 0 we have Y ′0 = (0, 0, 0, 0, 0) and therefore we
get

E(ε4[m]t|It) = E

(
(
m∑
j=1

εt+j)
4

∣∣∣∣∣ It
)
,

which follows directly from the definition of the aggregated flow variable ε[m]t.
The induction step is established by applying the definition of ht. As in proof

of theorem 5.1 we get

E[ht+1+m−i|It] = E[ϕ+ (α + β)ht+1+m−(i+1)|It] (5.18)

for i ≤ m. This imply that the second column of matrix A, which corresponds
to ht, will have ψ on first row, which corresponds to constant, and value α + β
in second column, which corresponds to ht. Furthermore we split all the sums by
removing the last element

m−i∑
j=1

εt+j = εt+m−i +

m−(i+1)∑
j=1

εt+j. (5.19)

Reorganizing the components of the expectation and using the definition of in-
novations we get also the other columns of matrix A and vector b, therefore the
equation holds also for i+ 1.
Finally for i = m equation (5.17) reads

E(ε4[m]t|It−1) = E
(
Ym1 + Ym2ht + Ym3h

2
t |It
)
,

= Ym1 + Ym2ht + Ym3h
2
t = BYm.

which is equation (5.14).

Remark 5.1. Drost and Nijman [39, p. 916, eq. (14)] give the unconditional kur-
tosis of the aggregated distribution. Our results specify the conditional kurtosis,
which is relevant for purposes of risk management.

5.2 The limiting behavior of the conditional aggre-
gated kurtosis

Let us now consider the long-term behavior of the conditional aggregated kurtosis,
still under the assumption that the one period process is a semi-strong GARCH
process with symmetric innovations, which have finite fourth moment and are

58



independent. We let the number of aggregation steps increase. With fixed length
of the basic period, this amounts to a proportional increase of the time horizon.

Diebold [38] has shown that a version of the central limit theorem implies
that conditional heteroscedasticity disappears with increasing sampling intervals.
Moreover, it is generally accepted that for most financial time series return inno-
vations tend to normality as the sampling interval increases. If return innovations
indeed approach normality with increasing sampling intervals, the kurtosis of the
conditional aggregate should approach the value of three as m→∞.

Corollary 5.1. For a stock variable, under the assumptions of Theorem 5.1 the
kurtosis of the conditional aggregated distribution can be defined as

κ(m) :=
E(ε4(m)t|It)(
E(ε2(m)t|It)

)2 . (5.20)

Aggregated kurtosis κ(m) goes to infinity asm→∞ in the case γ := α2κ+2αβ+
β2 ≥ 1. In the case γ < 1 the kurtosis goes to the following finite value

lim
m→∞

κ(m) = κψ
ψ + 2(α + β)σ2

u

(1− γ)σ4
u

. (5.21)

Remark 5.2. While limit of kurtosis for a stock variable is finite as m goes to
infinity, this finite value can not be bounded without the knowledge of the process
parameters κ, ψ, α and β. Choosing γ near one, but smaller than one, can lead
to the limit of any size.

Proof of Corollary 5.1. Because of Theorem 5.1 the limit of the variance of an
aggregated stock variable is equal to

σ2
u =

ψ

1− (α + β)
. (5.22)

So the limit of the aggregated kurtosis defined by equation (5.20) equals

lim
m→∞

κ(m) =
1

σ4
u

lim
m→∞

E(ε4(m)t|It). (5.23)

If γ < 1 the limit of the fourth moments given by equation (5.10) is

lim
m→∞

E(ε4(m)t|It) = κψ
ψ + 2(α + β)σ2

u

1− γ
,

59



which together with equation (5.23) proves the first part of the corollary.
If γ ≥ 1 equation (5.22) implies that the fourth moment goes to infinity as m →
∞ because from equation (5.9) we get

E(ε4(m)t|It) ≥ κψ2 + E(ε4(m−1)t|It) ≥ mκψ2.

Additionally by equation (5.8) we have lim
m→∞

Var(ε(m)t|It) = σ2
u, which is by

assumption positive as ψ, α, β > 0. Accordingly the aggregated kurtosis goes to
infinity.

For flow variables the limit behavior of the conditional aggregated kurtosis is
given by following theorem.

Theorem 5.3. Assume εt is a flow variable following a semi-strong GARCH pro-
cess and innovations ξt are independent with symmetric distribution and with a
finite fourth moments κ. Then kurtosis of the conditional aggregated distribution
defined as

κ[m] :=
E(ε4[m]t|It)(
E(ε2[m]t|It)

)2 . (5.24)

has the following limit

lim
m→∞

κ[m] =


3 if γ < 1
∞ if γ > 1
3 + d if γ = 1

, (5.25)

where

γ = (α2κ+ 2αβ + β2),

d =
(
(ψκ)/(2σ2

u) + 3(κα + β)
) (
ψ/(σ2

u) + 2(α + β)
)
.

Proof of Theorem 5.3. From the definition of aggregated flow variable in equa-
tion (5.24) we get

lim
m→∞

k[m] = lim
m→∞

E
(
ε4[m]t|It

)
(
E
(
ε2[m]t|It

))2 . (5.26)
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Because of Theorem 5.2 and its equation (5.12) for fourth moment and equa-
tion (5.13) for variance we can write

lim
m→∞

k[m] = lim
m→∞

B
∑m−1

i=0 Aib(
mσ2

u + 1−(α+β)m

1−(α+β)
(ht+1 − σ2

u)
)2 (5.27)

= lim
m→∞

1
m2B

∑m−1
i=0 Aib(

σ2
u + 1

m
1−(α+β)m

1−(α+β)
(ht+1 − σ2

u)
)2 (5.28)

=
1

σ2
u

B

(
lim
m→∞

1

m2

m−1∑
i=0

Ai

)
b. (5.29)

To express the limit of the kurtosis we need to calculate Ai. While calculating
Ai directly is complex, we can search for similar matrix J for which J i is sim-
ple to calculate. For similar matrix holds A = S−1JS and therefore we have
Ai = S−1J iS. An example of matrix for which J i is simple to calculate are di-
agonal matrices or the Jordan matrices1. In the proof we will not use complete
Jordan decomposition2, we will write the matrices in a form which gives a little
bit simpler matrices S and J and still allow for simple calculation of J i.
The Jordan decomposition of the matrix A depends on the value of γ := κα2 +
2αβ + β2. More precisely, we need to distinguish three different cases. The first
case is γ = α+ β, the second case is γ = 1, and in the third case γ is not equal to
one and not equal to α + β. The three cases differ only in the form of the decom-
position. All other steps of the argument are the same. We will give the argument
for the third case.
Since γ differs from one and α + β, the matrix J of the decomposition is

J =


1 0 0 σ2

u 0
0 α + β 0 0 d3

0 0 γ 0 0
0 0 0 1 0
0 0 0 0 α + β


and

S =


1 σ2

u
d2

1−γ 0 − d4
α+β−1

0 1 2ψ(α+β)
α+β−γ

1
α+β−1

−σ4
u

ψ

0 0 1 0 − κα+β
α+β−γ

0 0 0 1 σ2
u

0 0 0 0 1

 ,

1For details on Jordan decompisition see e.g. [41]
2To get the full Jordan decomposition one would need to follow with swap of lines and rows

and a simple division to get the element over diagonal equal to one
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with d2 = ψ2 + 2ψ(α + β)σ2
u, d3 = ψ − σ2

u + 2ψ(α+β)(κα+β)
α+β−γ and d4 = σ2

u(ψ −
σ2
u) + d2(κα+β)

1−γ .
From J we can compute J i as

J i =


1 0 0 iσ2

u 0
0 (α + β)i 0 0 id3(α + β)i−1

0 0 δi 0 0
0 0 0 1 0
0 0 0 0 (α + β)i


and also the sum

m−1∑
i=0

J i =


m 0 0 1

2
σ2
um(m− 1) 0

0 1−(α+β)m

1−(α+β)
0 0 d4(m)

0 0 1−γm
1−γ 0 0

0 0 0 m 0

0 0 0 0 1−(α+β)m

1−(α+β)

 ,

where d4(m) = d3
1−(α+β)

(
1−(α+β)m−1

1−(α+β)
− (m− 1)(α + β)m−1

)
.

Knowing the
∑m−1

i=0 J i we can calculate the limit as

lim
m→∞

k[m] =
1

σ2
u

B

(
lim
m→∞

1

m2

m−1∑
i=0

Ai

)
b (5.30)

=
1

σ2
u

BS

(
lim
m→∞

1

m2

m−1∑
i=0

J i

)
S−1b (5.31)

=
1

σ2
u

BS


0 0 0 1

2
0

0 0 0 0 0
0 0 η 0 0
0 0 0 0 0
0 0 0 0 0

S−1b, (5.32)

where

η = lim
m→∞

m−1∑
i=0

γi

m2
=

{
0 if γ ≤ 1,
∞ if γ > 1.

Multiplying the matrices in equation (5.32) we get

lim
m→∞

κ[m] = 3, for γ < 1. (5.33)
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For γ > 1 the η is always multiplied by a positive constant and therefore

lim
m→∞

κ[m] =∞, for γ > 1. (5.34)

In case γ = 1 or γ = α + β the proof follows essentially the same lines, but with
a slightly different matrix J and matrix S, which leads to the additional term d in
equation (5.25).

For γ = α + β we have

Jα+β =


1 0 0 σ2

u 0
0 α + β 2ψ(α + β) 0 0
0 0 α + β 0 κα + β
0 0 0 1 0
0 0 0 0 α + β

 , (5.35)

Sα+β =


1 σ2

u
d2

1−(α+β)
0 d3

1−(α+β)

0 1 0 −σ2
u/ψ −σ4

u/ψ

0 0 1 0 ψ−σ2
u

2ψ(α+β)

0 0 0 1 σ2
u

0 0 0 0 1

 (5.36)

with d2 = ψ2 + 2ψ(α + β)σ2
u and d3 = σ2

u(ψ − σ2
u) + d2

1−(α+β)
(κα + β).

For γ = 1 we get

J1 =


1 0 d2 0 0
0 α + β 0 0 d3

0 0 1 0 0
0 0 0 1 0
0 0 0 0 α + β

 , (5.37)

S1 =


1 σ2

u 0 0 d4
1−(α+β)

0 1 2ψ(α+β)
α+β−1

−σ2
u/ψ −σ4

u/ψ

0 0 1 σ2
u

d2
− κα+β
α+β−1

+ σ4
u

d2

0 0 0 1 σ2
u

0 0 0 0 1

 (5.38)

with d2 = ψ2 + 2ψ(α + β)σ2
u, d3 = ψ − σ2

u + 2ψ(α+β)(κα+β)
α+β−1

and d4 = σ2
u(ψ −

σ2
u) + d2

κα+β
α+β−1

.
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To analyse the aggregated conditional kurtosis in the long term limit we esti-
mated the GARCH parameters ψ, α, β, κ of some time series at daily frequency
for real data. For these series we used daily data from Bloomberg starting at the
dates indicated below and ending 28 February, 2004. The source of the series
Germany Euro-deposits 6 months is Datastream. This analysis is part of author’s
paper [23].

Equity Indices
Dow Jones Industrial Average 03-Jan-1970
DAX 03-Jan-1970
Nikkei 225 06-Jan-1970
Austrian Traded Index 09-Jan-1986
FTSE 100 04-Jan-1984
Swiss Market Index 02-Jul-1988

Interest Rates
US Govt. 3 months 02-Jun-1983
US Govt. 6 months 02-Jun-1983
US Govt. 2 years 01-Feb-1977
US Govt. 5 years 03-Jan-1970
US Govt. 10 years 03-Jan-1970
US Govt. 30 years 02-Dec-1980
Germany Euro-deposits 6 months 03-Jan-1975
Germany Govt. 10 years 04-Jan-1989
Japan Govt. 10 years 23-Oct-1987

Exchange Rates
EUR/USD 05-Jan-1971
EUR/GBP 05-Jan-1971
EUR/CHF 05-Jan-1971
EUR/JPY 05-Jan-1971

The values of parameters α, β and κ estimated by a QMLE3 and the resulting
γ are shown in Table 5.1. Value of γ is an indicator of the long time limit of aggre-
gate conditional kurtosis. For time series with γ > 1 the aggregated conditional
kurtosis goes to infinity according Theorem 5.3. The second last column gives
the values of γ together with its 80% confidence levels. These confidence levels
were approximately determined by Monte Carlo simulations4. The error distribu-
tion of model parameters ψ, α, β, κ is asymptotically normal for MLE estimates.
We drew 10.000 values of these parameters and from them calculated γ. The last
column indicates the limit behavior of aggregate conditional kurtosis: c stands for

3For details on quasi-maximum likelihood estimator for GARCH processes see e.g. [69]
4For details on approximation of confidence intervals with Monte Carlo methods see e.g. [26]
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Table 5.1: The GARCH parameters α, β, κ and the indicator γ of the long time limit of con-
ditional kurtosis. For time series with γ > 1 the aggregated conditional kurtosis goes to infinity
according Theorem 5.3. The second last column gives the values of γ together with the 80% con-
fidence levels. The last column indicates the limit behavior of aggregate conditional kurtosis: c
stands for convergence to the value of 3, d stands for divergence, u stands for undecided which is
used if the confidence interval contains the value of 1. We observe that for 6 time series the condi-
tional aggregate kurtosis diverges, for 5 time series it converges to three, and for 6 time series the
limit behavior is undecided by this analysis.

α β κ γ limit

DJI 0.05 0.94 8.1 1.0011± 0.0000 d
DAX 0.11 0.87 11.4 1.0168± 0.0033 d
Nikkei 225 0.10 0.89 5.3 1.0158± 0.0232 u
ATX 0.07 0.92 8.2 1.0872± 0.0851 d
FTSE 100 0.08 0.90 3.8 0.9904± 0.0014 c
Swiss Market Index 0.14 0.81 15.8 1.0089± 0.0329 u
USD/EUR via DEM 0.10 0.00 4.3 0.9903± 0.0125 u
GBP/EUR via DEM 0.09 0.87 4.7 0.9625± 0.0000 c
CHF/EUR via DEM 0.07 0.91 7.3 1.0140± 0.0045 d
JPY/EUR via DEM 0.07 0.92 4.4 0.9981± 0.0000 c
US Govt 3m 0.18 0.82 15.8 1.0574± 0.3083 u
US Govt 6m 0.08 0.92 11.6 0.9513± 0.0863 u
US Govt 2y 0.05 0.95 5.2 0.9776± 0.0344 u
US Govt 5y 0.05 0.95 4.4 1.0068± 0.0017 d
US Govt 10y 0.05 0.94 4.1 0.9983± 0.0000 c
US Govt 30y 0.03 0.96 5.1 0.9911± 0.0000 c
DEM Govt 10y 0.05 0.95 4.7 1.0105± 0.0000 d
JPY Govt 10y 0.10 0.90 6.7 1.0192± 0.0250 d

convergence to the value of 3, d stands for divergence, u stands for undecided
which is used if the confidence interval contains the value of 1. We observe that
for 7 time series the conditional aggregate kurtosis diverges, for 5 time series it
converges to three, and for 6 time series the limit behavior is undecided by this
analysis.

For four selected time series (DAX, USD/EUR, GBP/EUR, US Govt.10y) the
long time behavior of 80% confidence intervals of the aggregated conditional kur-
tosis is illustrated in Figure 5.1. For the confidence intervals of Table 5.1 the finite
time behavior of aggregated kurtosis was calculated from equation (5.13). While
for e.g. the DAX γ ∈ [1.0135, 1.0198] the 90% confidence interval are above 1,
the limiting kurtosis will go to infinity. For US Govt 10y γ ∈ [0.9983, 0.9983]
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Figure 5.1: Finite long term behavior of 80% confidence intervals of the aggregated conditional
kurtosis for four selected time series. For the γ confidence intervals of Table 5.1 the aggregated
kurtosis for the upper and lower ends of the interval was calculated from equation 5.13.

and GBP/EUR γ ∈ [0.9625, 0.9625] the aggregated conditional kurtosis will go
to 3. For USD/EUR γ is in the interval[0.9780, 1.0061] containing 1. The confi-
dence level is widening as the number of aggregation steps increases, indicating
that for this time series the long time behavior of conditional aggregated kurtosis
is undecided on the basis of our analysis.

Figure 5.2 compares the conditional kurtosis as calculated with equation (5.13)
from the γ values in Table 5.1 to the empirical kurtosis estimated directly from
the time series, using Matlab’s kurtosis function. While our time series are too
short to estimate empirical kurtosis over longer horizons, the conditional kurtosis,
calculated with the equations from Theorem 5.2, can be scaled to any aggregation
level as shown in Figure 5.1.
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Figure 5.2: Conditional aggregated kurtosis in dependence of time horizon. Green diamonds
represent the values of the conditional aggregated kurtosis, calculated with equation (5.13) from
the estimated parameter values of the daily time series given in Table 5.1. Blue circles represent
empirical kurtosis estimated directly from the time series.

5.3 The optimal frequency for strong GARCH mod-
els

Since strong GARCH processes do not aggregate to strong GARCH processes
two questions arise: (1) at which frequency is the assumption of strong GARCH
processes best justified?, and (2) When making forecasts over a long time horizon,
should we use higher frequency data if available? In this Section we first give
a Quasi Maximum Likelihood estimation procedure for the optimal frequency.
Then we evaluate how well models of various frequencies predict densities over a
time horizon of three months.
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Estimation of the optimal frequency
In this subsection we will give a Quasi Maximum Likelihood procedure to esti-
mate the optimal frequency of strong GARCH models.

For the estimation of GARCH parameters one often makes the restrictive as-
sumption of having a strong GARCH process with some known type of error dis-
tribution and uses the Maximum Likelihood method. When comparing different
data frequencies we cannot make the assumption that we have a strong GARCH
process at all frequencies. We either have weak GARCH processes arising from
the aggregation of some basic frequency strong GARCH process, as in Drost and
Nijman [39], or some more general processes, as in Meddahi and Renault [78],
or a continuous time GARCH process exhibiting GARCH behavior at all sam-
pling frequencies, as in Drost and Werker [40]. In any case, if we do not have a
strong GARCH process estimating the GARCH parameters with a Quasi Maxi-
mum Likelihood method introduces some errors. For the question whether or not
these errors are neglible we refer to [39, 62, 78].

The basic idea of our Quasi Maximum Likelihood procedure to estimate the
optimal data frequency is as follows. The estimated parameter values of a GARCH
model depend on the data frequency, represented by the number m of aggregation
steps from some given basic frequency. Therefore we have to estimate both, the
GARCH parameters and the m which fits the data best. The optimal parameters
θ = (m,ψ, α, β) are those which maximize the log-likelihood function

θ∗ = argmax
θ

m · LLF (θ) (5.39)

= argmax
m>0 ,ψ,α,β>0

m
n∑
j=1

ln fψ,α,β (εt|It−1) . (5.40)

The factor m corrects for the fact that for a lower frequency, where we aggregate
m time steps of the basic frequency, we have m times less observations and thus
fewer contributions to the LLF. We denoteN to be total number of observation for
the basic frequency and n := bN/mc denotes the number of observation available
at the aggregated frequency.

It is impossible to calculate the LLF for all possible values of m. We restrict
ourselves to natural number m between 1 and 30. The m for which the maximum
of m·LLF is achieved is our estimation of the optimal frequency:

m̂∗ = arg max
1≤m≤30

m max
ψ,α,β>0

ln
n∏
j=1

fψ,α,β (εt|It−1) . (5.41)

To examine the reliability of this estimation procedure we simulated three time
series from a strong GARCH process with basic periods equal to one, three, and

68



0 2 4 6 8 10 12 14 16 18 20
−4000

−3500

−3000

−2500

−2000

−1500

aggregation level

m
 x

 L
LF

(a) Basic period equals one day

0 2 4 6 8 10 12 14 16 18 20
−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500

aggregation level

m
 x

 L
LF

(b) Basic period equals three days
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(c) Basic period equals five days

Figure 5.3: Example of m·LLF as function of aggregation level for simulated GARCH pro-
cesses, with true basic period equal to 1, 3, and 5 times the data period. We see that in all cases
the estimated optimal period m̂∗ is the true period.

five days. On the simulated time series we estimated the optimal frequency fol-
lowing the procedure above. The results are given in Fig. 5.3. We see that for
all three time series the optimal LLF is achieved for the m∗ corresponding to the
true frequencies m = 1, 3, 5, which is reassuring. Still, we cannot exclude that
the true basic frequency is different from m̂∗, which is the one element of the set
{1, 2, 3, . . . , 30}maximising the LLF. What happens if the true basic period is not
a natural number? For example, if we have only weekly data (5 days), but the true
frequency is equal to 3 days, this method cannot give the right result.

Typically the least common multiple of the sample frequency and the true
frequency have the highestm·LLF value. Them·LLF of larger common multiples
is somewhat smaller than the m·LLF of the least common multiple but larger than
the m·LLF for other values of m. This is illustrated in two pictures of Figure 5.4,
where we tested the estimation method on simulated data of a true frequency of 3
resp. 5 periods.

We can examine also the m·LLF for GARCH processes, where the true fre-
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Figure 5.4: The m with the highest value of the m·LLF is not necessarily the true frequency.
Left: The time series follows a GARCH process with true frequency equal to 2 data periods. The
highest level of the m·LLF is achieved for m = 2, which is indeed the true frequency. Right:
The time series follows a GARCH process with true frequency equal to 2/3 of a data period. The
highest level of the m·LLF is achieved for m = 2, which is the least common multiple of the true
frequency 2/3 and the data frequency 1.

quency is higher than the data frequency. Assume we want to calculate them·LLF
for m = 2/3. The least common denominator of m = 2/3 and the data frequency
1 is 2. Aggregating the data at level 2 will yield the same series as aggregating
the true process at level 3. From (5.6) we know the density function of returns
aggregated at level 3. Entering this density for fθ into (5.39) we can calculate the
m·LLF of m = 2/3.

A serious disadvantage of this method to identify the optimal frequency is its
computational complexity. Actually we can find the aggregated density function
by numerically evaluating the integral (5.6). This has to be done n times, where
n is the number of m-values we consider—e.g. 30 in equation (5.41)—times the
number of iterations which the m·LLF maximisation algorithm needs.

Figure 5.5 shows (for m = 1, 2, . . . , 30) the maximum over ψ, α, β of m·LLF
for four time series: ATX, USD/EUR, DJI, US Govt 30y. We observe that for all
four time series the optimal frequency determined by our Quasi Maximum Likeli-
hood procedure is the basic frequency, m∗ = 1. This suggests that the assumption
of strong GARCH is better satisfied for daily data than for lower frequency data.

Statistical tests of long term density forecasts
A related albeit distinct question is the decision which frequency, when aggre-
gated, leads to the best forecasts of long term return distributions. On the one
hand, high frequency data allows for more reliable parameter estimates and the as-
sumption of strong GARCH seems to be better justified for high frequency data.
On the other hand, the aggregation procedure magnifies estimation and model
errors. In this section we will perform statistical tests of the 60 day density fore-
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Figure 5.5: Estimating the optimal frequency of GARCH description of four market time series:
USGovt30y, ATX, DJI, USD/EUR. The plots show m·LLF as function of aggregation level m.
The highest values of m·LLF are always achieved for m = 1. This suggests that the assumption
of strong GARCH is better satisfied for daily data than for lower frequency data.

casts produced by aggregating strong GARCH models of various basic periods
with various error distributions.

As possible frequencies of strong GARCH models we consider 1 day, 5 days,
10 days, 20 days, 30 days, and 60 days. Aggregating these models over 60, 12,
6, 3, 2, resp. 1 period we get distributions of 60 day returns. In order to test the
60 days distribution forecasts produced by the various models, it is not enough to
assess whether the means, variances, or some quantiles of the distributions were
correctly predicted. For many applications, in particular in risk management, the
overall distributional properties are important, not just the means or variances.
Therefore, based on [88], we test for the adequacy of the density forecasts.

At the above frequencies we compare the following models. In order to ac-
count for possible excess kurtosis of the residuals D(0, 1) of the strong GARCH
models, we consider several possible residual distributions: normal, Student, and
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EVT (extreme value theory). The EVT-distribution results from modelling the
body of the distribution by historic simulation and the left and right tails by a
Generalized Pareto distribution. For the left tails we took the lowest 10%, for the
right tail the highest 10%. The details of the procedure are described in McNeil
and Frey [77].

Consider a time series of returns rt (t = 1, . . . , n) generated from some true
conditional densities ft(.) (t = 1, . . . , n). Now some model produces a series of
60 days conditional density forecasts pt(.) (t = 1, . . . , n). The task is to evaluate
whether the true conditional densities ft(.) agree with the predicted conditional
densities pt(.). Applying the Rosenblatt transformation [90] to the observed re-
turns rt,

rt 7→ zt :=

∫ rt

−∞
pt(u)du (5.42)

we get a transformed series zt which should be i.i.d. U(0,1) if the predicted condi-
tional densities pt(.) agree with the true conditional densities ft(.). Applying the
inverse of the normal distribution function

zt 7→ nt := N−1(zt), (5.43)

produces a series nt which is standard normally i.i.d. if the original returns rt are
distributed according to the predicted densities pt (see [13]). There are myriad
of tests for normality which could be applied to the {zt}, see [18] and references
therein.

Berkowitz [13] applied a likelihood-ratio test to the zt against the first order
autoregressive alternative nt − µ = ρ1(nt−1 − µ) + εt to test for i.i.d. N(0,1).
Instead, we can perform a Kolmogorov-Smirnov test for the simple hypothesis
that the nt are sampled from a standard normal distribution. This is our Test
1. A model is accepted if the p-value is higher than 5%. It will turn out (see
Table 5.2) that the Kolmogorv-Smirnov test is no very selective and accepted for
many models all time series.

In order to test additionally whether the variance of the nt is constant and equal
to one, de Raaij and Raunig [88] consider the regressions

nt = β0 + β1nt−1 + ut (5.44)
n2
t = γ0 + γ1n

2
t−1 + vt (5.45)

where ut and vt are non-autocorrelated with zero expectation conditional on their
own past values. In case the nt have zero mean and are uncorrelated we have
β0 = 0 and β1 = 0. In case the nt have constant conditional unit variance we
have γ0 = 1 and γ1 = 0. To test whether these restrictions are satisfied, de Raaij
and Raunig [88] propose a joint Wald test of the four equalities β0 = 0, β1 = 0,
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γ0 = 1, and γ1 = 0. This will be our Test 2. Additionally, they use the Jarque-
Bera [54] test to see whether the nt have skewness zero and kurtosis equal to three.
This will be our Test 3. (The Jarque-Bera test by itself is not very powerful since
it does not test for mean and variance.)

The fourth and fifth tests are variants of Pearson’s χ2-test. In Test 4, we split
the interval [0, 1] on which the random variable zt is defined on five mutually dis-
tinct interval, while in Test 5 we use two adjacent observation of nt to get bivariate
observation and we apply the Pearson’s chi-square test, with event described by
the four quadrants. While Test 4 checks for the rough shape of the density, Test 5
is more sensitive on the dependence between two adjacent observation. The test
statistic is defined as

χ2 =
m∑
i=1

(Ei −Oi)
2

Ei
, (5.46)

where Oi are observed frequencies corresponding to the i−th intervals and Ei are
expected frequencies (based on the theoretical distribution).

The five tests outlined above were applied to the 19 market time series de-
scribed in the previous section. In every test a model was accepted if the p-value
of the given test was higher then 5%. Table 5.2 summarizes the test results. For
each model, this table shows for how many of the 19 time series the model was
accepted in Tests 1 to 5.

Summarizing results of this chapter

- We observe that results improve as the length of the basic period increases
and the number of aggregation steps decreases. Aggregating models for
high frequency data in general leads to worse results than discarding the
high frequency data and estimating the models for 60 days returns only from
60 days data. This is in contrast to statements in the literature (e.g. [39, p.
922]) that in general it is preferable to estimate high frequency models if
data are available and then aggregate to get long term models.

- We also observe that modelling the residual with Student t-distributions
causes models to fail Tests 2, 3, and 5. This observation adds to the scepti-
cism against the formerly popular use of Student t-distributions as residuals
in strong GARCH processes. Allowing for fat-tailed residuals is not a good
motivation. Leptokurtic distributions also result from the continuous time
GARCH models of Drost and Werker [40]. Additionally, our results from
Section 5.1 show that fat tails arise for the aggregated distribution even if
the one-period model is not leptokurtic. Aggregation of some perhaps hid-
den high frequency strong GARCH model may account for the fat tails in
the time series we observe.
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Table 5.2: Summary of test results. For each model, this table shows for how many of the
19 time series the model was accepted in Test 1 to Test 5. In the model description N represents
normal distribution of residual, while t denotes student distribution of residual and EVT represents
residuals with EVT distribution. The first part of model description represents the basic time period
(e.g. 5d_G_N represent GARCH model with normal residuals with 5 days sample frequency).

Test 1 (KS) Test 2 (JB) Test 3 (W) Test 4 (χ2-1d) Test 5 (χ2-2d)
Model # accept. # accept. # accept. # accept. # accept.

1d_G_N 19 0 0 0 0
1d_G_t 0 0 0 0 0
1d_G_EVT 19 0 0 0 0
2d_G_N 19 0 0 0 0
2d_G_t 0 0 0 0 0
2d_G_EVT 19 0 0 0 0
5d_G_N 19 0 0 0 0
5d_G_t 0 0 0 0 0
5d_G_EVT 19 0 0 0 0
10d_G_N 19 0 0 0 0
10d_G_t 0 0 0 0 0
10d_G_EVT 19 0 0 0 0
20d_G_N 19 0 0 0 17
20d_G_t 19 0 1 0 17
20d_G_EVT 19 0 0 0 16
30d_G_N 19 19 19 19 19
30d_G_t 19 0 0 19 0
30d_G_EVT 19 19 19 19 19
60d_G_N 19 19 19 19 19
60d_G_t 19 0 0 7 0
60d_G_EVT 19 19 8 16 19
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- It is important to interpret our test results carefully. They do not imply that
the assumptions of strong GARCH are best satisfied for the low frequency
60d models—which would contradict the results of the Maximum Like-
lihood estimates of the optimal frequency in the previous Subsection 5.3.
Rather they show that the low frequency models which require fewer ag-
gregation steps produce better 60d density forecasts. When it comes to pro-
ducing long term density forecasts it seems that for high frequency models
the advantage of having more data points available is outweighed by the
disadvantage of estimation errors being magnified by the aggregation.
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Chapter 6

Conclusions

In the first part, we formalized the portfolio optimisation problem under risk con-
straint on the infimum of wealth process. Our comparative analysis of expected
return and expected shortfall (ES) with and without the ES constraint suggests
the following conclusions: First, expected returns are reduced by less than one
tenth when the ES constraint is introduced. In comparison, economic capital as
measured by ES, is reduced to amounts between one half and three quarters when
the ES constraint is introduced. Second, the dependence of the expected return
and ES on the initial portfolio, in particular when transaction costs are high, is
largely removed by introduction of the ES constraint. We analyzed how does
the possibility to perform intermediate transaction affect risk measured over long
time horizon. Our analysis shows that both expected return and risk as measure
by ES are brought to some intermediate level when intermediate transaction are
made possible subject to an ES constraint. Without the ES constraint, interme-
diate transaction aiming at maximising expected log-return lead to higher returns
and higher risk.

In the second part (Chapter 4), we introduced a new model for pricing deriva-
tive securities in the presence of both transaction costs as well as the risk from
unprotected portfolio. The risk which we introduced consists of two parts, the
risk from not perfectly hedged portfolio and the risk of default of counterparty,
in which case investor loss part of his investment. The derivation of the Risk ad-
justed pricing methodology (RAPM) model is a modification of original Kratka’s
approach. The option prices can be computed from a solution to a highly nonlin-
ear parabolic PDE. The governing equation extends the classical Black-Scholes
equation and Leland’s equation to the case when the risk from unprotected port-
folio is taken into account. We showed how this equation can be approximated
by a stable numerical scheme. We performed extensive numerical testing of the
model and compared the results to real option market data. We also introduced
the concept of a so-called implied RAPM volatility and implied risk premium co-
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efficient. We computed these implied quantities for large option data sets and we
showed how they can be used in qualitative analysis of option market data. We
introduced also the default possibility into the pricing models and analyzed when
the inclusion of default possibility is required to achieve correct risk analysis.

Finally, in the third part of this thesis, we analyzed the problem of optimal
aggregation frequency. For models with different basic frequency and with dif-
ferent residual distributions we perform out of sample tests of three months den-
sity forecasts on the basis of daily market prices. It turns out that low frequency
models with longer basic periods and fewer aggregation steps perform fare better
than high frequency models. This seems to imply that for high frequency mod-
els the advantage of having more data available for estimation is outweighed by
the disadvantage of aggregation magnifying estimation errors. Contrary to some
statements in the literature (see e.g. Drost and Nijman [39, p. 922]) producing
long term forecasts from aggregating higher frequency models need not be bet-
ter than using only low frequency data. We derived explicit expressions for the
conditional volatility and kurtosis of the aggregated GARCH distribution and we
derived the limit behavior of these conditional moments, when time horizon gets
longer. Given that the aggregation of a strong GARCH process is not any more
a strong GARCH process, the question arises for which data frequency a descrip-
tion by a strong GARCH process fits the data best. We proposed a quasi maximum
likelihood method to determine the optimal data frequency for a GARCH descrip-
tion.

Our main results can be summarized as follows:

1. We proposed and formalized portfolio selection problem with risk con-
straint and made its numerical analysis.

2. We derived a option pricing model which contain the transaction costs, the
risk from unprotected portfolio and the risk from default of a counterparty.
We proposed a numerical scheme for this model and shown that it can ex-
plain the so called volatility smile.

3. We analyzed the problem of integrated vs. separated market and credit risk.
We have also shown when the separated risk analysis does not underesti-
mate the overall risk for coherent risk measure.

4. For models with different basic frequency and with different residual distri-
butions we performed out of sample tests of three months density forecasts
on the basis of daily market prices. and we derived the conditional volatility
and kurtosis and its behavior when time horizon goes to infinity.
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List of symbols

The following symbols are used in Chapter Portfolio selection with transaction
costs under risk constraints

r risk free interest rate
B risk free zero coupon bonds

dB(t) = rBdt

m number of stocks
µ mean of log-normal process, which follow the stock prices
σ′σ covariance of log-normal process, which follow the stock prices
W m-dimensional Wiener process
Si(t) evolution of i−th stock price

dSi(t) = Si(t)

(
µidt+

m∑
j=1

σijdWj(t)

)

xi initial investment to bond (i = 0) and stocks (i = 1, ...,m)
π portfolio selection strategy
Zi(t) cumulative amount of money used to buy stock i
Ui(t) cumulative amount of money obtained from selling stock i
Cbi proportional transaction costs for buying i−th stock
Csi proportional transaction costs for selling i−th stock
V π
i (t) value invested in bond (i = 0) and stocks (i = 1, ...,m) in portfolio
p total market value of portfolio
P total market value of portfolio after transfer of all stocks to bond
ρ0 one period risk measure
ρ multiperiod risk measure

ρ(X) = ρ0

(
inf

t∈[0,∞]
Xt

)
[Ai, Bi] no transaction region for stock i

86



The following symbols are used in Chapter Risk adjusted pricing methdology

r risk free interest rate
B risk free zero coupon bonds

dB = rBdt

µ drift of stock price
σ volatility of stock price
W Wiener process
S(t) stock price

dS = µSdt+ σSdW

Π synthetic portfolio
α number of bonds in synthetic portfolio
δ number of stocks in synthetic portfolio

V price of option
T expiration time
X expiration price

rTC transaction premium for proportional transaction costs (RAPM)
rV P risk premium from volatile portfolio
rR total risk premium: rR = rTC + rV
D continuous dividend
φ φ ∼ N(0, 1), φ

√
dt = dW

ρ default intensity
RR recovery rate
C proportional transaction costs for buying or selling stock
R risk aversion coefficient
Γ ∂2V

∂S2

4topt optimal hedging time
tυ swithing time
τ τ = T − t

υ υ = 3
(
C2R
2π

) 1
3

H H = SΓ
β(H) β(H) = 1

2
σ2(1−H1/3)H

N(x) cumulative distribution function of normal distribution
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The following symbols are used in Chapter Temporal aggregation of GARCH
models

εt a time serie
ε(m)t ε(m)t = εt+m aggregation of a stock random variable

ε[m]t ε[m]t =
m∑
i=1

εt+i aggregation of a flow random variable

m time horizon of aggregation
ψ, α, β parameters of GARCH process
ht the volatility process

ht = ψ + αε2t + βht−1, where α + β < 1 and ψ, α, β > 0.

ξt innovations
It information available at time t
κ conditional kurtosis of the innovations
σ2
u unconditional variance of the one period returns

σ2
u := ψ/(1− α− β)

γ γ = α2κ+ β2 + 2αβ
N(x) cumulative distribution function of normal distribution

A A =


1 ψ ψ2 0 0
0 α + β 2ψ(α + β) 1 ψ
0 0 κα2 + 2αβ + β2 0 κα + β
0 0 0 1 ψ
0 0 0 0 α + β

 .

B B = (1, ht+1, h
2
t+1, 0, 0)

b b′ = (0, 0, κ, 0, 6)
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