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Abstract

This paper systematizes main results on economic models concerning renewable and non-
renewable capital goods where the criterion is to sustain the utility on some minimal
level over whole time horizon. Using the framework of the multidimensional Dasgupta-
Heal-Solow model, it sheds light on the relation of two different approaches: the discounted
utility approach with sustainability constraint, which is historically older and the maximin
approach which has been introduced only recently. In both approaches, we deal especially
with the Hartwick’s rule and formulate assumptions when this rule (or its generalized
version) constitutes either necessary or sufficient condition for constant utility.
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1 INTRODUCTION

In the second half of the 20th century a number of articles dealt with the problem
of optimal consumption in an economy endowed with some capital goods which are non-
renewable but unavoidable for production (cake-eating economy). The prevalent approach
based on maximizing the discounted utility established by Ramsey (1928) was abandoned
as unethical. The ground for this criticism (represented mainly by John Rawls) lied in
the fact that the current utility has a higher weight at the expense of future generations
who cannot rise any objections. A new requirement of sustainability arose by which we
seek the maximal well-being of each generation that leaves the economy with the capacity
to generate the same well-being in each ensuing period. This requirement is also called
sustainability constraint.

As a response to this remarks, Solow (1974) formulated a problem of maximizing the
level of consumption which can be maintained forever, even if one of the essential inputs of
the production function is a non-renewable (exhaustible) capital, given that the renewable
and exhaustible capital goods are sufficiently substitutable. However, he only assumed the
optimal consumption to be constant but he did not formulate any condition for this. This
result was further extended by Hartwick (1977) who introduced the Hartwick’s rule which
prescribes to invest all the revenues from exhaustible capital depletion into the renewable
capital (i.e. zero net investment). He formulated this rule as a sufficient condition for
constant consumption paths, provided that the path satisfies the necessary conditions for
optimality1 and some other assumptions are met.

In the existing literature, two main approaches of dealing with sustainability constraint
requiring to preserve the capacity of economy can be identified. The discounted utility
approach assumes that agents maximize their discounted utility subject to the constraint of

1This is referred to as efficient path in the prevalent literature as this path minimizes the quantity of
resource used.
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constant utility over the time horizon. This approach was adopted among other by Dixit et
al. (1980), Withagen and Asheim (1998), Cairns and Yang (2000), Mitra (2002), Withagen
et al. (2003), Asheim et al. (2003) and Buchholz et al. (2005). Assumptions regarding
no technology or population growth and exponential discount factor were released by
Hartwick and Long (1999), Asheim et al. (2005) and Farzin (2006). On the other hand,
the maximin approach supposes maximizing the level of utility of the least advantaged
generation. Unlike the discounted utility approach that can be found in majority of
literature on this topic, the maximin approach was not subject of interest until recently.
This approach and the relationship to the first approach was addressed by Cairns and
Tian (2002) and Cairns (2003).

The aim of this paper is to summarize the most important results on Hartwick’s rule
related to the sustainability constraint in general and to present these results in a unified
framework. Regarding the discounted utility approach, we present a new proof of the con-
verse of Hartwick’s result. We also shed light on the relationship between the discounted
utility approach and the maximin approach by extending the results that were introduced
by Cairns and Tian (2002).

The structure of this paper is as follows: In section 2 the main model of economy
with renewable and non-renewable resources with sustainability constraint is presented.
Section 3 introduce the discounted utility approach and present the main results regarding
this approach. The maximin approach is described in Section 4. Section 5 is devoted to
comparison of the two approaches. It extends the results that has been known so far.
Finally, Section 6 concludes.

2 FORMULATION OF THE MODEL

Consider the following model of an economy with renewable and non-renewable re-
sources:

max
{c(t),r(t)}

inf
t≥0

U(c(t)), (1)

k̇(t) = f(k(t), r(t)) − δk(t) − c(t), k(0) = k0 > 0 given, δ > 0 given, (2)

ṡ(t) = −r(t), s(0) = s0 > 0 given, (3)

k(t) ≥ 0, s(t) ≥ 0, r(t) ≥ 0, c(t) ≥ 0. (4)

This is a problem of maximizing the level of utility that can be sustained forever. The
amount of production depends on the amount of the renewable capital in individual sectors
(k ∈ R

n
+)2 and on the rate of extraction (r ∈ R

m
+ ) of the non-renewable capital (s ∈ R

m
+ ).

The production can be partitioned into investment in the capital in order to increase its
volume in the future and current consumption (c ∈ R

n
+). In this model we assume that

there is a positive rate of amortization of the capital in each sector (δ). The population
and technology is supposed to be constant over the time horizon.

Further assumptions of the model:

(P1) The production function f : R
n
+×R

m
+ → R is increasing, strictly concave, unbounded

and twice continuously differentiable w.r.t. both variables and it holds f(k, r) = 0

2We use the following notation: R
n
+ := {x ∈ R

n; xi ≥ 0, i = 1, . . . , n} and R
n
++ := {x ∈ R

n; xi >

0, i = 1, . . . , n}.
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whenever any component of the vectors k or r is zero. In addition it holds

limki→0+
∂f(k,r)

∂ki
= ∞ ∀k ∈ R

n
++ and r ∈ R

m
++, i = 1, . . . , n,

limrj→0+
∂f(k,r)

∂rj
= ∞ ∀k ∈ R

n
++ and r ∈ R

m
++, j = 1, . . . ,m.

(P2) The utility function U : R
n
+ → R is increasing, strictly concave and twice continu-

ously differentiable on R
n
+ and it holds

lim
ci→0+

∂U(c)

∂ci
= ∞, lim

ci→∞

∂U(c)

∂ci
= 0 ∀ c ∈ R

n
++, i = 1, . . . , n.

This formulation of the model which directly include the sustainability constraint in
the objective function fits to the original formulation of this problem (cf. Solow (1974)).
Nevertheless, it is common in the literature that the objective function (1) is substituted
by

max
{c(t),r(t)}

∫ ∞

0
π(t)U(c(t)) dt (5)

with additional requirement that U(c(t)) has to be constant for all t ≥ 03 and we assume
that

(P3) the discount factor π(t) is positive, non-increasing and
∫ ∞
0 π(t) dt <∞.

Two special cases of this problem often used in the literature on Hartwick’s rules are
as follows:

• Ramsey model, where m = 0 and n = 1 (i.e. only one renewable but no non-
renewable resource is considered) and

• Dasgupta-Heal-Solow model, where m = 1 and n = 1 (i.e. one renewable and one
non-renewable capital is considered).

3 DISCOUNTED UTILITY APPROACH

In this section, we briefly summarize the main results regarding the discounted utility
approach. For more comprehensive summary, see e.g. Asheim et al. (2003). Firstly, we
present the necessary condition for optimality of the solution to (2) – (5) which will be
used in these results.

The Hamiltonian function is defined by

H(k, s, c, r, ψ0, ψ, ϕ) = ψ0πU(c) + ψT (f(k, r) − δk − c) + ϕT (−r)

and the Lagrangian is defined by

L(k, s, c, r, ψ0, ψ, ϕ, µr, µc, ν, η) =

= ψ0πU(c) + (ψ + ν)T (f(k, r) − δk − c) + (ϕ+ η)T (−r) + µT
r r + µT

c c.

3Note that although this is common formulation in the literature, it suffices that U(c(t)) does not
decrease under some level.
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Further, let us denote

H∗[t] := H
(

k∗(t), s∗(t), c∗(t), r∗(t), ψ0, ψ(t), ϕ(t)
)

,

where (k∗, s∗, c∗, r∗) is an optimal solution to (2) – (5).
Now we formulate the necessary conditions of optimality according to Seierstad and

Sydsæter (1987) [Theorem 6.9]: If (k∗, s∗, c∗, r∗) is an optimal solution to the problem
(2) – (5), then there exist a constant ψ0 = 0 or ψ0 = 1, vector functions ψ(t) : R →
R

n, ϕ(t) : R → R
m, µc(t) : R → R

n and µr(t) : R → R
m and non-increasing vector

functions ν(t) : R → R
q and η(t) : R → R

m such that (ψ0, ψ(t−), ϕ(t−)) 6= (0, 0, 0) and
(ψ0, ψ(t+), ϕ(t+)) 6= (0, 0, 0) for all t > 0 all having one-sided limits everywhere, such that
following conditions are met:

H∗[t] ≥ H
(

k∗(t), s∗(t), c(t), r(t), ψ0, ψ(t), ϕ(t)
)

for all (c, r) ∈ R
m+n
+ (6)

∂L

∂c
= ψ0π

dU

dc
− ψT − νT + µT

c = 0 (7)

∂L

∂r
= (ψ + ν)T ∂f

∂r
− ϕT − ηT + µT

r = 0 (8)

ψ(t) + ν(t) and ϕ(t) + η(t) are continuous everywhere (9)

d

dt
(ψT + νT ) = −

∂L

∂k
= δ(ψ + ν)T − (ψ + ν)T ∂f

∂k
almost everywhere (10)

d

dt
(ϕT + ηT ) = −

∂L

∂s
= 0 almost everywhere (11)

ν and η are constant on any interval where k∗ > 0, resp. s∗ > 0, (12)

ν is continuous if k∗ = 0 and f(k∗, r∗) − δk∗ − c∗ is discontinuous, (13)

η is continuous if s∗ = 0 and r∗ is discontinuous, (14)

µT
c c

∗ = 0, µc ≥ 0, and µT
r r

∗ = 0, µr ≥ 0. (15)

Theorem 1 (Hartwick’s result) Let (k, s, c, r) be an admissible4, solution to problem
(2) – (5) and suppose that there exist (ψ,ϕ) such that the following conditions are met:

(i) the quadruple (k, s, c, r) fulfills conditions (6) – (15) together with ψ0 = 1, µc = 0,
µr = 0, ν = 0, η = 0 and (ψ,ϕ),

(ii) for all t ≥ 0 it holds ψT k̇ = ϕT r (Hartwick’s rule).

Then U(c) ≡ const. for all t ≥ 0.

Remark 1 (Economic interpretation of Hartwick’s rule) The Hartwick’s rule means that
the net investment has to be zero, i.e. that any decrease in non-renewable capital or
renewable has to be compensated by increase in (other) renewable capital. In the special
case of Ramsey model, it means that the level of capital has to be constant.

Remark 2 (Generalized Hartwick’s result) Theorem 1 holds true even if we replace the
Hartwick’s rule by its generalized version in form ψT k̇−ϕT r = const. The first who proved
the generalized Hartwick’s result were Dixit et al. (1980).

4Admissible solution to problem (2) – (5) is a quadruple (k, s, c, r) such that k and s are continuous
functions, conditions (2) – (5) are satisfied and the integral in (5) is convergent.



60 PAVOL JURČA

Remark 3 (An existence result) Hartwick’s result does not address the question of ex-
istence of paths satisfying the assumptions of Theorem 1. Said differently, the discount
factor π has to be chosen properly such that condition (ii) is met in addition to the nec-
essary conditions (6) – (15). This artificial ex ante setting of preferences was an object of
critics, see e.g. Martinet and Rotillon (2005).

Remark 4 (Optimal level of utility) Theorem 1 does not state whether the utility level is
the highest among all utility levels that can be sustained forever. Nevertheless, considering
the case m = n = 1, Cairns and Yang (2000) proved that this is true if there exists α > 0

such that r ∂2f
∂r∂k

> α for all t ≥ 0.

The converse of Hartwick’s result is not quite straightforward, as seen in the next
theorem: It does not suffice that the quadruple (k, s, c, r) meets conditions (6) – (15); we
have to assume that it is optimal solution. In the proof of the converse of Hartwick’s
result which is presented below we use this optimality to derive an additional condition
formulated in Lemma 1 which is used to prove this result.

Theorem 2 (Converse of Hartwick’s result) Let (k∗, s∗, c∗, r∗) be an optimal solu-
tion to problem (2) – (5) which satisfies the conditions (6) – (15) with (ψ0, ψ, ϕ, µr, µc, ν, η).
Then it holds: If U(c∗(t)) ≡ const. for all t ≥ 0, then ψ(t)T k̇∗(t) = ϕ(t)T r∗(t).

This result has been broadly cited in the literature. It was formulated among other by
Withagen et al. (2003) [Proposition 2], Asheim et al. (2003) [Proposition 4], Withagen
and Asheim (1998), Cairns and Yang (2000) [Theorem 1 (i)], Martinet (2004) [Proposition
3] and Buchholz et al. (2005) [Theorem 1]. In addition, several proofs of the converse of
Hartwick’s result can be found in the literature. Withagen and Asheim (1998) introduced
a proof based on the transformation to a problem on finite time horizon with free final
time. However, they neglected the scrap value function that should be in the objective
functional since the final time is free (cf. (29)). Another proof was given by Mitra (2002)
who used a new condition of terminal cost minimization, but only for a special discount
factor π(t) = 1. Aronsson et al. (1995) proved this theorem for the special case of Ramsey
model (i.e. n=1, m=0) and π(t) = e−ρt, where ρ > 0. The proof by Buchholz et al.
(2005) is restricted only to interior solutions. Finally, Farzin (2006) showed that this
result is valid in the general framework as considered in this paper extending the well-
known result of Michel (1982) to general discount factor. However, he neglected the control
and state constraints. Moreover, his proof is based on the additional assumption that the
Hamiltonian is differentiable w.r.t. t which was not verified. In this paper, we present a
new proof of the converse of Hartwick’s result for the general problem (2)–(5) using the
extension of the result proved by Michel (1982) considering also pure state constraints. In
the proof, we use the following lemma:

Lemma 1 Let (k∗, s∗, c∗, r∗) be an optimal solution to (2)–(5) which satisfies the condi-
tions (6) – (15) with (ψ0, ψ, ϕ, µr, µc, ν, η). Then it holds for all t ≥ 0:

H∗[t] = −ψ0

∫ ∞

t

π′(s)U(c∗(s)) ds.

Proof. The proof is given in the Appendix.
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Proof of the Theorem 2. From the Lemma 1 we obtain that it holds for all t ≥ 0

ψ0π(t)U(c∗(t)) + ψ(t)T k̇∗(t) − ϕ(t)T r∗(t) = −ψ0

∫ ∞

t

π′(s)U(c∗(s)) ds. (16)

By integrating the right-hand side per-partes we have

−ψ0

∫ ∞

t

π′(s)U(c∗(s)) ds =

= −ψ0
[

π(s)U(c∗(s))
]∞

t
+

∫ ∞

t

ψ0π(s)
dU(c∗(s))

ds
ds. (17)

The necessary condition for the convergence of the integral in the objective function in (5)
together with the fact that U(c∗(t)) = const. and π(t) is non-increasing (see (P3)) implies

lim
t→∞

π(t)U(c∗(t)) = 0.

Moreover,
dU(c∗(t))

dt
= 0

as U(c∗(t)) = const. Using these two equalities we obtain that the right-hand side of (17)
is simply

ψ0π(t)U(c∗(t)). (18)

We complete the proof by combining (16) and (18) which implies ψ(t)T k̇∗(t)−ϕ(t)T r∗(t) =
0 for all t ≥ 0.

Theorem 3 (Converse of generalized Hartwick’s rule) Let (k, s, c, r) be an admis-
sible solution to (2) – (5) which satisfies the conditions (6) – (15) with (ψ0, ψ, ϕ, µr, µc, ν, η).
Then it holds: If U(c(t)) ≡ const. for all t ≥ 0, then ψ(t)T k̇(t) − ϕ(t)T r(t) ≡ const. =: γ
for all t ≥ 0.

This theorem was proved e.g. by Mitra (2002) [Theorem 2]. In addition, Mitra (2002)
also presented an example that γ can be different from zero.

4 MAXIMIN APPROACH

In the previous section we have dealt with the discounted utility approach to the
sustainability constraint. Although the problem which has been solved in this approach
is certainly not the same as the original problem (1) – (4), it is prevalent in the relevant
literature. However, the maximization of the discounted value of utility is rather artificial
in the original context. This is confirmed also by the fact that in the Hartwick’s result
(Theorem 1) and in the Converse of Hartwick’s result (Theorem 2), the discount factor
has to be chosen properly.

Hence, it is reasonable to study directly the problem (1) – (4). This is not a standard
optimal control problem. Using a new variable w, we can transform the problem into form

max
{c(t),r(t)}

w, (19)

k̇ = f(k, r) − δk − c, k(0) = k0 > 0 given, δ > 0 given, (20)

ṡ = −r, s(0) = s0 > 0 given, (21)

k(t) ≥ 0, s(t) ≥ 0, r(t) ≥ 0, c(t) ≥ 0, (22)

U(c) ≥ w. (23)
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The problem (1) is formulated as an optimal control problem with parameter w. As
it was suggested e.g. by Leonard and Long (1992), we can transform this problem as
a standard optimal control problem (without parameter) considering w as a new state
variable. Hence, (19) can be rewritten as follows

max
{c(t),r(t)}

w(0), where ẇ = 0, w(0) free (24)

The problem (20) – (24) is an autonomous optimal control problem with infinite time
horizon, with constrained control region and pure state constraints and with an initial
scrap value function. Note that there is no initial condition imposed on w(0).

Define the Hamiltonian by

H̄(k, s, c, r, w, ψ, ϕ, λ) = ψT (f(k, r) − δk − c) − ϕT r + λ 0

and the Lagrangian by

L̄(k, s, c, r, w, ψ, ϕ, λ, µc, µr, µu, ν, η) =

= (ψ + ν)T (f(k, r) − δk − c) − (ϕ+ η)T r + λ 0 + µT
c c+ µT

r r + µu(U(c) − w),

Again we can formulate the necessary conditions for optimality based on Seierstad
and Sydsæter (1987) [Theorem 6.9]: If (k∗, s∗, w∗, c∗, r∗) is an optimal solution to the
problem (20) – (24), then there exist a constant ψ0 = 0 or ψ0 = 1, vector functions
ψ(t) : R → R

n, ϕ(t) : R → R
m, λ(t) : R → R, µc(t) : R → R

n, µr(t) : R → R
m and

µu(t) : R → R and non-increasing vector functions ν(t) : R → R
q and η(t) : R → R

m such
that (ψ0, ψ(t−), ϕ(t−), λ(t−)) 6= (0, 0, 0, 0) and (ψ0, ψ(t+), ϕ(t+), λ(t+)) 6= (0, 0, 0, 0) for all
t > 0 all having one-sided limits everywhere, such that conditions (8) – (15) provided that
L is replaced by L̄ and following conditions are met:

ψT (f(k∗, r∗) − δk∗ − c∗) − ϕT r∗ ≥ ψT (f(k∗, r) − δk∗ − c) − ϕT r

for all (c, r) ∈ R
m+n
+ and U(c) ≥ w∗, (25)

∂L̄

∂c
= µu

dU

dc
− ψT − νT + µT

c = 0, (26)

λ̇ = −
∂L̄

∂w
= µu, λ(0) = −1, (27)

µu(U(c) − w) = 0, µu ≥ 0. (28)

Considering the Hartwick’s rule in the maximin framework, the following theorem can
be proved:

Theorem 4 (Converse of Hartwick’s result in the maximin framework) Assume
that (k∗, s∗, c∗, r∗, w∗) is an optimal solution to the problem (8) – (15) which fulfills the
conditions (8) – (15) and (25) – (28) together with (ψ0, ψ, ϕ, λ, µc, µr, µu, ν, η). Then
ψ(t)T k̇∗(t) = ϕ(t)T r∗(t) for all t ≥ 0.

Proof. The theorem follows immediately from the fact that the Hamiltonian for
the problem (20) – (24) is zero everywhere. We will not prove this; the proof that the
Hamiltonian is zero is analogous to the proof of Lemma 1 used formally with π(t) = 1 and
U(c) = 0.5

5Note that π(t) = 1 and U(c) = 0 does not meet assumptions (P2) and (P3). However, these assump-
tions are not needed in the proof of Lemma 1.
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5 DISCOUNTED UTILITY APPROACH VS. MAXIMIN APPROACH:

A COMPARISON

The aim of this section is to find a relationship between the discounted utility approach
and the maximin approach which were described in the previous sections.

This relationship was addressed by Cairns and Tian (2002). However, they used only
the framework of Ramsey model. Their main conclusion was that the discount factor in
the discounted utility approach can be interpreted as a shadow value of the constraint
that the utility is constant in the maximin approach. Further similarities and differences
of these two approaches were also commented by Cairns (2003).

To extend the interpretation found by Cairns and Tian (2002), we use that the neces-
sary conditions to the problem (20) – (24) are very similar to the necessary conditions to
the problem (2) – (5). Actually, this similarity helps us to find the relationship between
the solution to the problem (2) – (5) representing the discounted utility approach and the
solution to the problem (20) – (24) which was formulated using the maximin approach.
Indeed, the following theorem holds:

Theorem 5 6 Let (k̄, s̄, c̄, r̄) be a feasible solution to the problem (2) – (5) that satisfies the
necessary conditions (6) – (15) together with (ψ0, ψ, ϕ, µc, µr, ν, η), where ψ0 = 1, µc = 0,

µr = 0, ν = 0, η = 0 and it holds ψT ˙̄k = ϕT r̄. Then there exist w̄, λ and µu such that
(k̄, s̄, c̄, r̄, w̄) satisfies the necessary conditions (8) – (15) with L replaced by L̄ and (25) –
(28) to the problem (20) – (24) together with (ψ,ϕ, λ, µc, µr, µu, ν, η).

Proof. Under the assumptions of this theorem, Theorem 1 implies that U(c̄(t)) =
const. Denote this constant by w̄. Further define

λ(t) = −1 +

∫ t

0
π(t) dt

and
µu(t) = ψ0π(t).

Then it is straightforward to verify that (k̄, s̄, w̄, c̄, r̄) together with (ψ,ϕ, λ, µc, µr, µu, ν, η)
satisfy the conditions (7) – (15) with L replaced by L̄ and (26) – (28). Hence, we only
show in detail that (6) implies (25). Recall that (6) reads

ψ0πU(c̄) + ψT (f(k̄, r̄) − δk̄ − c̄) − ϕT r̄ ≥ ψ0πU(c) + ψT (f(k̄, r) − δk̄ − c) − ϕT r

for all (c, r) such that c ≥ 0 and r ≥ 0. If U(c) ≥ w̄ = U(c̄), one has

ψT (f(k̄, r̄) − δk̄ − c̄) − ϕT r̄ ≥ ψT (f(k̄, r) − δk̄ − c) − ϕT r

again for all (c, r) such that c ≥ 0, r ≥ 0 and U(c) ≥ w̄. This proves (25).

Remark 5 (Interpretation of the relationship between both approaches) The importance
of Theorem 5 is based on the fact that it links the discounted utility approach and the
maximin approach. Actually, it highlights the artificiality behind the discounted utility
approach: This discount factor can be considered as implicitly included in the maximin

6This theorem is original result of this paper. Cairns and Tian (2002) [Proposition 3] introduced the
converse of this theorem but only for the case n = 1 and m = 0. Moreover, they neglected the nonnegativity
constraints on state and control variables and conditions (6) and (25), respectively.
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approach. Actually, it is the shadow value of the constraints U(c) ≥ w. Moreover, as
Cairns (2003) noted, the relationship between these two approaches can be interpreted
also from another point of view: The appropriate chosen discount factor π(t) can be
considered as a coefficient in the infinitely-dimensional hyperplane given by equation

∫ ∞

0
π(t)U(c∗(t))dt = w∗.

Besides the optimal control theory framework, also other approaches to handle the
sustainability constraint can be used. For example, papers by Martinet and Doyen (2003)
and Martinet (2004) are based on the viable control analysis. On the other hand, Martinet
and Rotillon (2005) examined invariants that are preserved endogenously without a priori
choosing of preferences as in the discounted utility approach.

6 CONCLUSION AND DISCUSSION

In this paper, we have summarized the main results related to the problem with sustain-
ability constraint in the optimal control framework under two approaches: the discounted
utility approach and the maximin approach. In the discounted utility approach, we have
provided a new proof of Theorem 2, i.e that in the multidimensional Dasgupta-Heal-Solow
model, Hartwick’s rule is a necessary condition for optimal solutions to have constant
utility. We have also extended the results introduced by Cairns and Tian (2002) on the
relationship between the two approaches in Theorem 5.

Let us mention that the converse of Theorem 4 has not been proved nor disproved
yet. In addition, although we have confirmed in Remark 5 the economical interpretation
of the discount factor as the shadow value of the sustainability constraint, it has not been
verified that the standard assumptions lied on a discount factor (see (P3)) are satisfied for
this shadow value. These issues could be subjects of further research.

7 APPENDIX: PROOF OF LEMMA 1

Proof. Choose an arbitrary sequence {Tn}, where Tn > 0 and Tn → ∞. For each Tn

define a free final time problem with a scrap value function as follows

max

∫ T

0
π(t)U(c(t)) dt+ Φ(T − Tn), (29)

where

Φ(ξ) = π(ξ)

∫ ∞

Tn

π(t)U(c∗(t)) dt

subject to (2) – (4). It can be easily shown that Tn and (k∗, s∗, c∗, r∗) on 〈0, Tn〉 is an
optimal solution for this problem. If we transform this problem to an autonomous one
considering t as a new state variable

τ := t, i.e. τ̇(t) = 1, τ(0) = 0, τ(T ) free,

the augmented solution (k∗, s∗, τ∗, c∗, r∗, Tn) will satisfy the necessary conditions for opti-
mality formulated by Seierstad and Sydsæter (1987) [Theorem 5.2]. Denoted the Hamilto-
nian by H̃∗

n[t] and the Lagrangian by L̃∗
n. In particular, there exists a piecewise continuous
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function λn : R → R solving the differential equation

λ̇n = −
∂L̃∗

n

∂τ
(30)

almost everywhere and the terminal condition

λn(Tn) = ψ0
n

∂Φ(τ(Tn) − Tn)

∂τ
. (31)

Since the only functions dependent on τ directly are π(τ) and Φ(τ), (30) can be reduced
to

λ̇n = −ψ0
n

∂π(τ)U(c)

∂τ
= −ψ0

nπ
′(τ)U(c). (32)

Further it holds that λn is continuous everywhere. This is implied by Equation (5.90)
stated by Seierstad and Sydsæter (1987) using the fact that all constraints in the given
problem are autonomous.

We also know that (32) holds almost everywhere, hence

λn(Tn) − λn(t) = −ψ0
n

∫ Tn

t

π′(s)U(c∗(s)) ds. (33)

Using the definition of φ, (31) implies

λn(Tn) = ψ0
n

∂Φ(τ(Tn) − Tn)

∂τ
=

= ψ0
n

∂
(

π(τ(T − Tn))
∫ ∞
Tn
π(s)U(c∗(s)) ds

)

∂τ

∣

∣

∣

∣

∣

T=Tn

=

= ψ0
n π

′(0)

∫ ∞

Tn

π(s)U(c∗(s)) ds. (34)

Putting (33) and (34) together we obtain

λn(t) = ψ0
n

∫ Tn

t

π′(s)U(c∗(s)) ds+ ψ0
n π

′(0)

∫ ∞

Tn

π(s)U(c∗(s)) ds =

= ψ0
n

∫ Tn

t

π′(s)U(c∗(s)) ds+ C(Tn), (35)

where lim
n→∞

C(Tn) = 0.

Let us denote by H∗
n[t] the Hamiltonian of the original (non-autonomous) problem.

Then one has

H̃∗
n[t] = H∗

n[t] + λn(t).

Now we can exploit the advantage of the transformation of the original problem to an
autonomous one and use three results formulated by Seierstad and Sydsæter (1987) (see
notes in parentheses for detailed references):

(i)
d

dt
H̃∗

n[t] = 0 for almost all t ∈ (0, Tn) (Note 5.3(f)),
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(ii) H̃∗
n[t] is continuous for all t ∈ (0, Tn) (Note 5.3(c)),

(iii) H̃∗
n[T−

n ] = 0 (Theorem 6.16).

Combining these three results we obtain that

H∗
n[t] + λn = H̃∗

n[t] = 0 (36)

for all t ∈ (0, Tn). Note that the set of necessary conditions (6) – (15) does not include such
a type of on Hamiltonian except (6). Indeed, (36) is additional to these conditions. This
is the reason why the optimality of the solution is needed in the formulation of Lemma 1.

Since for all n, ψ0
n = 0 or ψ0

n = 1, a convergent subsequence {ψ0
ni
}∞i=1 exists; denote

the limit of this subsequence ψ0. Thus there exists i0 such that for all i > i0 it holds
ψ0

ni
= ψ0.
Let us return now to (36), but consider it only for the subsequence {ni}. Using (35)

and taking limit for i→ ∞ we obtain

H∗[t] = −ψ0

∫ ∞

t

π′(s)U(c∗(s)) ds.
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Abstract

Stochastic programming problems with recourse are a composition of two (outer and inner)
optimization problems. A solution of the outer problem depends on an “underlying”
probability measure while a solution of the inner problem depends on the solution of the
outer problem and on the random element realization. The optimal solution is sought with
respect to the mathematical expectation of the outer problem. Of course, to be the problem
“well” defined a finite optimal value of the inner problem has to exist for every feasible
solution of the outer problem and every “possible” realization of the random element;
moreover, a finite mathematical expectation of the optimal value of the outer problem has
to exist for every feasible solution of the outer problem. To this end, sufficient assumptions
are well known in a linear case. The aim of the note is to deal with (generally) nonlinear
case. To obtain new results, the multiobjective deterministic theory is employed.

Keywords: Stochastic programming problems with recourse, inner and outer problem,
multiobjective optimization problems, efficient points, properly efficient points, concave
functions.

1 INTRODUCTION

Stochastic programming problems with recourse correspond to many applications. His-
torically, first a sense of this type of the problems has been to compensate unfulfilled
constraints with a random element. Consequently, the original aim has been a “general-
ization” of stochastic programming problems with a penalty. It is known that problems
with simple recourse can be (under some assumptions) equivalent just to the problems
with penalty. However, at present these problems correspond to many real life situations
in which it is possible to correct a solution determined before a random element realization.
We can recall e.g. the applications: Financial problems (investment problem, portfolio re-
vision problem, see e.g. [2]), farmer’s problem (see e.g. [1]), melt control problem (see e.g.
[2]), power–station planning (see e.g. [5], [14]), aircraft allocation problem, transportation
problem (see e.g. [12]), location problem (see e.g. [15]), production planning (see e.g. [7],
[8]). Evidently, most of this applications are connected with a loss or a profit by some
economic activities. Some other applications can be found in [11].

Let ξ := ξ(ω) (m×1) be a random vector defined on a probability space (Ω, S, P ); ξ =
(ξ1, . . . , ξm). We denote by F ξ, PF ξ the distribution function and the probability measure
corresponding to the random vector ξ; ZF ξ the support of PF ξ . Let, moreover, g0, g1

0
be

∗This work was supported by the Czech Science Foundation under Grants 402/07/1113, 402/05/0115
and 402/06/0990.


