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Preface

Motto:

“Treat the Earth well.

It is not inherited from your parents,

it is borrowed from your children.”

(old Kenyan proverb)

In recent years, sustainability has become an often-used concept of the economic
development, influencing the policy debates and actions even on its highest level. How-
ever, its definition is far from being agreed unequivocally. Indeed, the sustainability
includes great variety of different perspectives. Strong increase in population facing re-
stricted land and space, impact of industrial growth on environment and climate and
growing energy consumption with finite stock of non-renewable resources are only se-
veral examples. In addition, the sustainability often comprises a social aspect of the
economic growth. Stated generally, this aspect requires the so-called intergenerational
equity which means that needs of the present generation should be met without com-
promising the ability of future generations to meet their own needs. However, designing
a policy which takes into account rights and desicions of people not yet born might be
quite a challenging task. In this thesis, we will focus on models of an efficient extraction
of exhaustible resources taking into consideration the requirement of intergenerational
equity.
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Abstract

Jurča, P. (2010): Sustainability in models of optimal economic growth [Dissertation the-
sis]. Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics,
Department of Applied Mathematics and Statistics. Supervisor: doc. RNDr. Margaréta
Halická, CSc. Bratislava.

In this thesis, we deal with models of sustainable economic growth in an economy
with renewable as well as exhaustible capital resources, formulated as optimal control
problems. For this type of models, one of the most important rules is Hartwick’s rule.
It states that all revenues from the extraction of exhaustible capital goods should be
reinvested to reproducible capital. Based on the rigorous formulation of results from
optimal control theory, we summarize the most important results on Hartwick’s rule in
a unified framework. We consider models of economic growth with discounted utility
criterion as well as maximin criterion and shed light on the relationship between them.
We provide a new or generalized formulation of some results and simplify some proofs.
Then, we propose a novel model with two types of mutually substitutable exhaustible
goods with different productivities. Using necessary conditions of optimality for prob-
lems with binding pure state constraints, we provide a qualitative analysis of solutions
to this model. In particular, we find that it is not optimal to further exploit the resource
with a constant productivity after the extraction of the resource with a growing produc-
tivity started. Moreover, we extend some results on application of Noether’s theorem
in optimal control problems and use them for formulating conservation laws which rep-
resent quantities that remain sustained along trajectories of optimal solutions. Finally,
we also make a contribution to the optimal control theory itself. In particular, we shed
light on comparison between two different sets of necessary conditions of optimality for
problems with pure state constraints.

Keywords: Sustainability, Harwick’s rule, optimal control, conservation law, exhaustible
resources
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Abstrakt

Jurča, P. (2010): Udržatel’nost’ v modeloch optimálneho ekonomického rastu [Dizer-
tačná práca]. Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a infor-
matiky, Katedra aplikovanej matematiky a štatistiky. Školitel’ka: doc. RNDr. Margaréta
Halická, CSc. Bratislava.

V práci sa zaoberáme modelmi udržatel’ného ekonomického rastu v ekonomike, v
ktorej existujú obnovitel’né ako aj vyčerpatel’né zdroje, formulovaných v tvare úloh opti-
málneho riadenia. Pre tento typ modelov je jedným z najdôležitejších pravidiel Hartwick-
ovo pravidlo. Podl’a tohto pravidla by všetky výnosy z t’ažby vyčerpatel’ných zdrojov mali
byt’ reinvestované do obnovitel’ného kapitálu. Na základe presnej formulácie výsled-
kov teórie optimálneho riadenia zhrnieme v jednotnej forme najvýznamnejšie výsledky
týkajúce sa Hartwickovho pravidla. Okrem toho sa budeme zaoberat’ modelmi eko-
nomického rastu s účelovou funkciou založenou na diskontovanej užitočnosti, ako aj s
účelovou funkciou typu max-min a objasníme vzt’ah medzi nimi. Pri niektorých výsled-
koch uvedieme ich novú alebo všeobecnejšiu formuláciu, prípadne zjednodušíme ich
dôkaz. Navrhneme nový model s dvoma navzájom substituovatel’nými vyčerpatel’nými
zdrojmi, ktoré majú rôznu produktivitu. Pomocou nutných podmienok optimality pre
úlohy s aktívnymi čistými ohraničeniami na stavové premenné uvedieme kvalitatívnu
analýzu riešení tohto modelu. Konkrétne ukážeme, že nie je optimálne d’alej využívat’
zdroj s konštantnou produktivitou, ak už začala t’ažba zdroja s rastúcou produktivitou.
Ďalej rozšírime niektoré výsledky týkajúce sa aplikácie Noetherovej vety v optimálnom
riadení a využijeme ich na formuláciu zákonov zachovania, ktoré reprezentujú veličiny,
ktoré zostávajú konštantné pozd́lž trajektórií optimálnych riešení. Napokon uvedieme
niekol’ko príspevkov aj do samotnej teórie optimálneho riadenia. Konkrétne sa budeme
zaoberat’ porovnaním dvoch rôznych množín nutných podmienok optimality pre úlohy
zahrnujúce čisté ohraničenia na stavové premenné.

Kl’účové slová: Udržatel’nost’, Hartwickovo pravidlo, optimálne riadenie, zákon za-
chovania, vyčerpatel’né zdroje
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Chapter 1

Introduction

1.1 Motivation

The world economy is heavily dependent on extraction of exhaustible resources such as
oil, coal, natural gas, uranium or minerals. Hence, a natural question arises whether
the current level of consumption is sustainable despite its dependence on these non-
renewable resources. This question is studied in the natural resources economy. How-
ever, the sustainability of economic growth based on depletion of non-reproducible re-
sources should be viewed well beyond the horizon of the current generation. This is
captured by the social aspect of the sustainability concept which requires that the cur-
rent state of the economy and its consumption possibilities should be preserved to all
future generations.

In this thesis, we study models of sustainable economic growth. These models will
be formulated as optimal control problems. Several approaches how to incorporate the
sustainability requirement have been adopted in the literature.

The first approach comes up from the utilitarian tradition. The conventional models
of economic growth were traditionally based on maximizing of the discounted utility
of consumption. The discount factor imposes a higher weight on the current utility
at the expense of utility enjoyed by future generations. In addition, it expresses the
preferences of the current generation. In this approach, the conventional objective cri-
terion of maximizing discounted utility is amended by an additional requirement that
some (undiscounted) level of utility is maintained forever. In this context, one of the
most important results was formulated by Hartwick (1977): The utility stays at a con-
stant level provided that all the revenues from exhaustible capital depletion are being
invested into the reproducible capital. This rule became known as Hartwick’s rule. The

1



CHAPTER 1. INTRODUCTION

second approach which is called the maximin approach incorporates the sustainability
requirement directly to the objective function by maximizing the utility level of the least
advantaged generation. Both of these approaches focus on the sustainability of the utility
level. On the other hand, some authors regard this definition of sustainability as rather
narrow and search for any invariant quantities that stay preserved, using a theory based
on Noether’s theorem.

1.2 Goals of this thesis

The main goals of this thesis and their motivation are summarized in the following
paragraphs:

1. The literature on this topic is rather wide and the research has been still quite lively
in recent years. However, the variety of different frameworks, models and assump-
tions is also rather diverse. Optimal control models can be employed to study the
sustainability topic, but still many researches use other approaches. Hence, the
first goal is to summarize the most important results on Hartwick’s rule and to
present them in a unified framework.

2. Secondly, the level of mathematical rigor varies across the literature. Our pre-
sentation of known results builds on rigorous formulation of results from optimal
control theory, which are described in detail in the last chapter. We will show that
some results can be generalized and some proofs can be presented in a simpler
way. We also provide new formulation of some results.

3. In addition to known results, we propose a new model with two exhaustible re-
sources. These resources are mutually perfectly substitutable, although the rate
of this substitutability changes in time. Employing the optimal control theory, we
are able to derive interesting qualitative properties of the solution to this model.
Moreover, models used in the context of sustainable economic growth naturally
impose non-negativity constraints on the economic variables. In the analysis of
these models, the non-negativity constraints are then prevalently neglected and
only interior solutions are studied. In our newly proposed model, these constraints
become binding along an optimal solution, including constraints on state variables.
Hence, we have to use optimal control theory for problems with binding pure state
constraints, which is more difficult than the theory for problems without these
constraints.

2



1.3. STRUCTURE OF THIS THESIS

4. As mentioned earlier, one of the approaches to sustainability is to study invariant
quantities which stay constant along optimal trajectories. This approach is based
on Noether’s theorem which states that if a model is invariant with respect to a
transformation of variables, then an invariant quantity can exist. The method of
searching for such invariant quantities was proposed by Torres (2004). Since this
method cannot be directly applied to our models of optimal economic growth, we
formulate and prove an extension of results obtained by Torres which are applica-
ble to our models.

5. Besides studying of models of sustainable growth, this thesis also provides some
insights into optimal control theory for problems with pure state constraints. We
present the necessary conditions of optimality for these problems based on two dif-
ferent sources – Feichtinger and Hartl (1986) and Seierstad and Sydsæter (1987).
We provide proofs of some properties of solutions to these models which were not
found in the literature. We study in detail the relationship between these two sets
of necessary conditions. The proposed transformation allows us to use theoretical
results from both sources.

1.3 Structure of this thesis

The structure of this thesis is as follows:

In Chapter 2, we formulate the models of sustainable economic growth as optimal
control problems for both approaches – the discounted utility approach and the maximin
approach. We summarize all assumptions on parameters and functions included in these
models.

In Chapter 3, we present the necessary conditions of optimality which will be used
later in the analysis. We also provide some known existence results and the explicit form
of optimal solution for some specific cases.

Chapter 4 summarizes the results on Hartwick’s rule in a unified and rigorous form.
This chapter also provides precise formulation and mathematical justification of the re-
lationship between the two approaches mentioned above. We show how Hartwick’s rule
can be extended for models with population growth.

In Chapter 5, we propose a new model with two exhaustible resources, where the
non-negativity constraints on state variables become binding. We describe some qua-
litative properties of the solution of this model and formulate Hartwick’s rule in this

3



CHAPTER 1. INTRODUCTION

context.

Chapter 6 studies the applications of conservation laws (or invariant quantities) to
models of sustainable growth. We summarize and extend the relevant theory and apply
it to our models.

The results of optimal control theory which are used in the thesis are summarized
in great details in the last chapter. However, we not only formulate known results, but
we also shed new light on the relationship between two different sources, which is a
novel result of this thesis. The two sets of necessary conditions and their relationship
is illustrated on several examples. Chapter 7 deals with optimal control problems with
pure state as well as mixed control and state constraints.

The models used in the thesis involve a number of variables, parameters and multi-
pliers. A comprehensive list of all symbols together with their meaning can be found at
the end of the thesis. A list of common mathematical notations and an index of specific
terms which are used within the thesis are also included.

4



Chapter 2

Models of sustainable

economic growth

2.1 Basic models

In this chapter, we formulate basic models of intertemporal optimization of consump-
tion in an economy with exhaustible and renewable goods.1 Exhaustible goods can be
depleted but not produced, renewable ones can also be produced. In particular, we will
study models of optimal economic growth taking into account a sustainability criterion.
This criterion requires that some level of the utility should be preserved forever. The
models will be formulated as optimal control problems. We will use the optimal control
theory introduced in Chapter 7 to formulate necessary conditions of optimality for these
models.

Later in this thesis, we will use these models as a common framework in which we
will introduce, study and extend known results. The goal is to use these common models
for all results, irrespective of their original framework. Furthermore, it will be a basis
for developing new results in this field.

2.1.1 Capital goods and production

Assume that there are n renewable capital goods corresponding to different sectors of the
economy and m exhaustible capital goods. Let us denote the level of renewable capital

1In this thesis, exhaustible capital goods are equivalently called non-renewable or non-reproducible
capital goods. Analogously, reproducible or man-made capital goods are considered to be equivalents to
renewable capital goods.

5



CHAPTER 2. MODELS OF SUSTAINABLE ECONOMIC GROWTH

goods at time t by k(t) ∈ Rn
+

and the level of exhaustible capital goods by s(t) ∈ Rm
+

.2

Suppose that the initial level of endowments (k0, s0) is positive for all capital goods (we
use the notation (k0, s0) > 0). The amount of production per a time unit is given by
the production function f which depends on the actual amount of the renewable capital
goods k(t) and on the actual rates of extraction r(t) ∈ Rm

+
of the exhaustible capital

goods per a time unit.

Part of the production can be invested in the capital (k̇(t)) in order to increase its
future volume. Other part of the production can be consumed (c ∈ Rn

+
). The last part of

the production can be used to restore the amortized capital (δ(k)), where δ : Rn
+
→ Rn

+

is an exogenously given function representing the amortization of the renewable capital.
Hence,

f (k(t), r(t)) = k̇(t) + c(t)+δ(k(t)), (2.1)

where
r(t) =−ṡ(t) (2.2)

and

k(t)≥ 0, s(t)≥ 0, (2.3)

r(t)≥ 0, c(t)≥ 0 (2.4)

on 〈0,∞).
We assume that the production function satisfies the following assumption:

(A1) The production function f : Rn
+
× Rm

+
→ Rn

+
is a vector function f = ( f1, . . . , fn)

T

such that each fi, i = 1, . . . , n is an increasing function in any variable on Rn
+

and a
strictly concave and twice differentiable function w.r.t. each variable on Rn

++
×Rm

++

and such that fi(k, r) = 0 if ki = 0 or if any component of the vector r is zero.

Later in Chapter 5 we will propose a new model where this assumption will be partly
weakened.

In some cases we will add the assumption that f (k, r) is a homogeneous function of
degree 1, i.e. f (ξk,ξr) = ξ f (k, r) for all ξ ∈ R+ and for all (k, r) ∈ Rn

+
×Rm

+
.

The well-known example of a production function which is often used in case with
one renewable and one exhaustible capital good (i.e. n = 1 and m = 1) is the Cobb-
Douglas production function

f (k, r) = kαrβ , (2.5)
2We use the following notation: Rn

+
:= {x ∈ Rn; x i ≥ 0, i = 1, . . . , n} and Rn

++
:= {x ∈ Rn;

x i > 0, i = 1, . . . , n}.

6



2.1. BASIC MODELS

where α and β are given positive constants such that α+β ≤ 1. They can be interpreted
as output elasticities (i.e. the percentage change of output (or production) divided by the
percentage change of an input) of renewable and exhaustible goods, respectively. Note
that the production function (2.5) is homogeneous of degree 1 if and only if α+ β = 1.

Regarding the amortization function δ, we suppose that the following property is
satisfied:

(A2) The function δ : Rn
+
→ Rn

+
is a vector function δ(k) = (δ1(k1), . . . ,δn(kn))

T such
that δi(ki), i = 1, . . . , n is an increasing and concave function in ki on R+ and it is
differentiable w.r.t. ki on R++. In addition, δi(ki) = 0 if ki = 0.

2.1.2 Preferences

Let us assume that the preferences of agents depend on the level of consumption of re-
producible capital goods and are described by a utility function. In line with the common
economic theory, we assume that the following property is valid:

(A3) The function U : Rn
++
→ R is increasing in each variable, strictly concave and twice

continuously differentiable on Rn
++

. In addition, whenever c̄ ∈ Rn
+

is such that a
component of c vanishes, then U(c)≥ U(c̄) for all c ∈ Rn

++
.3

An example of a typical utility function often used in the literature which satisfies
(A3) is the following utility function with constant relative risk aversion (i.e. constant
intertemporal elasticity of substitution) and constant (unit) elasticity of substitution be-
tween consumer goods:

Uθ ,ρ(c) =







C̄1−θ
ρ

1−θ , if θ > 0, θ 6= 1,

ln C̄ρ, if θ = 1,
(2.6)

where

C̄ρ =

n
∏

i=1

c
ρi

i , (2.7)

is an aggregated consumer good using an aggregator with the constant elasticity of sub-
stitution between consumer goods. Parameter θ > 0 is a given relative risk aversion

3If U is not defined at c̄, we define U(c̄) :=−∞.

7



CHAPTER 2. MODELS OF SUSTAINABLE ECONOMIC GROWTH

and n-dimensional vector parameter ρ is a vector of weights such that ρi ∈ (0,1) and
ρ1 + · · ·+ ρn = 1. Note that the formulations of Uθ ,ρ in (2.6) for θ = 1 is obtained by
taking the respective limit in the first row of (2.6).

2.1.3 Discounted utility approach

The most common approach to set the objective criterion expressing the intertemporal
optimization is the discounted utility approach. In this approach, the total present value
of the utility over the whole time horizon (0,∞) is maximized. We assume that the
discount factor π(t) satisfies the following property:

(A4) The discount factor π(t) is positive, continuous and
∫∞

0
π(t)dt <∞.

We now formulate the model of the economy with the renewable and exhaustible
capital goods with dynamics described by (2.1) and (2.2) where the agents maximize
their discounted utility function over the infinite time horizon as follows:

max
{c(t),r(t)}

∫ ∞

0

π(t)U
�

c(t)
�

dt,

k̇(t) = f (k(t), r(t))−δ(k(t))− c(t),

ṡ(t) = −r(t),

k(0) = k0 > 0 given,

s(0) = s0 > 0 given,

k(t)≥ 0, s(t)≥ 0,

r(t)≥ 0, c(t)≥ 0.

(2.8)

From the point of view of the optimal control theory, Problem (2.8) is a standard
infinite horizon optimal control problem with a discount factor and with both pure con-
straints on state as well as control variables.

There are two special cases of this problem, both widely studied in the literature:

• Ramsey model (see Ramsey (1928)), where m = 0 and n = 1 (i.e. only one rene-
wable but no non-renewable resource is considered) and

• Dasgupta-Heal-Solow (DHS) model (see Dasgupta and Heal (1974) and Solow
(1974)), where m = 1 and n = 1 (i.e. one renewable and one non-renewable
capital is considered).

8



2.1. BASIC MODELS

Note however, that model (2.8) does not include any requirement of sustainabili-
ty. To have a sustainable economic growth, one may for example require that utility
remains at some constant forever. However, including such a constraint into model (2.8)
leads to a non-standard optimal control problem. Hence we will rather consider model
(2.8) without this constraint and then we will analyze conditions which ensure that this
constraint is satisfied. As will be shown later in Section 4.3, another possibility how
to incorporate a requirement of sustainability into model (2.8) is to prescribe a specific
form of the intertemporal preferences represented by the discount factor.

As noted by Endress and Roumasset (2000), the utility can be flattered over the opti-
mal consumption path also by modifying the elasticity of marginal utility. In particular, if
the elasticity approaches infinity, a solution with constant utility arises naturally, without
imposing any other requirements. However, we do not deal with this approach in this
thesis.

2.1.4 Maximin approach

In its broadest sense, sustainable development means a development which gives an
equal opportunity to current and future generations.4 If the utility level is the right
characteristics of the well-being that should be preserved forever, then it is natural to
include the maximal sustainable level of utility directly into the objective function. In
this context, the objective criterion is actually the maximization of the infimum of utility
along the whole time horizon5 instead of the maximization of the integral of discounted
value of utility as in (2.8). Although the latter was prevalent in the relevant literature
until recently, it is rather artificial in the original context, since the objective criterion
might not correspond to the sustainability criterion. As will be shown later in Section
4.3, this is confirmed also by the fact that to ensure the sustainability of optimal paths
in the discounted utility framework, the discount factor has to be chosen properly.

Hence, it is reasonable to study a model analogous to (2.8) but with the objective
function replaced by

max
{c(t),r(t)}

inf
t≥0

U(c(t)). (2.9)

This is not a standard form of the objective function for optimal control problems.

4See Chichilnisky (1996) [p. 232].
5Cf. Solow (1974) [p. 35].
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CHAPTER 2. MODELS OF SUSTAINABLE ECONOMIC GROWTH

Using a new variable w, we can transform the problem into form

max
{c(t),r(t),w}

w, where t ∈ 〈0,∞),

k̇(t) = f (k(t), r(t))−δ(k(t))− c(t),

ṡ(t) = −r(t),

k(0) = k0 > 0 given,

s(0) = s0 > 0 given,

k(t)≥ 0, s(t)≥ 0,

r(t)≥ 0, c(t)≥ 0,

U(c(t))≥ w.

(2.10)

Problem (2.10) is formulated as an optimal control problem with parameter w. To
formulate this problem without including a parameter, let us consider w as a new state
variable.6 Hence, (2.10) can be rewritten as follows

max
{c(t),r(t)}

w(0), where t ∈ 〈0,∞),

k̇(t) = f (k(t), r(t))−δ(k(t))− c(t),

ṡ(t) = −r(t),

ẇ(t) = 0,

k(0) = k0 > 0 given,

s(0) = s0 > 0 given,

w(0) free,

k(t) ≥ 0, s(t)≥ 0,

r(t)≥ 0, c(t)≥ 0,

U(c(t))≥ w(t).

(2.11)

This is an autonomous optimal control problem with infinite time horizon, with pure
constraints on state as well as control variables and with one mixed constraint on both
state and control variables. The objective function is in the form of maximizing the initial
state of the variable w. Obviously, w(0) is free and hence Problem (2.11) is in the form
of Problem (7.115) which is discussed later in Chapter 7.

Note that if c is one-dimensional, the constraint U(c(t)) ≥ w(t) can be equivalently
replaced by constraint c(t)≥ w(t), since U(c) is strictly increasing in c (see Assumption
(A3)).

6Cf. Berkovitz (1974) or Leonard and Long (1992).
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2.2. EXTENSIONS TO THE BASIC MODELS

The maximin approach was already introduced by Solow (1974), but the discounted
utility approach was then dominating for almost three decades. The maximin approach
was re-established by Cairns and Tian (2003), Cairns (2003), Cairns and Long (2006)
and is further analyzed by Asheim et al. (2007) and Martinet (2007).

2.2 Extensions to the basic models

In the basic models formulated in the previous section, the population and technology
was supposed to be constant over the time horizon. In this section, we describe some
extensions of the basic models, which can be found in the current literature. We consider
extensions in the following three directions:

• It is assumed that the population n(t) increases over time with an exogenously
given (and possibly non-constant) positive growth rate ϑ(t). In addition, the po-
pulation enters as a production factor into the production function.

• An exogenously given technological progress is considered resulting in a non-
autonomous production function f (t, k, r, n).

• The utility function U(c, s) is a function of both the level of consumption c(t) and
the level of exhaustible capital goods s(t).

In this case, we modify Assumption (A3) as follows:

(A3’) The function U : Rn
++
×Rm

++
→ R is increasing in each variable, strictly concave and

twice continuously differentiable on Rn
++
×Rm

++
. In addition, whenever the vector

(c, s) ∈ Rn
++
×Rm

++
is such that a component of c or s vanishes, then U(c, s) ≥ U(c̄, s̄)

for all (c, s) ∈ Rn
++
×Rm

++
.

As the framework for studying these extensions, we can use the following model:

max
{c(t),r(t)}

∫ ∞

0

π(t)U(c(t), s(t))dt (2.12)

or

max
{c(t),r(t)}

w(0), where t ∈ 〈0,∞),

U(c(t), s(t))≥ w(t), (2.13)

ẇ(t) = 0,

w(0) free

11
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and subject to

k̇(t) = f (t, k(t), r(t), n(t))−δ(k(t))− c(t),

ṡ(t) = −r(t),

ṅ(t) = ϑ(t)n(t),

k(0) = k0 > 0 given,

s(0) = s0 > 0 given,

n(0) = n0 > 0 given,

k(t)≥ 0, s(t)≥ 0,

r(t)≥ 0, c(t)≥ 0,

(2.14)

where the following assumption is met:

(A5) The rate ϑ(t) of population growth is positive.

As we have already mentioned, we will mainly analyze conditions for constant utility
along the solutions.

The model with population growth is studied e.g. by Mitra (1983), Farzin (2006),
Asheim et al. (2007) and Mitra (2008). Asheim et al. (2007) postulate that the popula-
tion growth is quasi-arithmetic, i. e.

ϑ(t) =
κ1κ2

1+ κ1 t
, (2.15)

hence n(t) = n0(1+ κ1 t)κ2, where κ1 and κ2 are given positive constants. Mitra (2008)
imposes no specific restriction on the growth rate.

Models extended by a technological progress were initiated by Solow (1974) and
studied by several authors since then, e.g. by Hartwick and Long (1999), Cairns and
Long (2006), Farzin (2006) and d’Autume and Schubert (2008), among others. In the
most easiest way, the exogenous technological progress is implemented as exponentially
growing production given the same value of renewable capital goods and extraction
rates, i.e. f (t, k, r, n) = eγt f̃ (k, r, n). Later in Chapter 5, we shall deal with a model
with two non-renewable goods where the technological progress applied to these non-
renewable goods is different. In particular, we consider a production function

f (t, k, r1, r2) = kα (r1+ d(t)r2)
1−α, (2.16)

where d(t) is a given technological progress applicable to the second exhaustible good.

12
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Finally, a model with the utility function which includes the level of non-renewable
goods is analyzed in a recent paper by d’Autume and Schubert (2008), but it is also
referred to by Farzin (2006) and Heijnen (2008).

2.3 Alternative approaches

2.3.1 Competitive paths

In several papers, the model of the economy with renewable and exhaustible capital
goods as described by (2.8) is not formulated as an optimal control problem. Instead of
that, a general concept of so-called competitive paths is defined as follows:

Definition 2.1. An admissible path (c∗(t), r∗(t), k∗(t), s∗(t)) is called a competitive path

on (0,∞) at discount factor π(t) > 0 and prices (ψc,ψk(t),ψs(t)) ≥ 0 if the following

conditions are satisfied for all t ≥ 0:

(i) Instantaneous discounted utility is maximized, i.e. c∗ maximizes πU(c)−ψT
k
c and

(ii) instantaneous profit is maximized, i.e. (k∗, s∗, c∗, r∗) maximizes

ψT
c
c +ψT

k
( f (k, r)− δ(k)− c)−ψT

s
r + ψ̇T

k
k+ ψ̇T

s
s

on the set of all admissible solutions.

This framework was first proposed by Dixit et al. (1980) [p. 552] and is hence
called Dixit-Hammond-Hoel model (DHH model). It is also used by Asheim et al. (2003)
[Definition 1, p. 132], Buchholz et al. (2005) [p. 552] and Heijnen (2008) [p. 3].

Later we show that there is a close relationship between the admissible solutions to
Problem (2.8) which satisfy the necessary conditions of optimality and the competitive
paths (see Remark 4.2).

2.3.2 Viability theory approach

Martinet (2004) and Martinet and Doyen (2007) attempt to solve the problem to find the
maximal level of utility under the condition that the total depletion of the exhaustible
resource does not exceed its initial level. Their papers are not based on the optimal
control framework but on the so-called viable control analysis. This approach is based on

13
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the fact that for arbitrary utility level a viability kernel can be found. The viability kernel
represents the minimal initial level of renewable and non-renewable capital stocks that
enables to sustain the required level of utility provided that the depletion of exhaustible
capital is optimal.

14



Chapter 3

Characteristics of optimal

solutions

3.1 Applications of necessary conditions of optimality

In this section, we apply the necessary conditions of optimality to models, which have
been presented in the previous chapter. As these models include pure state constraints,
the complete set of necessary conditions taking these constraints into account is quite
complicated. However, we now show that if we are interested only in solutions with
constant utility, then it suffices to consider only solutions satisfying k(t) > 0, s(t) > 0
and c(t)> 0 for all t ≥ 0. Indeed, we show that such assumption do not restrict the set
of optimal values of the objective criterion for the set of solutions such that U(c(t)) is
constant in t.

First, assume that ci(t) = 0 on some non-trivial interval for some i = 1, . . . , n. Then
it follows from Assumption (A3) that U(c(t)) attains on this interval its lowest possible
value (possibly minus infinity). Hence, the discounted utility objective criterion (2.12)
together with the condition U(c) = const. as well as the maximin criterion (2.9) both
attain their lowest possible value. The constraint c(t)> 0 therefore does not restrict the
set of maximal attainable values of the objective criterion neither in the model (2.8) (for
solutions such that U(c(t)) is constant) nor in the model (2.11).

Second, note that if ki(τ) = 0 for some τ ≥ 0 and i = 1, . . . , n, Assumptions (A1)
and (A2) imply that fi(k, r) = 0 and δi(k) = 0. Equality (2.1) then states k̇i(t) =−ci(t).
Since we require ki ≥ 0 and ci ≥ 0, we have that ki(t) = 0 and ci(t) = 0 for all t ≥ τ.
Analogously to the previous case, the constraint k(t) > 0 does not restrict the set of
maximal attainable values of the objective function.

15
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Furthermore, assume that si(τ) = 0 at some τ, hence ri(t) = 0 for all t ∈ (τ,∞).
Assumption (A1) then implies that f j(k, r) = 0 for all j = 1, . . . , n on (τ,∞), hence
k̇ = −δ(k)− c ≥ 0, implying that c(t) = 0 for t ≥ τ, which is a result analogous to the
previous two cases.

In addition, in Chapters 2 – 4 we will only deal with solutions satisfying r j(r) > 0
for all j = 1, . . . , m and for all t ≥ 0. This assumption is necessary because we have
not assumed that the derivative of the production function f exists w.r.t. r j at t = 0.
However, necessary conditions of optimality formulated later in Chapter 7 require this
assumption.

To summarize, in the discounted utility framework, Chapters 2 – 4 only deal with
interior solutions to (2.8). In case of the maximin framework, we study only solutions
to (2.11) satisfying k(t) > 0, s(t) > 0, c(t) > 0 and r(t) > 0 for all t ≥ 0, although
constraint U(c(t)) ≥ w(t) in (2.13) might be binding. For simplicity, let us call these
solutions also as interior solutions.1

Later in Chapter 5, we release some of the assumptions by modifying Assumption
(A1). For example, the production function will not be assumed to be zero if only some
(not all) r j, j = 1, . . . , m are zero. In this case, we will replace the above-mentioned
constraint that r(t) > 0 by r(t) ≥ 0. Similarly, the utility function might not attain its
minimal value if only some of the components of the consumption vector c are zero.

3.1.1 Discounted utility approach

Firstly, we present the necessary conditions of optimality for an interior solution to Prob-
lem (2.8) with the discounted utility objective according to the theory discussed later in
Chapter 7.

In accordance with (7.8), the Hamiltonian is defined by

H(k, s, c, r,ψ0,ψk,ψs) =ψ
0πU(c) +ψT

k
( f (k, r)−δ(k)− c) +ψT

s
(−r). (3.1)

Now we formulate the necessary conditions of optimality according to Theorem 7.6:
If (k∗, s∗, c∗, r∗) is an interior optimal solution to Problem (2.8), then there exist a con-
stant ψ0 and continuous vector functions ψk(t) : R→ Rn and ψs(t) : R→ Rm such that

1More specifically, we require that one-sided limits of all control variables at points of discontinuity are
positive as well.
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following conditions are met:

(i) ψ0 = 0 or ψ0 = 1, (3.2)

(ii) (ψ0,ψk(t),ψs(t)) 6= (0,0,0) for all t ≥ 0, (3.3)

(iii) ψ0πU(c∗) +ψT
k
( f (k∗, r∗)−δ(k∗)− c∗)−ψT

s
r∗ ≥

≥ψ0πU(c) +ψT
k
( f (k∗, r)−δ(k∗)− c)−ψT

s
r

for all (c, r) ∈ Rn+m
++

almost everywhere on (0,∞), (3.4)

(iv)
∂ H

∂ c
(k∗, s∗, c∗, r∗,ψ0,ψk,ψs) =ψ

0π
dU

dc
(c∗)−ψT

k
= 0 for all t ≥ 0

with possible exception of discontinuity points of c∗ or r∗, (3.5)

(v)
∂ H

∂ r
(k∗, s∗, c∗, r∗,ψ0,ψk,ψs) =ψ

T
k

∂ f

∂ r
(k∗, r∗)−ψT

s
= 0 for all t ≥ 0

with possible exception of discontinuity points of c∗ or r∗, (3.6)

(vi) ψ̇T
k
=−

∂ H

∂ k
(k∗, s∗, c∗, r∗,ψ0,ψk,ψs) =ψ

T
k

dδ

dk
(k∗)−ψT

k

∂ f

∂ k
(k∗, r∗)

almost everywhere on (0,∞), (3.7)

(vii) ψ̇T
s
=−

∂ H

∂ s
(k∗, s∗, c∗, r∗,ψ0,ψk,ψs) = 0

almost everywhere on (0,∞). (3.8)

The set of conditions (3.2) – (3.8) will be further referred to as necessary conditions of
optimality for an interior solution of (2.8). Recall that a detailed list of all variables and
multipliers can be found at the end of this thesis.

In addition, Theorem 7.9 implies that for almost all t ≥ 0

d

dt

�

ψ0π(t)U(c∗(t)) +ψk(t)
T k̇∗(t)−ψs(t)

T r∗(t)
�

=
∂

∂ t

�

ψ0π(t)U(c∗)
�

.

This can be rewritten to

d

dt

�

ψk(t)
T k̇∗(t)−ψs(t)

T r∗(t)
�

= −ψ0π(t)
dU

dt
(c∗(t)). (3.9)

Moreover, Theorem 7.10 implies that if
∫ ∞

1

π(t +δ)U∗(c∗(t))dt <∞ for all δ ∈ (−1,1) (3.10)

and if there exists a piecewise continuous function ξ(t) such that

|π̇(t)(t +δ)U(c∗(t))| ≤ ξ(t) for all δ ∈ (−1,1) and t ≥ 1 (3.11)
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and
∫ ∞

1

ξ(t)dt <∞, (3.12)

then

lim
t→∞

ψ0π(t)U(c∗(t)) +ψk(t)
T k̇∗(t)−ψs(t)

T r∗(t) = 0. (3.13)

It might be difficult to verify whether conditions (3.10) – (3.12) are satisfied. To provide
a specific example when they are met consider a solution and a discount factor such that

U(c∗(t)) ≡ const. and
π̇(t)

π(t)
≤ p, where p is a constant. Indeed, it is straightforward to

verify that conditions (3.10) – (3.12) are satisfied (with ξ(t) := pπ(t)U(c∗(t))) due to
Assumption (A4).

Remark 3.1. Note that if ψ0 = 0, then conditions (3.5) and (3.6) imply that ψk(t) = 0
and ψs(t) = 0 for all t ≥ 0 with possible exception of discontinuity points of c∗(t) or
r∗(t), which is a contradiction with (3.3). Hence, condition (3.2) impliesψ0 = 1. In this
case, if follows from conditions (3.5) and (3.6) and Assumptions (A1), (A3) and (A4)
that both costate variables ψk and ψs are positive almost everywhere. We can conclude
that both functions ψk and ψs are positive everywhere since they are continuous. To
sum up, one has

ψ0 = 1, ψk(t)> 0 and ψs(t)> 0 for all t ≥ 0. (3.14)

Remark 3.2. It can be easily shown that condition (3.4) follows from conditions (3.5)
and (3.6). Indeed, note that the function on the right-hand side of Inequality (3.4) is
a concave function of c and r at any fixed value of ψk > 0 and π > 0 (see (3.14) and
Assumption (A4)). The desired result follows from the fact that in this case, (3.5) and
(3.6) represent sufficient conditions to maximum of this concave function.

3.1.2 Maximin approach

Analogously to the discounted utility approach, for Problem (2.11) we formulate nec-
essary conditions of optimality only for interior solutions, i.e. for solutions satisfying
k > 0, s > 0, c > 0 and r > 0. Recall that for interior solutions to (2.11), the constraint
U(c)≥ w still might be binding.

In accordance with (7.8) and (7.9), the Hamiltonian is defined by

H̄(k, s, w, c, r,ψ0,ψk,ψs,ψw) =ψ
T
k
( f (k, r)− δ(k)− c)−ψT

s
r. (3.15)
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and the Lagrangian by

L̄(k, s, w, c, r,ψ0,ψk,ψs,ψw,µw)

=ψT
k
( f (k, r)−δ(k)− c)−ψT

s
r +µw(U(c)−w). (3.16)

Again we can formulate the necessary conditions of optimality based on Theorem
7.6: If (k∗, s∗, w∗, c∗, r∗) is an interior optimal solution to Problem (2.11), then there
exist a constant ψ0, continuous vector functions ψk(t) : R → Rn, ψs(t) : R→ Rm and
ψw(t) : R → R and a function µw(t) : R → R which has one-sided limits everywhere,
such that following conditions are met:

(i) ψ0 = 0 or ψ0 = 1, (3.17)

(ii) (ψ0,ψk(t),ψs(t),ψw(t)) 6= (0,0,0,0) for all t ≥ 0, (3.18)

(iii) H̄
�

k∗, s∗, w∗, c∗, r∗,ψ0,ψk,ψs,ψw

�

≥ H̄
�

k∗, s∗, w∗, c, r,ψ0,ψk,ψs,ψw

�

for

all (c, r) ∈ Rm+n
++

and U(c)≥ w∗ almost everywhere on (0,∞), (3.19)

(iv)
∂ L̄

∂ c
= µw

dU

dc
(c∗)−ψT

k
= 0 for all t ≥ 0 with possible exception

of discontinuity points of c∗ or r∗, (3.20)

(v)
∂ L̄

∂ r
=ψT

k

∂ f

∂ r
(k∗, r∗)−ψT

s
= 0 for all t ≥ 0 with possible exception

of discontinuity points of c∗ or r∗, (3.21)

(vi) ψ̇T
k
=−

∂ L̄

∂ k
=ψT

k

dδ

dk
(k∗)−ψT

k

∂ f

∂ k
(k∗, r∗)

almost everywhere on (0,∞), (3.22)

(vii) ψ̇T
s
=−

∂ L̄

∂ s
= 0 almost everywhere on (0,∞), (3.23)

(viii) ψ̇w = −
∂ L̄

∂ w
= µw, ψw(0) = −ψ0, (3.24)

(ix) µw(U(c
∗)−w∗) = 0, µw ≥ 0. (3.25)

The set of conditions (3.17) – (3.25) will be further referred to as necessary conditions
of optimality for an interior solution to (2.11).

In addition, Theorem 7.9 implies that for almost all t ≥ 0 one has

d

dt

�

ψk(t)
T k̇∗(t)−ψs(t)

T r∗(t)

�

= 0. (3.26)
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Now, let us introduce the following definition of a regular solution in accordance
with Cairns and Tian (2003) [p. 8], which will be useful in the analysis later:2

Definition 3.1. A solution (k, s, w, c, r) to Problem (2.11) is called regular if it satisfies the

necessary conditions of optimality together with µw(t)> 0 for all t ≥ 0.

Remark 3.3. Note that µw is a Lagrange multiplier which is associated with the constraint
U(c) ≥ w. It can be interpreted as a price for relaxing this constraint. If µw > 0 for all
t ≥ 0, then (3.25) implies that this constraint is binding for all t ≥ 0. We then have
that U(c) is constant since w is constant due to the state equation ẇ = 0. However, the
converse of this implication might not be true, i.e. if U(c) is constant, then there still
might be the case that µw = 0 on some non-trivial interval. In our results, we need to
exclude this case, hence we directly assume that µw > 0 for all t ≥ 0.

3.2 Existence of optimal solutions for some specific cases

In this section we summarize and extend some known results on the existence and ex-
plicit form of an optimal solution. We consider the general model (2.14) with the maxi-
min objective function (2.13). We restrict ourselves to the case with one renewable and
one exhaustible capital good. We assume that there is no population growth (ϑ = 1 and
n0 = 1) and the utility function does not depend explicitly on s. In addition, we assume
that the production function is in the Cobb-Douglas form with an exponentially growing
productivity, i.e.

f̃ (t, k, r, n) = eγt kαrβ , (3.27)

where γ > 0 is a given constant and output elasticities w.r.t. both capital stocks are
positive (α > 0 and β > 0). The production function is assumed to have decreasing or
constant returns to scale (α+ β ≤ 1). To sum up these assumptions, we formulate the

2Cf. also Cairns and Long (2006) [p. 279], who define a regular solution as a solution which satisfies
the necessary conditions of optimality for an interior solution, the utility is constant and the solution is
Pareto efficient (i.e. for any interval A = (t1, t2) $ (0,∞), the utility can only be increased outside A by
relaxing the constraint U(c) ≥ w on A). They note that for any such solution we have µw(t) > 0 for all
t ≥ 0.
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model once more:

max
{c(t),r(t)}

w(0), where t ∈ 〈0,∞),

k̇(t) = eγtk(t)αr(t)β −δ(k(t))− c(t),

ṡ(t) = −r(t),

ẇ(t) = 0,

k(0) = k0 > 0 given,

s(0) = s0 > 0 given,

w(0) free,

k(t)≥ 0, s(t)≥ 0,

r(t)≥ 0, c(t)≥ 0,

U(c(t))≥ w(t).

(3.28)

3.2.1 Existence results

When formulating the existence results, we make an additional assumption that γ = 0.
We consider three cases which are different in the amortization function:

(a) If there is no amortization of the reproducible capital (δ(k) = 0), it is known that
a positive level of consumption can be sustained forever if and only if the rela-
tive elasticity of production w.r.t. reproducible capital is greater than the relative
elasticity of production w.r.t. the exhaustible capital (α > β). 3

(b) In case of a linear amortization function (δ(k) = δ̄k, where δ̄ > 0 is a given
constant), no constant utility path exists. 4

(c) In case of an amortization function in the form δ(k) = δ1kδ2 , where δ1 ∈ (0,1)
and δ2 ∈ 〈0,1), a sufficient condition for an existence of a constant utility path is:5

α−δ2 > β and k0 >max{1, k̄0}, (3.29)

where

k̄0 :=

�
�

δ1

1− β

�1−β 1

(s0(α−δ2− β))β

�
1

α−δ2−β

. (3.30)

3See e.g. Solow (1974) [p. 37], Buchholz et al. (2005) [p. 553] and Martinet and Doyen (2007)
[Proposition 3, p. 24].

4See Martinet and Doyen (2007) [Proposition 4, p. 27].
5See Buchholz et al. (2005) [p. 553].
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More extensive set of results based on the viability analysis comprising also other types
of the production function is provided by Martinet and Doyen (2007).

3.2.2 Explicit form of optimal solutions

In some specific cases, explicit solutions to the models given above are known. For the
restricted model (3.28) described above with no amortization of capital (δ(k) = 0), an
explicit solution is known at least in two specific cases:

(a) In case of no productivity growth (γ= 0) and if the relative elasticity of production
w.r.t. reproducible capital is greater than the relative elasticity w.r.t. the exhaustible
capital (α > β), the optimal solution to this model has the following form:6

c∗(t) ≡ (1− β)
�

s0(α− β)
�

β

1−β k
α−β
1−β
0 , (3.31)

k∗(t) =
c∗(t)β

1− β t + k0, (3.32)

r∗(t) =

�

c∗(t)

1− β

�
1
β

k∗(t)
− α
β , (3.33)

w∗(t) = U(c∗(t)), (3.34)

s∗(t) = s0

�

k∗(t)

k0

�1− α
β

. (3.35)

(b) In case of exponentially growing productivity (γ > 0) and no amortization (δ(k) =
0), we further assume that the initial levels of reproducible and exhaustible capital
stocks satisfy the following relationship:

s0 =

�

1

α

� 1
β
�

γ

β

�
1−β
β

k
1−α
β

0 . (3.36)

In this case, the optimal solution is known to have the following form:7

c∗(t) =

�

γ

β

�β

kα0 s
β

0 , (3.37)

r∗(t) = s0

γ

β
e
− γ
β

t , (3.38)

6Cf. Solow (1974) [p. 38–39] and Martinet and Doyen (2007) [Proposition 3, p. 24].
7Cf. Cairns and Long (2006) [Proposition 7, p. 298].
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s∗(t) = s0e
− γ
β

t , (3.39)

k∗(t) = k0, (3.40)

w∗(t) = U(c∗(t)). (3.41)

Remark 3.4. The results given above are only related to solutions whose initial conditions
for k0 and s0 satisfy (3.36). However, the optimal level of c for other initial conditions
has not been derived yet. For example, a question arises whether an increase of only
one of the initial endowments k0 or s0 increases the sustainable level of consumption
provided that (k0, s0) initially satisfies Equality (3.36).

Our preliminary results on this topic show that it is possible to derive an expression
for the level of maximal sustainable consumption, but this expression involves an integral
which does not have a closed solution for general values of α and has to be computed
numerically. As an example, Figure 3.1 illustrates the numerically calculated values of
maximal sustainable consumption for different values of k0 and s0. However, we do not
deal with this subject in more details in this thesis since furher research is needed in this
topic.
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Figure 3.1: Illustration of the value of sustainable consumption c for different values s0 and k0 if
the value of parameter α is 3

4
. The straight line illustrates the values of c along (k0, s0) satisfying

(3.36).
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Chapter 4

Hartwick’s rule

In the previous chapters, we have presented a detailed formulation of a model of
economy with renewable and non-renewable resources. We have also formulated the
sets of necessary conditions of optimality for interior solutions. Two basic frameworks
were considered: the discounted utility approach and the maximin approach.

Whereas the relationship between the maximin objective criterion with the require-
ment of sustainability is clear, this is not the case for the discounted utility approach.
Hence, we need to impose a condition on the solutions of this model. This is addressed
by so-called Hartwick rule, which is the main topic of this chapter. First, we briefly
describe the historical context.

4.1 Overview of the most relevant literature

The utilitarian conception of the theory of optimal economic growth was introduced
by Ramsey (1928) and thereafter developed by many other economists. However, it
came under fundamental critique in early 70s, especially represented by John Rawls (see
Rawls (1971)). His theory of justice abandoned the classical principle of utility criterion
as unethical. The main reason was that in this conception, a loss of one generation’s
utility can be offset by an increase of utility of another generation. Rawls even gave
rise to doubts about applicability of any optimal principle approach when considering
intergenerational allocation of resources.

As a response to these remarks, Solow (1974) formulated a problem of maximising
the level of consumption which can be maintained forever, even if one of the essential
inputs of the production function is a non-renewable capital. In a framework of a model
with dynamics analogous to (2.8), however, with a criterion of minimal use of resources

24



4.1. OVERVIEW OF THE MOST RELEVANT LITERATURE

and with Cobb-Douglas production function, he came to the solution satisfying the Pon-
tryagin necessary conditions of optimality. His solution is identical to the one given in
Section 3.2.2 (a). However, he only assumed the optimal consumption to be constant.

These results were further extended by Hartwick (1977) who introduced a rule (later
called Hartwick’s rule) which prescribes to invest all the revenues from exhaustible ca-
pital depletion into the reproducible capital (i.e. zero net investment). In other words,
Hartwick’s rule requires the total value of net investments to both reproducible and ex-
haustible capital goods priced at shadow prices to be zero. Hartwick himself formulates
this rule as a sufficient condition for constant consumption paths, which is now known
as Hartwick’s result. Hartwick (1978a) extends the rule for the case of several capital
stocks.

Substantial contribution to the further research on Hartwick’s result is brought by
Dixit et al. (1980). They argue that Hartwick’s rule of a zero net investment as a suf-
ficient condition for constant consumption can be generalized to a constant net invest-
ment. In addition, they formulate and prove the converse of generalized Hartwick’s
result. Although they do not prove that converse of Hartwick’s result as it is given later
in Theorem 4.7, they formulate a weaker version of this claim. They prove that if an
admissible interior solution meets the sufficient conditions of optimality and the value
of net investment is zero, then the utility is constant.

These seminal papers have been followed by a large amount of other papers which
further clarify and extend the results on Hartwick’s rule and its converse. The reference
to many of them will be made later in this thesis where the results will be described
in more details. However, this has brought a divergence of models, assumptions and
techniques that were used to describe these results. In addition, some of the papers
were more practically oriented and less focused on the mathematical rigour.

Additionally, the maximin approach has arisen to a greater extent recently. Although
the approach of Solow himself can be regarded closer to the maximin approach than
the utilitarian framework, the model analogous to (2.11) and its relationship to the
discounted utility approach is first discussed by Cairns and Tian (2003) and further
analyzed mainly by Cairns and Long (2006).

Hence, the aim of this chapter is threefold:

(a) The most important results are summarized and described in the unified frame-
work based on precise using of the optimal control theory.

(b) In several cases, the known results are reformulated or extended and some new
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CHAPTER 4. HARTWICK’S RULE

results are given.

(c) Several results are formulated in both discounted utility and maximin framework
and these two approaches are compared.

4.2 Hartwick’s result

4.2.1 Discounted utility approach

Now we formulate Hartwick’s result for Problem (2.8) with the discounted utility objec-
tive function.

Theorem 4.1 (Hartwick’s result, discounted utility approach). 1 Let (k, s, c, r) be an ad-

missible interior solution to Problem (2.8) which fulfills the necessary conditions of opti-

mality (3.2) – (3.8) and condition (3.9) together with (ψ0,ψk,ψs). In addition, suppose

that ψT
k
k̇ =ψT

s
r (Hartwick’s rule) for all t ≥ 0. Then U(c(t))≡ const. for all t ≥ 0.

Remark 4.1. Note that the assumption that the necessary conditions of optimality (3.2)
– (3.8) and condition (3.9) are satisfied for an admissible solution (k, s, c, r) are clearly
satisfied in case that (k, s, c, r) is an optimal solution to Problem (2.8) (see Theorem 7.6
and Theorem 7.9).

Proof of Theorem 4.1. One has ψ0 = 1 in accordance with (3.14). Moreover, if the
Hartwick’s rule ψT

k
k̇ =ψT

s
r is satisfied, we obtain from (3.9) that

π(t)
dU

dt
(c(t)) = 0 (4.1)

almost everywhere. Since π(t)> 0 in accordance with Assumption (A4), Equality (4.1)
implies that U(c(t)) is piecewise constant. According to Lemma 7.5, the Hamiltonian
is continuous everywhere, hence π(t)U(c(t)) is continuous. As π(t) is continuous, this
implies that U(c(t)) is continuous everywhere and hence constant.

The common proof of Hartwick’s result is as follows:2 We differentiate the equation
for k̇ in (2.8) w.r.t. t to obtain

k̈ =
∂ f

∂ k
(k, r)k̇+

∂ f

∂ r
(k, r)ṙ −

dδ

dk
(k)k̇− ċ. (4.2)

1Cf. e.g. Hartwick (1977) [p. 973], Solow (1986) [p. 144], Aronsson et al. (1995), Cairns and Yang
(2000) [Theorem 1, p. 8], Mitra (2002) [p. 367], Asheim et al. (2003) [Proposition 1, p. 134] and
Buchholz et al. (2005) [Proposition 3, p. 556], among others.

2The proof given here is a shorter version of the proof presented by Mitra (2002).
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We multiply it by ψT
k

and finally we use (3.5) – (3.8) to obtain:

ψ0π
dU

dt
= ψ0π

dU

dc
ċ
(3.5)
= ψT

k
ċ
(4.2)
= ψT

k

∂ f

∂ k
k̇+ψT

k

∂ f

∂ r
ṙ −ψT

k

dδ

dk
k̇−ψT

k
k̈

(3.6)
=

�

ψT
k

∂ f

∂ k
−ψT

k

dδ

dk

�

k̇+ψT
s

ṙ −ψT
k
k̈

(3.7,3.8)
= −ψ̇T

k
k̇+ψT

s
ṙ −ψT

k
k̈+ ψ̇T

s
r =−

d

dt

�

ψT
k
k̇−ψT

s
r
�

. (4.3)

Hartwick’s rule implies that the term on the right-hand side of (4.3) is zero. Sinceψ0 = 1
and π(t) is positive for all t ≥ 0, we obtain

dU

dt
(c(t)) = 0,

hence U(c(t)) ≡ const. for all t ≥ 0, analogously to the arguments given above. Note
that this proof requires the differentiability of c and r w.r.t. t.

Remark 4.2. (Economic interpretation of Hartwick’s rule) Hartwick’s rule means that the
net investment has to be zero, i.e. that any decrease in a non-renewable or renewable
capital has to be compensated by an increase in (other) renewable capital. The necessary
conditions ensure that ψk and ψs can be interpreted as present values of shadow prices
of k and s, respectively. Hence, the value of net investment in Hartwick’s rule should be
calculated using the shadow values (competitive prices) of capital goods (net of possible
extraction costs) instead of using actual market prices which might be different. This is
the main reason why Hartwick’s rule is considered to be more like a descriptive property
of the sustainable path, not as a prescriptive policy for ensuring sustainability (Withagen
(1996), Martinet (2007)).

Remark 4.3. (Relationship with competitive paths) It is easy to show that if an admissible
solution (k, s, c, r) to Problem (2.8) with prices (ψk,ψs) is an interior competitive path
(see Definition 2.1) such that ψk and ψs are continuous everywhere, then it satisfies the
necessary conditions of optimality for an interior solution to (2.8) together with ψ0 = 1.
Indeed, condition (i) in Definition 2.1 implies (3.5), whereas condition (ii) implies (3.6),
(3.7) and (3.8). As noted in Remark 3.2, condition (3.4) follows from (3.5) and (3.6).
Conditions (3.2) and (3.3) are satisfied trivially.

If we review the proof of Hartwick’s result, it becomes obvious that it suffices to
assume that the present value of net investment stays constant, i.e. ψT

k
k̇ − ψT

s
r = I ,

where I is a constant (possibly non-zero). This result is called generalized Hartwick’s
result and is formulated as follows:
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Theorem 4.2 (Generalized Hartwick’s result). 3 Let (k, s, c, r) be an admissible interior

solution to Problem (2.8) which fulfills the necessary conditions of optimality (3.2) – (3.8)

and condition (3.9) together with (ψ0,ψk,ψs). In addition, suppose that there exists a

constant I such that ψT
k
k̇ − ψT

s
r = I (generalized Hartwick’s rule) for all t ≥ 0. Then

U(c(t))≡ const. for all t ≥ 0.

Proof. If ψT
k
k̇ − ψT

s
r = I , Equality (3.9) again implies (4.1). The proof of equality

U(c∗(t))≡ const. can be concluded analogously as in proof of Theorem 4.1.

The following lemma is formulated by Dixit et al. (1980) [Theorem 3, p. 554] in
case of no amortization (δ(k) = 0):4

Lemma 4.1. Let (k, s, c, r) be an admissible interior solution to Problem (2.8) with no

amortization (δ(k) = 0) which fulfills the necessary conditions of optimality (3.2) – (3.8)

together with (ψ0,ψk,ψs). In addition, suppose that there exists a constant I such that

condition ψT
k
k̇−ψT

s
r = I (generalized Hartwick’s rule) is met for all t ≥ 0. Then I ≥ 0.

Proof. We will prove that I < 0 is inadmissible. Indeed, if δ(k) = 0 and I < 0, then for
all t ≥ 0 one has

d

dt
(ψT

k
k+ψT

s
s) = ψT

k
k̇−ψT

s
r + ψ̇T

k
k+ ψ̇T

s
s (4.4)

(3.7), (3.8)
= I −ψT

k

∂ f

∂ k
(k, r)k (4.5)

(3.5)
= I −ψ0π

dU

dc
(c)
∂ f

∂ k
(k, r)k ≤ I < 0 (4.6)

which implies that ψT
k
k +ψT

s
s will become negative at a finite time. However, this is a

contradiction, because we assume k and s to be non-negative and ψk and ψs are non-
negative as well (see (3.14)).

4.2.2 Maximin approach

It was shown in the previous section that Hartwick’s rule is a sufficient condition for
constant utility paths satisfying necessary conditions of optimality in case that the model

3The first who proved generalized Hartwick’s result were Dixit et al. (1980) [Theorem 1, p. 553], hence
it is sometimes called Dixit-Hammond-Hoel’s result. However, it was formulated in several other papers,
cf. e.g. Heijnen (2008) [p. 4].

4Buchholz et al. (2005) introduce a more general conditions for the non-negativity of I in case of n = 1
(i.e. one reproducible capital stock): For all r > 0 there exists a k̄r > 0 such that the function f (k, r)−δ(k)
is increasing for all k > k̄r (cf. Buchholz et al. (2005) [Proposition 2, p. 555]).
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with discounted utility objective is considered. We now formulate a sufficient condition
for constant consumption paths in the framework of the model with maximin objective.

Theorem 4.3 (Hartwick-like result, maximin approach). Let (k, s, c, r) be an admissible

interior solution to Problem (2.11) which fulfills the necessary conditions of optimality

together with (ψ0,ψk,ψs). In addition, suppose that this solution is regular (see Definition

3.1). Then U(c)≡ const. for all t ≥ 0.

Proof. The proof follows directly from (3.25).

As seen in this theorem, Hartwick’s rule is replaced by the assumption of regularity.

4.3 A comparison of both approaches

The aim of this section is to study the relationship between the necessary conditions
of optimality for discounted utility approach and the maximin approach which were
described above. As it will be clear later, Hartwick rule and the concept of regular
solution are crucial in this context.

Some aspects of this relationship are discussed by Cairns and Tian (2003), Cairns
(2003) and Cairns and Long (2006). Their main conclusion is that the discount factor in
the discounted utility approach can be interpreted as a shadow value of the constraint
U(c)≥ w in the maximin approach.

To present a precise formulation and mathematical justification of this relationship,
we use the fact that the necessary conditions of optimality for an interior solution to
Problem (2.11) are very similar to those for Problem (2.8). Indeed, the following theo-
rem is true:

Theorem 4.4. 5 Let (k̄, s̄, c̄, r̄) be an admissible interior solution to Problem (2.8) that satis-

fies the necessary conditions (3.2) – (3.8) and condition (3.9) together with (ψ0,ψk,ψs),

where ψT
k
˙̄k = ψT

s
r̄ . Then there exist w̄, ψw and µw, where µw(t) = π(t), such that

(k̄, s̄, w̄, c̄, r̄) satisfies the necessary conditions of optimality for Problem (2.11) together

with (ψ0,ψk,ψs,ψw,µw).

Proof. Under the assumptions of this theorem, Theorem 4.1 implies that U(c̄(t)) is con-

5This theorem is an original result of this paper. Cairns and Tian (2003) [Proposition 3] introduced
the converse of this theorem but only for the case n = 1 and m= 0.
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stant. Denote this constant by w̄. Further define

ψw(t) := −ψ0+

∫ t

0

π(τ)dτ. (4.7)

Note that ψw is well-defined since the integral in (4.7) converges for t → ∞ due to
Assumption (A4). Given these definitions, it is straightforward to verify that (k̄, s̄, w̄, c̄, r̄)

is an interior solution to Problem (2.11) which satisfies the necessary conditions of opti-
mality for this problem given by (3.17) – (3.25) together with (ψ0,ψk,ψs,ψw,µw). The
only necessary condition that needs to be shown in detail is (3.19). We prove that (3.4)
implies (3.19). Recall that (3.4) reads

ψ0πU(c̄) +ψT
k
( f (k̄, r̄)−δ(k̄)− c̄)−ψT

s
r̄ ≥ψ0πU(c) +ψT

k
( f (k̄, r)−δ(k̄)− c)−ψT

s
r

for all (c, r) ∈ Rn+m
++

. Since U(c)≥ w̄, one has

ψ0πU(c) +ψT
k
( f (k̄, r)−δ(k̄)− c)−ψT

s
r ≥ψ0πw̄ +ψT

k
( f (k̄, r)−δ(k̄)− c)−ψT

s
r.

Substituting w̄ by U(c̄) and combining the last two inequalities we obtain

ψT
k
( f (k̄, r̄)−δ(k̄)− c̄)−ψT

s
r̄ ≥ψT

k
( f (k̄, r)−δ(k̄)− c)−ψT

s
r

for all (c, r) ∈ Rn+m
++

such that U(c)≥ w̄. This proves (3.19).

The converse of Theorem 4.4 can be formulated as follows:

Theorem 4.5. Let (k̄, s̄, w̄, c̄, r̄) be an admissible interior solution to Problem (2.11) satis-

fying the necessary conditions of optimality together with (ψ0,ψk,ψs,ψw,µw). In addition,

assume that this solution is regular. Then (k̄, s̄, c̄, r̄) together with (ψ0,ψk,ψs), where

ψ0 = 1, satisfy the necessary conditions of optimality for an interior solution to Problem

(2.8) with the discount factor π(t) := µw(t).

Proof. If an admissible interior solution (k̄, s̄, w̄, c̄, r̄) to Problem (2.11) satisfies the ne-
cessary conditions of optimality together with (ψ0,ψk,ψs,ψw,µw), then conditions (3.2)
– (3.3) and (3.6) – (3.8) are satisfied trivially. Condition (3.5) follows directly from
(3.23) since π(t) = µw(t) and ψ0 = 1. Condition (3.4) follows from (3.5) and (3.6)
(see Remark 3.2).

Remark 4.4. (Interpretation of the relationship between both approaches) The impor-
tance of Theorem 4.4 and Theorem 4.5 is based on the fact that it links the discounted
utility approach and the maximin approach. Actually, it highlights the artificiality behind
the discounted utility approach: This discount factor can be considered as implicitly in-
cluded in the maximin approach. Actually, it is the shadow value of the constraints
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U(c) ≥ w. Moreover, as Cairns (2003) noted, the relationship between these two ap-
proaches can be interpreted also from another point of view: The appropriate chosen
discount factor π(t) can be considered as a coefficient in the infinitely-dimensional hy-
perplane given by equation

∫ ∞

0

π(t)U(c∗(t))dt = w∗. (4.8)

4.4 Converse of Hartwick’s result

As mentioned earlier, Hartwick’s rule was first formulated as a sufficient conditions for
paths along which the utility stays at a constant level (sustainable paths). Later, a ques-
tion arised whether Hartwick’s rule can be stated also as a necessary condition for a
constant utility, i.e. whether a converse of Hartwick’s result is valid.

Let us begin with the converse of generalized Hartwick’s result, which is straightfor-
ward. It states that for a sustainable interior path satisfying necessary conditions, the
value of net investment represented by

I(t) :=ψk(t)
T k̇(t)−ψs(t)

T r(t) (4.9)

is constant for all t ≥ 0.

Theorem 4.6 (Converse of generalized Hartwick’s result). 6 Let (k, s, c, r) be an admissi-

ble interior solution to (2.8) which satisfies the necessary conditions of optimality (3.2) –

(3.8) and condition (3.9) together with (ψ0,ψk,ψs). Then from U(c(t)) ≡ const. for all

t ≥ 0 it follows that there exists a constant I such that ψk(t)
T k̇(t)−ψs(t)

T r(t)≡ I for all

t ≥ 0.

Proof. If U(c(t))≡ const. for all t ≥ 0, then we obtain from (3.9)

d

dt

�

ψk(t)
T k̇(t)−ψs(t)

T r(t)
�

= 0 (4.10)

almost everywhere. This equality implies thatψT
k
k̇−ψT

s
r is piecewise constant. Since the

Hamiltonian (3.1) is continuous everywhere (in accordance Lemma 7.5) and the term
ψ0π(t)U(c(t)) is also continuous everywhere, we obtain that ψT

k
k̇−ψT

s
r is continuous

and hence constant.
6Cf. e.g. Mitra (2002) [Proposition 1, p. 369], Asheim et al. (2003) [Correct claim 1, p. 144], Mitra

(2002) [Theorem 2] and Buchholz et al. (2005) [Proposition 3, p. 556].
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k

c

f (k)

k̇ = 0

b

ċ = 0

a k(0)

(k̄(t), c̄(t))

Figure 4.1: Counterexample that I defined by (4.9) can be nonzero (see Example 4.1).

Unlike the converse of generalized Hartwick’s result, the converse of Hartwick’s re-
sult is not quite straightforward. Indeed, under the assumption of Theorem 4.6, it can
be shown that the constant I defined by (4.9) might not be zero. To show this, consider
the following example:

Example 4.1. 7 We consider the model (2.8) with n = 1, m = 0 and δ(k) = δ̄k, where
δ̄ > 0 is a given constant. In addition, assume that the production function satisfies

lim
k→0+

f ′(k) =∞ and lim
k→∞

f ′(k) = 0. (4.11)

Let the points a and b be as follows: f ′(a) = δ̄ and f (b) = δ̄b (see Figure 4.1). It is
easy to show that such points exist, they are unique and a < b. Indeed, the existence
and uniqueness of b is implied by Equalities (4.11) and Assumption (A1), as f ′(k) is
supposed to be positive and decreasing on (0,∞). Consider now the function

f̃ (k) := f (k)− δ̄k. (4.12)

One has f̃ (0) = 0 and f̃ (b) = 0. According to (A1), f̃ is differentiable on (0, b). Rolle’s
theorem then implies that there exists a ∈ (0, b) such that f̃ ′(a) = 0, i.e. f ′(a) = δ̄. In
addition, the function f̃ (k) has a maximum at point a. Since f̃ (k) is strictly concave, the
point a is unique.

7Cf. Mitra (2002) [p. 369-370].
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Further we assume that k(0) ∈ (a, b). We denote

c̄(t) := f (a)− δ̄a ≡ const. (4.13)

and k̄(t) satisfying ˙̄k(t) = f (k̄(t))− δ̄k̄(t)− c̄(t), k̄(0) = k(0). Finally let the discount
factor8 and the costate variable be in the form

π(t) := e
∫ t

0
(δ̄− f ′(k̄(τ)) dτ (4.14)

and

ψk(t) := π(t)
dU

dc
(c̄)> 0. (4.15)

Then it can be easily verified that:

(i) (k̄(t), c̄(t)) is an admissible solution to the given problem,

(ii) (k̄(t), c̄(t)) together with ψ0 = 1 and ψk(t) defined by (4.15) satisfies the neces-
sary conditions of optimality (3.2) – (3.8) and condition (3.9) and

(iii) ψk(t)
˙̄k(t) equals to a negative constant.

As (k̄(t), c̄(t)) satisfies the state equation k̇ = f (k)− δ̄k− c together with the initial
condition, to prove (i) it suffices to verify that k̄ ≥ 0 and c̄ ≥ 0. To show this, consider
again the function f̃ (k) defined by (4.12). According to Assumption (A1), this function
is strictly concave. Equalities f̃ (0) = f̃ (b) = 0 then imply that f̃ (k) > 0 on (0, b). As
c̄ = f̃ (a) and a ∈ (0, b), we have that c̄ > 0. In addition, a is a stacionary point of the
state equation. Hence, k̄(t)> a > 0 since k̄(0) > a.

Regarding (ii), note that conditions (3.2), (3.3) and (3.6) – (3.8) are satisfied tri-
vially or are empty, condition (3.5) follows directly from (4.15). Condition (3.4) follows
from (3.5) and (3.6) due to the fact that Hamiltonian (3.1) is concave in both c and r

(see Remark 3.2). In addition, condition (3.9) states

d

dt
(ψk

˙̄k) =−ψ0π
d

dt
U(c̄) = 0 (4.16)

8Note that the discount factor defined by (4.14) does not satisfy Assumption (A4).
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since ˙̄c = 0. This statement can be proved as follows:

d

dt
(ψk

˙̄k) = ψ̇k
˙̄k+ψk

¨̄k

(4.15)
= π̇

dU

dc
(c̄)˙̄k+π

d2U

dc2
(c̄)˙̄c˙̄k+π

dU

dc
(c̄)( f ′(k̄)˙̄k− δ̄˙̄k− ˙̄c)

(4.14)
= π(δ̄− f ′(k̄))

dU

dc
(c̄)˙̄k+π

dU

dc
(c̄)( f ′(k̄)˙̄k− δ̄˙̄k)

= 0.

Rgearding the proof of (iii), we already know that d
dt
(ψk

˙̄k) = 0. In addition, in-

equality ψk
˙̄k < 0 directly follows from the fact the ψk defined by (4.15) is positive and

˙̄k = f (k̄)− δ̄k̄− c̄ = f̃ (k̄)− f̃ (a) < 0 (4.17)

since a is the point of a global maximum of f̃ and k̄ > a. 9 �

As we have seen in the previous example, it does not suffice that the quadruple
(k, s, c, r) meets conditions (3.2) – (3.9) for the converse of Hartwick’s result to be valid;
additional assumptions have to be made. One possibility is to assume that it satisfies
also condition (3.13), in addition to other conditions of optimality. Alternatively, in case
of no amortization of capital, this assumption can be replaced by the assumption that at
least one of the exhaustible capital goods is an essential input to the production of all
renewable capital goods. More precisely, the relative elasticity of production w.r.t. the
non-renewable capital is greater than some positive constant for all renewable capital
goods.

Theorem 4.7 (Converse of Hartwick’s result). 10 Let (k∗, s∗, c∗, r∗) be an admissible in-

terior solution to (2.8) which satisfies the necessary conditions of optimality (3.2) – (3.8)

and condition (3.9) with (ψ0,ψk(t),ψs(t)). In addition, let us assume that at least one of

the following conditions is met:

9Another example that I can be nonzero was given by Asheim et al. (2003) [p. 135]. However,
their example is based on the assumption of existence of solution satisfying the necessary conditions of
optimality together with ċ = 0 at least on an interval (0, T ). The proof of the validity of this assumption is
missing.

10To our knowledge, this formulation of the theorem cannot be found in the literature. The theorem
with the condition (i) is only given e.g. by Mitra (2002) [Theorem 2, p. 375], Withagen et al. (2003)
[Proposition 2, p. 223], Asheim et al. (2003) [Proposition 4, p. 136], Withagen and Asheim (1998)
[Proposition 2, p. 163], Cairns and Yang (2006) [Proposition 1 (i), p. 280], cf. also Martinet (2004)
[Proposition 3, p. 9]. On the other hand, the theorem fomulated with condition (ii) only was stated
by Buchholz et al. (2005) [Theorem 1, p. 556], albeit only for the case n = m = 1 with an additional
assumption involving the production and amortization function which is actually not necessary.
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(i) (k∗, s∗, c∗, r∗) satisfies condition (3.13) as well 11, or

(ii) δ(k) = 0 for all k ≥ 0 and there exists a j = {1, . . . , m} and a positive number % such

that

r∗
j
(t)

∂ fi

∂ r j

(k∗(t), r∗(t))

fi(k
∗(t), r∗(t))

≥ % (4.18)

for all t ≥ 0 and for all i = 1, . . . , n.

Then from U(c∗(t))≡ const. for all t ≥ 0 it follows ψT
k
k̇∗ =ψT

s
r∗.

Proof. Since (k∗, s∗, c∗, r∗) is an admissible interior solution to (2.8) which satisfies the
necessary conditions of optimality (3.2) – (3.8), condition (3.9) and U(c∗(t)) ≡ const.
for all t ≥ 0, Theorem 4.6 implies that there exists a constant I such that one has
ψk(t)

T k̇∗(t)−ψs(t)
T r∗(t) = I for all t ≥ 0. If condition (i) is met, then condition (3.13)

yields

lim
t→∞

π(t)U(c∗(t)) + I = 0, (4.19)

since ψ0 = 1 (see (3.14)). In addition, the necessary condition of the convergence of the
integral in the objective function states that

lim
t→∞

π(t)U(c∗(t)) = 0. (4.20)

By combining Equalities (4.19) and (4.20) one has I = 0.

On the other hand, if condition (ii) is met, it follows from Lemma 4.1 that the con-
stant I is non-negative since we assume no amortization. Suppose that I > 0. Equality
(3.6) and condition (ii) imply that there exists a j ∈ {1, . . . , m} such that

ψs j
r∗

j

%

(3.6)
= ψT

k

∂ f

∂ r j

(k∗, r∗)
r∗

j

%
=

n
∑

i=1

ψki

∂ fi

∂ r j

(k∗, r∗)
r∗

j

%

(4.18)
≥

n
∑

i=1

ψki
fi(k
∗, r∗)

=ψT
k

f (k∗, r∗) =ψT
k
(k̇∗ +δ(k∗) + c∗)≥ψT

k
k̇∗ = I +ψT

s
r∗ ≥ I > 0 (4.21)

(we have used that c∗ > 0, r∗ > 0 and ψs j
> 0). From (3.14) we have that ψs j

is a
positive constant. Hence,

r∗
j
(t)≥

I%

ψs j

> 0 (4.22)

11Recall that Theorem 7.10 implies that condition (3.13) is satisfied if (k∗, s∗, c∗, r∗) is an interior optimal
solution to Problem (2.8) satisfying conditions (3.10) – (3.12).
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for all t ≥ 0, i.e. r∗
j

is separated from zero. The state equation ṡ(t) =−r(t) then implies
that s∗(t) is unbounded from below, which is a contradiction with the non-negativity
condition on s∗(t). Therefore we have that I = 0 and Hartwick’s rule is satisfied.12

Remark 4.5. Note that in Example 4.1, neither condition (i) nor condition (ii) given in
Theorem 4.7 is satisfied. Indeed, regarding condition (i), we have that ψk

˙̄k is a negative
constant (denote it by A, A< 0). Note that this does not contradicts Lemma 4.1 since the
model in Example 4.1 involves amortization of the capital. In addition, Equality (4.14)
implies that π is increasing, since

lim
t→∞

k̄(t) = k̄(a) (4.23)

and k̄(t)> k̄(a), hence f ′(k̄(t))> f ′(k̄(a)) for all t ≥ 0. Therefore

lim
t→∞

π(t)U(c̄(t)) +ψk(t)( f (k̄(t))− δ̄k̄− c̄(t)) (4.24)

cannot be zero and the Equality (3.13) is not satisfied. This is not in contradiction with
Theorem 7.10, since conditions (3.11) is not satisfied, because π(t) is increasing and
U(c̄) is constant in t. Moreover, condition (ii) in Theorem 4.7 is also not satified, since
f does not depend on r.

4.5 Hartwick’s rule in case of population growth

In a recent paper, Mitra (2008) formulated the converse of Hartwick’s result generalized
for the case of exponential population growth in a model with the following dynamics:

k̇ = f (k, r, n)− c, k(0) = k0 > 0,

ṡ = −r, s(0) = s0 > 0,

ṅ = ϑn, ϑ > 0,

where f (k, r, n) = kαrβn1−α−β , α and β are given constants from (0,1), α+ β < 1.

Theorem 4.8 (Mitra (2008)). 13 If (k, c, s, r, n) is a path satisfying:

(i) k, c, s, r, n are all positive for all t ≥ 0,

12The proof is a straightforward generalization to a multidimensional case of the proof given by Buch-
holz et al. (2005) [p. 556-557].

13See Mitra (2008) [Theorem 1, p. 65].
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(ii)
c

n
is constant (denoted by c̄),

(iii)

d

d t

∂ f

∂ r
(k, r, n)

∂ f

∂ r
(k, r, n)

=
∂ f

∂ k
(k, r, n)

then
d

dt
(pk̇+ ṡ) = (wn− pc̄n)ϑ (4.25)

for all t ≥ 0, where

p =
1

∂ f

∂ r
(k, r, n)

and w = p
∂ f

∂ n
(k, r, n).

The proof of this theorem introduced by Mitra (2008) is quite long and technical. In
this section, we deal with the converse of Hartwick’s result in the context of a simplified
model given by (2.13) and (2.14). In the optimal control framework, Hartwick’s rule
can be easily derived and we show its relationship to Equality (4.25). Contrary to Mitra
(2008) who restricted himself only to a case of Cobb-Douglas production function, we
consider any production function satisfying the general Assumption (A1).

Consider the following optimal control problem:

max
{r(t)}

c̄(0), t ∈ 〈0,∞),

k̇ = f (k, r, n)− c̄n, k(0) = k0 > 0

ṡ = −r, s(0) = s0 > 0,

ṅ = ϑn, n(0) = n0 > 0,

˙̄c = 0, c̄(0)free,

k(t) ≥ 0, s(t)≥ 0,

r(t)≥ 0, c̄(t)≥ 0.

(4.26)

Suppose that the production function f satisfies Assumption (A1). Note that any ad-
missible solution to Problem (4.26) satisfies that c̄ is constant, which is a condition
analogous to the condition (ii) in Theorem 4.8.

We formulate the necessary conditions of optimality for an interior optimal solution.
Denote the costate variable associated with n by ψn and the costate variable associated
with c̄ by ψc. The Hamiltonian is

H(k, s, n, c̄, r,ψk,ψs,ψn,ψc) =ψk( f (k, r, n)− c̄n)−ψsr +ψnϑn. (4.27)
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Let (k∗, s∗, n∗, c̄∗, r∗) be an admissible interior solution to (4.26). Then there exist a
constant ψ0 = 0 or ψ0 = 1 and continuous functions ψk, ψs, ψn and ψc such that:

(ψ0,ψk,ψs,ψn,ψc) 6= 0 for all t ≥ 0, (4.28)
∂ f

∂ r
(k∗, r∗, n∗)ψk =ψs, (4.29)

ψ̇k =−ψk

∂ f

∂ k
(k∗, r∗, n∗), (4.30)

ψ̇s = 0, (4.31)

ψ̇n =−ψk

∂ f

∂ n
(k∗, r∗, n∗) +ψk c̄ −ψnϑ, (4.32)

ψ̇c =−ψkn, (4.33)

ψc(0) =−ψ0. (4.34)

In addition, Theorem 7.9 implies

d

dt
(ψkk̇∗ +ψsṡ

∗ +ψnṅ∗ +ψc
˙̄c∗) = 0 (4.35)

for almost all t ≥ 0.

Now we can formulate the following theorem, which is an original result of this
thesis:

Theorem 4.9. Let (k∗, s∗, r∗, n∗, c̄∗) be an admissible interior solution to (4.26), which

satisfies the necessary conditions of optimality together with (ψ0,ψk,ψs,ψn,ψc) and with

ψs 6= 0. Then Equality (4.25) is satisfied where p and w are defined by

p :=
ψk

ψs

(4.29)
=

1
∂ f

∂ r
(k∗, r∗, n∗)

and w := p
∂ f

∂ n
(k∗, r∗, n∗). (4.36)

Proof. Since ˙̄c = 0, Equality (4.35) can be rewritten to

d

dt
(ψkk̇∗ +ψsṡ

∗) =−ψ̇nṅ∗ −ψnn̈∗ = ϑ(−ψ̇nn∗ −ψnϑn∗). (4.37)

After substituting (4.32) into (4.37) one has

d

dt
(ψkk̇∗ +ψs ṡ

∗) = ϑ

�

ψk

∂ f

∂ n
(k∗, r∗, n∗)n∗ −ψk c̄n∗ +ψnϑn∗ −ψnϑn∗

�

. (4.38)

Note that (4.31) implies that ψs is a constant. Since we have assumed ψs 6= 0, we can
divide (4.37) by ψs to obtain

d

dt

�

ψk

ψs

k̇∗ + ṡ∗
�

= ϑ

�

ψk

ψs

∂ f

∂ n
(k∗, r∗, n∗)n∗ −

ψk

ψs

c̄n∗
�

. (4.39)
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We can use (4.36) to simplify (4.39) as follows:

d

dt

�

pk̇∗ + ṡ∗
�

= ϑ
�

wn∗ − pc̄n∗
�

(4.40)

which is the same Equality as (4.25).

Remark 4.6. Note that if (k∗, s∗, r∗, n∗, c̄∗) is an admissible interior solution to (4.26),
which satisfies the necessary conditions of optimality with (ψ0,ψk,ψs,ψn,ψc), where
ψs 6= 0, then condition (iii) in Theorem 4.8 can be easily derived as well. To show this,
differentiate (4.29) w.r.t. t totally:

d

dt

∂ f

∂ r
(k∗, r∗, n∗)ψk +

∂ f

∂ r
(k∗, r∗, n∗) ψ̇k = ψ̇s. (4.41)

Substituting (4.30) and (4.31) into (4.41) yields

d

dt

∂ f

∂ r
(k∗, r∗, n∗)ψk −

∂ f

∂ r
(k∗, r∗, n∗)

∂ f

∂ k
(k∗, r∗, n∗)ψk = 0. (4.42)

From the assumption that ψs 6= 0 and from (4.29) it follows ψk 6= 0. Moreover, by

Assumption (A1) one has
∂ f

∂ r
(k∗, r∗, n∗)> 0 for any interior solution, hence (4.42) yields

condition (iii) in Theorem 4.8.
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Chapter 5

Perfectly substitutable

exhaustible resources

In Chapters 2 – 4, we have assumed that all exhaustible resources are essential
for the production of reproducible capital goods (see Assumption (A1)), although they
were considered as imperfect substitutes. One of the most important implications of
this assumption for the mathematical analysis of these models is that we do not need to
consider the case of binding non-negativity constraints imposed on stocks of reproducible
resources along optimal paths.1 This is the reason why the analysis in majority of rele-
vant papers was focused mainly on internal paths i.e. paths for which it was assumed that
these constraints are not binding. Hence, it was possible to avoid technical difficulties
which may arise in the presence of pure state constraints.

In this chapter, we formulate a new model of an economy with two exhaustible re-
sources which are mutually perfectly substitutable. We will assume that although the
extraction of at least one of the exhaustible capital goods is necessary for the produc-
tion, it is not required that both exhaustible resources have to be used at each time.
Moreover, we assume that the productivity of one resource is constant in time, whereas
the productivity of the other one is increasing. We believe that this assumption is quite
realistic, because in many cases a non-renewable resource is beeing gradually replaced
by another one for which the process technology and hence productivity has improved.
As an example, coal was broadly substituted by uranium in electricity plants.

We formulate the model in the maximin framework given by (2.13) and (2.14). We
focus on the qualitative analysis of optimal solutions to this model based on the results
from the optimal control theory. However, in this case we cannot restrict ourselves
only to interior solutions, since zero extraction rate and even zero level of one of the

1See the discussion in Section 3.1 and in Cairns and Long (2006) [p. 285].
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exhaustible capital goods might still allow some level of consumption and possibly might
be optimal.

To our knowledge, only three papers have considered the case that pure state con-
straints are binding in models of sustainable economic growth so far:

First, Dixit et al. (1980) introduce few comments on this issue without any further
analysis in conclusion of their article. They expect that generalized Hartwick’s rule is
valid separately before and after the moment when one of the resources becomes de-
pleted, but the value of net investment might exhibit a jump at this moment, while the
value of consumption stays continuous.

Second, Cairns and Long (2006) present a brief discussion on the possibility of bin-
ding non-negativity stock constraints in the context of the DHS model (2.11) with a
maximin objective function. However, they do not provide any deeper analysis on this
issue. They merely propose some conjectures regarding discontinuity of shadow values
of capital stock at points where these constraints become or cease to be binding. They
assume that at these points, the level of net investment of at least one stock must exhibit
a jump.

Third, the issue of binding constraints on state variables is dealt with in a recent
paper by Martinet (2009). He considers constraints in form of some thresholds on ex-
haustible resources. His approach contains two steps: First he applies a viability analysis
(see Section 2.3.2) to determine the set of achievable objective values given the initial
endowments of the economy and second he uses a static optimization taking into ac-
count preferences. He does not use optimal control theory. Therefore, he does not study
the paths of optimal solutions.

All results in this section are new.

5.1 The model and necessary conditions of optimality

We will consider the following version of the model given in (2.13) and (2.14):

max
{c(t),r1(t),r2(t)}

w(0), where t ∈ 〈0,∞),

k̇(t) = f (t, k(t), r1(t), r2(t))− c(t), k(0) = k0 > 0 given,

ṡ1(t) =−r1(t), s1(0) = s̄1 > 0 given,

ṡ2(t) =−r2(t), s2(0) = s̄2 > 0 given,

ẇ(t) = 0, w(0) free, (5.1)

k(t) ≥ 0, s1(t)≥ 0, s2(t)≥ 0,
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r1(t)≥ 0, r2(t)≥ 0, c(t)≥ 0,

U(c(t))≥ w(t).

The production function is assumed to be in the following Cobb-Douglas form with ho-
mogeneity of degree one:

f (t, k(t), r1(t), r2(t)) = k(t)α(r1(t) + d(t)r2(t))
1−α, (5.2)

where d(t) is a given function which represents the (time dependent) marginal rate of
substitution between the extraction rates of the exhaustible capital goods in the produc-
tion process. Since it does not depend neither on r1 nor on r2, both ehaustible capital
goods are considered to be mutually perfectly substitutable. Alternatively, the interpre-
tation of d(t) can be viewed as exogeneously given increasing factor of productivity
of the second exhaustible capital good. It is supposed that d(t) satisfies the following
assumption:

(A6) The function d(t) : R+→ R++ is positive, strictly increasing and continuous for all
t ≥ 0.

We assume that α ∈ ( 1
2
, 1) which is equivalent to α > 1−α (see Remark 5.1 below).

Problem (5.1) is a non-autonomous optimal control problem with infinite time hori-
zon, mixed and pure state constraints and with an initial scrap value function. Note that
there is no initial condition imposed on w(0).

Remark 5.1. There is a close relationship between Problem (5.1) and Problem (3.28)
where γ= 0 and δ = 0. In fact, it is easy to see that if (k, s, c, r) is an admissible solution
to the latter problem, then (c, r1, r2, k, s1, s2, w) where r1 = r, r2 ≡ 0, s1 = s and s2 ≡ s̄2

is an admissible solution to Problem (5.1). As it was stated in Section 3.2.1 (a), the
condition α > 1− α is a necessary and sufficient condition for the existence of optimal
solution in the model (3.28) where γ = 0 and δ = 0. Moreover, the explicit form of
solution was given in Section 3.2.2 (a). It will be used later in the proof of the main
result of this chapter.

In accordance with (7.8), (7.9) and (7.10), define for (5.1) the Hamiltonian by

H(t, k, s1, s2, w, c, r1, r2,ψ0,ψk,ψ1,ψ2,ψw) =ψk( f (t, k, r1, r2)− c)−ψ1r1−ψ2r2,

the Lagrangian by

L(t, k, s1, s2, w, c, r1, r2,ψ0,ψk,ψ1,ψ2,ψw,µc,µ1,µ2,µw,νk,ν1,ν2)
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= (ψk+νk)( f (t, k, r1, r2)−c)−(ψ1+ν1)r1−(ψ2+ν2)r2+µcc+µ1r1+µ2r2+µw(U(c)−w)

and the simplified Lagrangian by

L̆(t, k, s1, s2, w, c, r1, r2,ψ0,ψk,ψ1,ψ2,ψw,µc,µ1,µ2,µw)

=ψk( f (t, k, r1, r2)− c)−ψ1r1 −ψ2r2 +µcc +µ1r1+ µ2r2+ µw(U(c)−w).

According to Definition 7.3, a solution (k∗, s∗1, s∗2, w∗, c∗, r∗1, r∗2) to Problem (5.1) satis-
fies the weak constraint qualification, if the matrix













r∗1 0 0 0 1 0 0
0 r∗2 0 0 0 1 0
0 0 c∗ 0 0 0 1

0 0 0 U(c∗)−w∗ 0 0
dU

dc
(c∗)













(5.3)

has a full rank when it is evaluated at (r∗1(t
−), r∗2(t

−), c∗(t−), w∗(t)) for any t ∈ (0,∞)
and at (r∗1(t

+), r∗2(t
+), c∗(t+), w∗(t)) for any t ∈ 〈0,∞). This condition is not satisfied

only if c∗(t) = 0 and U(c∗(t)) = w∗(t) simultaneously on a non-trivial interval. However,
then the value of the objective function attains its lowest possible value. Hence, exclud-
ing such solutions does not restrict the set of maximal attainable values of the objective
function.

Using Theorem 7.6, we obtain the following necessary conditions of optimality: If
(k∗, s∗1, s∗2, c∗, w∗, r∗1 , r∗2) is an optimal solution to Problem (5.1), then there exist a constant
ψ0 = 0 or ψ0 = 1, piecewise continuous functions ψk, ψ1, ψ2, ψw, µc, µ1, µ2 and µw

and non-increasing piecewise continuous functions νk, ν1 and ν2 such that2

(ψ0,ψk(t
+),ψ1(t

+),ψ2(t
+),ψw(t

+)) 6= 0for all t ≥ 0, (5.4)

(ψ0,ψk(t
−)ψ1(t

−),ψ2(t
−),ψw(t

−)) 6= 0 for all t > 0 (5.5)

and the following conditions are satisfied almost everywhere:

ψk( f (t, k∗, r∗1, r∗2)− c∗)−ψ1r∗1 −ψ2r∗2 ≥ψk( f (t, k∗, r1, r2)− c)−ψ1r1−ψ2r2 (5.6)

2Recall that the list of variables and multipliers can be found at the end of this thesis.
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for all (c, r1, r2) such that c ≥ 0, r1 ≥ 0, r2 ≥ 0,

∂ L̆

∂ c
= −ψk +µc +µw

dU

dc
= 0, (5.7)

∂ L̆

∂ r1

=ψk

∂ f

∂ r1

−ψ1 +µ1 = 0, (5.8)

∂ L̆

∂ r2
=ψk

∂ f

∂ r2
−ψ2 +µ2 = 0, (5.9)

ψ̇k − ν̇k = −
∂ L

∂ k
=−(ψk + νk)

∂ f

∂ k
, (5.10)

ψ̇1− ν̇1 = −
∂ L

∂ s1

= 0, (5.11)

ψ̇2− ν̇2 = −
∂ L

∂ s2

= 0, (5.12)

ψ̇w = −
∂ L

∂ w
= µw, ψw(0) = −1, (5.13)

νkk = 0, νk ≥ 0, (5.14)

ν1(0) = 0,ν1 is constant on any interval where s∗1 > 0, (5.15)

ν2(0) = 0,ν2 is constant on any interval where s∗2 > 0, (5.16)

µcc
∗ = 0, µc ≥ 0, (5.17)

µ1r∗1 = 0, µ1 ≥ 0, (5.18)

µ2r∗2 = 0, µ2 ≥ 0, (5.19)

µw(U(c
∗)−w∗) = 0, µw ≥ 0, (5.20)

νk is continuous if k∗ = 0 and f (t, k∗, r∗1 , r∗2)−δ(k∗)− c∗ is discontinuous, (5.21)

ν1 is continuous if s∗1 = 0 and r∗1 is discontinuous, (5.22)

ν2 is continuous if s∗2 = 0 and r∗2 is discontinuous. (5.23)

The functions ψk−νk, ψ1−ν1 and ψ2−ν2 are continuous everywhere and it follows
from Lemma 7.5 that

H[t] := H(t, k∗(t), s∗1(t), s∗2(t), c∗(t), r∗1(t), r∗2(t), w∗(t),ψk(t),ψ1(t),ψ2(t),ψw(t))

is continuous for all t ≥ 0. (5.24)

In addition, Theorem 7.9 implies

d

dt

�

ψk( f (t, k∗, r∗1, r∗2)− c∗)−ψ1r∗1 −ψ2r∗2

�

=ψk

∂ f

∂ t
(t, k∗, r∗1 , r∗2). (5.25)
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5.2 Main result

Using conditions (5.5) – (5.24), we can proceed with the qualitative analysis of the
solutions to these conditions. However, we restrict ourselves only to regular solutions
(see Definition 3.1).

As mentioned above, we assume that the economy is able to produce even if a stock
of one of the exhaustible capital goods is zero, since the exhaustible resources are sup-
posed to be perfect substitutes. Hence, instead of interior solutions used in the previous
chapters, we introduce the notion of a weakly interior solution as follows:

Definition 5.1. A solution (k, s1, s2, w, c, r1, r2) is called a weakly interior solution to Prob-

lem (5.1) if it is an admissible solution to this problem, k(t) > 0 for all t ≥ 0, c(t−) > 0
and r1(t

−) + d(t)r2(t
−) > 0 for all t > 0, c(t+) > 0 and r1(t

+) + d(t)r2(t
+) > 0 for all

t ≥ 0.

The main result of the qualitative analysis is that the stock of the resource s1 with
constant productivity will be extracted first and only then the second resource s2 with
increasing productivity will be used. It is quite interesting that this remains true even if
d(t)< 1 on some interval, i.e. the productivity of the second resource is at the beginning
smaller than the productivity of the first resource. More precisely, the following theorem
can be formulated:

Theorem 5.1. Let (k∗, s∗1, s∗2, w∗, c∗, r∗1, r∗2) be an optimal solution to Problem (5.1) with

α > 1
2
, which is regular (see Definition 3.1) and weakly interior. Then there exists T ≥ 0

such that the paths of extraction rates of non-renewable resources have the following form:

For every t ∈ 〈0, T 〉 : r∗1(t)> 0 and r∗2(t) = 0,
for every t ∈ (T,∞) : r∗1(t) = 0 and r∗2(t)> 0.

(5.26)

To prove this theorem, we first formulate and prove the following lemma:

Lemma 5.1. Let (k∗, s∗1, s∗2, w∗, c∗, r∗1 , r∗2) be an optimal solution to Problem (5.1) with

α > 1
2
, which is regular and weakly interior. Then one has:

(i) Equality r∗2(t) = 0 is not satisfied for all t ≥ 0.

(ii) Inequalities r∗1(t) > 0, r∗2(t) > 0 are not satisfied simultaneously on any non-trivial

interval.

(iii) There is no τ > 0 such that r∗1(τ
−) = 0, r∗2(τ

−)> 0 and r∗1(τ
+) > 0, r∗2(τ

+) = 0.
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Proof of (i). If r∗2(t) = 0 for all t ≥ 0, then we known from Section 3.2.2(a) (see Remark
5.1 and Equalities (3.31) – (3.33)) that the maximal value of consumption which can be
sustained forever is

c∗ ≡ α(s̄1(2α− 1))
1−α
α k

2α−1
α

0 (5.27)

and the rate of extraction of the first exhaustible capital good obeys the equation

r∗1(t) =

�

c∗

α

�
1

1−α
�

c∗(1−α)
α

t + k0

�
α

α−1

. (5.28)

It is easy to show that the control given by (5.27), (5.28) and r∗2(t) = 0 together with its
response is a weakly interior solution to (5.1), i.e. inequalities s∗1 ≥ 0, s∗1 ≥ 0, k∗ > 0 and
r∗1(t) + d(t)r∗2(t)> 0 are satisfied for all t ≥ 0.

Now, we show that the sustainable level of consumption given by (5.27) can be
increased if r2 is not prescribed to be zero and hence we obtain a contradiction with
optimality. Let us define

Ai :=
�

s̄i(2α− 1)
�

1−α
α k

2α−1
α

0 (5.29)

and
r̃i(t) := A

1
1−α
i

�

(1−α)Ai t + k0

�− α

1−α , (5.30)

where i = 1,2. Both A1 and A2 are positive numbers, since we have assumed that α > 1
2
.

Note that combining (5.27) and (5.29) for i = 1 yields

A1 =
c∗

α
. (5.31)

Substituting this into (5.30) for i = 1 implies that r̃1 is the same as r∗1 defined by (5.28).

We now prove that for r̃1 and r̃2 defined by (5.30), c̃ defined by

c̃ := αA1+ A1

�

(1+ B)1−α − 1
�

(5.32)

is a sustainable level of consumption greater than c∗ defined by (5.27) which is the
maximal sustainable level of consumption for (r∗1 , 0), where

B := inf
t≥0

d(t)

�

A2[(1−α)A2 t + k0]
−α

A1[(1−α)A1 t + k0]
−α

� 1
1−α

. (5.33)

Note that combining (5.31) and (5.32) yields

c̃ = c∗+ A1

�

(1+ B)1−α − 1
�

. (5.34)

Hence, to prove that c̃ is a sustainable level of consumption which is greater than c∗, we
need to prove the following statements:
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(a) B is positive (Equality (5.34) then implies that c̃ > c∗) and

(b) (r̃1, r̃2, c̃) together with its response is a weakly interior solution.

To prove (a), note that (5.33) together with (A6) imply

B ≥ d0

�

A2

A1

� 1
1−α
�

inf
t≥0

(1−α)A1 t + k0

(1−α)A2 t + k0

�
α

1−α

. (5.35)

The term in brackets is an infimum of a division of two linear functions on 〈0,∞). Its
value can be obtained for t = 0 or t →∞. Hence one has

inf
t≥0

(1−α)A1 t + k0

(1−α)A2 t + k0

=min

�

1,
A1

A2

�

. (5.36)

Substituting (5.36) into (5.35) yields

B ≥ d0

�

A2

A1

� 1
1−α
�

min

�

1,
A1

A2

�� α
1−α
> 0, (5.37)

since d0 and both A1 and A2 are positive numbers.

Now, it remains to prove (b). Note that condition r1(t) + d(t)r2(t) > 0 is satisfied
trivially, since both r̃1(t) > 0 and r̃2(t) > 0 for all t ≥ 0 . In addition, it follows from
(5.34) that c̃ > 0 since B > 0. Furthermore, it can be easily verified that

s̃i(t) :=
1

2α− 1
A

α
1−α
i

�

(1−α)Ai t + k0

�
1−2α
1−α > 0, where i = 1,2 (5.38)

is a solution to the differential equation ˙̃si =−r̃i and

s̃i(0)
(5.38)
=

1

2α− 1
A

α
1−α
i k

1−2α
1−α

0

(5.29)
= s̄i, (5.39)

where i = 1,2. Hence, it suffices to prove that the solution k̃(t) to equation

˙̃
k = k̃α(r̃1 + d r̃2)

1−α− c̃ (5.40)

is positive for all t ≥ 0.

We have

(r̃1 + d(t)r̃2)
1−α (5.30)

=

�

A
1

1−α
1

�

(1− α)A1 t + k0

�− α
1−α + d(t)A

1
1−α
2

�

(1−α)A2 t + k0

�− α
1−α

�1−α
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= A1

�

(1−α)A1 t + k0

�−α





1+ d(t)

�

A2[(1−α)A2 t + k0]
−α

A1[(1−α)A1 t + k0]
−α

� 1
1−α







1−α

(5.33)
≥ A1

�

(1−α)A1 t + k0

�−α
(1+ B)1−α, (5.41)

where B is defined by (5.33).

Therefore one has
˙̃k = k̃α(r̃1 + d r̃2)

1−α− c̃

(5.32), (5.41)
≥ k̃αA1

�

(1−α)A1 t + k0

�−α
(1+ B)1−α − A1(1+ B)1−α + (1−α)A1. (5.42)

It can be easily verified that the solution (denoted by k̄(t)) of (5.42) taken as equality
with initial condition k̄(0) = k0 is

k̄(t) = (1−α)A1 t + k0. (5.43)

Hence, the solution of (5.42) with initial condition k̃(0) = k0 satisfies

k̃(t)≥ k̄(t)≥ k0 > 0. (5.44)

Proof of (ii). The form of the production function (5.2) which is used in the model (5.1)
implies

∂ f

∂ r2

(t, k∗, r∗1, r∗2) =
∂ f

∂ r1

(t, k∗, r∗1, r∗2) d(t) (5.45)

for all t ≥ 0. Conditions (5.8) and (5.9) then imply

(ψ1−µ1)d =ψ2−µ2 (5.46)

almost everywhere.

Suppose now that there exists a non-trivial open interval I where r ∗1(t) > 0 and
r∗2(t) > 0. From (5.18) and (5.19) we obtain µ1 = 0 and µ2 = 0 on I . In addition,
positive values of r∗1 and r∗2 on I imply also positive values of s∗1 and s∗2 on I. Hence, from
(5.15) and (5.16) we obtain that ν1 and ν2 are both piecewise constant on I . Therefore,
from (5.11) and (5.12) also ψ1 and ψ2 are both piecewise constant on I . Finally, (5.46)
than implies that d is also piecewise constant on I . This is a contradiction, because we
have assumed that d is a strictly increasing function (see Assumption (A6)).

Proof of (iii). Suppose that there exists τ > 0 such that r∗1(τ
−) = 0, r∗2(τ

−) > 0 and
r∗1(τ

+)> 0, r∗2(τ
+) = 0. Then (5.18) implies µ1(τ

−) ≥ 0 and µ1(τ
+) = 0, (5.19) implies
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µ2(τ
−) = 0 and µ2(τ

+)≥ 0. Hence, we obtain from (5.46)

(ψ1(τ
−)−µ1(τ

−))d(τ) = ψ2(τ
−), (5.47)

ψ1(τ
+)d(τ) = ψ2(τ

+)−µ2(τ
+). (5.48)

By subtracting (5.48) from (5.47) we obtain

(ψ1(τ
−)−ψ1(τ

+)−µ1(τ
−))d(τ) =ψ2(τ

−)−ψ2(τ
+) +µ2(τ

+). (5.49)

Because we have assumed that r∗1(τ
+) > 0, we have r∗1(t)> 0 on some right neighbour-

hood of τ (denoted by O (τ+)). Thus µ1(t) = 0 on O (τ+) and from (5.46) we obtain

ψ1(t)d(t) =ψ2(t)−µ2(t) (5.50)

on O (τ+). In addition, r∗1(t)> 0 implies s∗1(t)> 0 on O (τ+). From (5.15) ν1 is constant
on O (τ+) and from the continuity of ψ1−ν1 one has that ψ1 is continuous on O (τ+) as
well. Furthermore, Equality (5.11) then implies that ψ1 is constant on O (τ+). We can
prove that this constant is positive. Indeed, from condition (5.7) we obtainψk(t)> 0 for
all t ≥ 0 because µw > 0 (because we only consider regular solutions). Hence, condition
(5.8) implies the positivity of ψ1.

As ν2 is non-increasing everywhere, from continuity of ψ2 − ν2 and Equality (5.12)
we have that also ψ2 is non-increasing everywhere. From (5.50) we obtain

µ2(t) =ψ2(t)−ψ1(t)d(t) (5.51)

on O (τ+), where ψ2(t)−ψ1(t)d is a strictly decreasing function (because ψ2 is non-
increasing, ψ1 is a positive constant and d is strictly increasing), which means µ2(τ

+)>

0, because µ2 is non-negative everywhere.

Because the function ψ1 − ν1 is continuous everywhere and ν1 is non-increasing,
Equality (5.11) implies that the function ψ1 is also non-increasing. This together with
µ2(τ

+)> 0 implies that the right-hand side of (5.49) is positive. Because d was assumed
to be positive, we have

ψ1(τ
−)−ψ1(τ

+)−µ1(τ
−)> 0 (5.52)

or, equivalently
ψ1(τ

−)−µ1(τ
−)>ψ1(τ

+)−µ1(τ
+) (5.53)

due to µ1(τ
+) = 0. Then, using (5.8) we obtain

∂ f

∂ r1

(τ, k∗(τ), r∗1(τ
−), r∗2(τ

−))>
∂ f

∂ r1

(τ, k∗(τ), r∗1(τ
+), r∗2(τ

+)). (5.54)
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We have used that ψk is positive and it is continuous everywhere because ψk − νk is
continuous and νk = 0 for all t since we have assumed that k∗(t)> 0 for all t ≥ 0 (recall
that we only deal with weakly interior solutions). From (5.54) we obtain

(1−α)
�

k∗(τ)

r∗1(τ
−) + d(τ)r∗2(τ

−)

�α

> (1−α)
�

k∗(τ)

r∗1(τ
+) + d(τ)r∗2(τ

+)

�α

(5.55)

which can be simplified to
d(τ)r∗2(τ

−)< r∗1(τ
+) (5.56)

due to k∗(t)> 0 for all t, r∗1(τ
−) = 0 and r∗2(τ

+) = 0.

Now we make use of condition (5.24) which states that the Hamiltonian (5.24) is
continuous in t for all t ≥ 0. This implies

ψk(τ)k
∗(τ)α(d(τ)r∗2(τ

−))1−α−ψ2(τ
−)r∗2(τ

−) =

=ψk(τ)k
∗(τ)αr∗1(τ

+)1−α−ψ1(τ
+)r∗1(τ

+). (5.57)

Again, we have used that r∗1(τ
−) = 0, r∗2(τ

+) = 0, ψk and k∗ are continuous everywhere
and also c∗ is continuous everywhere because we have assumed that c∗ is regular and
hence constant (see Remark 3.3). From (5.8) and (5.9) we have

ψk(τ)
∂ f

∂ r1

(τ, k∗(τ), r∗1(τ
+), r∗2(τ

+)) =ψ1(τ
+) (5.58)

and

ψk(τ)
∂ f

∂ r2

(τ, k∗(τ), r∗1(τ
−), r∗2(τ

−)) =ψ2(τ
−) (5.59)

because µ1(τ
+) = 0 and µ2(τ

−) = 0. Putting the last two equalities into (5.57) we
obtain

ψk(τ)k
∗(τ)α

�

(d(τ)r∗2(τ
−))1−α − r∗1(τ

+)1−α
�

=ψ2(τ
−)r∗2(τ

−)−ψ1(τ
+)r∗1(τ

+) =

=ψk(τ)(1−α)k∗(τ)α(d(τ)r∗2(τ−))1−α−ψk(τ)(1−α)k∗(τ)αr∗1(τ
+)1−α.

This simplifies to
d(τ)r∗2(τ

−) = r∗1(τ
+) (5.60)

using that ψk and k∗ are positive everywhere. However, (5.60) contradicts (5.56).
Lemma 5.1 is proved.

Proof of Theorem 5.1. We recall (see Definition 7.1 (i) and the text below it) that the
optimal paths of any control variable is supposed to have one-sided limits everywhere.
At discountinuiuty points, its value is equal to its left-hand limit and its value at 0 is equal
to its right-hand limit. Hence, one has r∗

i
(0) := lim

t→0+
r∗

i
(t), i = 1,2. We can distinguish

four cases:
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(a) If r∗1(0) > 0 and r∗2(0) = 0, then there exists an ε > 0 such that r∗1(t) > 0 on
〈0,ε). Lemma 5.1 (ii) then implies that r∗2(t) = 0 on 〈0,ε). On the other hand, it
follows from Lemma 5.1 (i) that r∗2(t) cannot be zero everywhere on (0,∞). Since
it is assumed to be piecewise continuous, it has be positiveon a non-trivial interval.
Recall that the solution was assumed to be weakly interior, hence r ∗1 and r∗2 cannot
vanish simultaneously. In addition, Lemma 5.1 (ii) implies that r∗1 and r∗2 cannot
be simultaneously positive on a non-trivial interval. As a result, there exists T such
that r∗1(T

−) > 0, r∗2(T
−) = 0 and r∗1(T

+) = 0, r∗2(T
+)> 0.

Now we prove that r∗1(t) = 0 and r∗2(t)> 0 everywhere on (T,∞). Indeed, suppose
that there exists a non-trivial interval I such that r∗2(t) = 0 on I . Since the solution
is weakly interior, we have that r∗1(t) > 0 everwhere on I . However, then there
exists τ such that r∗1(τ

−) = 0, r∗2(τ
−) > 0 and r∗1(τ

+) > 0, r∗2(τ
+) = 0, which is a

contradiction with Lemma 5.1 (iii).

(b) If r∗1(0) = 0 and r∗2(0) > 0, then there exists an ε > 0 such that r∗2(t) > 0 on 〈0,ε)
and Lemma 5.1 (ii) implies r∗1(t) = 0 on 〈0,ε). Analogously to the previous case,
it can be proved that r∗1(t) = 0 and r∗2(t)> 0 everywhere on 〈0,∞).

(c) If r∗1(0) > 0 and r∗2(0) > 0, then there exists an ε > 0 such that r∗1(t) > 0 and
r∗2(t)> 0 on 〈0,ε), which is a contradiction with Lemma 5.1 (ii).

(d) The case r∗1(0) = 0 and r∗2(0) = 0 is a contradiction with the assumption that the
solution is weakly interior, because this assumption implies

r∗1(0) + d(0)r∗2(0) = r∗1(0
+) + d(0)r∗2(0

+) = 0. (5.61)

The proof of the theorem is completed.

Remark 5.2. (Continuity of the value of net investment.) Recall that at the beginning
of this chapter, we have cited Dixit et al. (1980) who stated a conjecture that the value
of net investment exhibits a jump at the moment of depletion of one of the exhaustible
resources. Note that in our model, this conjecture is not valid. The reason is that accor-
ding to Lemma 7.5, the Hamiltonian stays constant along the solutions even at junction
times. However, the Hamiltonian expresses the value of net investment in this model.
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5.3 Hartwick’s result for this model

Consider now Problem (5.1), but let the maximin objective function be replaced by the
discounted utility objective function:

max
{c,r1,r2}

∫ ∞

0

π(t)U(c(t))dt,

k̇(t) = kα(r1(t) + d(t)r2(t))
1−α− c(t), k(0) = k0 > 0 given,

ṡ1(t) =−r1(t), s1(0) = s̄1 > 0 given,

ṡ2(t) =−r2(t), s2(0) = s̄2 > 0 given,

k(t)≥ 0, s1(t)≥ 0, s2(t)≥ 0,

r1(t)≥ 0, r2(t)≥ 0, c(t)≥ 0,

(5.62)

where d satisfies (A6).

The necessary conditions of optimality for this problem follow from Theorems 7.6
and 7.9 and from Lemma 7.5.

In particular, Theorem 7.9 implies that if (k∗, s∗1, s∗2, c∗, r∗1, r∗2) is an admissible solution
to Problem (5.62) which fulfills the necessary conditions of optimality given in Theorem
7.6 together with (ψ0,ψk,ψ1,ψ2,µc,µ1,µ2,νk,ν1,ν2), then

d

dt

�

ψ0πU(c∗) +ψkk̇∗ +ψ1ṡ∗1+ψ2ṡ∗2

�

=ψ0π̇U(c∗) +ψk

∂ f

∂ t
(t, k∗, r∗1, r∗2) (5.63)

for all t ≥ 0 with the possible exceptions of junction times or discontinuity points of c∗,
r∗1 or r∗2. In addition, Lemma 7.5 implies that the Hamiltonian is continuous everywhere.
It is important in this context that all these propositions remain valid for infinite horizon
models with pure state constraints.

The proof of Hartwick’s result for Problem (2.8) (Theorem 4.1) was based on con-
dition (3.9) and continuity of the Hamiltonian. Hence, it is crucial for derivation of
Hartwick’s result for Problem (5.62) that the condition (5.63) (which is an analogous
condition to (3.9)) together with continuity of the Hamiltonian are valid. Therefore we
can formulate and prove the following theorem:

Theorem 5.2 (Hartwick’s result, perfectly substitutable exhaustible resources). 3 Let

3Comparing to the results in Chapter 4, this theorem extend the formulation of Hartwick’s result for
(a) non-autonomous models and (b) models with binding pure state constraints. Hartwick’s result for
non-autonomous models is treated by Farzin (2006), who also describes the role of pure time effect on
production (clarified below). However, to our knowledge there is no formulation of Hartwick’s result
taking into account binding pure state constraints.
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(k∗, s∗1, s∗2, c∗, r∗1, r∗2) be an admissible weakly interior solution to Problem (5.62) which ful-

fills the necessary conditions of optimality together with (ψ0,ψk,ψ1,ψ2,µc,µ1,µ2,νk,ν1,ν2),

where ψ0 = 1. In addition, suppose that

ψk(t)k̇
∗(t) +ψ1(t)ṡ

∗
1(t) +ψ2(t)ṡ

∗
2(t) =

∫ t

0

ψk(τ)
∂ f

∂ t
(τ, k∗(τ), r∗1(τ), r∗2(τ))dτ (5.64)

(Hartwick’s rule) for all t ≥ 0. Then U(c)≡ const. for all t ≥ 0.

Proof. If Equality (5.64) is satisfied, from (5.63) we obtain

ψ0π(t)
dU

dt
(c∗(t)) = 0. (5.65)

Assumption (A4) and ψ0 = 1 then yields that U(c∗(t)) is piecewise constant. Further-
more, the Hamiltonian

H(t, k∗, s∗1, s∗2, c∗, r∗1 , r∗2,ψ0,ψk,ψ1,ψ2) =ψ
0πU(c∗) +ψkk̇∗ +ψ1ṡ∗1 +ψ2ṡ∗2 (5.66)

is continuous everywhere in t and it follows from Equality (5.64) that

ψk(t)k̇
∗(t) +ψ1(t)ṡ

∗
1(t) +ψ2(t)ṡ

∗
2(t) (5.67)

is continuous in t. As a result, ψ0π(t)U(c∗(t)) is continuous, hence U(c∗(t)) is constant.

Remark 5.3. (Economic interpretation.) Note that Equality (5.64) representing Hartwick’s
rule for the model (5.62) can be rewritten to

ψk(t)k̇
∗(t) +ψ1(t)ṡ

∗
1(t) +ψ2(t)ṡ

∗
2(t) =

=

∫ t

0

ψk(τ)(1− α)(k∗(τ))α(r∗1(τ) + d(τ)r∗2(τ))
−αr∗2(τ)ḋ(τ)dτ=

=

∫ t

0

ψk(τ)
∂ f

∂ r2

ḋ(τ)

d(τ)
r∗2(τ)dτ. (5.68)

This equality states that the total value of net investment to all capital stocks priced at
shadow values at time t has to be equal to the total change of the production solely due
to the time (i.e. time effect on production4) over the time interval (0, t) priced at shadow
value. This pure time effect on production equals to the actual unit marginal production
multiplied by the stock of the exhaustible capital r2 and further multiplied by the growth
rate of productivity of r2.

4Cf. Farzin (2006) [p. 525].
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Chapter 6

Conservation laws

6.1 Conservation laws in the sustainability framework

So far, we have assumed that the concept of sustainability of economic growth requires
maintaining some level of utility that can be sustained for all future generations. In other
words, it is set a priori which kind of quantity has to be preserved. In this chapter, we
present another kind of analysis that might be interesting when examining sustainability
of economies in models of economic growth. In this type of analysis, we explore the
structure of the particular model and search for some conservation laws, i.e. for quan-
tities that can be constant along trajectories. We further examine how these quantities
are interpreted in the sustainability framework.

The analysis will be based on Noether’s theorem (see Noether (1918)). Roughly
speaking, Noether’s theorem states that if a dynamic system has a continuous symme-
try property, then there exist corresponding quantities whose values are conserved in
time. In optimal control framework, the interpretation of Noether’s theorem might be
as follows: If an optimal control model has some kind of symmetry, then there exists an
invariant quantity, i.e. a quantity that is constant along solutions of necessary conditions
of optimality. A more precise formulation of this result is given later in this chapter.

Using conservation laws (or invariant quantities) along paths satisfying necessary
conditions of optimality for solutions to DHS model was first proposed by Sato and Kim
(2002). However, they do not directly refer to Noether’s theorem. Instead they consider
an autonomous DHS model where they only find one simple conservation law which
states that the Hamiltonian is constant along optimal paths.

Recently, the concept of using conservation laws based on Noether’s theorem was
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broadly studied by Martinet and Rotillon (2007). However, their results are rather scep-
tical: They tried to derive conservation laws in a general version of DHS model with
utility objective function and with a general discount factor and exogenous growth of
technology. They require that the results obtained should be valid without imposing any
constraints on the utility function and the production function. Under these assump-
tions they were able to derive some conservation laws, but only under rather restricting
assumptions on the discount factor and exogenous growth.

One of the reasons why these assumptions are needed is that they use a theory
based on invariant problems. However, Torres (2004a) showed that it is possible to
find conservation laws even in case when the problem is not fully invariant, but only
quasi-invariant.

Hence, the motivation of this chapter is to explore the usage of ideas presented by
Torres in models (2.8) and (2.11). In particular, we use the general theoretical results
on conservation laws in the context of an invariant optimal control problem presented
by Torres (2002) and their further extensions (separately) for quasi-invariant optimal
control problems (Torres (2004a)) and for problems involving mixed constraints on both
state and control variables (Torres (2004b)).

We combine and extend the above-mentioned results formulated by Torres in order
to be applicable to our problem. Then, we extend the results introduced by Martinet and
Rotillon (2007) in several ways:

• We use a concept of “quasi-invariant optimal control problems” introduced by Tor-
res (2004a). Using this concept, we are able to find other invariant quantities not
found previously by Martinet and Rotillon (2007).

• We include population growth (see Asheim et al. (2007) and Mitra (2008)) and
exhaustible resources with an amenity value (d’Autume and Schubert (2008)).

• We consider not only models with the discounted utility criterion, but also models
with the maximin objective function. In addition, we show that both types of
objective criterions lead to the same conservation law.

• Instead of trying to find results which remain valid for rather general utility and
production function, we assume that the production function is homogeneous of
degree one. This is a reasonable assumption which allows us to extend the set of
possible conservation laws.
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Similarly to Martinet and Rotillon (2007), we only consider paths where all control and
state variables are positive, hence no non-negativity constraint is binding.

6.2 Theory

Following ideas presented by Torres (2002), Torres (2004a) and Torres (2004b), we first
provide precise definitions of invariant and quasi-invariant optimal control problems.

Consider a standard optimal control problem in the following form:

max
{u(t)}

∫ t1

t0

f 0(t, x(t),u(t))dt, t0, t1 fixed,

ẋ(t) = f (t, x(t),u(t)),

g(x(t),u(t))≥ 0,

(6.1)

with any type of initial and terminal conditions, where f , f 0 and g are C1-functions in
each variable.

The definition of an invariant problem is as follows:

Definition 6.1. Let there exist an ε > 0 and a C 2-smooth one-parameter family of trans-

formations (t, x ,u)→ ( t̃, x̃, ũ) depending on a parameter ξ ∈ (−ε,ε) where

t̃(t, x ,u,ξ) : 〈t0, t1〉 ×Rn×Rr × (−ε,ε)→ R,

x̃(t, x ,u,ξ) : 〈t0, t1〉 ×Rn×Rr × (−ε,ε)→ Rn, (6.2)

ũ(t, x ,u,ξ) : 〈t0, t1〉 ×Rn×Rr × (−ε,ε)→ Rr

and

t̃(t, x ,u, 0) = t,

x̃(t, x ,u, 0) = x , (6.3)

ũ(t, x ,u, 0) = u

for all (t, x ,u) ∈ 〈t0, t1〉 ×Rn×Rr . In addition, let the following conditions be satisfied:

(i) f 0(t, x ,u) = f 0( t̃(t, x ,u,ξ), x̃(t, x ,u,ξ), ũ(t, x ,u,ξ))
dt̃

dt
(t, x ,u,ξ) + o(ξ),

(ii)
dx̃

dt
(t, x ,u,ξ) = f ( t̃(t, x ,u,ξ), x̃(t, x ,u,ξ), ũ(t, x ,u,ξ))

dt̃

dt
(t, x ,u,ξ) + o(ξ),
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(iii) g(x ,u) = g( x̃(t, x ,u,ξ), ũ(t, x ,u,ξ))
dt̃

dt
(t, x ,u,ξ) + o(ξ),

for all (t, x ,u,ξ) ∈ 〈t0, t1〉×Rn×Rr× (−ε,ε), where o(ξ) is a differentiable function such

that

lim
ξ→0

o(ξ)

ξ
= 0. (6.4)

Problem (6.1) is then said to be invariant up to first-order terms in parameter ξ under the

transformation (6.2).

The concept of invariance is rather strict, because it requires invariance in the ob-
jective function, in the state differential equation and in constraints as well. For our
purposes, it will suffice to use a concept of quasi-invariance which releases the require-
ment of the invariance in the objective function or in constraints.

Definition 6.2. Let there exist an ε > 0 and a C 2-smooth one-parameter family of trans-

formations (t, x ,u)→ ( t̃, x̃, ũ) depending on a parameter ξ ∈ (−ε,ε) which satisfies De-

finition 6.1 with conditions (i) and (iii) modified as follows (arguments for t̃, x̃ , ũ are

dropped):

(i’) there exist a C1-function Γ(t, x ,u,ξ) : 〈t0, t1〉 ×Rn×Rr × (−ε,ε)→ R such that

f 0(t, x ,u) + Γ(t, x ,u,ξ) = f 0( t̃, x̃, ũ)
dt̃

dt
+ o(ξ) (6.5)

for all (t, x ,u,ξ) ∈ 〈t0, t1〉 ×Rn×Rr × (−ε,ε) and

(iii’) there exist a C1-function ∆(t, x ,u,ξ) : 〈t0, t1〉 ×Rn×Rr × (−ε,ε)→ R such that

g(x ,u) +∆(t, x ,u,ξ) = g( x̃ , ũ)
dt̃

dt
+ o(ξ) (6.6)

for all (t, x ,u,ξ) ∈ 〈t0, t1〉 ×Rn×Rr × (−ε,ε).

Problem (6.1) is then said to be quasi-invariant up to a residual term Γ in objective function,

a residual term ∆ in mixed constraints and first-order terms in parameter ξ under the

transformation (6.2).

Generally speaking, Noether’s theorem states that if Problem (6.1) is invariant, then
there exists a quantity which stays constant along the paths of solutions to the necessary
conditions of optimality. Torres (2002) found this quantity in case of invariant problem
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without constraints. This result was further extended to quasi-invariant problems with-
out constraints by Torres (2004a) [Theorem 5.1, p. 105] and to constrained invariant
problems by Torres (2004b) [Theorem 3.1, p. 3]. In the next theorem, we combine these
results to obtain a new Noether-type theorem for constrained quasi-invariant problems.
Moreover, we will see in Remark 6.2 that this result can be extended to more general
optimal control problems.

Theorem 6.1. If Problem (6.1) is quasi-invariant up to a residual term Γ in objective

function, a residual term∆ in constraints and first-order terms in parameter ξ with respect

to the transformation (t, x ,u)→ ( t̃, x̃, ũ), then for any admissible solution (x(t),u(t)) to

Problem (6.1) satisfying the Pontryagin necessary conditions together with (ψ0,ψ,µ), the

following equality is satisfied:

d

dt

�

L(t, x ,u,ψ0,ψ,µ)

�

∂ t̃

∂ ξ
(t, x ,u,ξ)

�

ξ=0

−ψT

�

∂ x̃

∂ ξ
(t, x ,u,ξ)

�

ξ=0

�

−

−ψ0

�

∂ Γ

∂ ξ
(t, x ,u,ξ)

�

ξ=0

−µT

�

∂∆

∂ ξ
(t, x ,u,ξ)

�

ξ=0

= 0 (6.7)

for all t ∈ 〈t0, t1〉 possibly except the discontinuity points of u(t), where L is the Lagrangian

defined in accordance with (7.9) as follows:

L(t, x ,u,ψ0,ψ,µ) =ψ0 f 0(t, x ,u) +ψT f (t, x ,u) +µT g(x ,u). (6.8)

Proof. Denote

f̃ 0(t, x ,u,ξ) := f 0( t̃(t, x ,u,ξ), x̃(t, x ,u,ξ), ũ(t, x ,u,ξ)). (6.9)

In this notation, condition (6.3) implies

f̃ 0(t, x ,u, 0) = f 0( t̃(t, x ,u, 0), x̃(t, x ,u, 0), ũ(t, x ,u, 0)) = f 0(t, x ,u) (6.10)

and Equality (6.5) has the following form:

f 0(t, x ,u) = f̃ 0(t, x ,u,ξ)
d t̃

dt
(t, x ,u,ξ)− Γ(t, x ,u,ξ) + o(ξ). (6.11)

In addition, (6.4) implies
�

do

dξ
(ξ)

�

ξ=0

= 0 (6.12)

and we also have
�

d t̃

dt
(t, x ,u,ξ)

�

ξ=0

=
d t̃

dt
(t, x ,u, 0) =

dt

dt
= 1 (6.13)
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since ξ does not depend on t.

Now, we differentiate Equality (6.11) totally w.r.t. ξ and take ξ = 0 (for simplicity,
we drop the arguments (t, x ,u) or (t, x ,u,ξ) in the last two rows):

0=

�

d f 0

dξ
(t, x ,u)

�

ξ=0

=

�

d f̃ 0

dξ
(t, x ,u,ξ)

dt̃

dt
(t, x ,u,ξ) + f̃ 0(t, x ,u,ξ)

d

dξ

d t̃

dt
(t, x ,u,ξ)−

∂ Γ

∂ ξ
(t, x ,u,ξ)

�

ξ=0

=

�

d f̃ 0

dξ
(t, x ,u,ξ)

�

ξ=0

+ f 0(t, x ,u)

�

d

dξ

d t̃

dt
(t, x ,u,ξ)

�

ξ=0

−
�

∂ Γ

∂ ξ
(t, x ,u,ξ)

�

ξ=0

=

�

∂ f̃ 0

∂ t

∂ t̃

∂ ξ
+
∂ f̃ 0

∂ x

∂ x̃

∂ ξ
+
∂ f̃ 0

∂ u

∂ ũ

∂ ξ

�

ξ=0

+ f 0

�

d

dt

∂ t̃

∂ ξ

�

ξ=0

−
�

∂ Γ

∂ ξ

�

ξ=0

=
∂ f 0

∂ t

�

∂ t̃

∂ ξ

�

ξ=0

+
∂ f 0

∂ x

�

∂ x̃

∂ ξ

�

ξ=0

+
∂ f 0

∂ u

�

∂ ũ

∂ ξ

�

ξ=0

+ f 0

�

d

dt

∂ t̃

∂ ξ

�

ξ=0

−
�

∂ Γ

∂ ξ

�

ξ=0

.

(6.14)

We have used (6.11) and (6.12) in the second equality and (6.10), (6.13) in the third
one.

Analogously, we denote

f̃ (t, x ,u,ξ) := f ( t̃(t, x ,u,ξ), x̃(t, x ,u,ξ), ũ(t, x ,u,ξ)). (6.15)

Condition (ii) in Definition 6.1 can then be rewritten to

d x̃

dt
(t, x ,u,ξ) = f̃ (t, x ,u,ξ)

d t̃

dt
(t, x ,u,ξ)+ o(ξ). (6.16)

If we differentiate this equality totally with respect to ξ and take ξ= 0, we obtain

�

d

dt

∂ x̃

∂ ξ

�

ξ=0

=

�

d f̃

dξ
(t, x ,u,ξ)

d t̃

dt
(t, x ,u,ξ) + f̃ (t, x ,u,ξ)

d

dξ

d t̃

dt
(t, x ,u,ξ)

�

ξ=0

=

�

∂ f̃

∂ t

∂ t̃

∂ ξ
+
∂ f̃

∂ x

∂ x̃

∂ ξ
+
∂ f̃

∂ u

∂ ũ

∂ ξ

�

ξ=0

�

d t̃

dt

�

ξ=0

+
�

f̃
�

ξ=0

�

d

dt

∂ t̃

∂ ξ

�

ξ=0

=
∂ f

∂ t

�

∂ t̃

∂ ξ

�

ξ=0

+
∂ f

∂ x

�

∂ x̃

∂ ξ

�

ξ=0

+
∂ f

∂ u

�

∂ ũ

∂ ξ

�

ξ=0

+ f

�

d

dt

∂ t̃

∂ ξ

�

ξ=0

.

(6.17)
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Again, we have used (6.13), (6.12) and
�

f̃ (t, x ,u,ξ)
�

ξ=0
= f (t, x ,u). (6.18)

Finally, we use the notation

g̃(t, x ,u,ξ) := g( x̃(t, x ,u,ξ), ũ(t, x ,u,ξ)) (6.19)

to rewrite Equality (6.6) into the following form:

g(x ,u) = g̃(t, x ,u,ξ)
d t̃

dt
(t, x ,u,ξ)−∆(t, x ,u,ξ) + o(ξ). (6.20)

By differentiating this equality totally with respect to ξ and taking ξ = 0 we obtain

0 =

�

dg

dξ
(x ,u)

�

ξ=0

=

�

d g̃

dξ
(t, x ,u,ξ)

d t̃

dt
(t, x ,u,ξ) + g̃(t, x ,u,ξ)

d

dξ

d t̃

dt
(t, x ,u,ξ)−

∂∆

∂ ξ
(t, x ,u,ξ)

�

ξ=0

=
∂ g

∂ x

�

∂ x̃

∂ ξ

�

ξ=0

+
∂ g

∂ u

�

∂ ũ

∂ ξ

�

ξ=0

+ g

�

d

dt

∂ t̃

∂ ξ

�

ξ=0

−
�

∂∆

∂ ξ

�

ξ=0

. (6.21)

When we add Equality (6.14) multiplied by ψ0, Equality (6.17) multiplied by ψT

and Equality (6.21) multiplied by µT , we obtain after some rearranging of terms that
�

ψ0∂ f 0

∂ t
+ψT

∂ f

∂ t

��

∂ t̃

∂ ξ

�

ξ=0

+

�

ψ0 ∂ f 0

∂ x
+ψT

∂ f

∂ x
+µT

∂ g

∂ x

�
�

∂ x̃

∂ ξ

�

ξ=0

+ (6.22a)

+

�

ψ0 ∂ f 0

∂ u
+ψT

∂ f

∂ u
+µT

∂ g

∂ u

�
�

∂ ũ

∂ ξ

�

ξ=0

+ (6.22b)

+
�

ψ0 f 0+ψT f +µT g
�

�

d

dt

∂ t̃

∂ ξ

�

ξ=0

− (6.22c)

−ψT

�

d

dt

∂ x̃

∂ ξ

�

ξ=0

−ψ0

�

∂ Γ

∂ ξ

�

ξ=0

−µT

�

∂∆

∂ ξ

�

ξ=0

= 0. (6.22d)

We have assumed that (x(t),u(t)) is an admissible solution to Problem (6.1) satis-
fying the necessary conditions of optimality. Hence, we obtain from Theorems 7.2 and
7.31 that at continuity points of u, the following simplifications can be done:

1Note that we use here the necessary conditions by Feichtinger and Hartl (1986) whereas we have
used the necessary conditions by Seierstad and Sydsæter (1987) in other part of the thesis. However, the
costate variables are the same as for both sets of necessary conditions in this case since we do not have
binding pure state constraints.
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• the first term in (6.22a) equals to
dL

dt

�

∂ t̃

∂ ξ

�

ξ=0

(implied by Theorem 7.3),

• the second term in (6.22a) equals to −ψ̇T

�

∂ x̃

∂ ξ

�

ξ=0

(implied by condition (vi) in

Theorem 7.2),

• the term in (6.22b) vanishes (due to condition (iv) in Theorem 7.2) and

• the term in (6.22c) equals to L

�

d

dt

d t̃

dξ

�

ξ=0

, where L is the Lagrangian defined by

(6.8).

Therefore, we can write

dL

dt

�

∂ t̃

∂ ξ

�

ξ=0

− ψ̇T

�

∂ x̃

∂ ξ

�

ξ=0

+ L

�

d

dt

∂ t̃

∂ ξ

�

ξ=0

−

−ψT

�

d

dt

∂ x̃

∂ ξ

�

ξ=0

−ψ0

�

∂ Γ

∂ ξ

�

ξ=0

−µT

�

∂∆

∂ ξ

�

ξ=0

=

=
d

dt

�

L

�

∂ t̃

∂ ξ

�

ξ=0

−ψT

�

∂ x̃

∂ ξ

�

ξ=0

�

−ψ0

�

∂ Γ

∂ ξ

�

ξ=0

−µT

�

∂∆

∂ ξ

�

ξ=0

= 0. (6.23)

Remark 6.1. Note that (6.7) is actually not a conservation law, because we have not
found a quantity which stays constant along the trajectories. We have just employed the
same technique which are used by Torres (2004a) and Torres (2004b) to find conserva-
tion laws in simpler problems. However, if Γ ≡ 0 and ∆ ≡ 0, then Theorem 6.1 implies
the following conservation law:

L(t, x ,u,ψ0,ψ,µ)

�

∂ t̃

∂ ξ
(t, x ,u,ξ)

�

ξ=0

−ψ(t)T
�

∂ x̃

∂ ξ
(t, x ,u,ξ)

�

ξ=0

= const. (6.24)

on 〈t0, t1〉.
Remark 6.2. It is easy to show that the proof of Theorem 6.1 remains valid without
any change even if we extend Problem (6.1) to an infinite time horizon problem or to
a problem with free boundary conditions or with a scrap value function, because we
have used neither the transversality conditions for costate variables nor the boundary
conditions for the state variables in the proof.
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6.3 Conservation laws in model with a discounted utility

objective

Now we apply the theory introduced above to a model of an economy with renewable
and exhaustible resources, with a population growth and a linear amortization function
in the following form (argument t is dropped):

max
{c, r}

∫ ∞

0

πU
�

c, s
�

dt,

k̇ = d f (k, r, n)− δk− c, k(0) = k0,

ṡ =−r, s(0) = s0,

ṅ = ϑn, n(0) = n0, (6.25)

k ≥ 0, s ≥ 0,

r ≥ 0, c ≥ 0,

where k0 > 0, s0 > 0, n0 > 0 and δ > 0 are given vectors or constants and d(t) and
ϑ(t) are given positive continuous functions. We assume that the production function
f (k, r, n) is homogeneous of degree one.

To find quasi-invariant transformations, notice that the dynamics of the model is
scale invariant (i.e. the state equations for k̇, ṡ and ṅ remain true if we multiply all state
and control variables by a positive constant). This leads to the following transformation:

k̃ = (1+ ξ) k,

s̃ = (1+ ξ) s,

ñ = (1+ ξ)n, (6.26)

c̃ = (1+ ξ) c,

r̃ = (1+ ξ) r,

t̃ = t.

For ξ = 0 we have an identity. It is straightforward to verify that conditions (ii) and (iii)
in Definition 6.1 are satisfied. For example,

˙̃
k = (1+ ξ)k̇

= (1+ ξ)(d(t) f (k, r, n)−δk− c)

= d(t) f ((1+ ξ)k, (1+ ξ)r, (1+ ξ)n)−δ(1+ ξ)k− (1+ ξ)c

=
�

d( t̃) f (k̃, r̃, ñ)− δk̃− c̃
� d t̃

dt
.
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Regarding condition (i’), we can use the MacLaurin polynomial of U to obtain

π( t̃)U(c̃, s̃) = π(t)U(c+ ξc, s+ ξs)

= π(t)
�

U(c, s) +
∂ U

∂ c
(c, s)ξc +

∂ U

∂ s
(c, s)ξs+ o(ξ)

�

= π(t)U(c, s) + Γ(t, c, s,ξ) + o(ξ),

where

Γ(t, c, s,ξ) = ξπ(t)
�∂ U

∂ c
(c, s) c +

∂ U

∂ s
(c, s) s

�

.

Now, if (k, s, n, c, r) is an interior admissible solution satisfying the necessary conditions
of optimality together with (ψ0,ψk,ψs,ψn), then Theorem 6.1 implies

d

dt

�

ψT
k
k+ψT

s
s+ψT

n
n
�

+ψ0π
�∂ U

∂ c
(c, s) c +

∂ U

∂ s
(c, s) s

�

≡ 0. (6.27)

Note that this equality together with the assumption that the utility function U is in-
creasing in both variables and the discount factor π is positive everywhere (see (A4))
implies that ψk(t)

T k(t) +ψs(t)
T s(t) +ψn(t)

T n(t), which is the total present value of
all reproducible, exhaustible and human capital goods at shadow prices, is decreasing in
time.

Integrating (6.27) yields2

ψk(t)
T k(t) +ψs(t)

T s(t) +ψn(t)
T n(t)

= const.+ψ0

∫ ∞

t

π(τ)
�∂ U

∂ c
(c(τ), s(τ)) c(τ) +

∂ U

∂ s
(c(τ), s(τ)) s(τ)

�

dτ. (6.28)

We show that for particular type of the utility function, it is possible to obtain rather
insightful interpretation of (6.27) and (6.28). We choose the utility function given by
(2.6) and (2.7), where

U(c, s) =
C̄(c, s)1−θ

1− θ , (6.29)

where C̄(c, s) is a homogeneous function of degree 1, i.e. C̄(ζc,ζs) = ζC̄(c, s) for all
ζ ≥ 0. Differentiating this equality w.r.t. ζ and taking ζ= 1 yields

C̄(c, s) =
∂ C̄

∂ c
(c, s) c +

∂ C̄

∂ s
(c, s) s (6.30)

2The term in the left-hand side of (6.28) is continuous since we do not consider binding pure state
constraints.
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for all (c, s) ∈ Rn
++
×Rm

++
.3 Furthermore, assume ψ0 = 1. We have

ψT
k
k+ψT

s
s+ψT

n
n

(6.28)
= const.+

∫ ∞

t

π(τ)C̄(c, s)−θ
�

∂ C̄

∂ c
(c, s) c +

∂ C̄

∂ s
(c, s) s

�

dτ

(6.30)
= const.+

∫ ∞

t

πC̄(c, s)−θ C̄(c, s)dτ

(6.29)
= const.+ (1− θ)

∫ ∞

t

πU(c, s)dτ. (6.31)

This equality states that the difference between the total present value at time t of all
capital goods at shadow prices and the total discounted value of utility over the remai-
ning time horizon multiplied by 1− θ is constant. Moreover, if the utility is constant,
Equality (6.31) can be rewritten to

d

dt
(ψT

k
k+ψT

s
s+ψT

n
n) =−(1− θ)πU(c, s). (6.32)

This equality establishes a relationship between the change of total value of capital goods
and the discounted instantaneous utility.

6.4 Conservation laws in model with a maximin objec-

tive

It is possible to show that (6.28) remains a conservation law even if we replace the utility
objective function in Problem (6.25) by a maximin objective. Recall that we still assume
that the production function f (k, r, n) is homogeneous of degree 1. Let Problem (6.25)
be modified to the following problem (again, argument t is dropped):

max
{c,r}

w(0), where t ∈ 〈0,∞),

k̇ = d f (k, r, n)−δk− c, k(0) = k0 > 0 given,

ṡ = −r, s(0) = s0 > 0 given,

ṅ = ϑn, n(0) = n0 > 0 given,

ẇ = 0, w(0) free,

k ≥ 0, s ≥ 0,

r ≥ 0, c ≥ 0,

U(c, s) ≥ w.

(6.33)

3This result is known as Euler’s theorem for homogeneous functions.
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This is an infinite horizon problem with free initial condition on w and a scrap value
function. We will only consider solutions for which the non-negativity constaints are not
binding, i.e. k > 0, s > 0, r > 0, c > 0 (interior solutions). In this case, it is easy to show
that transformation (6.26) together with w̃ = w is a quasi-invariant transformation,
which satisfies conditions (i), (ii) and (iii’) in Definitions 6.1 and 6.2 with f 0 = 0 and
g(k, s, w, c, r) = U(c, s)−w. Indeed, condition (iii’) has the form

U(c̃, s̃)− w̃ = U(c+ ξc, s+ ξs)−w

= U(c, s) +
∂ U

∂ c
(c, s)ξc +

∂ U

∂ s
(c, s)ξs+ o(ξ)−w (6.34)

= U(c, s)−w +∆(c, s,ξ) + o(ξ),

where

∆(c, s,ξ) = ξ
�∂ U

∂ c
(c, s) c +

∂ U

∂ s
(c, s) s

�

(6.35)

is a residual term in constraint. Hence, Theorem 6.1 (used with Γ≡ 0) can be applied to
this problem for any admissible interior solution (k, s, n, w, c, r) satisfying the necessary
conditions, according to Remark 6.1. Hence we obtain

d

dt

�

ψT
k
k+ψT

s
s+ψT

n
n
�

+µw

�∂ U

∂ c
(c, s) c +

∂ U

∂ s
(c, s) s

�

≡ 0, (6.36)

where µw is the Lagrange multiplier associated with the constraint U(c) ≥ w. Note that
ψww is not included in the first term in parentheses since the transformation w̃ = w

yields
∂ w̃

∂ ξ
= 0 for all ξ. Integrating (6.36) yields

ψk(t)
T k(t) +ψs(t)

T s(t) +ψn(t)
T n(t) = (6.37)

= const.+

∫ ∞

t

µw(τ)
�∂ U

∂ c
(c(τ), s(τ)) c(τ) +

∂ U

∂ s
(c(τ), s(τ)) s(τ)

�

dτ. (6.38)

We know that if c is constant and regular (i.e. µw > 0 for all t ≥ 0), then a solution to
Pontryagin necessary conditions for (6.33) with ψ0 = 1 satisfies Pontryaging necessary
conditions for (6.25) with π(t) = µw(t) (see Theorem 4.5). Hence, (6.38) becomes
(6.28).

6.5 An example with several conservation laws

Now we will show that if we assume specific forms of the discount factor, the utility
function and the production function in Problem (6.25) taken with one-dimensional
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control and state variables, we may obtain even several conservation laws. In particular,
assume that the discount factor is exponentially decreasing, the utility function is a utility
function with constant relative risk aversion and the production function has the Cobb-
Douglas form with constant returns to scale, i.e.

π(t) = e−γt , U(c) =
c1−θ

1− θ and f (k, r, n) = kαrβn1−α−β , (6.39)

where α ∈ (0,1), β ∈ (0,1) and γ > 0 are given constants and α+β ≤ 1. In addition, we
again assume that (k, s, n, c, r) is an interior solution to this problem satisfying necessary
conditions of optimality.

Consider the following set of transformations:4

k̃ = k e

�

β

1−αA1+
1−α−β

1−α A2

�

ξ,

s̃ = s eA1ξ+ A3ξ,

ñ = n eA2ξ,

c̃ = c e

�

β

1−αA1+
1−α−β

1−α A2

�

ξ,

r̃ = r eA1ξ,

t̃ = t +
1− θ
γ

�

β

1−αA1 +
1−α− β

1−α A2

�

ξ,

where A1, A2 and A3 are arbitrary constants. Note that we obtain an identity if ξ = 0. It
is easy to show that condition (i) in Definition 6.1 is satisfied:

e−γ t̃ U(c̃) =
1

1− θ e
−γt−(1−θ )

�

β

1−αA1+
1−α−β

1−α A2

�

ξ
�

c e

�

β

1−αA1+
1−α−β

1−α A2

�

ξ
�1−θ

= e−γt
c1−θ

1− θ
= e−γt U(c).

It is also straightforward to prove that condition (ii) is met for k̃:

k̃α r̃β ñ1−α−β −δk̃− c̃ = e
α
�

β

1−αA1+
1−α−β

1−α A2

�

ξ
kα eβA1ξ rβ e(1−α−β)A2ξ n1−α−β −

−δe

�

β

1−αA1+
1−α−β

1−α A2

�

ξ
k− e

�

β

1−αA1+
1−α−β

1−α A2

�

ξ
c

= e

�

β

1−αA1+
1−α−β

1−α A2

�

ξ
h

kαrβn1−α−β −δk− c
i

= e

�

β

1−αA1+
1−α−β

1−α A2

�

ξ
k̇

= ˙̃k
4These transformations were found using a Maple program by Gouveia and Torres (2005).
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and also for s̃ and ñ:

˙̃s = eA1ξ ṡ = −eA1ξ r =−r̃,
˙̃n = eA2ξ ṅ = eA2ξ ϑn = ϑñ.

Theorem 6.1 (used with Γ = 0 and ∆= 0) then implies

d

dt

��

β

1−αA1+
1−α− β

1−α A2

�

ψkk+ A1ψss+ A3ψs + A2ψnn−

−H(t, k, s, n, c, r,ψ0,ψk,ψs,ψn)
1− θ
γ

�

β

1−αA1 +
1−α− β

1−α A2

��

≡ 0,

where H is the Hamiltonian for the given problem, which is equal to the Lagrangian,
since we only consider interior solutions.

Hence, for interior solutions satisfying the necessary conditions of optimality such
that both control variables are continuous everywhere and for (A1,A2,A3) equal to (1,0,0),
(0,1,0) and (0,0,1), respectively, we obtain three independent conservation laws:

β

1−α ψkk+ψss− H(t, k, s, n, c, r,ψ0,ψk,ψs,ψn)
1− θ
γ

β

1−α ≡ const.,

1−α− β
1−α ψkk+ψnn−H(t, k, s, n, c, r,ψ0,ψk,ψs,ψn)

1− θ
γ

1−α− β
1−α ≡ const.,

ψs ≡ const.
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Chapter 7

Optimal control theory for

standard problems with mixed

and pure state constraints

We will now introduce the optimal control theory which provides the main back-
ground for the qualitative analysis of models of sustainable economic growth. We will
also deal with the presence of non-negativity constraints on variables included in the
models. As it has been already mentioned earlier, non-negativity restrictions on state
variables such as the level of capital cause some difficulties in the formulation of neces-
sary conditions of optimality. Generally, constraints involving state variables only (called
pure state constraints) are more difficult to handle comparing to constraints involving
both state and control variables (called mixed constraints).

Therefore, in this chapter we will present a detailed study of necessary conditions of
optimality for a standard optimal control problem with mixed and pure state constraints
on finite time horizon. In addition, we will extend this problem in several directions to
create a framework needed to the rigorous analysis of the economic models.

The main objective of this chapter is to formulate the standard problem together with
some basic definitions and assumptions and to introduce the necessary conditions of op-
timality. However, the formulation of these conditions is not unified in the literature. If
we want to use results from several sources, we have to find the relationship between
different formulations. In this thesis, we shall mainly utilize two distinct approaches:
The first one was introduced by Seierstad and Sydsæter (1987) and the second one by
Feichtinger and Hartl (1986). We demonstrate the main differencies between these two
approaches on simple examples. Furthermore, we propose transformation rules for the
multipliers involved in both approaches. Based on these transformations, we provide a
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detailed analysis of the relationship between both formulations of the necessary condi-
tions. The main results are summarized in Theorems 7.4 and 7.5. This analysis, together
with proof of several auxiliary results, is one of the original results of this thesis.

7.1 Formulation of the standard problem and basic def-

initions

Let us begin with the formulation of the standard optimal control problem on finite time
horizon. One of the important characteristics of this problem is the presence of mixed
and pure state constraints.

Let x(t) = (x1(t), . . . , xn(t))
T be an n-dimensional vector of state variables and

u(t) = (u1(t), . . . ,ur(t))
T an r-dimensional vector of control variables. The time horizon

of the problem is 〈t0, t1〉, where both t0 and t1 are given. In the standard problem, the
initial values of x(t) at t0 are given. The terminal values at t1 may be free or may by
constrained by some equalities or non-strict inequalities. The dynamics of the system of
state variables is described by a vector function f : 〈t0, t1〉×Rn×Rr → Rn. The evolution
of the system can be influenced by suitable choices of the control variables according to
the objective function (criterion functional). This objective function depends on a real
function f 0 : 〈t0, t1〉 × Rn × Rr → R. Finally, the feasible region of control and state
variables is restricted by inequalities on these variables using functions g : Rn×Rr → Rp

and h : Rn→ Rq. We assume that f , f 0 and g are C1-functions in each variable and h is
a C2-function.

The standard problem with mixed and pure state constraints can then be stated as
follows:

max
{u(t)}

∫ t1

t0

f 0(t, x(t),u(t))dt, t0, t1 fixed,

subject to ẋ(t) = f (t, x(t),u(t)), x(t0) = x0 (x0 fixed in Rn),

(7.1a)

the terminal conditions

x i(t1) = x1
i
, i = 1, . . . , l x1

i
all fixed,

x i(t1)≥ x1
i
, i = l + 1, . . . , m x1

i
all fixed,

x i(t1) free, i = m+ 1, . . . , n

(7.1b)

and the constraints
g(x(t),u(t))≥ 0, (7.1c)

h(x(t))≥ 0. (7.1d)
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Definition 7.1. Any solution (x(t),u(t)), t ∈ 〈t0, t1〉 to Problem (7.1a) – (7.1d) is called

an admissible solution if it satisfies following conditions:

(i) u(t) is piecewise continuous on 〈t0, t1〉, i.e. it has a finite number of discontinuity

points and at each such a point it has finite one-sided limits,

(ii) x(t) is a solution to the differential equation and initial condition in (7.1a) for the

given u(t) such that it is continuous and piecewise differentiable on 〈t0, t1〉 and to-

gether with u(t) satisfies (7.1b) – (7.1d).

Note that the value of the objective function does not depend on values of u(t) at
discontinuity points. Let us decide that the value of u(t) at a point of discontinuity
equals to the left-hand limit at this point.1 Moreover, the value of u at t0 is equal to the
right-hand limit.

Problem (7.1a) – (7.1d) is a non-autonomous control problem with mixed as well as
pure state constraints and with a fixed time horizon. The constraints are autonomous.
We want to formulate the necessary conditions of optimality using the so-called indirect
adjoining approach. This approach is based on the fact that for each fixed admissible
solution (x(t),u(t)), the function t → hi(x(t)), i = 1, . . . ,q has a global minimum at
any t ∈ (t0, t1) at which the i-th pure state constraint is binding, i.e. hi(x(t)) = 0.
Hence,

dhi

dt
(x(t)) = 0 whenever hi(x(t)) = 0, (7.2)

provided that this total derivative exists, i.e. at continuity points of u. We have

dhi

dt
(x(t)) =

dhi

dx
(x(t)) f (t, x(t),u(t)). (7.3)

Recall that both functions hi and f are continuous at all variables and x is also assumed
to be continuous. Therefore the derivative in (7.2) exists at least at all continuity points
of u. Moreover, if we define

ki(t, x(t),u(t)) :=
dhi

dx
(x(t)) f (t, x(t),u(t)) (7.4)

for all t ∈ 〈t0, t1〉, from (7.2) – (7.4) it follows

ki(t, x(t),u(t)) = 0 whenever hi(x(t) = 0 (7.5)

1The definition of values of u(t) at discontinuity points is not unified across the literature. For example,
Seierstad and Sydsæter (1987) [p. 73] and Feichtinger and Hartl (1986) [Note 2.1(c), p. 19] set the value
as the left-hand limit. On the other hand, Brunovský (1980) [p. 66] uses the right-hand side limit.
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at continuity points of u(t).

We assume that the constraint h(x(t))≥ 0 is a constraint of the first order, i.e. each
of the functions ki(t, x(t),u(t)), j = i, . . . ,q depends on u(t). In order to assure that both
the constraints (7.1c) and (7.5) are trully mixed for an admissible solution to Problem
(7.1a) – (7.1d), we introduce the following constraint qualification:

Definition 7.2. An admissible solution (x ∗(t),u∗(t)) to Problem (7.1a) – (7.1d) satisfies

the strong constraint qualification, if the (p+ q)× (r + p+ q) matrix























∂ g1

∂ u
g1 · · · 0 0 · · · 0

...
...

.. .
...

...
. ..

...
∂ gp

∂ u
0 · · · gp 0 · · · 0

∂ k1

∂ u
0 · · · 0 k1 · · · 0

...
...

.. .
...

...
. ..

...
∂ kq

∂ u
0 · · · 0 0 · · · kq























(7.6)

has a full rank when it is evaluated at (x ∗(t),u∗(t−)) for any t ∈ (t0, t1〉 and at (x∗(t),u∗(t+))

for any t ∈ 〈t0, t1).

The strong constraint qualification means that the gradients w.r.t. u of all the active
constraints gi, i = 1, . . . , p and k j, j = 1, . . . ,q are linearly independent. This constraint
qualification is called “strong” because for the necessary conditions that will be formu-
lated later in Theorems 7.1 and 7.2, it is sufficient to assume that the following weaker
form of the constraint qualification is met: 2

Definition 7.3. An admissible solution (x ∗(t),u∗(t)) to Problem (7.1a) – (7.1d) satisfies

the weak constraint qualification, if the p× (r + p) matrix









∂ g1

∂ u
g1 · · · 0

...
...

. ..
...

∂ gp

∂ u
0 · · · gp









(7.7)

has a full rank when it is evaluated at (x ∗(t),u∗(t−)) for any t ∈ (t0, t1〉 and at (x∗(t),u∗(t+))

for any t ∈ 〈t0, t1).

In addition, we introduce the following definition:

2According to Hartl et al. (1995), it is common in the literature on indirect adjoint approach that the
stronger form of constraint qualification is required (see Hartl et al. (1995) [footnote 8 at page 197]).
However, this is not the case neither in the formulation of necessary conditions by Seierstad and Sydsæter
(1987), nor by Feichtinger and Hartl (1986) which are given below.
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Definition 7.4. 3 A τ ∈ 〈t0, t1〉 is called

(i) an entry time if there exists j ∈ {1, . . . ,q} and ε > 0 such that h j(x
∗(t))> 0 for all

t ∈ (τ− ε,τ) and h j(x
∗(t)) = 0 for all t ∈ 〈τ,τ+ ε),

(ii) a contact time if there exists j ∈ {1, . . . ,q} and ε > 0 such that h j(x
∗(t)) > 0 for all

t ∈ (τ− ε,τ)∪ (τ,τ+ ε) and h j(x
∗(τ)) = 0,

(iii) an exit time if there exists j ∈ {1, . . . ,q} and ε > 0 such that h j(x
∗(t)) = 0 for all

t ∈ (τ− ε,τ〉 and h j(x
∗(t))> 0 for all t ∈ (τ,τ+ ε).

If τ ∈ 〈t0, t1〉 is an entry, contact or exit time, it is called a junction time.

7.2 Necessary conditions of optimality for standard prob-

lems

Although there is a large amount of literature regarding problems with pure state con-
straints, the inconvenience is that the variety of formulations of the necessary conditions
of optimality is rather diverse.4 Hence, caution should by taken when combining results
from different papers. As we want to build a comprehensive basis of results which can
be used in economic applications, we introduce the necessary conditions of optimality
from two different sources: The necessary conditions given by Seierstad and Sydsæter
(1987) and by Feichtinger and Hartl (1986). Later, the relationship between these two
sets of necessary conditions will be shown.

7.2.1 Necessary conditions by Seierstad and Sydsæter

First, we formulate the set of necessary conditions for Problem (7.1a) – (7.1d) as they are
given in Seierstad and Sydsæter (1987) [Theorem 6.5, p. 372]. Define the Hamiltonian

H(t, x ,u,ψ0,ψ) =ψ0 f 0(t, x ,u)+ψT f (t, x ,u), (7.8)

the Lagrangian

L(t, x ,u,ψ0,ψ,µ,ν) =ψ0 f 0(t, x ,u) +ψT f (t, x ,u) +µT g(x ,u) + ν T
dh

dx
(x) f (t, x ,u)

(7.9)
3See also Feichtinger and Hartl (1986) [p. 165].
4See Table 5.1 in Hartl et al. (1995).
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and the “simplified” Lagrangian

L̆(t, x ,u,ψ0,ψ,µ) =ψ0 f 0(t, x ,u) +ψT f (t, x ,u) +µT g(x ,u). (7.10)

For simplicity, we will mostly omit the argument ψ0 from the list of arguments of func-
tions H, L and L̆, since it is a constant equal to 0 or 1. Then the following theorem can
be formulated :

Theorem 7.1 (Necessary conditions by Seierstad and Sydsæter). Let (x ∗(t),u∗(t)) be an

optimal solution to Problem (7.1a) – (7.1d), which fulfills the weak constraint qualification.

Then there exist a constant ψ0, vector functions ψ(t) : R→ Rn and µ(t) : R→ Rp and a

non-increasing5 vector function ν(t) : R→ Rq, all having one-sided limits everywhere such

that the following conditions are satisfied:

(i) ψ0 = 0 or ψ0 = 1,

(ii) (ψ0,ψ(t),ν(t1)− ν(t0)) 6= (0,0,0) for all t,

(iii) for all t ∈ (t0, t1), u∗(t+) and u∗(t−) maximize both H(t, x ∗(t),u,ψ(t+)) and

H(t, x∗(t),u,ψ(t−)) for all u such that g(x ∗(t),u)≥ 0,6

(iv)
∂ L̆

∂ u

�

t, x∗(t),u∗(t+),ψ(t+),µ(t+)
�

= 0 for all t ∈ 〈t0, t1) and

∂ L̆

∂ u

�

t, x∗(t),u∗(t−),ψ(t−),µ(t−)
�

= 0 for all t ∈ (t0, t1〉,7

(v) ν j(t) is constant (not necessarily zero) on any interval where h j(x
∗(t)) > 0 for j =

1, . . . ,q; in addition, ν j(t) is continuous at all t ∈ (t0, t1) at which h j(x
∗(t)) = 0 and

dh j

dx
(x∗(t)) f (t, x∗(t),u∗(t)) is discontinuous,

(vi) defining

ψ̄(t)T :=ψ(t)T − ν(t)T
dh

dx
(x∗(t)), (7.11)

ψ̄(t) is continuous everywhere and has a continuous derivative satisfying

˙̄ψ(t)T =−
∂ L

∂ x

�

t, x∗(t),u∗(t), ψ̄(t),µ(t),ν(t)
�

(7.12)

5In the original result published by Seierstad and Sydsæter (1986), it is assumed that ν is non-
decreasing, but it has an opposite sign in (7.8) – (7.10).

6Seierstad and Sydsæter (1987) present only a weaker version of this claim: for almost all t ∈ (t0, t1),
H(t, x∗(t),u∗(t),ψ(t)) ≥ H(t, x∗(t),u,ψ(t)) for all u such that g(x∗(t),u) > 0. For the claim presented
here, see Seierstad and Sydsæter (1987) [Note 6.4(a), p. 374].

7See Seierstad and Sydsæter (1987) [Note 6.4(a), p. 373].
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at all points of continuity of u∗(t) and ν(t).

(vii) µ(t)≥ 0 and µ(t)T g(x∗(t),u∗(t)) = 0 for all t,

(viii) ν(t1) = 0,

(ix) ψ(t) satisfies

no condition for ψi(t1), i = 1, . . . , l,
ψi(t1)≥ 0, ψi(t1)

�

x∗
i
(t1)− x1

i

�

= 0, i = l + 1, . . . , m,
ψi(t1) = 0, i = m+ 1, . . . , n.

Remark 7.1. Note that the condition (viii) is not directly listed among conditions given
in Seierstad and Sydsæter (1987) [Theorem 6.5]. However, all other conditions in this
theorem are also satisfied if ν is replaced by ν+c, where c is an arbitrary constant vector.
Hence we can assume ν(t1) = 0 without loss of generality.8 Indeed, besides condition
(viii) the multiplier ν actually enters only into conditions (ii), (v) and (vi). If we replace
ν by νc := ν + c, conditions (ii) and (v) remain satisfied trivially. To show that also
condition (vi) is satisfied, some calculations are needed. Define

ψ̄T
c

:=ψT − ν T
c

dh

dx
(x∗) =ψT − (ν + c)T

dh

dx
(x∗)

(7.11)
= ψ̄T − cT

dh

dx
(x∗). (7.13)

We show that ψ̄c satisfies

˙̄ψc(t)
T =−

∂ L

∂ x

�

t, x∗(t),u∗(t), ψ̄c(t)c,µ(t),ν(t)c
�

(7.14)

at all points of continuity of u∗(t) and ν(t). We have

−
∂ L

∂ x

�

t, x∗,u∗, ψ̄c,µ,νc

�

=

(7.9), (7.13)
= −ψ0 ∂ f 0

∂ x
(t, x∗,u∗)−

�

ψ̄T − cT
dh

dx
(x∗)

�

∂ f

∂ x
(t, x∗,u∗)− µT

∂ g

∂ x
(x∗,u∗)−

−(ν + c)T
d2h

dx2 (x
∗) f (t, x∗,u∗)− (ν + c)T

dh

dx
(x∗)

∂ f

∂ x
(t, x∗,u∗)

(7.9)
= −

∂ L

∂ x

�

t, x∗,u∗, ψ̄,µ,ν
�

− cT
d2h

dx2
(x∗) f (t, x∗,u∗)

(7.12)
= ˙̄ψT −

d

dt

�

cT
dh

dx
(x∗)

�

(7.13)
= ˙̄ψT

c

which proves (7.14).
8See Seierstad and Sydsæter (1987) [Note 6.4(b), p. 374].
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Furthermore, note that the conditions in Theorem 7.1 do not determine the values
of ψ and ν at junction times. The only exception is condition (v) which states that ν j is

continuous at junction times if
dh j

dx
(x∗(t)) f (t, x∗(t),u∗(t)) is discontinuous, j = 1, . . . ,q.

Moreover, if the value of one of the functions ψ and ν at junction times is given, the
value of the other one is determined through the condition (vi), since we know that ψ̄ is
continuous everywhere. Thus, let us determine that the values of ν j and ψ j, j = 1, . . . ,q,

at those junction times t where
dh j

dx
(x∗(t)) f (t, x∗(t),u∗(t)) is continuous, are equal to

the left-hand limits. This is in accordance with the convention that the value of u is equal
to its left-hand limit at discontinuity points. Recall that Theorem 7.1 ensures that both
the functions ψ and ν have finite one-sided limits everywhere. In addition, the values of
ψ and ν at t0 are equal to right-hand limits.

As stated in the following lemma, the Hamiltonian is continuous in t. Moreover, the
second part of the condition (v) needs not be verified as it is a consequence of other
conditions of Theorem 7.1.

Lemma 7.1. 9 Given the assumptions of Theorem 7.1, the following is true:

(a) For all τ ∈ (t0, t1) one has

H
�

τ−, x∗(τ−),u∗(τ−),ψ(τ−)
�

= H
�

τ+, x∗(τ+),u∗(τ+),ψ(τ+)
�

. (7.15)

(b) The second part of the condition (v) is implied by other conditions.

Proof of (a). Let us denote

G(τ) := H
�

τ−, x∗(τ−),u∗(τ−),ψ(τ−)
�

−H
�

τ+, x∗(τ+),u∗(τ+),ψ(τ+)
�

. (7.16)

We have to prove that G(τ) = 0. Recall that x ∗(t) is assumed to be a continuous function
(see Definition 7.1 (ii)), hence we can write x ∗(τ) := x∗(τ−) = x∗(τ+). In addition, note
that Hamiltonian is continuous in the first variable, which is implied by (7.8) and the
continuity of functions f 0(t, x ,u) and f (t, x ,u) in the first variable. Therefore, one has

G(τ) = H
�

τ, x∗(τ),u∗(τ−),ψ(τ−)
�

−H
�

τ, x∗(τ),u∗(τ+),ψ(τ−)
�

+ (7.17a)

9Part (a) of the Lemma is stated without proof in Seierstad and Sydsæter (1987) [Note 3(c), p. 333]
for problems without mixed constraints. Part (b) is stated in Seierstad and Sydsæter (1987) [Exercise
5.3.4, p. 344] for problems without mixed constraints; the proof is only sketched.
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+H
�

τ, x∗(τ),u∗(τ+),ψ(τ−)
�

−H
�

τ, x∗(τ),u∗(τ+),ψ(τ+)
�

. (7.17b)

We have assumed that (x ∗(t),u∗(t)) is an optimal solution. Thus we have that the con-
dition g(x∗(τ),u∗(τ−))≥ 0 is satisfied and the condition (iii) in Theorem 7.1 states

H
�

τ, x∗(τ),u∗(τ−),ψ(τ−)
�

≥ H
�

τ, x∗(τ),u∗(τ+),ψ(τ−)
�

. (7.18)

Hence, the term in (7.17a) is greater than or equal to zero. Regarding the term in
(7.17b), we can use the definition of ψ̄ in (vi) in Theorem 7.1 and the continuity of ψ̄
to obtain

H
�

τ, x∗(τ),u∗(τ+),ψ(τ−)
�

−H
�

τ, x∗(τ),u∗(τ+),ψ(τ+)
�

=
�

ψ(τ−)−ψ(τ+)
�T

f (τ, x∗(τ),u∗(τ+)) (7.19)

=
�

ν(τ−)− ν(τ+)
�T dh

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ+)).

Combining these results, one has

G(τ)≥
�

ν(τ−)− ν(τ+)
�T dh

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ+)). (7.20)

Similarly, we can write

G(τ) = H
�

τ, x∗(τ),u∗(τ−),ψ(τ−)
�

−H
�

τ, x∗(τ),u∗(τ−),ψ(τ+)
�

+ (7.21a)

+H
�

τ, x∗(τ),u∗(τ−),ψ(τ+)
�

−H
�

τ, x∗(τ),u∗(τ+),ψ(τ+)
�

. (7.21b)

Now the term in (7.21b) is less than or equal to zero (using condition (iii)) and the term
in (7.21a) can be rewritten using (vi). We obtain

G(τ)≤
�

ν(τ−)− ν(τ+)
�T dh

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ−)). (7.22)

It is straightforward to prove that

�

ν j(τ
−)− ν j(τ

+)
�dh j

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ−)) = 0 (7.23)

and
�

ν j(τ
−)− ν j(τ

+)
�dh j

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ+)) = 0 (7.24)

for all j = 1, . . . ,q such that h j(x
∗(τ)) > 0. Indeed, as h j is assumed to be a continuous

function, we have that h j(x
∗(t)) > 0 on some neighbourhood of τ (denoted by O j(τ)).

From condition (vi) we have that ν j is then constant on O j(τ). Hence ν j(τ
−) = ν j(τ

+)

which implies (7.23).
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Now we will prove that

�

ν j(τ
−)− ν j(τ

+)
�dh j

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ−))≤ 0 (7.25)

and
�

ν j(τ
−)− ν j(τ

+)
�dh j

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ+))≥ 0 (7.26)

for all j = 1, . . . ,q such that h j(x
∗(τ)) = 0. Note that h j(x

∗(τ)) = 0 together with
h j(x)≥ 0 for all x then implies

dh j

dt
(x∗(τ−)) ≤ 0 and

dh j

dt
(x∗(τ+))≥ 0. (7.27)

Hence

dh j

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ−))≤ 0 and

dh j

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ+))≥ 0.

(7.28)
This directly implies (7.25) and (7.26), because ν(τ−) − ν(τ+) ≥ 0 as ν(t) is a non-
increasing function.

Using (7.23) and (7.25) in (7.22) implies

G(τ)≤
�

ν(τ−)− ν(τ+)
�T dh

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ−))≤ 0. (7.29)

On the other hand, using (7.24) and (7.26) in (7.20) implies

G(τ)≥
�

ν(τ−)− ν(τ+)
�T dh

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ+))≥ 0. (7.30)

Hence we conclude that G(τ) = 0 and Equality (7.15) is proved. In addition, both (7.29)
and (7.30) are satisfied as equalities.

Proof of (b). Let us assume that
dh j

dx
(x∗(t)) f (t, x∗(t),u∗(t)) is discontinuous at points

τ ∈ (t0, t1) and h j(x
∗(τ)) = 0 for some j = 1, . . . ,q. Recall that h j(x

∗(τ)) = 0 implies

dh j

dt
(x∗(τ−))≤ 0 (7.31)

and
dh j

dt
(x∗(τ+)) ≥ 0. (7.32)

Since
dh j

dx
(x∗(t)) f (τ, x∗(t),u∗(t)) =

dh j

dt
(x∗(t)), (7.33)
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we have that
dh j

dt
(x∗(t)) is discontinuous at τ. Hence, at least one of Inequalities (7.31)

and (7.32) has to be a strict inequality.

Now we use that both (7.29) and (7.30) are satisfied as equalities which was proved
at the end of the proof of part (a). Together with (7.23), (7.24), (7.25) and (7.26) this
implies

�

νi(τ
−)− νi(τ

+)
�dhi

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ−)) = 0 (7.34)

and
�

νi(τ
−)− νi(τ

+)
�dhi

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ+)) = 0 (7.35)

for all i = 1, . . . ,q. If (7.31) is a strict inequality then (7.34) implies ν j(τ
−) = ν j(τ

+).
On the other hand, if (7.32) is a strict inequality then the continuity of ν j at τ is implied
by (7.35).

Example 7.1. To illustrate the necessary conditions for a specific problem, let us consider
the following example:

max
u(t)

∫ 2

0

x(t)dt, (7.36)

ẋ(t) = 1− u(t)2, (7.37)

x(0) = 0, (7.38)

x(2) is free, (7.39)

1− x(t)≥ 0. (7.40)

Clearly, the optimal solution is such that x ∗(t) is first increased by a maximum rate until
the constraint (7.40) becomes binding and then it remains at this level. Hence,

x∗(t) =

�

t for t ∈ 〈0,1〉,
1 for t ∈ (1,2〉 and u∗(t) =

�

0 for t ∈ 〈0,1〉,
±1 for t ∈ (1,2〉. (7.41)

We show that (x ∗(t),u∗(t)) defined by (7.41) satisfies necessary conditions of optimality
given in Theorem 7.1 together with ψ0 = 1,

ψ(t) =

�

1− t for t ∈ 〈0,1〉,
0 for t ∈ (1,2〉 and ν(t) =

�

1 for t ∈ 〈0,1〉,
2− t for t ∈ (1,2〉. (7.42)

For this problem, we have

H(x ,u,ψ0,ψ) = L̆(x ,u,ψ0,ψ) =ψ0 x +ψ(1− u2) (7.43)
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x∗

t1 2

1

u∗

t1 2

1

ψ

t1 2

1

ν

t1 2

1

Figure 7.1: Optimal solution and functions ψ and ν for Problem (7.36) – (7.40).

and
L(x ,u,ψ0,ψ,ν) =ψ0 x + (ψ− ν)(1− u2). (7.44)

Functions ψ and ν have one-sided limits everywhere on 〈0,2〉 and ν is non-increasing.
We formulate and verify conditions (i) – (ix):

(i) ψ0 = 1 is satisfied,

(ii) (ψ0,ψ(t),ν(t1)− ν(t0)) = (1,ψ(t), 1) 6= (0,0,0) for all t,

(iii) the condition

ψ0 x∗+ψ(1− u∗2) ≥ψ0 x∗+ψ(1− u2) for allu (7.45)

is satisfied on 〈0,1) where ψ(t) > 0 because 1− u∗(t)2 = 1 ≥ 1− u2 for all u and
it is also trivially satisfied at 〈1,2〉 where ψ(t) = 0,

(iv) −2ψ(t)u∗(t) = 0 for all t ∈ 〈0,2〉,

(v) ν(t) is constant on 〈0,1) where 1− x(t)> 0 and ν(t) is continuous at τ= 1 where

dh

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ)) = u∗(τ)2 − 1 (7.46)

is discontinuous and 1− x(τ) = 0,

(vi) ψ̄(t) =ψ(t)+ν(t) = 2− t is continuous everywhere and has a continuous deriva-
tive ˙̄ψ(t) = −ψ0 =−1,
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(vii) condition is empty,

(viii) ν(2) = 0 is satisfied,

(ix) ψ(2) = 0 is satisfied. �

7.2.2 Necessary conditions by Feichtinger and Hartl

Now we state the necessary conditions (using tilded variables) according to Feichtin-
ger and Hartl (1986) [Theorem 6.3, p. 169] (neglecting the discount factor r in their
formulation of necessary conditions). The main difference is that in these conditions, ν̃ j

is zero on intervals where h j(x
∗(t))> 0, j = 1, . . . ,q, the Hamiltonian si maximized over

different region in condition (iii) and the standard form of the Lagrangian (7.9) is used
instead of the simplified Lagrangian (7.10) in (iv).

Theorem 7.2 (Necessary conditions by Feichtinger and Hartl). Let (x ∗(t),u∗(t)) be an

optimal solution to Problem (7.1a) – (7.1d), which fulfills the weak constraint qualification.

Then there exists a constant ψ̃0, piecewise continuous and piecewise differentiable vector

functions ψ̃(t) : R→ Rn, µ̃(t) : R→ Rp and ν̃(t) : R→ Rq, such that for all t ∈ (t0, t1)

with the possible exception of the discontinuity points of u∗(t) and the junction times, the

following conditions are satisfied:

(i) ψ̃0 = 0 or ψ̃0 = 1,

(ii) (ψ̃0, ψ̃(t)) 6= (0,0) for all t ∈ (t0, t1),

(iii) H(t, x∗(t),u∗(t), ψ̃(t))≥ H(t, x∗(t),u, ψ̃(t)) for all u such that g(x ∗(t),u)≥ 0 and
dhi

dx
(x∗(t)) f (t, x∗(t),u) = 0 whenever hi(x

∗(t)) = 0, i = 1, . . . ,q,

(iv)
∂ L

∂ u

�

t, x∗(t),u∗(t), ψ̃(t), µ̃(t), ν̃(t)
�

= 0,

(v) ν̃(t)≥ 0, ν̃(t)Th(x∗(t)) = 0 and ˙̃ν(t)≤ 0,

(vi) ˙̃ψ(t)T = −
∂ L

∂ x

�

t, x∗(t),u∗(t), ψ̃(t), µ̃(t), ν̃(t)
�

,

(vii) µ̃(t)≥ 0 and µ̃(t)T g(x∗(t),u∗(t)) = 0 for all t,

(viii) ν̃(t) satisfies ν̃(t1) = 0,
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(ix) ψ̃(t) satisfies

no condition for ψ̃i(t1), i = 1, . . . , l,
ψ̃i(t1)≥ 0, ψ̃i(t1)

�

x∗
i
(t1)− x1

i

�

= 0, i = l + 1, . . . , m,
ψ̃i(t1) = 0, i = m+ 1, . . . , n,

(x) one has for all τ ∈ (t0, t1) that

H
�

τ−, x∗(τ),u∗(τ−), ψ̃(τ−)
�

= H
�

τ+, x∗(τ),u∗(τ+), ψ̃(τ+)
�

. (7.47)

(xi) At an entry or contact time τ of the constraint h j(x
∗(t))≥ 0 for any j = 1, . . . ,q, the

costate trajectory ψ̃ j(t) may have a discontinuity of the form

ψ̃ j(τ
−) = ψ̃ j(τ

+) + η̃ j(τ)
dh j

dx
(x∗(τ)), (7.48)

where

η̃ j(τ)≥ 0 and η̃ j(τ)h j(x
∗(τ)) = 0. (7.49)

In addition to these conditions, another necessary condition is given by Feichtinger
and Hartl (1986):

Theorem 7.3. 10 Let (x∗(t),u∗(t)) be an optimal solution to Problem (7.1a) – (7.1d),

which fulfills the weaker form of constraint qualification and let ψ̃, µ̃ and ν̃ be functions

according to Theorem 7.2. Then for all t ∈ (t0, t1) with the possible exception of the discon-

tinuity points of u∗(t) and the junction times the following condition is satisfied:

dL

dt

�

t, x∗(t),u∗(t), ψ̃(t), µ̃(t), ν̃(t)
�

=
∂ L

∂ t

�

t, x∗(t),u∗(t), ψ̃(t), µ̃(t), ν̃(t)
�

. (7.50)

None of the conditions in Theorem 7.2 determines the value of ψ̃ and ν̃ at junction
times and discontinuity points of u∗. In particular, note that conditions (i) – (ix) might
not be satisfied at these points and conditions (x) and (xi) refer only to one-sided limits.
Hence we are free to choose the values of ψ̃ and ν̃ at these points. Let us determine that
these values are equal to the left-hand limits. This is in accordance with the convention
for values of u∗, ψ and ν given above.

10Feichtinger and Hartl (1986) [Theorem 6.3, p. 169].
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Example 7.2. To illustrate conditions given in Theorems 7.2 and 7.3 and their relation-
ship to conditions given in Theorem 7.1, consider again Problem (7.36) – (7.40) formu-
lated in Example 7.1. We show that (x ∗(t),u∗(t)) defined by (7.41) satisfies necessary
conditions of optimality given in Theorem 7.2 together with ψ̃0 = 1, η̃(1) = 1,

ψ̃(t) =

�

1− t for t ∈ 〈0,1〉,
2− t for t ∈ (1,2〉 and ν̃(t) =

�

0 for t ∈ 〈0,1〉,
2− t for t ∈ (1,2〉. (7.51)

ψ̃

t1 2

1

ν̃

t1 2

1

Figure 7.2: Functions ψ̃ and ν̃ for Problem (7.36) – (7.40).

The Hamiltonian and Lagrangian for this problem are defined by

H(x ,u, ψ̃0, ψ̃) = ψ̃0 x + ψ̃(1− u2) (7.52)

and
L(x ,u, ψ̃0, ψ̃, ν̃) = ψ̃0 x + (ψ̃− ν̃)(1− u2). (7.53)

Functions ψ̃ and ν̃ are piecewise continuous and piecewise differentiable on 〈0,2〉. We
now formulate and verify conditions (i) – (xi) given in Theorem 7.2:

(i) ψ̃0 = 1 is satisfied,

(ii) (ψ̃0, ψ̃(t)) = (1, ψ̃(t)) 6= (0,0) for all t,

(iii) this condition states that ψ̃0x∗ + ψ̃(1− u∗2) ≥ ψ̃0 x∗ + ψ̃(1− u2) for all u ∈ R if
1− x∗ > 0 and for u ∈ {−1,1} if 1− x ∗ = 0; it is satisfied on 〈0,1) where ψ̃(t)> 0
because 1−u∗(t)2 = 1 ≥ 1−u2 for all u ∈ R and it is also trivially satisfied at (1,2〉
where u∗ = ±1,

(iv) condition −2(ψ̃(t)− ν̃(t))u∗(t) = 0 is satisfied for all t ∈ 〈0,2〉, because u∗(t) = 0
on 〈0,1〉 and ψ̃(t)− ν̃(t) = 0 on (1,2〉.

(v) ν̃(t) = 0 on 〈0,1) where 1 − x(t) > 0 and h(x ∗(t)) = 0 on 〈1,2〉; in addition,
ν̃(t)≥ 0 everywhere, ˙̃ν(t) = 0 on (0,1) and ˙̃ν(t) = −1 ≤ 0 on (1,2),

(vi) ˙̃ψ(t) = −ψ̃0 = −1 is satisfied everywhere on (0,2) except the entry time t = 1,
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(vii) condition is empty,

(viii) ν̃(2) = 0 is satisfied,

(ix) ψ̃(2) = 0 is satisfied,

(x) for t = 1 we have

H(x∗(1),u∗(1−), ψ̃(1−), ν̃(1−)) = H(x∗(1),u∗(1+), ψ̃(1+), ν̃(1+)) = 1;

Equality (7.47) is trivially satisfied for all other t ∈ 〈0,2〉,

(xi) Equality (7.48) states that ψ̃(1−) = ψ̃(1+)− η̃(1) which is satisfied since we have
ψ̃(1−) = 0, ψ̃(1+) = 1 and η̃(1) = 1; moreover, the constraint 1 − x ∗(t) ≥ 0 is
active at t = 1. �

In addition, Equality (7.50) can be rewritten as

d

dt
(ψ̃0 x + (ψ̃− ν̃)(1− u2)) = 0. (7.54)

This equality is indeed satisfied, since one has

ψ̃0x + (ψ̃− ν̃)(1− u2) = 1 (7.55)

for all t ∈ 〈0,2〉.

7.2.3 Relationship between the two types of necessary conditions

The mean feature of the necessary conditions of optimality for a problem with active
pure state constraints is that the costate variable ψ might not be continuous everywhere
on 〈t0, t1〉, unlike in problems without any pure state constraints. Hence, the necessary
conditions provide some “additional” information in order to restrict the set of potential
candidates on optimal solutions. Note that this additional information is different in
both types of necessary conditions given in Theorems 7.1 and 7.2.

If we use the set of necessary conditions by Seierstad and Sydsæter (1987), we
know that the function ψ̄ defined by (7.11) is continuous everywhere. In addition,
Hamiltonian is continuous everywhere as it was proved in Lemma 7.1. On the other
hand, we only know that ν j(t) is constant on intervals where h j(x

∗(t)) > 0, but we do
not know the values of these constants.
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Regarding the necessary conditions by Feichtinger and Hartl (1986), they ensure that
ψ̃ is continuous at exit times. However, they provide no information about the value of
jumps of ψ̃ at entry and contact times except their signs. Moreover, they state that
ν̃ j(t) = 0 on intervals where h j(x

∗(t)) > 0. Another disadvantage of these conditions
compared with conditions by Seierstad and Sydsæter is that condition (iii) is weaker
in Theorem 7.2 than in Theorem 7.1. This does not matter if the Hamiltonian has only
global maxima. If however there are also local maxima different from the global maxima,
Theorem 7.2 may fail to exclude solutions which are not optimal and which can be
excluded by Theorem 7.1, as will be shown later in Example 7.5.

Now let us introduce how the conditions stated in Theorem 7.1 can be translated
into the conditions given in Theorem 7.2. However, we restrict our attention only to
problems with the following property:

(P) The interval (t0, t1) can be split up into finite number of subintervals such that on
any one of them the set of binding pure state constraints is constant.

This property allows us to define for all t ∈ 〈t0, t1〉 and j = 1, . . . ,q

ν̃ j(t) :=

�

0 if h j(x
∗(t))> 0 or t is an entry or contact time,

ν j(t)− ν j(τ
+) if h j(x

∗(t)) = 0 and t is not an entry or contact time,
(7.56)

where τ is an exit time which is the nearest to t and which is greater or equal to t or
τ= t1 if no such exit time exists, where ν j(t

+
1 ) := 0.

Define further

ψ̃T (t) := ψT (t)− ν̃ T (t)
dh

dx
(x∗(t)), (7.57)

ψ̃0 := ψ0, (7.58)

η̃(t) :=
�

ν(t−)− ν̃(t−)
�

−
�

ν(t+)− ν̃(t+)
�

, (7.59)

µ̃(t) := µ(t). (7.60)

Note that transformation (7.56) is a composition of two transformations:

• Transformation for h j(x
∗(t)) > 0 and at entry and contact times ensures that the

respective variable ν̃ j will be zero, whereas ν j is a constant (possibly non-zero).

• Transformation for h j(x
∗(t)) = 0 ensures that ψ̃ is continuous at exit times, as will

be shown later in Theorem 7.4.
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Both of these transformations are based on the fact that ν can be replaced by ν + c,
where c is an arbitrary piecewise constant function with possible discountinuity points
at junction times (see Remark 7.1). However, ψ has to be replaced in accordance with
(7.13).

Example 7.3. Let us briefly verify that transformations (7.56) – (7.60) can be applied in
case of the relationship between the two sets of multipliers in Example 7.1 and Example
7.2. First, note that (7.56) applied to ν yields that ν̃(t) = 0 for t ∈ 〈0,1〉 since we
have h(x∗(t)) > 0 on 〈0,1) and t = 1 is an entry time. On the other hand, ν̃(t) =
ν(t)−ν(τ+) on (1,2〉, where τ= 2 and ν(τ+) = 0 because there is no exit time. Hence,
ν̃(t) = ν(t) = 2− t on (1,2〉. We can conclude that the values of ν̃ obtained by (7.56)
are the same as those given by (7.51). Next, applying Equality (7.57) toψ and ν defined
by (7.42) yields

ψ̃(t) =ψ(t)− ν̃(t)
dh

dx
(x∗(t)) =ψ(t) + ν̃(t) =

�

1− t for t ∈ 〈0,1〉,
2− t for t ∈ (1,2〉, (7.61)

which is in accordance with (7.51). Finally, it follows from combining (7.42) and (7.51)
with (7.59) that

η̃(1) =
�

ν(1−)− ν̃(1−)
�

−
�

ν(1+)− ν̃(1+)
�

= (1− 0)− (1− 1) = 1. (7.62)

Hence, η̃(1) calculated by (7.59) attains the same value as given in Example 7.2. �

Example 7.4. To better illustrate transformations (7.56) and (7.57), consider the fol-
lowing example: Let us assume that a virtual problem involving a pure state constraint
h(x(t)) := x(t) ≥ 0 is given. For simplicity, we do not formulate the problem, we just
sketch the function h(x ∗(t)) along the supposed optimal solution (see the chart of h(x ∗)

on Figure 7.3). We assume that there are two entry times (t = 1 and t = 4) and two exit

times (t = 2 and t = 5). Furthermore, we assume that
dh

dt
(x∗(t)) = ẋ∗(t) is continuous

at t = 1 and t = 2, whereas it is discontinuous at t = 4 and t = 5. Hence, ν(t) is
continuous at t = 4 and t = 5 (see condition (v) in Theorem 7.1), although it may be
discontinuous at t = 1 and t = 2. We also know that ν(t) is a non-increasing function
and ν(6) = 0 (see the chart of ν on Figure 7.3). Regarding ν̃ , transformation (7.56)
ensures that it is zero on interval where h(x ∗(t)) > 0, in accordance with condition (v)
in Theorem 7.2. This transformation also implies that the distance labelled as d is the
same in both charts of ν as well as of ν̃ .

Now, let as assume that ψ(t) has the form depicted in Figure 7.3 (see chart of ψ).
Since the given problem is not specified enough, we are free to set ψ(t) arbitrarily,
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h(x∗)

t

1

2

1 2 3 4 5 6

ψ̄

t

1

2

1 2 3 4 5 6

ν

t

1

2

3

1 2 3 4 5 6

}d

ν̃

t

1

2

3

1 2 3 4 5 6

}d

ψ

t

1

2

3

1 2 3 4 5 6

}d

ψ̃

t

1

2

3

1 2 3 4 5 6

Figure 7.3: Functions h(x(x∗), ν , ν̃ , ψ̄, ψ and ψ̃ for Example 7.4.

provided that

ψ̄(t) :=ψ(t)− ν(t)
dh

dx
(x∗(t)) =ψ(t)− ν(t) (7.63)

is continuous everywhere (see condition (vi) in Theorem 7.1). Therefore, the distance
labelled as d on chart of ψ is again the same as on charts on ν and ν̃ . The path of ψ̄
is also depicted in Figure 7.3 (note that it is continuous). Finally, ψ̃ was calculated as
ψ−ν̃ in accordance with (7.57). Note that it is indeed discontinuous and non-increasing
at entry times but it is continuous at exit times, as stated in condition (xi) of Theorem
7.2. �

Using these definitions, we can formulate the following auxiliary result, which will
be useful later:

Lemma 7.2. Let (x ∗(t),u∗(t)) be an optimal solution to Problem (7.1a) – (7.1d), which
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fulfills the necessary conditions of optimality given in Theorem 7.1 together with ψ, µ and

ν . Assume that Property (P) is satisfied. Let ψ̄ be a function defined by (7.11) and let ψ̃, µ̃

and ν̃ be functions defined by (7.56), (7.57) and (7.60). Then we have

∂ L

∂ x

�

t, x∗(t),u∗(t),ψ0, ψ̄(t),µ(t),ν(t)
�

−
∂ L

∂ x

�

t, x∗(t),u∗(t), ψ̃0, ψ̃(t), µ̃(t), ν̃(t)
�

=
d

dt

�

�

ν(t)− ν̃(t)
�T dh

dx
(x∗(t))

�

(7.64)

almost everywhere, where the function L is defined by (7.9).

Proof. Using the definition of ψ̄ (7.11) and Equality (7.57) we obtain

ψ̄(t)T = ψ̃(t)T −
�

ν(t)− ν̃(t)
�T dh

dx
(x∗(t)). (7.65)

Using definition of Lagrangian (7.9) and Equalities (7.65) – (7.58) and (7.60) we obtain

∂ L

∂ x

�

t, x∗,u∗,ψ0, ψ̄,µ,ν
�

−
∂ L

∂ x

�

t, x∗,u∗, ψ̃0, ψ̃, µ̃, ν̃
�

= ψ0 ∂ f 0

∂ x
(t, x∗,u∗) +

�

ψ̃T −
�

ν − ν̃
�T dh

dx
(x∗)

�

∂ f

∂ x
(t, x∗,u∗) +µT

∂ g

∂ x
(x∗,u∗) +

+ν T
d2h

dx2
(x∗) f (t, x∗,u∗) + ν T

dh

dx
(x∗)

∂ f

∂ x
(t, x∗,u∗)−

−ψ̃0 ∂ f 0

∂ x
(t, x∗,u∗)− ψ̃T

∂ f

∂ x
(t, x∗,u∗)− µ̃T

∂ g

∂ x
(x∗,u∗)−

−ν̃ T
d2h

dx2
(x∗) f (t, x∗,u∗)− ν̃ T

dh

dx
(x∗)

∂ f

∂ x
(t, x∗,u∗)

=
�

ν − ν̃
�T d2h

dx2
(x∗) f (t, x∗,u∗)

=
d

dt

�

�

ν − ν̃
�T dh

dx
(x∗)

�

−
�

d

dt

�

ν − ν̃
�T

�

dh

dx
(x∗) , (7.66)

where the first and second equality are satisfied everywhere and the third equality is
satisfied everywhere with the possible exception of junction times. However, Equality
(7.56) implies that ν j − ν̃ j is piecewise constant, hence the last term in (7.66) is zero
almost everywhere.

Before introducing the relationship between Theorems 7.1 and 7.2, we prove an-
other auxiliary result:
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Lemma 7.3. Let (x ∗(t),u∗(t)) be an optimal solution to Problem (7.1a) – (7.1d), which

fulfills the strong constraint qualification, letψ, µ and ν be functions according to Theorem

7.1. Assume that Property (P) is satisfied and let ψ̃, µ̃ and ν̃ be defined by (7.56), (7.57)

and (7.60). Then the functions ψ(t), µ(t), ν(t) and µ̃(t) are continuous at the points

t = τ ∈ (t0, t1), if u∗(t) is continuous at τ. In addition, functions ψ̃(t) and ν̃(t) are

continuous at t = τ ∈ (t0, t1), if u∗(t) is continuous at τ and τ is not an entry time.

Proof.11 Assume that u∗(t) is continuous at τ ∈ (t0, t1), i.e. u∗(τ−) = u∗(τ+) =: u∗(τ).
Theorem 7.1 (iv) implies

∂ L̆

∂ u

�

τ, x∗(τ),u∗(τ),ψ(τ−),µ(τ−)
�

=
∂ L̆

∂ u

�

τ, x∗(τ),u∗(τ),ψ(τ+),µ(τ+)
�

= 0. (7.67)

We used that L̆(t, x ,u,ψ,µ) is continuous in the first variable due to continuity of func-
tions f 0(t, x ,u) and f (t, x ,u) in the first variable. In accordance with (7.10), the diffe-
rence between the two terms in (7.67) can be written as

0 =
∂ L̆

∂ u

�

τ, x∗(τ),u∗(τ),ψ(τ−),µ(τ−)
�

−
∂ L̆

∂ u

�

τ, x∗(τ),u∗(τ),ψ(τ+),µ(τ+)
�

=
�

ψ(τ−)−ψ(τ+)
�T ∂ f

∂ u
(τ, x∗(τ),u∗(τ)) +

�

µ(τ−)−µ(τ+)
�T ∂ g

∂ u
(x∗(τ),u∗(τ)).

(7.68)

Now we use the definition of ψ̄ in (vi) in Theorem 7.1 and the continuity of ψ̄ to obtain

�

ψ(τ−)−ψ(τ+)
�T
=
�

ν(τ−)− ν(τ+)
�T dh

dx
(x∗(τ)). (7.69)

By combining (7.69) with (7.68) one has

�

ν(τ−)− ν(τ+)
�T dh

dx
(x∗(τ))

∂ f

∂ u
(τ, x∗(τ),u∗(τ))+

+
�

µ(τ−)−µ(τ+)
�T ∂ g

∂ u
(x∗(τ),u∗(τ)) = 0. (7.70)

Recall that hi(x
∗(t)) = 0 implies

dhi

dx
(x∗(t)) f (t, x∗(t),u∗(t)) = 0 at continuity points

of u∗. Therefore, if
dhi

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ)) 6= 0, i = 1, . . . ,q and τ is a continuity

point of u∗, we have hi(x
∗(τ)) > 0. Then hi(x

∗(t)) > 0 on some neighbourhood O (τ)
11In the first part of the proof we follow the proof given in Feichtinger and Hartl (1986) [p. 168] for

the direct adjoining approach.
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of τ, since both h and x ∗ are continuous functions. Equality (7.56) then implies that
ν̃i(t) = 0 on O (τ), hence ν̃i is continuous at τ. Moreover, for g j(x

∗(τ),u∗(τ)) > 0,
j = 1, . . . , p, we have that g j(x

∗(t),u∗(t)) > 0 on some neighbourhood O (τ) of τ. It
then follows from condition (vii) in Theorem 7.1 that µ j(t) = 0 on O (τ), implying that
µ j(t) is continuous at τ. As a result, defining

I(τ) := {i |
dhi

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ)) 6= 0} (7.71)

and

J(τ) := { j | g j(x
∗(τ),u∗(τ))> 0} (7.72)

we have just shown that νi(τ) is continuous for all i ∈ I(τ), µ j(τ) is continuous for all
j ∈ J(τ) and

∑

i∈I(τ)

�

�

ν(τ−)− ν(τ+)
�T dh

dx
(x∗(τ))

∂ f

∂ u
(τ, x∗(τ),u∗(τ))

�

+

+
∑

j∈J(τ)

�

�

µ(τ−)−µ(τ+)
�T ∂ g

∂ u
(x∗(τ),u∗(τ))

�

= 0. (7.73)

Hence, Equality (7.70) can be rewritten to

∑

i 6∈I(τ)

�

�

ν(τ−)− ν(τ+)
�T dh

dx
(x∗(τ))

∂ f

∂ u
(τ, x∗(τ),u∗(τ))

�

+

+
∑

j 6∈J(τ)

�

�

µ(τ−)−µ(τ+)
�T ∂ g

∂ u
(x∗(τ),u∗(τ))

�

= 0. (7.74)

The strong constraint qualification implies that vectors

dhi

dx
(x∗(τ))

∂ f

∂ u
(τ, x∗(τ),u∗(τ)) for i such that

dhi

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ)) = 0

(7.75)
and

∂ g j

∂ u
(x∗(τ),u∗(τ)) for j such that g j(x

∗(τ),u∗(τ)) = 0 (7.76)

are linearly independent. Hence, we have that νi(τ
−) = νi(τ

+) for all i 6∈ I(τ) and
µ j(τ

−) = µ j(τ
+) for all j 6∈ J(τ).

To sum up, we can conclude that ν(τ−) = ν(τ+) and µ(τ−) = µ(τ+) at all continuity
points of u∗. Condition (vi) in Theorem 7.1 then implies that also ψ(τ−) =ψ(τ+).
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From µ(τ−) = µ(τ+) and (7.60) we immediately have that µ̃ is continuous every-
where with the possible exception of the discontinuity points of u∗. Moreover, we show
that ν̃ j, j = 1, . . . ,q is continuous at τ if τ is not a discontinuity point of u∗ or an entry
time of h j. Indeed, if τ is an exit time of h j, we have that ν̃ j(τ) = ν̃ j(τ

+) = 0 because
h j(x

∗(t)) > 0 on a punctured right neighbourhood of τ. According to Equality (7.56),
we have

ν̃ j(τ
−)− ν̃ j(τ

+) =
�

ν j(τ
−)− ν j(τ

+)
�

− 0 = 0. (7.77)

If τ is a contact time of h j, we have that ν̃ j(τ
−) = ν̃ j(τ

+) = 0 because h j(x
∗(t))> 0 on a

punctured neighbourhood of τ. Finally, it is straightforward that ν̃ j(τ) is continuous at
τ if ν j(τ) is continuous at τ and τ is not a junction time. As a result, ν̃ is a continuous
function everywhere with the possible exception of the discontinuity points of u∗ or entry
times.

To show that the lemma is true also for ψ̃, we use (7.65) and the continuity of ψ̄ to
obtain

�

ψ̃(τ−)− ψ̃(τ+)
�T
=
�

ν(τ−)− ν̃(τ−)− (ν(τ+)− ν̃(τ+))
�T dh

dx
(x∗(τ)). (7.78)

Because ν is continuous everywhere with the possible exception of the discontinuity
points of u∗ and ν̃ is continuous everywhere possibly except the discontinuity points of
u∗ and the entry times, we immediately have that their difference is also continuous
everywhere possibly except the discontinuity points of u∗ and the entry times. This
completes the proof of this lemma.

Let us now prove that if an admissible solution to Problem (7.1a) - (7.1d) satisfies
necessary conditions formulated by Seierstad and Sydsæter (1987) and the strong con-
straint qualification, then it satisfies necessary conditions formulated by Feichtinger and
Hartl (1986), possibly except the “non-triviality condition” (ii). Note that the formula-
tion of both types of necessary conditions assumes only the weak constraint qualification
to be fulfilled. The requirement of the strong constraint qualification was used in Lemma
7.3 which is subsequently used in the proof of Theorem 7.4.

Theorem 7.4. Let (x ∗(t),u∗(t)) be an optimal solution to Problem (7.1a) – (7.1d) satis-

fying the strong constraint qualification, which fulfills the conditions (i) – (ix) in Theorem

7.1 together with ψ0, ψ, µ and ν . Suppose further that the Assumption (P) is satisfied.

Then the conditions (i) and (iii) – (xi) of Theorem 7.2 are met, where ψ̃0 and the functions

ψ̃, µ̃, ν̃ and η̃ are defined by (7.56) – (7.60).

Proof of (i). This is exactly the same as the condition (i) in Theorem 7.1.
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Proof of (iii). Note first that from (7.8), (7.57) and (7.58) one has

H(t, x∗(t),u, ψ̃0, ψ̃(t)) = H(t, x∗(t),u, ,ψ0,ψ(t))− ν̃(t)T
dh

dx
(x∗(t)) f (t, x∗(t),u).

(7.79)
However, the second term on the right-hand side is zero with the possible exception of
the junction times: The reason is, that if h j(x

∗(t))> 0, then ν̃ j(t) = 0 (from (7.57)). On
the other hand, if h j(x

∗(t)) = 0 and t is not a junction time, then

dh j

dt
(x∗(t)) =

dh j

dx
(x∗(t)) f (t, x∗(t),u∗(t)) = 0. (7.80)

Hence, we have that the inequality in (iii) in Theorem 7.1 is the same as the inequality in
(iii) in Theorem 7.2 (possibly except junction times), but the Hamiltonian is maximized
in Theorem 7.2 with respect to a subset of a set given in condition (iii) in Theorem
7.1. This implies that condition (iii) in Theorem 7.2 is satisfied everywhere with the
possible exception of discontinuity points of u∗ and entry times, since ψ(t) is continuous
everywhere with the possible exception of discontinuity points of u∗ and entry times (see
Lemma 7.3).

Proof of (iv). Using the definitions of Lagrangian (7.9) and simplified Lagrangian (7.10)
combined with (7.57), (7.58) and (7.60), we obtain

L(t, x∗(t),u∗(t), ψ̃0, ψ̃, µ̃, ν̃)− L̆(t, x∗(t),u∗(t),ψ0,ψ,µ)

= ψ̃0 f 0(t, x∗(t),u∗(t)) +
�

ψT − ν̃ T
dh

dx
(x∗(t))

�

f (t, x∗(t),u∗(t)) +µT g(x∗(t),u∗(t))+

+ν̃ T
dh

dx
(x∗(t)) f (t, x∗(t),u∗(t))−ψ0 f 0(t, x∗(t),u∗(t))−

−ψT f (t, x∗(t),u∗(t))−µT g(x∗(t),u∗(t)) = 0 (7.81)

for all t ∈ 〈t0, t1〉. Both the functions L and L̆ are C1-functions w.r.t. u, therefore we can
write for all t

∂ L

∂ u

�

t, x∗(t),u∗(t), ψ̃0, ψ̃(t), µ̃(t), ν̃(t)
�

=
∂ L̆

∂ u

�

t, x∗(t),u∗(t),ψ0,ψ(t),µ(t)
�

. (7.82)

We have already proved in Lemma 7.3 that for each t ∈ (t0, t1) such that it is not a dis-
continuity point of u∗ neither an entry time, the functions ψ and µ are both continuous.
Hence, combining (7.82) together with condition (iv) in Theorem 7.1 implies

∂ L

∂ u

�

t, x∗(t),u∗(t), ψ̃0, ψ̃(t), µ̃(t), ν̃(t)
�

= 0 (7.83)
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for each t ∈ (t0, t1) such that it is not a discontinuity point of u∗ neither an entry time.

Proof of (v). According to (7.56), one has that ν̃ j(t) = 0, j = 1, . . . ,q for all t such that
h j(x

∗(t)) > 0. Moreover, for all t such that t is not a junction time and h j(x
∗(t)) = 0

it follows from (7.56) that ν̃ j(t) = ν j(t)− ν j(τ
+) ≥ 0 because t ≤ τ and ν j is a non-

increasing function. Hence, the first equality in (v) is proved. The second equality
is implied directly by (7.56). Finally the third equality in (v) follows from the fact
that ν̃ is differentiable almost everywhere since it is piecewise monotonic and ˙̃ν ≤ 0
almost everywhere since ν̃ is non-increasing at all points of continuity (because ν is
non-increasing everywhere).

Proof of (vi). One has for all t ∈ 〈t0, t1〉 with the possible exception of the discontinuity
points of u∗(t) and the junction times that

˙̃ψ(t)T
(7.65)
= ˙̄ψ(t)T +

d

dt

�

�

ν(t)− ν̃(t)
�T dh(x∗(t))

dx

�

(vi)
= −

∂ L

∂ x

�

x∗(t),u∗(t),ψ0, ψ̄(t),µ(t),ν(t)
�

+
d

dt

�

�

ν(t)− ν̃(t)
�T dh

dx
(x∗(t))

�

=

(7.64)
= −

∂ L

∂ x

�

x∗(t),u∗(t), ψ̃0, ψ̃(t), µ̃(t), ν̃(t)
�

,

where (vi) refers to the condition (vi) in Theorem 7.1.

Proof of (vii). This condition is implied directly by (7.60) and condition (vii) in Theorem
7.1.

Proof of (viii). This is implied directly by (7.56).

Proof of (ix). The conditions in (ix) can be obtained from the conditions (ix) in Theorem
7.1 using (7.57) and the previous condition (viii) in Theorem 7.1.

Proof of (x). Recalling (7.57) and (7.58), one has for all τ ∈ (t0, t1) that

H
�

τ, x∗(τ),u∗(τ−), ψ̃0, ψ̃(τ−)
�

−H
�

τ, x∗(τ),u∗(τ+), ψ̃0, ψ̃(τ+)
�

= H
�

τ, x∗(τ),u∗(τ−),ψ0,ψ(τ−)
�

− ν̃(τ−)T
dh

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ−))−

−H
�

τ, x∗(τ),u∗(τ+),ψ0,ψ(τ+)
�

+ ν̃(τ+)T
dh

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ+)).

Now we prove

ν̃(τ−)T
dh

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ−)) = 0 (7.84a)

and

ν̃(τ+)T
dh

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ+)) = 0, (7.84b)
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which proves (xi), because

H
�

τ, x∗(τ),u∗(τ−),ψ0,ψ(τ−)
�

−H
�

τ, x∗(τ),u∗(τ+),ψ0,ψ(τ+)
�

= 0 (7.85)

due to Equality (7.15). Under the assumption (P), for all j = 1, . . . ,q there exists ε > 0
such that either h j(x

∗(t)) = 0 for all t ∈ (τ− ε,τ) or h j(x
∗(t))> 0 for all t ∈ (τ− ε,τ).

In the former case we have

dh j

dt
(x∗(τ−)) =

dh

dx
(x∗(τ)) f (τ, x∗(τ),u∗(τ−)) = 0 (7.86)

On the other hand, ν̃ j(τ
−) = 0 in the latter case. To sum up, we can conclude that

Equality (7.84a) is satisfied. Equality (7.84b) can be proved in an analogous way.

Proof of (xi). We show that η̃ defined by (7.59) fulfills all conditions given in (xi) in
Theorem 7.2.

One has

ψ̃(t−)− ψ̃(t+) (7.65)
=

h

(ψ̄(t−)− ψ̄(t+)) +
�

ν(t−)− ν̃(t−)
�

−

−
�

ν(t+)− ν̃(t+)
�

idh

dx
(x∗(t))

(vi)
=

h

�

ν(t−)− ν̃(t−)
�

−
�

ν(t+)− ν̃(t+)
�

idh

dx
(x∗(t))

(7.59)
= η̃ j(t)

T
dh

dx
(x∗(t)), (7.87)

where (vi) refers to condition (vi) in Theorem 7.1. This proves (7.48).

According to (7.56), we have for all j = 1, . . . ,q that

ν j(τ
−)− ν̃ j(τ

−) =

�

ν j(τ
−) if h j(x

∗(τ))> 0 or τ is an entry or contact time,
ν j(τ

+
1 ) if h j(x

∗(τ)) = 0 and τ is not an entry or contact time,
(7.88)

where τ1 is an exit time for h j which is the nearest to τ and which is greater or equal to
τ or τ1 = t1 if no such exit time exists. Indeed, if h j(x

∗(τ)) = 0 and τ is not an entry or
contact time, we have h j(x

∗(t)) = 0 on some left neighbourhood O (τ−) of τ. Equality
(7.56) then implies ν j(t)− ν̃ j(t) = ν j(τ

+
1 ) on O (τ−), where τ1 is an exit time for h j

which is the nearest to t and which is greater or equal to τ or τ1 = t1 if no such exit
time exists. On the other hand, if τ is an entry or contact time or h j(x

∗(τ))> 0, we have
h j(x

∗(t)) > 0 on some left punctured neighbourhood O (τ−) of τ. In this case, Equality
(7.56) implies that ν j(t) − ν̃ j(t) = ν j(t) on O (τ−), hence ν j(τ

−) − ν̃ j(τ
−) = ν j(τ

−).
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Similarly,

ν j(t
+)− ν̃ j(t

+) =

�

ν j(t
+) if h j(x

∗(t))> 0 or t is a contact time,
ν j(τ

+
2 ) if h j(x

∗(t)) = 0 and t is not a contact time,
(7.89)

where τ2 is an exit time for h j which is the nearest to t and which is greater or equal to
t or τ2 = t1 if no such exit time exists.

Suppose first that τ ∈ (t0, t1) is not a junction time for any h j, j = 1, . . . ,q. We can
consider two cases:

(a) If h j(x
∗(τ)) = 0, the second condition in (7.49) is fulfilled. Equality (7.88) then

implies that ν j(τ
−)− ν̃ j(τ

−) = ν j(τ
+
1 ) (because τ is not an entry time), where τ1

is an exit time for h j which is the nearest to τ and which is greater or equal to τ or
τ1 = t1 if no such exit time exists. Equality (7.89) implies ν j(τ

+)−ν̃ j(τ
+) = ν j(τ

+
1 )

because an exit time for h j which is the nearest to τ and which is greater or equal
to τ, is again τ1. Hence, η̃ j(τ) = 0 and the first condition in (7.49) is satisfied.

(b) If h j(x
∗(τ)) > 0 then h j(x

∗(t)) > 0 also on some neighbourhood O (τ). Equalities
(7.88) and (7.89) then imply that η̃ j(τ) = ν j(τ

−)− ν j(τ
+). From condition (v) in

Theorem 7.1 we know that ν j is constant on O (τ). Hence η̃ j(τ) = 0 which implies
that both conditions in (7.49) are satisfied.

Now, suppose that τ ∈ (t0, t1) is a junction time for some h j. Hence, h j(τ) = 0 and
the second equality in (7.49) is satisfied. It remains to prove that also the first equality
in (7.49) is satisfied. Let us distinguish three cases:

(a) If τ is an entry time for h j, then (7.88) implies that ν j(τ
−)− ν̃ j(τ

−) = ν j(τ
−) and

(7.89) implies that ν j(τ
+)− ν̃ j(τ

+) = ν j(τ
+
2 ) ≥ 0, where τ2 is an exit time for h j

which is the nearest to τ and which is greater or equal to τ or τ2 = t1 if no such
exit time exists. Hence η̃ j(τ) = ν j(τ

−)− ν j(τ
+
2 ) ≥ 0 because τ < τ2 and ν j is a

non-increasing function.

(b) If τ is a contact time for h j, then (7.88) implies that ν j(τ
−) − ν̃ j(τ

−) = ν j(τ
−)

and (7.89) implies that ν j(τ
+)− ν̃ j(τ

+) = ν j(τ
+). Hence η̃ j(τ) = ν j(τ

−)− ν j(τ
+)

which is non-negative again because ν j is a non-increasing function.

(c) If τ is an exit time for h j, then (7.88) implies that ν j(τ
−)−ν̃ j(τ

−) = ν j(τ
+) because

τ itself is an exit time and (7.89) implies that ν j(τ
+)− ν̃ j(τ

+) = ν j(τ
+). Hence

η̃ j(τ) = ν j(τ
+) − ν j(τ

+) = 0 and we can conlude that ψ̃ is continuous at exit
times.
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In Theorem 7.4, we have proved that if an admissible solution to Problem (7.1a) –
(7.1d) satisfies the strong constraint qualification and the necessary conditions stated by
Seierstad and Sydsæter (1987) are met, then it satisfies also necessary conditions for-
mulated by Feichtinger and Hartl (1986) (possibly except condition (ii)). However, the
“converse” of this result can also be proved in the following form: If an admissible solu-
tion to Problem (7.1a) -Ű (7.1d) satisfies necessary conditions formulated by Feichtinger
and Hartl (1986) and the weak constraint qualification, then it satisfies necessary condi-
tions formulated by Seierstad and Sydsæter (1987), possibly except the condition (iii).
Hartl et al. (1995) and Feichtinger and Hartl (1986) suggest that this condition is not
implied by conditions given in Theorem 7.2. They argue that if the Kuhn-Tucker con-
ditions (iv) and (vii) in Theorem 7.1 are not sufficient for maximizing the Hamiltonian
according to (iii), then Theorem 7.1 provides more information than does Theorem 7.2.
However, no example to support this conclusion was given.

Before we prove the above-mentioned “converse” of Theorem 7.4, we introduce the
transformation of multipliers which are reversed to those given in (7.56) – (7.60).

Lemma 7.4. Let (x ∗(t),u∗(t)) be an optimal solution to Problem (7.1a) – (7.1d), let ψ0,

ψ, µ and ν be multipliers according to Theorem 7.1 and let ψ̃0, ψ̃, µ̃, η̃ and ν̃ be defined

by (7.56) – (7.60). Then ψ0, ψ(t), µ(t) and ν(t) satisfy the following equalities:

ψ(t)T = ψ̃(t)T + ν̃(t)T
dh

dx
(x∗(t)), (7.90)

ψ0 = ψ̃0, (7.91)

µ(t) = µ̃(t), (7.92)

ν(t) = ν̃(t) +
∑

τ≥t

η̃(τ) (7.93)

for all t ∈ 〈t0, t1〉.

Proof. The proof is straightforward for Equalities (7.90), (7.91) and (7.92). Indeed,
(7.90) is directly implied by (7.57), (7.91) follows from (7.58) and (7.92) follows from
(7.60). To show that also (7.93) follows from (7.56) and (7.59), a more deeper analysis
is needed: For a given j = 1, . . . ,q, let us define

Λ j( t̄) :=
�

τ≥ t̄
�

�τ is an entry or a contact time for h j

	

(7.94)

and

ξ j( t̄) := ν̃ j( t̄) +
∑

τ∈Λ j(t)

η̃ j(τ). (7.95)
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We have to prove that ξ j( t̄) = ν j( t̄).

Note that the set Λ j( t̄) is finite (and possibly empty) due to Property (P). If it is
empty, it means that there is no entry or contact time which is greater or equal to t̄.
In this case, Equality (7.56) together with condition (viii) in Theorem 7.1) implies that
ν̃( t̄) = ν( t̄). In addition, (7.95) implies that ξ j( t̄) = ν̃ j( t̄), hence ξ j( t̄) = ν j( t̄) and the
proof is concluded in this case.

Let us now assume that Λ j( t̄) is not empty. Given j and t fixed, we have that

Λ j( t̄) =:
�

τi

	n

i=1. (7.96)

Using (7.59), we obtain

ξ j( t̄) = ν̃ j( t̄) +

n
∑

i=1

h

�

ν j(τ
−
i
)− ν̃ j(τ

−
i
)
�

−
�

ν j(τ
+
i
)− ν̃ j(τ

+
i
)
�

i

. (7.97)

According to (7.88), we have

ν j(τ
−
i
)− ν̃ j(τ

−
i
) = ν j(τ

−
i
). (7.98)

Similarly, (7.89) implies

ν j(τ
+
i
)− ν̃ j(τ

+
i
) =

�

ν j(τ
+
i
) if τi is a contact time,

ν j(τ̂
+
i
) if τi is an entry time,

(7.99)

where τ̂i is an exit time for h j which is the nearest to t and which is greater than τi or
τ̂i = t1 if no such exit time exists.

For a given i = 1, . . . , n− 1, let us now distinguish two cases:

(a) If τi, i = 1, . . . , n − 1, is a contact time, the nearest junction time τi+1 which is
greater than τi is either an entry time or a contact time again. Hence, h j(x

∗(t))> 0
on (τi,τi+1). It follows from condition (v) in Theorem 7.1 that ν j is constant on
(τi,τi+1), which implies ν j(τ

+
i
) = ν j(τ

−
i+1). This together with (7.98) and (7.99)

allows us to simplify Equality (7.97) using

�

ν j(τ
−
i
)− ν̃ j(τ

−
i
)
�

−
�

ν j(τ
+
i
)− ν̃ j(τ

+
i
)
�

= ν j(τ
−
i
)− ν j(τ

+
i
)

= ν j(τ
−
i
)− ν j(τ

−
i+1), (7.100)

where i = 1, . . . , n− 1 is such that τi is a contact time.
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(b) If τi, i = 1, . . . , n− 1, is an entry time, the nearest junction time which is greater
than τi is an exit time which is denoted by τ̂i in (7.99). Furthermore, the nearest
greater junction time to τ̂i is an entry time or a contact time (denoted by τi+1 and
one has h j(x

∗(t)) > 0 on (τ̂i,τi+1). Again, condition (v) in Theorem 7.1 implies
that ν̂ j(τ̂

+
i
) = ν j(τ

−
i+1) since ν j is constant on (τ̂i,τi+1). In this case, we can use

(7.98) and (7.99) to write

�

ν j(τ
−
i
)− ν̃ j(τ

−
i
)
�

−
�

ν j(τ
+
i
)− ν̃ j(τ

+
i
)
�

= ν j(τ
−
i
)− ν j(τ̂

+
i
)

= ν j(τ
−
i
)− ν j(τ

−
i+1), (7.101)

where i = 1, . . . , n− 1 is such that τi is an entry time.

Furthermore, we can consider four cases for τn:

(a) If τn < t1 is a contact time, we have that h j(x
∗(t)) > 0 on (τn, t1〉. Conditions (v)

and (viii) in Theorem 7.1 then implies that ν j(τ
+
n
) = 0.

(b) If τn < t1 is an entry time and h j(x
∗(t−1 )) > 0 (i.e. these exists an exit time τ̂n

between τn and t1), it follows from conditions (v) and (viii) in Theorem 7.1 that
ν(τ̂+

n
) = 0.

(c) If τn < t1 is an entry time and h j(x
∗(t)) = 0 on 〈τn, t1〉, then τ̂n, which is refered

to in (7.99), is equal to t1 and ν j(τ̂
+
n
) = 0.

(d) If τn = t1, then Equality (7.99) together condition (viii) in Theorem 7.1 directly
imply that ν j(τ

+
n
)− ν̃ j(τ

+
n
) = 0.

In all four cases we have obtained

ν j(τ
+
n
)− ν̃ j(τ

+
n
) = 0. (7.102)

Hence, according to (7.98) and (7.102) we have

�

ν j(τ
−
n
)− ν̃ j(τ

−
n
)
�

−
�

ν j(τ
+
n
)− ν̃ j(τ

+
n
)
�

= ν j(τ
−
n
), (7.103)

Now we can combine (7.100), (7.101) and (7.103) with (7.97), which yields

ξ j( t̄) = ν̃ j( t̄) +

n−1
∑

i=1

�

ν j(τ
−
i
)− ν j(τ

−
i+1)
�

+ ν j(τ
−
n
) = ν̃ j( t̄) + ν j(τ

−
1 ). (7.104)

Once again we have to distinguish several cases:
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(a) If h j(x
∗( t̄)) > 0, then there exists τ0 ∈ 〈t0, t̄) such that h j(x

∗(t)) > 0 on (τ0,τ1).
Then ν j( t̄) = ν j(τ

−
1 ), since condition (v) in Theorem 7.1 states that ν j(t) is con-

stant on (τ0,τ1). In addition, (7.56) implies that ν̃ j( t̄) = 0. As a results, it follows
from (7.104) that ξ j( t̄) = ν j( t̄).

(b) If t̄ is an entry time or a contact time, then actually t̄ = τ1. Equality (7.104) yields

ξ j( t̄) = ξ j(τ1) = ν̃ j(τ1) + ν j(τ
−
1 ) = ν j(τ1), (7.105)

since ν̃ j(τ1) = ν̃ j(τ
−
1 ) = 0 at any entry or contact time and ν j(τ

−
1 ) = ν j(τ1).

(c) If h j(x
∗( t̄)) = 0 and t̄ is neither an entry time nor a contact time, then (7.56) states

that ν j( t̄) = ν̃ j( t̄)+ν j(τ̂
+), where τ̂ is an exit time nearest to t̄ which is greater or

equal to t̄ (or t1 if no such exit time exists). Moreover, condition (v) in Theorem
7.1 implies that ν j(τ̂

+) = ν j(τ
−
1 ), where τ1 is the entry or contact time which is the

nearest greater to t̄ and h j(x
∗(t) > 0 for t ∈ (τ̂,τ1). By combining these results

we obtain that ν j( t̄) = ν̃ j( t̄) + ν j(τ
−
1 ) = ξ j( t̄).

In all three cases (a) – (c) we have obtained that ξ j( t̄) = ν j( t̄), hence the proof is
concluded.

Using Equalities (7.90) – (7.93), the following theorem can be formulated:

Theorem 7.5. Let (x ∗(t),u∗(t)) be an admissible solution to Problem (7.1a) – (7.1d) satis-

fying the weak constraint qualification, which satisfies the conditions (i) – (xi) in Theorem

7.2 together with ψ̃0, ψ̃, µ̃, ν̃ and η̃. Suppose further that Assumption (P) is satisfied.

Then the conditions (i), (ii) and (iv) – (ix) of Theorem 7.1 are met, where the multipliers

ψ0, ψ, µ and ν are defined by (7.90) – (7.93).

Proof of (i). This is exactly the same as condition (i) in Theorem 7.2.

Proof of (ii). Assume for contradiction that (ψ̃0, ψ̃(t)) 6= (0,0) for all t ∈ (t0, t1) but
ψ0 = 0,

ψ( t̄)T = ψ̃( t̄)T + ν̃( t̄)T
dh

dx
(x∗( t̄)) = 0 (7.106)

for some t̄ (using (7.90)) and ν(t1)− ν(t0) = 0. The last equality implies that ν(t) = 0
for all t because ν is a non-increasing function and ν(t1) = 0. Then also ν̃(t) = 0 for all
t since (7.93) then implies

0= ν(t) = ν̃(t) +
∑

τ≥t

η̃(τ) (7.107)
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and both ν̃ and η̃ are non-negative functions according to conditions (vii) and (xi) in
Theorem 7.2. However, (7.106) then implies that ψ̃( t̄) = 0. However, it follows from
(7.91) that ψ̃0 = 0 since we have assumed that ψ0 = 0. Hence (ψ̃0, ψ̃( t̄)) = (0,0), a
contradiction.

Proof of (iv). Using the definitions of Lagrangian (7.9) and simplified Lagrangian (7.10)
combined with (7.90) – (7.92), we obtain

L(t, x∗(t),u∗(t), ψ̃0, ψ̃, µ̃, ν̃)− L̆(t, x∗(t),u∗(t),ψ0,ψ,µ) =

= ψ̃0 f 0(t, x∗(t),u∗(t)) + ψ̃T f (t, x∗(t),u∗(t)) + µT g(x∗(t),u∗(t))+

+ν̃ T
dh

dx
(x∗(t)) f (t, x∗(t),u∗(t))−ψ0 f 0(t, x∗(t),u∗(t))−

−
�

ψ̃(t)T + ν̃(t)T
dh

dx
(x∗(t))

�

f (t, x∗(t),u∗(t))−µT g(x∗(t),u∗(t)) = 0 (7.108)

for all t ∈ 〈t0, t1〉. Both the functions L and L̆ are C1-functions w.r.t. u, therefore we can
write for all t

∂ L

∂ u

�

t, x∗(t),u∗(t), ψ̃0, ψ̃(t), µ̃(t), ν̃(t)
�

=
∂ L̆

∂ u

�

t, x∗(t),u∗(t),ψ0,ψ(t),µ(t)
�

.

(7.109)
Hence, it follows from condition (iv) in Theorem 7.2

∂ L̆

∂ u

�

t, x∗(t),u∗(t),ψ0,ψ(t),µ(t)
�

= 0 (7.110)

for all t ∈ (t0, t1) with the possible exception of the discontinuity points of u∗(t) and
the junction times. Moreover, functions ψ(t), µ(t) and ν(t) have one-sided limits every-
where, thus we have that condition (iv) in Theorem 7.1 is satisfied.

Proof of (v). The first part of this condition is implied by (7.93) and condition (v) in
Theorem 7.2 which states that ν̃ j(t) = 0 almost everywhere whenever h j(x

∗(t)) > 0.
Indeed, one has ν j(t) =

∑

τ>t
η̃ j(τ) on intervals where h j(x

∗(t))> 0, which is a constant
on these intervals because they do not contain a junction point. The second part is a
consequence of other conditions in Theorem 7.1 (see Lemma 7.1(b)).

Proof of (vi). Let us denote

ψ̄ :=ψ− ν T
dh

dx
(x∗) . (7.111)
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Then we have

˙̄ψT (7.111)
= ψ̇T −

d

dt

�

ν T
dh

dx
(x∗)

�

(7.90)
=

˙̃ψT +
d

dt

�

�

ν̃ − ν
�T dh

dx
(x∗)

�

(vi)
= −

∂ L

∂ x

�

t, x∗,u∗, ψ̃, µ̃, ν̃
�

+
d

dt

�

�

ν̃ − ν
�T dh

dx
(x∗)

�

(7.64)
= −

∂ L

∂ x

�

t, x∗,u∗,ψ,µ,ν
�

,

almost everywhere where (vi) refers to the condition (vi) in Theorem 7.2.

Further, we prove that ψ̄ is a continuous function. One has

ψ̄(t−)T − ψ̄(t+)T (7.111)
= ψ(t−)T − ν(t−)T

dh

dx
(x∗(t))−ψ(t+)T + ν(t+)T

dh

dx
(x∗(t))

(7.90)
= ψ̃(t−)T + ν̃(t−)T

dh

dx
(x∗(t))− ν(t−)T

dh

dx
(x∗(t))−

−ψ̃(t+)T − ν̃(t+)T
dh

dx
(x∗(t)) + ν(t+)T

dh

dx
(x∗(t))

(7.93)
= ψ̃(t−)T − ψ̃(t+)T +

 

ν̃(t−)−
 

ν̃(t−) +
∑

τ≥t

η̃(τ)

!

−

− ν̃(t+) +
 

ν̃(t+) +
∑

τ>t

η̃(τ)

!

−
!T

dh

dx
(x∗(t))

= ψ̃(t−)T − ψ̃(t+)T − η̃(t)T
dh

dx
(x∗(t))

(7.48)
= 0.

Proof of (vii). This is exactly the same as condition (vii) in Theorem 7.2 .

Proof of (viii). This is implied directly by (7.93) and condition (viii) in Theorem 7.2.

Proof of (ix). The conditions in (ix) can be obtained from the previous condition (viii) in
Theorem 7.1 and the conditions (ix) in Theorem 7.2 using (7.90).

Theorem 7.5 states that if an admissible solution to Problem (7.1a) – (7.1d) satisfies
the necessary conditions of optimality by Feichtinger and Hartl (1986), then it satisfies
also necessary condtions by Seierstad and Sydsæter (1987), possibly except the condition
(iii) in Theorem 7.1, given that the weak constraint qualification and Assumption (P)
are met. Now we provide an example of a problem such that an admissible solution
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to this problem satisfies all conditions of optimality by Feichtinger and Hartl together
with the weak constraint qualification and Assumption (P), but it does not satisfy the
condition (iii) in Theorem 7.1. According to Theorem 7.1, such a solution cannot be
an optimal solution to the given problem. Hence, necessary conditions by Seierstad and
Sydsæter are stronger in this case in the sense that they are able to exclude an admissible
solution from the set of potential candidates for optimal solution. On the other hand,
necessary conditions by Feichtinger and Hartl do not exclude this solution from the set
of candidates.

Example 7.5. Let us consider the following problem:

max
{u(t)}

∫ 1

0

x(t)dt,

ẋ(t) =−u(t)2(u(t)− 1)(u(t)− 3),

x(0) = 0,

x(1) free,

x(t)≥ 0,

u ∈ R.

It is easy to derive that the optimal solution is u∗(t) = 3+
p

3
2

and x∗(t) = 9+6
p

3
4

t.
Indeed, it is clearly optimal to increase x(t) by a maximum rate. Note that the function
−u2(u− 1)(u− 3) has two local maxima: the first one is 0 at u = 0 and the second one
is 9+6

p
3

4
at u = 3+

p
3

2
, which is the global one. However, we show that ū(t) = 0 and

x̄(t) = 0 also satisfies all conditions of Theorem 7.2. Let us formulate these conditions.
We set ψ0 = 1, hence conditions (i) and (ii) are satisfied trivially.

(iii) For almost all t ∈ (0,1), x̄ + ψ̃[−ū2(ū−1)(ū−3)]≥ x̄+ ψ̃[−u2(u−1)(u−3)] for
all u such that −u(t)2(u(t)−1)(u(t)−3) = 0 whenever x̄(t) = 0, i.e. u ∈ {0,1,3},

(iv) (−4ū(t)3+ 12ū(t)2− 6ū(t))(ψ̃(t) + ν̃(t)) = 0,

(v) ν̃(t)≥ 0, ν̃(t)T x̄(t) = 0 and ˙̃ν(t)≤ 0,

(vi) ˙̃ψ(t) = −1,

(viii) ν̃(t) satisfies ν̃(1) = 0,

(ix) ψ̃(t) satisfies ψ̃(1) = 0,
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(x) x̄ − ψ̃[−ū2(ū− 1)(ū− 3)] is continuous for all t ∈ (0,1),

(xi) ψ̃(t) is continuous.

It is easy to verify that all conditions are satisfied for all t ∈ 〈0,1〉 with ψ̃(t) = 1− t and
ν̃(t) = 0. Note that the weak constraint qualification is trivially satisfied since there are
no mixed constraints. In addition, Assumption (P) is also satisfied.

We now show that conditions (i) – (ix) in Theorem 7.1 cannot be satisfied for ( x̄ , ū).
Assume that these conditions are satisfied. Condition (iii) then states that for almost all
t ∈ 〈0,1〉,

x̄(t) +ψ(t)[−ū(t)2(ū(t)− 1)(ū(t)− 3)]≥ x̄(t)+ψ(t)[−u2(u− 1)(u− 3)] (7.112)

for all u ∈ R. Hence one has ψ(t) = 0 almost everywhere on 〈0,1〉, since the function
−u2(u− 1)(u− 3) attains neither a global maximum nor a global minimum at ū = 0.
Furhermore, condition (vi) states that

d

dt

�

ψ(t)− ν(t)
�

=−ψ0 (7.113)

almost everywhere. This implies ν̇(t) = ψ0 almost everywhere, since ψ(t) = 0 almost
everywhere. However, Theorem 7.1 states that ν(t) is a non-increasing function on
〈0,1〉, hence ψ0 ≤ 0 and we obtain from condition (i) that ψ0 = 0. Equality (7.113)
now states that

d

dt

�

ψ(t)− ν(t)
�

= 0 (7.114)

almost everywhere and ψ(t)−ν(t) is continuous everywhere on 〈0,1〉 againg according
to the condition (vi). In addition, the terminal condition for (7.114) is ψ(1)− ν(1) = 0
due to conditions (viii) and (ix). Hence we can conclude thatψ(t)−ν(t) = 0 everywhere
on 〈0,1〉. As we have already noted, ψ(t) = 0 almost everywhere and ν(t) is a non-
increasing function. This implies thatψ(t) = ν(t) = 0 for all t ∈ 〈t0, t1〉. Accordingly, we
obtain that (ψ0,ψ(t),ν(0)− ν(1)) = (0,0,0) for all t ∈ 〈t0, t1〉, which is a contradiction
with the condition (ii). �

7.3 Extensions to the standard problem

In the previous section, we have introduced the standard optimal control problem with
mixed and pure state constraints. One of the main results was that we have to deal
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with discontinuity in costate variables if the pure state constraints become or cease to
be active. We have provided two useful forms of necessary conditions of optimality for
such problems. However, economic models require some extensions of the standard
problem. These extensions include mainly the infinite time horizon. Furthermore, some
types of the models also require a scrap value function in the objective criterion and free
initial conditions in some state variables. Hence we present the necessary conditions of
optimality for these problems.

Let us consider the problem in the following form:

max
{u(t)}

∫ ∞

t0

f 0(t, x(t),u(t))dt +ϕ(x(t0)),

ẋ(t) = f (t, x(t),u(t)),

g(x(t),u(t))≥ 0,

h(x(t))≥ 0,

x i(t0) = x0
i
, i = 1, . . . , l0 x0

i
all fixed, h(x0

i
)> 0,

x i(t0)≥ x0
i
, i = l0 + 1, . . . , m0 x0

i
all fixed, h(x0

i
)> 0,

x i(t0) free, i = m0 + 1, . . . , n

lim inf
t→∞

x i(t1) = x1
i
, i = 1, . . . , l x1

i
all fixed,

lim inf
t→∞

x i(t1) ≥ x1
i
, i = l + 1, . . . , m x1

i
all fixed,

lim inf
t→∞

x i(t1) free, i = m+ 1, . . . , n.

(7.115)

In addition to the standard assumptions on f 0, f , g and h, we assume that ϕ : Rn → R
is a C1-function. Furthermore, we restrict the set of admissible solutions (see Definition
7.1) only for those pairs (x(t),u(t)), for which the integral in (7.115) converges. We
also set t1 =∞ in Definitions 7.2 and 7.3 which are modified accordingly.

As stated by Seierstad and Sydsæter (1987) [Theorem 6.9, p. 381 and Theorem 6.16,
p. 397], the necessary conditions for Problem (7.115) are as follows:

Theorem 7.6 (Necessary conditions by Seierstad and Sydsæter, infinite horizon prob-
lem). Let (x∗(t),u∗(t)) be an optimal solution to Problem (7.115), which fulfills the weak

constraint qualification. Then it satisfies conditions in Theorem 7.1 on (t0,∞) provided

that condition (ii) is replaced by

(ψ0,ψ(t+)) 6= (0,0), for all t ≥ t0,
(ψ0,ψ(t−)) 6= (0,0), for all t > t0,

(7.116)

condition (viii) is deleted and condition (ix) is replaced by
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(ix’) ψ(t) satisfies

no condition for ψi(t0), i = 1, . . . , l0,

ψi(t0)≤ −ψ0 ∂ ϕ
∗

∂ xi

,
�

ψi(t0) +ψ
0 ∂ ϕ

∗

∂ xi

�
�

x∗
i
(t0)− x0

i

�

= 0, i = l0 + 1, . . . , m0,

ψi(t0) = −ψ0 ∂ ϕ
∗

∂ xi
, i = m0 + 1, . . . , n

where
∂ ϕ∗

∂ x i

=
∂ ϕ

∂ x i

(x∗(t0)), i = l0 + 1, . . . , n. (7.117)

Now we formulate necesary conditions of optimality for an infinite horizon problem
in accordance with Feichtinger and Hartl (1986) [Theorem 7.4, p. 187]:

Theorem 7.7 (Necessary conditions by Feichtinger and Hartl, infinite horizon problem).
Let (x∗(t),u∗(t)) be an optimal solution to Problem (7.115) with l0 = n (i.e. initial values

of all state variables are given), which fulfills the weak constraint qualification. Then it

satisfies conditions in Theorem 7.2 on (t0,∞) provided that conditions (viii) and (ix) are

deleted.

In addition to these conditions, it is useful to have another condition, which is not
mentioned by Seierstad–Sydsæter (1987), but is given by Feichtinger and Hartl (1986)
for Problem (7.115). It is an analogous conditions to the condition (7.50) given in
Theorem 7.3.

Theorem 7.8. 12 Let (x∗(t),u∗(t)) be an optimal solution to Problem (7.115), which fulfills

the weak constraint qualification and let ψ̃0, ψ̃, µ̃, ν̃ and η̃ be functions according to

Theorem 7.2. Then for all t > t0 with the possible exception of the discontinuity points of

u∗(t) and the junction times the following condition is satisfied:

dL

dt

�

t, x∗(t),u∗(t), ψ̃(t), µ̃(t), ν̃(t)
�

=
∂ L

∂ t

�

t, x∗(t),u∗(t), ψ̃(t), µ̃(t), ν̃(t)
�

. (7.118)

In this thesis, we primarily use the necessary conditions by Seierstad–Sydsæter which,
contrary to conditions formulated by Feichtinger and Hartl, also include the case of free
initial state. On the other hand, Equality (7.118) is only mentioned by Feichtinger and
Hartl. However, we know from Theorem 7.5 that if an optimal solution (x ∗(t),u∗(t))

to Problem (7.115) together with ψ̃0, ψ̃, µ̃, ν̃ and η̃ satisfy conditions of Theorem
7.7, then (x∗(t),u∗(t)) together withψ0, ψ, µ and ν defined by transformations (7.90) -
(7.93) satisfy conditions of Theorem 7.6, possibly except condition (iii) (the extention of

12See Feichtinger and Hartl (1986) [Theorem 7.4, p. 187].
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the proof of Theorem 7.5 to infinite time horizon problems is straightforward). Hence,
we can use the same transformations to write Equality (7.118) in terms of Seierstad–
Sydsæter type:

Theorem 7.9. 13 Let (x∗(t),u∗(t)) be an admissible solution to Problem (7.115) satisfying

the weaker constraint qualification, which satisfies the necessary conditions of optimality

given in Theorem 7.6 together with ψ0, ψ, µ and ν . Then for all t > t0 with the possible

exception of the discontinuity points of u∗(t) and the junction times the following condition

is satisfied:
dH

dt

�

t, x∗(t),u∗(t),ψ(t)
�

=
∂ H

∂ t

�

t, x∗(t),u∗(t),ψ(t)
�

. (7.119)

Proof. Recall that from (7.81) one has

L(t, x∗,u∗, ψ̃, µ̃, ν̃) = L̆(t, x∗,u∗,ψ,µ) (7.120)

for all t ≥ 0. In addition, from (7.8) and (7.10) one has

L̆(t, x∗,u∗,ψ,µ) = H(t, x∗,u∗,ψ) +µT g(x∗,u∗). (7.121)

Hence
∂

∂ t
L̆(t, x∗,u∗,ψ,µ) =

∂

∂ t
H(t, x∗,u∗,ψ) (7.122)

In addition, we know that µT (t)g(x∗(t),u∗(t)) = 0 for all t ≥ 0, hence

d

dt

�

µT (t)g(x∗(t),u∗(t))
�

= 0 (7.123)

which together with (7.121) implies

d

dt
L̆(t, x∗,u∗,ψ,µ) =

d

dt
H(t, x∗,u∗,ψ) (7.124)

As a result, (7.118) implies (7.119), using (7.122) and (7.124).

Another useful condition is the continuity of the Hamiltonian along an optimal solu-
tion. For the finite time horizon, this condition was proved in Lemma 7.1(a). However,
if we review the proof of this condition, we might check that it only uses conditions (iii)
and (iv) which are valid also in the case on infinite horizon. Hence, we can state the
following lemma:

13To our knowledge, this theorem is original. Seierstad and Sydsæter (1987) formulate an analogous
result only for problem with pure state constraints (i.e. without mixed constraints) and finite time horizon
only (cf. Seierstad and Sydsæter (1987) [Note 3(f), p. 334]).
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Lemma 7.5. Given the assumptions of Theorem 7.6, one has for all τ ∈ (t0,∞)

H
�

τ−, x∗(τ−),u∗(τ−),ψ(τ−)
�

= H
�

τ+, x∗(τ+),u∗(τ+),ψ(τ+)
�

. (7.125)

As stated in the Theorem 7.6, the transversality conditions on ν(t1) and ψ(t1) given
in conditions (viii) and (ix) in Theorem 7.1 are missing in the set of the necessary con-
ditions for a problem with infinite horizon. However, there are some conditions under
which the transversality conditions are still valid. One condition that might partly re-
place the missing transversality conditions is the condition that the Hamiltonian vani-
shes as time goes to infinity. However, to our knowledge this result was only proved
for problems without any constraints and with autonomous state equation so far. The
precise formulation of this result is given by Seierstad and Sydsæter (2009) [Theorem 1,
p. 508]:

Theorem 7.10. Let (x ∗(t),u∗(t)) be an optimal solution to Problem (7.115) with f not

depending explicitly on t and without any constraints. Assume that this solution satisfies

the necessary conditions of optimality together with ψ0 and ψ(t). In addition, assume that

there exists an ε > 0 such that

(i) the integral

∫ ∞

t0+1

| f 0(t +δ, x∗(t),u∗(t))|dt exists for all δ ∈ (−1,1) and

(ii) there exists a piecewise continuous function ξ(t) such that

�

�

�

�

∂ f 0

∂ t
(t +δ, x∗(t),u∗(t))

�

�

�

�

≤ ξ(t) (7.126)

for all δ ∈ (−1,1) and t ≥ t0+ 1 and

∫ ∞

t0+1

ξ(t)dt <∞.

Then

lim
t→∞

H(t, x∗(t),u∗(t),ψ0,ψ(t)) = 0. (7.127)

Note that condition (7.127) together with condition (7.119) and the continuity of
Hamiltonian implies

H
�

t, x∗(t),u∗(t),ψ0,ψ(t)
�

=−
∫ ∞

t

∂ H

∂ t

�

τ, x∗(τ),u∗(τ),ψ0,ψ(τ)
�

dτ. (7.128)
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It can be easily shown that this Equality is a generalization of the often-cited condition
introduced by Michel (1982) for autonomous optimal control problems with a discount
factor r without any mixed or pure state constraints:

H
�

t, x∗(t),u∗(t),ψ(t)
�

= rψ0

∫ ∞

t

e−rτ f 0(x∗(τ),u∗(τ))dτ. (7.129)
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Chapter 8

Conclusion

In this thesis, we have studied models of optimal sustainable economic growth. Be-
sides this, we provide some novel insights into the optimal control theory, particularly
into the formulation of necessary conditions of optimality for problems involving pure
state constraints and into some other properties of the optimal solutions. These results
were used for the rigorous analysis of the economic models.

Regarding the optimal control theory, we have found a relationship between two sets
of necessary conditions of optimality formulated by Seierstad and Sydsæter (1987) and
those formulated by Feichtinger and Hartl (1986). This relationship is summarized in
Theorems 7.4 and 7.5. Finding this relationship has been a key point for application of
the optimal control theory to our models, mainly in Chapter 5. Indeed, the formulation
of necessary conditions by Seierstad and Sydsæter (1987) includes a useful property
formulated in condition (vi) in Theorem 7.1 which is not directly included in the set of
necessary conditions by Feichtinger and Hartl (1986). On the other hand, the latter set
of necessary conditions contains a condition formulated in Theorem 7.3 which has been
the basis for derivation of Hartwick’s result but was not formulated by Seierstad and
Sydsæter (1987) for relevant problems. By interconnecting both sets of conditions, we
have been able to use both these results in the analysis of the model with two exhaustible
resources with binding state constraints as presented in Chapter 6.

The analysis of the model with two exhaustible resources can be regarded as the
most important contribution of this thesis. Based on the precise formulation of necessary
conditions, we have been able to provide an interesting description of properties of the
solution to this model, which is summarized in Theorem 5.1. According to this theorem,
in case of two mutually substitutable non-renewable goods, it is not optimal to futher
exploit the one with a constant productivity after the extraction of the second resource
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with a growing productivity started. In addition, Hartwick’s rule has been derived for
this model in Theorem 5.2.

We have also provided a summary regarding Hartwick’s rule and its converse for
models with discounted utility as well as maximin objective criterion. In addition, we
have studied the relationship between these two approaches. We have also brought a
new insight into the converse of Hartwick’s result. Its comprehensive formulation is
given in Theorem 4.7. Some of these results were published earlier in an author’s paper
(see Jurča (2007)). We have also proposed a new derivation of Hatwick’s result for
model with population growth, which was studied by Mitra (2008).

Following Martinet and Rotillon (2007), we have applied the concept of Noether’s
theorem to study the conservation laws in models with both types of objective criterion.
For this purpose, we have extended the results provided by Torres (2002), Torres (2004a)
and Torres (2004b) in Theorem 6.1. Using this approach, it has been possible to establish
a relationship between the total value of all capital goods at shadow prices and the total
discounted value of utility over the remaining time horizon (see (6.31)).

Some topics given in this thesis remain open for further research. For example, the
formulation of Theorem 5.1 allows a possibility that the first exhaustible resource with
constant productivity is not exhausted and even that it is not beeing extracted at all. A
question arises whether these possibilities can be excluded. Additionally, further research
can be conducted for extending the result given in Section 3.2.1(b), particularly on better
description of the values of optimal sustainable consumption in cases that (k0, s0) does
not satisfy (3.36). Moreover, the existence of solution satisfying all necessary conditions
by Seierstad and Sydsæter (1987) and all necessary conditions by Feichtinger and Hartl
(1986) except condition (ii) remains an open question.
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Symbols and notation

General symbols and abbreviations

� end of proof
� end of example
p. page
w.r.t. with respect to
DHS Dasgupta-Heal-Solow model
DHH Dasgupta-Hammond-Heal model

Mathematical notation

R set of real numbers
Z set of whole numbers
N set of natural numbers
Rn n-dimensional Euclidian space
〈a, b〉 closed interval
x ∈ Rn n-dimensional column vector
x T x transposed to a row vector

i.e. if x ∈ Rn then x =









x1
...

xn









= (x1, . . . , xn)
T ,

x i i-th component of vector x

Rn
+

set {x ∈ Rn; x i ≥ 0, i = 1, . . . , n}
Rn
++

set {x ∈ Rn; x i > 0, i = 1, . . . , n}
C n set of n-times continuously differentiable functions
O (τ−) left neighbourhood of τ
O (τ+) right neighbourhood of τ
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f (τ−) f (τ−) = lim
t→τ−

f (t); if f is not defined on O (τ−), then f (τ−) := f (τ)

f (τ+) f (τ+) = lim
t→τ+

f (t); if f is not defined on O (τ+), then f (τ+) := f (τ)

[ f (x)]x=a function f evaluated at point x = a, i.e. f (x)
�

�

x=a
d f

dx
Jacobian of the function f (or gradient taken as a row vector, if f is a

real function), i.e.
d f

dx
=









∂ f 1

∂ x1 . . . ∂ f 1

∂ xn

...
...

∂ f m

∂ x1 . . . ∂ f m

∂ xn









Notations in economic models

Basic variables

t time
c consumption (n-dimensional vector)
r rate of extraction of exhaustible capital goods (m-dimensional vector)
k stock of renewable capital goods (n-dimensional vector)
s stock of exhaustible capital goods (m-dimensional vector)
n population

Functions

f production function (satisfies Assumption (A1))
δ amortization function (satisfies Assumption (A2))
U utility function (satisfies Assumption (A3))
π discount factor (satisfies Assumption (A4))
ϑ population growth (satisfies Assumption (A5))
d productivity of the second exhaustible capital in the model with two

exhaustible capital goods (satisfies Assumption (A6))

Parameters

α output elasticity of the renewable capital good
β output elasticity of the exhaustible capital good
γ parameter of the exponential growth of productivity
θ relative risk aversion in the utility function
ρ n-dimensional vector parameter of weights of consumer goods
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Multipliers and others

ψk n-dimensional vector of costate variables associated with k

ψs m-dimensional vector of costate variables associated with s

ψi costate variable associated with si (a simplified notation ofψsi
, i = 1,2)

ψw costate variable associated with w

ψn costate variable associated with n

µc n-dimensional vector of Lagrange multipliers associated with the con-
straint c ≥ 0

µr m-dimensional vector of Lagrange multipliers associated with the con-
straint r ≥ 0

µi Lagrange multiplier associated with the constraint ri ≥ 0 (a simplified
notation of µri

, i = 1,2)
µw Lagrange multiplier associated with the constraint U(c)≥ w

νk n-dimensional vector of Lagrange multipliers associated with the con-
straint k ≥ 0

νs m-dimensional vector of Lagrange multipliers associated with the con-
straint s ≥ 0

νi Lagrange multiplier associated with the constraint si ≥ 0 (a simplified
notation of νsi

, i = 1,2)
I value of net investment, i.e. I =ψT

k
k̇+ψT

s
ṡ =ψT

k
k̇−ψT

s
r
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Index

admissible solution, 70
amortization function, 7

competitive path, 13, 27
conservation law, 54
constraint qualification

strong, 71
weak, 71

contact time, 72

Dasgupta-Heal-Solow model, 8
discount factor, 8
discounted utility approach, 16, 26, 62–64
Dixit-Hammond-Hoel model, 13

entry time, 72
exit time, 72

Hamiltonian, 72
continuity, 75, 81, 106

Hartwick’s result, 25, 26, 29
converse, 34
economic interpretation, 27
generalized, 27
generalized, converse, 31

Hartwick’s rule, 25
generalized, 28
generalized, converse, 25

indirect adjoining approach, 70
interior solution, 16
invariant problem, 57

junction time, 72

Lagrangian, 72

maximin approach, 9, 18, 28, 40–53, 64–
65

necessary conditions
by Feichtinger and Hartl, 80
by Seierstad and Sydsæter, 73

Noether’s theorem, 54, 57

population growth, 11, 36
production function, 6

quasi-invariant problem, 55, 57

Ramsey model, 8
regular solution, 20

simplified Lagrangian, 73
sustainability constraint, 1

utility function, 7

viability kernel, 14
viability theory, 13

weakly interior solution, 45
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