Journal of ELECTRICAL ENGINEERING, VOL. 57, NO. 7/s, 2006, 51-54

THE SECOND PILLAR OF THE SLOVAK PENSION
SYSTEM — INTEREST RATE TARGETING

~ g e ’ *
Sona Kilianova

This paper concentrates on the second pillar of the three-pillar pension system of Slovak Republic. The utility function is
used to characterize the user’s attitude to risk and to define the stochastic programming problem. A dynamic accumulation
model for determining the optimal switching strategy between pension funds is presented. Numerical experiments are done
to investigate the sensitivity of results on whether fund returns are constant over time or are dynamically changing.
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1 INTRODUCTION

Before January 2005, the pension system in Slovakia
was based on the unfunded pay-as-you-go system. Be-
cause of the unfavorable conditions (high unemployment,
demography crisis, etc.) this system was replaced by a
new one since 2005. The goals of the pension reform were
to secure a stable flow of high pensions to the beneficia-
ries, and sustainability and overall stability of the system.
The new system is based on three pillars: the mandatory
non-funded first pillar (pay-as-you-go pillar); the manda-
tory fully funded second pillar; and the voluntary fully
funded third pillar.

The contribution rates were set for the first pillar at
19.75% (old age 9%, disability and survival 6% and
reserve fund 4.75%) and for the second pillar 9%. A
thorough description of the Slovak pension reform with
calculations of the balance of the pension system and
expected level of pensions in the new system could be
found in [1] and [3].

Table 1. Limits for investment for the pension funds.

Fund Stocks Bonds and money
type market instruments
Growth Fund  |up to 80 % at least 20 %
Balanced Fund |up to 50 % at least 50 %
Conservative Fund | no stocks 100 %

The savings in the second pillar are managed by pen-
sion asset administrators. Each pension administrator
manages three funds: Growth Fund, Balanced Fund and
Conservative fund, each of them with different limits for
investment (see Tab. 1). At the same time the savers may

hold assets in one fund only. Up to 15 years before retire-
ment, the saver may not hold assets in the Growth Fund
and up to 7 years all assets must be in the Conserva-
tive Fund. Even with these restrictions the contributors
have some space for individual decisions which fund is
optimal in a specific situation (the age of the contribu-
tor, the saved amount, the past performance of the pen-
sion funds). The above restrictions for the funds were
described by a mathematical model in [2] and the op-
timal strategies of switching between the pension funds
(Growth, Balanced and Conservative) were calculated in
the same work.

This paper is organized as follows: Section 2 contains
the formulation of the dynamic stochastic programming
accumulation model as it was done in [2]. In Section 3 we
discuss the numerical scheme for finding a solution of this
model. In Section 4 we present the form of the results and
in Section 5 we do some numerical experiments regarding
the fund returns. The last section contains final remarks
and conclusions.

2 THE DYNAMIC STOCHASTIC
PROGRAMMING ACCUMULATION MODEL

In this section we recall the basic steps of derivation of
a dynamic stochastic accumulation model as it was done
in [2]. Suppose that the future pensioner deposits once a
year a 7-part of his/her yearly salary w; to a pension
fund j € {1,2,...,m}. Denote by s, t = 1,2,...T
the accumulated sum at time ¢ where T' is the expected
retirement time. Then the budget-constraint equations
read as follows:

sir = se(L4+r)) w7, t=1,2,...,T—1,

(1)

S1 =uw T
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where r{ is the return of the fund j in the time period

[t,t+1). In terms of the ratio of the accumulative sum to
the yearly salary d; = s;/w; (which is a more interesting
variable for the pensioner), the budget constraint can be
reformulated to

dt+1:Ft(dtaj)7 t:1727"'7T_]-7

d1:7'

(2)

where Fy(d,j) = d% +7,t=1,2,....,T—1 and o

denotes the wage growth defined by the equation
wip1 = wi(1+ 01) -

Suppose that each year the saver has the possibility to
choose a fund j(¢,I) € {1,2,...,m}, where I; denotes
the information consisted of the history of returns r},,
t'=1,2,...,t—1, 5 €{1,2,...,m} and the wage growth
oy, t' =1,2,...,t — 1. Now suppose that the history of
the wage growth g;, t = 1,2,...,T — 1 is deterministic
whereas the returns 7/ are random and are assumed to
be independent for different times ¢ = 1,2,...,T — 1.
The relevant information is then the quantity d; only.
Hence j(t,I;) = j(t,d:). One can formulate a problem of
dynamic stochastic programming

max E(U(dr)) (3)
with the following recurrent budget constraint:
dt+1:Ft(dt,j(t,dt)), t:1,2,...,T—1, d1 =T (4)

where the maximum is taken over all non-anticipative
strategies J = {j(t,d;) : t =1,...,T}. Here U stands for
a given preferred utility function of wealth of the saver.
Using the tower law for the conditional expectation
E(U(dr)) = E(E(U(dr)|I,)) = E(E(U(dr)|d:))

we conclude that E(U(dr)|d:) should be maximal. Let
us denote J; = {j(r,d;) : 7=t,..,T} and

Vild) = max E(U (dr)|d = d).
Then by using the tower law
E(U(dr)|d) = E(E(U (dr)|di+1)]dy)

we obtain the Bellman equation

Vi(d) = max  E[Viy1(Fi(d,)))]
je{1,2,...,m}
= E[Vit1(Fi(d, j(t,d)))], (5)
for t = 1,2,...,T — 1, where Vy(d) = U(d). Thus,

the optimal feedback strategy j(t,d;) can be constructed
backwards. This strategy gives the saver the decision for
the optimal fund for each time ¢ and level of savings d; .

Suppose that the stochastic returns r}

are represented
by their densities f}. Then equation (5) can be rewritten

in the form

Vi(d) = max

- ElV; Fy(d,j
jEf1,2,...,m} [Vit1 (Fy(d, 5))]

1+r ;
= d J(r)d
mjax/RV}H( 1+Qt+7')ft(r) r

. 1+ o0 1+o
— ] - -
= mjaX/RVt+1(y)ft ((y 7) d 1) d

_ (1) 1+o L+ o
= [V (-5 - 1) 5y ©)

dy

where the substitution y = d(1 +r)(1 + ¢¢) * + 7 has
been used.

An important part of the problem (3)-(4) is the choice
of the utility function U. The utility function varies
across the investors and represents their attitude to the
risk. In our case we use the iso-elastic utility function

U(d) = ((Hd)l—“ - 1)

1—a

where k = 1/12 scales the utility function to be ”steeper”
for reasonable values and the numerical procedure is more
stable; a > 0 is the constant coefficient of proportional
risk aversion. Problem (3)-(4) then maximizes the ex-
pected utility of savings (compared to the last yearly
salary) appointed for x = 1/12 of the yearly benefits (i.e.
the benefits for 1 month). Clearly, maximizing monthly
benefits or yearly benefits leads to the same strategy.

3 NUMERICAL APPROXIMATION SCHEME

The numerical scheme for solving the dynamic stochas-
tic accumulation model has been proposed in [2]. We dis-
cuss some key ideas of it.

The main difficulty in computing the Bellman inte-
gral (6) resides in significant oscillations in the integrand
function, which may attain both large values as well as
low values of the order one. Therefore a scaling technique
is needed when computing the integral (6).

Let H:(d) be any bounded positive function for t =
1,2,...,T. We scale the function V; by Hy, i.e. we define
a new auxiliary function

Wi(d) = Hy(d)Vy(d) .

Clearly, the original function V;(d) can be easily calcu-
lated from W;(d). Then, for each time step ¢ from ¢t =T
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down to t = 2 we have

WT(d) = HT(d)VT (d) and

Wi1(d) = Hi—1(d)Vi—1(d)

d )
= H;_1(d)V; 1 7 (r\d
s [ @ (e )

= max

Hy ()W, (t (1+7) +7)
- / frar
je{l,2,..m} Jp

Ht(ﬁ(l + ) +7')

/ Hy 1 (d)Wi(y)
R Hy(y)

1+ o4
d

R L R ELL

=max
J

It is worthwhile noting that any choice of the family
H:,t =1,...,T, of positive bounded scaling function pre-
serves the result. It may however significantly improve
the stability of numerical computation.

We recursively define the scaling functions H;,t =
T,T —1,...,2,1, depending on the previously computed
solution Viy1 as follows:

1
= and

Hy = ,
T2

1
Ht:

V1 + Vi

In our algorithm we compute values of the function
Wy = We(d) for discrete values of d from the time depen-
dent interval d € (dmin,t/2), where we use dp,:n = 0.09.
In each time level ¢ = T down to t = 1 we choose a
uniform spatial discretization of the interval (duin,t/2)
consisting of k£ = 200 mesh points. In order to compute
the Bellman type integral with normal distribution den-

for t=T-1,...,1.

sities fl] we use the Simpson rule with 11 grid points.
We take into account the rapid decay of normal distribu-
tion densities f/ and we replace them by zero outside the
interval of the range of the grid points.

The output of the numerical code is a matrix of size
(T = 40) x (k = 200) allowing us to "browse” be-
tween different years (rows) ¢ and different levels of d
(columns). At a given cell of the table we can read the
name of the fund (j = 1,...,m) which has to be chosen.
Plots of computed output matrices adjusted to the do-
main {(d,t),t € (0,T),d € (dmin,t/2)} are depicted in
the next sections.

4 OPTIMAL CHOICE AND PENSION
PORTFOLIO SIMULATIONS

In paper [2] we implemented the proposed scheme for
parameters with values given in Tab.2 and Tab.3. The
assumed period of saving was T = 40 years and the per-
centage of salary transferred each year to a pension fund
was 7 = 9% according to Slovak legislature. The typi-
cal result is depicted in the upper graphics of Fig. 1. This
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graphical plot shows the three regions I, II, resp. III in the
(d,t) plane, in which fund j = 1,2, 3 is respectively the
optimal choice j = j(d,t). The solid curvilinear line rep-
resents the path of the averaged wealth E(d;) calculated
from 10000 simulations of the wealth d;. The dashed
lines correspond to E(d;) £ oy intervals where o; is the
standard deviation of the random variable d;. One can
observe the points where the solid curvilinear line inter-
sects the region borders, i.e. the moments of ”switching”
between funds. For details of computation see [2].

In this recent work we investigated the sensitivity of
the resulting strategy to changes in some parameters, like
e.g. the height of returns, or the utility function param-
eter a. Accepting a higher risk (lower a) in the strat-
egy leads to a higher expected level of the future pension
benefits. Higher stock returns turned out to imply a later
switch to less risky funds accompanied with a higher risk.
Similarly, higher bond returns cause an earlier switch to
more conservative funds.

Table 2. Data used for computation.

Fund Return StdDev
F; |r! =0.1166 |03 = 0.1247
Fs [72=10.0923 |05 = 0.0780
Fs; |r®=0.0516 |05 = 0.0082

Table 3. Data used for computation.

Period
wage gr.

2006-08
1.075

2009-14|2015-21]|2022-24|2025-...
1.070 | 1.065 | 1.060 | 1.050

5 INTEREST RATE TARGETING

However, it can hardly be expected that the returns
of funds will remain constant over the whole period of
saving. Based on the calibration of Cox-Ingersoll-Ross
interest rate model it was shown in [4] that it is reasonable
to expect the bond return to be decreasing to the value of
approximately 2% in the time horizon of ”some” years.

Let us investigate how the resulting strategy changes
when we replace constant returns by returns decreasing
monotonically to some target level. Let us assume that
the return of each fund j decreases exponentially from
the starting value 7} and in the infinite time horizon it
converges to its target value rJ_ . Then the rates in years

i=1,2,...,T, are given by formula

rl =7l +(r) —rl )exp™

i

K;|T

(7)

for funds 7 = 1,2,3 and some coefficients K;. Let 7

have the values given in Tab. 2, and let i, = r}/2 for
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Fig. 1. Regions of optimal choice and the path of average saved return. a) ri,r2,r3 constant, b) 71,72 constant, rs monotonically
decreasing, c) r1,72,73 monotonically decreasing.

all j. Thus, r§ = 0.1166, r3 = 0.0923, r§ = 0.0516, and
rl, =0.0583, r2 = 0.0462, 73, = 0.0258.

First, we investigate what happens if the returns of the
first two funds remain constant, and the bond fund return
alone decreases exponentially to the target value. For
the constant rates rJ,.,. we take the geometric average
return obtained from (7) for years i = 1,...,T(= 40)
and K; = 2. In the a),b),c) part of Fig. 1 the rates of
returns - all constant, one decreasing, and all decreasing,
respectively (bottom) and the optimal choice regions with
the simulated path (top) are depicted. Although the final
wealth in the first two cases is not very different, we
can observe the enlargement of the region II, i.e. a later
switch to the conservative fund in case b). The border
between regions II and III is more curved than the one
corresponding to the averaged value of r?,.,.. This is also
in accordance to our intuition.

Second, we answer the question what happens if all
fund returns are exponentially decreasing according to
(7). We cannot expect anything by intuition because ev-
erything depends on the concrete starting and target re-
turns and on the speed of decrease. It thus remains a ques-
tion how the resulting optimal strategy will change. The
part ¢) of Fig. 1 gives the answer. The regions, the switch-
ing times, and the averaged final wealth do not change
significantly compared to case a). One can observe only
a slight deformation of the region borders. This gives us
the experience that decreasing returns lead to the same
strategy as returns fixed on the level of geometric mean
of the returns in the first situation. However, it can be
expected that if the level of fixed returns is much higher
or much lower than the mentioned geometric mean, the
resulting strategies will be more different from each other.

6 CONCLUSIONS

We have presented a dynamic accumulation model
for determining optimal switching strategies for choos-
ing pension funds with different risk profiles. We tested
the impact of non-constant fund returns on the optimal
strategy in comparison to the optimal strategy obtained
by considering fixed fund returns.
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