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a long period, we hope that our models provide a good guidance for savers’ decisions.
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Chapter 1

Introduction

In the last decades, many European countries underwent several social and economic re-

forms. Pension reform was and in some countries still is one of the most important topics

for political discussions. The main reason for the reform of pension systems in most coun-

tries of the European Union (EU) and also other parts of the world is the forecasted rapid

aging of population. According to the World Bank and International Monetary Fund pro-

jections ([32], [13]), the region’s old-age dependency ratio (percentage ratio of people

over the age 64 to the working age population) is projected to double to 54 percent by

2050, meaning that the EU will move from having four persons of working age for ev-

ery elderly citizen to only two. The pension reforms are designed to lower the burden

on a shrinking number of workers, responsible of providing for an increasing number of

pensioners, and also to reduce the strain on public budgets. The next reason for pension

reforms in European countries lies in European economic integration, which will prompt

higher levels of internal and external migration. The labor mobility has to be supported

by a justified pension system. The reforms include strengthening the link between pension

contributions and benefits, prolonging the contribution period by raising the retirement

age, and diversification of sources of retirement pension benefits. The most favored ap-

proach has been to gradually replace the pay-as-you-go system with a fully funded system

so that retirement income will be fully financed by investing the pension plan members’

contributions in financial assets ([14]).

Two reform styles have emerged ([32]): a parametric style and a paradigmatic style.

A parametric reform is an attempt to rationalize the pension system by seeking more rev-

enues and reducing expenditures while expanding voluntary private pension provisions. A

pay-as-you-go (PAYG) pillar is downsized by raising the retirement age, reducing pension

indexation and curtailing sector privileges. A development of voluntary pension funds

beyond the mandatory social security system is promoted through tax advantages, orga-
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6 Chapter 1. Introduction

nizational assistance, tripartite agreements and other means of administrative and public

information facilitation. This type of reform is taking place in Austria, Czech Republic,

France, Germany, Greece, and Slovenia.

Some countries have decided to change the model in which pension systems operate

– that is, to move away from the monopoly of a PAYG pillar within the mandatory social

security system. A paradigmatic reform is a deep change in the fundamentals of pension

provision. It is typically based on the introduction of a mandatory funded pension pil-

lar, along with an essentially reformed PAYG pillar and the expansion of opportunities

for voluntary retirement saving. Most transition economies have kept a reformed and

downsized public and unfunded (first) pillar and added a second and funded pillar. All

countries undertook efforts to introduce a regulated third pillar to handle voluntary indi-

vidual savings. This type of reform has been introduced for example in Bulgaria, Croatia,

Denmark, Hungary, Latvia, Lithuania, the Netherlands, Poland, Slovak Republic, Sweden,

and the United Kingdom. Arguments commonly used to support paradigmatic as well as

parametric reforms are discussed in [32].

In general, the systems after a paradigmatic reform are based on three main pillars,

therefore we refer to these reforms as three pillar reforms. The first pillar is represented by

the traditional PAYG mechanism which is a social insurance based on regular contributions

from workers, immediately redistributed to pensioners. Typically, the unfunded first pillar

was reformed and downsized to make a room for an earnings-related funded second pillar.

The scope and structure of the newly introduced funded second pillar differs significantly

amongst the countries. In general, the fully funded second pillar, or some part of it, is

based on private savings of citizens in pension funds, managed by commercial pension

fund administrators. The third pillar comprises voluntary individual saving programmes

in supplementary pension accounts. The ratio of population participating in this pillar is

low in most countries.

Synopsis

In this thesis, we focus on the second, fully funded pillar. In particular, we consider the

position of a working person who is a future pensioner and participates in the second pillar

of the pension system of the corresponding country. Our research was motivated by the

pension system of Slovak Republic, the second pillar of which is based on savers paying

regular contributions to their pension account and investing the savings to one of three, by

government strictly defined pension funds. The funds differ in their risk profiles. The saver

is given a possibility to choose the fund they wish to invest in and is allowed to change

their choice periodically. Since the funds are invested in financial markets, their returns

have stochastic character and the investments are more or less risky. We develop two types

of models which give the saver a proposal, which fund it is optimal for them to choose at

each rebalancing period during their active life, depending on certain parameters.

Although the exact form of the second pillar varies significantly among countries, the

above described principle is present at least as an element of pension systems in several

countries, for example Denmark or the United States of America. Therefore, the proposed

models may be applied to these countries also. Moreover, even outside the context of
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pension saving, the problem may be viewed generally as a problem of investing money

into several funds with different characteristics and rebalancing periodically.

In Chapter 2 we give a brief description of pension systems of selected countries to

which our models may be applied. Chapter 3 is dedicated to clarifying the goals of the

thesis. The next two chapters review the basic knowledge required for the models: theory

of utility functions and the concept of risk measures. Chapter 6 presents the proposed

mathematical models. The first two models are the dynamic accumulation model and

the proportional investment allocation model, both leading to a problem of stochastic dy-

namic programming. The third and fourth models are based on risk minimization: model

minimizing single-period risk and model minimizing multi-period risk. The models are

numerically implemented for the case of Slovak Republic in Chapter 7 and the sensitivity

of results to varying parameters is investigated. The thesis is closed in Chapter 8 with

conclusions.





Chapter 2

Overview of pension systems in

selected countries

Pension reforms and pension systems adopted in different countries vary a lot in de-

tails. It is not our concern to repeat all the complicated descriptions of various systems in

particular countries. We refer to the vast works of literature that have already been writ-

ten, see for example the publications of The World Bank ([2], [5], [15], [19], [22], [32],

[33], [54], [67]), The International Monetary Fund ([13], [14]), Observatoire Social Eu-

ropéen ([46]) or publicly available information of Ministries of Social Affairs of individual

countries.

In this chapter, we give a very brief overview of pension systems of selected countries.

In particular, we focus on countries with multi-pillar pensions systems. Among them we

choose Slovak Republic, Denmark and USA and we describe the fully funded second pillar

of their pension systems in more detail.

2.1 The scope of the second pillar

A multi-pillar pension system was adopted in many countries all around the world: in

most countries of Eastern and also Western Europe, Latin America, USA, or even Russia.

Multi-pillar systems combine the unfunded, partially funded, or funded public “solidarity

systems” (the first pillar) and funded individual account systems (the second pillar and

voluntary third pillar).

The scope and structure of all pillars vary among countries. In the second and fourth

column of Table 2.1 we give an overview of contribution rates to the second pillar in

selected countries. Usually, the pension fund management institutions are obliged to offer

at least two types of pension funds to their members. “Type 1” pension fund may be

9



10 Chapter 2. Overview of pension systems in selected countries

Country 2nd pillar Country 2nd pillar

Bulgaria * 2% Lithuania *** 5.50%
Croatia 5% Macedonia 7%
Denmark 12 − 15% Poland 7.3%
Estonia 6% Romania 8%
Hungary 6% Russia 2− 6%
Kazakhstan 10% Slovakia 9%
Kosovo 10% Sweden 2− 5%
Latvia ** 10% Ukraine 7%

Table 2.1: Different contribution rates to the second pillar of pension systems of selected countries,
as a percentage of gross earnings.

Note: the data contained in the table have an informative character, since more complicated rules
for determining the contributions rates apply in many cases.

* to be increased from 2% in 2006 to 6%
** to be increased from 2% in 2006 to 10% in 2010 and thereafter.
*** voluntary second pillar.

Source: Observatoire Social Européen 2004 ([46]) and publicly available information of Ministries

of Social Affairs of individual countries.

invested in fixed income instruments and stocks, whereas “Type 2” pension fund must be

placed exclusively in fixed income securities.

2.2 Slovak Republic

The “three-pillar” reform in Slovak Republic was adopted in the year 2003 as a part of

several crucial social and economic reforms. The unfunded first pillar is mandatory and

based on the pay-as-you-go system. The second pillar is based on saving in private pension

accounts, that is, paying contributions towards the investors’ own future benefits. The

voluntary, fully funded third pillar is designed for supplementary pension savings and has

a small size.

People who were in active employment before January 2004 were given the possibility

to decide whether they wish to stay in the first pillar only, or to split their contributions

between the first and the second pillar. The new workforce entrants after January 2004

are obliged to participate in the latter form. The regular contribution rate 18% which was

formerly paid to the pay-as-you-go pillar is then split to 9% of the gross salary in both the

first and the second pillar.

Assets in the second pillar are managed by pension fund management institutions.

Each of them is obliged to create and offer three types of funds with different risk profiles:

a Growth fund with the highest ratio of stocks in the portfolio, a Balanced fund and a

Conservative fund that is allowed to invest to secure financial instruments only. The in-

vestment limits defining the funds are specified in Table 2.2. The participants choose one

of the funds and they are allowed to revise their decision during the period of saving and

switch to another fund eventually. Hence, future pensioners are able to partially influence
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Fund Stocks Bonds and money

type market instruments

Growth Fund (1) up to 80% at least 20%

Balanced Fund (2) up to 50% at least 50%

Conservative Fund (3) no stocks 100%

Table 2.2: Limits for investment for the pension funds in Slovak Republic.

the amount of their savings at their retirement time and also its risk by balancing between

the three fund types. Furthermore, there are additional governmental regulatory restric-

tions imposed on the fund selection: investment in the Growth fund is not allowed during

the 15 years prior to retirement and the last 7 years are reserved for the Conservative fund

only. A detailed study of the pension system of Slovak Republic is given in e.g. [28] and

[43].

2.3 Denmark

The pension system in Denmark is based on three pillars as well, although it is very dif-

ferent from the Slovak system. The first pillar is represented by public pension schemes.

These cover two schemes that are administered by public sector institutions and aim to

provide universal or near-universal benefits. The main scheme is unfunded and financed

from general tax revenues, but the main supplementary scheme is financed from the em-

ployer’s and employee’s contributions and is fully funded. In addition to the flat pension,

a supplement is paid to low-income pensioners.

In 1964, the authorities introduced a supplementary pension scheme, because the

level of the social pension was rather modest. ATP (Arbejdsmarkedets Tillægspension, La-

bor Market Supplementary Pension Scheme) is an independent, self-supporting institution

which is a part of Denmark’s overall social security scheme. ATP covers all wage earners

in Denmark. Members pay contributions during the years they are actively participating

in the labor market. The ATP is funded by the employer’s (2/3) and employee’s (1/3) con-

tributions that are subject to relatively low ceilings (maximum of DKK 2,684 per year in

2004), corresponding to less than 0.9 percent of the average wage. Contributions to ATP

are not related to income, but are set as fixed amounts. These depend on a few broad cat-

egories that have been defined on the basis of the number of working hours. ATP benefits

are payable at age 65.

The second pillar of the Danish pension system is based on occupational pensions.

Most workers are covered by private occupational pension schemes that have been pro-

moted by collective bargaining, because both the social pension scheme and ATP pay

modest benefits. Participation is not mandatory by law, but is effectively imposed by col-

lective labor agreements. The contribution rate varies with the specific plan. It has steadily

grown over the past decade and the average contribution rate now exceeds 10 percent of

wages. Occupational pension plans offer a variety of retirement products, ranging from
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Fund Stocks Bonds and money

type market instruments

AP Profil 35 up to 100% at least 0%

AP Profil 25 up to 75% at least 25%

AP Profil 15 up to 50% at least 50%

AP Profil 7 up to 25% at least 75%

Table 2.3: Funds with different risk profiles, AP Pension, Denmark. Source: AP Pension, [62].

life annuities to term annuities, phased withdrawals and lump sum payments. Most plans

offer this choice of products. Plans differ in the degree of flexibility and choice they allow

to their members.

Personal pension plans constitute the third pillar of the Danish pension system. They

are offered by banking, insurance and pension institutions and are established on a vol-

untary basis for persons who are not covered by occupational pension schemes or wish to

obtain additional coverage.

One component of the system suitable for our models is the occupational schemes,

which offer numerous products, such as the possibility to invest in various funds with

different risk profiles. As an example we can mention a product of AP Pension ([62]),

offering the following four funds: AP Profil 35, 25, 15, 7, with risk profiles given in

Table 2.3.

The information on the Danish pension system presented here was obtained from [4].

We refer readers to this source for a more detailed information.

2.4 The United States of America

The pension system of the United States of America is rather complicated. Therefore, we

pay attention only to one particular part of the overall pension system: TIAA-CREF (Teach-

ers Insurance and Annuity Association - College Retirement Equities, founded 1918). It is

a nonprofit organization serving employees of educational and research institutions. To-

day 8,700 college, universities, and institutions, and 2 million individuals are part of the

TIAA-CREF pension system.

The retirement program administered by TIAA-CREF is a popular benefit. Since con-

tributions may be made on a tax-deferred basis, many faculty and staff members use the

pension to lower current taxes. Salary reduction agreements can be changed 4 times per

calendar year ([63]). The contribution levels are restricted depending on the particular

college or university. For example, Dixie State College in Utah contributes an amount

equal to 14.20% of the employee’s annual salary to their TIAA-CREF retirement Plan. No

individual contributions are required.

TIAA-CREF offers nine accounts, one with a guarantee and eight that are variable, or

nonguaranteed. The TIAA-CREF Traditional Annuity guarantees the principal as well as

a specified interest rate, plus provision of an opportunity for additional growth through
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dividends. The TIAA-CREF Real Estate Account invests the majority of its assets in a port-

folio of income producing commercial and residential properties. The remainder is kept

in more liquid investments. The CREF Stock Account invests a major portion of its assets

in a portfolio that tracks the performance of the US stock market as a whole. Other seg-

ments consist of foreign and domestic stocks selected for their above-average investment

potential. The CREF Money Market Account invests in short-term interest-earning securi-

ties. The CREF Bond Market Account invests in a portfolio of medium- to long-term US

government bonds, corporate bonds, and asset-backed securities. The CREF Social Choice

Account invests in a diversified portfolio of stocks, bonds, and money market instruments

of companies that follow certain standards for social responsibility. The CREF Global Equi-

ties Account invests in a portfolio of stocks from around the world, including the US. The

CREF Equity index Account invests in a diversified portfolio that tracks the overall US stock

market, as represented by a broad market index. The CREF Growth Account invests in a

portfolio of stocks selected for exceptional growth potential. Like returns from all variable

annuities, returns from the TIAA-CREF variable accounts will fluctuate and principal is not

guaranteed.

The employees can allocate their contributions among the TIAA-CREF accounts in any

whole-number percentage, including full allocation to any option. Once participation

begins they can change their allocation of future premiums or transfer existing accumu-

lations. The employees can also make supplemental tax-deferred contributions through

TIAA and CREF Supplemental Retirement Annuities (SRA’s) or Retirement Annuities. A

more detailed description on TIAA-CREF can be found in [63], [64], [65].





Chapter 3

Conceptual model and goals of

dissertation

The second pillar of some of the countries mentioned in Table 2.1, or a part of it, can

be generally defined as the following problem.

Assume that the worker’s expected retirement time is in T years and they save for their

pension in a pension fund management institution offering investment in funds labeled by

1, ..., J . Next we assume that the saver is allowed to decide which fund they want to invest

the savings into and to revise this decision in later times if they wish so. We can assume,

without loss of generality, that they revise their decision every twelve months. We can

formulate the problem:

For each time t ∈ {0, 1, ..., T − 1}, determine the fund

jt ∈ {1, ..., J} so that we obtain the best possible outcome at time T .

Since the pension funds invest in financial markets, i.e. in financial instruments with

more or less volatile returns, the outcome of pension saving in pension funds is stochastic.

It is therefore necessary to introduce a measure that gives us means for comparing two

random outcomes and determining the better one. We use two approaches for this pur-

pose: the expected utility and the risk measures concept. Hence, we approach the above

formulated problem in two different ways:

I. at a given level of saver’s risk aversion or risk tolerance, the expected utility from

the saved amount at time T is maximized;

II. at a given target terminal value of savings at time T , the insecureness (riskiness) of

achieving it is minimized.

15



16 Chapter 3. Conceptual model and goals of dissertation

In approach (I), we assume to know the saver’s utility function representing their prefer-

ences. We deal with the notions of a utility function and risk aversion in Chapter 4. Let

us denote by dT a random variable representing the saved amount at time T . Let U be

the saver’s utility function and R the corresponding risk aversion coefficient fixed at the

value R̄ ∈ R. Next, let J be a set representing eventual restrictions on the fund selection

imposed by government and other constraints that may come into consideration. Let us

denote by dt the state variables representing the saved amount at time t and X the set

representing the constraints on dt. Problem (I) can then be formulated as the following

optimization problem:

max
jt,t∈{0,...,T−1}

E(U(dT ))

subject to

R = R̄ ,
dt ∈ X ,
jt ∈ J .

(3.1)

We specify this problem in Chapter 6. We show that it leads to a stochastic dynamic

programming problem.

The second approach (II) uses the notion of risk measures which are usually statistical

tools suitable for quantifying the insecureness (risk) of a future outcome. Basically, we

distinguish two types of risk measures, depending on whether we measure a future out-

come after one single period, or during several periods of time: we speak of the so called

static (single-period) or dynamic (multi-period) risk measures. If M is the used risk mea-

sure (single-period or multi-period), and µ the target terminal amount, we are interested

in solving the problem

min
jt,t∈{0,...,T−1}

M(dT )

subject to

E(dT ) ≥ µ ,
dt ∈ X ,
jt ∈ J .

(3.2)

In the case of a multi-period risk measure, M is a function of the state variable dt in all

considered time periods; that is, M = M(d0, ..., dT ). We apply the average value-at-risk

deviation as the risk measure M in Chapter 6. We show that the problem above may be

rewritten to a large-scale linear program. Before, we introduce the theoretical framework

of risk measures with emphasis on the average value-at-risk deviation in Chapter 5.

The following questions are important for a saver:

• What is my risk tolerance or risk aversion?

• Which sum do I want to achieve?

The answers to these questions specify the utility function U in (3.1) and the risk measure

M and the target wealth µ in (3.2).
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Goals of the thesis

In this thesis we aim to achieve the following goals:

♦ To develop a mathematical model for the utility function approach (I).

♦ To develop a mathematical model for the risk measures approach (II).

♦ To propose numerical schemes and implement both models for the example of Slo-

vak Republic.

♦ To study the sensitivity of the results to varying parameters of the models.

♦ To make conclusions and to summarize rules for the fund selection in pension saving

which depend on selected parameters.





Chapter 4

Utility functions in decision

problems

In economic analysis, preferences of individuals about having n goods in quantities

x1, ..., xn are often represented by a utility function U(x1, ..., xn). In this chapter, we in-

troduce basic properties of utility functions and the notion of expected utility in a short

extent that is sufficient for our purposes in this thesis. We refer to books [17], [21] and

[58] for a detailed theory of consumer’s preferences, utility functions and expected utility.

In the case of a single good, utility function U : R → R usually has the following

specific properties:

1. U(x) is increasing in x on (0,∞), i.e. U ′(x) > 0. That is, more is always better. The

function U ′ is referred to as a marginal utility, so this criterion says that the marginal

utility is always positive.

2. U(x) is concave in x, i.e. U ′′(x) < 0. This property is referred to as a risk aversion.

It implies that the certainty of an expected value of outcomes is preferred to an

uncertain situation. It also means that the marginal utility U ′(x) is a decreasing

function of wealth.

The only relevant feature of a utility function is its ordinal character, not its absolute

values. If U(x) is a utility function representing one’s preferences and f : R → R is an

increasing function, then f(U(x)) represents exactly the same preferences since f(U(x)) ≥
f(U(y)) if and only if U(x) ≥ U(y).

Investors often face the necessity of making decisions about investments, the efficiency

or return of which depend on unknown future behavior of some stochastic environment.

Their behavior can be described by the notion of expected utility. The expected utility

19
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theory states that the decision maker chooses between risky or uncertain prospects by

comparing their expected utility values. If X is a random variable, then the expected

utility associated with X is E(U(X)) where E is the expectation operator.

In the context of the problem of pension saving, let us denote d the random variable

representing future pensioner’s saved amount in their pension account. If the random

wealth d depends among other stochastic or deterministic factors also upon a decision

variable j and J is the set of all feasible decisions j, the future pensioners solve the

problem

max
j∈J

E(U(d(j))) .

The most crucial thing here is the right choice of the utility function and its parameters, re-

flecting in particular investors’ attitude to risk. Usually, the parameters entering the utility

functions are estimated using some statistical methods or psychological experiments.

Based on the attitude to risk, we distinguish risk averse, risk neutral, and risk loving

investors. Their utility functions are concave, affine, and convex, correspondingly. Most

investors are assumed to be risk averse and it is often convenient to have a measure of

risk aversion. We discuss various measures of risk aversion in the next section.

4.1 Risk aversion

A risk aversion coefficient is a special measure reflecting the character and degree of in-

vestor’s risk aversion. Intuitively, the more concave the expected utility function, the more

risk averse the investor. We could measure risk aversion by the second derivative of the

utility function. However, this definition is sensitive to changes in the utility function: if

we consider any positive multiple of the utility function, the second derivative changes

but the consumer’s behavior does not. If we normalize the second derivative by dividing

by the first, we get a reasonable measure known as the Arrow-Pratt absolute risk aversion

coefficient ([50]). The next most common measure is the risk aversion coefficient, relative.

Definition 4.1.1. The absolute risk aversion coefficient at a point x pertaining to a utility

function U is defined as

λA(x) = −U ′′(x)

U ′(x)
. (4.1)

Utility functions with a constant absolute risk aversion coefficient are called CARA utility

functions.

A utility function U exhibits constant absolute risk aversion (CARA) if the absolute risk

aversion coefficient does not depend on the wealth or λ′
A(x) = 0. U exhibits decreasing

absolute risk aversion (DARA) if richer people are less absolutely risk averse than poorer

ones or λ′
A(x) < 0. U exhibits increasing absolute risk aversion (IARA) if λ′

A(x) > 0. We

notice that there is a natural assumption that most investors have decreasing absolute risk

aversion.
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Definition 4.1.2. The relative risk aversion coefficient at a point x pertaining to a utility

function U is defined as

λR(x) = −x
U ′′(x)

U ′(x)
. (4.2)

Utility functions with a constant relative risk aversion coefficient are called CRRA utility func-

tions.

Most often investors are assumed to have constant relative risk aversion.

4.2 Examples of utility functions

There are several classes of utility functions suitable for describing various types of in-

vestors’ or consumers’ economic behavior. We look at examples of the well known classes:

the quadratic, exponential and power-like utility functions.

A quadratic utility function

Definition 4.2.1. A quadratic utility function is of the form

U(x) = ax − bx2 .

Its Arrow-Pratt absolute risk aversion coefficient is

λA(x) =
2b

a − 2bx

and the Arrow-Pratt relative risk aversion coefficient λR(x) = xλA. Since the derivatives

of both λA and λR with respect to x are positive, the absolute and relative risk aversion

coefficients of a quadratic utility function are increasing in x. Since U ′′′ ≡ 0 there is no

motive for precautionary saving which is understood as additional saving resulting from

the knowledge that the future is uncertain. Additional saving can be achieved either by

consuming less or by working more. For some discussion on precautionary saving we refer

the reader to e.g. [37] or [45].

A quadratic utility function is mainly used in the context of permanent income and life

cycle hypotheses ([9]).

An exponential utility function

Definition 4.2.2. A negative exponential utility function is of the form

U(x) = −e−ax .

The absolute risk aversion coefficient of negative exponential utility function is λA = a
and it is constant in x. Hence, the negative exponential utility function is CARA. The

relative risk aversion coefficient has the value λR = ax, that is, it is increasing in x. The

CARA function implies a positive motive for precautionary saving.
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A power-like utility function

Definition 4.2.3. A power-like utility function is of the form

U(x) =
x1−a

1 − a
.

The ratio 1/a is the intertemporal substitution elasticity between consumption in any

two periods, i.e., it measures the willingness to substitute consumption between different

periods. The smaller the value of a (the larger 1/a), the more willing the household is

to substitute consumption over time. Note also that a is the coefficient of relative risk

aversion defined by (4.2). Since the coefficient of relative risk aversion is constant, this

utility function is a CRRA (or isoelastic) utility function.

There are three other important properties. First, the expression x1−a is increasing in

x if a < 1 but decreasing if a > 1. Therefore, dividing by 1 − a ensures that the marginal

utility is positive for all values of a. Second, if a → 1, the utility function converges to

ln a. Third, U ′′′(x) > 0, implying a positive motive for precautionary saving. Therefore,

one often uses this utility function when studying savings behavior (see [9]). We will use

a power-like utility function in expected utility maximization based models for pension

saving in Chapter 6.



Chapter 5

Risk measures in decision

problems

Measures of risk or risk measures are functions that describe risk and give the manager

or decision maker a quantitative tool to compare different insecure alternatives. In the

context of static financial positions, economically meaningful axioms for risk measures

were proposed by Artzner et al. in [6]. Well known static risk measures are value-at-risk

([20]), coherent risk measures ([6]), sublinear ([26]) and convex risk measures ([23],

[24], [27]). Furthermore, a large part of literature is concerned with quantile-based al-

ternatives to value at risk. For excellent overviews on static risk measures, we refer to

Föllmer and Schied ([25]), Delbaen ([18]) and Scandolo ([55]).

For the case of multi-period decision problems, a concept of dynamic risk measures

was developed. The basic idea of risk measures in a dynamic setting was presented in the

papers of Cvitanic & Karatzas [16] and Wang [59]. Recent approaches to this subject can

be found in the papers by Artzner et al. [7], Pflug & Ruszczynski [48] and Riedel [51].

5.1 Measuring single-period risk

In this section, we define the basic notions used in the theory of risk measures. Although

there is a plenty of various risk measures, we focus only on the so called value-at-risk

deviation and the average value-at-risk deviation. We use the latter one in our pension

planning models in the next chapter.

There are three types of functionals connected to the theory of risk measures. Func-

tionals describing preferences in the sense that higher values of the functional mean

higher preference are called acceptability-type functionals. Among them, we call accept-

23
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ability functionals A those, which have some important additional properties: translation

equivariance, concavity and monotonicity. Another group of functionals is formed by the

translation-invariant ones. We call them deviation-type functionals. Within these, we

identify a sub-group of functionals satisfying the property of convexity and monotonicity.

We call them deviation risk functionals and denote usually by D. We recall that D is a devi-

ation risk functional if and only if A(Y ) = E(Y )−D(Y ) is an acceptability functional. The

third type of functional connected to risk measures theory is called risk (capital) functional

which can be viewed as a mirror image of the concept of acceptability functionals. We re-

fer the reader to the book of Pflug [47] for proper definitions of acceptability, deviation

and risk capital functionals. Rockafellar et al. in [53] use the notions sureness valuation,

expectation-bounded risk measures, and general deviation measures instead of acceptability

functionals, risk capital functionals and deviation risk functionals, respectively.

A classical example of a deviation risk functional is the standard deviation D(Y ) =
σ(Y ). However, the disadvantage of the standard deviation in measuring risk is that it

treats the negative and the positive deviations from the mean in the same way. Already

Markowitz realized this feature and proposed other measures to be used, e.g. the semi-

variance.

In the following two sections we define the value-at-risk deviation and the average-

value-at-risk deviation. They are often used risk measures and have better properties than

the standard deviation.

5.1.1 Value-at-risk

Given a probability distribution of future wealth of a financial institution or an investor,

the value-at-risk at the level α of the future wealth random variable is a maximum wealth

exceeded with probability 1−α where α is a given confidence level. In practice, the level α
is quite low, typically 0.5%, 1% or 5%. When this risk measure is used, we accept positions

as safe if in less than α% of the cases we experience difficulties.

Although the value-at-risk has poor mathematical properties (e.g. it is not convex), it

is very relevant in many decision models, see e.g. Duffie & Pan [20] and Gourieroux et al.

[29].

Definition 5.1.1. [47, Section 2.2] The value-at-risk V aRα(Y ) of a profit random variable

Y with a distribution function F at a confidence level α, 0 < α < 1, is defined as the

α-quantile F−1(α), i.e.

V aRα(Y ) = F−1(α) = inf{u : F (u) ≥ α} , 0 < α < 1 .

The value-at-risk deviation of a profit random variable Y at a confidence level α is defined by

V aRDα(Y ) = E(Y ) − V aRα(Y ) , 0 < α < 1 .

Notice that V aRDα may also take negative values.

Since a distribution function F of a random variable Y , defined by F (u) = P (Y ≤ u),
is continuous from the right, the infimum in the above definition of the value-at-risk is in

fact a minimum.
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Please note that the nomenclature is inconsistent in the literature. Some authors call

V aRα the value-at-risk of level 1−α. Some other authors take the negative value −F −1(α)
as the value-at-risk.

5.1.2 The average value-at-risk

The average value-at-risk of a loss random variable was generally defined by Uryasev in

[57]. We modify this definition slightly for profit random variables.

Definition 5.1.2. Let Y be a profit random variable with a distribution function F , possibly

not continuous. Let Fα be the lower α-tail distribution, which equals to 1 for profits exceeding

V aRα, and equals to F
α for profits below or equal to V aRα. The average value-at-risk of Y

at the level α is defined as the mean of the α-tail distribution Fα.

Acerbi [1] gave a representation in terms of an average over α of the V aRα values.

Definition 5.1.3. [1] Let Y be a continuous random variable. The average value-at-risk of

Y at level α, 0 < α ≤ 1, is defined as

AV aRα(Y ) =
1

α

∫ α

0
F−1(u)du (5.1)

where F is the distribution of Y . The average value-at-risk deviation is defined by

AV aRDα(Y ) = E(Y ) − AV aRα(Y ) . (5.2)

The average value-at-risk (AV aR) is also known under the names of conditional value-

at-risk (CV aR, see e.g. [52]), tail value-at-risk (TV aR), mean shortfall, or expected short-

fall. Defining the value-at-risk as the quantile F −1(u) (see Definition 5.1.1), the AV aRα

is the average of these values, averaged over u ∈ [0, α], and this justifies the name.

There are many alternative ways of representing AV aR. The following one, proposed

by Uryasev ([52]), says that the AV aR may be expressed by a maximization formula.

Since the statement is not trivial, we present a proof of it in Appendix A for reader’s

convenience. For other representations of the AV aR see [47, Section 2.2.3].

Theorem 5.1.1. [52] The average value-at-risk of a random variable Y at the level α may

be represented as the optimal value of the following optimization problem:

AV aRα(Y ) = max
x∈R

{x − 1

α
E([Y − x]−)} (5.3)

where [g]− = max{−g, 0} is the negative part of g. The maximum in (5.3) is attained.

For detailed discussions of the properties of AV aR see Rockafellar and Uryasev [52],

Acerbi [1] and Pflug [47]. We present some of them in the following proposition.
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Proposition 5.1.1. Let Y, Y (1), Y (2) be random variables. The average value-at-risk AV aRα,

0 < α ≤ 1, is

(i) translation equivariant:

AV aRα(Y + c) = AV aRα(Y )

for all c ∈ R,

(ii) concave:

AV aRα(λY (1) + (1 − λ)Y (2)) ≥ λAV aRα(Y (1)) + (1 − λ)AV aRα(Y (2))

for 0 ≤ λ ≤ 1,

(iii) positively homogeneous:

AV aRα(λY ) = λAV aRα(Y )

for any λ > 0,

(iv) strict

AV aRα(Y ) ≤ E(Y ) .

Proof. The properties (i) and (iii) follow directly from the Definition 5.1.3. Properties (ii)

and (iv) follow from the dual representation of AV aR which we omitted in this thesis but

it can be found in [47, Section 2.2.3].

Property (iv) verifies the following statement.

Corollary 5.1.1. The average value-at-risk deviation AVaRD is non-negative.

The V aRα = F−1(α) defined in Definition 5.1.1 is related to the average value-at-risk

by the following two relationships:

F−1(α) ∈ argmax {x − 1

α
E([Y − x]−) : x ∈ R} (5.4)

which is the relationship (8.2) from Appendix A, and

V aRα(Y ) = F−1(α) ≥ 1

α

∫ α

−∞
F−1(p)dp = AV aRα(Y ) (5.5)

for all α ∈ (0, 1).
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5.2 Measuring multi-period risk

So far, we considered economic activities that resulted in just one random income or one

random change in wealth at a fixed time. In this section, we generalize this concept by

considering activities which result in an insecure cash-flow stream during a longer period.

Denote by Y = (Y1, ..., YT ) a stochastic cash-flow process defined on some probability

space (Ω,F , P ) to which we wish to assign an acceptability value A or a risk value D. In

the multi-period situation, there is typically also other information than just the observa-

tion of the income values Yt, which is available and which is relevant to the quantification

of risk. The standard way of dealing with information in probability is done by introduc-

ing filtrations. We recall that a filtration F = (F1, ...,FT ) is an increasing sequence of

σ-algebras, i.e. Ft ⊆ Ft+1. The cash-flow process Y = (Y1, ..., YT ) is adapted to F , if Yt

is Ft-measurable for t = 1, ..., T . A filtration may be specified in a tree process. A good

insight into filtrations and tree processes is given in [42] or [47, Chapter 5.1].

Similarly as in the single-period case, we may define acceptability and deviation multi-

period functionals. We refer to Appendix B where we recall their definitions.

5.2.1 Multi-period average value-at-risk

The multi-period average value-at-risk and multi-period average value-at-risk deviation

are defined as follows.

Definition 5.2.1. [47, Section 3.3.3] Let Y = (Y1, ..., YT ) be an integrable stochastic process.

For a given sequence of constants c = (c1, ..., cT ), probabilities α = (α1, ..., αT ), and a

filtration F = (F0, ...,FT ), the multi-period average value-at-risk is defined as

AV aRα,c(Y ;F) =

T∑

t=1

ctE[AV aRαt(Yt|Ft−1)] .

Definition 5.2.2. [47, Section 3.3.3] Let Y = (Y1, ..., YT ) be an integrable stochastic process.

For a given sequence of constants c = (c1, ..., cT ), probabilities α = (α1, ..., αT ), and a

filtration F = (F0, ...,FT ), the multi-period average value-at-risk deviation is defined as

AV aRDα,c(Y ;F) =
T∑

t=1

ctE[AV aRDαt(Yt|Ft−1)] .

The multi-period average value-at-risk is concave and monotone in Y. The proof of

these properties together with other properties of the multi-period AVaR may be found in

[47, Section 3.3.3].

5.3 Risk measures and decision problems

When investors want to construct a portfolio from certain assets, they aim to maximize the

portfolio return. Risk averse investors minimize the risk associated with the investment as
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well. This problem has not a unique solution in general. One has to find a compromise

between return and risk. The curve comprising all optimal solutions, i.e. portfolios with

maximal return and minimal risk, is called the efficient frontier and is a well known issue

in financial mathematics. Markowitz in his theory of portfolio [40] constructed an effi-

cient frontier which consisted of a relationship between portfolio return and its variance.

Of course, one can construct the efficient frontier for arbitrary risk measure (deviation

functional) D.

In the pension planning models introduced in Chapter 6, the random future outcome

is the amount dT of money saved at the terminal year T of pension saving. The saved

amount is influenced by the following factors: the stochastic fund returns, the saver’s

decision abound the fund selection, wage growth. If we denote these factors symbolically

by x, then we may write dT = dT (x).
The standard decision problem is to maximize the acceptability of the outcome over

all feasible decisions x ∈ X. Thus, the optimization problem is

maxA(dT (x))
x ∈ X

(5.6)

and after taking A = E −D it can be rewritten to a form

max E(dT (x)) −D(dT (x))
x ∈ X .

(5.7)

The family of problems (5.7) is closely related to the following family of problems

minD(dT (x))
E(dT (x)) ≥ µ
x ∈ X

(5.8)

with µ as a parameter. Solving the problem (5.8) for an appropriate range of µ leads to

the efficient frontier function

µ 7→ F (µ) = min{D(dT (x)) : E(dT (x)) ≥ µ,x ∈ X} (5.9)

pertaining to the deviation functional D, which can be either a static risk measure or a

dynamic one. In particular, we will use the single-period and multi-period average value-

at-risk deviation AV aRD(dT ) in models in Chapter 6.
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Mathematical models for

pension planning

This chapter is dedicated to construction of models suitable for solving the problem

defined in Chapter 3. We recall that the problem is to find an optimal switching strategy

between several pension funds with different risk profiles in a time horizon of T (typically

T = 40) years. Since the pension funds invest in financial markets, the saver bears the

risk of asset returns during the saving phase. They may influence the exposition to risk

but also the return by balancing between the pension funds.

In pension saving, one should also take into account the future contributions. If a se-

ries of contributions throughout a lifespan is made, a fall in the assets value early in life

does not affect the future contributions, i.e. only part of one’s future pension wealth is

affected. On the other hand, if it occurs close to retirement it affects all past accumulated

contributions and returns on them, i.e. most of one’s pension wealth. Therefore, it is

reasonable that the investment decision depends on the time to the maturity of saving.

Since conventional wisdom, evidential in historical data, confirms that stock returns out-

perform bond ones in the long run, it is reasonable to assume that investors with a long

time horizon prefer stocks to bonds.

There are several models that help, but do not ensure the saver to reach a target level

of pension savings. The well known Markowitz portfolio selection model [40] relates the

return and risk of efficient portfolios in the so called efficient frontier. Bodie et al. in [11]

developed a model for lifetime consumption-portfolio choice with a labor/leisure decision.

The authors concluded that pension saving becomes more conservative as retirement ap-

proaches. In [10], Bodie suggested a model to guarantee a minimum living standard in

29
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retirement.

In this chapter, we propose two types of models for the problem of optimal fund selec-

tion in pension planning:

Expected utility maximization models:

Ia: the Dynamic Accumulation Model (DAM),

Ib: the Proportional Investment Allocation Model (PIAM).

Risk minimizing models:

IIa: the Terminal Risk Minimizing Model (TRMM), in which the terminal risk is measured

by the single-period average value-at-risk deviation,

IIb: the Multi-period Risk Minimizing Model (MRMM), in which the multi-period risk is

measured by the multi-period average value-at-risk deviation.

The models determine an optimal strategy of the fund selection. However, since a

retiring person strives to maintain their living standard at the same level as their last

preretirement income, the wealth at year t is measured by multiples of the t-year’s salary

instead of the absolute value of saved money.

Models DAM and PIAM assume a given utility function and thereby also the saver’s

risk attitude. Then, the expected utility of the saved amount is maximized. The models

lead to a Bellman equation of stochastic dynamic programming. Moreover, we also derive

a partial differential equation determining the optimal strategy for the PIAM model.

Models TRMM and MRMM are based on an opposite approach. The target amount

to be saved is determined first and then the riskiness of the investment is minimized.

In the TRMM model, we consider a future pensioner who is interested in their terminal

wealth at time T of retirement only, that is, they do not care about the evolution of their

account in intermediate times. Using a static risk measure we minimize the uncertainty

of achieving the target wealth. The MRMM model considers a saver who is interested

in saving throughout their whole period of saving. This can be argued by the fact that,

in the case of early death, the savings become a subject of heritage. We use a dynamic

risk measure to measure the overall insecureness of the savings and minimize it taking

the requirement on the target terminal amount into account. Both TRMM and MRMM

models lead to large-scale linear programs with sparse and block matrix representation of

the constraints.

The dynamic accumulation model has been presented by the author et al. in [34] and

[35], the risk minimizing models in [36].
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6.1 Dynamic accumulation model

The dynamic accumulation model (DAM) is the first of the models we introduce in this

thesis for solving the problem defined in Chapter 3. We assume that a future pensioner

is given a possibility to choose one (and only one) from a finite number of pension funds

with different risk profiles, and may change the decision in certain periods. Without loss

of generality, we assume yearly rebalancing. Next, we assume regular yearly contributions

transferred from saver’s salary to their pension account. We also assume that the saver’s

utility function U is known. Therefore their attitude to risk represented by the risk aversion

coefficient is also known. We maximize the expected utility from the terminal wealth.

6.1.1 Problem formulation and assumptions

Before proceeding to the problem formulation, we list and clarify the notation that will be

used in the DAM model:

T expected retirement time,
J number of funds,

rj
t return of fund j at time t ,

ut accumulated sum at time t ,
wt gross salary at time t ,
βt wage growth at time t defined by wt+1 = wt(1 + βt) ,
dt ratio of accumulated sum ut to the salary wt ,
τ rate of regular yearly contribution as a part of gross salary .

In the sequel, we embed the above listed variables and parameters to the context of our

problem. Suppose that a future pensioner with the expected retirement time in T years

deposits once a year a τ -part of their yearly salary wt at year t to a fund j ∈ {1, 2, . . . , J}.

Since the funds invest in financial markets, their returns rj
t are assumed to be stochastic.

Denote by ut, t = 0, 1, . . . , T, the accumulated sum at time t. The startup value u0 is

equal to the very first contribution. At each next decision time t = 1, ..., T − 1, the amount

ut is appreciated by a return corresponding to the chosen fund j at the previous time stage

t − 1, and a new contribution is added to the account. Under the assumption of constant

contribution rate τ , the equations describing the time evolution of the account are

u0 = w0τ ,

ut+1 = ut(1 + rj
t ) + wt+1τ , t = 0, 1, . . . , T − 1 . (6.1)

At the time of retirement T , the pensioner will strive to maintain their living standard at

the level of the last salary. From this point of view, the saved sum uT at time T is not

precisely what the future pensioner cares about. The ratio of the cumulative sum uT and

the yearly salary wT , i.e. dT = uT /wT , is more important. Using the quantity dt = ut/wt,

one can reformulate the budget-constraint equation (6.1):

d0 = τ ,

dt+1 = Ft(dt, j) , t = 0, 1, . . . , T − 1 , (6.2)
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where

Ft(d, j) = d
1 + rj

t

1 + βt
+ τ , t = 0, 1, . . . , T − 1 , (6.3)

and βt denotes the wage growth defined by the equation

wt+1 = wt(1 + βt) , t = 0, 1, ..., T − 1 .

The saver’s decision about the fund selection at the time t is based on their information

at that time. That is, if It denotes the information consisting of the history of returns rj
t′ ,

t′ = 0, 1, . . . , t − 1, j ∈ {1, 2, . . . , J}, and the wage growth βt′ , t′ = 0, 1, . . . , t − 1, until the

time t, then we have j = j(t, It).
At this point, we make two assumptions for the DAM model:

Assumption A1. The fund returns rj
t for all funds j ∈ {1, ..., J} and all time stages

t ∈ {0, 1, ..., T} are stochastic and mutually independent for fixed j.

Assumption A2. The wage growth rates βt, t = 0, 1, ..., T − 1, are deterministic and

prescribed.

Assumptions A1 and A2 imply that the quantity dt is the only relevant information

from It. Hence, j(t, It) ≡ j(t, dt). In order to maximize the saver’s utility from the terminal

wealth, we can formulate a problem of stochastic dynamic programming

max
J

E(U(dT )) (6.4)

with the following recurrent budget constraint:

d0 = τ ,

dt+1 = Ft(dt, j(t, dt)) , t = 0, 1, . . . , T − 1 , (6.5)

where the maximum in (6.4) is taken over all non-anticipative strategies J = {j(t, dt) :
t = 0, 1, ..., T − 1}. Here U denotes a preferred utility function of a saver. We discussed

the theory of utility functions in Chapter 4.

We recall a fact from the theory of conditional expectations that a sequence of nonde-

creasing information {It, t = 0, 1, ..., T} may be considered as a sequence of nondecreasing

σ-algebras. The so called tower-law holds for conditional expectation.

Theorem 6.1.1. [8, pg. 34],[42] Tower law for conditional expectations.

Let X be a random variable on a probabilistic space (Ω,F , P ) with E(|X|) < ∞. Let G,H
be σ-algebras with G ⊂ H ⊂ F . Then

E(X|G) = E(E(X|H)|G) .

The following theorem states that the optimal decision strategy for (6.4)–(6.5) can be

found as a solution to a Bellman equation.



6.1. Dynamic accumulation model 33

Theorem 6.1.2. The optimal strategy of the problem (6.4)-(6.5) is the solution of the Bell-

man equation

Vt(d) = max
j∈{1,2,...,J}

E[Vt+1(Ft(d, j, rj
t ))] = E[Vt+1(Ft(d, j(t, d), rj

t ))] , (6.6)

for t = 0, 1, . . . , T − 1, where VT (d) = U(d). The optimal feedback strategy j(t, dt) of (6.6)

can be found backwards.

Proof. Since the sequence of information {It, t = 0, 1, ..., T} can be considered as a se-

quence of nondecreasing σ−algebras with the trivial σ-algebra I0 = {∅,Ω} with no infor-

mation, we can apply the tower law of conditional expectations and obtain

E(U(dT )) = E(U(dT )|I0) = E(E(U(dT )|It)|I0) = E(E(U(dT )|dt)) .

We conclude that maximizing E(U(dT )) is the same as maximizing E(U(dT )|dt) for arbi-

trary t. Moreover, using the tower law again, we have

E(U(dT )|dt) = E(E(U(dT )|dt+1)|dt) . (6.7)

Let us now denote Jt = {j(τ, dτ ) : τ = t, ..., T} and

Vt(d) = max
Jt

E(U(dT )|dt = d) . (6.8)

Then, using (6.7), we obtain

Vt(d) = max
Jt

E(E(U(dT )|dt+1)|dt = d)

= max
jt

max
Jt+1

E(E(U(dT )|dt+1)|dt = d) (6.9)

At this place, a further discussion is needed. If Jt+1 is a strategy, then we denote by

Rt+1(Jt+1) the sequence of fund returns determined by the strategy Jt+1, i.e.

Rt+1(Jt+1) = {rjτ
τ ; τ = t + 1, ..., T, and jτ given in Jt+1} .

It is important to notice that the inner mean value in (6.9) has the following property: it

is a function

E(U(dT )|dt+1) ≡ h(dt+1,Jt+1,Rt+1(Jt+1)) ,

depending only on the dt+1 variable and the decision variables jt+1, ..., jT and the fund re-

turns determined by them. When proceeding backwards to the next time stage t, the

only variable that depends on the control variable jt or the stochastic variable rjt
t , is

dt+1 = dt+1(dt, jt, r
jt
t ). The variables Jt+1,Rt+1 are not affected. Thus, in (6.9) we are

considering

max
jt

max
Jt+1

E(h(dt+1(dt, jt, r
jt
t ),Jt+1,Rt+1(Jt+1))|dt = d) .

To obtain the relationship (6.6), it is desirable to shift the maximum over Jt+1 operator

inside the mean value. Clearly, we have

h(dt+1(dt, jt, r
jt
t ),Jt+1,Rt+1(Jt+1)) ≤ max

Jt+1

h(dt+1(dt, jt, r
jt
t ),Jt+1,Rt+1(Jt+1))
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for all Jt+1, implying

maxJt+1 E(h(dt+1(dt, jt, r),Jt+1,Rt+1))

≤ E(maxJt+1 h(dt+1(dt, jt, r),Jt+1,Rt+1))

where the mean value is with respect to the random variable r. The opposite inequality

follows from the fact that

maxJt+1 E(h(dt+1(dt, jt, r),Jt+1,Rt+1))

≥ E(h(dt+1(dt, jt, r),Jt+1,Rt+1)) ,

which holds for all Jt+1, and, in particular for Ĵt+1 = argmaxJt+1
h(dt+1,Jt+1,Rt+1).

That is, we may continue in (6.9) as follows:

Vt(d) = max
jt

max
Jt+1

E(E(U(dT )|dt+1)|dt = d) (6.10)

= max
jt

E(max
Jt+1

E(U(dT )|dt+1)|dt = d) (6.11)

= max
jt

E(Vt+1(Ft(d, jt, r
jt
t )))

= E(Vt+1(Ft(d, jt(d), r
jt(d)
t ))) .

Starting from VT (d) = U(d) and proceeding backwards from t = T − 1 down to t = 0, one

can calculate the optimal feedback strategy jt(dt). Referring to Theorem C.1 in Appendix

C, the solution to the Bellman equation can be found backwards.

The optimal feedback strategy of (6.6) gives the saver the information about the opti-

mal fund selection for each time t in dependency on the value of savings dt. Now, suppose

that the stochastic fund returns rj
t are represented by their densities f j

t . Moreover, let us

assume that there are some govermental restrictions imposed on the fund selection. We

denote by ∆t ⊂ {1, ..., J} the set of all funds that may be chosen by a saver at time t. We

present the exact form of the barrier set ∆t in implementation of the model in Section

7.1.1. Equation (6.6) can be rewritten in the form

Vt(d) = max
j∈∆t

E[Vt+1(Ft(d, j, rj
t ))]

= max
j∈∆t

∫

R

Vt+1

(
d

1 + r

1 + βt
+ τ

)
f j

t (r)dr

= max
j∈∆t

∫

R

Vt+1(y)f j
t

(
(y − τ)

1 + βt

d
− 1

)
1 + βt

d
dy

=

∫

R

Vt+1(y)f
j(t,d)
t

(
(y − τ)

1 + βt

d
− 1

)
1 + βt

d
dy (6.12)

where the substitution y = d(1 + r)(1 + βt)
−1 + τ has been used and R denotes the set

of real numbers. Thus, the optimal j at time t and for a given d may be found as the

argument of maximum of J one-dimensional integrals, in which the value function Vt+1

from time t + 1 appears.
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6.1.2 Proportional investment allocation model

Let us make an assumption that all funds j ∈ {1, ..., J} invest to the same set of assets

or financial instruments i ∈ {1, ..., I}. The funds differ in the weights of assets in their

investment allocations. This assumption is not restrictive nor generalizing, because if an

asset is not comprised in the investment strategy of a fund, the corresponding weight can

be considered zero. As a special and simplified case, let us assume I = 2 and that the funds

invest either to stocks, represented for example by a stock index, or bonds. Thus, a fund

j is specified by the weight θj
t of stocks and (1 − θj

t ) of bonds at time t in its investment

strategy.

Example 6.1.1. In Chapter 2 we summarized that in the case of Slovak Republic each pension

fund management institution is obliged to offer the possibility of investing to three funds: The

Growth Fund, The Balanced Fund, and The Conservative Fund. The definition of these funds

is based on the ratios that can be invested to risky assets (e.g. stocks) and to secure assets (e.g.

bonds). In particular, The Growth fund can invest up to 80% to risky assets, The Balanced

Fund up to 50%, and The Conservative Fund cannot invest to risky assets at all. That is, if

we denote the three funds correspondingly by i = 1, 2, 3, the theta parameters are θ1 = 0.8,

θ2 = 0.5, and θ3 = 0 and they are constant over time.

As a slight modification of the problem of choosing one among J given funds studied

in the DAM model, we can ask a similar question: what is the optimal weight θt ∈ [0, 1]
of stocks for the investment at each particular time t? Hence, the weight θt of stocks in

the fund investment is a new control variable. The saver can subsequently choose a fund

which is most similar to their investment decision θt. This version of the model was also

studied in [44]. We call this model the proportional investment allocation model (PIAM).

We assume that the fund return Rt is normally distributed, i.e.

Rt ∼ N(µ(θt), σ
2(θt)) .

Rt has the density function

gt(R) =
1

σ(θt)
√

2π
exp

{
−(R − µ(θt))

2

2σ2(θt)

}
.

Its mean value and volatility depend on the mean values and volatilities of stocks and

bonds, and on parameter θt in the following way: if R
(s)
t and R

(b)
t denote the return of

stocks and bonds, with mean values µ(s) and µ(b) and volatilities σ(s) and σ(b), respectively,

then the mean value of a fund return is given by

µ(θt) = θtµ
(s)
t + (1 − θt)µ

(b)
t . (6.13)

Its volatility is given by

σ2(θt) = θ2
t (σ

(s)
t )2 + 2θt(1 − θt)σ

(s)
t σ

(b)
t corr(R

(s)
t , R

(b)
t ) + (1 − θt)

2(σ
(b)
t )2 (6.14)
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where corr is the corelation coefficient of R
(s)
t and R

(b)
t .

For the sake of better computations, we now use exponential discounting. That is

the reason why we now use capital R to denote the returns, as is common in the theory

of financial mathematics. The evolution equation for the variable dt becomes dt+1 =
Ft(d, θt, y) where

Ft(d, θt, y) = dt exp

{
µ(θt) −

1

2
σ2(θt) − βt + σ(θt)y

}
+ τ , t = 1, ..., T , (6.15)

starting from d0 = τ . Here y is a realization of the random variable Ψ ∼ N(0, 1). The

appearance of the expression − 1
2σ2(θt) in (6.15) follows from the well known Itô lemma

([39], Appendix E) implying that if µ is the mean of a stochastic process ln(St), t = 1, 2, ...,
satisfying the stochastic differential equation d(ln St) = dSt

St
= µdt + σdWt, then the solu-

tion of this differential equation is St = S0 exp((µ − 1
2σ2)t + σWt).

Let ∆θ
t denote the barrier set reflecting the eventual governmental restrictions on the

fund selection, expressed in terms of the proportion of stocks in the fund investment. By

(6.6), the optimal strategy is a solution to

Vt(d) = max
θt∈∆θ

t

∫

R

Vt+1

(
d exp

{
µ(θt) −

1

2
σ2(θ) − βt + σ(θt)y

}
+ τ

)
f(y)dy , (6.16)

for t = T −1, ..., 1, where f(y) = 1√
2π

exp{−y2

2 } is the density function of standard normal

distribution.

Theorem 6.1.3. If U(d) is continuous and increasing in d, then also Vt(d) is continuous and

increasing in d for all t.

Proof. We prove all properties by mathematical induction.

Continuity: for t = T , the function VT (d) = U(d) is continuous in d. We assume that

Vt+1(d) is continuous in d and show that so is Vt(d). We denote

φ(d, θ) =

∫

R

Vt+1(Ft(d, θ, y))f(y)dy . (6.17)

Clearly, the integrand function is continuous in d. Hence, φ(d, θ) is continuous in d. Finally,

the maximum Vt+1 = maxθ φ(d, θ) is continuous in d.

Monotonicity: for t = T , the function VT (d) = U(d) is increasing in d. We assume

that Vt+1(d) is increasing in d and show that so is Vt(d). Let d1 < d2. Then Ft(d1, θt, y) <
Ft(d2, θt, y) for all θt and also Vt+1(Ft(d1, θt, y)) < Vt+1(Ft(d2, θt, y)). Thus,

∫

R

Vt+1(Ft(d1, θt, y)f(y)dy <

∫

R

Vt+1(Ft(d2, θt, y)f(y)dy

holds for all θt. Finally, the inequality holds also for maximum over θt ∈ ∆θ
t on both

sides.
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6.1.3 PDE for the value function V

In this section, we derive a partial differential equation for the function V satisfying (6.16)

when considering infinitely small time change ε → 0+. The discrete model is the time-

discretization of the obtained PDE with the time step 1.

In a short time interval [t, t + ε], ε > 0 small, (6.15) and (6.16) change to

F ε
t (d) = d exp

{
[µ(θt) −

1

2
σ2(θt) − βt]ε + σ(θt)y

√
ε

}
+ τε

and

Vt(d) = max
θt∈∆θ

t

∫

R

Vt+ε(F
ε
t (d, θt, y))f(y)dy . (6.18)

For ε = 0 we have F 0
t = d. The function F ε

t has the following Taylor expansion about

ε = 0:

F ε
t = d + dσ(θt)y

√
ε +

(
d

(
(µ(θt) −

σ2(θt)

2
− βt) +

σ2(θt)

2
y2

)
+ τ

)
ε + O(ε3/2) . (6.19)

The partial derivation of F ε
t with respect to

√
ε reads

∂F ε
t

∂
√

ε
= dσ(θt)y + 2

√
ε

(
d

(
µ(θt) −

σ2(θt)

2
− βt +

σ2(θt)

2
y2

)
+ τ

)
+ O(ε) . (6.20)

The Taylor expansion of the Vt+ε(F
ε
t ) function of two variables about (t, d) reads as fol-

lows:

Vt+ε(F
ε
t ) = Vt(d) +

∂Vt(d)

∂t
ε +

∂Vt(d)

∂d
(F ε

t − F 0
t )

+
1

2

(
∂2Vt(d)

∂t2
ε2 +

∂2Vt(d)

∂t∂d
ε(F ε

t − F 0
t ) +

∂2Vt(d)

∂d2
(F ε

t − F 0
t )2
)

+ h.o.t.

where

F ε
t − F 0

t = A
√

ε + Bε ,

with

A = dσ(θt)y, B = d

(
µ(θt) −

σ2(θt)

2
− βt +

σ2(θt)

2
y2

)
+ τ .

Dividing the above Taylor expansion of Vt+ε(F
ε
t ) by ε > 0 we obtain

Vt+ε(F
ε
t ) − Vt(F

0
t )

ε
=

∂Vt

∂t
+

∂Vt+ε

∂d
(

A√
ε

+ B) +
1

2

∂2Vt+ε

∂d2
A2 + O(

√
ε) .

Equation (6.18) implies

0 = max
θt∈∆θ

t

∫

R

Vt+ε(F
ε
t ) − Vt(d)

ε
f(y)dy
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and therefore

0 = max
θt∈∆θ

t

∫

R

(
∂Vt

∂t
+

∂Vt+ε

∂d

A√
ε

+
∂Vt+ε

∂d
B +

1

2

∂2Vt+ε

∂d2
A2 + O(

√
ε)

)
f(y)dy . (6.21)

If we denote ϕ(
√

ε, y) = ∂
∂dVt+ε(F

ε
t ), then the Taylor expansion of the function ϕ(

√
ε, y)

about
√

ε = 0 is

ϕ(
√

ε, y) = ϕ0 +
√

εϕ1 + εϕ2 + h.o.t.

where

ϕ0 =
∂Vt(F

ε
t )

∂d

∣∣∣
ε=0

,

ϕ1 =
∂2Vt(F

ε
t )

∂d2

∂F ε
t

∂
√

ε

∣∣∣
ε=0

,

ϕ2 =
∂3Vt(F

ε
t )

∂d3

(
∂F ε

t

∂
√

ε

)2 ∣∣∣
ε=0

+
∂2Vt(F

ε
t )

∂d2

∂2F ε
t

(∂
√

ε)2

∣∣∣
ε=0

.

Then we have

lim
ε→0

∫

R

1√
ε
ϕ(

√
ε, y)yf(y)dy = lim

ε→0

∫

R

ϕ1yf(y)dy .

Using (6.20) and the fact that
∫

R
y2f(y)dy = 1 we obtain

lim
ε→0

∫

R

∂

∂d
Vt+ε(F

ε
t )y

1√
ε
f(y)dy =

∂2Vt

∂d2
dσ . (6.22)

That is, in the limit case limε→0+ in (6.21) we obtain the following theorem.

Theorem 6.1.4. The function V satisfies the following fully nonlinear partial differential

equation:
∂V

∂t
+ max

θt∈∆θ
t

{
(d (µ(θt) − β) + τ)

∂V

∂d
+

1

2
d2σ2(θt)

∂2V

∂d2

}
= 0 (6.23)

with the terminal condition VT (d) = U(d) for d > 0.

If V is concave in d, i.e. ∂2V
∂d2 < 0, then from the first order necessary condition for

maximum of (d (µ(θt) − β) + τ) ∂V
∂d + 1

2d2σ2(θt)
∂2V
∂d2 in (6.23) we obtain

θ̂t(d) = max
(
min(θ̂int

t , ut), lt

)
(6.24)

where lt and ut are the bounds of the interval ∆θ
t = [lt, ut] and

θ̂t
int

= −(µ(s) − µ(b))∂V
∂d + dL∂2V

∂d2

dK ∂2V
∂d2

. (6.25)

Here

K = (σ(s))2 − 2σ(s)σ(b)corr(R
(s)
t , R

(b)
t ) + (σ(b))2

and

L = σ(s)σ(b)corr(R
(s)
t , R

(b)
t ) − (σ(b))2 .
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6.2 Model minimizing the terminal risk

The risk minimizing models for solving the problem of pension planning described in

Chapter 3 are based on minimizing the uncertainty of the savings, whereas the target ter-

minal amount is self given. The terminal wealth is a random variable, as it depends on the

random returns of pension funds that invest into various financial instruments. We look

for an optimal selection of pension funds so that the target terminal wealth is achieved (in

the sense of the average value) but the uncertainty of the savings is minimized.

In the Terminal Risk Minimizing Model (TRMM), we consider a future pensioner who

is interested in their wealth at time T of retirement only, that is, they do not care about the

evolution of their account in intermediate times. Using a static risk measure we minimize

the uncertainty of achieving the target wealth.

At the very beginning, we have to point out one important change in comparison

to the DAM model: we allow a continuous fund selection, that is, the saver can split

their money into more than just one fund at the same time. There are two reasons for

making this assumption: first, the possibility of splitting the saved amount into several

funds can be viewed as a possible form of the legislative change in the future; second,

the current legislature allowing the choice of one fund only would lead to mixed-integer

programming, which is in general a NP-hard problem.

6.2.1 Linear constraints

We start with a description the natural constraints that have to be taken into account.

In the DAM model they were given in (6.2). They express the appreciation of savings

between two time stages and the regular contributions to the account.

We recall that t ∈ {0, ..., T − 1} denotes the time at which the saver makes a decision

about the fund selection, and j ∈ {1, ..., J} denotes different funds with returns r j
t at

time t, for which the Assumption A1 from Section 6.1.1 holds). In the DAM model, the

variable dt denotes the ratio of the accumulated amount at time t to the salary at time t.
We introduce new variables for model TRMM (and also MRMM developed later):

• y1
t , ..., y

J
t denote the amounts invested at time t in funds 1, ..., J , respectively. Of

course, there is a natural constraint on nonnegativity of these variables, that is,

yj
t ≥ 0 for all t, j.

• yt denotes the vector [y1
t , ..., y

J
t ]>.

Remark: the relationship between the variable dt from the DAM model and the

variable yt from models TRMM and MRMM is dt = y>
t 1 =

∑J
j=1 yj

t where 1 is a

vector with all elements equal to 1.

• sj
t =

1+rj
t

1+βt
denotes the return of the fund j in the time interval [t−1, t] adjusted by the

wage growth rate βt, which, like in the DAM model, is defined by the relationship

wt+1 = wt(1 + βt). It is assumed to be deterministic and prescribed, see Assumption

A2, Section 6.1.1.

• st denotes the vector [s1
t , ..., s

J
t ]>.
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We notice that variables rj
t , βt, τ stand for the same parameters as in the DAM model, i.e.

rj
t is the return of fund j at time t, βt is the wage growth at time t, and τ is the rate of

regular contribution to the pension account. The problem is to find optimal y j
t for all t, j,

that is, the optimal distribution of the savings into the funds j ∈ {1, ..., J} at each time t,
so that the target wealth is achieved and the uncertainty of it is minimized.

The equations describing the time evolution of savings dependent on balancing be-

tween funds are

y>
0 1 = τ , (6.26)

y>
t 1 = y>

t−1st + τ for all t ∈ {1, ..., T − 1}, (6.27)

y>
T 1 = y>

T−1sT , (6.28)

yt ≥ 0 for all t ∈ {1, ..., T} . (6.29)

The meaning of the equations is as follows. The initial saved money at t = 0, i.e. the

value y>
0 1, is equal to the first contribution τ . At each next time stage t = 1, ..., T −

1, the amounts yj
t−1 from the previous time stage are appreciated by a corresponding

random adjusted fund return sj
t and a new contribution τ is added. That is, the overall

accumulated amount at time t is y>
t−1st + τ . Again, the saver has to distribute this amount

into the funds j ∈ {1, ..., J} in parts yj
t for which (6.27) must hold. At the end of saving,

at the terminal time T , no contribution τ is added.

The next constraint appearing in the problem is the requirement on the minimal target

amount µ, in terms of the yearly salary. If y>
T 1 (=dT ) denotes the terminal wealth random

variable, then the following condition must be satisfied:

E(y>
T 1) ≥ µ . (6.30)

All constraints (6.26) - (6.30) are linear in the yj
t variables.

6.2.2 The objective function

The TRMM model is based on minimizing the uncertainty of the terminal outcome dT =
y>

T 1 under conditions (6.26) - (6.30). This can be measured by a static (one-period) risk

measure. In our model, we use the average value-at-risk deviation. The main advantage

of using it is that the problem becomes a linear program, as we will see in the following

section. We gave a brief overview on the average value-at-risk measure in Chapter 5.

Hence, the objective function of the optimization problem is

g(y) = E(y>
T 1) − AV aRα(y>

T 1) (6.31)

and it is minimized with respect to yj
t , t ∈ {0, ..., T − 1}, j ∈ {1, ..., J}, under constraints

(6.26)–(6.30).

6.2.3 Tree representation

Adjusted returns st form a stochastic process in a discrete time. It can be approximated

by a scenario tree ([30], [42], [47, Chapter 5.1]). Each node at a stage t of the scenario
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tree represents one possible state of the random vector st at the (future) time t. Each path

in the tree, starting from the root, represents one scenario of evolution of the random

process st over time. We denote

0 the root of the tree,
N = {0, 1, ..., N} the set of all nodes in the tree,
S the number of terminal nodes in the tree,
T = {N − S + 1, ..., N} the set of all S terminal nodes in the tree,
N0 = {1, ..., N − S} the set of “inner” nodes,
n− the unique predecessor of the node n ∈ N \ {0} ,
{n}+ the set of successors of the node n ∈ N \ T ,
ξ(n) ∈ {0, ..., T} time stage of the node n ∈ N .

Each node n, except the root n = 0, has exactly one predecessor n−. However, each node

n ∈ N \ T has a set of successors {n}+. We illustrate this notation in Figure 6.1.

Now, we have to slightly adjust the notation from Section 6.2.1 to the tree representa-

tion, in the sense that the lower index of variables yj
t and rj

t , sj
t will denote the particular

node n in the time stage t. It means, we use the notation yj
n and rj

n, sj
n. We clarify that

the variable rj
n represents the return of the fund j valid in the period (part of the sce-

nario path) from the node n− to n. Similarly to the older t-indexed notation, we denote

yn = [y1
n, ..., yJ

n ]>. Let dn = y>
n 1 and yj

n ≥ 0 for all n, j. The notation of the wage growth

rate changes from βt to βξ(n) to denote the wage growth rate corresponding to the time

stage ξ(n) of the node n. That is, the adjusted returns in the tree notation are defined by

sj
n =

1 + rj
n

1 + βξ(n)
(6.32)

for all n ∈ N \ {0}, j ∈ {1, ..., J}. We put sn = [s1
n, ..., sJ

n]>. Again, the adjusted return

sj
n of fund j is valid in the period ξ(n−) to ξ(n) with the corresponding scenario path

between nodes n− and n. The terminal wealth random variable dT is represented by a

vector of discrete values dm = y>
m1, m ∈ T , with corresponding scenario probabilities

pm > 0,
∑

m∈T pm = 1. The sum of node probabilities pn > 0 in every time stage t of the

tree is equal to one, i.e.
∑

n:ξ(n)=t pn = 1 for all t ∈ {0, ..., T}.

Using Uryasev’s representation (5.3) of AV aR, the minimized objective function (6.31)

is expressed in the tree notation as

min
y

{
∑

m∈T
pm(y>

m1) − max
a

{a − 1

α

∑

m∈T
pm[y>

m1 − a]−}
}

. (6.33)

The constraints (6.26)-(6.30) can be rewritten as
∑

m∈T
pm(y>

m1) ≥ µ , (6.34)

y>
0 1 = τ , (6.35)

y>
n 1 = y>

n−sn + τ for all n ∈ N0, (6.36)

y>
n 1 = y>

n−sn for all n ∈ T , (6.37)

yn ≥ 0 for all n ∈ N . (6.38)
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Figure 6.1: An example of a scenario tree. The bottom line represents the time line.

Next, we show that the optimization problem (6.33)–(6.38) can be rewritten to a

linear program.

Proposition 6.2.1. The optimization problem (6.33)–(6.38) is equivalent to the following

linear problem:

min
a,z,y

(
∑

m∈T
pm(y>

m1) − a +
1

α

∑

m∈T
pmzm−N+S

)
(6.39)

subject to

−a + y>
m1 + zm−N+S ≥ 0, zm−N+S ≥ 0, for all m ∈ T , (6.40)∑

m∈T
pm(y>

m1) ≥ µ , (6.41)

y>
0 1 = τ , (6.42)

y>
n 1 = y>

n−sn + τ for all n ∈ N0, (6.43)

y>
n 1 = y>

n−sn for all n ∈ T , (6.44)

yn ≥ 0 for all n ∈ N . (6.45)

It means that (i) every optimal solution to (6.39)–(6.45) is optimal for (6.33)–(6.38), and

(ii) for every optimal solution to (6.33)–(6.38) there exists a unique corresponding optimal

solution to (6.39)–(6.45).

Proof. First, let us notice that (6.40) implies zm−N+S ≥ [y>
m1 − a]− = max{0, a − y>

m1}
for all m ∈ T .

To prove (i), we will show that for an optimal solution to (6.39)–(6.45) we have

zm−N+S = [y>
m1−a]−, and therefore, the optimal solution to (6.39)–(6.45) is the AV aRDα

minimizer subject to (6.34)–(6.38).

Let â, ẑ, ŷ be optimal for (6.39)–(6.45). Denote h(â, ẑ, ŷ) the value of the objective

function at the optimal solution. Assume that m? ∈ T exists such that ẑm?−N+S >
[ŷ>

m?1 − â]−. Then, choosing z̃ with z̃m−N+S = ẑm−N+S for all m 6= m? and ẑm?−N+S >
z̃m?−N+S ≥ [y>

m?1 − a]− we obtain h(â, ẑ, ŷ) > h(â, z̃, ŷ), which is a contradiction to the

optimality of â, ẑ, ŷ.
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To prove (ii), let us assume that ā, ȳ are optimal for (6.33)–(6.38). We put z̄m−N+S =
[ȳ>

m1 − ā]− for all m ∈ T , satisfying the set of inequalities (6.40). It follows from the

optimality of ā, ȳ for (6.33)–(6.38) that ā, z̄, ȳ are optimal for (6.39)–(6.45).

Problem (6.39)–(6.45) is a linear program that can be symbolically written as

min
x

c>x (6.46)

subject to

Aineqx ≤ bineq , (6.47)

Aeqx = beq , (6.48)

yn ≥ 0 for all n ∈ N , (6.49)

zm ≥ 0 for all m ∈ {1, ..., S}. (6.50)

The vector of variables x = (a, z,y) has the length vars = 1+S+J(1+N). The matrix

Aineq is of type (1+S)×vars and it is sparse with (2J +2)S nonzero elements. The sparse

(1+N)× vars matrix Aeq has (1+2N)J nonzero elements. For reader’s convenience, we

present the exact form of matrices Aineq and Aeq in Appendix D.

6.2.4 Existence of a solution

Let us now investigate the feasibility and optimality of the problem (6.46)–(6.50). First,

we notice that the constraints

Aeqx = beq (6.51)

have no real impact on feasibility of the problem; they just describe explicitly the wealth

evolution along the scenario paths. Similarly, the constraints

Aineqx ≤ bineq (6.52)

do not influence the feasibility of (6.46)–(6.50), with exception of one equality. Indeed,

given any ym,m ∈ T , we may put zm−N+S ≥ 0 arbitrary, a ≤ y>
m1 + zm−N+S . Hence,

given any y, we may easily find feasible values of the variables a and z. However, since

we may treat the scenarios of sj
n as fixed and given, the constraint

−
∑

m∈T
pmy>

m1 ≤ −µ

is crucial in determining whether the problem is feasible or not. It is clear that, given

fixed scenarios sj
n and following (6.51), it is not possible to achieve an arbitrary value

of E(y>
T 1). Clearly, it is not possible to achieve a too high terminal outcome µ when

the fund returns simulated in scenarios are low. There exists a µmax such that if µ >
µmax, the problem (6.46)–(6.50) is infeasible. The value of this bound is determined

by the particular scenarios of sj
n and the rate of regular contribution τ by the folowing

relationship:

µmax = max
y

∑

m∈T
pmy>

m1 (6.53)
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subject to constraints (6.48) and (6.49), i.e. subject to (6.42)–(6.45).

We summarize the above considerations in the following proposition.

Proposition 6.2.2. Let µmax be given by (6.53). If µ ≤ µmax, then the optimization problem

(6.46)–(6.50) is feasible.

Before we proceed to a statement about optimality of the above problem, we discuss

the boundedness of the y variable in the following proposition.

Proposition 6.2.3. The variable y from (6.47)–(6.50) is bounded.

Proof. We denote

Θ := max
n,j

|sj
n| . (6.54)

Then it is easy to show that

0 ≤ yj
n ≤ τ

ξ(n)∑

i=0

Θi . (6.55)

Theorem 6.2.1. If the problem (6.46)–(6.50) is feasible then it attains an optimum.

Proof. If a problem of linear programming is feasible, then it may attain an optimum or

it may be unbounded ([49]). We show that the unboundedness is not the case in (6.46)–

(6.50).

We recall that the objective function has the form

min
a,z,y

∑

m∈T

(
pmy>

m1 − a +
1

α

∑

m∈T
pmzm−N+S

)
,

or equivalently,

min
z,y

∑

m∈T

(
pmy>

m1 − max
a

{a +
1

α

∑

m∈T
pmzm−N+S}

)

with zm−N+S = [y>
m1 − a]− in the optimum (see the proof of Proposition 6.2.1). We

showed in Proposition 6.2.3 that the y variable is bounded. Therefore, the unboundedness

of the objective function may be caused only by the unboundedness of variables a or z.

However, maxa{a − 1
α

∑
m∈T pmzm−N+S} = AV aRα(y>

m1). It is finite, hence bounded,

because y is finite and bounded.

Another argument for excluding the unboundedness of (6.46)–(6.50) is that the ob-

jective function stands for the AV aRDα and Corollary 5.1.1 states that it is nonnegative,

hence bounded below.

The next statement follows from the well known fact that, in linear programming, if

the primal (dual) problem attains an optimum, so does the dual (primal) one ([49]).

Corollary 6.2.1. For µ ≤ µmax, the optimization problem (6.46)–(6.50) attains an opti-

mum and so does its dual.
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6.2.5 A nonlinear constraint

The size (number of nodes) of a tree is determined by the degree of the nonterminal

nodes and the depth of the tree (number of time stages). If bn are the degrees of the

nodes n ∈ N \ T , then the size of the tree is 1 +
∑

n∈N\T bn. In particular, if bn ≡ b for all

n ∈ N \ T , the size of the tree is
∑T

i=0 bi, that is, it depends polynomially on the degree b
of nonterminal nodes and exponentially on the depth of the tree.

A typical length of the active life of a person during which they are working and saving

for pension is, say, 40 years. The size of the simplest – binomial – tree is of order 2 ∗ 1012.

The number vars of variables in our linear programs is then of the order 7 ∗ 1012. If one

would like to consider a tree with more scenarios, e.g. for a better approximation of the

underlying stochastic process, the size of the tree would grow even more.

To lower the number of variables, let us assume that the savers do not make decisions

about the fund selection every year but only in years 0 = t0 < t1 < ... < tω represented

by the nonterminal tree stages 0, 1, ..., ω; see Figure 6.2. We notice that the last time stage

of the tree corresponds to real time T but this time is the time of retirement where no

more decisions about investments are to be made, and therefore the last decision time is

tω < T . Hence, the depth of the tree is ω + 1.

Figure 6.2: Decision periods.

Let lk = tk − tk−1 denote the length of the period [tk−1, tk], k ∈ {1, ..., ω +1}. The basic

problem (6.33)–(6.38) and its equivalent linear counterpart (6.39)–(6.45) are based on

the assumption that lk = 1 for all k. We now assume lk > 1 for all or at least some k. That

means, the account is appreciated lk-times during the period [tk−1, tk]. The regular contri-

bution τ is transferred to the account lk-times too. We assume that it is distributed each

time between funds j ∈ {1, ..., J}, maintaining their weights from the previous decision

time tk−1. If τn = [τ1
n, ..., τJ

n ]> is the vector of yearly contributions transferred lξ(n)+1 times

to funds {1, ..., J} during the period [tξ(n), tξ(n)+1], from the node n to any of its successors

from the set {n}+, n ∈ N \ T , then

τ j
n

τ
=

yj
n

y>
n 1

. (6.56)

Of course, τ>
n 1 = τ for all n ∈ N \ T .

Constraints (6.36) and (6.43), concerning the appreciation of the wealth in nontermi-

nal stages, have to be modified in the following way:

y>
n 1 = y>

n−
sn + τ>

n−

lξ(n)−1∑

i=0

(sn)i/lξ(n) for all n ∈ N0 (6.57)
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where the components of the vector τn−
are given by (6.56). The power (sn)i/lξ(n) of

the vector of yearly adjusted returns is considered componentwise, i.e. (sn)i/lξ(n) =
[(s1

n)i/lξ(n) , ..., (sJ
n)i/lξ(n) ]>. We obtain an optimization problem with one nonlinear con-

straint (6.61):

min
y

{
∑

m∈T
pm(y>

m1) − max
a

{a − 1

α

∑

m∈T
pm[y>

m1 − a]−}
}

(6.58)

subject to

∑

m∈T
pm(y>

m1) ≥ µ , (6.59)

y>
0 1 = τ , (6.60)

τ j
n

τ
=

yj
n

y>
n 1

for all j ∈ {1, ..., J}, n ∈ N \ T , (6.61)

y>
n 1 = y>

n−
sn + τ>

n−

lξ(n)−1∑

i=0

(sn)i/lξ(n) for all n ∈ N0 , (6.62)

y>
n 1 = y>

n−sn for all n ∈ T , (6.63)

yn ≥ 0 for all n ∈ N . (6.64)

Remark. Similarly as in the proof of Proposition 6.2.1, the above problem is equivalent

to a problem of minimizing the linear objective function (6.39) subject to (6.59)–(6.64)

and the additional constraints (6.40). Next, we notice that (6.61) and (6.62) can be joined

to one nonlinear constraint by expressing τ j
n−

from (6.61).

6.3 Model minimizing the multi-period risk

The multi-period risk minimizing model (MRMM) for solving the pension planning prob-

lem defined in Chapter 3 is suitable for savers who are interested in the value of their

account at all intermediate times rather than just at the terminal time. The reason for it

could be the possibility of heritage of the saved amount in the case of early death. We

use a multi-period risk measure to measure the uncertainty of all intermediate savings. In

particular, we use the multi-period average value-at-risk deviation.

We recall from Section 5.2.1 that the multi-period average value-at-risk deviation is

defined by

AV aRDα,c(Y,F) =

T∑

t=1

ctE[AV aRDαt(Yt|Ft−1)]

=

T∑

t=1

ctE[E(Yt|Ft−1) − AV aRαt(Yt|Ft−1)]
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where ct are real constants representing a discount factor or weights of importance of

conditional AVaRD-s at the time t. We notice that the confidence level αt may be different

for different times t. However, we consider αt ≡ α but the generalization of the upcoming

equations and formulations to nonconstant confidence levels αt is straightforward.

If we denote the conditional probabilities of the nodes k ∈ N \ {0} by

pc(k) =
pk∑

l∈{n}+ pl
, k ∈ {n}+, n ∈ N \ T ,

then the multi-period average value-at-risk deviation in the tree notation reads

∑

n∈N\T
cξ(n)pn



∑

k∈{n}+

(
pc(k)y>

k 1
)
− max

an

{an − 1

α

∑

k∈{n}+

pc(k)[yk1− an]−}


 . (6.65)

The objective function (6.65) is minimized subject to the same constraints like in the one-

period case, i.e. (6.34)–(6.38).

Using the same principle as in Proposition 6.2.1, we conclude that the problem of

minimizing the multi-period risk, measured by the dynamic average value-at-risk deviation

(6.65), can be rewritten to a linear program:

min
a,z,y

∑

n∈N\T
cξ(n)pn



∑

k∈{n}+

(
pc(k)y>

k 1
)
− an +

1

α

∑

k∈{n}+

pc(k)zkn


 (6.66)

subject to

−an + y>
k 1 + zkn ≥ 0, zkn ≥ 0, for all k ∈ {n}+, n ∈ N \ T , (6.67)∑

m∈T
pmy>

m1 ≥ µ, (6.68)

y>
0 1 = τ, (6.69)

y>
n 1 = y>

n−sn + τ for all n ∈ N0, (6.70)

y>
n 1 = y>

n−sn for all n ∈ T , (6.71)

yn ≥ 0 for all n ∈ N . (6.72)

The above optimization problem can be represented as a linear program having the

matrix form (6.46)–(6.50) with the vector of variables x = (a, z,y) having the length

vars = 1 + N − S + N + J(1 + N). Both matrices Aineq and Aeq have a sparse structure

with size (1 + N) × vars and they have JS + (J + 2)N and (1 + 2N)J nonzero elements.

As in the TRMM, it is clear that, for the above problem to be feasible, the target wealth

µ must be in a favorable relationship with the scenarios sn. This is due to the fact that it

is not possible to achieve a too high outcome with low fund returns. Analogously to the

TRMM model, the following theorem holds. Its proof is similar to that of Theorem 6.2.1

and therefore we will omit it here.
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Theorem 6.3.1. There exists a constant µmax such that for µ ≤ µmax the problem of mini-

mizing (6.65) subject to (6.34)–(6.38) and its equivalent problem (6.66)–(6.72) are feasible

and attain an optimum.

The number of variables in the MRMM model is bigger than that of TRMM, because

the variables a, z are of a higher dimension. It means that, during implementation of

the problem, one may expect difficulties with memory requirements. For this reason, we

consider, again like in Section 6.2.5, a case when the savers do not rebalance their account

yearly but only once during a period of several years. We obtain the following optimization

problem with one nonlinear constraint (6.77):

min
a,z,y

∑

n∈N\T
cξ(n)pn



∑

k∈{n}+

(
pc(k)y>

k 1
)
− an +

1

α

∑

k∈{n}+

pc(k)zkn


 (6.73)

subject to

−an + y>
k 1 + zkn ≥ 0, zkn ≥ 0, for all k ∈ {n}+, n ∈ N \ T , (6.74)

∑

m∈T
pm(y>

m1) ≥ µ , (6.75)

y>
0 1 = τ , (6.76)

τ j
n

τ
=

yj
n

y>
n 1

for all j ∈ {1, ..., J}, n ∈ N \ T , (6.77)

y>
n 1 = y>

n−
sn + τ>

n−

lξ(n)−1∑

i=0

(sn)i/lξ(n) for all n ∈ N0 , (6.78)

y>
n 1 = y>

n−sn for all n ∈ T , (6.79)

yn ≥ 0 for all n ∈ N . (6.80)

We notice that constraints (6.77) and (6.78) can be joined to one nonlinear constraint

y>
n 1 = y>

n−
sn + τ

y>
n−

qn

y>
n−

1
(6.81)

where qn =
∑lξ(n)−1

i=0 (sn)i/lξ(n) .



Chapter 7

Implementation of the models

and sensitivity analysis

In this chapter, we implement the DAM, PIAM, TRMM and MRMM models for the

case of the pension system of Slovak Republic. We start with description of the system in

more detail and description of the data used for computations and simulations. For each

model we introduce a numerical approximation scheme and present results afterwards.

The results concerning the dynamic strategies will be summarized in graphical plots as

well as several tables displaying computed results of optimization. In the DAM model,

we also investigate the sensitivity of the results with respect to the change of the risk

aversion parameter, stocks and bonds returns and wage growth rate. In the TRMM model,

we investigate the sensitivity of the results with respect to the α parameter specifying

the average value-at-risk measure. As we will see, the results from all models confirm a

property that the proportion of risky assets in the optimal investment strategy is decreasing

over time.

7.1 Description of the system and data used

Let us now review the characteristics of the Slovak pension system described in Chapter 2,

going into more detail. We begin with specifying the barrier function representing the gov-

ernmental limitations imposed on the fund selection. Next, we make an assumption about

the portfolio composition of particular funds. Finally, we specify the values of parameters

entering the models.

49
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7.1.1 Barrier function

In Slovakia, there are several commercial pension fund management institutions manag-

ing savers’ pension savings within the 2nd pillar of the pension system. Each of them is

obliged to manage three funds with different limits for investment (see Tab. 2.2). As was

already mentioned in Chapter 2, instant savers may hold assets at a particular time in one

fund only. The decision about the fund selection is up to the savers. We recall the govern-

mental restrictions that apply: the savers may not hold assets in the Growth Fund up to

15 years before retirement; moreover, all assets should be held in the Conservative Fund

up to 7 years before retirement. The intention of these restrictions and governmental reg-

ulations was to lower the risk of the value of savings falling substantially, shortly before

retirement. Intuitively it is clear that e.g. a 20% fall of asset values after the first year

of saving affects the level of future pension less than a 20% fall in the last year of saving

leading to a 20% fall of the pension benefits. In [35] we give more precise mathematical

arguments to justify the idea of gradual switching to the less risky funds as the retirement

age approaches.

In mathematical terms, the governmental limitations may be expressed by imposing a

barrier on the fund selection. We denote the corresponding barrier function by ∆t which

is a function depending on the time parameter. The corresponding barrier function is

defined by

∆t =





{1, 2, 3} if t ≤ 25 ,
{2, 3} if 25 ≤ t ≤ 32 ,
{3} if t ≥ 33 .

(7.1)

We can impose a constraint on the fund selection:

j(t, d) ∈ ∆t for all t = 1, ..., T ,

where we refer to the Growth, Balanced, and Conservative fund as 1, 2 and 3, correspond-

ingly.

7.1.2 Portfolio composition

Let us now present a more detailed characterization of the three funds. The funds typically

invest to stocks (European, American, Asian), bonds (typically governmental bonds) and

other money market instruments. A typical portfolio composition is depicted in Figure 7.1

as an average portfolio of several pension fund management institutions obtained from

their monthly reviews from October 2007. Geographically, most investments are allocated

in European financial instruments. This is the reason why we decided, for simplicity, to

use a European stock index to model the stock investments, and a European bond index

to represent bond and money market investments.

We have chosen the Standard & Poor’s Europe 350 Index to characterize the stock part

of investments. S&P Europe 350 combines the benefits of representation with investability

for the Europe region, spanning 17 exchanges. S&P Europe 350 is the foundation of

the European index series. It is also the Europe component of S&P Global 1200. Index

constituents exhibit the following characteristics. Market coverage of the index is over 70%
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Figure 7.1: Top: Typical allocation of investments in particular funds. Computed as an average

from several pension fund management institutions from their monthly reviews, obtained from
their official webpages. Bottom: geographical diversification of stock investments, approximately.

of the Europe equities market. The S&P Europe 350 is a market capitalization weighted

index. More information on the index is to be found at the official website of Standard and

Poor’s ([66]). For the historical evolution of S&P Europe 350 see Figure 7.2. To represent

the bond part of the investment, we will use governmental bonds of European countries.

The MSCI EMU Sovereign Debt Index contains the local currency government debt of 11

EMU member states. It is denominated in the EUR currency. For the historical evolution

of this index see Figure 7.2. The index was incepted on December 31, 1993. The average

yearly returns and standard deviations implied by historical data of the two indices are

presented in Table 7.1. The correlation coefficient of S&P Europe 350 and MSCI EMU

Sovereign Debt Index in the considered period is corr = −0.07943.

Figure 7.1 indicates that the proportion of stocks in the investment strategy of the

funds is currently much smaller than the barrier restrictions imposed by governmental

prohibitions allow. For example, the Growth fund invests approximately only 21% to

stocks instead of the possible 80%. The Balanced fund invests approximately 17% to stocks

instead of the possible 50%. In our computations, we consider two situations. First, we

assume that the funds fulfill the barrier to a maximal possible extend. Second, we take

into consideration the fact that the real ratio of stocks in the portfolio is relatively low, and

we assume that the pension fund management institutions will raise this ratio over time.
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S&P Europe 350 Index
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MSCI EMU Sovereign Debt Index
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Figure 7.2: History of The Standard and Poor’s Europe 350 Index (left) in the period 1991–2007,

and The MSCI EMU Sovereign Debt Index (right) in the period 1994–2007. Source: Bloomberg.

Average Return StdDev

S&P Europe 350 r̄(s) = 0.09185 σ(s) = 0.17259

MSCI EMU Sovereign Debt Index r̄(b) = 0.05594 σ(b) = 0.03340

Table 7.1: The average yearly returns and standard deviations of S&P Europe 350 and MSCI EMU

Sovereign Debt Index based on historical data Jan 1994–June 2007. The correlation coefficient
between S&P Europe 350 and MSCI EMU Sovereign Debt Index is corr = −0.07943. Source:

Bloomberg.

7.1.3 Model parameters

Before presenting the results of simulations we have to discuss the input data. As men-

tioned in Chapter 2, there are three types of pension funds in the case of Slovak Republic,

i.e. we put J = 3. As we discussed in the previous section, we suppose that the funds are

constructed from stocks (S) and secure bonds (B) where stocks are represented by S&P

Poor’s Europe 350 Index, whereas the secure bonds by MSCI EMU Sovereign Debt Index.

The average returns, standard deviations and correlation may be found in Table 7.1. Ac-

cording to Table 2.2 and under assumption that the pension fund management institutions

use the investment restrictions to the maximal possible extent, we may express the value

of funds symbolically in the following way:

F1 = 0.8 × S + 0.2 × B ,
F2 = 0.5 × S + 0.5 × B ,
F3 = B .

(7.2)

By a simple computation we obtain average returns and standard deviations of the funds

as in Table 7.2.

According to the Slovak legislature, the percentage of salary transferred each year to

the pension account is τ = 9%. We assume that the period of saving is T = 40 years. The
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Fund Average Return StdDev

F1 (Growth) r̄1 = 8.47% σ1 = 13.80%
F2 (Balanced) r̄2 = 7.39% σ2 = 8.73%

F3 (Conservative) r̄3 = 5.59% σ3 = 3.40%

Table 7.2: Average return and its standard deviation for the Growth, Balanced and Conservative

Fund.

Period 2008–10 2011–15 2016–21 2022–24 2025–50

t 1–4 5–10 11–16 17–19 20–60

wage growth (1 + βt) 1.07 1.071 1.065 1.060 1.050

Table 7.3: Predictions of the wage growth rate in Slovak Republic or years 2008–2050. Source:

[38].

prediction of the wage growth rate βt is summarized in Table 7.3.

7.2 The DAM and PIAM models

In implementation of the DAM and PIAM models, we consider two variants:

A: we do not assume any restrictions on the decision variables j or θ;

B: we do take the governmental regulatory restrictions on the fund selection given by

the barrier function (7.1) into account.

We use the DAM model for studying the sensitivity of the optimal choice j = j(t, d) with

respect to varying parameters.

In the PIAM model, we discretize the decision variable θ by a discrete vector of values

from [0, 1]. Both models DAM and PIAM share the same numerical approximation scheme

presented in the following section.

7.2.1 Numerical approximation scheme

We start by recalling the mathematical formulation of the optimization problem in DAM.

Our aim is to determine optimal j for the problem (6.12), i.e.

Vt(d) = max
j∈∆t

∫

R

Vt+1(y)f j
t

(
(y − τ)

1 + ρt

d
− 1

)
1 + ρt

d
dy (7.3)

where VT (d) = U(d) and f j
t is the density function of normally distributed fund returns

rj
t . We use the constant relative risk aversion utility function of the form

U(d) = −d1−a , d > 0 , (7.4)
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where a > 1 is the constant coefficient of relative risk aversion. We note that the function

U(d) defined by (7.4) is a smooth, increasing and strictly concave function for d > 0. The

coefficient of relative risk aversion a is commonly suggested to be less than 10 ([41]).

The principal difficulty in computing the integrals in (7.3) is due to significant oscil-

lations in the integrand function. More precisely, it may attain both large values as well

as low values of the order one. Therefore a scaling technique is needed when computing

the integral (7.3). The idea of scaling is rather standard and is widely used in similar

circumstances.

Let Ht(d) be any bounded positive function for t = 1, 2, ..., T . We scale the function Vt

by Ht, i.e. we define a new auxiliary function

Wt(d) = Ht(d)Vt(d) .

Clearly, the original function Vt(d) can be easily calculated from Wt(d) as follows: Vt(d) =
Wt(d)/Ht(d). Then, for each time step t from t = T down to t = 1 we have

WT (d) = HT (d)VT (d)

and

Wt−1(d) = Ht−1(d)Vt−1(d)

= max
j∈∆t

∫

R

Ht−1(d)Vt

(
d

1 + ρt
(1 + r) + τ

)
f j

t (r)dr (7.5)

= max
j∈∆t

∫

R

Ht−1(d)Wt

(
d

1+ρt
(1 + r) + τ

)

Ht

(
d

1+ρt
(1 + r) + τ

) f j
t (r)dr

= max
j∈∆t

∫

R

Ht−1(d)Wt(y)

Ht(y)
f j

t

(
(y − τ)

1 + ρt

d
− 1

)
1 + ρt

d
dy .

It is worthwhile to note that any choice of the family Ht, t = 0, ..., T , of positive

bounded scaling functions does not change the result. It may however significantly im-

prove the stability of numerical computation.

In order to capture both large and small values of Vt we recursively define the scaling

functions Ht, t = T, T − 1, ..., 1, 0, depending on the previously computed solution Vt+1 as

follows:

HT =
1√

1 + V 2
T

, and Ht =
1√

1 + V 2
t+1

for t = T − 1, ..., 0 . (7.6)

In our algorithm we compute values of the function Wt = Wt(d) for discrete values of d
from the time dependent interval d ∈ (dmin, t/2), where we use dmin = d0 = 0.09. The

upper bound t/2 has been chosen with respect to maximal expected values of the savings-

to-yearly-salary ratio d. In each time level t = T down to t = 1 we choose a uniform spatial

discretization of the interval (dmin, t/2) consisting of k = 500 mesh points. Stochastic fund

returns rj
t were assumed to have normal distributions with densities f j

t having constant

in-time means r̄j and standard deviations σj , j = 1, ..., J . In order to compute numerically
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Figure 7.3: Regions of optimal choice, the path E(dt) of average saved money to wage ratio (solid

line) and the paths E(dt) ± σ(dt) (dashed lines).

the Bellman type integral with normal distribution densities f j
t we used the Simpson rule

with 11 equidistant grid points covering the essential interval (r̄j − 3σj , r̄j + 3σj). The

numerical calculations were realized in Matlab 7 environment.

7.2.2 The DAM model: results and simulations

We present a typical result of our analysis for the DAM model, Variant A, in Figure 7.3. It

contains three distinct regions in the (d, t) plane determining the optimal choice j = j(d, t)
of a fund depending on time t ∈ [0, T − 1] and the average saved money to wage ratio

d ∈ [dmin, t/2]. The curvilinear solid line represents the path of the averaged wealth E(dt),
obtained by 50000 Monte Carlo simulations. Notice that, for t > 0, the ratio dt is a random

variable depending on (in our case normally distributed) random returns of the funds

and on the computed optimal fund choice matrix j(d, t′), t′ < t. The dashed curvilinear

lines correspond to E(dt) ± σt intervals where σt is the standard deviation of the random

variable dt. One can observe that the optimal strategy is to choose the most risky fund in

the first years of saving, and to switch to less risky funds in later times. In particular, if we

view the funds as representations of the stock part θt (see Example 6.1.1), the numerical

evidence says that the optimal weight of stocks θt in investment is nonincreasing over time

t.

mean switch switch

E(dT ) F1–F2 F2–F3

4.57 9 (8–11) 25 (23–27)

Table 7.4: Summary of computation of the averaged saved money to wage ratio dT and switching

times.
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a mean switch switch

E(dT ) F1–F2 F2–F3

5 5.81 15 (13–17) never

7 5.09 11 (10–14) 33 (32–35)

9 4.57 9 (8–11) 25 (23–27)

11 4.36 8 (7–9) 21 (19–23)

Table 7.5: Results for fixed wage growths, fixed returns and standard deviations (see values in Tab.
7.2), various risk aversion parameter a.

In Table 7.4 we present the averaged final wealth E(dT ) as well as the so-called

switching-times for averaged path E(dt), t ∈ [0, T ], and the intervals (in brackets) of switch-

ing times for one standard deviation of the averaged path, i.e. for the paths E(dt)± σ(dt).

In the next subsections we pay our attention to sensitivity analysis of the results when

some parameters are changing. In particular, we study the behavior of the optimal strat-

egy j and the saved amount E(dT ) when the risk aversion parameter entering the utility

function changes. Next, we study the sensitivity of the results with respect to varying

stocks and bond returns and finally with respect to the wage growth rate.

Sensitivity analysis

Varying risk aversions.

Let us consider various values of the risk aversion parameter a in the utility function U
given in (7.4): a = 5, 7, 9, 11. It is intuitive to expect that increasing risk aversion leads

to preferring less risky funds. Indeed, as illustrated in Figure 7.4 and Table 7.5, one can

observe that increasing a (i.e. increasing aversion to risk) causes that the switching-times

between funds move to earlier times; that is, the saver changes from fund F1 to fund F2

earlier, as well as from fund F2 to fund F3. One may also expect that for higher values

of the risk aversion parameter a one typically obtains lower levels of the final wealth and

this is confirmed in the first column of Table 7.5; although, in general, higher exposure to

risky assets for low risk aversion a may result in low outcome in the case of unfavorable

behavior of stock market.

The efficient frontier relating the average terminal value of savings E(dT ) and the

volatility σ(dT ) to the risk aversion parameter a is depicted in Figure 7.5. Three different

parts can be observed on the curves’ shape: the first one (left from a = 2) corresponds

to those a where the optimal strategy consists of investing in the most risky fund F1 only

and the saver stays in this fund for the whole period of saving; the second part (between

a = 2 and a = 6), the optimal strategy contains investing to the Growth Fund F1 in the

first and Balanced Fund F2 in later years, but there is no switch to Conservative Fund F3.

Finally, the part after a = 6 represents cases when all three funds are contained in the

optimal strategy. The figure documents the expectation that with lowering risk aversion,

one obtains a higher outcome on average.
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Figure 7.4: The DAM model, Variant A. Sensitivity of regions of optimal choice with respect to

various values of the risk aversion parameter a = 5, 7, 9, 11 and the average paths E(dT ), E(dT ) ±
σ(dT ).
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Figure 7.5: The DAM model, Variant A. The averaged saved wealth E(dT ) plus/minus simulated

standard deviation σ(dT ) in relationship to the risk aversion parameter a.
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a) lower stock return r(s) = 0.08 b) higher stock return r(s) = 0.10

and fixed bond return r(b) = 0.05594
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and fixed stock return r(s) = 0.09185

Figure 7.6: The DAM model, Variant A. Sensitivity of regions of optimal choice with respect to

various expected values of asset and bond returns.

Varying stock and bond returns.

Now, let us examine the impact of a change in stock or bond returns on the optimal

strategy and savings. For example, if the return of stocks increases (at a fixed volatility),

one can expect that it will be more favorable to stay in funds with a higher proportion

of stocks investment for a longer time than before. In our experiments, we first fix the

bond return and increase/decrease the stock return, whereas a = 9 and other parameters

including volatilities of stocks and bonds are fixed. The change of stock returns is reflected

in the change of funds’ F1 and F2 returns. The obtained results confirm the intuitive

expectation that a higher return of stocks implies a later switch from more risky to less

risky funds. Understandably, the average wealth E(dT ) in the terminal year of saving is

higher. Secondly, we fix the stock return and increase/decrease the bond return. A higher

return of bonds implies an earlier switch from more risky to less risky funds. The results

of experiments are summarized in Figure 7.6 and Table 7.6.
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Stock & Bond Fund mean switch switch

returns returns E(dT ) F1–F2 F2–F3

r̄(s) = 0.09185 r̄1 = 0.08466
r̄(b) = 0.05594 r̄2 = 0.07389 4.57 9 25

r̄3 = 0.05594 (8–11) (24–28)

r̄(s) = 0.08 r̄1 = 0.07519

r̄(b) = 0.05594 r̄2 = 0.06797 4.12 6 18

r̄3 = 0.05594 (6–7) (16–20)

r̄(s) = 0.10 r̄1 = 0.09119

r̄(b) = 0.05594 r̄2 = 0.07797 5.20 11 31

r̄3 = 0.05594 (10–13) (29–33)

r̄(s) = 0.09185 r̄1 = 0.08148

r̄(b) = 0.04 r̄2 = 0.06592 4.66 15 38
r̄3 = 0.04 (13–17) (37–39)

r̄(s) = 0.09185 r̄1 = 0.08748

r̄(b) = 0.07 r̄2 = 0.08092 5.35 4 14

r̄3 = 0.07 (4–5) (13–16)

Table 7.6: The DAM model, Variant A. Results for fixed wage growths, fixed a = 9, fixed standard

deviations of fund returns σ1 = 0.1380, σ2 = 0.0873, σ3 = 0.0340, and various bond and stock
returns r̄(b) and r̄(s), hence fund returns r̄1, r̄2, r̄3.

Interest rate targeting.

Based on the calibration of Cox-Ingersoll-Ross interest rate model it was shown in [4] that

it is reasonable to expect that the bond return will be approaching the value of approx-

imately 2% in the time horizon of 30–40 years. Therefore, as a special case in studying

the sensitivity of the results with respect to varying bond returns, we investigate how the

optimal strategy changes when bond returns are decreasing monotonically to a certain

target level.

Let us assume that the bond return decreases exponentially from the starting value

r̄
(b)
0 = 0.05594 given in Table 7.1 to a value r̄

(b)
∞ . More precisely, we suppose that the rates

in years t = 1, 2, ..., T, are given by formula

r̄
(b)
t = r̄(b)

∞ + (r̄
(b)
0 − r̄(b)

∞ )e−Kt/T

for some constant K. We notice that decreasing bond returns affect the returns of all

funds, F3, F2, as well as F1.

Figure 7.7 presents the results obtained for K = 2 and r̄
(b)
∞ = 0.75r̄

(b)
0 and r̄

(b)
∞ =

0.5r̄
(b)
0 in comparison to constant bond return r̄

(b)
0 . As expected, decreasing bond returns

imply enlargement of the optimality regions of funds with low proportion of bonds in

their portfolio. At a very strongly decreasing bond return (towards r̄
(b)
∞ = 0.5r̄

(b)
0 ), the

Conservative Fund F3 is not selected at all throughout the whole period of saving.

A similar experiment was also presented in author’s paper [34] in which the returns of

all funds were considered to be exponentially decreasing to their half values.
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Figure 7.7: Sensitivity of regions of optimal choice for exponentially decreasing bond returns.

wage mean switch switch

growth E(dT ) F1–F2 F2–F3

β(−1%) 5.53 8 (7–10) 23 (22–26)

β 4.57 9 (8–11) 25 (24–28)

β(+1%) 3.82 11 (10–13) 27 (25–29)

Table 7.7: Results for fixed returns and standard deviations (see values in Tab.7.2), fixed a = 9,
and various wage growth rates.

Varying wages.

Finally, let us investigate the impact of various wage growth rates on the optimal strategy.

Intuition says that one can expect a lower saved money to wage ratio dt for a higher wage

growth β; however, of course, this does not mean a lower absolute value of money. To

examine this, we consider the wage growth being raised (lowered) uniformly for all time

periods by 1%. We denote by β(+1%) (β(−1%)) the wage growth predictions derived from

Table 7.3 by increasing (decreasing) the βt values by 1%. As we can see in Figure 7.8

and Table 7.7, a higher wage growth leads to a lower wealth E(dT ), guided by a shift of

switching-times to later years.

Variant B of the DAM reflects the governmental limitations on fund selection, as de-

scribed in Section 7.1.1. We present two illustrative results in Figure 7.9. One may observe

the horizontal parts of the switching-borders at corresponding years where limitations ap-

ply.
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Figure 7.8: The DAM model, Variant A. Sensitivity of regions of optimal choice with respect to

various wage growth β scenarios.

7.2.3 The PIAM model: results and simulations

In the PIAM model, the weight θt of stocks in investment is the decision variable. In our

experiments, we discretize θt ∈ [0, 1] by 11 equidistant points. At each time stage t, an

optimal θt ∈ {1, 0.9, 0.8, ..., 0.1, 0} was calculated. Figure 7.10 depicts a decreasing trend

of the proportion of stocks in the optimal saving strategy, similarly as in Variant A and B

of the DAM model.

7.2.4 A case study

As the last example of results, we consider again the DAM model and its Variant B with

portfolio composition representing the current situation in pension funds of Slovak Re-

public. It means, we take the governmental limitations on investments into account but,

in contrary to all simulations in previous sections, we consider the current portfolio com-

position of funds presented in Figure 7.1. For illustrative purposes, we use a slightly more

“optimistic” portfolio composition, as presented in Table 7.9. All other parameters are

used as in the default case studied in the previous sections: risk aversion parameter a = 9,

regular contribution τ = 9% of gross salary, stock and bond returns as in Table 7.1, wage

growth rates as in Table 7.3. The results obtained with these parameters are depicted in

Figure 7.11 a).

A first look at the left-hand side plot of Figure 7.11 a) invokes an impression that the

low weight of stocks in funds’ investment has no impact on the amount of savings, because

govt. limits no yes

mean E(dT ) 4.83 4.60

Table 7.8: The effect on the amount of savings with or without governmental limitations.
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Figure 7.9: The DAM model, Variant B. Regions of optimal selection under governmental limita-

tions, a = 7, a = 9.
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Figure 7.10: The PIAM model. Regions of optimal selection without (left) and with (right) govern-

mental limitations, a = 9, continuous θt ∈ [0, 1] discretized by θt ∈ {0, 0.1, 0.2, ..., 1}.

Fund Stocks weight Average return StdDev

F1 (Growth) 0.25 6.49 % 4.92 %

F2 (Balanced) 0.2 5.31 % 4.31 %

F3 (Conservative) 0 5.59 % 3.40 %

Table 7.9: Current portfolio composition of pension funds in Slovak Republic.

the average terminal wealth E(dT ) is close to that one of the default case in the right-hand

side plot of Figure 7.11 a). However, it is important to notice that the time spent in risky

funds is much larger than in the default case. One could argue that the volatility of funds

F1 and F2 is lowered by lower proportion of stocks, see Table 7.9, and that even if the

savers stay in the Growth fund for, say, 25 years, the risk they face is much smaller than
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Figure 7.11: The DAM model, a case study. Sensitivity of regions of optimal fund selection for fund

investment composition with θ1 = 0.8, θ2 = 0.5, θ3 = 0 (left) vs. θ1 = 0.25, θ2 = 0.2, θ3 = 0 (right),

and for r̄(b) = 5.59% (a), r̄(b) = 3% (b), and r̄(b) = 2% (c).

the one in the default case, where they stayed in fund F1 for 10 years only but with almost

four times higher volatility.

In order to keep from making conclusions based on the impression that the proportion
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Fund r̄(b) = 3% r̄(b) = 2%

F1 (Growth) 4.55 % 3.80 %

F2 (Balanced) 4.24 % 3.44 %

F3 (Conservative) 3 % 2 %

Table 7.10: The DAM model, a case study. Average fund returns for two pessimistic scenarios of

bond return r̄(b).

r̄(b) = 5.59% r̄(b) = 3% r̄(b) = 2%

θ1 = 0.8, θ2 = 0.5 E(dT ) = 4.57 E(dT ) = 3.83 E(dT ) = 3.50
σ(dT ) = 0.8479 σ(dT ) = 1.0654 σ(dT ) = 0.9731

θ1 = 0.25, θ2 = 0.2 E(dT ) = 4.39 E(dT ) = 2.90 E(dT ) = 2.51
σ(dT ) = 0.6398 σ(dT ) = 0.3848 σ(dT ) = 0.3170

Table 7.11: The DAM model, a case study. Results for a default bond return r̄(b) = 5.59% and for

two pessimistic scenarios of the bond return r̄(b) = 3% and r̄(b) = 2%.

of stocks in the funds does not play any important role in affecting the amount of savings,

we do two more experiments. We show that if the bond return is lower, the overall sav-

ings may be much lower too. In fact, the results in Figure 7.11 a) are more or less a good

occasional interaction of input parameters of the model, but in general the average value

of savings depends strongly on the portfolio composition. Let us consider two pessimistic

scenarios for the bond return r(b) as in Table 7.10. The results of the experiments are de-

picted in Figure 7.11 b) and c). In the optimal strategy, savers stay in the most risky funds

as long as possible and switch to less risky funds only due to governmental limitations.

The amount of terminal savings is legibly lower than in the case of θ1 = 0.8, θ2 = 0.5.

However, the the standard deviation is much lower, see Table 7.11.

Hence, we may summarize that, on one hand, a very conservative policy of pension

funds leads in average to low amount of savings, but on the other hand, the volatility of

them is much lower also and thus it is worth consideration to decide which is better. Risk

neutral managers would prefer the case with a higher average amount of savings, strongly

risk averse managers would prefer the case with a lower volatility.

7.2.5 Summary

The results and simulations based on the DAM model give us an experience about the

qualitative character of optimal fund selection strategies. They also illustrate how the

optimal strategy and the amount of savings change under a change in the values of some

parameters. We notice that the quantitative and also qualitative properties depend on

the average return and volatility of stock and bond returns that enter the model. In our

experiments, the average return of stocks was higher than the average return of bonds,

and the volatility of the stock return was higher than the volatility of the bond return. We

may conclude that, under this assumption on average returns and volatilities of stock and
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bond returns, the optimal weight of stocks in the optimal pension saving strategy is:

1. decreasing in time t and also decreasing in dt,

2. decreasing in risk aversion parameter a,

3. increasing in average stock return r(s),

4. decreasing in average bond return r(b),

5. increasing in wage growth rate βt,

The average amount of savings is:

1. increasing in time t

2. decreasing in risk aversion parameter a,

3. increasing in average stock return r(s),

4. increasing in average bond return r(b),

5. decreasing in wage growth rate βt,
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7.3 The TRMM and MRMM models

In this section we implement the TRMM model minimizing (6.39) subject to (6.59)–(6.64)

and the MRMM model (6.73)–(6.80) for the case of the Slovak pension system with three

funds. We suggest the use of an iterative algorithm for solving the problems in order

to cope with the nonlinearity comprised in constraints (6.61) and (6.77). We discuss

the data used for computation and describe the scenario tree generation. We implement

the problem in MATLAB and use the MATLAB built-in linprog function and also MOSEK

mosekopt function that can be implemented into a MATLAB code for solving sparse large-

scale linear optimization problems. The two optimization softwares use different methods

for linear programming: MATLAB uses the modified Mehrotra predictor-corrector primal-

dual infeasible interior point method ([61]), MOSEK uses the homogeneous interior point

method ([3]). We compare the results obtained with both of them.

7.3.1 An iterative algorithm

We suggest to cope with the nonlinearity in both models TRMM and MRMM by solving

the problems iteratively in the following way:

1. fix the starting point τ j
n = τ/J for all n ∈ N \ T , j ∈ {1, ..., J};

2. solve the linearized problems (6.39) subject to (6.59)–(6.64) and (6.73)–(6.80) with

fixed parameters τ j
n. Obtain optimal yj

n for all n, j.

3. Compute new τ j
n for all n, j using (6.56);

4. repeat steps 2, 3, 4 until prescribed accuracy in the norm of the difference of two

successive iterates is attained.

If we denote the solution of the k-th iterate by x(k) = (a(k), z(k),y(k)), then the optimiza-

tion problem solved by the proposed iterative algorithm is:

min
x(k+1)

c>x(k+1) (7.7)

subject to

Aineqx
(k+1) ≤ bineq ,

Aeqx
(k+1) = beq(x

(k)) , (7.8)

z(k+1),y(k+1) ≥ 0 .

where the right-hand side vector from the equality constraints has elements

[beq(x
(k))]i = [beq(y

(k)
n−

)]i =





τ i = 1 ,

τ
(y

(k)
n−

)>qn

(y
(k)
n−

)>1
i = 2, ..., N − S + 1, where n = i − 1 ,

0 i = N − S + 2, ..., N + 1 ,
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where qn =
∑lξ(n)−1

i=0 (sn)i/lξ(n) . According to point 1 from the description of the iterative

algorithm and using (6.81), the elements of the right hand side vector, depending on the

old iterates, are in the initial iterate chosen as

[beq(y
(0))]i = τ

(y
(0)
n−

)>qn

(y
(0)
n−

)>1
=

τ

J
1>qn, i = 2, ..., N − S + 1;n = i − 1 .

They may be chosen in other ways also. We discuss the convergence of this algorithm in

Section 7.4.

As a stopping criterion (step 4) we consider the difference between the optimal values

of the objective function in two successive iterates k and k + 1: if x(k) and x(k+1) are

solutions of the k-th and (k + 1)-th iterate and if ε > 0 is fixed and small, then the

stopping criterion is |c>x(k+1) − c>x(k)| ≤ ε. In our computations, the number of iterates

for ε = 0.001 is typically 5–6.

7.3.2 Data discussion and variants

The data set used in implementation of the TRMM and MRMM models is the same as in

the DAM model. Table 2.2 explains the structure of the three funds of the Slovak pension

system according to governmental regulation. The funds differ in various proportions

of investing to stocks and to bonds. Table 7.1 contains historical returns and standard

deviations for stocks represented by the S&P Europe 350 Index and for bonds represented

by MSCI EMU Sovereign Debt Index. Data for the expected wage growth rate βt are

presented in Table 7.3. The regular contribution to the account is set by the law at the

level of τ = 9% of the gross salary. In the objective function of the MRMM model, we

take the discount factors to be cn = 1 for all n, and the average value-at-risk parameters

αn ≡ α = 0.05.

At this place it is important to recall that there are additional governmental restrictions

on the fund selection. They define a barrier function ∆t for each t, see (7.1). Therefore,

like in the DAM model, we consider two variants of the TRMM and MRMM:

A: Governmental limitations are not considered; it means, the savers may choose any

fund at any time. We split the saving period of 40 years into periods of years 1–10,

11–18, 19–25, 26–33, 33–40, with lengths [l1, ..., l5] = [10, 8, 7, 8, 7]. We put T = 5 and

the target returns µ = 5.5 and µ = 6 at the year 40.

B: Governmental limitations are considered. We split the saving period of 40 years

into periods of years 1–10, 11–18, 19–25, 26–29, 30–33, 33–40, having the lengths

[l1, ..., l6] = [10, 8, 7, 4, 4, 7]. The time division is finer in later times because a higher

amount of money is more sensitive to changes of fund returns and therefore a more

frequent balancing is important. Since the fund selection is prescribed for the last

seven years of saving, the last period is omitted from the optimization. We imple-

ment the regulations for periods 4 and 5 by adding a simple constraint y1
n = 0 for

all nodes n belonging to the corresponding time stages. Since we consider only the

first 33 years of saving in the optimization, we set T = 5, and consider target returns
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µ = 4 and 4.25 to be the target wealth at the end of the year 33. The wealth at

the time of retirement is then given simply by the bond return (divided by the wage

growth) in years 33–40.

The saver makes decisions at the beginning of each period. These decisions are fol-

lowed by regular contributions distributed into the funds for the rest of the particular

period.

7.3.3 Scenario tree generation

The values at the scenario tree nodes n ∈ N \{0} are triple vectors [s1
n, s2

n, s3
n] representing

the adjusted fund returns during the period [tξ(n)−1, tξ(n)] from node n− to n. They are

used in appreciation equations for yn. Since the periods represent several years, the triples

[s1
n, s2

n, s3
n] are returns for the whole length lξ(n) of the period, not just for one year. The

yearly returns needed in the vector qn from (6.81) for the appreciation of τn−
are then

obtained as the lξ(n)-th root of the components of [s1
n, s2

n, s3
n].

The values of sj
n are calculated according to their definition in Section 6.2.3, modified

to

sj
n =

1 + rj
n

1 + βavg
n

where we take βavg
n = E([βlξ(n)−1+1, ..., βlξ(n)]) in order to consider the average wage

growth rate in the given period. The fund returns rj
n for the period [tξ(n)−1, tξ(n)] from

node n− to n are calculated from scenarios of stock and bond returns r
(s)
n and r

(b)
n for

the given period and using the corresponding weights given in Table 2.2, i.e. r1
n =

0.8r
(s)
n + 0.2r

(b)
n , r2

n = 0.5r
(s)
n + 0.5r

(b)
n , r3

n = r
(b)
n . Hence, scenarios of sj

n are determined by

scenarios of the stock and bond returns.

We generate three scenarios for both stock and bond returns, in order to simulate an

increment, decrement and no change of them. The scenarios for r
(s)
n of stock return from

node n− to node n are generated in a standard way based on the assumption that the

stock prices St follow the geometrical Brownian motion (see Appendix E):

dSt = r̄(s)Stdt + σStdWt

where r̄(s) is the average return of stocks, σ is its standard deviation (see Table 7.1), and

Wt is a standard Brownian motion. Using Itô lemma ([39], Appendix E) we obtain that

St+l = St exp
(
(r̄(s) − 0.5(σ(s))2)l + σ(Wt+l − Wt)

)

for some time interval of length l. Then the returns are given by

1 + r
(s)
{n}+ = exp

(
(r̄(s) − 0.5(σ(s))2)lξ(n)+1 + σ

√
lξ(n)+1Zξ(n)+1

)

where Zξ(n)+1 are N(0, 1) distributed and independent for non-intersecting time inter-

vals [tξ(n), tξ(n)+1). The discrete scenarios are generated using a 3-point discretization
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for the standard normal distribution: point masses are concentrated at (−
√

2, 0,
√

2) with

probabilities (1/4, 1/2, 1/4). This discretization coincides in the first two moments with

the standard normal distribution N(0, 1). Hence, we obtain Ks = 3 scenarios for stock

returns and in the same way we generate Kb = 3 scenarios for bond returns. Combina-

tions of them determine fund returns rj
{n+} and thereby also adjusted returns sj

{n+} in the

KsKb = 9 successors of each node n ∈ N \ T .

Remark. A correlated bivariate Brownian motion should be used to generate the sce-

narios of stock and bond returns. However, since the correlation coefficient between them

is very small (corr ∼ −0.08), we use two independent univariate Brownian motions for

simplicity.

7.3.4 Results

The output of the Matlab program is the set of triples yn = [y1
n, y2

n, y3
n]>, n ∈ N . We

normalize the values yj
n to weights wj

n as follows:

wj
n =

yj
n∑3

i=1 yi
n

, j ∈ {1, 2, 3},

such that wj
n ≥ 0. If we denote wn = [w1

n, ..., w3
n]>, then w>

n 1 = 1. We transform the

amounts to weights in order to represent the distribution of the investment to funds as

a percentage. There is no need to know the weights in the terminal time stage, because

the savings are not distributed to different funds anymore. Therefore, the weights are

calculated for nonterminal nodes n ∈ N \ T only. The results have the form of a matrix of

size J funds times the number of nonterminal nodes including the root, i.e. J ×1+N −S.

Since it is impractical to present the results for all 1 + N − S =
∑4

i=0 9i = 7381
nonterminal nodes at this point, we investigate the average optimal strategy in each time

stage. We denote w̄t = [w̄1
t , w̄

2
t , w̄

3
t ]

> the vector of average optimal weights of particular

funds in the optimal strategy at time t ∈ {0, ..., ω}, i.e.

w̄t =
∑

n:ξ(n)=t

pnwn . (7.9)

Averaging takes place over all nodes n in the same time stage ξ(n) = t with probabilities

pn of the corresponding nodes. The overall share of stocks in the investment can be

calculated from the funds’ composition and the funds’ weights w̄t as

w̄
(s)
t = 0.8w̄1

t + 0.5w̄2
t . (7.10)

In the forthcoming figures, we depict the average fund weights (7.9) in two left-hand side

plots and the average stock weights (7.10) in the right-hand side plot.

Variant A

We present the results obtained for the Variant A (without considering governmental lim-

itations) of models TRMM and MRMM in Figures 7.12 and 7.13. In Table 7.12 we present
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Figure 7.12: TRMM, Variant A without governmental limitations, MATLAB and MOSEK optimiza-
tion results. Average optimal percentual allocation of the saved amount into the funds (left two

columns) and average weights of stocks in investment (right) for target wealth after 40 years equal

to µ40 = 5.5 (top) and µ40 = 6 (bottom).

Model µ40 = 5.5 µ40 = 6

TRMM single-risk 40 2.8525 3.4506
multi-risk 1–40 5.4236 6.4024

number of iterates 5 4

MRMM single-risk 40 3.6853 4.1865
multi-risk 1–40 3.4511 4.9677

number of iterates 5 3

Table 7.12: TRMM and MRMM, Variant A without governmental limitations. Results for target

amounts µ40 = 5.5 and µ40 = 6 after 40 years.

the single-period AV aRD0.05 from the wealth at year 40 random variable (it is minimal

in the TRMM model but is not minimal in MRMM), the multi-period AV aRD0.05 (which

is not minimal in the TRMM model but is minimal in MRMM) and the number of iterates

needed to achieve the accuracy ε ≤ 0.001 in the sense of Section 7.3.1.

The meaning of the sigle-period risk from the terminal wealth random variable (Table

7.12, row single-risk 40) is that the saver following the optimal strategy and having the

target terminal wealth e.g. µ40 = 5.5 will with probability α = 5% save less than 5.5 −
2.8525 = 2.6475 in terms of the multiples of the terminal salary level.
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Figure 7.13: MRMM, Variant A without governmental limitations, MATLAB and MOSEK optimiza-
tion results. Average optimal percentual allocation of the saved amount into the funds (left two

columns) and average weights of stocks in investment (right) for target wealth after 40 years

µ40 = 5.5 (top) and µ40 = 6 (bottom).

One can observe that, over time, the most risky (Growth) fund has a decreasing char-

acter whereas there is evidence of an increasing weight for the less risky funds. The share

of stocks decreasing in time is in accordance to expectation because a higher amount of

money is more sensitive to a change in the level of fund returns so the trend is to lower

the risk in the future. It is also in accordance to the results obtained for the DAM and

PIAM models where this feature was confirmed as well.

The next property of the optimal solution that appears in the empirical results is that

the share of stocks in the investment increases when the target wealth µ increases. Of

course, this is true under the assumption that stocks have a higher average return than

bonds and that the returns have appropriate volatility. For example, if the volatility of stock

returns was significantly lower than the volatility of bond returns, we could eventually

expect a trend of lowering the weight of bonds and raising the weight of stocks over time.

Remark. Comparing numerical implementation results obtained by MATLAB and

MOSEK one can observe a difference in the optimal solutions (see Figures 7.12 and 7.13).

The optimal value obtained by both software packages was the same. There is empirical

as well as evidence that the optimal solution is not unique. The figures also illustrate that

although the optimal strategies differ under the two different interior point methods, the

weights of stocks in the investment are the same. This leads us to a conclusion that the

weight of stocks in investment is what is really relevant in the optimal strategy, and it
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b) µ33 = 4.25

Figure 7.14: TRMM, Variant B with governmental limitations, MATLAB and MOSEK optimiza-
tion results. Average optimal percentual allocation of the saved amount into the funds (left two

columns) and average weights of stocks in investment (right) for target wealth after 33 years

µ33 = 4 (top) and µ33 = 4.25 (bottom).

does not really matter by which combination of funds it is achieved. Indeed, the value of

savings y>
n 1 in each node n may be expressed as a sum of stocks value Sn and bonds value

Bn:

y>
n 1 = Sn + Bn

where Sn = 0.8y1
n + 0.5y2

n and Bn = 0.2y1
n + 0.5y2

n + y3
n. Similarly, the appreciation of the

yj
n−

amounts in particular fonds, y>
n−

sn, may be expressed as appreciation of the stocks

and bonds part with using a suitable vector ν = (νS
n , νB

n ) of returns:

y>
n−

sn = Sn−
νS

n + Bn−
νB

n

where νS
n = 2s2

n − s3
n and νB

n = s3
n. That means, the optimal triples [y1

n, y2
n, y3

n] of the

optimization problems in all iterates with fixed right-hand side vectors may be expressed

by pairs [Sn, Bn]. Therefore, there may be many possibilities how to combine the values

[y1
n, y2

n, y3
n] in order to get the values [Sn, Bn]. The difference in the optimal vector solutions

obtained by MATLAB and MOSEK is caused by different optimization algorithms.

Variant B

We present the results obtained for the version B of the models TRMM and MRMM in

Figures 7.14 and 7.15 and in Table 7.13.
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Figure 7.15: MRMM, Variant B with governmental limitations, MATLAB and MOSEK optimiza-
tion results. Average optimal percentual allocation of the saved amount into the funds (left two

columns) and average weights of stocks in investment (right) for target wealth after 33 years

µ33 = 4 (top) and µ33 = 4.25 (bottom).

Model µ33 = 4 µ33 = 4.25

TRMM single-risk 33 1.7301 2.0757
multi-risk 1–33 3.5582 4.1055
single-risk 40 1.9975 2.3454

mean 40 4.7586 5.0214
number of iterates 6 5

MRMM single-risk 33 2.1768 2.4495
multi-risk 1–33 2.3394 3.2230
single-risk 40 2.3586 2.6438

mean 40 4.7586 5.0214
number of iterates 6 10

Table 7.13: Optimization results for the TRMM and MRMM models, Variant B.

From Section 7.3.2 we recall that the period considered in the optimization is 33 years

and therefore also the parameter µ entering the problem represents the average target

terminal wealth after 33 years of saving. For clarity, we use subindex 33 at the µ variable,

µ33. The wealth achieved after 40 years of saving is calculated simply using 3 scenarios of

bond returns from each node n ∈ T . Table 7.13 summarizes the results from optimization
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a) α = 0.01 b) α = 0.05 c) α = 0.1

Figure 7.16: TRMM, Variant A without governmental limitations. Sensitivity of the results to

varying α parameter. Average proportion of stocks in investment for target wealth after 40 years
µ40 = 6 and for a) α = 0.01, b) α = 0.05, c) α = 0.1.

alpha µ40 AV aRD40α

α = 0.01 6 3.6366
α = 0.05 6 3.4506
α = 0.1 6 3.3165

Table 7.14: TRMM, Variant A without governmental limitations. Sensitivity of the results to varying
α parameter.

for both models TRMM and MRMM taking the governmental limitations into considera-

tion. In the row “single-risk 33” we present the single-period AV aRD0.05 from the wealth

in the year 33 random variable (it is minimal in the TRMM model but is not minimal

in MRMM). Next we present the multi-period AV aRD0.05 (which is not minimal in the

TRMM model but is minimal in MRMM), the single-period risk calculated additionally for

the year 40, the mean value of the wealth at year 40, and the number of iterates needed

to achieve the accuracy ε = 0.001 in the sense of Section 7.3.1. The results confirm the

natural expectation that a higher target return is accompanied by a higher risk.

Similarly as in Version A, the trend of the weight of stocks in the investment is decreas-

ing over time. Again, different optimal solutions obtained by the two different interior

point methods in MATLAB and MOSEK indicate that the solution is not unique, but the

weight of stocks in the optimal strategies is the same and therefore of crucial importance.

Sensitivity with respect to the α parameter

Finally, we investigate experimentally the sensitivity of the results with respect to varying

parameter α. We use the TRMM model, Variant A. We put µ = 6 and assume α = 0.01,

α = 0.05 and α = 0.1. We present the results in Figure 7.16 and Table 7.14. It is clear from

the definition of the value-at-risk V aRα that a higher α implies a higher V aRα, thereby

also a higher average value-at-risk AV aRα and hence a lower AV aRDα = E − AV aRα.

The results in Table 7.14 confirm this feature. Figure 7.16 indicates that a higher α leads

to an investment strategy with a higher proportion of stocks on average.
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7.4 Notes on convergence of the iterative scheme for the risk

models

It is important to verify that the proposed iterative algorithm for coping with the nonlin-

earity in the constraints indeed converges to its solution. We consider the MRMM model,

since the TRMM model is its simplified version. For purposes of this section, we denote

x(k) = (a
(k)
+ ,a

(k)
− , z(k),y(k),u(k)) ≥ 0 the solutions to the k-th iterate, with a

(k)
+ ,a

(k)
− being

such that a(k) = a
(k)
+ − a

(k)
− and u the slack variables for the inequality constraints. The

optimization problem (6.73)–(6.80) solved by the iterative algorithm proposed in Section

7.3.1 can be symbolically rewritten in the standard form as

min
x

c>x(k) (7.11)

subject to

Ax(k) = b(x(k−1)) , (7.12)

x(k) ≥ 0 , (7.13)

where k = 1, 2, .... For the matrix A and the right-hand side vector b we have

A =

(
Ãineq I

Ãeq 0

)
,b =

(
bineq

beq(x
(k−1))

)

where Ãineq and Ãeq are the matrices Aineq and Aeq having adjusted first columns in

order to represent the coefficients at variables an ∈ R split to a+
n , a−n > 0. The matrix I

is an 1 + N × 1 + N identity matrix of coefficients at the slack variables u. We slightly

abuse the notation and use c again to denote the vector of coefficients of the objective

function that is adjusted in the first elements pertaining to the original a variables so that

they represent the coefficients at a+ and a−. Moreover, it is enlarged at its end by zero

elements pertaining to the slack variables u. We notice that the number of variables of the

above standard form problem is vars = 2(1 + N − S) + N + J(1 + N) + 1 + N .

The elements of the right-hand side vector b are:

bi =





0 i = 1, ..., N ,
−µ i = N + 1 ,
τ i = N + 2 ,

τ
y>

n−
qn

y>
n−

1
i = N + 3, ..., 2N + 2 − S where n = i − (N + 2) ,

0 i = 2N + 2 − S + 1, ..., 2N + 2 ,

where qn =
∑lξ(n)−1

i=0 (sn)i/lξ(n) .

First, we make clear that the varying elements of the right-hand side vector b attain

their values from a compact set and we estimate the bounds on some parameters. We

denote

Θ := max
n,j

|sj
n| , Ξ := min

n,j
|sj

n| .
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Then it is easy to show that

Ql
n1 :=

1 − Ξ

1 − Ξ1/lξ(n)
1 ≤ qn ≤ 1 − Θ

1 − Θ1/lξ(n)
1 =: Qu

n1 (7.14)

where Ql
n = 1−Ξ

1−Ξ
1/lξ(n)

and Qu
n = 1−Θ

1−Θ
1/lξ(n)

. Next,

0 ≤ bi = τ
y>

n−
qn

y>
n−

1
≤ τQu

n ≤ τQu , n = i − (N + 2) , (7.15)

where Qu := maxn Qu
n. Then

0 ≤ yj
n ≤ y>

n 1 ≤ τ(Θ)ξ(n) + τQu1 − Θξ(n)

1 − Θ
=: τY u

n (7.16)

and

y>
n−

qn ≤ y>
n−

1Qu
n ≤ τY u

n−
Qu

n . (7.17)

Moreover,

y>
n 1 = y>

n−
sn + bi(yn−

) ≥ y>
n−

sn > τΞξ(n) =: τY l
n , for all n ≥ 1. (7.18)

Hence, we emphasise that the right-hand side vectors b appearing in the iterates belong to

a compact set K ⊂ R
2N+2. The lower and upper bounds on its elements are determined by

the estimates in (7.15). The y also belongs to a compact set which we denote Y ⊂ R
J(1+N)

and its bounds are given by (7.16). From now on, we will denote by M the set

M := {x = (a+,a−, z,y,u);a+,a− ∈ R
1+N−S , z ∈ R

N
+ ,y ∈ Y ⊂ R

J(1+N),u ∈ R
1+N
+ }
(7.19)

where R
N
+ denotes the nonnegative orthant in R

N .

The feasibility of the iterates follows from the same argument as in Proposition 6.2.2.

We summarize that for each iterate k there exists a bound µ
(k)
max given by

µ(k)
max := max

y

∑

m∈T
pm(y(k)

m )>1 (7.20)

where the maximum is subject to [Ãeq 0] x(k) = beq(x
(k−1)) and x(k) ≥ 0. We may

conclude that if

µ ≤ min
k≥1

µ(k)
max , (7.21)

then all optimization problems in iterative algorithm (7.11)–(7.13) are feasible. It is not

possible to give an explicit formula for any of µ
(k)
max, because they are specific for scenarios

and model parameters.

We summarize the above considerations in the following proposition.

Proposition 7.4.1. If µ ≤ mink µ
(k)
max, then the optimization problems in all iterates in

(7.11)–(7.13) are feasible.
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Next, we discuss the optimality of the iterates. The proof of the following theorem is a

straightforward extension of the proof of Theorem 6.2.1.

Theorem 7.4.1. If the iterates in (7.11)–(7.13) are feasible then they attain their optimum.

Proof. If a problem of linear programming is feasible, then it may attain an optimum or

it may be unbounded ([49]). We show that the unboundedness is not the case in (7.11)–

(7.13). We drop the numbering of iterates k for simplification of notation.

We recall that the objective function has the form

min
a,z,y

∑

n∈N\T
cξ(n)pn



∑

k∈{n}+

(
pc(k)y>

k 1
)
− an +

1

α

∑

k∈{n}+

pc(k)zkn


 ,

or equivalently,

min
z,y

∑

n∈N\T
cξ(n)pn



∑

k∈{n}+

(
pc(k)y>

k 1
)
− max

an

{an − 1

α

∑

k∈{n}+

pc(k)zkn}




with zkn = [y>
k 1 − an]− in the optimum (see the proof of Proposition 6.2.1). We showed

in (7.16) that the y variable is bounded. Therefore, the unboundedness of the objec-

tive function may be caused only by the unboundedness of variables a or z. However,

maxan{an − 1
α

∑
k∈{n}+ pc(k)zkn} = AV aRα(y>

{n}+1) which is finite, hence bounded, be-

cause y is finite and bounded.

Another argument for optimality follows from the fact that the average value-at-risk

deviation is bounded from below by 0 and hence the unboundedness is not the case.

The next statement follows from the well known fact that, in linear programming, if

the primal (dual) problem attains an optimum, so does the dual (primal) one ([49]).

Corollary 7.4.1. For µ ≤ mink µ
(k)
max, the optimization problems in all iterates in (7.11)–

(7.13) attain their optimum and so do their duals.

Finally, we investigate the convergence of the iterative algorithm (7.11)–(7.13). The

solutions x(k+1)(b(x(k))) ≡ T(x(k)) of this iterative scheme converge to a solution x∗ =
limk→∞ T(x(k)) if the mapping T is contractive. We show that there exists a positive

constant κ < 1 such that the inequality

||T′(x)|| ≤ ||x′(b)|| ||b′(x)|| ≤ κ (7.22)

holds for all x ∈ M .

Proposition 7.4.2. For the Mehrotra primal-dual infeasible interior point method, imple-

mented in Matlab, there exists a constant C > 0 such that ||x′(b)|| ≤ C for any b from the

compact set K ∈ R
2N+2 determined by (7.15).
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Proof. Primal-dual infeasible interior point methods ([60, Chapter 6]) find a solution of a

standard linear program (7.11)–(7.13) with a constant right-hand side vector b by solving

the system of linear equations

A>λ + s = c + γ∆c , (7.23)

Ax = b + γ∆b , (7.24)

xisi = γ for all i = 1, ...,dim(x) , (7.25)

(x, s) ≥ 0 , (7.26)

where γ > 0 and the solution to the linear program is obtained in the limit γ → 0. The

initial point is set as arbitrary γ0,x0, s0, λ0 all strictly positive and

∆bi =
(Ax0)i − bi

γ0
, i = 1, ...,dim(b) ,

and

∆ci =
(A>λ0)i + si − ci

γ0
, i = 1, ...,dim(c) .

Using this initial point, satisfying (7.23)–(7.26), and keeping γ positive ensures that the

solutions x, s in each iterate will be infeasible but positive. As γ → 0+, the solution

of (7.23)–(7.26) converges to an optimal solution lying on the boundary of the set of

feasible solutions, if both primal and dual attain their optimum. We discussed this issue

above in Theorem 7.4.1.

For simplicity and clarity, let us forget the real dimensions and their notation used

in previous sections. In this short section we will assume the following dimensions of

matrices and vectors appearing in (7.23)–(7.26): A is of type m × n with m < n and full

rank, vectors x, c,∆c, s ∈ R
n and b,∆b, λ ∈ R

m. The dimensions of the derivatives are

then n × m for x′(b), m × m for λ′(b), and n × m for s′(b). Differentiating (7.23)–(7.25)

with respect to the vector b we obtain

A>λ′(b) + s′(b) = 0 , (7.27)

Ax′(b) = (1 − γ

γ0
)I , (7.28)

Xs′(b) + Sx′(b) = 0 , (7.29)

where X = diag(x1, ..., xn), S = diag(s1, ..., sn). Equation (7.29) yields

x′(b) = −S−1Xs′(b) . (7.30)

By multiplying from left by A and using (7.27) and (7.28), we obtain

λ′(b) = (1 − γ

γ0
)(AS−1XA>)−1

where we notice that the matrix AS−1XA> is of type m × m and has a full rank, thus it

is invertible. Realizing from (7.25) that S−1 = 1
γX, we get

λ′(b) = γ(1 − γ

γ0
)(AX2A>)−1 .
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Then (7.27) implies

s′(b) = −γ(1 − γ

γ0
)A>(AX2A>)−1

and subsequently, from (7.30),

x′(b) = (1 − γ

γ0
)X2A>(AX2A>)−1 . (7.31)

We notice that X = X(b). We recall that the infeasible interior point algorithms keep the

solutions strictly positive for each γ > 0. Therefore the inversion in (7.31) is well defined.

The derivative in (7.31) is well defined for arbitrary b, and thus also for all b ∈ K. That is,

x(b) is continuous in each b ∈ K and hence continuous on K. The image of the compact

set K under the continuous mapping x, i.e. x(K), is a again a compact set. In addition,

since b 7→ x(b) is continuous so is the right hand side of (7.31). Hence x′ is continuous

on the compact K. Thus x′(K) is a compact set too. Finally, a continuous function x′

attains on a compact set its maximum and minimum, and therefore there exists a positive

constant C such that for all b ∈ K we have ‖x′(b)‖ ≤ C.

Proposition 7.4.3. For any ε > 0 there exists a δ > 0 such that for all n the following holds:

if ‖sn − 1‖ ≤ δ then ‖b′(x)‖ ≤ ε for all x ∈ M .

Proof. It is clear that the derivative of the constant elements of the right-hand side vector

b is zero. Therefore, we consider only nonconstant elements of it.

We recall that the directional derivative of the function b(x) in a direction ξ is defined

by

b′(x)ξ = lim
t→0

b(x + tξ) − b(x)

t
=

∂

∂t
b(x + tξ)

∣∣∣∣
t=0

.

We also recall that x = (a+,a−, z,y,u) and that bi(x) = τ
y>

n−
qn

y>
n−

1
for i = N+3, ..., 2N+2−S

and n = i − (N + 2). Hence, we may write b(x) ≡ b(y) and in particular bi(x) ≡ bi(yn−
).

Let us consider the mapping

t 7→ bi(yn−
+ tξ) = τ

y>
n−

qn + tξ>qn

y>
n−

1 + tξ>1
.

For its derivative with respect to t we have

∂

∂t
bi(yn−

+ tξ) = τ
ξ>qn(y>

n−
1 + tξ>1) − (y>

n−
qn + tξ>qn)ξ>1

(y>
n−

1 + tξ>1)2

and then we subsequently obtain

b′(x)ξ = τ
ξ>qn

y>
n−

1
−

y>
n−

qn

(y>
n−

1)2
ξ>1 .

From the assumption ‖sn − 1‖ ≤ δ it follows that

qn = lξ(n)1 + ηn
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such that ηn → 0 as sn → 1. Therefore,

b′(x)ξ = τ

(
ξ>1

y>
n−

1
lξ(n) +

ξ>ηn

y>
n−

1
− ξ>1

y>
n−

1
lξ(n) −

y>
n−

ηn

(y>
n−

1)2
ξ>1

)
(7.32)

= τ

(
ξ>ηn

y>
n−

1
−

y>
n−

ηn

(y>
n−

1)2
ξ>1

)
. (7.33)

Since y>
n−

1 ≥ τY l
n−

> 0 and yj
n−

≤ τY u
n−

we infer the existence of a constant C̃ > 0 such

that

‖b′(x)ξ‖ ≤ C̃‖ηn‖‖ξ‖ .

Hence ‖b′(x)‖ ≤ C̃‖ηn‖. If δ > 0 is sufficiently small and ‖sn − 1‖ ≤ δ then C̃‖ηn‖ ≤ ε.
Therefore ‖b′(x)‖ ≤ ε.

Theorem 7.4.2. The iterative scheme (7.11)–(7.13) converges on M to a solution if ‖sn−1‖
is small enough.

Proof. Based on previous propositions, for any ε > 0 there exists a δ > 0 such that for all

n we have

‖T′(x)‖ ≤ ‖x′(b)‖ ‖b′(x)‖ ≤ Cε . (7.34)

Putting ε < 1
C and κ = Cε, there exists a δ > 0 such that if ‖sn − 1‖ ≤ δ, we have

‖T′(x)‖ ≤ κ < 1. The rest of the proof is a consequence of the Banach fixed point

argument.



Chapter 8

Conclusions

In this thesis, we proposed two types of models for the problem of optimal fund selec-

tion in funded schemes of pension planning:

Expected utility maximization models:

Ia: the Dynamic Accumulation Model (DAM);

Ib: the Proportional Investment Allocation Model (PIAM).

Risk minimizing models:

IIa: the Terminal Risk Minimizing Model (TRMM), in which the terminal risk is measured

by the single-period average value-at-risk deviation;

IIb: the Multi-period Risk Minimizing Model (MRMM), in which the multi-period risk is

measured by the multi-period average value-at-risk deviation.

We investigated their solvability and qualitative and quantitative properties. We showed

that a solution to the DAM model can be found as a solution to a Bellman equation in

Theorem 6.1.2. We proposed a generalization of the DAM model in the so-called Propor-

tional Investment Allocation Model (PIAM) assuming that the funds proportionally invest

to stocks and bonds with weights θt and 1 − θt, respectively. The PIAM model finds an

optimal weight of stocks in the investment strategy over time. We also derived a nonlinear

partial differential equation for the value function V . Next, we expressed explicitly the

optimal solution θt under the assumption that the value function V is concave.

81
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The Terminal Risk Minimizing Model TRMM is formulated on a scenario tree with

adjusted fund returns as the underlying process. In Proposition 6.2.1 we showed that

the model can be rewritten to a linear program. Theorem 6.2.1 states that it attains an

optimum for feasible values of the µ parameter. The TRMM model is generalized to a case

where the savers do not make decisions about the fund selection every year but only once

during a period of several years. The resulting model becomes nonlinear, making thus its

analysis and numerical approximation more complex.

The Multi-period Risk Minimizing Model (MRMM) uses the multi-period average value-

at-risk as the objective function and it is also defined on a scenario tree. Similarly to the

TRMM model, the MRMM model is generalized to a case where the savers do not make

decisions about the fund selection every year but only once in several years. Again, the

model becomes nonlinear.

The numerical schemes for solving all models are proposed in Chapter 7. An iterative

algorithm is proposed for coping with the nonlinearity in models TRMM and MRMM. We

investigated its convergence in Section 7.4.

All models are implemented in Chapter 7 for the case of Slovak Republic. We imple-

mented them in two basic variants:

A: without considering any governmental limitations on the fund selection;

B: taking the governmental restrictions imposed on the fund selection into account.

In the DAM model we also included a case study considering the real portfolio composition

of the pension funds that reflects the real situation in the current pension market in Slovak

Republic.

The results obtained from all models exhibit the following common feature:

The proportion of risky assets in the optimal strategy decreases over time.

We conclude that this property is intuitively understandable, as a higher amount of

saved money is more sensitive to changes in the fund returns. Hence, secure funds are pre-

ferred to funds with high volatility of returns in later times. We investigated the sensitivity

of the results with respect to varying parameters. Based on our extensive experiments,

done under the assumption that the average stock return is higher than the average bond

return, and that the volatility of the stock return is higher than the volatility of the bond

return, we conclude that

• the optimal weight of stocks is decreasing in time t, saved amount dt, bond return

r(b) and it is increasing in stock return r(s) and the wage growth rate βt;

• the average amount of savings is decreasing in the risk aversion parameter a and the

wage growth rate βt and it is increasing in the time t, stock return r(s) and bond

return r(b);

• in the TRMM and MRMM models, the weight of stocks in the optimal strategy is

increasing in the α parameter specifying the confidence level of the average value-

at-risk measure.
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Appendix A

Proof of Theorem 5.1.1

as in [47].

Proof. We introduce the following quantities, which may be different, if the distribution

F of Y has jumps at F−1(α):

α+
F = inf{F (u) : F (u) ≥ α} = F (F−1(α)) ,

α−
F = sup{F (u) : F (u) < α} = F (F−1(α)−) = lim

h↓0
F (F−1(α) − h) .

It holds that α−
F ≤ α ≤ α+

F , see Figure 8.1. Notice that

P{Y ≤ F−1(α)} = α+
F , P{Y < F−1(α)} = α−

F . (8.1)

Next, let us denote F (x−) the left-sided limit F (x−) = limu↑x and 1A the characteristic

function of a set A, that is,

1A(x) =

{
1 if x ∈ A ,
0 if x /∈ A .

We first prove the following fact:

F−1(α) ∈ argmax {x − 1

α
E([Y − x]−) : x ∈ R} . (8.2)

To this end we notice that for all x

αx − E([Y − x]−) = αx − E((x − Y )1{Y <x})

= αx − xF (x−) + E(Y 1{Y <x}) (8.3)

and also

αx − E([Y − x]−) = αx − E((x − Y )1{Y ≤x})

= αx − xF (x−) + E(Y 1{Y ≤x}) . (8.4)

Let b = F−1(α). Then

F (b−) ≤ α ≤ F (b) . (8.5)

Suppose that x ≤ b. Then using (8.5)

E(Y 1{Y <b}) − E(Y 1{Y <x}) = E(Y 1{x≤Y <b})

≥ x[F (b−) − F (x−)]

≥ x[F (b−) − F (x−)] − (b − x)[α − F (b−)]

= b[F (b−) − α] − x[F (x−) − α]

or equivalently

b[α − F (b−)] + E(Y 1{Y <b}) ≥ x[α − F (x−)] + E(Y 1{Y <x}) ,
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which using (8.4) can be rewritten as

αb − E([Y − b]−) ≥ αx − E([Y − x]−) . (8.6)

Similarly, for x ≥ b, we have

E(Y 1{Y ≤x}) − E(Y 1{Y ≤b}) = E(Y 1{b<Y ≤x})

≥ x[F (x) − F (b)]

≥ x[F (x) − F (b)] − (x − b)[F (b) − α]

= x[F (x) − α] − b[F (b) − α]

or equivalently

b[α − F (b)] + E(Y 1{Y ≤b}) ≥ x[α − F (x)] + E(Y 1{Y ≤x}) ,

which thanks to (8.5) leads also to (8.6). After dividing (8.6) by α one gets the assertion

(8.3), i.e.:

max{x − 1

α
E([Y − x]−) : x ∈ R} = F−1(α) − 1

α
E([Y − F−1(α)]−) .

By partial Stieltjes integral

F−1(α) − 1

α
E([Y − F−1(α)]−)

= F−1(α) − 1

α

∫ F−1(α)

−∞
(F−1(α) − u)F (u)

= F−1(α) − 1

α

∫

(−∞,F−1(α))
F−1(α)dF (u) +

1

α

∫

(−∞,F−1(α))
udF (u)

= F−1(α) − α−
F

α
F−1(α) +

1

α

∫ α−

F

0
F−1(u)du

=
α − α−

F

α
F−1(α) +

1

α

∫ α

0
F−1(u)du − 1

α

∫ αF

α−

F

F−1(u)du

=
α − α−

F

α
F−1(α) +

1

α

∫ α

0
F−1(u)du − α − α−

F

α
F−1(α)

=
1

α

∫ α

0
F−1(u)du = AV aRα(Y ) .



Appendix B 87

Figure 8.1: α−

F ≤ α ≤ α+
F

Appendix B

Definition of multi-period acceptability and deviation risk functionals

Let F = (F0,F1, ...,FT ) be a filtration where F0 = {Ω, ∅} is the trivial σ-algebra with no

information. Let Y be a linear space of income process Y = (Y1, ..., YT ), which is adapted

to the filtration F . An acceptability functional assigns real value to the combination of a

process and a filtration

A = A(Y ;F) = A(Y1, ..., YT ;F0,F1, ...,FT−1) .

The deviation functional assigns the process and filtration a value of risk,

D = D(Y ;F) = D(Y1, ..., YT ;F0,F1, ...,FT−1) .

Let us now define acceptability functionals as functionals satisfying certain properties.

Definition B.1. [47, Chapters 2, 3] A multi-period functional A(Y ;F) is called multi-period

acceptability functional, if it is proper (i.e. A(Y ) < +∞ for all Y and A(Y ) > −∞ for some

Y ) and satisfies the following properties:

(MA0) Information monotonicity. If Ft ⊆ F ′
t for all t, then

A(Y1, ..., YT ;F0,F1, ...,FT−1) ≤ A(Y1, ..., YT ;F ′
0,F ′

1, ...,F ′
T−1) .

(MA1) Predictable translation equivariance.

A(Y1, ..., Yt + Ct, ..., YT ;F) = E(Ct) + A(Y1, ..., YT ;F)

for all Ft−1 measurable functions Ct.

(MA2) Concavity.

(Y1, ..., YT ) 7→ A(Y1, ..., YT ;F)

is concave.
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(MA3) Monotonicity.

Yt ≤ Ỹt a. s. for all t implies A(Y1, ..., YT ;F) ≤ A(Ỹ1, ..., ỸT ;F) .

The equivariance condition (MA1) is relatively strong. Some multi-period functionals do not

fulfill this condition, but a weaker one, which is called the weak translation equivariance.

(MA1’) Weak translation equivariance.

A(Y1, ..., Yt + ct, ..., YT ;F) = ct + A(Y1, ..., YT ;F)

for all constants ct.

A multi-period acceptability functional is positively homogeneous, if it satisfies

(MA4) Positive homogeneity.

A(λY1, ..., λYT ;F) = λA(Y1, ..., YT ;F)

for λ > 0.

A multi-period acceptability functional is strict, if it satisfies

(MA5) Strictness.

A(Y1, ..., YT ;F) ≤
T∑

t=1

E(Yt) .

For any multi-period acceptability functional A, the functional % = −A is called a

multi-period risk (capital) functional.

Definition B.2. [47, Chapters 2, 3] A multi-period functional D(Y ;F) is called multi-period

deviation risk functional, if it is proper (i.e. D(Y ) > −∞ for all Y and D(Y ) < +∞ for

some Y ) and satisfies the following properties:

(MD0) Information monotonicity. If Ft ⊆ F ′
t for all t, then

D(Y1, ..., YT ;F0,F1, ...,FT−1) ≥ D(Y1, ..., YT ;F ′
0,F ′

1, ...,F ′
T−1) .

(MD1) Predictable translation invariance.

D(Y1, ..., Yt + Ct, ..., YT ;F) = D(Y1, ..., YT ;F)

for all Ft−1 measurable functions Ct.

(MD2) Convexity.

(Y1, ..., YT ) 7→ D(Y1, ..., YT ;F)

is convex.
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The condition (MD1) has a weaker version, called weak translation invariance.

(MD1’) Weak translation invariance.

D(Y1, ..., Yt + ct, ..., YT ;F) = D(Y1, ..., YT ;F)

for all constants ct.

A multi-period risk functional is positively homogeneous, if it satisfies

(MD4) Positive homogeneity.

D(λY1, ..., λYT ;F) = λD(Y1, ..., YT ;F)

for λ > 0.

A multi-period risk functional is strict, if it satisfies

(MD5) Strictness.

D(Y1, ..., YT ;F) ≥ 0 .

Appendix C

Introduction to stochastic dynamic programming

We review the stochastic dynamic programming framework, as it is done in [12] and [31].

We often face problems in which some random effects influence the state of the system.

Let us assume that we are given an object, the current state of which is described by a

point x ∈ X and its immediate input by u ∈ U . We observe the behavior of the object

in time i ∈ {0, ..., k − 1}. That is, the values of x, u, as well as those of X,U, become

dependent on time. The behavior of the system is described by equations

xi+1 = Fi(xi, ui, zi), i = 0, ..., k − 1, x0 = x̂0, xi ∈ Xi, ui ∈ Ui (8.7)

where xi is called a state variable, ui a control and zi are independent random variables.

A feasible control ui satisfies constraints

ui ∈ Ui, i = 0, ..., k − 1 . (8.8)

State variable constraints are given by

xi ∈ Xi, i = 0, ..., k − 1 . (8.9)

We can exclude the initial and terminal constraints from the overall state variable con-

straints, and denote P ⊂ X0 the set of possible states at the beginning of the process in

time t = 0, and C ⊂ Xk the set of possible terminal states at the end of the process at time

k. That is,

x0 ∈ P, xk ∈ C. (8.10)
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The quality of the process can be measured by an objective function

J(U ,Z) =
k−1∑

i=1

f0
i (xi, ui, zi) (8.11)

where f 0
i are given real functions and

U = {u0, ..., uk−1}, Z = {z0, ..., zk−1} .

It is reasonable to define an optimal control as minimizing the mean value of the ob-

jective function subject to the multi-dimensional random variable Z = {z0, ...zk−1}. That

is, we look for such Û for which

E(J(Û ,Z)) ≤ E(J(U ,Z))

holds for every feasible control U . For arbitrary U , the statistical mean E(J) is a number,

and thus the definition is correct.

Let us define a control in the form of a strategy V = {vo, ..., vk−1} as a sequence of

functions vi : Xi → Ui, with X0 = x̂0. It is clear that, for a given strategy and given

realization of the random process Z = {z0, ..., zk−1}, the feedback X = {x0, ..., xk−1} is

uniquely determined by a recurrent formula

x = x̂0, xi+1 = Fi(xi, vi(xi), zi)

and thereby also the value of the objective function

J(V,Z) =

k−1∑

i=0

f0
i (xi, vi(xi), zi) .

We denote this problem, depending on the initial state x0, by D0(x0), and call it the

problem of optimal transition from point x0 to the set C in the interval [0, k]. We recall

that, if the feedback X = {x0, ..., xk} to a given control U = {u0, ..., uk−1} satisfies all

constraints, i.e. xi ∈ Xi for all i = 0, ..., k − 1 and xk ∈ C, then the control U is called

feasible. We define a system of problems D = {Dj(x); j ∈ {0, k−1}, x ∈ Xj}, where Dj(x)
is a problem of optimal transition from the point x to the set C in the interval [j, k].

It is meaningfull to define an optimal strategy as the one minimizing E(J(V,Z)) under

given constraints. Let us denote, for each j ∈ {0, ..., k − 1}, the sets Zj = {zj , ..., zk−1},

Vj = {vj , ..., vk−1} and the function Vj(x) = minVj E(Jj(x,Vj ,Zj)) where Jj(V,Z) =∑k−1
i=j f0

i (xi, vi(xi), zi). We call the function Vj the value function. Next, for all j ∈ [0, k−1]
and x ∈ Xj, we define Γj(x) as a set of such u ∈ Uj for which there exists an optimal

control Û = {ûj , ...} for a problem Dj(x) such that ûj = u. Notice that, for some j, x, the

set Γj(x) can be empty.

The following theorem compares an optimal strategy and an optimal control. It shows

that it is possible to calculate an optimal strategy recurrently by means of dynamic pro-

gramming.
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Theorem C.1.[12], [31]

1. It holds: minV E(J(V,Z)) ≤ minU E(J(U ,Z)) .

2. Let V̂ = {v̂0, ..., v̂k−1} be an optimal strategy and Vj the value function. Then the

functions Vj, v̂j satisfy the dynamic programming equation:

Vj(x) = E(f 0
j (x, v̂j(x), zj) + Vj+1(Fj(x, v̂j(x), zj)))

= min
u∈Γ(x)

E(f0
j (x, u, zj) + Vj+1(Fj(x, u, zj))) (8.12)

for j = 0, ..., k − 1, where

Vk(x) = 0 for all x ∈ C . (8.13)

Conversely, if Vj, v̂j satisfy (8.12) and (8.13), then Vj is a value function and v̂j an

optimal strategy.

Finally, we notice that the Bellman equation holds for minimization as well as for

maximization.

Appendix D

The form of matrices Aineq and Aeq from the TRMM is as follows:

0 −p1 −p1 −p1 −p2 −p2 −p2 . . . −pS −pS −pS

1 −1 −1 −1 −1
1 −1 −1 −1 −1
.
.
.

. . .
. . .

1 −1 −1 −1 −1

Table 8.1: Inequality constraints matrix Aineq

1 1 1
−s1

1 −s2
1 −s3

1 1 1 1

−s1
n−

−s2
n−

−s3
n−

1 1 1

Table 8.2: Equality constraints matrix Aeq
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Appendix E

Brownian motion

Suppose we are given a set Ω. We denote by (Ω,F , P ) a probability space, where F is a

σ-algebra of measurable sets and P is a probability measure on Ω.

Definition E.1. [42] A stochastic process is a set of random variables X = {Xt; 0 ≤ t < ∞}
on a probability space (Ω,F , P ) with values in R

d. For all t,

ω → Xt(ω);ω ∈ Ω

is a random variable. For fixed ω ∈ Ω, the function

t → Xt(ω); 0 ≤ t < ∞

is called a trajectory of X corresponding to ω.

Sometimes it is useful to consider the variable t as time and each ω as a particle or

an experiment. Then, Xt(ω) can be considered as a position of the particle (result of the

experiment) ω at the time t. Sometimes it is more suitable to write X(t, ω) instead of

Xt(ω). Then, a stochastic process can be viewed as a function of two variables:

(t, ω) → X(t, ω)

from [0,∞) × Ω to R
d.

Since each ω corresponds to a function t → Xt(ω) from [0,∞) to R
d, the set Ω can be

considered as a subset of the space Ω̃ = (Rd)[0,∞) of all functions from [0,∞) to R
d. In

this sense, (Ω,F , P ) is a probabilistic description of the set of trajectories. The σ-algebra

F represents the set of possible random events.

Definition E.2. [56] Brownian motion {Xt; t ≥ 0} is a t-parametric system of random

variables for which

(i) all increments X(t + ∆) − X(t) have normal distribution with mean µ∆ and variance

σ2∆ ,

(ii) the increments Wt1 ,Wt2 − Wt1 , ...,Wtk − Wtk−1
are independent random variables for

all 0 ≤ t1 < ... < tk, with parameters according to (i) ,

(iii) W0 = 0 and the trajectories Wt(ω) are continuous with probability 1.

Definition E.3. [56] Brownian motion with µ = 0 and σ2 = 1 is called the Wiener process.

Remark. If {wt; t ≥ 0} is a Wiener process, then wt ∼ N(0, t).
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It is possible to analyze the Brownian motion also by the means of its increments

dX(t) = X(t + dt) − X(t). According to (i) from Definition E.2., for their mean value

and variance, E(dX(t)) = µdt and var(dX(t)) = σdt = σvar(dw(t)) must hold, corre-

spondingly. That is, the Brownian motion may be characterized by its deterministic and

stochastic part and the increments dX(t) may be written in the form of the total differen-

tial

dX(t) = µdt + σdw(t) (8.14)

where {w(t); t ≥ 0} is a Wiener process. Equation (8.14) is called a stochastic differential

equation.

Definition E.4. [56] If {X(t); t ≥ 0} is a Brownian motion with parameters µ, σ and if

y0 ∈ R then the system of random variables {Y (t); t ≥ 0} defined by

Y (t) = y0e
X(t) , t ≥ 0

is called a geometrical Brownian motion.

We will denote a Wiener process by {w(t); t ≥ 0} and its increments in a short time

span dt by dw, that is, dw(t) = w(t + dt) − w(t). Based on the definition of Wiener

process, the increments dw(t) are not correlated in time t. Their mean value is zero, i.e.

E(dw(t)) = 0, and for variance we have var(dw(t)) = dt. Thus, we may write

dw = Φ
√

dt

where Φ ∼ N(0, 1) is a random variable with standard normal distribution.

The Itô lemma

The Itô lemma gives us an answer to the question, what is the stochastic differential

equation for arbitrary smooth function f(x, t) if the variable x self is a solution to a given

stochastic differential equation.

Lemma E.1. [39], [56] Let f(x, t) be a smooth function of two variables, with x being the

solution to stochastic differential equation dx = µ(x, t)dt + σ(x, t)dw where w is a Wiener

process. Then the first differential of the function f is given by

df =
∂f

∂x
dx +

(
∂f

∂t
+

1

2
σ2(x, t)

∂2f

∂x2

)
dt ,

that is, the function f satisfies the stochastic differential equation

df =

(
∂f

∂t
+ µ(x, t)

∂f

∂x
+

1

2
σ2(x, t)

∂2f

∂x2

)
dt + σ(x, t)

∂f

∂x
dw . (8.15)

The intuitive proof of this lemma is based on Taylor expansion of the order 2 of the

function f = f(x, t).
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[31] Halická, M.: Lecture notes on Dynamic Programming.

[32] Holzmann, R., Orenstein, M. and Rutkowski, M. (Eds.) (2003): Pension Reform in

Europe: Process and Progress. The World Bank, Washington, DC, 2003.

[33] Holzmann, R. and Pallarès-Miralles, M. (2005): The Role, Limits of, and Alternatives

to Financial Education in Support of Retirement Saving in the OECD, Eastern Europe

and beyond. The World Bank, Draft/Work in Progress as of October 12, 2005.
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en matiére des pensions et de l’integration européenne”, 2004. Available at:

http://www.ose.be/

[47] Pflug, G. and Römisch, W. (2007): Modeling, Measuring and Managing Risk. World

Scientific Publishing Company, 2007.

[48] Pflug, G. and Ruszczynski, A. (2004): Measuring Risk for Income Streams. In: Risk

Measures for the 21st Century, Chapter 13, Wiley Finance, 2004.
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Resumé

V tejto dizertačnej práci sme sa zaoberali témou dôchodkového sporenia v rámci kapital-

izačného druhého piliera dôchodkového systému. Ciel’om bolo vybudovat’ matematicko-

štatistický aparát ul’ahčujúci sporitel’om rozhodovanie o výbere typu dôchodkového fondu

a simulovat’ výšku úspor. K problému sme pristupovali dvoma rôznymi spôsobmi:

I maximalizuje sa očakávaná užitočnost’ sporitel’a z nasporenej sumy po skončeńı

sporenia v okamihu odchodu do dôchodku,

II minimalizuje sa rizikovost’ invest́ıcíı, teda neistota dosiahnutia želanej sumy.

Predpokladom prvého pŕıstupu je, že úžitková funkcia sporitel’a je známa. Špecifikovańım

úžitkovej funkcie sa špecifikuje aj sporitel’ov postoj k riziku, ktorý je vyjadrený koeficien-

tom averzie k riziku. Predpokladom druhého pŕıstupu je, že sporitel’ má stanovenú ciel’ovú

sumu, ktorú by chcel sporeńım dosiahnut’. Pritom plat́ı pravidlo, že č́ım je vyššia želaná

suma, tým vyššie je riziko spojené s investovańım.

Prvá kapitola dizertačnej práce uvádza čitatel’a do problematiky dôchodkového spore-

nia v kapitalizačnom pilieri. Druhá kapitola popisuje konkrétne pŕıklady kraj́ın, vrátane

Slovenskej republiky, v ktorých je pŕıtomný viac-pilierový dôchodkový systém a v ktorých

naše modely môžu byt’ aplikované. Samotnému budovaniu modelov predchádzajú aj dve

krátke kapitoly so zhrnut́ım základných poznatkov potrebných pre oba vyššie spomı́nané

pŕıstupy. Venujeme sa konceptu úžitkových funkcíı a konceptu mier rizika v rozhodovaćıch

úlohách. V kapitole 6 napokon pristupujeme k odvodeniu jednotlivých modelov.

Dynamický akumulačný model (DAM) je založený na maximalizácii očakávanej uži-

točnosti z nasporenej sumy. Predpokladom modelu je, že sporitelia si vyberajú v každom

čase jediný z troch fondov. Ukázali sme, že optimálne riešenie modelu je riešeńım Bell-

manovej rovnice stochastického dynamického programovania. Modifikáciou modelu DAM

je Model proporcionálnych invest́ıcíı (Proportional Investment Allocation Model, PIAM).

Rozhodovacou premennou už nie je jednotlivý typ fondu, ale váha akciovej zložky v

dôchodkovom portfóliu sporitel’a. Pre riešenie PIAM modelu sme odvodili plne nelineárnu

parciálnu diferenciálnu rovnicu. Pritom, model DAM je diskretizáciou modelu PIAM.

Druhým typom modelov vybudovaných v tejto práci sú modely založené na mini-

malizácii rizika spojeného s investovańım v dôchodkových fondoch. Model TRMM je

model minimalizujúci neistotu výšky úspor v záverečnom čase sporenia (Terminal Risk

Minimizing Model). Model MRMM minimalizuje rizikovost’ úspor počas celej doby spore-

nia, čo môže byt’ odôvodnené možnost’ou dedenia priebežných úspor v pŕıpade predčas-

ného úmrtia sporitel’a. Pri oboch modeloch sme použili mieru rizika average value-at-

risk deviation, v TRMM jej statickú verziu, v MRMM dynamickú. Za predpokladu, že
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sporitelia zvažujú zmenu výberu fondu jedenkrát ročne, vedú oba modely vedú na úlohu

vysokorozmerného lineárneho programovania s riedkou maticou. Špecifikovali sme pod-

mienky, za ktorých existuje optimálne riešenie daných optimalizačných úloh. Z dôvodu

vysokej pamät’ovej náročnosti pri implementácii sme modely zovšeobecnili pre pŕıpad,

kedy rozhodovacie okamžiky nastávajú iba jedenkrát počas niekol’kých rokov. Touto mod-

ifikáciou sa modely stávajú nelineárnymi úlohami.

V d’aľsej kapitole sa venujeme navrhnutiu numerických schém pre oba typy modelov a

ich následnej numerickej implementácii. Pre modely DAM a PIAM navrhujeme škálovaciu

techniku, ktorá umožńı lepšiu numerickú stabilitu úloh pri použit́ı mocninovej úžitkovej

funkcie. Pre modely TRMM a MRMM navrhujeme iteračnú schému, ktorou sa nelineárna

úloha v každej iterácii opät’ linearizuje. Konvergencia navrhnutej iteračnej schémy je

študovaná v jednej z podkapitol. Pri numerickej implementácii modelov sme vychádzali

z predpokladov o rozložeńı invest́ıcíı dôchodkových fondov. Numerické výsledky sme

prezentovali grafickou i tabul’kovou formou. Použijúc model DAM sme skúmali citlivost’

výsledkov na meniace sa hodnoty rôznych parametrov, ako sú miera averzie k riziku, výška

výnosov akcíı a dlhopisov, či miera rastu miezd. V modeli TRMM sme skúmali citlivost’

výsledkov na meniacu sa hodnotu parametra α vystupujúceho v špecifikácii miery aver-

age value-at-risk. Výsledky źıskané zo simulácíı vykazujú pri všetkých modeloch spoločnú

vlastnost’:

Zastúpenie rizikových akt́ıv v optimálnej stratégii výberu fondov

má klesajúci charakter v čase.

Táto vlastnost’ je v súlade intúıcou, nakol’ko vyššia suma úspor je citliveǰsia na zmeny

vo výnosoch fondov. Ostaté kvalitat́ıvne vlastnosti výsledkov sme zosumarizovali v pre-

hl’adných bodoch. Záverečnou kapitolou je ôsma kapitola so závermi a zhrnut́ım celej

práce.


