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1 Introduction

1.1 Formulation and motivation

This thesis solves several uniqueness questions for nonnegative solutions of

the following parabolic problems on the halfspace RN+ =
{

(x1, x
′) : x′ ∈ RN−1,

x1 > 0}, N > 1. The first problem is to find ui, i= 1, 2, . . . , n, n > 1 such that

∂ui
∂t

=4ui, x ∈ RN+ , t > 0,

− ∂ui
∂x1

= upii+1, x1 = 0, t > 0, un+1 = u1,(P)

ui(x, 0) = υi(x), x ∈ RN+ ,

where pi are positive numbers and υi are nonnegative, smooth, and bounded

functions satisfying the compatibility condition. The second problem is a non-

symmetric semilinear system with two equations

ut =4u+ vp, vt =4v, x ∈ RN+ , t > 0,

− ∂u

∂x1
= 0, − ∂v

∂x1
= uq, x1 = 0, t > 0,(FL)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ RN+ ,

where p, q are positive numbers, and u0, v0 are nonnegative, smooth, and

bounded functions satisfying the compatibility condition.

In order to motivate the results of this thesis, we briefly discuss the unique-

ness of the following system’s nonnegative solutions

u′ = vp, v′ = uq for t > 0,

u(0) = 0, v(0) = 0,

where p, q are positive numbers. The system may be transformed into an or-

dinary differential equation for u as follows. We differentiate the first equation

and substitute for both v and v′

u′′ = pvp−1v′ = p(u′)
p−1
p uq.

An elementary algebra yields

(u′)
1
pu′′ = puqu′,

(
(u′)

1+p
p

)′
=

1 + p

1 + q

(
uq+1

)′
.
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We integrate the last equation using the initial conditions for u, u′ and arrive

at

u′ =

(
1 + p

1 + q

) p
1+p

u
pq+p
1+p .

It is known that the equation u′ = cuγ with the zero initial condition has only

the trivial solution if γ > 1, while there exists a set of nontrivial solutions

if γ ∈ (0, 1). See Figure 1 for an example. Adapting this result to the system

under discussion, we see that its solution is unique if and only if pq > 1. The

question is whether a similar claim is true for some parabolic systems having

this kind of nonlinearity as well.

u

t

u(t) =
t2

4
u(t) =

(t− 3)2
+

4

u(t) =
(t− 6)2

+

4

0 2 4 6 8 10

2

4

6

8

Figure 1. Some solutions of u′ = u
1
2 , u(0) = 0; here (r)2

+ = max2{r, 0}.
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1.2 Some blow-up results

Let us first look at some results concerning the nonlinear evolution equa-

tions, especially with polynomial nonlinearities. Naturally, the results solve

the questions of existence and uniqueness of the classical solutions. The first

type of results specifies the conditions for the global (in time) existence, since

the local one can be established with standard arguments. However, a solution

does not have to exist globally in the classical sense. A situation, when a solu-

tion becomes unbounded in a finite time, is called ”blow-up”. Deeper results

of this type discuss either the large time behaviour of a global solution or the

blow-up rate of a nonglobal solution. The authors also study so called weak

continuation of a nonglobal solution beyond the blow-up time, when it exists,

as well as the blow-up set (single point, whole domain). The second type of

the results answers the questions of uniqueness of the classical solutions. The

main results of this thesis belong to the second type.

At the beginning of our brief and by far not complete results review, we

recall a classical result of Fujita [F] for the problem

(F)
ut =4u+ up, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,

with nonnegative initial data u0. He showed that (i) if 1 < p < 1 + 2/N ,

then (F) possesses no global nonnegative solutions while (ii) if p > 1 + 2/N ,

both global and nonglobal nonnegative solutions exist. The number 1 + 2/N is

called the critical exponent which turns out to belong to the case (i). See [W]

for an elegant proof by Weissler as well as references to earlier proofs of this

result. Over the past years there have been many extensions of Fujita’s result

in various directions.

In 1991, Escobedo and Herrero investigated the initial value problem for a

weakly coupled system

(EH1)
ut =4u+ vp, vt =4v + uq, x ∈ RN , t > 0,

u(x, 0) = u0(x)> 0, v(x, 0) = v0(x)> 0, x ∈ RN .

Set, when pq 6= 1,

α1 =
p+ 1

pq − 1
, β1 =

q + 1

pq − 1
.

The results of [EH2] for (EH1) take the following form. If max(α1, β1)>N/2
then all nontrivial solutions are nonglobal. If 0 < max(α1, β1) < N/2 then
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there are global and nonglobal solutions. When max(α1, β1) is negative or not

defined, all solutions with L∞ initial values are global.

Galaktionov and Levine considered in [GL] the boundary value problem

(GL)

ut = uxx, x > 0, t > 0,

−ux = up, x= 0, t > 0,

u(x, 0) = u0(x)> 0, x > 0,

−u′0(0) = up0(0).

They showed that if 1 < p6 2, then u(x, t) blows up in a finite time for all

nontrivial u0; whereas if p > 2, then u(x, t) becomes unbounded in a finite

time for large u0 and u(x, t) exists globally for small initial data.

Deng, Fila, and Levine extended later their result to the problem

ut =4u, vt =4v, x ∈ RN+ , t > 0,

− ∂u

∂x1
= vp, − ∂v

∂x1
= uq, x1 = 0, t > 0,(DFL)

u(x, 0) = u0(x)> 0, v(x, 0) = v0(x)> 0, x ∈ RN+ ,

where RN+ =
{

(x1, x
′) : x′ ∈ RN−1, x1 > 0

}
, N > 1, p, q are positive numbers,

and u0, v0 are nonnegative, smooth, and bounded functions satisfying the com-

patibility condition. It was shown in [DFL] that the result for (DFL) takes the

form as in [EH2] for (EH1) if we replace α1, β1 by α2 = α1/2, β2 = β1/2.

Fila and Levine studied the problem (FL) which is ”intermediate” between

the problems (EH1) and (DFL). They proved in [FL] the same result for

”intermediate” powers

α3 =
p+ 2

2(pq − 1)
, β3 =

2q + 1

2(pq − 1)
.

Obviously,

α1 > α3 > α2, β1 > β3 > β2.

Chleb́ık and Fila derived estimates of blow-up rates for the systems (EH1),

(DFL), and (FL) in [ChF]. They showed that there is a constant C > 0 such

that

(ChF) u(x, t)6 C(T − t)−α, v(x, t)6 C(T − t)−β

hold true in Ω × (0, T ) for every positive solution (u, v) of (EH1), (DFL)

if pq > 1 and max{α, β}>N/2, where T < ∞ is the blow-up time and
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(i) α= α1, β = β1, Ω = RN for (EH1), (ii) α= α2, β = β2, Ω = RN+ for (DFL).

The estimates (ChF) with α= α3, β = β3, Ω = RN+ hold true also for ev-

ery positive solution (u, v) of (FL) satisfying ux1
, vx1

6 0, if pq > 1 and ei-

ther max{α, β} > N/2 or max{α, β}=N/2, p, q > 1.

Renc lawowicz [R] extended some results of [EH2] to the parabolic system of

three equations

(R)

ut −4u= vp,

vt −4v = wq, x ∈ RN , t > 0,

wt −4w = ur,

with p, q, r positive numbers, N > 1, and nonnegative, bounded, continuous

initial values. Set, when pqr > 1,

α=
1 + p+ pq

pqr − 1
, β =

1 + q + qr

pqr − 1
, γ =

1 + r + rp

pqr − 1
.

The results of [R] take the following form. If pqr 6 1 then every solution is

global. If pqr > 1 and max(α, β, γ)>N/2 then (R) never has nontrivial global

solutions.

1.3 Known uniqueness results

Before introducing the uniqueness results for systems with polynomial cou-

pling, we recall a result by Fujita and Watanabe [FW] for the Cauchy-Dirichlet

problem

(FW)

ut −4u= up, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t> 0,

where p > 0, u0 is a continuous, nonnegative and bounded real function, and Ω

is a bounded domain in RN (N > 1) with smooth boundary ∂Ω. They showed

that uniqueness fails when p < 1.

All known results for systems with polynomial coupling follow the same

pattern. It is not necessary for each of the exponents from the coupling to be

at least 1, i.e., Lipschitz continuous, to secure the uniqueness of a solution.

The uniqueness holds in the case of nonzero initial data, whereas it depends

on the product of the exponents from the coupling in the case of zero initial

data.
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First of all we mention a paper by Escobedo and Herrero. In [EH1] they

proved a uniqueness result of the above mentioned type for an initial value

problem on the whole space. The original formulation follows.

Let us consider the problem (EH1) with N > 1, p > 0, q > 0, and

where u0 and v0 are nonnegative, continuous, and bounded real

functions.

[EH1, Theorem]. Assume that p and q are different from zero and

p < 1 or q < 1. Then

(a) If 0 < pq < 1 and (u0, v0) 6≡ (0, 0), problem (EH1) has a

unique solution.

(b) If 0 < pq < 1 and (u0, v0) ≡ (0, 0), the set of nontrivial

nonnegative solutions of (EH1) is given by

u(x, t; s) = c1(t− s)α+, v(x, t; s) = c2(t− s)β+,

where (r)+ = max{r, 0}, s is any nonnegative real constant,

and

α=
p+ 1

1− pq , c1−pq1 = (1− pq)p+1(p+ 1)−1(q + 1)−p,

β =
q + 1

1− pq , c2β = cq1.

(c) If pq > 1, there is a unique solution of (EH1).

The results formulated and proven later in this thesis are inspired by the pa-

per [EH1] and the proofs richly use the ideas and tricks from there.

The bounded domain version of the result for the problem (EH1) was pre-

sented in [EH3]. It was formulated as follows.

We shall consider the following Cauchy-Dirichlet problem

ut −4u= vp when x ∈ Ω, t > 0,(EH2.1a)

vt −4v = uq when x ∈ Ω, t > 0,(EH2.1b)

u= v = 0 if x ∈ ∂Ω, t> 0,(EH2.2)

u(x, 0) = u0(x), v(x, 0) = v0(x) if x ∈ Ω,(EH2.3)



UNIQUENESS RESULTS FOR SOME PARABOLIC SYSTEMS 11

where

(EH2.4)
p > 0, q > 0 and u0(x), v0(x) are continuous, non-

negative and bounded real functions.

[EH3, Theorem 1]. Assume that (EH2.4) holds. We then have

a) If one of the initial values u0(x), v0(x) is different from zero,

or if pq > 1, there exists a unique solution of (EH2.1)-(EH2.3)

which is defined in some time interval (0, T ) with T 6 +∞.

b) If pq < 1 and u0(x) = v0(x) ≡ 0, the set of solutions of (EH2.1)-

(EH2.3) consists of

b1) The trivial solution u(x, t) = v(x, t) ≡ 0,

b2) A solution U(x, t), V (x, t) such that U(x, t) > 0 and

V (x, t) > 0 for any x ∈ Ω and t > 0,

b3) A monoparametric family Uµ(x, t), Vµ(x, t) where µ is any

positive number, Uµ(x, t) = U(x, (t− µ)+),

Vµ(x, t) = V (x, (t− µ)+) and ξ+ = max{ξ, 0}.

A nonuniqueness result is obtained by Deng, Fila, and Levine in the work

[DFL] where they studied the system (DFL), i.e., (P) with n= 2. Their results

solve the questions of global existence mainly, nevertheless in the dimension

N = 1 they constructed a nontrivial solution with zero initial data if pq < 1.

Their formulation is the following.

Let us consider the one dimensional problem

ut = uxx, vt = vxx, x > 0, t > 0,

−ux = vp, −vx = uq, x= 0, t > 0,(DFL1)

u(x, 0) = u0 > 0, v(x, 0) = v0 > 0, x > 0.

[DFL, Theorem 3.5]. If pq < 1 then problem (DFL1) with u0 ≡
v0 ≡ 0 has a nontrivial, nonnegative solution.

The one dimensional solution was explicitly constructed in the proof and it

can be easily generalized for higher-dimension and more-equation problems.
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The bounded domain version of the problem (DFL) was discussed in a work

by Cortazar, Elgueta, and Rossi. The result of their paper [CER] reads as

follows.

Let Ω be a bounded domain in RN with smooth boundary and let

p and q be two positive real numbers. Consider the system

ut =4u, vt =4v in Ω× (0, T ),

∂u

∂ν
= vp,

∂v

∂ν
= uq on ∂Ω× (0, T ),(CER)

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω

with smooth initial data u0 > 0 and v0 > 0, and ν being the outer

normal to ∂Ω.

[CER, Theorem 1]. Assume (u0, v0) ≡ (0, 0). Then

a) If pq > 1, then the unique solution of problem (CER) is

(u, v) ≡ (0, 0).

b) If pq < 1, then there exists exactly one solution (ũ, ṽ) of

problem (CER) such that both ũ and ṽ are strictly positive

for every positive time. Moreover, any other nonnegative

nontrivial solution of (CER) is of the form

(ũ((t− τ)+), ṽ((t− τ)+))

for some fixed τ > 0. Here r+ = max(r, 0).

[CER, Theorem 2]. If (u0, v0) 6≡ (0, 0), then the solution of (CER)

is unique.

Wang, Xie, and Wang showed in [WXW] besides the blow-up estimates also

the uniqueness for (DFL) with zero initial data in the case pq > 1. The result

was formulated in the following way.

[WXW, Theorem 3]. Assume that pq > 1. Then the only solution

of the problem (DFL) with (u0, v0) ≡ (0, 0) is the trivial one, i.e.,

(u, v) ≡ (0, 0).
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The corresponding result has been recently proven for the problem (P) by

Lin.

[L, Theorem 4.1]. Assume that

n∑

i= 1

pi > 1. Then the only solution

of the problem (P) with vanishing initial values is the trivial one,

i.e., ui ≡ 0, i= 1, . . . , n.

Later on we present also its proof, since it concerns the uniqueness of one of

the problems under discussion.

1.4 Notation, solution formulae, and preliminaries

Similarly as in [FL], we denote

GN (x, y; t) = (4πt)−
N
2 exp

(
−|x− y|

2

4t

)
,

HN (x, y; t) =GN (x, y; t) +GN (x,−y; t),

H1(x1, y1; t) =
1

2
(πt)−

1
2

(
exp

(
−|x1 − y1|2

4t

)
+ exp

(
−|x1 + y1|2

4t

))
,

R(x1, t) =H1(x1, 0; t) = (πt)−
1
2 exp

(
−x

2
1

4t

)

for t > 0, x, y ∈ RN , x1, y1 ∈ R, x′, y′ ∈ RN−1, and x= (x1, x
′), y = (y1, y

′).

We use these functions to define several operators for w ∈ L1
loc(RN+ ), namely

SN (t)w(x) =

∫

RN
GN (x, y; t)w(y)dy,

SN−1(t)w(x1, x
′) =

∫

RN−1

GN−1(x′, y′; t)w(x1, y
′)dy′,

T (t)w(x) =

∫

R+

H1(x1, y1; t)w(y1, x
′)dy1,

R(t)w(x) =R(x1, t)SN−1(t)w(0, x′).

These integral operators allow us to write the variation of constants formulae

for solutions of both systems. For (P) we have

(1.1) ui(x, t) = T (t)SN−1(t)υi(x) +

∫ t

0

R(t− η)upii+1(x, η)dη,
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and for (FL)

(1.2)

u(x, t) = T (t)SN−1(t)u0(x) +

∫ t

0

T (t− η)SN−1(t− η)vp(x, η)dη,

v(x, t) = T (t)SN−1(t)v0(x) +

∫ t

0

R(t− η)uq(x, η)dη.

It is possible to prove the local existence of the solution in time using (1.1)

or (1.2), and the contraction mapping principle (cf. proof of Theorem 1.1).

Since in some cases the solutions do not have to exist globally in the classical

sense, we define a strip ST = RN+ × (0, T ) for any 0 < T 6∞. See [DFL]

and [FL] for more detailed results on the global existence.

We use the following notation for i= 1, 2, . . . , n when dealing with the prob-

lem (P)

pi+n = pi, ui+n = ui for i= 1, 2, . . . , n,

p=
n∏

i= 1

pi, (ui) = (u1, u2, . . . , un), (υi) = (υ1, υ2, . . . , υn), etc.

We also set for i= 1, 2, . . . , n and k = 0, 1, . . . , n

π
(i)
k =

k∏

j = 1

pi+j−1 = pipi+1 · · · pi+k−1, i.e., π
(i)
0 = 1, π(i)

n = p,

αi =
1

2(1− p)
n−1∑

k = 0

π
(i)
k , αi+n = αi for p < 1,

B(γ) =

∫ 1

0

(1− t)− 1
2 tγ−

1
2 dt= β

(
1

2
+ γ,

1

2

)
= π

1
2

Γ( 1
2

+ γ)

Γ(1 + γ)

for convenience. Observe that 1
2

+ piαi+1 = αi for i= 1, 2, . . . , n.

We point out several useful relationships. One can easily check that for

w ∈ L1
loc(RN+ ), s, t > 0, the equalities

T (t)SN−1(t)w = SN−1(t)T (t)w,

SN−1(t)SN−1(s)w = SN−1(t+ s)w

hold. We use them later without referring to them. We also often use Jensen’s

inequality without referring, mainly in two following forms:

if r > 1 then

(∫ t

0

f(s)ds

)r
6 tr−1

∫ t

0

fr(s)ds,

if r 6 1 then

∫ t

0

fr(s)ds6 t1−r
(∫ t

0

f(s)ds

)r
.
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1.5 Main results and methods

The thesis shows the conjectured results for both problems (P) and (FL).

The solutions of the systems are unique if the product of the exponents in the

nonlinearities is at least 1. On the other hand, there are nontrivial solutions

of the systems with trivial initial data if the product is less than 1.

For the problem (P), we answer several finer uniqueness questions as well.

The class of nontrivial solutions for zero initial data and p < 1 is fully clas-

sified. The solution is unique for the nonzero initial data even if all of the

exponents are less than 1. The uniqueness questions are fully solved for the

problem (DFL), i.e., (P) with n= 2.

We prove the following results. Theorems 1.1 through 1.4 deal with the

problem (P) and they are proved in Chapters 2 through 5. Chapter 2 also

contains the proof of [L, Theorem 4.1]. Theorems 1.5 and 1.6 deal with the

system (FL) and they are proved in Chapters 6 and 7. Theorem 1.7 completes

the result for the system (DFL) and it is proved in Chapter 8. The main tool in

the proofs are fine estimates of the solutions gained by iterating their integral

representations.

Theorem 1.1. If (ui) and (ūi) are solutions of the problem (P) with pi > 1,

i= 1, 2, . . . , n, in some strip ST , then (ui) = (ūi) in ST .

We look for the solution of the problem (P) with p < 1 and trivial initial

data in the selfsimilar form

ui(x, t) = tαifi(y) for y =
x1√
t
, t > 0, i= 1, 2, . . . , n.

The problem (P) transforms into following ordinary initial value problem for fi,

i= 1, 2, . . . , n

(1.3)
f ′′i (y) +

y

2
f ′i(y)− αifi(y) = 0, y > 0,

−f ′i(0) = fpii+1(0), fn+1 = f1,

where (fi)→ 0 as y →∞.

Theorem 1.2. Let s> 0. The functions

(1.4) Υi(x, t; s) = (t− s)αi+ fi(y) for y =





x1√
t− s when t > s,

0 otherwise,

i= 1, 2, . . . , n, solve the problem (P) with p < 1 and trivial initial data (υi)≡ 0.

Here r+ = max{r, 0} and fi solve ordinary boundary value problem (1.3).
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Theorem 1.3. For every nontrivial nonnegative solution (ui) of the prob-

lem (P) with p < 1 and trivial initial data (υi)≡ 0 there exists s> 0 such

that (ui(x, t)) = (Υi(x, t; s)), where Υi are given in (1.4).

Theorem 1.4. If (ui) and (ūi) are solutions of the problem (P) with pi < 1,

i= 1, 2, . . . , n and nontrivial initial condition (υi) 6≡ 0, then (ui) = (ūi).

Theorem 1.5. If (u, v) and (ū, v̄) are solutions of the problem (FL) with

pq > 1 in some strip ST , then (u, v) = (ū, v̄) in ST .

Theorem 1.6. There exists a nontrivial nonnegative solution (u, v) of the

problem (FL) with pq < 1 and trivial initial data.

Theorem 1.7. If (u, v) and (ū, v̄) solve the problem (DFL) with nontrivial

initial data (u0, v0) 6≡ 0, then (u, v) = (ū, v̄).

The uniqueness results for the problem (DFL), i.e., Theorems 1.2, 1.3 for

n= 2, and Theorem 1.7, are presented in [K1]. There remain open uniqueness

questions for both problems (P) with n > 2 and (FL), although we expect that

the corresponding results are true for them as well.

In the problem (P), the difficulties lie in the need to discuss different pos-

sibilities of ordering the exponents pi and the number 1. In each of them,

different estimates for the solutions obtained from their integral representa-

tions (1.1) and mean value theorems may lead to the desired result (cf. proof

of Theorem 1.7).

In the problem (FL), the main complications lie in the nonsymmetry of the

system and also of the integral representation (1.2), and in the dependence of

the solution formulae not only on the initial condition and values on the bound-

ary, but also on the values in the whole domain. The results of Theorems 1.5

and 1.6 are presented in [K2].
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2 Uniqueness in the Case p> 1 for (P)

We start this chapter with the elegant proof of [L, Theorem 4.1] (see the

Section 1.3) by Zhigui Lin presented in [L]. However, the trivial initial condition

is necessary in the argument.

Proof of [L, Theorem 4.1]. The representation formula (1.1) gives

sup
x∈RN+

ui(x, t)6 π−
1
2

∫ t

0

(t− η)−
1
2 sup
y′∈RN−1

upii+1(0, y′; η)dη

6 2
√
t√
π

max
06 η 6 t

sup
x∈RN+

upii+1(x, η), i= 1, 2, . . . , n.

Setting Fi(t) = max
06 η 6 t

sup
x∈RN+

ui(x, η) we get

Fi(t)6
2
√
t√
π
F pii+1(t), t> 0, i= 1, 2, . . . , n.

Therefore

F1(t)6 2
√
t√
π
F p1

2 (t)

6
(

2
√
t√
π

)1+p1

F p1p2

3 (t)

. . .

6
(

4

π

)(1−p)α1

t(1−p)α1F p1 (t).

Since F1(0) = 0 and p> 1, we have F1(t) ≡ 0, i.e., u1(x, t) ≡ 0. Similarly we

get ui(x, t) ≡ 0 for i= 2, 3, . . . , n. �

The following proof of Theorem 1.1 uses the standard argument to show the

uniqueness of the solution (as well as the existence) - the fixed point theorem.

Proof of Theorem 1.1. Consider the integral system associated to the solution

formulae (1.1)

(2.1)

ui(x, t) = Φi(ui+1)(x, t)

= T (t)SN−1(t)υi(x) +

∫ t

0

R(t− η)|ui+1(x, η)|pi−1ui+1(x, η)dη.

For arbitrary fixed 0 < τ < T we set

Eτ =
{

(ui) ∈
(
L∞

(
RN+ × [0, τ ]

))n
: ‖(ui)‖E <∞

}
,
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where

‖(ui)‖E = sup
06 t 6 τ

n∑

i = 1

‖ui(·, t)‖∞.

Clearly, Eτ is a Banach space, and Pτ = {(ui) ∈ Eτ : ui > 0, i= 1, 2, . . . , n} is

its closed subset. Further let BR = {(ui) ∈ Pτ : ‖(ui)‖E < R}. We can easily

see that Ψ((ui)) = ((Φi(ui+1))) is a strict contraction of BR into itself if R > 0

is large enough and τ > 0 is sufficiently small, which gives the result. �
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3 Nonuniqueness in the Case p < 1 for (P) with Zero Initial Data

In this chapter we consider the problem (P) with p < 1 and trivial initial

condition. We find a class of nontrivial solutions and extend so the result

of [DFL, Theorem 3.5].

Before we find the solution of (1.3), we introduce following notation. We

define

(3.1) U(a, b, r) =
1

Γ(a)

∫ ∞

0

e−rt ta−1(1 + t)b−a−1dt

and

(3.2)

Di = π−
1
2

(
Γ( 1

2
+ αi)

Γp(1 + αi)

) 1
1−p n−1∏

k = 1

(
Γ( 1

2
+ αi+k)

Γ(1 + αi+k)

)π
(i)
k

1−p

= π−
1
2−αiΓ(1 + αi)

n−1∏

k = 0

B
π

(i)
k

1−p (αi+k), i= 1, 2, . . . , n,

Dn+1 =D1.

Lemma 3.1. The function U fulfills the following relations.

(3.3)

(i) Ur(a, b, r) = − aU(a+ 1, b+ 1, r)

(ii) U

(
a,

1

2
, 0

)
=

π
1
2

Γ( 1
2

+ a)

(iii) U

(
a,

3

2
, r

)
=

π
1
2

Γ(a)
r−

1
2 + O(1) for r → 0

(iv) U(a, b, r) = r−a(1 +O(r−1)) for r →∞

Proof. The relations (i), (iii), and (iv) can be found in [AS 13.4.21, 13.5.8,

13.1.8] respectively, (ii) can be obtained directly from (3.1). �

Lemma 3.2. The constants Di fulfill the recurrent relation

(3.4) Dpi
i+1 = π

1−pi
2

Γpi(1 + αi+1)

Γ( 1
2

+ αi)
Di, i= 1, 2, . . . , n.
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Proof. We verify the relation (3.4) using the definition of Di in (3.2) directly.

Recalling the simple facts piπ
(i+1)
k = π

(i)
k+1 and 1 + piαi+1 = 1

2 + αi, we write

Dpi
i+1 = π−pi(

1
2 +αi+1)Γpi(1 + αi+1)

n−1∏

k = 0

B
piπ

(i+1)
k

1−p (αi+k+1)

= π−pi(
1
2 +αi+1)Γpi(1 + αi+1)B−1(αi)B

1
1−p (αi)

n−2∏

k = 0

B
π

(i)
k+1
1−p (αi+k+1)

= π
1−pi

2 −(1+piαi+1) Γpi(1 + αi+1)

Γ( 1
2 + αi)

Γ(1 + αi)

n−1∏

k = 0

B
π

(i)
k

1−p (αi+k)

= π
1−pi

2
Γpi(1 + αi+1)

Γ( 1
2 + αi)

Di.

�

Lemma 3.3. The functions

(3.5) fi(y) =Di e−
y2

4 U

(
1

2
+ αi,

1

2
,
y2

4

)
, i= 1, 2, . . . , n

where U is given in (3.1) and Di are given in (3.2), solve the problem (1.3).

Proof. We show that the functions fi defined in (3.5) solve the equations

from (1.3) arguing similarly as in the proof of [FQ, Lemma 3.1] (see also [DFL,

Lemma 3.2]). Each of the equations from (1.3) is a generalized Whittaker’s

equation and can be written in the form (see [AS, 13.1.35] for A= 0)

(3.6) w′′ +

(
2f ′ +

bh′

h
− h′ − h′′

h′

)
w′

+

((
bh′

h
− h′ − h′′

h′

)
f ′ + f ′′ + (f ′)2 − a(h′)2

h

)
w = 0

with a= 1
2 + αi, b= 1

2 , f(y) = h(y) = y2

4 . The equation (3.6) can be solved

explicitly. One part of its general solution is given by (cf. [AS, 13.1.37])

(3.7) w1(y) = e−f(y) U(a, b, h(y)).

Obviously, the functions fi defined in (3.5) solve the equations from (1.3).

Now we use the relations from Lemma 3.1 and Lemma 3.2 to verify the

boundary condition from (1.3)

−f ′i(0) = Di
y

2
e
y2

4

(
U

(
1

2
+ αi,

1

2
,
y2

4

)
+

(
1

2
+ αi

)
U

(
3

2
+ αi,

3

2
,
y2

4

))∣∣∣∣
y→0

=
π

1
2Di

Γ( 1
2 + αi)

=
Dpi
i+1

π
pi
2 Γ(1 + αi+1)

= fpii+1(0).
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The fact (fi)→ 0 as y →∞ follows directly from the definition (3.5) and the

relation (3.3.iv). �

Proof of Theorem 1.2. Obviously, the functions Υi fulfill (P) when t 6= s. We

need only to show

(3.8) lim
t→s+

∂Υi

∂t
(x, t; s) = 0 for x ∈ RN+ , s> 0

to claim that (Υi) converges uniformly to 0 as t → s+. We use the relations

from Lemma 3.1 to write

∂Υi

∂t
(x, t; s) =Diαi e−

x2
1

4(t−s) (t− s)αi−1U

(
1

2
+ αi,

1

2
,

x2
1

4(t− s)

)

+Di
x2

1

4
e−

x2
1

4(t−s) (t− s)αi−2U

(
1

2
+ αi,

1

2
,

x2
1

4(t− s)

)

+Di

(
1

2
+ αi

)
x2

1

4
e−

x2
1

4(t−s) (t− s)αi−2U

(
3

2
+ αi,

3

2
,

x2
1

4(t− s)

)

=
t→s+

Diαi e−
x2
1

4(t−s) (t− s)2αi− 1
2

(x1

2

)−αi−1

(1 + O(t− s))

+Di e−
x2
1

4(t−s) (t− s)2αi− 3
2

(x1

2

)1−2αi
(1 + O(t− s))

+Di

(
1

2
+ αi

)
x2

1

4
e−

x2
1

4(t−s) (t− s)2αi− 3
2

(x1

2

)−1−2αi
(1 +O(t− s))

= e−
x2
1

4(t−s) (t− s)2αi− 3
2 (ϕi(x1) + O(t− s)) .

Thus (3.8) holds and the proof is finished. �
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4 Uniqueness of the Nontrivial Solution in

the Case p < 1 for (P) with Zero Initial Data

As in the previous chapter, we consider the problem (P) with p < 1 and

trivial initial condition. We prove that the class of functions given in (1.4) con-

tains all nontrivial nonnegative solutions of problem (P) with p < 1 and trivial

initial data. Every nontrivial nonnegative solution is then uniquely determined

by time s> 0 when it branches off the trivial zero solution (s= inf{t > 0 :

ui(x, t) > 0, x ∈ RN+}).
Let us introduce further notation for i= 1, 2, . . . , n

(4.1)

Ci = π
1
2 Γ−1(1 + αi)Di =

n−1∏

k = 0

(
Γ( 1

2 + αi+k)

Γ(1 + αi+k)

) π
(i)
k

1−p

= π−αi
n−1∏

k = 0

B
π

(i)
k

1−p (αi+k),

βi = 2(1− p)αi,

ρi =

n−i∑

k = 0

π
(i)
k (ρn = 1, ρn−1 = 1 + pn−1, . . . , ρ1 = β1)

Lemma 4.1. Let pk > 0, k = 1, 2, . . . , n,

n∏

k = 1

pk = p < 1, pi+n = pi, and let

(4.2)

α(0)
n =

1

2
,

α
(i)
k =

1

2
+ pkα

(i)
k+1, k = 1, 2, . . . , n− 1,

α(i+1)
n =

1

2
+ pnα

(i)
1 .

Then α
(i)
k = αk(1− pi) +

piρk
2

for all i ∈ N0, k = 1, 2, · · · , n. The constants ρk

are given in (4.1).

Proof. The verification is simpler in terms of βs. Set β
(i)
k = 2(1− p)α(i)

k . The

recurrent relations corresponding to (4.2) are then

β(0)
n = 1− p,
β

(i)
k = 1− p+ pkβ

(i)
k+1, k = 1, 2, . . . , n− 1,

β(i+1)
n = 1− p+ pnβ

(i)
1

and it can be easily checked that β
(i)
k = βk(1− pi) + (1− p)piρk. �
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Remark 4.2. Notice that α
(i)
k increases to αk as i→∞ for all k = 1, 2, . . . , n.

Namely

α
(i)
k = αk − pi

2αk − ρk
2

and

2αk > βk > ρk
hold.

Lemma 4.3. If t > 0 and (ui) is a solution of the system (P) with an initial

condition fulfilling υi 6≡ 0, then we can find γ, σ > 0 such that

(4.3) ui(x, t)> γ e−σ|x|
2

, x ∈ RN+ .

Proof. Since υi 6≡ 0, we can find Ω ⊂ RN+ such that δ = inf{υi(x) : x ∈ Ω} > 0.

Now

ui(x, t)> T (t)SN−1(t)υi(x)

=

∫

R+

1

2
(πt)−

1
2

(
e−
|x1−y1|2

4t + e−
|x1+y1|2

4t

)

×
∫

RN−1

(4πt)−
N−1

2 e−
|x′−y′|2

4t υi(y1, y
′)dy′dy1

> δ
∫

Ω

(4πt)−
N
2 e−

|x−y|2
4t dy > δ(4πt)−N2 e−

|x|2
2t

∫

Ω

e−
|y|2
2t dy,

which proves the desired estimate with

γ(t) = δ(4πt)−
N
2

∫

Ω

e−
|y|2
2t dy and σ(t) =

1

2t
.

�

Lemma 4.4. For t > 0, σ > 0, x ∈ RM , M ∈ N,

SM (t) e−σ|x|
2

= (1 + 4σt)−
M
2 e−

σ
1+4σt |x|2

holds.

Proof. The verification is not very difficult. We write

(4πt)−
M
2

∫

RM
e−
|x−y|2

4t e−σ|y|
2

dy

= (4πt)−
M
2 e−

|x|2− |x|
2

1+4σt
4t

∫

RM
e−

˛̨
˛ x√

1+4σt
−√1+4σty

˛̨
˛
2

4t dy

= (4πt)−
M
2 e−

σ|x|2
1+4σt

∫

RM
e−

1+4σt
4t |y|2 dy = (1 + 4σt)−

M
2 e−

σ
1+4σt |x|

2

.

�
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Remark 4.5. For 06 η 6 t, we have

(4.4) SN−1(t− η) e−σ|x
′|2 > (1 + 4σt)−

N−1
2 e−σ|x

′|2 .

Proposition 4.6. If (ui) is a solution of the system (P) with nontrivial initial

condition (vi) 6≡ 0 and p < 1, then

(4.5) ui(0, x
′; t)> Citαi , i= 1, 2, . . . , n,

where Ci are given in (4.1).

Proof. We use the ideas from the proof of [EH1, Lemma 2]. We first prove

the result assuming that υ1(x)> γ e−σ|x|
2

for some γ, σ > 0. Lemma 4.4 then

yields

u1(0, x′; t)> T (t)SN−1(t)υ1(0, x′)> γ(1 + 4σt)−
N−1

2 e−σ|x
′|2

and from (4.4) follows

(4.6.n.0)

un(0, x′; t)>
∫ t

0

R(t− η)upn1 (x, η)dη

> π− 1
2 γpn(1 + 4σt)−

N−1
2 pn

∫ t

0

(t− η)−
1
2SN−1(t− η) e−σpn|x

′|2 dη

> π− 1
2 γpn(1 + 4σt)−

N−1
2 pn(1 + 4σpnt)

−N−1
2 e−σpn|x

′|2
∫ t

0

(t− η)−
1
2 dη

= 2π−
1
2 γpn(1 + 4σt)−

N−1
2 pn(1 + 4σpnt)

−N−1
2 e−σpn|x

′|2 t
1
2

as an initial inequality for an iterating argument. Namely, using (4.4) we can

derive the following implication

(4.7)

if ui+1(0, x′; t)> c
m∏

j = 1

(1 + ajt)
bj e−σ|x

′|2 tγ

where γ, σ > 0, m ∈ N, aj > 0, bj < 0,

then ui(0, x
′; t)>

∫ t

0

R(t− η)upii+1(x, η)dη

(bj < 0) > π− 1
2 cpi

m∏

j = 1

(1 + ajt)
pibj

×
∫ t

0

(t− η)−
1
2 ηpiγSN−1(t− η)

(
e−piσ|x

′|2
)
dη

(4.4) > π− 1
2 cpi

m∏

j = 1

(1 + ajt)
pibj (1 + 4piσt)

−N−1
2

× e−piσ|x
′|2 B

(
1

2
+ piγ

)
t

1
2 +piγ
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for i= 1, 2, . . . , n (setting un+1 = u1). Now it is only a matter of a patient

calculation to prove that for any k ∈ N0

(4.6.1.k)

u1(0, x′; t)> 2π
(1)
n−1p

k

π−α
(k)
1 γp

k+1

×
k∏

i= 0

n∏

m= 1

(
1 + 4σtpi

∏n
j = n−m+1 pj

)−N−1
2 pk−i

Qn−m
j = 1 pj

× (1 + 4σt)p
k+1

k∏

i = 1

Bπ
(1)
n−1p

k−i (
α(i)
n

)

×
n−1∏

m= 1

k∏

i = 0

Bπ
(1)
m−1p

k−i (
α(i)
m

)
e−σp

k+1|x′|2 tα
(k)
1

holds.

Now let us see what happens when k → ∞. Clearly, 2π
(1)
n−1p

k −−−→
k→∞

1,

γp
k+1 −−−→

k→∞
1, e−σp

k+1|x′|2 −−−→
k→∞

1, (1 + 4σt)p
k+1 −−−→

k→∞
1. Moreover,

since α
(k)
m increases to αm and B is decreasing in γ, we have

k∏

i = 1

Bπ
(1)
n−1p

k−i (
α(i)
n

) n−1∏

m= 1

k∏

i= 0

Bπ
(1)
m−1p

k−i (
α(i)
m

)
>

n∏

m= 1

B
π

(1)
m−1
1−p (αm).

And finally setting am = 4σt

n∏

j = n−m+1

pj > 0 and bm = − N − 1

2

n−m∏

j = 1

pj < 0,

we may write
k∏

i= 0

n∏

m= 1

(
1 + amp

i
)bmpk−i −−−→

k→∞
1

since for m= 1, 2, . . . , n

0> ln
k∏

i= 0

(
1 + amp

i
)bmpk−i

= bm

k∑

i = 0

pk−i ln
(
1 + amp

i
)

> ambm
k∑

i = 0

pk = (k + 1)ambmp
k −−−→

k→∞
0

holds. Letting k →∞ in (4.6.1.k) therefore gives

u1(0, x′; t)> C1t
α1

which is (4.5) for i= 1.
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Considering the implication (un+1 = u1, Cn+1 = C1, 1
2
+piαi+1 = αi = αi+n)

(4.8)

if ui+1(0, x′; t)> Ci+1t
αi+1

then ui(0, x
′; t)>

∫ t

0

R(t− η)upii+1(x, η)dη

= π−
1
2Cpii+1

∫ t

0

(t− η)−
1
2 ηpiαi+1

= π−αi
n−1∏

m= 1

B
π

(i)
m

1−p (αi+m) ·B p
1−p (αi)B (αi) t

αi

= π−αi
n−1∏

m= 0

B
π

(i)
m

1−p (αi+m) tαi = Cit
αi

for i= 1, 2, . . . , n, we obtain (4.5) under current assumption on the initial data.

Now we generalize the estimate for any nontrivial initial data υ1 6≡ 0 using

Lemma 4.3. We take arbitrary positive ε and set ũi(·, t; ε) = ui(·, t+ ε). The

autonomous nature of the system (P) implies

ũi(·, t; ε) = T (t)SN−1(t)ũi(·, 0; ε) +

∫ t

0

R(t− η)ũpii+1(·, η; ε)dη,

where ũ1(0, x′; 0; ε) > γ e−σ|x
′|2 for some positive numbers γ and σ. There-

fore ũi(0, x
′; t; ε)> Citαi , and accordingly

ui(0, x
′; t)> Ci(t− ε)αi .

Thus (4.5) holds for any υ1 6≡ 0, since ε is arbitrary. Obviously, the assump-

tion v1 6≡ 0 is made without loss of generality. �

Proof of Theorem 1.3. We apply the idea from the proof of [EH1, Lemma 4].

Let (ui) be a nontrivial nonnegative solution of the problem (P) with p < 1

and trivial initial data (υi)≡ 0. Without loss of generality, we assume that

there are x ∈ RN+ and t > 0 such that un(x, t) =
∫ t

0
R(t − η)upn1 (x, η)dη > 0.

Set

τ = inf{t > 0 : u1(0, x′; t) > 0, x′ ∈ RN−1}.

By standard results, ui(x, t) > 0 for any x ∈ RN+ and t > τ , i= 1, 2, . . . , n.

Now we take t̄ > τ and set ūi(x, t) = ui(x, t̄ + t). Obviously, (ūi) solves (P)

and ῡi = ūi(·, 0) > 0, i= 1, 2, . . . , n, and according to Proposition 4.6

ui(0, x
′; t̄+ t)> Citαi
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for any x′ ∈ RN−1 and t> 0. This implies

(4.9) ui(0, x
′; t)> Ci(t− τ)αi+ , x′ ∈ RN−1, t> 0, i= 1, 2, . . . , n.

We use another slight modification of the often used iteration argument to

obtain the corresponding upper estimate for ui(0, x
′; t). Let T > 0 be arbitrary

and M > 0 such that

‖u1(0, ·; η)‖∞ 6M‖u1(0, ·; t)‖∞ for 06 η 6 t6 T.

Since the initial condition is trivial, we can write

un(0, x′; t)6
∫ t

0

R(t− η)SN−1(t− η)‖u1(η)‖pn∞ dη

= π−
1
2

∫ t

0

‖u1(0, ·; η)‖pn∞dη 6 π−
1
2Mpn‖u1(0, ·; t)‖pn∞2t

1
2 .

The induction implication reads as follows

if ui+1(0, x′; t)6 ctγ

then ui(0, x
′; t)6

∫ t

0

R(t− η)‖ui+1(0, ·; η)‖pi∞dη

6 π− 1
2 cpiB

(
1

2
+ piγ

)
t

1
2 +piγ

for i= 1, 2, . . . , n, so that

‖u1(0, ·; t)‖∞ 6 ‖u1(0, ·; t)‖p∞2π
(1)
n−1π−(1−p)α1Mp

n−1∏

k = 1

Bπ
(1)
n−1

(ρk
2

)
t(1−p)α1 ,

‖u1(0, ·; t)‖∞ 6 2
π

(1)
n−1
1−p π−α1M

p
1−p

n−1∏

k = 1

B
π

(1)
n−1
1−p

(ρk
2

)
tα1 = Ptα1 .

Substituting this inequality into the solution formulae (1.1) we get

(4.10.1.1) ‖u1(0, x′; t)‖∞ 6
∫ t

0

π−
1
2 (t− t1)−

1
2

×
(∫ t1

0

· · ·
(∫ tn−1

0

π−
1
2 (tn−1 − tn)−

1
2P pntpnα1

n dtn

)pn−1

· · ·dt2
)p1

dt1

= P pπ−(1−p)α1

n∏

i = 1

Bπ
(1)
i−1(αi)t

α1 ,
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and iterating this step yields

(4.10.1.k) ‖u1(0, x′; t)‖∞ 6 P p
k

π−(1−pk)α1

n∏

i= 1

Bπ
(1)
i−1

1−pk
1−p (αi)t

α1 .

Letting k →∞ implies

(4.10.1) ‖u1(0, x′; t)‖∞ 6 C1t
α1

and as in (4.8) we obtain

(4.10) ui(0, x
′; t)6 ‖ui(0, ·; t)‖∞ 6 Citαi

for x′ ∈ RN−1, t> 0, i= 1, 2, . . . , n. When τ > 0, we take 0 < t6 τ and

define ui(x, t) = ui(x, t + t). The definition of τ and a simple contradiction

argument imply that (ui(t))≡ 0, and therefore (ui) solves (P) with trivial

initial data. From (4.10) we obtain ui(0, x
′; t + t)6 Citαi for any x′ ∈ RN−1

and t> 0. This implies

(4.11) ui(0, x
′; t)6 Ci(t− τ)αi+ , x′ ∈ RN−1, t> 0, i= 1, 2, . . . , n,

and, by (4.10), it is valid for τ = 0 as well.

We conclude from (4.9,11) that

ui(0, x
′; t) = Ci(t− τ)αi+ = Υi(0, x

′; t; τ), x′ ∈ RN−1, t> 0, i= 1, 2, . . . , n.

The maximum principle implies that (ui(x, t)) = (Υi(x, t; s)) for s= τ . �
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5 Uniqueness in the Case p < 1 for (P) with Nonzero Initial Data

In this chapter we consider the problem (P) with nontrivial initial condition.

We prove that the solution is unique if pi < 1, i= 1, 2, . . . , n. We use the

notation from (4.1) and the estimate from Proposition 4.6.

Lemma 5.1. The constants Ci from (4.1) fulfill the equality

(5.1)

n∏

i= 1

C
pi−1−1
i = π

n
2

n∏

i= 1

B−1(αi).

Proof. First notice that pi−1βi = βi−1 + p− 1, i= 1, 2, · · · , n, and therefore

n∑

i = 1

αi(pi−1 − 1) =
βn + p− 1− β1

2(1− p) +

n∑

i= 2

βi−1 + p− 1− βi
2(1− p) = − n

2
.

Furthermore, pi+j−1π
(i+j)
n−j = π

(i+j−1)
n−j+1 , i= 1, 2, . . . , n, j = 1, 2, . . . , n− 1. So we

can write

n∏

i= 1

C
pi−1−1
i =

n∏

i= 1


π−αi(pi−1−1)

n−1∏

j = 0

B
pi−1−1

1−p π
(i)
j (αi+j)




= π
n
2

n∏

i= 1


B

pn+i−1−1

1−p (αi)

n−1∏

j = 1

B
pi+j−1−1

1−p π
(i+j)
n−j (αi)




= π
n
2

n∏

i= 1

B
pn+i−1−1

1−p + 1
1−p

Pn−1
j = 1(π

(i+j−1)
n−j+1 −π

(i+j)
n−j )(αi)

= π
n
2

n∏

i= 1

B
pn+i−1−1+π

(i)
n −π

n+i−1
1

1−p (αi) = π
n
2

n∏

i = 1

B−1(αi).

�

Proof of Theorem 1.4. Let us introduce the notation ‖f(t)‖= sup{f+(0, x′; t) :

x′ ∈ RN−1} and f+ = max{f, 0}. We use the contradiction argument from the

proof of [EH1, Lemma 3].

Suppose that (ui) 6= (ūi). Then we can find t > 0 such that without loss of

generality we may assume ‖(u1 − ū1)(η)‖6 ‖(u1 − ū1)(t)‖ > 0 for 06 η 6 t.
Since pi < 1, we have |api − bpi |6 |a − b|pi for a, b > 0. The solution formu-

lae (1.1) imply

(ui − ūi)+(0, x′; t)6
∫ t

0

R(t− η)(upii+1 − ūpii+1)+(0, x′; η)dη
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for i= 1, 2, . . . , n. We use these facts n times to show for some positive con-

stant P that ‖(u1 − ū1)(t)‖6 Ptα1 . First we write

(un − ūn)+(0, x′; τ)6
∫ τ

0

π−
1
2 (τ − η)−

1
2 ‖(u1 − ū1)(η)‖pndη

6 2π−
1
2 ‖(u1 − ū1)(t)‖pnτ 1

2

for 06 τ 6 t. The inequality (ui+1 − ūi+1)+(0, x′; τ)6 cτγ implies

(ui − ūi)+(0, x′; τ)6 π− 1
2 cpiB

(
1

2
+ piγ

)
τ

1
2 +piγ

for i= n− 1, n− 2, . . . , 1. So by induction we obtain

‖(u1 − ū1)(t)‖6 ‖(u1 − ū1)(t)‖p2π
(1)
n−1π−(1−p)α1

n−1∏

k = 1

Bπ
(1)
k−1

(ρk
2

)
t(1−p)α1

with ρk defined in (4.1), and therefore

(5.2) ‖(u1 − ū1)(t)‖6 Ptα1 , P = 2
π

(1)
n−1
1−p π−α1

n−1∏

k = 1

Bπ
(1)
k−1/(1−p)

(ρk
2

)

holds.

The mean value theorem for f(ξ) = ξpi gives

(upii+1 − ūpii+1)(0, x′; t) = piw
pi−1
i+1 (0, x′; t)(ui+1 − ūi+1)(0, x′; t), i= 1, 2, . . . , n,

for some wi+1 between ui+1 and ūi+1. Now all pi are less than 1, so by

Proposition 4.6 we have

wpi−1
i+1 (0, x′; t)6 Cpi−1

i+1 t(pi−1)αi , i= 1, 2, . . . , n.

By the solution formulae (1.1), inequalities

(ui − ūi)+(0, x′; t)6
∫ t

0

R(t− η)(upii+1 − ūpii+1)+(0, x′; η)dη

6 π− 1
2 piC

pi−1
i+1

∫ t

0

(t− η)−
1
2 η(pi−1)αi+1‖(ui+1 − ūi+1)(η)‖dη
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hold for i= 1, 2, . . . , n, so that we can claim

(5.3)

‖(u1 − ū1)(t)‖6 π−n2 p
n∏

i= 1

Cpi−1
i+1

∫ t

0

(t− t1)−
1
2 t

(p1−1)α2

1

×
∫ t1

0

(t1 − t2)−
1
2 t

(p2−1)α3

2

∫ t2

0

· · ·
∫ tn−1

0

(tn−1 − tn)−
1
2

× t(pn−1)α1
n ‖(u1 − ū1)(tn)‖dtn· · ·dt3dt2dt1

= p

n∏

i= 1

B−1(αi)

∫ t

0

(t− t1)−
1
2 t

(p1−1)α2

1

×
∫ t1

0

(t1 − t2)−
1
2 t

(p2−1)α3

2

∫ t2

0

· · ·
∫ tn−1

0

(tn−1 − tn)−
1
2

× t(pn−1)α1
n ‖(u1 − ū1)(tn)‖dtn· · ·dt3dt2dt1

by Lemma 5.1. By (5.2), we see that righthand side of (5.3) is integrable.

Moreover combining with (5.2) yields

∫ tn−1

0

(tn−1 − tn)−
1
2 t(pn−1)α1
n ‖(u1 − ū1)(tn)‖dtn

6 P
∫ tn−1

0

(tn−1 − tn)−
1
2 tpnα1
n dtn = PB(αn)tαnn−1.

Similarly we get

‖(u1 − ū1)(t)‖6 pP tα1 ,

and obviously

(5.4) ‖(u1 − ū1)(t)‖6 pkPtα1 , k ∈ N,

as well. Letting k →∞ implies u1(·, t) = ū1(·, t) on the boundary x1 = 0, and

the contradiction argument is finished. �
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6 Uniqueness for the Nonsymmetric Problem (FL)

This chapter proves uniqueness for the problem (FL) with pq > 1.

Proof of Theorem 1.5. We omit the standard argument when both nonlineari-

ties are Lipschitz continuous, i.e., p, q > 1 (cf. proof of Theorem 1.1). However,

we have to discuss both cases p < 1, q > 1 and p > 1, q < 1 (pq > 1) since the

system (FL) is not symmetric in the sense of interchanging p and q.

(a) We start with the case p < 1. Let τ ∈ (0, T ) be an arbitrary time

and let 06 s6 η 6 t6 τ be always ordered this way in further discussion. We

fix (x, η) ∈ Sτ and define a functional g(·)(x, η) : L∞(Sτ )→ R

g(w)(x, η) = T (η)SN−1(η)v0(x) +

∫ η

0

R(η − s)wq(x, s)ds,

f(ξ) = ξp, ξ > 0,

so that we obtain by the mean value theorem for f ◦ g

(6.1)

V (x, η) = (vp − v̄p) (x, η) = (g(u)(x, η))
p − (g(ū)(x, η))

p

= pq (g(w)(x, η))
p−1

∫ η

0

R(η − s)
(
wq−1(u− ū)

)
(x, s)ds

for some w between u and ū. More precisely we write

w(·, s) = ρ(x, η)u(·, s) + (1− ρ(x, η))ū(·, s)

where 0 < ρ(x, η) < 1. We also define F (t) = sup{‖(u−ū)(·, η)‖∞ : 0 6 η 6 t},
and by Hölder’s inequality we derive (since 1

q 6 p < 1)

(6.2)

|V (x, η)|6 pqF (η)

(∫ η

0

R(η − s)wq(x, s)ds
)p−1

×
∫ η

0

R(η − s)wq−1(x, s)ds

6 pqF (η)
(

2
1
q π−

1
2q η

1
2q

)(∫ η

0

R(η − s)wq(x, s)ds
)p−1+1− 1

q

6 pq2pπ− p2Upq−1F (η)η
p
2 ,

where U is the upper bound of w in RN+ × [0, τ ]. Hence, applying the solution

formulae (1.2), we obtain for any x ∈ RN+ , η ∈ [0, τ ]

(6.3)

|u− ū|(x, η) 6
∫ η

0

T (η − s)SN−1(η − s)|V (x, s)|ds

6pq2pπ−p2Upq−1F (η)

∫ η

0

s
p
2 ds 6 Kt 2+p

2 F (t),
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where the constant K depends on p, q, and on the bounds of u and ū in RN+ ×
[0, τ ]. The supremum property implies F (t) 6 Kt

2+p
2 F (t) on [0, τ ], and thus

F (t) = 0 for t ∈ (0, K−
2

2+p ). Since the system is autonomous, finite iterat-

ing of the argument yields u= ū in RN+ × [0, τ ]. The equality v = v̄ follows

consequently from (1.2).

(b) The case q < 1 is dealt with in a slightly different manner. We set

F (t) = sup{‖(v − v̄)(·, η)‖∞ : 0 6 η 6 t}, t > 0,

g(z)(x, η) = T (η)SN−1(η)u0(x) +

∫ η

0

T (η − s)SN−1(η − s)zp(x, s)ds

for z ∈ L∞(Sτ ),

f(ξ) = ξq, ξ > 0,

so that we arrive by the mean value theorem and Hölder’s inequality (since
1
p
6 q < 1) at

(6.4)

|U(x, η)|= |(g(v)(x, η))
q − (g(v̄)(x, η))

q|

6 pqF (η) (g(z)(x, η))
q−1

(∫ η

0

T (η − s)SN−1(η − s)zp−1(x, s)ds

)

6 pqV pq−1F (η)ηq,

where z(·, s) = ρ(x, η)v(·, s) + (1− ρ(x, η))v̄(·, s), 0 < ρ(x, η) < 1 and V is its

upper bound on RN+×[0, τ ]. Thus the difference of solutions in the v component

is bounded above by

(6.5)

|v − v̄|(x, η)6
∫ η

0

R(η − s)|U(x, s)|ds

6 pqV pq−1F (η)

∫ η

0

R(η − s)sqds6 Lt 1
2 +qF (t)

for all x ∈ RN+ , η ∈ [0, τ ]. We complete the proof by the same final argument

as earlier. �
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7 Nonuniqueness for the Nonsymmetric Problem (FL)

Let us first study the one dimensional problem:

ut = uxx + vp, vt = vxx, x > 0, t > 0,

−ux = 0, −vx = uq, x= 0, t > 0,(FL1)

u(x, 0) = u0 > 0, v(x, 0) = v0 > 0, x > 0.

We want to find a nonnegative nontrivial solution starting from the zero initial

condition if pq < 1. In this chapter, we set

α=
2 + p

2(1− pq) > 1, β =
1 + 2q

2(1− pq) >
1

2
,

and as in [DFL], we look for a self-similar solution of the form

u(x, t) = tαf(y), v(x, t) = tβg(y) for y =
x√
t
, t > 0,

where (f, g) is a positive solution of the problem

(7.1)

f ′′(y) +
y

2
f ′(y)− αf(y) + gp(y) = 0,

g′′(y) +
y

2
g′(y)− βg(y) = 0 for y > 0,

f ′(0) = 0,

g′(0) = − f q(0),

and where (tαf(y), tβg(y)) converges to (0, 0) as t → 0+, i.e. y → ∞. This

transformation can be easily verified.

Remark 7.1. In order to prove that the blow-up rate estimates (ChF) for (FL)

are optimal (see Section 1.2), backward self-similar solutions of (FL1) are con-

structed in [ChF]. They are of the form

ũ(x, t) = (T − t)αf̃(y), ṽ(x, t) = (T − t)β g̃(y), y =
x√
T − t ,

where positive bounded (f̃ , g̃) satisfies

f̃ ′′(y)− y

2
f̃ ′(y) + αf̃(y) + g̃p(y) = 0,

g̃′′(y)− y

2
g̃′(y) + βg̃(y) = 0 for y > 0,

f̃ ′(0) = 0,

g̃′(0) = − f̃q(0).
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Recall that in this case pq > 1, i.e., α, β < 0, and T <∞ is the blow-up time.

As in the proof of Lemma 3.3, the linear equations

f ′′(y) +
y

2
f ′(y)− αf(y) = 0,

g′′(y) +
y

2
g′(y)− βg(y) = 0 for y > 0,

are generalized Whittaker’s equations (see (3.6)). Their solutions are given by

the formulae (cf. [AS, 13.1.36,37])

f1(y) = e−
y2

4 U

(
1

2
+ α,

1

2
,
y2

4

)
, f2(y) = e−

y2

4 M

(
1

2
+ α,

1

2
,
y2

4

)
,

g1(y) = e−
y2

4 U

(
1

2
+ β,

1

2
,
y2

4

)
, g2(y) = e−

y2

4 M

(
1

2
+ β,

1

2
,
y2

4

)
,

where M(a, b, r) = 1+
a

b
r+ . . .+

a(a+ 1) . . . (a+ n− 1)

b(b+ 1) . . . (b+ n− 1)
rn+ . . . and U is given

in (3.1).

Lemma 7.2. The functions M , U fulfill the following relations.

(7.2)

(i) Mr(a, b, r) =
a

b
M(a+ 1, b+ 1, r)

(ii) M(a, b, r)→ 1 for r → 0, b /∈ N

(iii) U

(
a,

1

2
, r

)
=

π
1
2

Γ
(

1
2 + a

) + O(r
1
2 ) for r → 0

(iv) M(a, b, r) =
Γ(b)

Γ(a)
er ra−b(1 + O(r−1)) for r →∞

Proof. The relations (i), (iii), and (iv) can be found in [AS 13.4.8, 13.5.10,

13.1.4] respectively, (ii) can be obtained directly from the definition of M . �

Remark 7.3. We will need also the properties of U given in (3.3) from

Lemma 3.1.

We look for the solution of (7.1) which fulfills the simplified initial conditions

with two positive parameters F and G

f(0) = F, f ′(0) = 0,

g(0) =G, g′(0) = − F q.

The solution of the ordinary initial value problem

g′′(y) +
y

2
g(y)− βg(y) = 0 for y > 0, g(0) =G, g′(0) = − F q
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is obviously given by

g(y) = F q
Γ( 1

2
+ β)√
π

g1(y) +

(
G− F q Γ( 1

2
+ β)

Γ(1 + β)

)
g2(y).

Now we need to solve the problem

f ′′(y) +
y

2
g(y)− αf(y) = − gp(y) for y > 0, f(0) = F, f ′(0) = 0.

We look for the solution of the equation in the form

f(y) = d(y)f1(y),

which transforms it into

f1(y)d′′(y) +
(

2f ′(y) +
y

2
f1(y)

)
d′(y) = − gp(y), y > 0

or

ϕ′(y) +

(
2
f ′1(y)

f1(y)
+
y

2

)
ϕ(y) = − gp(y)

f1(y)
, y > 0

for ϕ(y) = d′(y). This equation can be solved explicitly. The solution is given

by

ϕ(y) =
C1 −

∫ y
0

e
s2

4 f1(s)gp(s)ds

e
y2

4 f2
1 (y)

and we have

f(y) =

(∫ y

0

ϕ(s)ds+ C2

)
f1(y).

Since f(0) = C2f1(0) = C2π
1
2 Γ−1(1 + α), we have to set

C2 = FΓ(1 + α)π−
1
2

in order to satisfy f(0) = F . Similarly

f ′(0) = ϕ(y)f1(y) +

(∫ y

0

ϕ(s)ds+ C2

)
f1(y)f ′1(y)

∣∣∣∣
y→0

=
C1Γ(1 + α)

π
1
2

− FΓ(1 + α)

Γ( 1
2

+ α)
,

so we set

C1 =
Fπ

1
2

Γ( 1
2 + α)

.



UNIQUENESS RESULTS FOR SOME PARABOLIC SYSTEMS 37

Thus we found the following solution of (7.1)

(7.3)

f(y) =

(∫ y

0

ϕ(s)ds+ C2

)
f1(y),

g(y) = F q
Γ( 1

2
+ β)√
π

g1(y) +

(
G− F q Γ( 1

2
+ β)

Γ(1 + β)

)
g2(y),

where

ϕ(y) =
C1 −

∫ y
0

e
s2

4 f1(s)gp(s)ds

e
y2

4 f2
1 (y)

,

C1 =
F
√
π

Γ( 1
2 + α)

= − Ff ′1(0),

C2 =
FΓ(1 + α)√

π
= Ff−1

1 (0).

Now we need to choose F and G so that the solution from (7.3) is positive and

has the required growth for y →∞.

Lemma 7.2 (iv) implies that g2(y) grows as y2β, i.e., tβg2(y) does not con-

verge to 0 for t= x2y−2 → 0+. We have to set

G= F q
Γ( 1

2 + β)

Γ(1 + β)

in order to cancel the g2 component of the solution g. For convenience we de-

note ψ(s) = e
s2

4 f1(s)gp(s). Obviously,

(
C1 −

∫ y

0

ψ(s)ds

)
must stay positive

so that f is positive as well. Furthermore, it has to converge to 0 for y → ∞
so that f has the desired growth. The integral

∫ ∞

o

ψ(s)ds

= F pq
Γp( 1

2 + β)√
πp

∫ ∞

o

e−p
s2

4 U

(
1

2
+ α,

1

2
,
s2

4

)
Up
(

1

2
+ β,

1

2
,
s2

4

)
ds

is convergent and we can choose F so that C1 =
∫∞

0
ψ(s)ds. Now since

C1 −
∫ y

0

ψ(s)ds= ϕ(y) e
y2

4 f2
1 (y) =

ϕ(y)

e
y2

4

U2

(
1

2
+ α,

1

2
,
y2

4

)
−−−→
y→∞

0,

we have
ϕ(y)

e
y2

4 y2+4α
−−−→
y→∞

0
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and obviously also

ϕ(y)

e
y2

4 ( 1
2y

2+4α + (1 + 4α)y4α)
−−−→
y→∞

0.

We apply L’Hospital’s rule to get

∫ y
0
ϕ(s)ds

e
y2

4 y1+4α
−−−→
y→∞

0,

which finally implies
f(y)

y2α
−−−→
y→∞

0.

The functions f and g defined in (7.3) with chosen F and G solve (7.1)

and (tαf(y), tβg(y)) converges to (0, 0) as t → 0+. Finally, the functions

u(x, t) = tαf(y), v(x, t) = tβg(y) solve the problem (FL1) with pq < 1 and zero

initial condition.

Proof of Theorem 1.6. The generalization of the one-space dimensional solution

for N > 1 is simple. The nontrivial solution of the problem (FL) with pq < 1

and trivial initial data is, as in the Theorem 1.2, spatially homogenous except

in the x1 direction:

u(x, t) = tαf

(
x1√
t

)
, v(x, t) = tβg

(
x1√
t

)
, x= (x1, x

′) ∈ RN+ , t > 0,

where f and g are given in (7.3). �
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8 Uniqueness for (DFL) with Nonzero Initial Data

The uniqueness result is complete for the system (DFL), i.e., (P) with two

equations. In addition to the u, v, p, q-notation, we also set C = C1, D = C2,

α= α1, β = α2 in this chapter.

Proof of Theorem 1.7. We start with the case pq > 1, in which the assumption

on initial condition is not necessary ([L, Theorem 4.1], [WXW, Theorem 3] deal

with zero initial data only). Theorem 1.1 proves uniqueness when both p, q > 1.

Since the system (DFL) is symmetric in the sense of interchanging p and q, it

is sufficient to prove the result for p < 1, q > 1.

We obtain (6.1,2) as in the proof of Theorem 1.5. The solution formulae (1.1)

and (1.2) differ in the u component, thus we derive

(8.1)

|u− ū|(x, η)6
∫ η

0

R(η − s)|V (x, s)|ds

6 pq2pπ−p2Upq−1F (η)

∫ η

0

R(η − s)s p2 ds

6Kη 1+p
2 F (η)6Kt 1+p

2 F (t)

for all x ∈ RN+ and 06 η 6 t6 τ instead of (6.3). However, the same final

argument as in the proof of Theorem 1.5 is applicable. The constant K de-

pends only on p, q, and the bounds of u and ū in RN+ × [0, τ ] again. We

have F (t)6Kt 1+p
2 F (t) on [0, τ ], i.e., F (t) = 0 for t ∈ (0, K−

2
1+p ). Finite it-

erating of the argument yields u= ū in RN+ × [0, τ ], and from the solution

formulae (1.1) we get v = v̄ as well.

Now we discuss the case pq < 1. The symmetric case p, q < 1 is shown

in Theorem 1.4. In the nonsymmetric case we can assume p < 1, q > 1

without loss of generality. We introduce following notations f+ = max{f, 0}
and ‖f(t)‖= sup{|f+(0, x′; t)| : x′ ∈ RN−1}, and we use the contradiction ar-

gument from the proof of Theorem 1.4 again. We assume ‖(u− ū)(t)‖ > 0 and

‖(u− ū)(η)‖6 ‖(u− ū)(t)‖ for 06 η 6 t.

We apply the ideas from the proof of [EH1, Lemma 3] to get the esti-

mate (5.4) in this case as well. For arbitrary θ ∈ (0, 1), using the inequali-

ties u 6 ū+ (u− ū)+ and uθ 6 ūθ + (u− ū)θ+, we obtain
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v(x, t) = T (t)SN−1(t)v0(x)

+

∫ t

0

∫

RN−1

(R(x1, t− η)GN−1(x′, y′; t− η))
q−θ
q uq−θ(x1, y

′; η)

(R(x1, t− η)GN−1(x′, y′; t− η))
θ
q uθ(x1, y

′; η)dy′dη

6T (t)SN−1(t)v0(x)

+

∫ t

0

∫

RN−1

(R(x1, t− η)GN−1(x′, y′; t− η))
q−θ
q uq−θ(x1, y

′; η)

(R(x1, t− η)GN−1(x′, y′; t− η))
θ
q ūθ(x1, y

′; η)dy′dη

+

∫ t

0

∫

RN−1

(R(x1, t− η)GN−1(x′, y′; t− η))
q−θ
q uq−θ(x1, y

′; η)

(R(x1, t− η)GN−1(x′, y′; t− η))
θ
q (u− ū)θ+(x1, y

′; η)dy′dη.

We apply Hölder’s inequality twice to get

v(x, t) 6T (t)SN−1(t)v0(x)

+

∫ t

0

(R(t− η)uq(x, η))
q−θ
q (R(t− η)ūq(x, η))

θ
q dη

+

∫ t

0

(R(t− η)uq(x, η))
q−θ
q
(
R(t− η)(u− ū)q+(x, η)

) θ
q dη

6T (t)SN−1(t)v0(x)

+

(∫ t

0

R(t− η)uq(x, η)dη

) q−θ
q
(∫ t

0

R(t− η)ūq(x, η)dη

) θ
q

+

(∫ t

0

R(t− η)uq(x, η)dη

) q−θ
q
(∫ t

0

R(t− η)(u− ū)q+(x, η)dη

) θ
q

.

The last inequality yields

v(x, t) 6v
q−θ
q (x, t)v̄

θ
q + v

q−θ
q (x, t)

(∫ t

0

R(t− η)(u− ū)q+(x, η)dη

) θ
q

using a + b1−γcγ 6 (a + b)1−γ(a + c)γ for any nonnegative a, b, c, and any

γ ∈ (0, 1). Setting θ = pq we obtain

(8.2) (vp − v̄p) (x, t) 6
(∫ t

0

R(t− η)(u− ū)q+(x, η)dη

)p
,

that we use to get (5.2) in the same way as in the symmetric case. Using the

solution formulae (1.1) and recalling the assumption ‖(u−ū)(η)‖6 ‖(u−ū)(t)‖
for 06 η 6 t, we write
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(u− ū)+(0, x′; t)6
∫ t

0

R(t− η)(vp − v̄p)+(0, x′; η)dη

6
∫ t

0

R(t− η) (R(η − s)‖(u− ū)(s)‖qds)p dη

6 2pπ
1+p

2 B

(
1 + p

2

)
t

1+p
2 ‖(u− ū)(t)‖pq,

i.e.,

‖(u− ū)(t)‖6 Ptα, P = 2
p

1−pq π−αB
1

1−pq

(
1 + p

2

)
,

which is exactly (5.2).

Now we need an inequality like (5.3), such that its combining with (5.2)

implies (5.4). We set g(w)(x, t) = T (t)SN−1v0(x) +
∫ t

0
R(t − η)wq(x, η)dη,

f(ξ) = ξp, and by the mean value theorem for f ◦ g we write (using the as-

sumption p < 1 as well)

(8.3)

(u− ū)(x, t)6 pq
∫ t

0

R(t− η)

(∫ η

0

R(η − s)wq(x, s)ds
)p−1

×
(∫ η

0

R(η − s)(wq−1(u− ū))(x, s)ds

)
dη

for some w(x, t) = (1− ρ(t))u(x, t) + ρ(t)ū(x, t), 0 < ρ(t) < 1. We also have by

Hölder’s inequality

(8.4)

∫ η

0

R(η − s)(wq−1(u− ū))(x, s)ds

6
(∫ η

0

R(η − s)wq(x, s)ds
) q−1

q
(∫ η

0

R(η − s)|u− ū|q(x, s)ds
) 1
q

,

and since wq(0, x′; s) > Cqsαq, pq − 1 < 0, we derive from inequalities (8.3,4)

that

(8.5)

‖(u− ū)(t)‖6 pq
∫ t

0

(π(t− η))−
1
2

(∫ η

0

R(η − s)Cqsαqds
) pq−1

q

×
(∫ η

0

(π(η − s))− 1
2 ‖(u− ū)(s)‖qds

) 1
q

dη

= pqB−1 (α)B−
1
q (β)

∫ t

0

(t− η)−
1
2 η−

1+q
2q

×
(∫ η

0

(η − s)− 1
2 ‖(u− ū)(s)‖qds

) 1
q

dη.



42 MATEJ KORDOŠ

It takes the role of (5.3) in the iterating, because combining (5.2,8.5) yields

‖(u− ū)(t)‖6 pqB−1 (α)B−
1
q (β)PB

1
q (β)

∫ t

0

(t− η)−
1
2 η−

1+q
2q η

1+q
2(1−pq)q dη

= pqP tα,

hence (5.4) does hold in this case as well.

The final steps are the same as in the proof of Theorem 1.4. Letting k →∞
in (5.4) we have u(·, t) = ū(·, t) on the boundary x1 = 0 which contradicts the

assumption ‖(u− ū)(t)‖ > 0. �
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