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Abstract.

Consider the semilinear elliptic system —Au = f(z,u,v), —Av = g(x,u,v), x € Q,
complemented by the homogeneous Dirichlet boundary conditions or by the nonlinear
boundary conditions: d,u = f(y,u,v), dv = §(y,u,v), y € I, where Q is a smooth
bounded domain in R and 8, denotes the derivative with respect to the outer unit
normal v. In this thesis, we are mainly interested in regularity, boundedness and a
priori estimates of very weak solutions of such elliptic systems. In the first part, we
improve recent results of Y. Li [32] on L*-regularity and a priori estimates for non-
negative very weak solutions of elliptic systems complemented by Dirichlet boundary
conditions. The proof is based on an alternate-bootstrap procedure in the scale of
weighted Lebesgue spaces. In the next part, we show that any positive very weak so-
lution of elliptic problem complemented by the nonlinear boundary conditions belongs
to L> provided the functions f, g, f, § satisfy suitable polynomial growth conditions.
In addition, all positive solutions are uniformly bounded provided the right-hand sides
are bounded in L'. We also prove that our growth conditions are optimal. Finally, we
show that our results remain true for problems involving nonlocal nonlinearities and
we use our a priori estimates to prove existence of positive solutions.

Key words and phrases: very weak solutions, elliptic system, a priori estimates, regu-

larity



Abstrakt.

Uvazujme semilinearny elipticky systém —Au = f(z,u,v), —Av = g(z,u,v), z € Q,
doplneny homogénnymi Dirichletovymi okrajovymi podmienkami alebo nelinearnymi
okrajovymi podmienkami : d,u = f(y,u,v), dv = §(y,u,v), y € 99, kde Q je hladka
ohrani¢ena oblast v RY a 0, oznacuje derivaciu vzhladom k vonkajsej jednotkovej
normale v. V tejto praci sa zaoberame regularitou a apriérnymi odhadmi kladnych
velmi slabych rieSeni takychto eliptickych systémov. V prvej Casti prace vylepSime
nedavne vysledky Y. Liho [32] o L*™-regularite a apriérnych odhadoch pre nezaporné
velmi slabé rieSenia eliptickych systémov s Dirichletovymi okrajovymi podmienakmi.
Dokaz je zalozeny na metode striedavého ,bootstrapu” vo vazenych Lebesgueovych
priestoroch. V dal8ej casti ukdzeme, Ze vSetky kladné velmi slabé rieSenia eliptického
systému s nelinearnymi okrajovymi podmienkami patria do L% pokial funkcie f, g, f, §
splhaji vhodné polynomialne rastové podmienky. Naviac, vietky kladné rieSenia st
rovnomerne ohrani¢ené pokial st pravé strany ohranicené v L. TaktieZ ukdZeme, Ze
nase rastové podmienky st optimalne. Napokon ukézeme, Ze nase vysledky ostévaji v
platnosti aj pre problémy zahfhajtice nelokdlne nelinearity a pouzijeme nase apriérne
odhady na dokaz existencie kladnych rieseni.

Klucové slova a vety: velmi slabé rieSenia, eliptické systémy, apriéorne odhady, regu-

larita
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Introduction

We are interested in existence and a priori estimates of nonnegative very weak solutions
of superlinear elliptic systems. Such problems arise in a variety of situations in biology,
chemistry or physics.

A priori estimate (also called a priori bound) is an estimate for the size of a solution.
“A priori” is a Latin expression which means “from before” and refers to the fact that the
estimate for the solution is derived before the solution is known to exist. In this thesis
by a priori estimate we mean an estimate guaranteeing that all possible nonnegative
solutions (u,v) (in a given set of functions) of an elliptic problem are bounded by some
positive constant C' independent of (u,v).

A priori estimates play important role in the proof of existence of the solution.
Indeed, when problem does not possess variational structure so that variational meth-
ods cannot be used, the existence of a solution can be proved using other (for instance
topological) methods as far as we can derive a priori estimates for all possible solutions.
Moreover, a priori estimates can provide information about multiplicity and bifurcation
branches of solutions.

The main aim of this thesis is to prove boundedness and a priori estimates of positive
very weak solutions of elliptic systems of the form:

—Au = f(.,u,v) } Q. 1)
—Av = g(.,u,v)
complemented by Dirichlet boundary conditions:
v =0 } on 012, (2)
v = 0
or nonlinear boundary conditions:

Ou = f(.,u,v) } on 012, (3)

al/v = g('?”vv)



where f, g, f, g are Caratheodory functions satisfying suitable polynomial growth con-
ditions.

There exist various methods which provide a priori estimates of solutions of ellip-
tic problems: The technique called “blow-up” was first introduced by B. Gidas and
J. Spruck in [25]. In order to obtain a priori estimates, one can proceed by contradic-
tion by assuming there exists a sequence of solutions which is not bounded. Rescaling
argument and choosing suitable subsequence then leads to a subsequence which can be
proved to converge to a positive solution of elliptic problem in the whole space (or the
half space). The existence of such a solution contradicts to some known Liouville-type
theorem. This method often yields optimal results provided optimal Liouville-type
theorems exist. In case of system (1), (2), this is often an open problem.

Another method is the method of Rellich-Pohozaev identities and moving planes.
This technique was first introduced by D. G. de Figueiredo, P.-L. Lions and R. D. Nuss-
baum in [21] for the scalar case. In case of system (1), (2), this method proceeds as
follows. First, (u,v) is estimated near the boundary of 2 by moving-plane method
which requires f,g to be nondecreasing and independent of x. Next, identities of
Rellich-Pohozaev type are applied which restricts this technique to the case f = f(v)
and g = g(u). In addition, €2 has to be convex or certain further technical conditions
on f and g have to be satisfied. This method yields optimal results in the model case
f(v) = v? and g(u) = w9 but is often not applicable in more general cases because of
requirements on f and g.

Method of Hardy-Sobolev inequalities were first used in [14] in the scalar case where
authors studied a priori estimates of variational solutions of scalar problem. This
method is based on using the first eigenfunction of the Laplacian as a test function
which derives an estimate on the nonlinearity. This estimate together with suitable
growth assumptions on nonlinearity yields H' bound using Hardy-Sobolev inequalities.
In case of system (1), (2), this method requires only upper bounds on the growth of
nonlinearities f, g, but it doesn’t provide optimal results in terms of growth rates.

Finally, the bootstrap procedure for deriving a priori bounds can be used. This pro-
cedure consists of the fulfillment of certain initial condition which guarantees initiation
of self-sustaining process leading to desired result. The key idea is as follows. Suppose
that we know that regularity of solutions (and certain growth conditions) imply better

regularity of right-hand sides and vice versa. Then once we prove better regularity of



nonlinearities, we can iterate over and over using the bootstrap procedure until desired
regularity of solutions is obtained in finite number of iteration steps.

The bootstrap procedure was used to prove a priori estimates of scalar problems and
systems in |29, 32, 33, 34, 41, 42|. In [42], P. Quittner and Ph. Souplet presented new
alternate-bootstrap method yielding a priori estimates of very weak solutions of system
(1). This method can be applied under weak regularity assumptions unlike the scaling
methods or the method of moving planes which require variational or classical solutions
(see Chapter 1 for definitions of different types of solutions of (1) complemented by
(2)). Recently, Y. Li [32] obtained a priori estimates of very weak solutions of (1) and
(2) under more general assumptions on f, g as in [42| (see also Chapter 2 for related
known results).

In Chapter 3, we improve results on regularity and a priori estimates obtained in
[32]. We consider elliptic system (1) complemented by Dirichlet boundary conditions
(2) where f, g satisfy growth assumptions

0<flz,u,v) < Cr(l+[u[" ol + Ju] o[ + |u]7),
0<g(w,u,v) < Ci(l+[ul®[o]™ + [u]=]v]* + [0]7).

We derive conditions on growth exponents py, g1, 71, S1, P2, G2, T2, S2,7Y, 0 guaranteeing
essential boundedness of all possible positive very weak solutions of (1) and (2) and
their a priori estimates. Similarly to [42], [32], our proof is based on alternate-bootstrap
arguments. Our results hold true if we treat variational solutions or L'-solutions of (1)
and (2). We just have to replace critical growth exponent for very weak solutions by
corresponding critical growth exponent for variational or L!-solutions. In order to show
that we improved results in [32|, we present an example of system (1) complemented
by (2) whose positive very weak solutions are a priori bounded thanks to our results
but f, g do not satisfy assumptions required by [32].

In Chapter 4, we consider elliptic systems (1) complemented by nonlinear boundary
conditions (3). Corresponding scalar problem was recently studied in [41]. We assume

following polynomial growth of f, g, f, §:

[ (2, u,0)| < Cp(L+ ful" + [v]),

1+|u| + |v

)

=Y
—~
8
S
<
~— ~— ~— ~—

Ci( )
< Cy(1+ Jul” + vf),
< Cj( )
< Cy( ’)

L+ [ul” + [vf),



for all x € Q, y € 002 and u,v € R. We derive optimal conditions on growth expo-
nents p,q,r,s,p,q,T, S guaranteeing a priori estimates of positive very weak solutions
of (1) with (3). Similarly to [41], [42], our proofs are based on regularity results for
linear problems and alternate-bootstrap arguments. In fact, in order to obtain optimal
results in the case of systems with homogeneous boundary conditions, the bootstrap
arguments in [42, 32, 33, 29| were quite complicated and technical: one has first to
make a bootstrap in one of the equations, then in the second equation, then in the first
equation again etc. The presence of nonlinear boundary conditions represents another
difficulty, since one has to prove simultaneous estimates for the solutions and their
traces on the boundary 0€2. Due to the complexity of problem (1) and (3), our proofs
are far from a trivial modification of the proofs in [41] and [42].

We also prove that our results are optimal. We show that there exist 2 and f, g, f . g
which do not satisfy required conditions on growth, such that problem (1) with (3)
possesses a positive unbounded very weak solution.

Similarly as in [42], our results on a priori estimates can be used to prove existence of
nontrivial solutions, provided one can estimate the right-hand sides in L'. We provide
a few typical problems where the L!-bounds and existence of positive solutions can be
proved.

One of the advantages of our approach is its robustness. Unlike other methods
yielding a priori estimates for positive solutions of elliptic systems (for example, those
based on scaling arguments and Liouville theorems), our method does require neither
scaling properties nor variational or local structure. In particular, it can also be ap-
plied for problems with nonlocal nonlinearities. In Section 4.6 below we formulate a
generalization of our results for nonlocal problems and we also show its applications in
the study of some particular nonlocal problems.

This thesis is organized as follows: In Chapter 1, we state some notational con-
ventions and we will provide definitions of different types of solutions of (1). Then
in Chapter 2 we state some related known results on regularity and a priori estimates
of positive solutions of elliptic scalar problems and systems. Chapter 3 contains our
improvement of results in [32]. In Chapter 4, we state our results on regularity and a
priori estimates of very weak solutions of elliptic systems (1) complemented by nonlin-
ear boundary conditions (3). We proof optimality of these results and we treat some

nonlocal problems as well. We outline our results in Summary.



Chapter 1
Preliminaries

Throughout this thesis, we will assume that

Q) is a bounded domain in RY, N > 3, with a smooth boundary 92,

unless explicitly stated otherwise. By A; and ¢, we will denote the first eigenvalue
of the negative Dirichlet Laplacian in 2 and the corresponding positive eigenfunction
(normalized in L>(£2)), respectively. We denote by v the exterior unit normal on 02
and by § we denote the distance to the boundary 0f).

For integer k > 1, L¥(2) denotes the Lebesgue space L*(Q, dz) endowed with the norm

lollora = ( / rso<x>\’fdx) |

L%(Q) denotes the weighted Lebesgue space L*(Q,d(z)dx) endowed with the norm

lellzgor = ([ |¢<m>|k5<x>dx)’t |

For k = oo, the space L>(§2) = L°(Q) is the set of all measurable functions ¢ from 2
to R which are essentially bounded, i.e. bounded up to a set of measure zero. For ¢

in L>°(2), its essential supremum serves as an appropriate norm:
|€]loo :=Inf{C > 0: |p(x)| < C for almost every z}.
WLk(Q) denotes the space of functions such that
{p € L*(Q), Vp € (LFQ)™},

5



where all the derivatives are interpreted in the weak sense. W1*(Q) is endowed with

%
ol ey = ( [le@pa+ [ |w<x>|'fdx) .

We will denote by HE(€) the closure in W2(2) of infinitely differentiable functions

the norm

compactly supported in . By H~1(Q) we will denote corresponding dual space with
respect to the duality pairing

)= [ dpdn o€ M), v € HY(Q)
By T we will denote the trace operator
T : WH(Q) — L*(09).

For references and further properties of such spaces and trace operator, see for instance

[1].
As we have mentioned already, we state here definitions of different types of solu-

tions. First, let us consider the following scalar problem

—Au = f(-,u) in Q,
u=>0 on 0f),

(1.1)

where f is a superlinear, non-dissipative function satisfying |f(-,u)| < C(1 + |ul?),
p > 1. Let u be a solution of (1.1) and f(z) := f(x,u(z)). Then u solves the linear

problem

—Au = f(z) inQ,
u=>0 on Of).

(1.2)

Definition 1.0.1. u is a classical solution of (1.1) if u € C2(Q)NC(Q), f € C(Q) and

u satisfies the equation and the boundary condition in (1.2) pointwise.

Definition 1.0.2. u is a variational H} (Q)-solution of (1.2) ifu € HY(Q), f € H 1(Q)

and

/ Vu.Vodr = (f,¢) for all o € HE(Q).
Q
Definition 1.0.3. u is called a very weak solution of (1.2) if u, f6 € LY(Q) and

/(uAgo + fo)dz =0 for all ¢ € C*(Q) such that ¢ = 0 on ON.
Q



Classical, variational and very weak solutions of (1) are defined analogously as in
the scalar case. In particular, let (u,v) be a solution of (1) and f(z) == f(z,u(x), v(z))

and g(z) := g(z,u(z),v(x)). Then (u,v) solves the linear problem

(1.3)

=g
— 0

" } on 9,
0

Definition 1.0.1. (u,v) is a classical solution of (1) if u,v € C2(Q) NCQ), f,§ €

C(Q) and (u,v) satisfies equations and the boundary conditions in (1.3) pointwise.

Definition 1.0.4. (u,v) is a variational H}(Q)-solution of (1) if u,v € HYQ), f,§ €
H Q) and
/Vu.Vgodx = (f, o),
Q

| oveds=(g.0),
Q
for all p € H} ().

Definition 1.0.5. (u,v) is called a very weak solution of (1) if u,v, f,§0 € L*(Q) and

/(uAgo + fgo)dx =0,
Q

/(vA@ + gp)dr =0
Q

for all ¢ € C*(Q) such that ¢ = 0 on O



Chapter 2

Known results

2.1 Existence and nonexistence

Let us first mention some known results for problem (1.1) in the case f(z,u) = |u|P u.
Due to the classical result of S. I. Pohozaev [39], pg defined by

{ 0, if N < 3, 1)
Ps ‘= N . .
N—fg, it N >3

is a critical exponent for non-existence of classical positive solutions of (1.1), assuming
that €2 is starshaped. (We say that Q is starshaped with respect to some point xy € €

if the segment [z, z] is a subset of {2 for any x € 2.) Under assumptions

f(xa U) = |u|p*1u7 p Z Ps, (22)

he proved that (1.1) does not possess classical nontrivial solutions. The proof is based

on contradiction using Pohozaev’s identity

N -2 p+l 1
—/\Vu\zdx—]\f/w'—d$+—7{
2 Q aptl1 2 Jaq

which is true for any classical solution of (1.1) with f(z,u) = |u[P~'u. S. I. Pohozaev

ou

£y z-vdo =0

obtained this result also for more general f independent of x.
In 1973, Ambrosetti and Rabinowitz [3| proved the existence of a positive solution

of (1.1) with f satisfying some technical conditions and the growth assumption
[f(z,u)] < C(A+[uf”), p<ps,

using variational methods, but they did not obtain any a priori bound.

8



2.2 A priori estimates

In 1974, R.E.L. Turner [47] studied problem (1.1) for N = 2. He proved that if a

continuous function f defined on Q x [0, 00) satisfies
Cru” < fla,u) < Gy(1+uP), p<3,

for some constants C7, Cy > 0, then any nonnegative classical solution of (1.1) satisfies
the a priori bound
| |U| |Lo<> S C

His proof was based on the existence of a conformal mapping of €2 to the unit disc D
and estimates of the Green function for the Dirichlet Laplacian in D.
One year later, R. Nussbaum [37] proved that any positive classical solution of (1.1)

with f satisfying

fau)l < CA+uP), p<

satisfies the a priori bound
| |’U/’ |Lc>c S C

His proof was based on the Sobolev inequality and an L' bound for f(u)p;. Moreover,
if Q) is a ball in RY, he obtained a priori estimates for all positive radially symmetric
solutions of (1.1) for p < ps.

In 1977, H. Brezis and R.E.L. Turner used Hardy-Sobolev inequalities and a boot-
strap argument in order to obtain a uniform a priori bound for all nonnegative H_}-
solutions of the scalar elliptic problem (2.4) bellow, under the following growth restric-
tion on f:

0< flz,u) <C(A+[uf’), p<psr,

‘ 00, it N <2,
PBT = % NS 9 (2.3)
1 =

They studied elliptic problems of the form

—Au = f(au) +tpr n Qa
u=2>0 on 0,

and
—Au= f(-,u,Vu) in ,

U= on 0f).

(2.5)
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The following two theorems are also valid with —A replaced by a more general elliptic

operator.

Theorem 2.2.1. Let f = f(x,u) be a continuous, nonnegative function defined on

Q x [0,00) and suppose:

f(z,u)

lim inf > A, (2.6)
U—00 u
lim L9 _ (2.7)

u—oo UPBT
both conditions holding uniformly for x € Q. Then there is a constant C such that any
nonnegative solution u € Hy of (2.4) with t > 0 satisfies the a priori bound

||u]|oo < C where C is independent of t.

Theorem 2.2.2. Let f = f(x,u,s) be a continuous, nonnegative function defined on

Q x [0,00) x RY and suppose:

T RACAUL N (2.8)
U—00 u

i J@&ws) _ 0, (2.9)
U—00 uPBT
lmsup 2545 (2.10)
u—0 (4

the three conditions holding uniformly for x € Q and s € RY. Then there exists a

positive variational solution of (2.5) such that w € W4(Q) for any q < oo.

In 1981, B. Gidas and J. Spruck [25] derived an a priori estimate for positive solu-
tions of (1.1) in the optimal range of exponents. Their proof was done by contradiction

using a “blow-up” argument and a Liouville-type theorem. The result is as follows:

Theorem 2.2.3. Let u be a classical positive solution of the boundary value problem

(1.1). Suppose f(z,u) is continuous in x € Q and for some 1 < p < pg

(@, u)

lim = h(x) (2.11)

U— 00
uniformly in x € Q. Here h is continuous and strictly positive in Q. Then

[ull e < C

for some uniform constant C = C(S2, p) independent of u.
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Independently of them, D.G. Figueiredo, P.-L. Lions and R.D. Nussbaum [21]| obtained

the following a priori estimates for classical positive solution of (1.1) with f = f(u):

Theorem 2.2.4. Assume f € C(Ry) and f is locally Lipschitz,

lim inf Q) > A, (2.12)
U—00 u
im L0 g, (2.13)
u—oo UPs
_ uf(u) — 0F (u) 2N
hIJl_)SOlip W F ()N <0 for some 0 <0 < N5 (2.14)

where F(u) = [ f(s)ds. Assume further that either f(u)/uPs is nonincreasing for

t >0, or Q is convex. Then we have
|l o) < C,

where C' depends only on Q and on the behavior of f in the limits arising in (2.12),
(2.13) and (2.14).

Their proof used estimates of f(u)e; in L'(Q), local estimates of u close to the boundary
02 based on the moving plane arguments of B. Gidas, W.-M. Ni and L. Nirenberg [24]
and the Pohozaev identity.

Hence critical growth exponent in the scalar case problem (1.1) is the Sobolev

exponent pg (see (2.1) for its definition).

2.3 Very weak solutions

A priori estimates and critical exponent for very weak solutions of (1.1) were obtained
later. The exponent ppr, which appeared first in the work of Brezis and Turner [14]
and seemed to be technical exponent in the proof of regularity, a priori bounds and
existence for classical solutions, turned out to be critical exponent in the L}—solutions
case.
In 2004, P. Quittner and Ph. Souplet [42] showed that any very weak solution of
(1.1), where
|f(z,u)] < C(1+ [uP), p<psr, (2.15)

is in L*>°(Q2), and thus is a classical solution if f is smooth enough.
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Surprisingly, in 2005, Ph. Souplet [45] showed that exponent ppr in the growth

assumption (2.15) is optimal:

Theorem 2.3.1. Assume p > ppr. There exist a function a € L>®(Q), a > 0, such
that the problem
—Au=a()u?  inQ,
u=>0 on 0,

(2.16)

admits a positive very weak solution u ¢ L>(§2).

If ppr < p < ps, then problem (2.16) possesses at least two different nonnegative very
weak solutions, one variational (u; € H}(Q) N L>(Q)) and a second one uy which is
unbounded and not variational (uy & H}(Q)).

In 2007, M. del Pino, M. Musso and F. Pacard [18| constructed positive very weak
solutions of (1.1) with f(z,u) = u?, p > ppr, which vanish in the sense of traces on
0f), but which are singular at prescribed points of 9€2. The result can be formulated

using the following definition.

Definition 2.3.2. Let u be a function defined in 2 and y € 02. We say that

u(z) = p as x — y nontangentially

lim  wu(z) = p for all o € [0, g) ,

Lo (y)3z—y
where T, (y) denotes the cone with vertex in y, and angle o with respect to his axis, the

inner normal to 0S) at y.

Theorem 2.3.3. There exists a number p = p(N) > ppr, such that given p € [ppr, p)

and given points yi,ys, . .., yr € 0S), there exists a positive very weak solution u to the
problem
—Au=u" inQ,
(2.17)
u=>0 on 02,

such that u € C*(Q\{y1,...,y}) and

u(z) = 00 as x — y; nontangentially fori=1,... k.
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The proof of Theorem 2.3.3 was based on the construction of a singular solution in the
halfspace {z € RY : 2z > 0} (if p > ppr) or the half-ball {z € RY : 2y > 0,|z| < 1}
(if p = ppr), with singularity at x = 0.

The behavior of positive solutions of (2.17) near an isolated singularity at the bound-
ary has been recently studied by M.-F. Bidaut-Véron, A. Ponce and L. Véron [7]:

Theorem 2.3.4. If 1 < p < pg then any positive solution of
— Au =uP in Q, (2.18)

which is continuous in Q\{xo} and coincides on OQ\{xo} with some function ¢ €
C(09), satisfies

u(z) < Clz — :B0|7p%1 for all x € Br,(z) N2 (2.19)
for some Ry > 0 and C = C(N,Q,p,||C||z=) > 0.

The proof was based upon a doubling lemma and the method introduced by P. Polacik,

P. Quittner and Ph. Souplet [40]. Moreover, in [7], the authors also proved the following

N+1
N-3’

p # ps. Assuming that xo = 0 and the outward normal unit vector to 0€) at 0 is —ey

than

result on the asymptotic behavior of singular solutions of (2.18): Let ppr < p <

o u(w) = o] (wo(x/|2]) + o(1)) if p > por,
o u(x) = Cle[N(n(1/|2]) %" (2n/|a] + o(1)) if p = par,

where wy satisfies a particular nonlinear elliptic equation on an hemisphere S of the
unit sphere SV~!. The existence of a singular solution u in supercritical case with
¢ = 0 is guaranteed by Theorem 2.3.3.

Finally, let us mention the result of P.J. McKenna and W. Reichel [34], who derived
a priori bounds for positive very weak solutions of semilinear elliptic boundary value
problems (1.1) on a Lipschitz domain . They introduced two exponents p, < p*,
which depend on the boundary behavior of the Green function and on the smallest
interior opening angle of 0. They proved that all positive very weak solutions are a
priori bounded in L>(2) for 1 < p < p.. Moreover they constructed problems with
f(x,u) = a(z)uP, where

p>p and 0 < a € L>(Q),
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which possess positive very weak solutions u ¢ L°°(2). Finally, they found several
classes of domains for which p, = p*. For example, p, = p* = ppr in the case of
smooth domains and p, = p* = N/(N — 1) in the case of N-dimensional hypercubes.
Recently, J. Hordk, P.J. McKenna and W. Reichel [27]| proved the existence of
at least two positive unbounded very weak solutions of problem (2.17), where 2 is a
bounded Lipschitz domain in RY with a cone-like corner at 0 € 95, for any exponent

p slightly larger than the exponent p* mentioned above:

Theorem 2.3.5. Let Q C RY be a bounded Lipschitz domain with a conical boundary
piece of cross section w C SN71 at 0 € 9Q. Then there is ¢ > 0 such that for
p € (p*,p* + €) there exist at least two positive, unbounded, very weak solutions of
(2.17) blowing up at 0.

2.4 Nonlinear boundary conditions

The following problem with nonlinear Neumann boundary conditions

—Au=0 in Q,

(2.20)
du= f(-,u)—u on 09,

was studied recently by P. Quittner and W. Reichel [41]. They found sufficient condi-
tions on f guaranteeing boundedness and a priori bounds for any very weak solution
of (2.20) as stated in Theorem 4.1.1. Moreover, they have found a domain 2 and € > 0
such that problem (2.20) with f (x,u) = uP possess at least two positive, unbounded,
%, % + 5). Hence they showed that % is a sharp
critical growth exponent in nonlinear boundary condition case. We will state their

very weak solutions for p € (

results more precisely in Chapter 4.

2.5 Very weak solutions to elliptic systems

In the case of systems

(2.21)
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very weak solutions of (1) are defined analogously as in the scalar case, see Defini-
tion 1.0.5 in Preliminaries for details. The boundedness of very weak solutions of
systems and their a priori estimates have been studied in [9], [29], [32], [33], [42] and
[45]. Let us mention some related results from [32], [42] and [45].

In 2004, P. Quittner and Ph. Souplet [42] showed that any nonnegative Lj-solution
(u,v) of system (2.21) belongs to L>°(2) and has the a priori bound

[uflos + [[v]|oc < C(2,p,¢,7,0,N,C, M) (2.22)
provided
ullzy + [lvflzy < M, (2.23)
< flzyu,v) < i1+ |of? + u]),
< glz,uv) < Cr(l+ ful? + o)),
where
—1
max{p+1,¢+1} > P4 : (2.24)
per —1
1 <~,0<ppr (2.25)

and p, ¢ > 0. Their proof was based on a bootstrap argument using L{-regularity of the
Dirichlet Laplacian, see [22] and Lemma 3.2.1 below. They also found sufficient condi-
tions on f, g guaranteeing estimate (2.23). They proved similar results for very weak
solutions of elliptic systems complemented with the Neumann boundary conditions as
well. We will mention some of these results in Theorem 4.1.2 in Chapter 4.

In 2005, Ph. Souplet [45] showed that exponent ppr appearing in (2.24), (2.25) is

optimal. Assuming

-1
max{p+1,¢+ 1} < pq_j (2.26)
ppr — 1
he constructed functions a,b € L*(2) , a,b > 0 such that the problem
—Au = av? )
in €2,
—Av = buf
0 (2.27)
v on 0f),
v = 0

admits a positive very weak solution such that u ¢ L>(2) and v ¢ L*>().
Recently, Y.-X. Li [32]| presented another bootstrap procedure for elliptic systems

(2.21) which yields optimal L*>°-regularity conditions for three types of weak solutions:
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Hg-solutions, L'-solutions and Lj-solutions. He proved that (2.23) implies (2.22) for

positive L}-solutions under more general assumptions on f, g than in [42]:

S f(x7u7 U) S Cl<1 + ’u‘r|zv‘p + |u’7)7 (2 28)
0 < g(w,u,v) < Ci(1+ |ufv]® +[v]7), .
where
—(1=7r)1=
max{p+1—s,qg+1—r}> el T)l( S), (2.30)
pc -
1<v,0<p, (2.31)

and p,q > 0 is true. In conditions (2.29), (2.30) and (2.31), p. denotes ps, psy, PBT,
respectively, for the case of Hj-solutions, L!'-solutions and L}-solutions. (See Re-
mark (3.1.4) for details.) Notice that if = s = 0, then the assumptions (2.29),
(2.30) are equivalent to (2.24) in case of L}-solutions (since (2.24) guarantees that
min{p, ¢} < ppr). Similarly to [45], Li also constructed an example showing that his
results are optimal in some sense.

Later, Y.-X. Li [33] extended this result to the case of systems with n components,
where n > 3. Let f = (f1, f2, ..., fu) : @ x R" — R™ be Carathéodory functions and

denote u = (uy,us, ..., u,) : @ — R™. He studied systems of the form

Au = flzu)  nQ } (2.32)

u =0 on 02,

and obtained optimal conditions for a priori estimates of nonnegative solutions of the

form

> uille~ < C. (2.33)
=1



Chapter 3

Elliptic systems with Dirichlet

boundary conditions

3.1 Main results

The aim of this chapter is to extend some recent results of Li [32] on L*™-regularity

and a priori estimates for very weak solutions of elliptic systems:

—Au = f(.,u,v) } 0
—Av = g(.,u,v) ’

=0
Y on 0.
v = 0

where f and ¢ are nonnegative Carathéodory functions satisfying growth assumptions

(3.1)

flauw) < G+ [ul o + ful o + Ju]), } 52)

<
g(@,u,v) < Cr(1+ [u|™ || + [u|®|v]*= + [v]7).
Recall from Chapter 2 that f, g in [32] satisfy less general growth assumptions (2.28):

0 < < G+ Juf"olP + Jul7),
0 < glz,uv) < Cr(1+ [ul?fv]* + |v]7),

It is well known, (see [8] and [42]), that all very weak solutions of corresponding

scalar problem (1.1) belong to L>°(£2) provided
f(z,u) < Ci(L+ |ul’), p<psr,

17
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where ppr is defined by

0, if N <2,
PBT ‘=

M N> 2.

On the other hand, unbounded very weak solutions of (1.1) were constructed for p >
ppr in [18], [45], see also [6], [7].

In this chapter, we obtain the following improvement of results in [32].

Theorem 3.1.1. Let f,g: Q xR?* — [0,00) be Carathéodory functions satisfying (3.2)
where p;, qi, i, s > 0 for i = 1, 2, max{p, p2}, max{q, g2} > 0 and (2.25) is true.

Assume also that

min{max{p; + r1, ps + ro}, max{q + s1, g2 + $2}} < pur,

Ti, Si < DPBT;

Vs pigj — (1 =ri)(1 = s;)
per —1
and (u,v) is a nonnegative very weak solution of (1) satisfying

max{p, + 1 —s;, ¢ +1—1; , 1,j=1,2, (3.4)
ullzy + [|olr < M. (3.5)

Then (u,v) belongs to L>(2) x L>®(Q) and
||UHL°° + ||UHL°° S C(Q7p17QI7T17517p27QZ7T27827’770-7 N7 Cl7M)' (36)

Remark 3.1.2. Actually, if we replace growth assumption (3.2) by

<
<

Cr(L+ (L ful)™ (L (o)™ + (14 [l (L [l + ful?), } (3.7
CulL+ (14 [ul) (L4 fol)™ (L ul) (14 o)™ 4 fol),

the results in Theorem 3.1.1 remain valid.

Remark 3.1.3. If we set py = g2 = 19 = s9 = 0, Theorem 3.1.1 recovers Li’s result |32]
since (3.3), (3.4) are equivalent to (2.29), (2.30) in this case. We provide also an
example of problem such that all assumptions of Theorem 3.1.1 are satisfied for N = 3
but f,g do not satisfy Li’s assumptions (2.25), (2.28), (2.29) and (2.30).
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Remark 3.1.4. Similarly as in Li’s paper [32], the same argument as in the proof of
Theorem 3.1.1 can be used in order to get L regularity of Hy- or L'-solutions of (1)
(see Definitions 1.0.1, 1.0.4 in Preliminaries for precise definitions of such a solutions).
In the case of Hi-solutions, pgr has to be replaced by the Sobolev exponent ps and in

the case of L'-solutions ppr has to be replaced by the singular exponent ps, defined by

00, if N < 3,
Psg 1= N . (3.8)
N_2> Zf = 3.

Notice that in the case of Hg-solutions, the L™ a priori bound (3.5) requires the esti-
mate

lullmg + [lollmy < M

instead of (3.5) and obtaining this estimate (unlike estimate (3.5) in the case of L}-
solutions) is far from easy, see [42|, [43] and the references therein, for example. L'-
solutions are in particular important in the case of Neumann or Newton boundary
conditions where the bootstrap argument works as well and, in addition, one can easily

find conditions on f, g guaranteeing the necessary initial bound
ul[rr + (o]l < M,

see [42].

A significant difference between Hg-solutions and L'- (or L}-) solutions can be
observed in the critical case: While Hj-solutions of the scalar problem (1.1) are reqular
in the critical case p = pg, see [13] or |18, Corollary 3.4, singular L'- or L}-solutions

of (1.1) exist if p = ps, or p = ppr respectively, see 5], [36], [38] and [18].

3.2 Proof of Theorem 3.1.1

In order to give a complete proof of Theorem 3.1.1, we will need the following regularity

results for very weak solutions of the scalar problem

—Au = ¢ in (), } (3.9)

u = 0 on 0f,

see [42] and [22].
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Lemma 3.2.1. Let 1 < m < k < oo satisfy
1 1 1

<
m k p/BT

Y

where Py satisfies —— 4+ = = 1. Let u € L§(Q) be the unique Ls-solution of (3.9).

BT

If ¢ € LT (), then u € LE(Q) and u satisfies the estimate ul| g < C(Q,m, k)||¢]|1p-
Now, we can give the proof of Theorem 3.1.1:

Proof. Without loss of generality, we can assume

p2+7T2 SprETL, @2t Ss2 S qrtsy (3.10)
and
Pt < g tosa, (3.11)
which together with (3.3) implies

P1+ 71 < PBT- (3.12)

Moreover, we can assume p; # pgr — 1, ps # ppr — 1, otherwise we can increase the
values of exponents p; and/or py (and ¢; if necessary) in such a way that (3.3), (3.4),
(3.10) and (3.11) remain true.

We will denote by C' a constant, which may vary from line to line, but is independent
of (u,v). For simplicity, we denote by | - | the norm || - |[L¢. Let ¢1 > 0 be the first
eigenfunction of the negative Dirichlet Laplacian.. Notice that there exist ¢;,co > 0
such that

10 < 1 < 0. (3.13)

Testing both equations of (1) with ¢; and using Green’s Theorem implies
/ fordr =\ / updx / gprdr = A\ / voprdx.
Q Q Q Q
Thus (3.13) and the non-negativity of f, g, u, v yield
|fli <Cluly  and  |g|y < CJv|s.
Then, application of Lemma 3.2.1 and (3.5) imply
lulp + |vlx < C,  Vk € [1,ppr).

We distinguish several cases:
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Case 1: o <7y and py > py

la. If py < ppr — 1, using bootstrap on the first equation of (1), we will obtain
lu]oo < C.

(i) First assume r; < 1. (2.25), (3.10) and (3.12) imply that there exists k& such

that
D2 1
max{vy,p1 + 71} <k <ppr, — <-—. (3.14)
k ppr
For such a fixed k, we can find ¢ small enough to satisfy
Yy 1 1
— < , eNy=1{0,1,2,...},
k+me k+(m+1)e  pgy or any m € No = { }
k+m5+k: k+(m+1)g prT or 1 and any m 0
(3.15)
For m € Ny, set
i = " + &7
Prm k+me k
1 . T2 D2
Vo k+me T
L v
Oom  k+me’

Using (3.10) and (3.14), we obtain that p,,, Vm, 0m > 1. Denote

mo = min{m : min{pm, Vm, 0m} > Ppr}-

We claim that after mg-th bootstrap on the first equation, we arrive at the
desired result.

Assume the estimate |u|g1me < C holds for some m € [0, mo] "Ny (which is
true for m = 0). Then (3.15) implies

1 1 1
. — < —,
min{p,,, Vm, om} k+(m+1)e  pyy

hence Lemma 3.2.1 together with (3.2) and the Holder inequality imply

|U|k+(m+1)s < O|f|min{pm,9m,um}

< O(l[ul™ ol |, + ul[02 .., + [[u"],, +1)
< CO(lulime v+ Tl 0l + [ull e + 1)
< C
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S0 |t|g+(met+1)e < C and another application of Lemma 3.2.1 yields

lu|0o < C.

(i) If ry > 1, (2.25), (3.10) and (3.12) imply that there exist k£ and n,

1
max{7y,p1 + 1} < k < psr, b2 < ——, k close enough to ppr,

ko Ppr
1 <mn, nclose enough to 1,

such that
vy 1 1
nk - Lk < pIBT’
- D 1 1 (3.16)

<5,
nmk k nm+1k plBT

i=12,
for any m € Ny. Similarly to the case la(i), we obtain |u| < C'.

Now, we can carry on the bootstrap on the second equation of (1). From (2.25),

(3.3), there exist [ close enough to ppr and 1 > 1 such that

1 1
a :=max{o, s, 52} <l <ppr and & _ - < =
L nl  pyr

Applying Lemma 3.2.1 we conclude after finitely many steps

[V|0o < C.

1b. In case ppr — 1 < p; < po, let us denote by k and k3 the solutions of

i ; 1 1 .
A e ) (3.17)
ki per ki DPpr

We claim that |u|y < C, k' € [1,k*) where k* = min{k], k3}. Inequality
per — 1 <p1 < po
and (3.10), (3.12) imply 7 < r; < 1. Remark that
k* > ppr (3.18)

since p; +1; < ppr for i = 1,2 due to (3.10) and (3.12). As in [32], let us denote
k. :=k* —eforany 0 < e < 1 and k;m = k. — 7"(k. — k) for m € Ny. Thanks
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to (2.25), (3.10), (3.17) and (3.12), we can find k = k(¢) < k. and 7 = 7(¢) such

that
max{7y,p1 + 1} < k < ppr, k close enough to ppr,

ro <ry <7 <1, 7 closeenough to 1,

rokl < mkl <71k,

and
ol 1 1
FTR S
i Di 1 1
—F =<, 1=12
k- k ko pyp
Using rokl < mkl < 7k and v > 1 we get
1 1
y ° ° (3.20)
T; 1 < r; 1 1.2
_ _— — — 1 =
krmo kY T ke kS T
for all m € Ny. Now setting
_ o m
1 _nom
I/m k;ﬂn k )
L7
Om kT

and using similar bootstrap argument as in case la leads to
|U’kﬂ_(m+1) < C, m € No.
As kT tends to k. with m going to infinity, we obtain

uly <C, K € [1,k).

To continue the bootstrap on the second equation of (1), we first show that

<1, i=1,2 (3.21)

Inequality (3.21) is true for ¢ = 1 thanks to (3.4) and (3.11). Let j € {1,2} be
such that k* = kj. If i = 2, then (3.21) follows from (3.4) if p; +1; < g2 + 52 and

from inequality

(2 +1—r))(ppr —pj —75) > 0> (r; = 1)(pj +1; — @2 — 52)
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otherwise.

From the definition of £*, it is easy to see that

k*  per k¥ T phr

i i 1 1 .
A < for i = 1,2. (3.22)

Thanks to (2.25), (3.3), (3.10), (3.12), (3.18), (3.21) and (3.22) we can choose [,
ky and n satisfying

max{p; + r1,0, 81,82} <l < ppr, [ closeenough to ppr,
per < k1 < k¥, k1 close enough to k™, (3.23)
1 <n, n close enough to 1,
such that
qi Si
G %y =12,
1 !
o 1 - 1
I nl Par’
1 1
y 11
ki ok Psr
i | 1
BE o i=1,2
ke L nl Py
i i 1 1
Dok o =12
kvl nky Ppr

Multiplying the LHS of the inequalities above by 1/, we get

qi S;

1, i=1,2, 3.24
o 1 1
- < ,
nml nm—i—ll pIBT
¥ 1 1
Nk B Ntk = Par’
BT
Qi S 1 1
+ — < , 1=1,2,
ke ogml ogmri Per
T Di 1 1
+ — < , 1=1,2,
nmke ot gtk Per
for all m € Ny. Set
oo o 1 @ s 10
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1 T D1 L r P2 I

Om Ny Al Z T ogmky gl Q_m IR
It is easy to see that fim,, Sm, Om, Py Vm, O0m > 1 thanks to (2.25), (3.10), (3.12),
(3.23) and (3.24). Assume the estimate |u|,mg, + |v];m < C holds for some

m € Ny (which is true for m = 0). Then the inequalities above imply

1 1 1

: - <
mln{/fb'ﬂu §m7 Um} 77m+1l plBT

)

1 1 1

X - < .
mln{prm Vm, Qm} 77m+1k1 p/BT

Hence Lemma 3.2.1 together with (3.2) and the Holder inequality imply

’U|nm+1l < C’Q’min{um,cm,am}

< C(l[u™ o[, + ul®v]*]g, +[v]7|s,, +1)
< O(fulfomg, [0y 4 [l [0l + [0]5m + 1)
< C

|U/|77m+lk1 S O|f|miH{Pm,9m,Vm}
< O™ 0[P + [lu* |02 u,, + [lu["],, +1)
< C(|U‘:ﬁnk1 Mihﬂl + [u ;%”kl v anﬂl + ‘ummkl +1)
< C.

Denote mg := min {m € Ny : max{min{pm, 0m, Vm}, min{im, Sm,om}t} > g}
As in [11, Case III in the proof of Theorem 2.4| after my—th alternate bootstrap
on system (1), we arrive at the desired result |v| < C (or |u| < C). So we
also have |u|, < C (or |v| < C) thanks to (2.25), (3.3) and Lemma 3.2.1.

lc. In case p; < ppr — 1 < po, we have ry < 1 from (3.10) and (3.12). Let us

denote
per(1 —19)

p2— (ppr — 1)’

k* =k =

we claim that
lulp < C = (1, k%).
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(i) If r; < 1, similarly to case 1b, due to (2.25), (3.10) and (3.12), there exist k
and 7 such that

1
max{y,p1 + 71} < k < ppr, ] < ——, k close enough to ppr,

k Ppr

ro <r; <71 <1, 7 closeenough to 1,

rokl < mkl < Tk,
where
k. =k —¢
and (3.19), (3.20) are satisfied. By the same bootstrap on the first equation
as in case 1b, we obtain

‘u|]€/ <C ke [1,]€*)

(ii) If ry > 1, due to (2.25), (3.10) and (3.12), there exist k and 7 such that

1
max{vy,p1 + 7} < k < ppr, ] < ——, k close enough to ppr,

ko Ppr
1<mn, mnro<1, ncloseenough tol,

and inequalities

¥ 1 1
nk o N < png7
. i 1 1 (3.25)

+ <— i=1,2,
nmk k nm—l—lk plBT

are satisfied for all m € Ny such that

perk(l —nrsy)

kK ="Mk < .
7 poppr — k(ppr — 1)

As the expression on the right-hand side of the last inequality goes to

(1 —nra)k*

when k approaches pgr,
1-— T2

by the bootstrap on the first equation of (1) we obtain
‘u|]€/ <C ke [1,]€*),

because we can make
(1 —mry)k*
1-— T9
arbitrarily close to k* by the choice of 7.
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Now, we can carry on the alternate bootstrap procedure just like in case 1b to
obtain

[t oo + |[V]00 < C.
Case 2: 79 > ry and py < py

Application of the Young inequality implies

T2, ,|P2 T1],,|P1 D28 _T1P2
[ul[v[P> < C(lu]™ [v[* + u] 7=e2).

Then (3.3) and (3.10) imply

ropy — T
0 < 2P1 1D2 < por,
P1—D2
so we can simply set new v by
) { ToP1 — T1P2 }
v :i=max{ "y, ———— ¢ .
P1— D2

From Lemmas 2.5, 2.6 in [32], we get

ulo < C, if py < ppr — 1,

|ul b1 < PBr (3.26)
|u|k1 S 07 vk/ll € [17k*)7 lfpl > PBT — 17

where £* is the solution of (3.17) with ¢ = 1. Using the bootstrap on the sec-

ond equation similarly to [32] leads to |v| < C thanks to (3.3) and (3.4). In

particular:

2a. If py < ppr — 1 using (2.25), (3.3), similarly to the case la, we obtain
V| < C.

2b. If p; > ppr — 1, we first show that

<1, i=1,2 (3.27)

This inequality holds if ¢ = 1 thanks to (3.4) and (3.11). If ¢ = 2, then (3.27)
is true if p; + r; < g2 + so due to (3.4), otherwise it can be derived from the

inequality

(@@ +1—=r1)(ppr —p1—711) > 0> (11 = 1)(p1 + 71— @2 — 52).
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We can choose [, k; and 7 satisfying

max{p; + ri, 0, s1,52} <l < ppr, [ closeenough to ppr,
per < k1 < k¥, ky close enough to k*,

1 <n, nclose enough to 1,

such that
qi Si
L0 o =12
kT !
o 1 < 1
[ nl Py’
1 1
I A
ky nky Ppr
i i 1 1
LN o =12
1 1
TR SR
ki nl nk Pr

We can carry on the alternate bootstrap procedure to obtain |v|,, < C, then we
can use the bootstrap on the first equation again to obtain |u|,, < C' thanks to
(2.25) and (3.3).

Case 3: ry < ry and py < pq

We recall Remark 3.1.2. As (1 + |u|)™(1 + |v])?> < (1 + |u])™ (1 + |v])P*, we can

replace o and po by r; and pq, respectively.

3.3 Example

As we have already mentioned in Remark 3.1.3, we will consider system (1) with N = 3

and

fauw) = uwfn 4ot } (3.28)

where
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Notice that ppr = 2. It is easy to see that any nonnegative very weak solution (u,v)
of (3.28) belongs to L>(2) x L*(Q) thanks to Theorem 3.1.1 with p; =1 —¢,r; =
1,ps = %—5,7"2 =0,vy=1,q1 = 4,81 = 1,90 = s = 0,0 = 1. Next, we will show
that f, g do not satisfy Li’s assumptions (2.25), (2.28), (2.29) and (2.30). Assume for

contradiction

W0t < Cu? +u? + 1) (3.29)

utv < COlut® +v* +1) (3.30)

where p,r, s and ¢ satisfy (2.29) and (2.30). If we take v = 1 in (3.30) and send u to
infinity, we obtain ¢ > 4. Hence (2.29) guarantees p +r < 2. Setting v = u*~° with
0 <0< 1in (3.30) yields

8—5<q+(4—0)s,
which (taking § — 0) leads to

22 <y (3.31)

LS

Since p+r < 2 < g+s, (2.30) implies g+ 1 —7r > pg— (1 —r)(1—s). This is equivalent
to

p<1+951&312. (3.32)

q
Now, setting « = 1 in (3.29) and sending v to infinity leads to

5
Te<p (3.33)

Thus 7 < 1 due to p+ r < 2. This with (3.31), (3.32) implies

(3.34)

A~ ot
13

p <

Inequalities (3.33), (3.34) lead to r < 4e. Now we choose o € (1 + €,4 — 20¢e). This

choice of o implies

2 < 1l—e+a,
r+ap < 1—ce+a.

Now, taking v = u® in inequality (3.29) and sending u to infinity yields a contradiction.



Chapter 4

Elliptic systems with nonlinear

boundary conditions

4.1 Introduction

In this chapter we are mainly interested in regularity, a priori estimates and existence

of very weak solutions (see Definition 4.2.1) of problems of the form

—Au = f(-,u,v), —Av = g(-,u,v) in Q,

(4.1)
o= f(-,u,v), 0,v = g(-,u,v) on 0,

where [, g, f, g are Carathéodory functions satisfying suitable polynomial growth con-
ditions. We also consider more general problems involving nonlocal nonlinearities. This
chapter is based on [31], to appear.

Regularity and a priori estimates of very weak solutions of the scalar problem

—Au = h(-,u) inQ,

. (4.2)
Oyu = h(-,u)  on 0%,
have been recently studied in [41]. Denoting
e )
N* = N2 (4.3)
+oo if N <2,

one of the main results in [41] can be formulated as follows.

30
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Theorem 4.1.1. Let r,7 > 1 and let h : QxR — R and h : 90 x R — R be

Carathéodory functions satisfying the growth conditions
(A, w)| < Cp(L+[ul), Ry, )] < Co(1+ [uf7), (4.4)

forallx € Q, y € 90 and uw € R. If N > 2 assume also

max{r, f} < N™. (4.5)

N -1
Let u be a very weak solution of (4.2) satisfying

1A w21 + 1RG0l 100) < Che
Then u € L*(2) and there exists a constant
C = C(Cl,ch,C;L,T,f,N,Q) >0

such that
|ul| o) < C.

It is well known that the condition r < N* in (4.5) is also necessary for the bound-
edness of very weak solutions of (4.2) (see [38]). It was shown in [41] that also the
second part of condition (4.5) is essentially optimal: if N > 2 and 7 > (N —1)/(N —2)
then there exist Q and function & satisfying the growth condition in (4.4) such that
problem (4.2) with h = 0 possesses an unbounded solution.

In the case of elliptic systems with homogeneous Dirichlet or Neumann or Dirichlet-
Neumann boundary conditions, similar results have been obtained in |9, 42, 45, 32, 33,
30, 29], cf. also the related scalar results in [34, 27, 18, 7]. In particular, in the case of
the system

—Au = f(+,u,v), —Av =g(-,u,v) in Q,

(4.6)
o,u =0, o,v=0 on 0f),

the following theorem is a consequence of results proved in [42].

Theorem 4.1.2. Let p,q, 7,5 > 1 an let f,g: Q x R? = R be Carathéodory functions
satisfying the growth conditions

|f (@, u,0)] < Cp(1 + |u]” + [v]?),

|9(z, u,v)] < Cy(1 + |ul* + [v]*),
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for all x € Q and u,v € R. If N > 2 assume also
r,s < N* (4.7)
and
min(p, q) + 1 < N*(1+ 1/ max(p, q)). (4.8)

Let (u,v) be a very weak solution of (4.6) satisfying
||f<'7u7U>HL1(Q) + Hg(7u7 U)HLI(Q) < Cl'
Then u,v € L>®(2) and there exists a constant
C=C(C,C,Cy,p,q,1,8,N, ) >0

such that
ull Lo @) + [|v]| L) < C.

It is again known that the conditions (4.7) and (4.8) are essentially optimal, see
[45].

In this chapter we will prove generalizations of Theorems 4.1.1 and 4.1.2 for system
(4.1) and more general systems. We also prove that our results are optimal and we
apply them to the proof of existence of positive solutions of some particular problems.

In order to present a simple presentation of our results, we introduce the following

notation. Assuming the growth conditions

[f (@, u,0)] < Cp(1+ |ul” + [v]?),
T, U,V Co(1+ |ul?+ |v|*),
o(.10)] < Cyl1L+ [l + ) o)
|y, u,0)| < CH(L+ [u]” + Jof?),
19(y, u,v)| < C5(1+ [ul? + [v]),
for all z € Q, y € 02 and u,v € R, we set
1 1 )
P‘:max{pp+N 2} Q:=m {q"HN 2}
N N
= e = —q 410
P max{p, N 1p}, Q max{q, N 1q}, (4.10)
N N
R = max{r, mr}, S = max{s,ms}, )

provided N > 2. Using this notation, our first main result reads as follows.
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Theorem 4.1.3. Let p,q,r,s > 1, p,G, 7,5 > 0, and let f,g : Q x R?> — R and
f,3:00 x R2 — R be Carathéodory functions satisfying (4.9). If N > 2 assume also

R,S < N* (4.11)

and

min{P,Q} +1 < N*(1 + 1/ max{P, Q}). (4.12)

Let (u,v) be a very weak solution of (4.1) satisfying

||f("u7v)||L1(Q) + ||g('7uav)||Ll(Q)

) ) (4.13)
+ 1w v)l|ron) + 1190w, 0)l[ o0y < Cr.
Then u,v € L>*(Q2) and there exists a constant
C= C<017Cf7 Cg7cfa C§7p7Q7r7 $,D,q,T, S, Na Q) >0 (414)

such that
ull Lo (@) + [|v]| L) < C.

Notice that Theorem 4.1.3 implies both Theorem 4.1.1 (by choosing f = f(z,u),
f= f(y,u), g=g(x,v), g=3g(y,v),p=q=1and p=¢=0) and Theorem 4.1.2 (by
choosing f=§=0,p=4=7=35=0).

Results for scalar problems (see [38, 41]) guarantee that condition (4.11) is optimal
in the following sense: If max{R,S} > N* then one can find a domain 2 and functions
f.g, f, g satisfying the growth conditions (4.9) such that (4.1) possesses an unbounded
very weak solution. Similarly, the following theorem shows that the condition (4.12) is

optimal (except for the equality case).

Theorem 4.1.4. Let N > 2, p,q>1, p,Gg >0 and
min{P,Q} +1 > N*(1 + 1/ max{P, Q}). (4.15)

Then there exist Q and f, g, f,§ satisfying the growth conditions (4.9) withr =s=1
and 7 = § = 0 such that problem (4.1) possesses a positive unbounded very weak

solution.

Similarly as in [42], our results on a priori estimates can be used for the proof of

existence of nontrivial solutions, provided one can estimate the right-hand sides in L.
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This is, in general, a non-trivial task (see [42, Section 3| in the case of homogeneous
Dirichlet boundary conditions). In what follows we provide a few typical problems
where the L'-bounds and existence of positive solutions can be proved.

Given K > 0, we denote by )\/}(/ > ( the first eigenvalue of the problem
—Ap+ Kp=0 inQ, J,p = Ap  on 2. (4.16)

The proof of the following proposition is based on rather standard arguments which
use multiplication of the differential equations in (4.1) with the first eigenfunction in

(4.16) and integration by parts.

Proposition 4.1.5. Let f, g, f,§ satisfy the assumptions of Theorem 4.1.3. Assume,
in addition, that there existt € [N/(N —1),N*), o, B, k,¢1 > 0, K > 0 and p > Ny
(n="0if K =0) such that

af +Bg+c > max{—K(ozu + Bv), kmax{f, g} — c1(u’ + vt)}, (4.17)

af +BG+e > HlaX{M(@U + Bv), /-imax{f, g} — Cl(ut~ + UE)}» .
forallx € Q, y € 00 and u,v > 0, where f = f(z,u,v), g = g(x,u,v), f= f(y,u,v),
G =3(y,u,v) andt =t(N—1)/N. Then there exists a positive constant C depending on
a, B, k,c1,t, K, i and all the parameters in (4.14) except for Cy such that any positive

very weak solution (u,v) of (4.1) satisfies
1wl o) + [Vl Loc ) < C. (4.18)

It is easy to see that, for example, functions f(x,u,v) = v* —u" and g(x,u,v) =
u? — v® satisfy the assumption in (4.17) witha = =1, K =0, k = 1 and ¢; = 2
provided min{p, ¢} > max{r, s} (one can choose t > max{r, s}). The same is true for
f(u,v) = wv and g(u,v) = —uv if N <3 (one can chooset =2anda=p04=1, K =0,
k = 2and ¢; = 1). In the following proposition we consider the case f(x,u,v) = —u and
g(x,u,v) = —v since this choice corresponds to problems which have been extensively
studied by other methods.

Proposition 4.1.6. Let N > 2. Consider problem (4.1) with f(z,u,v) = —u, g(z,u,v) =
—v and Carathéodory functions f,§ > 0 satisfying the growth conditions in (4.9) with

N -1 N -1 N -1
p < q p(N —-2) <1+ —.

T, 5 <
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Assume that there exist o, B, &, B,¢1 > 0 and € < )\flv < i such that

af(y,u,v) + B9y, u,v) = plau + o) — ¢ (4.19)

for all y € 0 and u,v > 0, and

af(y, u,v) + gy, u,v) < e(du+ o) (4.20)

for all y € 09 and u,v > 0 small. Then (4.1) possesses a positive bounded solution

(u,v).

Existence of nontrivial solutions of problem (4.1) with f(z,u,v) = —u, g(x,u,v) =
—uv and superlinear f , g has been studied by several authors, see [10, 11, 12, 26, 44],
for example. In [10], the authors proved the existence via a priori estimates of classical
positive solutions based on scaling arguments and Liouville-type theorems (cf. also the
use of such arguments for related scalar problems in [23], for example). In compar-
ison with Proposition 4.1.6, the scaling arguments require a very specific asymptotic
behavior of the nonlinearities for large u,v. On the other hand, in general, scaling ar-
guments and optimal Liouville theorems usually provide a priori estimates in a larger
range of exponents (see [43, Chapter I|, for example). Unfortunately, optimal Liouville
theorems for systems are very difficult to prove (see [46] and the references therein)
and the authors of [10] also had to require the technical assumption p,§ < N*. Notice
that we do not need such restriction: if p = ¢ = 1 and p is sufficiently small then we
only need ¢ < (N —1)/(N —4).

The papers [11, 12, 26, 44] study the existence for the problem in Proposition 4.1.6
in the variational (Hamiltonian or gradient) case by using variational methods which
do not yield a priori estimates of solutions. But even working in the restricted class
of variational problems, the authors of all those papers except for [12] also assume
p,¢ < N*. In [12], the authors just need p,¢ < (N + 1)/(N — 3) and the intrinsic

assumption N
1 1 -2

> .
P+l G+1 N-1

Condition (4.21) seems to be optimal for the existence and a priori estimates of classical

(4.21)

positive solutions in the case of the model problem f(y,u,v) = v and §(y, u,v) = uf
(cf. also the analogous condition in [46] in the case of the Lane-Emden system). Notice

that our stronger condition (4.24) is essentially optimal just for the boundedness of
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very weak solutions of the general class of problems, but not for a priori estimates of
classical positive solutions of the model problem.

Proposition 4.1.5 requires a linear lower bound on a suitable linear combination of
f and g. If this is not true then one can often try other ad-hoc arguments to verify the
necessary L' bound. One of such arguments can be found in the proof of the following

proposition.

Proposition 4.1.7. Let f, g, f,§ be C functions satisfying the assumptions of Theo-

rem 4.1.3. Assume also
0> f(z,u,v), g(x,u,v) > —ci (1 +u' +v*) forallz € Q, u,v>0,

, Uy U —C 1+UE+UE
Fly,u,0),9(y, u,0) =~ ) for ally € 9Q, u,v >0,

f(yau U) .é(y?uvv) Z 03(u£+ UE) —C4

where t >t >1, 2> 2> 1 and ¢y, ca,c3,¢c4 > 0. Then there exists a positive constant
C depending ont,z,t, %, c1, ca,c3,c4 and all the parameters in (4.14) except for Cy such

that any positive very weak solution (u,v) of (4.1) satisfies

[ull (@) + V]l ey < €.

4.2 Very weak solutions

As in [41], by L}(Q x 09) we denote the space of functions u : © — R such that
ulg € LY(Q) and ulspq € L' (99).

Definition 4.2.1. A couple (u,v) € L*(2 x 9Q) x L*(2 x 9Q) is called a very weak

solution of (4.1) if f,g € LY(Q), f,g € L'(0Q) and
[waos fo)de= [ (a0~ fe)as
Q 00
[ st guyde= [ (w00 - gu)as
Q oN

for all g4 € C*(Q), where f = f(-,ulo,vla), g = g(-,ula,vla), f = F( uloa,v]on)
and g = §(-, ulan, v]sa)-

It follows from [41] that if (u, v) is a very weak solution of (4.1) then u,v € W14(Q)

for ¢ < N/(N —1) and the traces of u and v equal u|gq and v|sq, respectively. In what
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follows, without fearing confusion, we will use the simple notation u for functions w,
ulq, ulag and Tu. It will be always clear from the context, which of the above functions
we mean. We will also denote by || - ||, and || - ||,.00 the norms in LP(€2) and LP(0€2),
respectively. Finally, throughout this chapter we will also use the notation introduced
in (4.10), (4.3).

4.3 A priori estimates

In order to proof Theorem 4.1.3, we will need following lemma which is due to [41], [42].
Lemma 4.3.1. Let u be a very weak solution of
—Au=nhinQ, dyu = h —u on 99,

where h € LP(Q) and h € LP(8Q) for some p,p > 1. Let G € [1,00], ¢ = GN/(N — 1)

and

Then
ullg.0 + [|ullzgoe < C[R]p.a + l[7]l500)-

Proof of Theorem 4.1.3. We will assume N > 2 (the proof for N < 2 requires just

trivial modifications). In addition, without loss of generality we may assume
P<Q. (4.22)
Notice that
P < N* if and only if P < N*, (4.23)

and similarly for Q and Q. This fact, (4.22) and (4.12) guarantee P < N* (otherwise,
denoting by (L) and (R) the left- and the right-hand side of (4.12), respectively, we
would have N*4+1 < (L) < (R) < N* +1). If Q < N* then increasing the value of
q or ¢ we may achieve @ = Q = N* while (4.12) remains true due to min(P,Q) < N*

and max{P, Q} = N*. Consequently, in any case we may assume
max{P, P} < N* <min{Q, Q}.
In particular, we have

P<N*"<Q and P+1<N*(1+1/9Q). (4.24)
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Without changing the values of P, Q, we can further increase the value of p (or p) and

q (or ¢) in such a way that

1 N
=p+-—— and ¢g=-—9q. 4.2
P=pPr Ny ¢ 1=y 1 (4.25)

Due to (4.11) and P < N*, we can also increase the values of 7, s, 7, 5§ to have

{ N }< S Y (4.26)
maxy p, r=s= = s : .

In particular, (4.11) remains true. In the rest of the proof we will assume (4.24), (4.25),
(4.26).

By C we denote various positive constants which may vary from step to step but
which depend only on the parameters in (4.14). Given k € [1, N*) and k := k(N —1)/N,
Lemma 4.3.1 and (4.13) guarantee

[ulle.a + lvllka + llullzoo + Va0 < C (4.27)

where C' also depends on k. We will show by a bootstrap argument that we can increase
the value of k£ up to k = oo.

The second inequality in (4.24) and (4.25) guarantee

q N
_— < 4.2
N© S N 2N, (4:28)
the inequality p < N* and (4.25) imply
N —1\2 N*(N —1) D
—_— - . 4.29
( N ) v N SN (429)
Hence we can find
ko € (r,N™) (4.30)

close to N* such that (4.28) and (4.29) remain true with N* replaced by k. In partic-

ular, we can fix N
q
ac (—, —) 431
k(] (pN - 2]€0)+ ( )
and, setting ko := ko(N — 1)/N > 1 (cf. (4.26) and (4.30)), we obtain

N —1\2 p P
R —— < =< . 4.32
(N)p N< <r (3)
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Notice that ¢ > N* > ko due to (4.25) and the first inequality in (4.24), hence
a>q/ky > 1.

The inequality a > ¢/kq also implies aN > ¢(N — 1) — aky, so that we may fix

alN )

v (- 439

Assume that (4.27) is true for some k > ko and k = k(N —1)/N. Using a bootstrap

argument in the first equation of system (4.1), we will show
lullak.0 + ||U||a12,aﬂ <C. (4.34)

Next, using a bootstrap argument in the second equation of system (4.1), we will show
that (4.27) and (4.34) guarantee

[vllsr0 + [Vl .00 < C- (4.35)
In particular, (4.27) is true with &k replaced by min(a, §)k. Since the factor
min(a, 5) > 1

is independent of k, after finitely many steps we arrive at (4.27) with & > Ngq. This
estimate, (4.9) and Lemma 4.3.1 guarantee (4.27) with k = occ.

Step 1. Assuming (4.27) with k > ko, we will prove (4.34). Since r < kg < N*, we can
fix

N
e (1, ) 4.36
TN 1) R 430
This choice of k implies
1 (N=1)r 1 r 2
- A L . > k. ,
po > max{ Nn N'n N} for alln > k (4.37)

Notice that (4.26) guarantees p < r < k, p < 7 and kp < kp. itk <n< kr/p then
(4.9), (4.27) imply

1 (5w 0)llra < CA A+ lully o + [10]]7,,.0) < CO+ [ull;0),
/

. ) B ) (4.38)
1w 0)llgmon < C(L+ [Jullf o0 + vllg o0) < CO+[lullfa0),

where 7 := (N — 1)/N > 1 and ¢ := max{1,np/r} < k. If

[ullne + lullzon < C (4.39)
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(which is true for n = k due to (4.27)) then (4.38) implies
1 G 0) e + 11F (s 0)lyjron < C (4.40)
and (4.37) together with Lemma 4.3.1 guarantee
[ullan.0 + llullepo0 < C.

Consequently, an obvious bootstrap argument shows that estimates (4.39), (4.40) are
true for all n € [k, kr/p|. Next (4.32) guarantees
P (-t 1y 2y

= > max -, =

kr Nk Nk N
hence (4.40) with n = kr/p and Lemma 4.3.1 imply |ul|z; /590 < C, where ki /p = oo
if p = 0. This estimate, (4.9), (4.27) and (4.40) with n = kr/p yield

||f<'7u’ U)”’C/:D,Q + ”f(vu’ U)HIE/;&,&Q <C. (441)

Since (4.31) guarantees

— > max

ak
estimate (4.41) and Lemma 4.3.1 imply (4.34).

Step 2. Assuming (4.27) with k£ > ko and (4.34), we will prove (4.35). If r < n < akr/q
and 77 :=n(N — 1)/N then (4.9), (4.26) and (4.34) guarantee

1 {(N—l)ﬁ 1 p 2}’

19w 0)llma < CA+ lullyma + I0le) < CA+ ol o), (4.42)
13w, 0) lpron < O+ lullg o + 10117 00) < CL+ 0l1F 00),
where ¢ := max{1,ng/r} < ak. Notice also that (4.33) and (4.31) imply
1 (N—-1)¢ 1 ¢ 2 )
— > w-o)e -4 2 . 4.43
8k maX( Nak  N'ak N (4.43)

If ar/q <1 then taking n = akr/q in (4.42) and using (4.27), (4.43) and Lemma 4.3.1
we obtain (4.35).

If ar/q > 1 then we take  as in (4.36) so that (4.37) is true. Starting with n = k,
the same bootstrap argument as in the case of inequalities (4.39)-(4.40) yields

[v]ln.e + lv]lzee < C
and
||g("u7v)||77/7‘79 + ”E](',U,U)”n/r,ag < C (444)

for all n € [k,akr/q]. Now (4.44) with n = akr/q, (4.43) and Lemma 4.3.1 implies
(4.35). O
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4.4 Singular solutions

In what follows we will need the following result from [41].
Lemma 4.4.1. Let H = {zx = (z1,72,...,2x5) € RN 12y > 0}, N > 2 and
t>(N—-1)/(N-2).

Then the problem
—w=0 1inH, o,w=w" ondH,

possesses a singular solution of the form w(z) = h(z)|z|"Y®V  where h is a C?

function satisfying 0 < ¢1 < h(z) < ¢y for allz € H.

Proof of Theorem 4.1.4. We may assume P < Q without loss of generality. Notice
also that (4.15) guarantees max{P, Q} > N*, hence Q = max{P,Q} > N*. If P > N*
then we can decrease the value of p or p to achieve P = N* — ¢, where € > 0 is chosen

in such a way that (4.15) remains true. Consequently, we may assume
P<N*"<Q and P+1>N"(1+1/9). (4.45)

Let us consider the following cases separately: (i) P = p, @ = ¢; (ii)) P = p,
Q = GN/(N—1): (ili) P = j+1/(N—2), @ = g; (iv) P = j+1/(N—-2), @ = 4N/(N-1).
(i) If P = p and Q = ¢ then (4.45) guarantees

1
p < q, p—|—1>N*(1—|——>.
q

Set Q={zeRY:|z| <1},a=2(p+1)/(pg—1), 3=2(q+1)/(pg — 1), and

7,2

(ule)o(@) = (o + ol 4 57), v = ol

Then it is easy to check that (u,v) is a very weak solution of (4.1) with f = § = 0,
f(z,u,v) = a(z)v? — aN, g(x,u,v) = b(zx)u? — BN, where a,b € L>®(Q), cf. also |45,
Remark 3.2].
(ii) If P =p and Q@ = GN/(N — 1) then (4.45) implies
iN P N—-1
4.4
N (P> + (4.46)

N—2" (N-2)3
and ¢ > (N —1)/(N —2). Set

q(p+2)
2§ + 1

g1 =
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and notice that (4.46) implies

N -1 P
and
N -2 q1—1

< N. (4.47)

q >

Let H be the halfspace from Lemma 4.4.1 and consider a smooth bounded domain 2
satisfying {x € Q: |z| <1} = {x € H : |z| < 1}. Let w = w; be the singular solution

from Lemma 4.4.1 and set v := w,,. There exist ¢, co > 0 such that
o <oz)|z]Y e < ¢, e Q\ {0}, (4.48)
hence v € L'(Q) due to (4.47). Let u be the very weak solution of the linear problem
—Au+u=0v" in Q, o,u =0 on 0.

Then u(z) = |,

o N(z, 2)vP(2) dz, where the Neumann function N satisfies

N(z,2) > clo — 2>V,

see [29] and the references therein. Due to the lower bound in (4.48), an easy estimate
(cf. [29, Section 5] and [45]) shows

u(zx) > eslx|™ — ey, z €Q, (4.49)
where c3,¢c4 > 0 and « :=p/(q; — 1) — 2. The choice of ¢; guarantees

aj=q/(q—1). (4.50)

Since d,v = v® on {x € 9N : |x| < 1} and O,v is bounded on {x € 9N : |z| > 1},
estimates (4.48), (4.49) and equality (4.50) guarantee the existence of by, by € L>(09)
such that 9,0 = byu? + by. Consequently, it is sufficient to set f(z,u,v) = —u + v?,
f=0,9=0and (y,u,v) = by (y)u? + ba(y).

(iii) f P=p+ 1/(N — 2) and Q = ¢ then (4.45) implies

1 N
D p(N — 2 14— 4.51
Pt y—5<¢ B ) > o (4.51)
g>N*"and p< (N —1)/(N —2). Set

p(g+2)
25 + 1

b1 =
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and notice that (4.51) and p < (N —1)/(N — 2) imply

N-—-1
and d

< N. 4.52

p1 >
Let © and w; be as in (ii) and set u := w,,. There exist ¢1,c2 > 0 such that
e < u(z)|z|Y P < e, € Q\ {0}, (4.53)
hence u? € L*(Q2) due to (4.52). Let v be the very weak solution of the linear problem
—Av+v=u? inQ, d,v =0 on .
As in (ii) we obtain
v(z) > cslx| P — T €Q, (4.54)

where ¢3,¢4 > 0 and 8 := q/(p1 — 1) — 2. The choice of p; implies

Bp=p1/(pr—1). (4.55)

Since d,u = uP* on {x € I : |z| < 1} and J,u is bounded on {z € 90 : |z| > 1},
estimates (4.53), (4.54) and equality (4.55) guarantee the existence of by, by € L*(0S2)
such that d,u = bjv? + by. Consequently, it is sufficient to set f = 0, f(y,u,v) =
bi(y)vP + ba(y), g(z,u,v) = —v +ul, g = 0.
(iv) fP=p+1/(N —2) and Q@ =¢N/(N — 1) then (4.45) implies
1 GN g N -1

Ui v T v LI Ll v Ry v (4.56)

and p < (N —1)/(N —2) <q. Set

. p - q
= (g+1)——— and =(p+1)—.
p1i=(q )p+1 ¢ = (P )q+1

The second inequality in (4.56) and p < ¢ imply p1, ¢ > (N —1)/(N —2). In addition,

the choice of p1, ¢, also implies

(p1 —1). (4.57)

Let © and w; be as in (ii) and set u := wy,, v := w,,. Then there exist ¢1, c; > 0 such
that
¢ < u(x)|z|VOY (@) |z)V e < e, x € 00\ {0}. (4.58)
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Since d,u = uP* and J,v = v" on {x € IN : |z| < 1} and u,v,d,u,d, are bounded
on {x € 00 : |z| > 1}, (4.57) and inequalities (4.58) guarantee the existence of
ai,as, by, by € L(0N) such that

du= a1’ +ay and 0,0 = byul + by on Of).

Consequently, it is sufficient to set f = ¢ = 0 and f(y,u,v) = a1(y)v? + as(y),
9(y,u,v) = bi(y)u? + ba(y). D

4.5 Ll-bounds and existence

Proof of Proposition 4.1.5. Let gof}(f denote the first (positive) eigenfunction of problem
(4.16) normalized by supg, o = 1. We will write shortly f instead of f(z,u,v) and
similarly for ¢, f,§. We also set w := au+ v, h := af + g and h := o.f + 3§ so that
w solves the problem

—Aw=h in{, d,w="h on 09, (4.59)
and (4.17) implies
h +c; > max{—Kw, sk max{f, g} — c;(u’ + ")},
h+ ¢ > max{pw, smax{f,j} — ci(u’ + v%)}.
As

C1 t

(min{«, ﬁ})tw ’

cr(ut+0') <

m((au) +(Bv)") <

we can increase value of ¢; if necessary to

1
Co =MaxCl, —

(min{a, B})

(min{e, B}) (autfo)” =

and we obtain

h+ ¢ > max{—Kw, s max{f, g} — cau'}, (4.60)

h + ¢y > max{pw, x max{f,j} — c;w'}.

First consider the case K > 0. Fix ¢ € (0, K) such that g > M. + ¢ and set

¢ == @¥... The definition of a very weak solution w of (4.59) with test function ¢
yields

/(wAgo + hy) dx = / wd,p — hy dS.
0

o
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As Ap = (K +¢)pin Q and 9,0 = XY, .o < (1 — €) on %2, we obtain

/Q(aw—i- (Kw + h))pdz :/

Q

:/ /\JI\(/JrEwgo—fzgong—a/ wgpdS—ir/ (pw — h)p dS
o) 0 B

(wWA@ + hy) dr = / wd,p — hedS
o9

0

and (4.60) guarantee

5/wg0dx — |0 < /(6w + (Kw + h))pdx
@ @ (4.61)

< —5/ w<pd5+/ (w — h)pdS < —5/ we dS + ¢2|09).
o0 G G9)

This implies a bound for w (hence for u and v) both in L'(Q) and L'(99). These
bounds, (4.60) and (4.61) also imply

Ih]io <C and || 00 < C. (4.62)
If K = p = 0 then we use the test function ¢ := 1 and similarly as above we obtain
— 5|9 g/hdxz—/ hdS < ¢|09). (4.63)
Q o9
Since h, h > —co,
/h dr < ¢»|Q] and / h™dS < ¢,|09Q).
Q 09

Thus (4.63) implies

/h+dx§/h‘dx+02|a§2| < (|0 + 199,
Q Q

/iﬁng/ h™dS + || < (| + 09))
o0 o0

and we obtain (4.62). Hence (4.62) is true for any K > 0.

Now (4.62) implies that the right-hand sides in the problem (4.59) are bounded
in L', hence w is bounded in L!(Q) and L(9Q) as t < N* and the same is true for
functions u, v.

Since

f9< (ht e+ ) =F

f>—(-Bg— Kw—c)>—(—0F — Kw— ),

Q|+
Q|+
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g> %(—af—Kw—cl) > %(—aF—Kw—cl)

and F,w are bounded in L*(§2), we see that f and g are bounded in L'(Q2). Analogously
we obtain the boundedness of f,§ in LY(09) as

and F is bounded in L'(99).

Hence we obtain

e + [19llie + 11 Flluee + 1|3llL00 < C(Q,a, B, 5, K, t,c1, ).

Now Theorem 4.1.3 guarantees estimate (4.18). 0

Proof of Proposition 4.1.6 will be modification of the arguments leading to [10, Theo-
rem 3.2|. In this proof, we will apply the following fixed-point theorem (see for instance

Theorem 3.1 in [20]):

Theorem 4.5.1. Let C be a closed convexr cone in a Banach space X and § : C — C
a compact mapping such that S(0) = 0. assume that there are real numbers 0 < r < R
and ty such that

1. x #tSz fort € [0,1] and x € C, ||z|| = r.

2. There exists a compact mapping H : Bg x [0,00) — C (where B, = {x € C : ||z|| <
p}) such that

(a) H(z,0) = S(x) for [|z]| = R.
(b) H(x,t) = has no solution in Bg fort > t,.

(c) H(z,t) # x for|lz|| =R and t > 0.
Then S has a fized point in U = {x € C: r < ||z|| < R}.

Now, we will state following lemma:
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Lemma 4.5.2. Let )\flv be first positive eigenvalue and @] corresponding positive eigen-
function of (4.16) with K = 1:

—Ap = —yp in €,

(4.64)
d,0 =My  on 0.
If > XV there is no nonnegative nontrivial solution of (4.64) of
—Aw=—-w in
(4.65)

o, w > pw on Of).

Proof. Assume that w is a nonnegative solution of (4.65). Testing w with first eigen-

function ¢} satisfying (4.64) implies

Q o0

Hence we obtain

0< M—u)/ wl ds,
o0

which is a contradiction unless w = 0.

Proof of Proposition 4.1.6. To apply Theorem 4.5.1, we proceed as follows. Consider

the space

X ={(u,v) :u,v € C(Q)}
with the norm ||(u,v)|| := ||u||so + |||/ Notice that Theorem 4.1.3 guarantees that
all very weak solutions of (4.1) with f(x,u,v) = —u, g(x,u,v) = —v are bounded,

hence classical by the standard regularity theory. Let & : X — X be the solution
operator defined by S(¢,v) = (u,v), where (u,v) is the unique solution of

—Au = —u, —Av=—v in €,
aVu:f('a(baw)? al/U:g(',Qb,w) on 8Q
We observe that a fixed point of S is a solution of (4.1) with f(x,u,v) = —u and
g(x,u,v) = —v.

Now let us prove that S satisfies the hypothesis of Theorem 4.5.1. Theorem 4.1.3,

standard regularity and embedding results ensure that S is compact, see [2], [41].
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Thanks to assumption (4.20), f(y,0,0) = §(y,0,0) = 0 for all y € 9Q. We have
S(0,0) = 0.

Let C be the cone C := {(u,v) € X : u >0 v > 0}. It follows from the maximum
principle that S(C) C C, see Theorem 8.7 in [2|. To show that (1) in Theorem 4.5.1 is
true, we argue by contradiction. Let us assume that for every small » > 0 there exists
t € [0,1] and a pair (U, V) € C such that ||(U,V)|| = r and (U, V) =tS(U, V). Hence
(U, V) satisfies

—AU = -U, —AV = -V in Q,
oU =tf(-,UV), O,V =tg(-,U, V) on 9.

Using ¢} as a test function in Definition 4.2.1 implies

3\
OZ/U(AW—s@f“)dwz/ Ud,oY —tf(y, U, V)l dS
(9] o0
- / VU — tf(y, U, V) dS,
o5 (4.66)
0= / V(AGY — o) da = / Vol — tily, U.V)eY ds
Q o0

- / OV 4300, U V) .

Vs
Now we multiply first equality in (4.66) by & and second equality by 3 and we add
them together to obtain

0= [ (W(@U + V)~ taf (0. UV) + By, U. V)t ds.
B
As r can be arbitrarily small, assumption (4.20) yields to

0> (N —et) / (aU + V)l ds,
o0

which is a contradiction as ¢ € [0,1] and & < .

To verify (2) we define H as follows:

H((¢,0),t) = S(¢p+t,9 +1).

As H((¢,7),0) = S(¢,v) for any (¢,v) € C, (a) clearly holds true. To see (b), we
proceed by contradiction. Assume that for every ¢t > 0, we have (U, V') € C such that
H((U,V),t) = (U, V) which means that (U, V') solves
AU = —U, AV = -V in 0,
OU = f(-, U4tV +1), OV =g\ U+t V+1) on 9.
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Let us define w = aU + AV and h(-) = af(-,U +t,V +1t) + B§(-,U +t,V +t). Hence

w solves
—Aw = —w, in (),

d,w=h, ond

and h(-) > p(a(U +t) + B(V + 1)) — ¢ = pw + pt(a + B) — ¢;. We observe that for
any t >ty := ¢;/pu(a + ), assumption (4.19) guarantees that w satisfies

—Aw = —w, in €,

o,w > pw, on 02,

for 1 > X which contradicts Lemma 4.5.2.

Condition (c) is an immediate consequence of the fact that for given T' > 0, Proposi-
tion 4.1.5 and Theorem 4.1.3 guarantee uniform a priori estimates for positive solutions
of (4.1) with f(z,u,v) = —u, g(x,u,v) = —v and with f(-,u,v),f](-,u,v) replaced by

feou+rv4+7),9¢,u+T1,0+71), TE[0,T]. O

Proof of Proposition 4.1.7. Theorem 4.1.3 guarantees that all very weak solutions
are bounded, hence classical by the standard regularity theory. Since Au' > 0 due to
f <0, there exists a constant Cp > 0 such that [, u'dz < Cq [,, u' dS, and similarly
for v* (cf. also the same argument in [16, p. 46]). Now the definition of a very weak
solution, assumptions of Proposition 4.1.7, the above estimates for u!, v* and Holder’s

inequality imply

0= / (f(,u,0) + gl u,v)) di + / (. w0) + a0, 0) S

> —201/(1+ut+vz)dx+/ (cs(u’ 4+ v7) — ¢4) dS
Q o0

> —2cicq /aﬂ(ut +v*)dS + 65[(/59 ut dS)E/t + (/m v* dS)g/T — ¢g,

where ¢5 > 0 depends on c3 and Q and cg depends on ¢;, ¢y and Q. As t/t, 7/z > 1

these estimates imply the boundedness of ||ul|: a0 ||v]|:00- As

/utdm+/vzdx§09</ utd5+/ mzs)
Q Q o0 o0

we obtain the boundedness of ||u||¢q, ||v||.q. This one together with lower estimates

and negativity of f, g imply the boundedness of || f||1.o and ||g||1.o as well. A repeated
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use of the estimates above and the lower bounds for f, g yield
€ flaa+ oo = [ (Flov)+ o, 0)) ds
> 03/ (uf + %) dS — c4]09).
o9

Thus we obtain the bound for ||ul|zsq, ||v]|s00. Now the negativity of f,g and the
boundedness of || f||1,o and ||g|/1,o imply

/(ﬂ%%@+ﬂ%%@ﬂ5=—/U@wwﬂﬂ@wwﬁméC,
o0

Q

/ (f(y,u,v) + G (y, u,0)) dS < C+/ (f(y,u,v) + § (y,u,v)) dS
o2 0

Q

§C+202/ (1+u! +v7) dz.
o0

and finally the boundedness of |lul|zsq, [|v[z00 yields the boundedness of || fll1.00;

191,60 o

4.6 Nonlocal problems

In this section we study problems with nonlocal nonlinearities. Problems involving
nonlocal (typically integral) operators appear in many applications in physics, biology
or control theory: see the list of references in [17], for example. Nonlocal problems also
appear if one reduces a system of local equations by expressing one of the unknowns
as a convolution of the corresponding kernel and right-hand side: such reduction has
been often used for the Schrodinger-Poisson(-Slater) or FitzHugh-Nagumo systems, for
example.
We will consider problems of the form
—Au = F(u,v,Tu, Tv), —Av =G(u,v,Tu, Tv) in Q,

(4.67)
dyu = F(u,v,Tu, Tv), dv = G(u,v,Tu,Tv) on Q,

where Tu denotes the trace of u on the boundary 9Q and F,G,F,G are possibly
nonlocal operators. Fix k € (1, N*), set k= k(N — 1)/N, and, given u,v € L*(Q) and
i, 0 € LF(09Q), set

a0, 2, 8) e 2= el ooy + Nologe + 128 oy + 18] 2oy
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[(w, v, @, 0)|[F == [|F(u, v, @, 0)[| (o) + |G (w, v, @, 0)|[ 10
+ | F (u, 0, @, 0) || 11 00) + G (w, 0, @, )| 11 00
and
[[(w, v, @, 0)[[,p o= [ (w, v, 0)|[k + [|(w, 0,4, 0) | F.

Repeating word by word the arguments in the proof of Theorem 4.1.3 below one

can see that the following theorem is true.

Theorem 4.6.1. Let p,q,r,s > 1, p,4, 7,5 >0, k € (1, N*), and let F,G,F,G satisfy

the following growth conditions:

)(2)] ( k)
Ig(u,v,ﬂ,@)(x)l < Cg( ), )!‘i+ Iv(l‘)\‘i), (4.68)
[ F (w0, 0,0)(y)] < Cz(l[(u, v, @, 0)|[e,p) (1 +|a(y)]" + |0(y) "),
|g~(u,v,ﬁ,z7)(y)| < C~(||(u’v7a’ﬁ>”k,F)(1 + |a(y)|fi + |1~)(y)|§)7

for almost all x € Q, y € 9Q and all u,v € L*(Q), 4,0 € L’;(GQ), where functions
Cr,Cg,Cz,Cg are bounded on bounded sets. If N > 2 assume also

R,S < N* (4.69)

and

min{P,Q} +1 < N*(1 + 1/ max{P, Q}). (4.70)
Let (u,v) be a very weak solution of (4.67) satisfying
|(w, v, Tu, Tv)||r < Ch.
Then u,v € L*(Q2) and there exists a constant
C=C(C,Cr Cq,Cz,Cg,p,q,7,5,p,4,7,5,N,Q) >0

such that
[|ul|zoe () + [[v][ L (0) < C

Remark 4.6.2. The growth assumption (4.68) in Theorem 4.6.1 can be weakened in
the following way: Instead of the first condition in (4.68) it is sufficient to assume that

there exists a nonlocal operator F; and a locally bounded function

Cr:[1,00) x [0,00) — [0, 00)
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such that
| F(u,v,a,0)(x)] < Fi(u,v,@,0)(x)(1 + [u(@)]" + [v(z)["),

(4.71)
| Fi(u, v, @, 0)| ) < Cr(t, [[(w,v,%,0)|kr),

where k € (1, N*) may depend on t so k = k(t) (and similarly for G, F,G). Then the
conclusion of Theorem 4.6.1 remain true. In fact, choose ¢ > 0 such that the conditions
(4.69) and (4.70) remain true if we replace p, q,7,s,p,q, 7,8 with p+¢,q+¢,r +¢&,s+
e,p+e,Gg+e,7+¢e,5+¢e. Then, given n > 1, Minkowski and Holder inequalities and
(4.71) with ¢ large enough guarantee

3=

| F(u,v,,9) || Lna) < (/Q(]:l(u,v,ﬂ,ﬁ)(x)(l + |u(z)|" + |v(x)|P))77dx)

< ||‘F1(u7v>ﬂ’ ﬁ)”L”(Q) + ||]-"1(u,v, {L?ﬁ)HL(r"f)" (Q)||u||zn(r+€>(ﬂ)+

10,0, ) s 10010
< Cr(n, 1w, v, @, 0) o). r)+
Cr (1 + /e 1,0, 0) s epser e ) [l oo +
Cr (0 + /e, 110w, v, 8 ) laiipseymser. ) 101 o
<C(1+ ||UHL77(T+E) + HUHLn(ere) ))

SC(1+||U”E?§~+€> ‘|“||U|I;;(Z+e)(9))

with C,C' depending on Cx(t, ||(u, v, @, ¥)||x.r), and this estimate is sufficient for our

bootstrap arguments, cf. the first estimate in (4.38) below. O

Next we show some typical problems where Theorem 4.6.1 or Remark 4.6.2 can be

used.

Example 4.6.3. Consider the system
—Au=F(,u,v,w), —Av=G(,u,v,w), —Aw=H(,uv) in{, (4.72)
du= f(-,u,v), 0y = g(-,u,v), w =10 on 052, .

where F,G, H, f, § are Carathéodory functions. If Gp denotes the Green function for
the negative Dirichlet Laplacian in €2 then the solution w of the last boundary value

problem in (4.72) can be written as w = K (u,v), where

K(u,v)(x) ::[)Gp(x,z)H(z,u(z),v(z))dz.
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Consequently, the first equation in (4.72) can be written as —Au = F(u,v), where

F(u,v)(x) := F(z,u(x),v(x), K(u,v)(x)),

and similarly for the second equation.

Assume for simplicity N € {3,4},

|F(z, u,0,w)] < | (2,0, 0)|(1+ |w]™),

|G, u, 0, w) < g, u, 0)|(1+ w[™),

2 if N =3,

[H (2, u,0)| < C(1+ [u]* + |v]), r=

1 if N=4,

(4.73)

where m > 1 and f, g, f, h satisfy the assumptions of Theorem 4.1.3. Then the conclu-

sions of Theorem 4.1.3 remain true for problem (4.72). In fact, due to the well-known
estimate 0 < Gp(z,2) < Clz — 2>~ and (4.73) we have for arbitrary ¢ € (1, 00)

e\t
ol < C( [ ([ o= 2P0l + o)) o)

(4.74)

Moreover Lemma (4.3.1) implies that |u|*, [v|* € L+ (Q) for any k € [r, N*). According

to Theorem 1.33 in [35], the Riesz potential I, defined by

Lla /|x PN (2)dz

k

is bounded operator from L+ () to L!(€) provided ¢ <% k , satisfying estimate

k
129l i) < Cllel|[L=(2).

Hence in case N = 3, which gives kK = 2 and N* = 3 we can choose
4

ke (3-5-—=.3)

2t +3’

and in case N =4 with k = 1 and N* = 2 we can choose

ke <max{1,2 _ %},2),

which is possible for arbitrary ¢ > 1. Thus (4.74) becomes

1 (u, )l @) < OO+ |l o) + [He|v]*] @),

< O+ l[alll g g + oIl g )

< O A Jlullzegy + ol Ze@)-
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Hence F(u,v) satisfies
[ F (u, v) ()] < |f (2, u,0)|(1 4+ [K(u, v)(x)[™),
< Fu(u, 0) (@) (1 + Ju@)]" + |u(z)[?),
where Fi(u,v)(x) := C(1+ |K(u,v)(x)|™) satisfies
[F1(w, 0) [ ng) < OO+ 1K (u, 0) | Tnn ()
< Cr(t, |[(u,v,0,0)|kr) with t =mn
and similar estimates hold true for G(u,v).

Consequently, the assumptions of Remark 4.6.2 are satisfied. 0

Example 4.6.4. Consider the problem

—Au = auv + bu, —Av =cu in Q,
(4.75)
dyu =0, dv=—g(v) +®(g(v)) on 99,
where N < 3, ®(w)(y) = [y ¢y, 2)w(2)dS,, ¢ € L™, g is a continuous function

satisfying the growth condltlon |g(v)| < C(1+ |v|*) and a, b, c are real constants. The
system of equations in (4.75) describes a steady state in a (slight modification of a)
nuclear reactor model, where u and v correspond to the neutron flux and reactor
temperature, respectively; cf. [28, system (6)—(7)]. The nonlocal nonlinear boundary
condition in (4.75) appears in the radiative heat transfer problem: g(v) is the surface
radiation flux density (g(v) = ov* in the case of a black body) and ®(g(v))(y) is the
radiation flux density absorbed at the point y, see [4, 19| and the references therein. It
is easily seen that all the assumptions of Theorem 4.6.1 are satisfied provided N = 2

and s is arbitrary or N = 3 and § < 2. 0

Example 4.6.5. In the examples above, just the first part of the norm || - ||;r was
used to guarantee the required growth condition. To see that the second part can also
be useful, let us consider the following model problem
—Au = ||U||LD‘(Q ( u, U) — au, —Av = HU’H%IB Q) 9(7 U,’U) —bv in Q7 (4 76)
o,u = f(-,u,v), d,v = g(-,u,v) on 0,
where a,b € R, o, 3> 1, p1,q1 > 0, [, g, f,§ satisfy the assumptions of Theorem 4.1.3
and f,g > ¢y for some ¢y > 0. If max(«,5) > N* then the norm ||(u,v,a, )|, does
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not estimate the nonlocal terms for any £ < N* but the norm ||(u,v, @, )|z r does
and the growth condition (4.68) is trivially satisfied. Consequently, the conclusion of

Theorem 4.1.3 is true. If, for example, f(x, u,v) = g(zr,u,v) =0, a,b>0,
co < f=fla,u) <Cpr(1+[ul), o <g=glz,u) <Cy(l+[v]), (4.77)

where r,s < N* < «,f, and either p;,q1 > 1 or f, g have superlinear growth at
infinity, then using constant test functions in the definition of a very weak solution
yields the required L' bound for the right-hand sides in (4.76). Indeed, using ¢ = 1 in

Definition 4.2.1 implies
o> 1) /fx u,v dx—a/udx

Jullooy [ gtouvydr=b [ var
Q Q

If p1,q1 > 1, the Holder inequality and the boundedness of {2 guarantee the existence
of the constant C' such that

(4.78)

ull L1y < CB)||ull Loy
|v]|21 ) < Cla)||v||e@

This together with (4.77) imply

aC 6 /a1
ol ol 0y < allull v <aa>mm%n=@ﬁ%%ﬂ%mwwmm)

c 1/q1 C La

sacwmﬁﬁﬁ)“nwm

As p1,q1 > 1 this implies the boundedness of ||v|r«(), hence the boundedness of
|l o), l|ull L1 @) and ||v]|L1(q) as well.
In case of superlinear growth at infinity of f, g, (4.77) implies the existence of K > 0
such that
flz,u) > Ku g(z,v) > Kv for all x € Q.

This with (4.78) yield

(K [0l T — a) /Qudac < /Q [0 7a 0y f (2, u) — audz =0,
<K || 33(9) — b> /dex < /Q ||u %ﬁ(ﬂ)g(x,v) —bvdx =0,
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which implies the boundedness of ||ul|.sq), [|V]|ze(@), |ull 21 (@) and [|v][L1q) again.

Now the boundedness of || f| ;1) and ||g| 1) is guaranteed by (4.77) and the
boundedness of norms above.

The existence of positive solutions of the system of equations in (4.76) comple-
mented by homogeneous Dirichlet boundary conditions was studied in [15] in the sub-
linear case. More precisely, if N > 3 then the authors in [15] assumed (a technical
generalization of) (4.77), a = b =0, 1 < o, < 2N*, max{p;1 + r,q1 + s} < 1,
r<pf-—1,s<a-—1. O

Remark 4.6.6. Nonlocal operators frequently appear in the control theory. In partic-
ular, feedback operators usually depend on the solution in a nonlocal way. In the case
of distributed observation, they often have the form that we consider here. Since we
are mainly interested in the boundedness of very weak solutions, it does not have too
much sense for us to consider operators depending on the solution in a specific point:
this would require to work with solutions which are a priori bounded. On the other
hand, one can approximate the value u(xg) of the solution in a given point zy € € by
an integral of the form [, w(zo — z)u(z) dz (where w is a smooth approximation of the

Dirac distribution), and such integrals fit well in our theory. O



Summary

In this thesis, we improved results on regularity and a priori estimates of positive very
weak solutions of elliptic systems. First, we considered elliptic system complemented
by Dirichlet boundary conditions and we derived conditions on growth exponents of
right-hand sides guaranteeing essential boundedness of all possible positive very weak
solutions and their a priori estimates. Our proof was based on alternate-bootstrap
arguments where we were dealing with a significant amount of growth exponents. Sim-
ilarly to [32], our results hold true if we treat variational solutions or L'-solutions of
(1) and (2) provided we replace critical growth exponent for very weak solutions by
corresponding critical growth exponent for variational or L!-solutions. Our example of
system (1), (2) satisfies growth conditions on right-hand sides required by our theorem.
Hence all positive very weak solutions of such a system are a priori bounded thanks to
our results. However functions f, g of our system do not satisfy assumptions required
by [32] that clearly shows that we improved results in [32].

We also considered elliptic systems complemented by nonlinear boundary condi-
tions. We derived optimal conditions on growth of right-hand sides guaranteeing a
priori estimates of positive very weak solutions of such systems. Similarly as in the
case of [41] and [42|, our proofs are based on regularity results for linear problems
and alternate-bootstrap arguments. Due to the presence of nonlinear boundary con-
ditions, one has to prove simultaneous estimates for the solutions and their traces on
the boundary 0f2. This difficulty and also presence of significant amount of growth ex-
ponents make our proofs to be far from a trivial modification of the proofs in [41] and
[42]. Another justification of our computations comes from the fact that the optimal
growth conditions for system (1) and (3) could hardly be guessed just from the the
corresponding conditions in [41] and [42].

We also proved that our results are optimal. We showed that there exist a domain
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and right-hand sides which do not satisfy required conditions on growth, such that
elliptic problem with nonlinear boundary conditions possesses a positive unbounded
very weak solution.

We used our results on a priori estimates to prove existence of nontrivial solutions
of few typical problems where the L!-bounds of right-hand sides can be estimated.

One of the advantages of using alternate bootstrap method is its robustness. It
does require neither scaling properties nor variational or local structure. Hence, our
results could also be applied for problems with nonlocal nonlinearities. We also showed

applications of our results in the study of some particular nonlocal problems.



Resumé

V tejto praci sa zaoberame regularitou a apriérnymi odhadmi kladnych velmi slabych
rieSeni eliptickych systémov. Takéto systémy popisuji rozne situacie v biologii, fyzike
alebo chémii.

A priori je latinsky vyraz, ktory znamena vopred. Pod pojmom apriérny odhad
méame na mysli odhad o velkosti rieSeni bez toho, aby sme mali informéaciu o existencii
rieSenia daného sytému. Presnejsie, v tejto praci pod pojmom apriérny odhad mys-
lime, Ze v8etky mozné kladné rieSenia (v danej triede funkcii) eliptického systému su
ohranic¢ené kladnou konstantou C' nezavislou od rieSenia.

Apriérne odhady zohravaju dolezitu tlohu v dokazovani existencie rieSenia prob-
lému. Vskutku, pokial uloha nemé varia¢nu Struktiru, na existenciu rieSenia treba
pouzit iné, nevariatné metody ako napriklad topologické, a tie zvycCajne vyzaduju
znalost apriérnych odhadov pre vSetky mozné rieSenia. Naviac, apriérne odhady posky-
tuju informécie o Strukture rieSeni a vyuzivaju sa pri skimani bifurka¢nych vetiev.

Presnejsie, zaujimame sa o systémy tvaru

—Au = fl ) } v, (4.79)
—Av = g¢(.,u,v)
spolu s Drichletovymi okrajovymi podmienkami
w=0 } na 99, (4.80)
v = 0
alebo nelinedrnymi okrajovymi podmienkami tvaru
O = (- u,0) } na 99, (4.81)
dv = g(.,u,v)

kde f,g,f,§ sa Carathevdoryho funkcie s vhodnym polynomidlnym rastom a € je

hladké ohrani¢ena oblast v RY.
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Existujua rozne metody na ziskanie apriornych odhadov. Technika zvana ,blow-up”
bola prvykrat pouzita v [25] v pripade skalarnej tlohy. Metoda je zaloZena na dokaze
sporom. Predpoklada sa, Ze existuje postupnost rieSeni, ktora nie je ohrani¢ena. Po
vhodnom preskalovani a vybrani podpostupnosti sa ziska postupnost, ktorda konver-
guje ku kladnému rieSeniu eliptickej tlohy v celom priestore (alebo v polpriestore).
Existencia takéhoto riesenia je ale v rozpore s vetou Liouvilleovho typu. Tato metoda
vedie k optimalnym vysledkom vzhladom k rastu pravych stran, pokial st zname pris-
lusné vety Liouvilleovho typu. V pripade systému (4.79), (4.80) je vSak znalost viet
Liouvilleovho typu ¢asto otvoreny problém.

Dalsou pouzivanou metédou je metoda Rellichovych-Pohozaeovovych identit a ,mov-
ing planes”. Prvykréat bola pouzitda na dokézanie apriérnych odhadov rieSeni skaléarnej
tlohy v [21]. Metoda pozostava z viacerych krokov. V pripade systému (4.79), (4.80),
sa rieSenia t najprv odhadnt v blizkosti hranice €2 pomocou metédy ,moving planes”,
naco je potrebné, aby boli nelinearity nezavislé od x a neklesajice. Nésledne sa pouziju
identity Rellichovho-Pohozaevovho typu. Tieto identity obmedzuji pouZi- tel nost tejto
metody pre pripad funkcii f = f(v) a g = g(u). Naviac, {2 musi byt konvexna, alebo
musia byt splnené dalsie technické predpoklady na f a g. Téato metoda vedie k op-
timalnym vysledkom v modelovom pripade f(v) = v? a g(u) = u?, ale ¢asto sa neda
pouzit v pripade vSeobecnejsich funkcii f a g.

Metoda Hardy-Sobolevovych nerovnosti bola prvykrat pouzita v [14| v pripade
skalarnej ulohy, kde H. Brezis a R. E. L. Turner $tudovali varia¢né rieSenia skalarne;j
tlohy. Tato metoda je zalozend na pouziti prvej vlastnej funkcie Laplaceovej rovnice
ako testovacej funkcie. To vedie k odhadu nelinearity, ktory spolu s vhodnymi ras-
tovymi predpokladmi a Hardy-Sobolevovymi nerovnostami implikuje H! ohrani¢enost.
V pripade systému (4.79), (4.80), tato metoda vyzaduje iba horné ohranicenie na rast
nelinearit f, g, ale nevedie k optimalnym vysledkom vzhladom k rastu pravych stran.

Na odvodenie apriéornych odhadov sa pouziva aj takzvanéd ,bootstrap” metoda.
Procedira spociva v splneni istych predpokladov, ktoré nastartuju proces, vedici v
konecnom pocte krokov k ziadanému vysledku. Presnejsie, pokial informaécie o lepSej
regularite f a/alebo g zarucia lepsiu regularitu rieSenia a nasledne lepsia regularita
rieSenia spolu s rastovymi predpokladmi na f, g implikuje lepsiu regularitu f, g, staci
dokazat na pociatku lepsiu regularitu f, g a overit, Ze sa tym spusti iterovany pro-

ces, ktory vedie v kone¢nom pocte krokov k ziadanej regularite a apriéornym odhadom
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rieSeni. Tato metodda sa pouzila na odvodenie apridornych odhadov rieseni réznych tloh
¢i systémov ako napriklad v [29, 32, 33, 34, 41, 42|. V [42], P. Quittner a Ph. Souplet
pouzili novy druh metédy striedavého ,bootstrapu”, ktora viedla k zna¢nému vylepseniu
dovtedy znédmych vysledkov o apriérnych odhadoch a existencii rieseni systému (4.79)
spolu s (4.80). Tato metoda sa moze pouzivat za slabsich pociato¢nych predpokladov
na rieSenie narozdiel od metody ,blow-up” ¢i metddy Rellichovych-Pohozaeovovych

rovnosti a ,moving planes”, ktoré vyzaduju variacné alebo klasické rieSenia.

Eliptické systémy s Dirichletovymi okrajovymi
podmienkami

Ako sme uz spominali, P. Quittner a Ph. Souplet v [42] pouzili novii metédu strie-
davého ,bootstrapu”. Tato bola nedavno vylepsena v [32]. Y. Li [32] ziskal apriérne
odhady velmi slabych rieseni eliptického systému (4.79) s Dirichletovymi okrajovymi

podmienkami (4.80) za vSeobecnejsich predpokladov na rast f, g ako v [42]:

0 < g(w,u,v) < Ci(14 [ul?v]* + [v]7),
kde
r,s,min{p+r,q+ s} € [0,p.), (4.83)
(1 — )1 —
max{p+1—s,qg+1—-r}> pa = ?")1( S), (4.84)
pc -
I <y0<p (4.8

a plati p,¢ > 0. V podmienkach (4.83), (4.84) a (4.85), p. predtavuje isty kriticky
exponent, ktorého hodnota zélezi od toho, ¢ skimame H}-rieSenia, L'-riegenia alebo
Li-rieSenia. Y. Li dokazal, Ze kazdé kladné Lj-rieSenie systému (4.79) spolu s (4.80)
splhajuce:

ullpy + (o]l < M,
je apriérne ohranicené:

|ulloo + [[v]]ee < C, (4.86)

kde C' = C(Q,p,q,7,0,N,Cy, M).
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Podarilo sa nam rozsirit vysledky z ¢lanku [32] a dokézali sme ohrani¢enost kladnych
velmi slabych rieseni systému (4.79) s Dirichletovymi okrajovymi podmienkami (4.80)

za vSeobecnejsich predpokladov na f, g. Nech je ppr definovany nasledovne:

{ 0, pre N < 2,
PBT "=\ N1
N1’ pre N Z 2.

Vysledky o ohrani¢enosti a apriérnych odhadoch velmi slabych rieseni systému (4.79)

sa daju zhrnit do nasledujicej vety:

Veta 4.6.1. Nech si f,g:Q x R? = [0,00) Carathéodoryho funkcie spliiajice rastové
podmienky (3.2)

flz,uv) < Gl |ul™ [olPr + [u]™ v + [u]7),
< G Jul™ o+ Jul® o] + [o]7),

kde pi, qi, iy s; > 0 pre i =1, 2, max{p;, p2}, max{qi, g2} > 0 a plati
1 <7v,0 <ppr.
Predpokladajme tiez, Ze

min{maxipi + ri, p2 + roj, maxiq + S, g2 +s < pBT,
{ {m 1, P2+ 72} {n 1, 42 2}} T i=12,  (487)

Ti, Si < DBT,

} > piq; — (1 —7r)(1 — s5)

— . i,j=1,2  (4.88)

max{p; +1—s;, ¢ +1—r;
a (u,v) je kladné riesenie systému (4.79) spliajice
lullzy + lvllry < M. (4.89)
Potom patri (u,v) do L>®(Q) x L=(Q) a

l|ul|Le + ||v]]ze < C(Q,p1,q1,71, 81, P2, G2, T2, S2,7, 0, N, C1, M). (4.90)

Pripomenme, Ze ppr je exponent, ktory sa prvykrat objavil v praci H. Brezisa a
R.E.L. Turnera [14] v pripade apriérnych odhadov varia¢nych rieseni skalarnej alohy.
Ukazalo sa (vid [42], [45]), Ze exponent ppr je kritickym exponentom pre velmi slabé

rieSenia eliptickych systémov s Dirichletovou okrajovou podmienkou.
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Podobne ako v pripade Y. Liho sa kriticky exponent pre velmi slabé rieSenia ppr da
nahradit inym kritickym exponentom, ak sktimame L!-rieSenia alebo varia¢né riesenia
a vysledky Vety 4.6.1 ostanu v platnosti.

Dalej sme skonstruovali systém (4.79) s pravymi stranami:

491
g(z,u,v) = u'v, ( )

f(x,u,v) = ul_gv—i_vg_ea }

kde € € (O7 %) a N = 3. VSimnime si, ze ppr = 2. Je zrejmé, Ze kazdé nezaporné
velmi slabé rieSenie (u,v) problému (4.91) patri do L>(2) x L*>(2) vdaka Vete 4.6.1
pre rastové koeficinety p1 =1 —¢,r = 1,py = % —e,ro=0y=1,q1=4,s1=1,¢0 =
sy = 0,0 = 1. Zaroven sme ukazali, 7e takto definované f, g nespliaju Liho podmienky

(4.82), (4.83), (4.84) a (4.85).

Eliptické systémy s nelineArnymi okrajovymi
podmienkami

f)alej sme sa v praci zaoberali velmi slabymi rieSeniami systému (4.79) doplneného
nelinearnymi okrajovymi podmienkami (4.81).

Regularita a apriérne odhady velmi slabych rieSeni prislusnej skalarnej ulohy

—Au=h(,u) vQ,

) (4.92)
Oyu=h(-,u)  mna 09,
boli nedavno studované v [41]. Ozna¢me
LN > 2,
N* = N2 (4.93)
+oo if N <2,

jeden z hlavnych vysledkov [41] znie nasledovne:

Theorem 4.6.7. Nech r,i > 1 a nech si h : QxR - Rah : 00 xR — R

Carathéodoryho funkcie spliiajice polynomidlny rast

Az w)] < Co(L+[ul),  |h(y,w)| < Cr(1+ Jul"), (4.94)
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pre vsetky x € Q, y € 00 au € R. Ak N > 2, nech naviac plati

max{r, I 17:} < N™. (4.95)

Nech je u velmi slabé riesenie (4.92) také, Ze
(G, )l + 1R ( w)]|pran) < Cr.
Potom u € L*(Q) a existuje konstanta
C =C(Cy,C,Cyyr, 7, N,Q) >0

takd, Ze

HUHLoo(Q) S C

Je v8eobecne zname, Ze podmienka r < N* v (4.95) je zaroven nutnou pre ohrani-
¢enost velmi slabych riesenf (4.92) (vid [38]). P. Quittner a W. Reichel v [41] ukazali,
ze aj druh& podmienka (4.95) je optimalna: ak N >2 a7 > (N —1)/(N — 2) potom
existuje Q a funkcia h s rastom (4.94) také, ze problém (4.92) s h = 0 ma neohranicené
rieSenie.

V pripade eliptickych systémov (4.79) s homogénnou Neumannovou okrajovou pod-

mienkou:

du = 0
B na 99, (4.96)
ov = 0

vyplyva nasledujtica veta z vysledkov ziskanych v [42].

Theorem 4.6.8. Nech p,q,r,s > 1 a nech si f,g : Q x R2 — R Carathéodoryho

funkcie spliiajice polynomidlny rast

(@, u,0)| < Cp(1+ |ul” + [o]),
l9(z,u, )| < Cg(1 + |ul” + [v]*),

pre vsetky x € Q a u,v € R. Ak N > 2, nech naviac plati

r,s < N* (4.97)

min(p,q) + 1 < N*(1 4+ 1/ max(p, q)). (4.98)
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Nech je (u,v) velmi slabé riesenie systému (4.79), (4.96) také, Ze
[[f (5 u,0)| @) + []g( u,v)|[ye) < Ch.
Potom u,v € L*(Q) a existuje konstanta
C=C(C,C,Cy,p,q,1,5,N,2) >0

takd, Ze

[[ul| L) + [|v]| Lo @) < C.

Je opét zname, ze podmienky (4.97) a (4.98) st optimalne, vid [45].
V pripade systémov (4.79) s nelinearnymi okrajovymi podmienkami (4.81) sa nam
podarilo najst optimélne podmienky na rast funkeif f,g¢, f,§ garantujtce apriérnu

ohranic¢enost velmi slabych rieSeni systému:

—Au = f(-,u,v), —Av=g(,u,v) in €,
Ji( ) 9(- u,v) (4.99)
du= f(-,u,v), dyv = g(-,u,v) on 0.
Predpokladajme polynomialny rast funkcif f, g, f, §:
|f (2, u,0)| < Cp(1+ [u]” + [vl?),
T, U,V Cy(1 4+ |ul? + |v]%),
o, 0.0) € L+ ul? + o] w00
[y u,0)] < C(L+ [ul” + [olP),
19(y, u,v)| < Cy(1 + ul? + [vf*),
pre vietky x € Q, y € 0 a u,v € R. V zadujme prehladnosti ozna¢me
R e L BT (R Ry
‘= max{ p,p N3 ‘= maxy ¢, ¢ N3
N N
P = max{p, ﬁp} Q = max{q, WQ} (4101)
N N
R = maX{T,N_lr}, S = maX{S,N_ls}, )

pre N > 2. Dokéazali sme platnost nasledujtcej vety:

Theorem 4.6.9. Nech p,q,7,s > 1, p,G, 7,5 > 0 a nech si f,g : A xR?> - R a
f,G: 00 x R2 = R Carathéodoryho funkcie spliiajice (4.100). Pokial N > 2, nech
plati aj

R,S < N* (4.102)
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min{P, Q} +1 < N*(1 + 1/ max{P, Q}). (4.103)

Nech je (u,v) velmi slabé riesnie systému (4.99) také, Ze

G 0l + 119w 0)l| e

] ) (4.104)
G w )| Loy + 1190w, v)||ea) < Ch.

Potom u,v € L*(Q) a existuje konstanta
C = C<Cl7 Cfa 097 Ofu Cgapu q,7, 87]57 q7 f? §7 N7 Q) >0

takd, Ze

[[ul| L) + [|v]|Le@) < C.

Vsimnime si, Ze z Vety 4.6.9 vyplyvajiu Veta 4.6.7 (vyberom f = f(x,u), [ =
f(y,u), g = glxz,v), § = gly,v), p=qg=1ap=q=0) ako aj Veta 4.6.8 (vyberom
f=3=0,p=G=7=5=0).

Vysledky pre skalarnu tlohu (vid 38, 41]|) garantuji optimélnost podmienky (4.102)
v nasledujicom zmysle: Ak max{R,S} > N* potom existuje Q a funkcie f,g, fa
g s rastom danym podmienkou (4.100) také, ze (4.99) mé neohrani¢ené velmi slabé
rieSenie. Podobne, nasledujica veta ukazuje, Ze podmienka (4.103) je optimalna (az

na kriticky pripad).
Theorem 4.6.10. Nech N > 2, p,q>1,p,4>0 a
min{P,Q} +1 > N*(1 + 1/ max{P, Q}). (4.105)

potom ezistuje Q a f, g, f,§ spliajice rast (4.100) s =s=1 a7 =5 = 0 také, Ze

systém (4.99) md kladné neohranicené velmi slabé riesenie.

Podobne ako v [42], nase vysledky o apriornych odhadoch sa daja pouzit na dokaz
existencie netrividlnych rieseni, pokial moéZeme odhadnit L' normy pravych stran.
Toto je, vo v8eobecnosti, netrividlna uloha (vid [42, Section 3| v pripade homogénnych
Dirichletovych okrajovych podmienok). Ukéazali sme niekolko typickych prikladov,
kde sa L!'-ohrani¢enost norm a existencia kladnych rieseni da dokazat. Napriklad sme

dokazali platnost nasledujiceho tvrdenia:
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Proposition 4.6.11. Nech je N > 2. UvaZujme systém (4.79) s f(x,u,v) = —u,
g(x,u,v) = —v a nech Carathéodoryho funkcie f,g > 0 spliiaji rastové predpoklady
(4.100), kde

=

-1
—9’

=

-1 N -1

F5 < (N —2) <14 —.
7,3 — D ) <1+ 7

pPsq<

=
=

predpokladajme, Ze existuji o, B, &, B,c1 >0 ae < M\ < W také, Ze

af(y,u,v) + By, u,v) > plau+ Pv) — ¢ (4.106)
pre vsetky y € 02 a u,v > 0, naviac nech plati
af(y,u,v) + By, u,v) < e(du+ ) (4.107)

pre vietky y € 02 a u,v > 0 malé. Potom md problém (4.79), (4.81) kladné ohranicené

riesenie (u,v).

Existencia netrivialneho riesenia problému (4.1) s f(z,u,v) = —u a g(z,u,v) = —v
a superlinedrnymi f , g bola skiimana viacerymi autormi, ako napriklad [10, 11, 12, 26,
44]. V [10], autori dokazali existenciu pomocou apriornych odhadov klasickych klad-
nych rieSeni. Na ziskanie apriérnych odhadov pouzili metédy zalozené na skilovani a
vetach Liouvilleovho typu. V porovnani s Tvrdenim 4.1.6, metoda skalovania vyzaduje
Specifické asymptotické spravanie sa nelinearit pre velké u,v. Na druhej strane, vo
vSeobecnosti, metoda Skalovania a pouzitie optimélnych Liouvilleovych viet zvycaj-
ne umoznuju ziskat apriérne odhady pre va¢si rozsah exponentov (vid napriklad [43,
Chapter I|). Bohuzial, optimalne Liouvilleove vety pre systémy sa tazko dokazuju (vid
[46] a referencie). Naviac, autori [10] museli tiez predpokladat technickt podmienku
p,q < N*. Vsimnime si, ze nase tvrdenie nevyzaduje takéto obmedzenia: ak p=¢q¢ =1
a p je dostatotne malé, potrebujeme len podmienku ¢ < (N —1)/(N —4).

Clanky [11, 12, 26, 44| sa zaoberaju existenciou rieSenia problému v Tvrdeni 4.1.6
vo varia¢nom pripade a pouzivaju varia¢né metédy, ktorymi v8ak nedosiahnu apriérne
odhady. Aj ked sa skiimanie obmedzilo iba na pripad varia¢nych problémov, autori
vietkych ¢lankov okrem [12] predpokladali p, ¢ < N*.

Jednou z vyhod pouzitia metddy striedavého ,bootstrapu” je jej robustnost. Nevyza-

duje ani skalovacie vlastnosti ani varia¢ntu alebo lokalnu Struktdru. Preto sme nasSe
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vysledky mohli pouzit pre problémy s nelokalnymi nelinearitami. Ukazali sme aj ap-
likcie nasich vysledkov v pripade urcitych $pecifickych nelokalnych problémov. V
pripade takychto systémov

—Au = -F('Uq U,TU,T’U), —Av = g(u?U7TU’ TU) v Q’

(4.108)
dyu = F(u,v,Tu, Tv), 0,v = G(u,v,Tu,Tv) na €,

kde T je operator stopy, sa nam podarilo dokazat obmenu Vety (4.6.9). Jej vysledky

sa daju aplikovat napriklad na nasledujuci systém:

—Au = auv + bu, —Av =cu v Q,

(4.109)
Oyu =0, O,v=—g(v) + ®(g(v)) na 0,

kde N < 3, ®(w)(y) = [5,¢(y, z)w(z)dS., ¢ € L=, § je spojita funkcia splhajica
rastovit podmienku |g(v)| < C(1 + |v[¥) a a, b, ¢ st redlne konstanty. Systém rovnic v
(4.109) opisuje drobnt obmenu modelu nuklearneho reaktora, kde u a v predstavuju
tok neutronov a teplotu reaktora; porovnaj s [28, systém (6)—(7)]. Nelokdlna nelineérna
okrajova podmienka v (4.109) vystupuje v probléme prenosu radiacného tepla: g(v) je
hustota toku povrchovej radiacie (§(v) = ov? v pripade &erneho telesa) a ®(j(v))(y)
je hustota toku povrchovej radiacie absorbovana v bode y, vid [4, 19] a prislusné
referencie. Predpoklady naSej vety s splnené pokial N = 2 a § je Tubovolné alebo ak
N=3as<?2.
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