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1 Introdu
tionThe problem of maximizing the expe
ted utility over a given time horizon isone of the most frequently examined problems in �nan
ial mathemati
s. One
an a
hieve the maximum expe
ted utility by 
hoosing the proper portfoliostrategy, i.e. by optimal allo
ation of the available funds among risky andrisk-free assets.The problem was �rst examined by P. A. Samuelson. In his work [13℄,Samuelson 
onsiders the return on the risky asset to be sto
hasti
 with ageneral probability distribution. He presents the model in a dis
rete formand interprets it as a problem of dynami
 sto
hasti
 programming, solvingthe Bellman equation. He states that for power utility fun
tions, the optimalportfolio strategy is 
onstant over time. Merton [7℄ 
on�rms the results ofSamuelson for a 
ontinuous-time 
ase, assuming that the returns on the riskyassets are generated by a Brownian motion.In his work, Nutz [8℄ expands the power utility maximization problemusing a spe
ial 
ase, when the pri
es follow the exponential Lévy pro
ess.His approa
h to the problem is also based on the 
onstru
tion of the 
orre-sponding Bellman equation. Nutz proves that the results of Samuelson andMerton hold in this 
ase too. Additionally, Nutz examines the 
ase when theportfolio strategy is 
onstrained by a �xed 
onvex set and shows that in su
h
ase the optimal portfolio strategy is also 
onstant. In [9℄, Nutz 
onsiderssto
hasti
 portfolio 
onstraints and shows that the portfolio strategy 
an beobtained as the argmax of a predi
table fun
tion.No portfolio with risky assets guarantees any return. The aim of theportfolio insuran
e is to limit the losses and simultaneously to allow theparti
ipation on the rising market. The idea of insuring the portfolio againstlosses was �rst introdu
ed by H. Leland and M. Rubinstein in 1976. Theydeveloped the option based portfolio insuran
e, also referred to as OBPI. TheOBPI 
onsists of a risky asset and a put option written on it. The strike pri
eof the put option represents the �oor su
h that the value of the investmentat the maturity is higher than the �oor with 100% probability.There is a possibility that the required put option is not available onthe market. By Leland and Rubinstein [4℄, in su
h 
ase one 
an synthesizethe put option with a repli
ation portfolio that 
onsists of the underlyingasset and a risk-free bond. Using the repli
ation portfolio the OBPI be
omesdynami
, so that one 
an guarantee the dis
ounted level of the �oor at anytime from the beginning until the maturity.In 1986, Perold [10℄ introdu
ed another type of dynami
 portfolio insur-an
e, the 
onstant proportion portfolio insuran
e, also referred to as CPPI(see also [11℄). The CPPI agent �rst determines the �oor under whi
h the



portfolio is not allowed to fall at the terminal date. At ea
h time he 
al
ulatesthe di�eren
e between the dis
ounted level of the �oor and the a
tual value ofthe portfolio, the so-
alled 
ushion. The exposure to the risky assets is 
al
u-lated as the 
ushion multiplied by a prede�ned 
onstant multiplier. Both the�oor and the multiplier are the 
hara
teristi
s of the agents risk-toleran
e.While the OBPI and CPPI methods require a guaranteed �oor with prob-ability one, the Value-at-Risk based risk management guarantees the �oorwith a given probability less than one. Basak and Shapiro [1℄ introdu
ed thepower utility optimization model using the Value-at-Risk based risk manage-ment (also 
alled VaR-RM).2 Goals of the thesisEven though both the optimal portfolio sele
tion and the portfolio insuran
ewere examined by many s
ientists, it still o�ers many resear
h opportunities.The aim of this work is to bring together these two areas, spe
i�
ally, weinvestigate how to insure the portfolio when 
onvex 
onstraints are imposedon the portfolio strategy. We intend to provide either optimal or admissiblesolutions for the problem of dynami
 portfolio optimization with risk man-agement and strategy 
onstraints.We spe
ify the 
onvex 
onstraints representing the 
ase when short-sellingof both the risky and risky-free assets is prohibited. Our goal is to investigatetwo main areas
• the portfolio insuran
e with a guaranteed �oor in the 
onstrained mo-del,
• the portfolio insuran
e with a partially guaranteed �oor in the 
ons-trained model,provide di�erent methods of solution and 
ompare them based on their 
er-tainty equivalents.3 Methods and results3.1 E
onomi
 settingsLet T > 0 represent the time horizon and let the triplet (Ω,F , P ) repre-sent the probability spa
e. We use d risky assets and one risk-free bond to
onstru
t our portfolio.



For a given quantity, we use the upper index i = 1, 2, ..., d to representa parti
ular asset and the lower index t ∈ 〈0, T 〉 to express the time depen-den
e.We denote the expe
ted return on the asset i by µi, the positive de�-nite volatility matrix by σ = {σij, i = 1, ..., d, j = 1, ..., d}, the 
ovarian
ematrix by cR = σσ⊤ and the risk-free interest rate by r. We 
onsider theseparameters to be 
onstant over the time.Let wt = (w1
t , w

2
t , ..., w

d
t )

⊤ be an R
d-valued Brownian motion on the prob-ability spa
e (Ω,F , P ). Then the pri
es of the risky assets and the non-riskybond follows

dSi
t = Si

t [µidt+ σidw
i
t], for i = 1, 2, ..., d, (1)

dBt = Btrdt. (2)We de�ne the portfolio strategy as βt = (β1
t , β

2
t , ..., β

d
t )

⊤, where βi
t repre-sents the proportion of the total wealth invested in the i-th asset at time t.For simpli
ity we �x the initial 
apital X0. The wealth pro
ess then follows

dXt = Xt[r + β⊤

t (µ− r1)]dt +Xtβ
⊤

t σdwt, (3)where 1 = (1, 1, ..., 1)⊤.The existen
e of the state pri
e density pro
ess ξt ensures the market
ompleteness (under no-arbitrage). The sto
hasti
 di�erential equation for ξtis given as
dξt = −ξt[rdt+ κ⊤dwt], (4)where κ = σ−1(µ − r1) is the market pri
e of the risk pro
ess and is also
onsidered to be 
onstant over time. In all 
ases we 
onsider the portfolio tobe self-�nan
ing

E[ξTXT ] ≤ ξ0X0,i.e. after the initial investment, no further investments are needed (the as-sumption of zero net investments), and buying or selling one type of asset isbalan
ed by selling or buying other assets (the prin
iple of self-�nan
ing).The agent strives to utilize the expe
ted terminal wealth U(XT ). Theutility fun
tion U is assumed to be in
reasing, 
on
ave and twi
e 
ontinuouslydi�erentiable. In our work, we fo
us on the power utility fun
tions of the form
U(X) =

X1−γ

1− γ
, γ > 0. (5)We ex
lude the 
ase when γ = 1, as in this 
ase the utility fun
tion islogarithmi
.



By Prigent [12℄, the power utility fun
tions have a 
onstant Arrow-Prattmeasure of relative risk-aversion in the form
R(WT ) = −WT

U(WT )
′′

U(WT )′
= γ.Mehra and Pres
ott [6℄ state that a reasonable relative risk-aversion takesvalues between γ ∈ 〈2, 10〉. The higher the parameter of the risk aversion is,the more 
onservative the agent is.Note that in the literature, the power utility fun
tion 
an also be referredto as isoelasti
 fun
tion or CRRA (Constant Relative Risk Aversion) fun
tion.3.2 Power utility maximizationWhen using the power utility fun
tion and assuming no strategy 
onstraints,our aim is to �nd the optimal portfolio strategy that maximizes the expe
tedutility from the terminal wealth, i.e.

max
β

E

[

X
1−γ
T

1− γ

]

, (6)where we maximize through all dynami
 strategies β. By Nutz [8℄, the optimalportfolio strategy is the argmax of a deterministi
 fun
tion
η(β) = r + βT (bR − r1)− γ

2
βT cRβ (7)and 
an be expressed as

β̂ =
1

γ
(cR)−1(µ− r1). (8)Let S ⊆ R

d be the set of 
onstraints imposed on the agent. Then the setof admissible strategies a

ording to the initial wealth X0 is
A(X0) := {β : Xt > 0 and βt ∈ S for all t ∈ 〈0, T 〉}.In 
ase of �xed X0, we simply write A instead of A(X0) and we optimize

max
β∈A

E

[

X
1−γ
T

1− γ

]

. (9)Theorem 1 ([8℄, Theorem 3.2.). Assume that S is 
onvex and there is noarbitrage on the market. Then, there exists an optimal strategy β̂ su
h that
β̂ is a 
onstant ve
tor and is 
hara
terized by

β̂ ∈ argmax
β∈S

η(β), (10)where η(.) is given in (7).



4 Portfolio insuran
e with guaranteed �oorThe main idea of insuring the portfolio against losses is to guarantee a min-imum return and simultaneously allow the portfolio to parti
ipate on therising market.The OBPI strategy 
onsist of a portfolio 
overed by a put option writtenon it. The put option has the same maturity T as the portfolio and its strikepri
e W is the prede�ned �oor. The basi
 overview of OBPI 
an be found in[2℄. Let the risky portfolio X , invested in d risky assets and a non-risky bondfollow the pro
ess
dXt = XtµXdt+Xt σXdwt, (11)where µX = r + β⊤(µ− r) is the drift of the portfolio, σX =

√

β⊤cRβ is thevolatility of the portfolio and wt is a one-dimensional Brownian motion.Let V put
t be the pri
e of the put option and V call

t be the pri
e of the 
alloption with maturity T and strike pri
e W at time t ∈ 〈0, T 〉. The value ofthe insured portfolio Wt at time t is given as
Wt = Xt + V

put
t

= We−r(T−t) + V call
tdue to the put-
all parity. One 
an see that the value of the insured portfolio

Wt is always above the deterministi
 level We−r(T−t) at any time t.Using the Bla
k-S
holes pri
ing, the pri
es of V put
t and V call

t at time t 
anbe 
al
ulated as
V

put
t = We−r(T−t)Φ (−d2(W ))−XtΦ (−d1(W ) (12)
V call
t = XtΦ (d1(W ))− We−r(T−t)Φ (d2(W )) ,with

d1(W ) =
ln Xt

W
+
(

r +
σ2

X

2

)

(T − t)

σX
√
T − t

d2(W ) = d1 − σX
√
T − t,where Φ(.) is the standard normal distribution fun
tion.Possible di�
ulties might o

ur when the desired put option 
annot befound on the market. In su
h 
ase the put option 
an be synthesized by arepli
ation portfolio invested in the risk-free asset and the underlying portfo-lio. The repli
ation portfolio should have the same 
hara
teristi
s as the putoption (e.g. the value, payo� and risk).



The repli
ation portfolio at time t 
an be expressed as
Vt = ϕtXt + ψtBt, (13)where ϕt =

∂Vt

∂Xt

is the so 
alled delta of the option, in other words thesensitivity of the option-value on the value of the underlying portfolio. Thedelta of the put option ϕt 
an be 
omputed as
ϕt = Φ(d1(W ))− 1 (14)and one 
an easily see that −1 < ϕt < 0, for every t (see [?℄).Then the value of the insured portfolio 
an be expressed as

Wt = Xt + V
put
t

= Xt + ϕtXt + ψtBt

= (1 + ϕt)Xt + ψtBt.Be
ause the portfolio weights are 
al
ulated as
weighti =

money invested in the asset i

total money invested
,the new portfolio strategy 
an be expressed as

θit =
(1 + ϕt)β

iXt

Wt

, i = 1, ..., d. (15)Subsequently, the portfolio pro
ess follows
dWt =WtµWdt+WtσWdwt, (16)where the drift is µW = r+ θ⊤t (µ− r1), the volatility is σW =

√

θ⊤t c
Rθ⊤ and

wt is a one-dimensional Brownian motion.The OBPI ensures that the terminal wealth is always above the �oor
WT = XT + V Put

T

= XT +max(0, W −XT )

= max(XT , W ).



4.1 OBPI in the un
onstrained modelThe portfolio manager aims to maximize the utility from the expe
ted ter-minal wealth of the insured portfolio
max

θ
E

[

W
1−γ
T

1− γ

] (17)
s.t. WT ≥ W,where the maximum is taken through all dynami
 strategies θ. Note thatin order to avoid immediate arbitrage situations, the �oor must satisfy the
ondition W < W0e

rT , where W0 > 0 is the initial amount invested in theportfolio insured with OBPI.Theorem 2. The optimal portfolio strategy for the problem (17) is
θ̂t =

1

γ
[cR]−1(µ− r1)(1 + ϕt)Xt

Wt

,where Xt is given by (11), andWt follows (16). The fra
tion of wealth investedin sto
ks 
an be expressed as
θ̂t = qtβ̂, (18)where β̂ is the optimal portfolio strategy of the uninsured model without 
ons-traints (6), 
al
ulated by (8) and

qt =
(1 + ϕt)Xt

Wt

. (19)4.2 OBPI in the 
onstrained modelNow, let us 
onsider a portfolio with 
onvex 
onstraints on the portfoliostrategy and simultaneously it is insured by a put option. Mathemati
ally,our model 
an be written as
max

θ
E

[

W
1−γ
T

1− γ

] (20)
s.t. WT ≥W,

C = {θi ≥ 0, i = 1, 2, ..., d;
∑

θi ≤ 1}.Theorem 3. Let β̂ be the optimal portfolio strategy for the portfolio with
onvex 
onstraints, 
omputed as
β̂ = argmax

β∈C
β⊤(µ− r1)− 1

2
γβ⊤cRβ,



where C is given in problem (20). Let Xt follow (11) and Wt follow (16).Let ϕt be the delta of the put option 
al
ulated by (14). Then the portfoliostrategy
θt = (1 + ϕt)β̂

Xt

Wt

(21)is admissible for problem (20).Corollary 1. Let the solution β̂ 
omputed by (8) be optimal for the problem(6). In 
ase that the optimal solution β̂ with no 
onstraints on the portfoliostrategy satis�es β̂i ≥ 0 for i = 0, ..., d and ∑d

i=1 β̂
i ≤ 1, the portfolio strategy

θt =
(1 + ϕt)Xt

Wt

β̂ is optimal for the Problem (20).4.3 Alternative method in the 
onstrainedmodelNow, we provide an alternative strategy for the problem (20). Denote therisky asset by Xa with a given 
onstant portfolio strategy βa and let the in-sured portfolio be represented by Wa with a given dynami
 portfolio strategy
θat.Let the set of 
onstraints restri
t only the short positions of the riskyassets. Then the set of admissible strategies for βa 
an be des
ribed as Ca =
{ βai ≥ 0, i = 1, 2, ..., d}. We determine the optimal portfolio strategy β̂a ofthe risky asset Xa from (10), using S = Ca. The volatility of the risky asset
Xa is σXa =

√

β̂a
⊤

cR β̂a. Then Xa follows the pro
ess
dXat = Xat[r + β̂a

⊤

(µ− r1)]dt+ Xat σXadwt, (22)where wt is a one-dimensional Brownian motion.The insured portfolio Wa 
onsists of the risky asset Xa and a put optionwritten on it. Its value at time t 
an be expressed as
Wat = Xat + Va

put
t ,where Va

put
t is the value of the put option at time t. Let W be the strikepri
e of the put option and T be the maturity. Be
ause the parti
ular putoption might not be available on the market, we synthesize it.At time t, the delta of the put option 
an be 
al
ulated as

ϕat = Φ









ln
Xat

W
+

(

r +
σ2
Xa

2

)

(T − t)

σXa

√
T − t









− 1



and the 
andidate for the portfolio strategy is
ht = (1 + ϕat) β̂a

Xat

Wat
.The problem (20) requires that the sum of the portfolio weights does nota

ess the upper bound 1, therefore we de�ne the new portfolio strategy as

θat =































(1 + ϕat) β̂a
Xat

Wat
if ∑d

i=1 h
i
t ≤ 1,

(1 + ϕat) β̂a
Xat

Wat
∑d

i=1 h
i
t

if ∑d

i=1 h
i
t ≥ 1.Portfolio Wa then follows

dWat = Wat[r + θa⊤t (µ− r1)]dt+ Wat

√

θa⊤t c
R θatdwt. (23)Note that sin
e β̂a ∈ Ca, the portfolio strategy θat ≥ 0.Theorem 4. Let Ca = { βai ≥ 0, i = 1, 2, ..., d} and β̂a is 
al
ulated by

β̂a = arg max
βa∈Ca

βa⊤(µ− r1)− 1

2
γ βa⊤cR βa. (24)Let Wat be the value of the portfolio at time t. For Wat ≥ We−r(T−t), wede�ne the portfolio strategy θat as

θat =



















(1 + ϕat) β̂a
Xat
Wat

if ∑d

i=1 h
i
t ≤ 1,

(1 + ϕat) β̂a
Xat
Wat

∑d

i=1 h
i
t

if ∑d

i=1 h
i
t > 1,

(25)where hit = (1 + ϕat) β̂a
i Xat
Wat

. If Wa0 ≥ We−rT , then θat is admissible forthe problem (20) and Wat satis�es (23). Moreover, Wat ≥ We−r(T−t) for all
t ≥ 0 with probability 1.4.4 Sensitivity analysisLet us now examine the portfolio performan
e of the OPBI in the 
onstrainedmodel and the portfolio performan
e of the alternative method for di�erentsettings.



r C Ca1% 1.03372 1.033932% 1.05016 1.050284% 1.07097 1.07091 γ C Ca3 1.05437 1.056555 1.05016 1.050288 1.04391 1.04386 W C Ca0.98 1.06213 1.062401 1.05016 1.050281.01 1.04071 1.04078Table 1: Certainty equivalents of the OBPI in the 
onstrained model and ofthe alternative method.We 
ompare the two methods by 
hanging the values of the risk-free inte-rest rate r, the parameter of the power utility fun
tion γ and the �oor W . Weuse three risky assets and one risk-free bond to examine whether one methoddominates the other one. We 
hange only one parameter at the time, theremaining variables are kept �xed. We set the initial wealth W0 = 1, the ma-turity T = 1, the ve
tor of the expe
ted returns µ = (0.06626, 0.1113, 0.1625)and the 
ovarian
e matrix as cR =





0.02155 0.00825 0.00749
0.00825 0.01517 0.01190
0.00749 0.01190 0.05011



, basedon data analysis.By default, we set the risk-free interest rate r = 2%, the power utilityparameter γ = 5 and the �oor W = 1.Table 1 
ompares the 
ertainty equivalents of the OBPI in the 
onstrainedmodel and of the alternative method 
al
ulated as
C =

(

(1− γ)E

[

W
1−γ
T

1− γ

])

1

1−γ and Ca =

(

(1− γ)E

[

Wa
1−γ
T

1− γ

])

1

1−γ

.We see that there is no exa
t answer whether one should 
hoose the OBPIin the 
onstrained model or the alternative method. In other words, the OBPIis not optimal in the 
onstrained model.When 
hanging the interest rate r or the parameter of the absolute risk-aversion γ, none of the methods dominate the other one. When 
hanging the�oor W , in our spe
i�
 settings, the alternative method dominates the OBPIin 
onstrained model.5 Portfolio insuran
e with a partially guaran-teed �oorIn this se
tion, we allow the portfolio to fall under the guaranteed �oor witha given probability. We show that the Value-at-Risk based risk managementin the 
onstrained model is not admissible and we provide an alternativeadmissible strategy to it, the portfolio insuran
e with spreads.



5.1 Value-at-Risk based risk managementIn 
ase of insuring the portfolio with a put option, the terminal value WT ofthe portfolio does not fall under the prede�ned �oor, i.e. WT ≥ W with theprobability of 100%. Now, let us investigate the 
ase of relaxing the 
ondition
P (WT ≥W ) = 1and 
onsider instead the probability of falling under the prede�ned �oor tobe less than α, i.e.

P (WT ≥W ) ≥ 1− α. (26)Inequality (26) represents the so-
alled Value-at-Risk 
onstraint.Note that for α = 1 the investor behaves as a ben
hmark agent, whodoes not 
onsider any risk management. If α = 0, the investor behaves asa portfolio insurer (se
uring with put options). In su
h 
ase the terminalwealth will ex
eed the ��oor� at all states.5.2 VaR-RM in the un
onstrained modelOur goal is to maximize the expe
ted utility from the terminal wealth underVaR-RM
max

θ
E[U(WT )] (27)

s.t. P (WT ≥W ) ≥ 1− α,where we maximize through all dynami
 strategies θ and the initial is givenas W0.The next proposition introdu
es the optimal wealth and portfolio strategyassuming that the utility fun
tion is isoelasti
.Proposition 1. [[1℄, Proposition 3.℄ Assume that U(W ) =
W 1−γ

1− γ
for γ > 0and that r and κ are 
onstants. Theni ) The optimal wealth at time t is given by

W V aR
t =

eΓ
V aR
t

(yξt)
1

γ

−

−
[

eΓ
V aR
t

(yξt)
1

γ

Φ
(

−dV aR
1 (ξ)

)

− We−r(T−t)Φ
(

−dV aR
2 (ξ)

)

]

+

[

eΓ
V aR
t

(yξt)
1

γ

Φ
(

−dV aR
1 (ξ)

)

− We−r(T−t)Φ
(

−dV aR
2 (ξ)

)

]

,



where Φ(.) is the standard-normal 
umulative distribution fun
tion, y ≥
0 solves E[ξTW V aR

T (y)] = ξ0X0 and
ξ =

1

yW γ ,

ΓV aR
t =

1− γ

γ

(

r +
‖κ‖2
2

)

(T − t) +

(

1− γ

γ

)2 ‖κ‖2
2

(T − t),

dV aR
2 (x) =

ln
x

ξt
+

(

r − ‖κ‖2
2

)

(T − t)

‖κ‖
√
T − t

,

dV aR
1 (x) = dV aR

2 (x) +
1

1− p
‖κ‖

√
T − t.ii ) The fra
tion of wealth invested in sto
ks is

θV aR
t = qV aR

t β̂,where β̂ is the portfolio strategy of the ben
hmark agent, 
al
ulated by(8) and
qV aR
t = 1−

We−r(T−t)
[

Φ
(

−dV aR
2 (ξ)

)

− Φ
(

−dV aR
2 (ξ)

)]

W V aR
t

+
γ
(

W − W
)

e−r(T−t)φ
(

dV aR
2 (ξ)

)

W V aR
t ‖κ‖

√
T − t

,where φ(.) is the standard-normal probability fun
tion.iii ) The exposure to risky assets relative to the ben
hmark is bounded below,namely qV aR
t ≥ 0 and

lim
ξt→0

qV aR
t = lim

ξt→∞
qV aR
t = 1.Note that W V aR

t is a de
reasing fun
tion of ξt for all t ∈ 〈0, T 〉.The advantage of fo
using on power utility fun
tions is that knowing theoptimal strategy β̂ of the ben
hmark agent and the ratio qV aR, whi
h 
anbe 
al
ulated from the model settings, one 
an easily determine the optimalstrategy θV aR
t of the maximizing problem under VaR-RM at ea
h time t.



5.3 VaR-RM in the 
onstrained modelBasak and Shapiro [1℄ derived the VaR-RM model for the portfolio with nostrategy 
onstraints. We show that when the portfolio strategy is 
onstrained,the VaR-RM is not admissible.Let C be the set of all admissible portfolio strategies where short-sellingis prohibited and the agent is not allowed to borrow risk-free bonds or 
ashto �nan
e the pur
hase of further risky assets:
C = {θi ≥ 0, i = 1, 2, ...d;

d
∑

1

θi ≤ 1}.Using the power utility fun
tion, we 
an de�ne the VaR-RM problem in the
onstrained model as
max
θV aR

E

[

(W V aR
T )1−γ

1− γ

] (28)
s.t. P (W V aR

T ≥W ) ≥ 1− α,

C = {(θV aR
t )i ≥ 0, i = 1, 2, ...d;

d
∑

1

(θV aR
t )i ≤ 1, ∀t ∈ (0, T )},with a given initial W0.Theorem 5. Let θV aR

t represent the portfolio strategy of the VAR-RM agent.For any θV aR
t , the sum ex
eeds one, i.e.

d
∑

i=1

(θV aR
t )i ≥ 1,with positive probability. Hen
e the strategy θV aR

t is not admissible for theproblem (28).5.4 Portfolio insuran
e with spreadsThe Value-at-Risk based risk management was developed for portfolios withno 
onstraints on the portfolio strategy. We showed that su
h a strategy isuseless when 
onstraints, su
h as restri
ting the short selling of all risky orrisk-free assets, are required. Insuring the portfolio with a put spread 
aneliminate this problem.A

ording to the VaR-
onstraint (26) we adjust our strategy in a followingway:



• in 
ase the risky asset XT satis�es the 
ondition, we do not insure theportfolio at all,
• in 
ase the risky asset XT does not satisfy the 
ondition, we modify theportfolio by buying a put option with the strike pri
e W and selling aput option with strike pri
e W su
h that P (XT ≥ W ) = 1− α.Formally, we 
an express the above strategy as

W =

{

X + Put(XT ≥W )− Put(XT ≥ W ) if P (XT ≥W ) < 1− α,

X if P (XT ≥W ) ≥ 1− α.
(29)A

ording to this strategy, we leave the worst α% 
ases uninsured.From Ito's lemma, the 
ondition P (XT ≥ W ) ≥ 1 − α 
an be expressedas W ≤ W, where W = X0e

Γ with
Γ =

(

r + β⊤(µ− r1)− 1

2
σ2
X

)

T − σX
√
TΦ−1(1− α).In 
ase that W < W and the put options are synthesized, we 
an expressthe portfolio value as

Wt = Xt + Putt(XT ≥ W )− Putt(XT ≥ W )

= Xt + ϕt(W )Xt + ψt(W )Bt − ϕt(W )Xt − ψt(W )Bt

=
[

1 + ϕt(W )− ϕt(W )
]

Xt + [ψt(W )− ψt(W )]Bt,where ϕt(W ) = Φ(d1(W )) − 1 is the delta of the option with strike Wand ϕt(W ) = Φ(d1(W )) − 1 is the delta of the option with strike W . Thedi�eren
e ϕt(W )− ϕt(W ) is 
alled the hedging ratio.Note that is 
ase when W ≥ W , it holds that Wt = Xt.5.5 Portfolio insuran
e with spreads in the un
onstrai-ned modelsWe investigate the problem
max

θ
E

[

W
1−γ
T

1− γ

] (30)
s.t. P (WT ≥W ) ≥ 1− α.In this 
ase, there are no 
onstraints required on the portfolio strategy.



Theorem 6. Let β̂ be the optimal portfolio strategy, 
omputed by (8). Thenthe portfolio strategy de�ned by
θt =

{

[1+ϕt(W )−ϕt(W )]β̂Xt

Wt
if W < W,

β̂ if W ≥ W
(31)guarantees that P (WT ≥W ) ≥ 1− α.5.6 Portfolio insuran
e with spreads in the 
onstrainedmodelsWe investigate the problem

max
θ
E

[

W
1−γ
T

1− γ

] (32)
s.t. P (WT ≥ W ) ≥ 1− α,

C = {θi ≥ 0, i = 1, 2, ..., d;
∑

θi ≤ 1}.We provide an admissible solution for the problem (32) in the followingtheorem.Theorem 7. Let β̂ be the optimal portfolio strategy with 
onvex 
onstraints,
omputed by
β̂ = argmax

β∈C
β⊤(µ− r1)− 1

2
γβ⊤cRβ, (33)where C is de�ned as in problem (32). Then the portfolio strategy

θt =

{

[1+ϕt(W )−ϕt(W )]β̂Xt

Wt
if W < W,

β̂ if W ≥ Wis admissible for the problem (32).5.7 ExampleSin
e the VaR-RM is not admissible in the 
onstrained model, we 
an 
om-pare the 
ertainty equivalent of the portfolio insuran
e with spreads in the
onstrained model with the 
ertainty equivalent of the VaR-RM in the un-
onstrained model. We set the risk-free interest rate r = 2%, the param-ter of the utility fun
tion γ = 5, the initial wealth W0 = 1, the timeto maturity T = 1, probability level α = 0.05, the expe
ted returns on



W CV aR C0.98 1.089074 1.0702600.99 1.088262 1.0668771 1.087253 1.0624471.01 1.086015 1.0564511.015 1.085303 1.052541Table 2: Certainty equivalents of the VaR-RM and the of the portfolio insur-an
e with spreads in the 
onstrained model.the risky assets µ = (0.06626, 0.1113, 0.1625) and the 
ovarian
e matrix as
cR =





0.02155 0.00825 0.00749
0.00825 0.01517 0.01190
0.00749 0.01190 0.05011



, based on data analysis. Table (5.7)
ompares the 
ertainty equivalents of the VaR-RM and of the portfolio in-suran
e with spreads for di�erent levels of the �oor.The 
ertainty equivalents of the portfolio insuran
e with spreads are sig-ni�
antly lower than those of the VaR-RM. The average di�eren
e betweenthe 
ertainty equivalents of the VaR-RM and of the portfolio insuran
e withspreads in the 
onstrained model is approximately 2.5%.6 Con
lusionsThe main obje
tive of our work was to examine the portfolio insuran
e whenshort-selling of both risky and risk-free assets is prohibited. Our goal wasto provide a dynami
 portfolio strategy that satis�es su
h 
onstraints andmaximizes the expe
ted utility from the partially guaranteed terminal wealth.Assuming that the terminal wealth of the portfolio is not allowed to fallunder the prede�ned level with probability one and that short-selling is pro-hibited, we provided two admissible strategies, the OBPI in the 
onstrainedmodel and the alternative method. Based on the results of sensitivity analy-sis, we 
on
luded that none of the methods dominates the other.Under the assumption that the terminal wealth is partially allowed to fallunder the prede�ned �oor, the Value-at-Risk based risk management in the
onstrained model turned out not to be admissible, hen
e we provided analternative to it, the portfolio insuran
e with spreads, whi
h is an admissiblesolution. The portfolio insuran
e with spreads is not an optimal strategy,hen
e its 
ertainty equivalents were signi�
antly lower that the 
ertaintyequivalents of the VaR-RM.
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