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1 Introduction

The problem of maximizing the expected utility over a given time horizon is
one of the most frequently examined problems in financial mathematics. One
can achieve the maximum expected utility by choosing the proper portfolio
strategy, i.e. by optimal allocation of the available funds among risky and
risk-free assets.

The problem was first examined by P. A. Samuelson. In his work [13],
Samuelson considers the return on the risky asset to be stochastic with a
general probability distribution. He presents the model in a discrete form
and interprets it as a problem of dynamic stochastic programming, solving
the Bellman equation. He states that for power utility functions, the optimal
portfolio strategy is constant over time. Merton [7] confirms the results of
Samuelson for a continuous-time case, assuming that the returns on the risky
assets are generated by a Brownian motion.

In his work, Nutz [8] expands the power utility maximization problem
using a special case, when the prices follow the exponential Lévy process.
His approach to the problem is also based on the construction of the corre-
sponding Bellman equation. Nutz proves that the results of Samuelson and
Merton hold in this case too. Additionally, Nutz examines the case when the
portfolio strategy is constrained by a fixed convex set and shows that in such
case the optimal portfolio strategy is also constant. In [9], Nutz considers
stochastic portfolio constraints and shows that the portfolio strategy can be
obtained as the argmax of a predictable function.

No portfolio with risky assets guarantees any return. The aim of the
portfolio insurance is to limit the losses and simultaneously to allow the
participation on the rising market. The idea of insuring the portfolio against
losses was first introduced by H. Leland and M. Rubinstein in 1976. They
developed the option based portfolio insurance, also referred to as OBPI. The
OBPI consists of a risky asset and a put option written on it. The strike price
of the put option represents the floor such that the value of the investment
at the maturity is higher than the floor with 100% probability.

There is a possibility that the required put option is not available on
the market. By Leland and Rubinstein [4], in such case one can synthesize
the put option with a replication portfolio that consists of the underlying
asset and a risk-free bond. Using the replication portfolio the OBPI becomes
dynamic, so that one can guarantee the discounted level of the floor at any
time from the beginning until the maturity.

In 1986, Perold [10] introduced another type of dynamic portfolio insur-
ance, the constant proportion portfolio insurance, also referred to as CPPI
(see also [11]). The CPPI agent first determines the floor under which the



portfolio is not allowed to fall at the terminal date. At each time he calculates
the difference between the discounted level of the floor and the actual value of
the portfolio, the so-called cushion. The exposure to the risky assets is calcu-
lated as the cushion multiplied by a predefined constant multiplier. Both the
floor and the multiplier are the characteristics of the agents risk-tolerance.

While the OBPI and CPPI methods require a guaranteed floor with prob-
ability one, the Value-at-Risk based risk management guarantees the floor
with a given probability less than one. Basak and Shapiro [1] introduced the
power utility optimization model using the Value-at-Risk based risk manage-
ment (also called VaR-RM).

2 Goals of the thesis

Even though both the optimal portfolio selection and the portfolio insurance
were examined by many scientists, it still offers many research opportunities.
The aim of this work is to bring together these two areas, specifically, we
investigate how to insure the portfolio when convex constraints are imposed
on the portfolio strategy. We intend to provide either optimal or admissible
solutions for the problem of dynamic portfolio optimization with risk man-
agement and strategy constraints.

We specify the convex constraints representing the case when short-selling
of both the risky and risky-free assets is prohibited. Our goal is to investigate
two main areas

e the portfolio insurance with a guaranteed floor in the constrained mo-
del,

e the portfolio insurance with a partially guaranteed floor in the cons-
trained model,

provide different methods of solution and compare them based on their cer-
tainty equivalents.

3 Methods and results

3.1 Economic settings

Let T > 0 represent the time horizon and let the triplet (2, F, P) repre-
sent the probability space. We use d risky assets and one risk-free bond to
construct our portfolio.



For a given quantity, we use the upper index i = 1,2, ...,d to represent
a particular asset and the lower index t € (0,7") to express the time depen-
dence.

We denote the expected return on the asset i by u’, the positive defi-
nite volatility matrix by ¢ = {¢%,i = 1,...,d,j7 = 1,...,d}, the covariance
matrix by ¢ = 00" and the risk-free interest rate by r. We consider these
parameters to be constant over the time.

Let w; = (w},w?,...,w?) " be an Ré%valued Brownian motion on the prob-
ability space (€2, F, P). Then the prices of the risky assets and the non-risky
bond follows

dB, = Byrdt. (2)

We define the portfolio strategy as 8; = (8}, 5%, ..., 84) ", where S! repre-
sents the proportion of the total wealth invested in the i-th asset at time t.
For simplicity we fix the initial capital X,. The wealth process then follows

dX, = X[r + B (u — r1)]dt + X, 3, odwy, (3)

where 1 = (1,1,...,1)".

The existence of the state price density process & ensures the market
completeness (under no-arbitrage). The stochastic differential equation for &
is given as

dé = —&[rdt + k" dwy), (4)

where k = o~ !( — r1) is the market price of the risk process and is also
considered to be constant over time. In all cases we consider the portfolio to
be self-financing

El§rXr] < §Xo,

i.e. after the initial investment, no further investments are needed (the as-
sumption of zero net investments), and buying or selling one type of asset is
balanced by selling or buying other assets (the principle of self-financing).
The agent strives to utilize the expected terminal wealth U(Xr). The
utility function U is assumed to be increasing, concave and twice continuously
differentiable. In our work, we focus on the power utility functions of the form

Xt
UX) = , > 0. 5
XK)=t—. )
We exclude the case when v = 1, as in this case the utility function is

logarithmic.



By Prigent [12], the power utility functions have a constant Arrow-Pratt
measure of relative risk-aversion in the form

U(WT)II
RWr) = -Wp——"ts =
W) = =W G wy
Mehra and Prescott [6] state that a reasonable relative risk-aversion takes
values between v € (2,10). The higher the parameter of the risk aversion is,
the more conservative the agent is.
Note that in the literature, the power utility function can also be referred

to as isoelastic function or CRRA (Constant Relative Risk Aversion) function.

3.2 Power utility maximization

When using the power utility function and assuming no strategy constraints,
our aim is to find the optimal portfolio strategy that maximizes the expected
utility from the terminal wealth, i.e.

X
max F [ T } : (6)

B 11—
where we maximize through all dynamic strategies 5. By Nutz [8|, the optimal
portfolio strategy is the argmax of a deterministic function

n(8) =r+ 87" —r1) — 257cRS (")

and can be expressed as
~ 1
8= §(CR)_1(M —rl). (8)

Let S C R? be the set of constraints imposed on the agent. Then the set
of admissible strategies according to the initial wealth X is

AXo) ={8:X;, >0 and p, €S forall te(0,7T)}.

In case of fixed Xy, we simply write A instead of A(X) and we optimize

max B {ﬁ;] | ()

Theorem 1 ([8], Theorem 3.2.). Assume that S is convexr and there is no

arbitrage on the market. Then, there exists an optimal strategy B such that
B is a constant vector and is characterized by

8 € arg max7(5), (10)

where n(.) is given in (7).



4 Portfolio insurance with guaranteed floor

The main idea of insuring the portfolio against losses is to guarantee a min-
imum return and simultaneously allow the portfolio to participate on the
rising market.

The OBPI strategy consist of a portfolio covered by a put option written
on it. The put option has the same maturity 7" as the portfolio and its strike
price W is the predefined floor. The basic overview of OBPI can be found in
[2].

Let the risky portfolio X, invested in d risky assets and a non-risky bond
follow the process

dXt = Xt,uth—i—Xt dewt, (11)

where px =7+ 87 (1 — ) is the drift of the portfolio, ox = /3 cEf is the
volatility of the portfolio and w; is a one-dimensional Brownian motion.

Let V7" be the price of the put option and V;* be the price of the call
option with maturity 7" and strike price W at time ¢ € (0, 7). The value of
the insured portfolio W, at time ¢ is given as

W, = X, + VP
— we—r(T—t) + ‘/tcall
due to the put-call parity. One can see that the value of the insured portfolio
W, is always above the deterministic level We 7T~ at any time ¢.
Using the Black-Scholes pricing, the prices of V" and Vel at time ¢ can

be calculated as

VP = WeT 00 (—dy( W) — X, ® (—di (W) (12)

Vel = Xo® (dy (W) — We™ 00 (dy(W)),

with

ln%+<r+%§> (T —1)

di(W) =
dg(w) :dl — O0x T—t,

where ®(.) is the standard normal distribution function.

Possible difficulties might occur when the desired put option cannot be
found on the market. In such case the put option can be synthesized by a
replication portfolio invested in the risk-free asset and the underlying portfo-
lio. The replication portfolio should have the same characteristics as the put
option (e.g. the value, payoff and risk).



The replication portfolio at time ¢ can be expressed as
Vi = @1 Xy + By, (13)

v
where ¢, = 87t is the so called delta of the option, in other words the
t

sensitivity of the option-value on the value of the underlying portfolio. The
delta of the put option ¢, can be computed as

pr=P(di (W) — 1 (14)

and one can easily see that —1 < ¢, < 0, for every t (see [?]).
Then the value of the insured portfolio can be expressed as

W, = X, +vr
= Xy +oXy + By
= (14 ) Xi + By

Because the portfolio weights are calculated as

money invested in the asset i

weight' =
g total money invested

the new portfolio strategy can be expressed as

(1+ @t)ﬁiXt

0; = W, i=1,...d. (15)
Subsequently, the portfolio process follows
th = Wt,UWdt + Wtawdwt, (16)

where the drift is uy = r+ 60, (un —r1), the volatility is o = /6, c20T and
w; 18 a one-dimensional Brownian motion.
The OBPI ensures that the terminal wealth is always above the floor

Wp = Xp + Vit
= XT + max((), E - XT)
= max(Xp, W).



4.1 OBPI in the unconstrained model

The portfolio manager aims to maximize the utility from the expected ter-
minal wealth of the insured portfolio

Wy
E|—L 1
max L —V] (17)
s.t. WT Z wa

where the maximum is taken through all dynamic strategies 6. Note that
in order to avoid immediate arbitrage situations, the floor must satisfy the
condition W < Wye'', where W, > 0 is the initial amount invested in the
portfolio insured with OBPI.

Theorem 2. The optimal portfolio strategy for the problem (17) is

i 1 - (1+ 1) Xy
0, = =Y —r1)—F2=,
t 7[ 7 ) W,
where Xy is given by (11), and Wy follows (16). The fraction of wealth invested
in stocks can be expressed as

0 = B, (18)
where B 15 the optimal portfolio strategy of the uninsured model without cons-
traints (6), calculated by (8) and

(14 @) X,

W, (19)

qr =

4.2 OBPI in the constrained model

Now, let us consider a portfolio with convex constraints on the portfolio
strategy and simultaneously it is insured by a put option. Mathematically,
our model can be written as

1—y
max E [WT ] (20)
0 1—v
s.t. WT Z w,

C={0">0,i=12..d>» <1}

Theorem 3. Let B be the optimal portfolio strategy for the portfolio with
conver constraints, computed as

R 1
T T R
= —rl) ==
B arg max B (p—rl) 275 c'B,



where C is given in problem (20). Let X; follow (11) and W, follow (16).
Let ¢y be the delta of the put option calculated by (14). Then the portfolio
strateqy

0, = (1+ ) (21)

Xt
W,
is admissible for problem (20).

Corollary 1. Let the solutionB computed by (8) be optimal for the problem
(6). In case that the optimal solution B with no constraints on the portfolio
strategy satisfies Bl >0 fori=0,...,d and Z 6’ < 1, the portfolio strategy

1 X A
0, = %B is optimal for the Problem (20).
t

4.3 Alternative method in the constrained
model

Now, we provide an alternative strategy for the problem (20). Denote the
risky asset by Xa with a given constant portfolio strategy (o and let the in-
sured portfolio be represented by Wa with a given dynamic portfolio strategy
Q.

Let the set of constraints restrict only the short positions of the risky
assets. Then the set of admissible strategies for fa can be described as Ca =
{Ba® >0, i=1,2,...,d}. We determine the optimal portfolio strategy A of
the risky asset Xa from (10), using S = Ca. The volatility of the risky asset

~ T R
Xa is ox, = \/ fa ¢ fa. Then Xa follows the process

dXay = Xag[r + Ba (n—rl)|dt + Xay oxgdwy, (22)

where w, is a one-dimensional Brownian motion.
The insured portfolio Wa consists of the risky asset Xa and a put option
written on it. Its value at time ¢ can be expressed as

Mt XCLt + Vaput s

where Va?™ is the value of the put option at time t. Let T be the strike
price of the put option and 7" be the maturity. Because the particular put
option might not be available on the market, we synthesize it.

At time ¢, the delta of the put option can be calculated as

X 2
g+ (2 -0
pa; = P — -1
OXq T—1t




and the candidate for the portfolio strategy is

A Xat
hy = (1 e
r =1+ @at)ﬁawat

The problem (20) requires that the sum of the portfolio weights does not
access the upper bound 1, therefore we define the new portfolio strategy as

(

s Xag . d i
(1 + gpat) /&IW% lf Zi:l ht S 1,

F
I

X(Zt

1 3, 0t
(1+ (’Oat)ﬁaWzt

\ Soi i
Portfolio Wa then follows
dWay, = Way[r + 6/ (u — r1))dt + W/ 6o R b, dw,. (23)

Note that since G € Ca, the portfolio strategy ¢, > 0.

it S0 hi>1.

Theorem 4. Let Ca = {fa’ >0, i =1,2,...,d} and [ is calculated by
R 1
T TR
= —rl)— - . 24
fo=argmax fo' (p—r1)—gyfa c*f (24)

Let Wa, be the value of the portfolio at time t. For Wa, > We T~ we
define the portfolio strategy Gu; as

(1+ par) fadar if Y hi<1,

o, = (25)

(14 par) fadee
>y hi
where hi = (1 + pay) BCLZ‘)/[(/—ZZ If Wag > We ™, then G, is admissible for

the problem (20) and Wa, satisfies (23). Moreover, Wa, > We ™"~ for all
t > 0 with probability 1.

if YL hi> 1,

4.4 Sensitivity analysis

Let us now examine the portfolio performance of the OPBI in the constrained
model and the portfolio performance of the alternative method for different
settings.



r c Ca e Ca W c Ca
1% | 1.03372 | 1.03393 3 | 1.05437 | 1.05655 0.98 | 1.06213 | 1.06240
2% | 1.05016 | 1.05028 5 | 1.05016 | 1.05028 1 | 1.05016 | 1.05028
4% | 1.07097 | 1.07091 8 1.04391 | 1.04386 1.01 | 1.04071 | 1.04078

Table 1: Certainty equivalents of the OBPI in the constrained model and of
the alternative method.

We compare the two methods by changing the values of the risk-free inte-
rest rate r, the parameter of the power utility function v and the floor W. We
use three risky assets and one risk-free bond to examine whether one method
dominates the other one. We change only one parameter at the time, the
remaining variables are kept fixed. We set the initial wealth W = 1, the ma-
turity 7" = 1, the vector of the expected returns u = (0.06626,0.1113,0.1625)
0.02155 0.00825 0.00749

and the covariance matrix as ¢* = [ 0.00825 0.01517 0.01190 |, based
0.00749 0.01190 0.05011

on data analysis.

By default, we set the risk-free interest rate r = 2%, the power utility
parameter v = 5 and the floor W = 1.

Table 1 compares the certainty equivalents of the OBPI in the constrained
model and of the alternative method calculated as

o (<1 —)E Hffv]) 7 and o= (<1 —)E HVQ—TvD

We see that there is no exact answer whether one should choose the OBPI
in the constrained model or the alternative method. In other words, the OBPI
is not optimal in the constrained model.

When changing the interest rate r or the parameter of the absolute risk-
aversion vy, none of the methods dominate the other one. When changing the
floor W, in our specific settings, the alternative method dominates the OBPI
in constrained model.

5 Portfolio insurance with a partially guaran-
teed floor

In this section, we allow the portfolio to fall under the guaranteed floor with
a given probability. We show that the Value-at-Risk based risk management
in the constrained model is not admissible and we provide an alternative
admissible strategy to it, the portfolio insurance with spreads.



5.1 Value-at-Risk based risk management

In case of insuring the portfolio with a put option, the terminal value Wy of
the portfolio does not fall under the predefined floor, i.e. Wy > W with the
probability of 100%. Now, let us investigate the case of relaxing the condition

PWr>W)=1

and consider instead the probability of falling under the predefined floor to
be less than «, i.e.
PWr>W)>1-a. (26)

Inequality (26) represents the so-called Value-at-Risk constraint.

Note that for &« = 1 the investor behaves as a benchmark agent, who
does not consider any risk management. If a = 0, the investor behaves as
a portfolio insurer (securing with put options). In such case the terminal
wealth will exceed the “floor” at all states.

5.2 VaR-RM in the unconstrained model

Our goal is to maximize the expected utility from the terminal wealth under
VaR-RM

max EUWr)] (27)
s.t. P(WTZE)Zl—Oé,
where we maximize through all dynamic strategies 6 and the initial is given
as Wo.

The next proposition introduces the optimal wealth and portfolio strategy
assuming that the utility function is isoelastic.

1—y

Proposition 1. [[1], Proposition 3.] Assume that U(W) = 1 for v >0

and that v and k are constants. Then

i ) The optimal wealth at time t is given by

WYeR = 6FyaRl _

g?/ft); i
we)t (=d*(©) = We 0@ (=dy " (©))
L (Y&e)7

eréfaR

+ ICI) _d}/aRE . wefr(Tft)q) _d;/aRg ’
C o () (~dt°"@)

eréfaR




where ®(.) is the standard-normal cumulative distribution function, y >
0 solves E[érW)Y R (y)] = &Xo and

var _ 1 =1 ]| 1 —19 ’ 15[
ry*" = (T+ T—1t)+ T—1),

2
1n§+(r—@) (T —t)

dVaR(z) — 7
’ [klVT =t

1
d?“@ﬂZd?£@%+1_pwva—t

ii ) The fraction of wealth invested in stocks is

ez/aR _ qz/aRB7
where B s the portfolio strategy of the benchmark agent, calculated by
(8) and
g = o LT[R - @ (dE)

V[/tVaR
~ (E _ l) e—r(T—t)¢ (dgaR(g»
W/ Rl VT —t ’

where ¢(.) is the standard-normal probability function.

+

iii ) The exposure to risky assets relative to the benchmark is bounded below,
namely ¢ *% > 0 and

lim g% =

VaR 1
= ) =1.
§&—0 13

lim ¢
t—>00

Note that W,Y*® is a decreasing function of & for all ¢ € (0,T').

The advantage of focusing on power utility functions is that knowing the
optimal strategy 3 of the benchmark agent and the ratio ¢"%f, which can
be calculated from the model settings, one can easily determine the optimal
strategy 0)%® of the maximizing problem under VaR-RM at each time .



5.3 VaR-RM in the constrained model

Basak and Shapiro [1] derived the VaR-RM model for the portfolio with no
strategy constraints. We show that when the portfolio strategy is constrained,
the VaR-RM is not admissible.

Let C be the set of all admissible portfolio strategies where short-selling
is prohibited and the agent is not allowed to borrow risk-free bonds or cash
to finance the purchase of further risky assets:

d
C={0">0i=1,2,..d;» 0 <1}.
1

Using the power utility function, we can define the VaR-RM problem in the
constrained model as

VaR\1—v
max W) (28)
9gVaR 1— 0

st.  PWY“R>W)>1-aq,

d
C={(0/"") >0,i=12..d> (0" <1,Vte (0,7}
1

with a given initial W).

Theorem 5. Let 0) " represent the portfolio strategy of the VAR-RM agent.
For any 0Y R, the sum exceeds one, i.e.

d

> O =1,

=1

VaR
Qt

with positive probability. Hence the strategy 15 not admissible for the

problem (28).

5.4 Portfolio insurance with spreads

The Value-at-Risk based risk management was developed for portfolios with
no constraints on the portfolio strategy. We showed that such a strategy is
useless when constraints, such as restricting the short selling of all risky or
risk-free assets, are required. Insuring the portfolio with a put spread can
eliminate this problem.

According to the VaR-constraint (26) we adjust our strategy in a following
way:



e in case the risky asset Xr satisfies the condition, we do not insure the
portfolio at all,

e in case the risky asset X7 does not satisfy the condition, we modify the
portfolio by buying a put option with the strike price W and selling a
put option with strike price W such that P(Xy > W) =1 —a.

Formally, we can express the above strategy as

Wo— X+ Put(Xp > W) — Put(Xy > W) if P(Xp >W) <1-aq, (29)
X if P(Xp>W)>1-—a.
According to this strategy, we leave the worst a% cases uninsured.
From Ito’s lemma, the condition P(Xy > W) > 1 — a can be expressed
as W < W, where W = Xye! with

= (r + B (u—rl) — %a)%) T — oxVT® (1 - a).

In case that W < W and the put options are synthesized, we can express
the portfolio value as

Wt == Xt + Putt(XT Z w) - Putt(XT Z l)
= Xi+ (W) Xy + (W) By — (W) Xy — ¢e( W) By

= [1+ (W) — oo W] Xy + [1he( W) — b, (W) By,

where @i( W) = ®(dy(W)) — 1 is the delta of the option with strike W
and (W) = ®(dy(WW)) — 1 is the delta of the option with strike W. The

difference (W) — (W) is called the hedging ratio.

Note that is case when W > W it holds that W} = X;.

5.5 Portfolio insurance with spreads in the unconstrai-
ned models

We investigate the problem

1—y
max F {WT }
0 11—~
st. PWr>W)>1-a.

In this case, there are no constraints required on the portfolio strategy.



Theorem 6. Let@ be the optimal portfolio strategy, computed by (8). Then
the portfolio strateqy defined by

[ (W) =0 (W) | B
0, = . Wt

p
>

(31)

< <

<<
VA
< [E

guarantees that P(Wp > W) > 1 — a.

5.6 Portfolio insurance with spreads in the constrained
models

We investigate the problem

1—y
max £ [WT ] (32)
0 1—v

st. PWr>W)>1-a,
C={0">0,i=12..d>» <1}

We provide an admissible solution for the problem (32) in the following
theorem.

Theorem 7. LetB be the optimal portfolio strategy with convexr constraints,
computed by

~

1
B = argmax Bl (n—r1) - ivBTcRB, (33)

where C is defined as in problem (32). Then the portfolio strategy

. [1+w(w>;vft<ﬁ>]ﬁxt if W<W,
if W>W

~

is admissible for the problem (32).

5.7 Example

Since the VaR-RM is not admissible in the constrained model, we can com-
pare the certainty equivalent of the portfolio insurance with spreads in the
constrained model with the certainty equivalent of the VaR-RM in the un-
constrained model. We set the risk-free interest rate r = 2%, the param-
ter of the utility function v = 5, the initial wealth Wy = 1, the time
to maturity 7' = 1, probability level a = 0.05, the expected returns on



w CVaR C
0.98 | 1.089074 | 1.070260
0.99 | 1.088262 | 1.066877

1 1.087253 | 1.062447
1.01 | 1.086015 | 1.056451
1.015 | 1.085303 | 1.052541

Table 2: Certainty equivalents of the VaR-RM and the of the portfolio insur-
ance with spreads in the constrained model.

the risky assets p = (0.06626,0.1113,0.1625) and the covariance matrix as
0.02155 0.00825 0.00749

c® = 000825 0.01517 0.01190 |, based on data analysis. Table (5.7)
0.00749 0.01190 0.05011

compares the certainty equivalents of the VaR-RM and of the portfolio in-

surance with spreads for different levels of the floor.

The certainty equivalents of the portfolio insurance with spreads are sig-
nificantly lower than those of the VaR-RM. The average difference between
the certainty equivalents of the VaR-RM and of the portfolio insurance with
spreads in the constrained model is approximately 2.5%.

6 Conclusions

The main objective of our work was to examine the portfolio insurance when
short-selling of both risky and risk-free assets is prohibited. Our goal was
to provide a dynamic portfolio strategy that satisfies such constraints and
maximizes the expected utility from the partially guaranteed terminal wealth.

Assuming that the terminal wealth of the portfolio is not allowed to fall
under the predefined level with probability one and that short-selling is pro-
hibited, we provided two admissible strategies, the OBPI in the constrained
model and the alternative method. Based on the results of sensitivity analy-
sis, we concluded that none of the methods dominates the other.

Under the assumption that the terminal wealth is partially allowed to fall
under the predefined floor, the Value-at-Risk based risk management in the
constrained model turned out not to be admissible, hence we provided an
alternative to it, the portfolio insurance with spreads, which is an admissible
solution. The portfolio insurance with spreads is not an optimal strategy,
hence its certainty equivalents were significantly lower that the certainty
equivalents of the VaR-RM.
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