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Študijný odbor: 9.1.9 Aplikovaná matematika
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Abstract

We study the solidification of a binary alloy over a horizontally moving substrate.
Both cases without a mushy layer and with the mushy layer present in the system
are analysed, the phase interfaces being two-dimensional. The self-similar solutions
of the governing boundary-layer equations are found and analysed via the asymptotic
methods. The main goal of the thesis is to determine how the boundary-layer flow
influences the physical characteristics of the solidifying system. Some of the results
apply also to the systems with planar interfaces.

Keywords: Solidification of binary alloys • Mushy layers • Boundary layers •
Free-boundary problems • Self-similar solutions • Asymptotic approximations

AMS Subject Classification: 80A22 • 35C06 • 76M45



Abstrakt

V dizertačnej práci sa zaoberáme tuhnut́ım binárnej zmesi nad horizontálne
posúvaným ochladeným substrátom. Predmetom štúdia je situácia ked’ je v systéme
pŕıtomná len tuhá a kvapalná fáza a tiež situácia ked’ je tuhá fáza oddelená od kvapal-
nej fázy dendritickou zónou. V práci sú odvodené samopodobné riešenia pŕıslušných
riadiacich hranično-vrstvových rovńıc v limite malého Prandtlovho č́ısla. Následne
sú študované d’aľsie asymptotické aproximácie týchto riešeńı s ciel’om pochopit’ vplyv
toku, generovaného v kvapalnej fáze posúvańım substrátu, na vlastnosti tuhnúceho
systému. Niektoré výsledky sú aplikovatel’né aj na situácie s rovinnými fázovými
rozhraniami.

Kl’účové slová: tuhnutie binárneho systému • dendritická zóna • hraničná vrstva
• úloha s vol’nou hranicou • samopodobné riešenie • asymptotické aproximácie

AMS klasifikácia: 80A22 • 35C06 • 76M45
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Introduction

The solidification of fluids is an integral part of many natural and industrial
processes. Among typical examples is the formation of snowflakes and icicles in
winter or the sea ice in polar areas. The phase-change processes play an important
role also in material engineering during production of new materials such as metal
castings and semiconductors. From the point of applications in material engineering,
an important class of problems is that of solidification of multi-component systems
(alloys).

It is a well known phenomenon that a material solidifying from an alloy usually has
a different composition than the original system. For example, the ice growing from
sea water is almost pure. The way in which the liquid material solidifies can affect
the quality of the final product. A typical example is the appearance of structural
defects, called freckles, during solidification of metal alloys (see Fowler 1985). To
control the quality of solidified products, it is necessary to understand the coupling
between fluid flow and solidification involved.

A mathematical model of diffusion-driven solidification of a binary alloy cooled
below was studied by Worster (1986) as an extension of the classical Stefan problem
for a single component system. The interface between the solid and liquid phases,
characterised by the local conservation of heat and solute, was assumed planar. The
rate of solidification in the model was controlled by the diffusive transport of solute
away from the interface. Analytical self-similar solutions were found, with square-
root time growth of the interface. Since the diffusion of solute is typically much
slower that the diffusion of heat, a region of so-called constitutional supercooling
often forms ahead of the solid/liquid interface, where the temperature of the liquid
phase is below the local liquidus (freezing) temperature. Under such conditions a
planar solid/liquid interface may become morphologically unstable, thus giving rise
to the formation of highly convoluted structures, called dendrites. As a result, a
so-called mushy layer forms, which is a region between the solid and liquid phases
with a complicated microstructure. From the macroscopic point of view, the mushy
layer is a reactive porous medium whose permeability changes in space and time
upon the internal solidification/melting of its dendrites. Worster (1986) developed
a model of a mushy layer, based on the local conservation of heat and solute, as
an extension of the model with planar solid/liquid interface. The mushy layer was
separated from the solid and liquid regions by planar interfaces with square-root time
growth. The mathematical model was dimensional, with a large number of physical
parameters — he assumed that the solid and liquid phases had different thermal
properties. Therefore, the nonlinear, free-boundary problem governing the mushy
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layer could not be solved explicitly but only numerically via the shooting method.
Gewecke & Schulze (2011b) assumed the equal thermal properties of the solid and
liquid phases, along with the negligible latent-heat release. These assumption allowed
them to find explicit self-similar solutions to the governing equations.

The self-similar form of solutions derived byWorster (1986) and Gewecke & Schulze
(2011b) was a consequence of the semi-infinity of the solidifying system in the vertical
direction, i.e. the direction perpendicular to the planar interfaces. Gewecke & Schulze
(2011a) studied the dynamics of a mushy layer in a vertically-bounded region. Due
to the finite extent of the solidifying system, they could not use the self-similar ap-
proach. However, due to the hyperbolic character of the equation governing the liquid
fraction in the mushy layer, they were able to study the problem via the method of
characteristics. The main finding was that the mush/liquid interface retreated in a
finite time in case when the solute diffusion was not neglected.

Of different nature is a so-called directional solidification in which the solidify-
ing liquid is pulled at constant speed through a constant temperature gradient and
the solid-liquid interface is stationary. In recent years, the models of directional
solidification were studied extensively in context of morphological and convective in-
stabilities (see Worster 2000 or Davis 2001 for general reviews). Guba & Worster
(2006b) studied nonlinear oscillatory convection in mushy layers by methods of bi-
furcation analysis. Nonlinear interactions between steady and oscillatory convection
were analysed by Guba & Worster (2010).

In addition to the studies devoted to the solidification of binary alloys, in recent
years, experimental attempts to understand the behaviour of the solidifying ternary
alloys were made by Aitta, Huppert & Worster (2001), followed by the theoretical
studies by Anderson (2003), Anderson & Schulze (2005) and Guba & Anderson (in
preparation).

Another experimental configuration in which the interface is stationary and that is
also common in material engineering is the one in which a cooled horizontal boundary
(substrate) is moving at a constant speed in horizontal direction in an imposed ver-
tical temperature gradient (continuous strip and spin casting). There are two main
features that distinguish such a configuration from those with a stationary cooled
boundary or those of directional solidification: (i) the solidifying interface is not
planar; (ii) there is a strong two-dimensional flow in the liquid phase. Such a con-
figuration was previously addressed as a local approximation of spin casting (see the
review by Steen & Karcher 1997). Löfgren & Åkerstedt (2001) studied the initial
solidification of a pure liquid-metal film flow over a moving boundary. The prob-
lem of a steady two-dimensional boundary-layer flow of a binary alloy over a moving
substrate was studied by Löfgren (2001). He obtained self-similar solutions for the
velocity, temperature and solute concentration fields in the limit of small Prandtl
number, which is typical of liquid metal flows. The interface was shown to have a
square-root growth in the horizontal direction. The self-similar analysis was facili-
tated by the assumption of semi-infinite domain in vertical direction and that of small
interfacial slope so that boundary-layer reduction was possible. An extension of the
problem to include a mushy region was considered by Cheung, Shiah & Tangthieng
(2002) and by Cheung & Tangthieng (2003). The mushy layer consisted of two sep-
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arate layers: a packing region, with solid phase moving with the substrate, and a
dispersed region, where solid phase was free to move with the fluid. The self-similar
solutions were found numerically. However, the relationship between the local liq-
uid fraction and temperature was prescribed through the lever rule, not by the local
conservation of solute as by Worster (1986).

The aim of this thesis is to combine the approach of Löfgren (2001) with that of
Worster (1986) in order to formulate the problem studied by Cheung et al. (2002),
such that the local liquid fraction will be given by the local conservation of solute.
Unlike Cheung et al. (2002), we shall consider a simplified situation with the mushy
layer consisting only of the packing region. Our task will be to find closed-form self-
similar solutions to the governing equations and, using these solutions, study how the
forced boundary layer flow influences the main physical characteristics of the mushy
layer – the local liquid fraction and the positions of solid/mush and mush/liquid in-
terfaces. Moreover, the problem studied in the present thesis, together with that by
Löfgren (2001), has its importance because it provides analytical self-similar solu-
tions to a solidification problem with a non-planar interface and a two-dimensional
advection in the liquid. Generally, such problems are rare. As another example can
serve the study made by Guba & Worster (2006a) of a two dimensional convection
in a laterally solidifying mushy region.

The structure of the thesis is as follows. In the first part of Chapter 1, we review
the basic facts concerning mathematical modelling of binary alloy solidification. First,
we discuss the extended Stefan problem for a solidifying binary alloy with a sharp
interface separating the solid and liquid phases. Then we discuss the situation when
the mushy layer appears as a consequence of constitutional supercooling; we present a
general system of partial differential equations governing the dynamics of solidifying
system in such a situation. In the second part, we focus on a general formulation
of the mushy-layer equations that is valid in an arbitrary frame of reference. Such
formulation is of importance in cases when the interface velocities are distinct from
both the velocity of the dendrites and the velocity of the interdendritic fluid — cf.
Schulze & Worster 2005. Since, unlike Schulze & Worster (2005), we assume solute
diffusion in the liquid phase, in addition to the conditions at the mush/liquid interface
derived by the authors, we also derive the conditions at the solid/mush interface using
a similar approach. The conditions at the solid/mush interface were not discussed by
Schulze & Worster (2005) since the solid phase was not present in the system under
the assumption of negligible solute diffusion.

In Chapter 2, we focus on the situation that is of interest in this thesis – we discuss
the experimental configuration in which a cooled horizontal boundary (substrate) is
moving at a constant speed in horizontal direction in an imposed vertical temperature
gradient. The formulation of the governing equations in the liquid phase ahead of the
mushy layer is the same as that used by Löfgren (2001), while the governing equations
in the mushy layer, under the assumption of a general flow of the interdendritic fluid,
together with the conditions at the mush/liquid interface, are the same as those
used by Schulze & Worster (2005) and discussed in Chapter 2. However, unlike the
authors, we take into account solute diffusion in the liquid portion of the mushy
layer. After the boundary-layer reduction, the governing equations, together with
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the interfacial conditions, turn out to be the same as those used by Worster (1986)
and Gewecke & Schulze (2011b), with their time variable replaced by our horizontal
spatial variable.

Before we analyse the problem with a mushy layer, in Chapter 3, we discuss
the problem with solid/liquid interface similar to that studied by Löfgren (2001).
However, we use different dimensionless scalings of the governing equations and focus
our attention to the parametric analysis that was not addressed by Löfgren (2001),
namely the influence of the velocity ratio on the solidification. The contents of this
chapter are based on a paper by Kyselica & Guba (2014) (see Appendix).

In Chapter 4, we discuss the self-similar formulation of the mushy-layer problem,
formulated in Chapter 2, with solute diffusion taken into account. We extend the
results of Gewecke & Schulze (2011a) about the condition regarding the concentration
and its gradient at the solid/mush interface to the cases when the Stefan number is
positive — the results also apply to the problems with planar interfaces. For positive
values of Stefan number, we also make some remarks about the liquid fraction and its
gradient at the solid/mush interface. In the second part of the chapter, we study the
regular limit of negligible Stefan number in order to derive explicit solutions to the
mushy-layer equations. We also derive algebraic equations for the growth constants
that determine the self-similar positions of the interfaces. Some approximate results
are also discussed in order to get better understanding of the structure of the solutions
and their parametric dependence.

In Chapter 5, we discuss the situation when the solute diffusion is neglected. First
we analyse the model of a mushy layer that conserves solute globally and is similar
to that discussed by Huppert & Worster (1985). Then we compare the results with
those derived for the local conservation model with negligible solute diffusion. We
derive an explicit relationship between the liquid fractions in the global and local
models in the limit of negligible Stefan number.

In Conclusions, we make some final remarks about the results presented in this
thesis, along with the open questions that have not been addressed and could provide
motivation for further research. In Appendix, we also include a copy of a paper by
Kyselica (2013), dedicated to the numerical solution of a Stefan problem for a binary
alloy with initially perturbed solid/liquid interface.



Chapter 1

Solidification of binary alloys

1.1 Phase diagram

Essential for the study of dynamics of any solidifying system is the equilibrium
phase diagram. We will assume a binary system comprising two components A and
B — the component B will be referred to as solute. The phase diagram then specifies
all the possible states that the system can rest in, in dependence on its temperature
and concentration (in wt. % of B). The assumption of thermodynamic equilibrium
means that, with concentration and pressure given, the temperature does not change
in time. A typical binary phase diagram is depicted in figure 1.1

There are two special boundaries in the phase diagram:

(i) Liquidus curve, T = TL(C) or C = CL(T ), which separates the region where the
system is completely liquid (L) from the region where solid and liquid phases
coexist (L+CSA and L+CSB).

(ii) Solidus curve, T = TS(C) or C = CS(T ), which separates the regions L+CSA
and L+CSB from the region where the system is completely solid (CSA and
CSB).

The liquidus curve represents the freezing temperature as a function of concentration
(under the liquidus, the solid phase is present in the system); similarly, the solidus
curve represents the temperature at which the solid phase partially solidifies. Both
liquidus and solidus curves intersect at eutectic point (CE, TE), below which the
system is completely liquid irrespective of the concentration.

In figure 1.1 we see that for C < CE the liquidus curve is decreasing, while it is
increasing for C > CE . Thus, when C < CE, the freezing temperature is highest
when there is only the component A present in the system (i.e. when C = 0);
when C > CE , the freezing temperature is highest when there is only component B
present (i.e. when C = 1). Therefore the eutectic temperature represent the lowest
temperature at which the binary system can be completely liquid. Moreover, once
the system lies in one of the regions C ≤ CE or C ≥ CE, it resides in that region for
all the time.

Consider the case when the system is in equilibrium and the point (C, T ) lies in
one of the regions L + CSA or L + CSB. As a result, the solid portion of the system
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0 1

Figure 1.1: A typical equilibrium phase diagram for a binary system comprising two
components A and B. Each region in the diagram defines the state of the system with
respect to the temperature T and concentration C: L – liquid solution; CSA – solid solution
in which the molecules of B are incorporated in the crystal lattice of A; CSB – solid solution
in which the molecules of A are incorporated in the crystal lattice of B; L + CSA, L +
CSB – the region of coexistence of the liquid solution L with CSA or CSB, respectively;
CSA + CSB – composite solid phase, in which the grains of CSA are interspersed among
the grains of CSB.

has the concentration equal to CS(T ) and the liquid portion has the concentration
equal to CL(T ). The averaged concentration is then given by

C̄ ≡ χCL + (1− χ)CS, (1.1)

where 0 ≤ χ ≤ 1 is the local volume fraction of the liquid phase. From (1.1) we
obtain

χ =
C̄ − CS
CL − CS

. (1.2)

An important assumption in the modelling of phase changes is that the system is
always close to equilibrium. For that reason the temperature is continuous at the
solid-liquid interfaces. However, the concentration is discontinuous with a jump from
the value CL(T ) to the value CS(T ), owing to the fact that, in general, the compo-
sition of the solid phase is different than that of liquid phase. Therefore, one of the
components must be rejected, thus increasing its concentration ahead of the inter-
face. The solid phase solidifying at the temperature T has the concentration given
by the solidus curve, i.e. C = CS(T ). In the rest of our work, we will use a linear
approximation of the equilibrium phase diagram (see figure 1.2) given by

TL(C) ≡ Tm − ΓC, Γ > 0, C ≤ CE, (1.3)

where Tm represents the melting temperature of a pure substance and Γ is the liquidus
slope. In what follows, we will assume, without a loss of generality, that the concen-
tration is subeutectic, i.e. C < CE . Additionally, we will consider vertical solidus
curve CS = 0 so that the solid phase consists of pure substance A. That results in the
increasing concentration of solute in the liquid phase towards the solidifying interface.
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Figure 1.2: Linear approximation of the equilibrium phase diagram.

During solidification, randomly moving liquid molecules become attached and in-
corporated into the crystalline lattice of the solid. Their loss of entropy results in the
release of latent heat which must be transported away from the solidifying interface
if solidification is to proceed (cf. Worster 2000). We will denote L the latent heat
per unit mass of solid phase, the dimension of L is therefore [L] = J kg−1.

1.2 Stefan problem for a binary alloy

In this section, we will formulate an analogy of the well-known Stefan problem,
originally formulated for pure melts, for a situation, when the solidifying system is a
binary alloy. To facilitate the comparison with the problems formulated in subsequent
chapters, we will formulate the Stefan problem in two-dimensions. Consider a two-
dimensional region

−∞ < x <∞, 0 ≤ z <∞

filled with a binary alloy that is initially completely liquid, with spatially homoge-
nous concentration C ≡ C∞ < CE and temperature T ≡ T∞ > TL(C∞). At some
initial time instant, t = 0, say, the temperature at the bottom boundary z = 0 is
suddenly lowered to, and subsequently maintained at, a value T0 ∈ (TE , TL(C∞)). As
a consequence, the systems begins to solidify: at each time instant, there is a solid
phase in the system bounded below by the bottom boundary z = 0 and above by a
phase interface located at

z = h(x, t). (1.4)

A typical situation is depicted in figure 1.3.

Governing equations

The temperature field T = T (x, z, t) in the solid and liquid phases is governed by
the standard heat equation of the form

∂T

∂t
= κ∇2T, for z > 0, (1.5)
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z = 0

z = h(x, t)

i
k x

z Solid

Liquid

n̂

Figure 1.3: Interface between the solid and liquid phases during a two-dimensional
diffusion-driven solidification of a binary alloy; n̂ is the unit outward-normal vector to
the interface, i = (1, 0)T and k = (0, 1)T .

where κ is thermal diffusivity, defined as κ ≡ k/(ρCP ), with k denoting the thermal
conductivity, ρ the density (which we shall treat as constant) and CP the thermal
capacity. For simplicity, we shall consider equal thermal properties of the solid and
liquid phases. The concentration field in the liquid phase is governed by the solute
diffusion equation of the form

∂C

∂t
= D∇2C, for z > h, (1.6)

with D being the diffusivity of solute in the liquid phase. The boundary conditions
imposed are

z = 0 : T = T0, (1.7a)

z → ∞ : T → T∞, (1.7b)

C → C∞, (1.7c)

and the initial conditions

t = 0 : T ≡ T∞, (1.8a)

C ≡ C∞. (1.8b)

Conservation laws at the solid/liquid interface

The solidification problem as stated above is a problem with a moving boundary
(the position of the interface is time-dependent), with the moving boundary itself
being part of the solution. Therefore, to close the problem, some conditions at the
moving boundary need to be imposed. The first condition is the Stefan condition

ρL
∂h

∂t
k · nh = k (nh · ∇T |h− − nh · ∇T |h+) , (1.9)

representing the conservation of heat at the interface, nh being the unit outward-
normal vector to the interface. The left hand-side represents the rate at which the
latent heat is released during solidification. The first term at the right hand-side
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C
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C∞

TL(C∞)

T∞

Tm

Th

Ch

T0

C0

(1)

(2)(3)

(4)

0

Figure 1.4: Typical evolution of a solidifying system in a (C, T ) space. The particular
points shown are, together with the corresponding z-coordinates: (1) z → ∞, (2) z = h+,
(3) z = h− and (4) z = 0. The points (2) and (3) correspond to a jump in concentration
across the interface.

is minus the heat flux from the interface to the solid phase and the second one is
the heat flux from the liquid phase towards the interface. The right hand-side of
(1.9) thus represents the difference between the heat fluxes on the liquid and solid
sides of the interface. Since the left hand-side of (1.9) is always non-negative during
solidification, the heat conducted from the interface to the solid is never less than the
heat flux from the liquid.

The second condition at the interface is

Ch+
∂h

∂t
k · nh = −Dnh · ∇C|h+. (1.10)

This condition expresses the balance between the rate at which the solute is rejected
during solidification (the left hand-side) and the rate of diffusion of solute away from
the interface at the liquid side of the interface (the right hand-side). In addition to
the two condition stated above, we assume that the temperature is continuous across
the interface, i.e.

Th− = Th+ ≡ Th, (1.11)

and that the interface sits in local thermodynamic equilibrium, i.e. the interfacial
temperature and concentration are coupled via the liquidus relationship

Th = Tm − ΓCh+. (1.12)

A typical evolution of a solidifying binary alloy is depicted in figure 1.4.
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Figure 1.5: (a) Schematic plot of the region of constitutional supercooling ahead of the
solid/liquid interface. (b) The effect of constitutional supercooling from the point of phase
diagram.

1.2.1 Constitutional supercooling and the morphological in-
stability

Since, typically, heat diffuses more rapidly than solute, a region of so-called con-
stitutional supercooling often forms. The character of the diffusion equations (1.5)
and (1.6) implies that there is a thermal boundary layer of thickness O(κt1/2) and
a concentration boundary layer of thickness O[(Dt)1/2] ahead of the solid/liquid in-
terface. Since, typically, D ≪ κ, the concentration boundary layer resides in the
thermal one, see figure 1.5(a). As a consequence, the local freezing temperature (i.e.
the liquidus temperature corresponding to the concentration at the particular point)
ahead of the interface rises more rapidly than the local temperature. Since both
these temperatures are equal at the interface, there is a region close to the interface
where the temperature is under the local freezing temperature — the region of con-
stitutional supercooling. In figure 1.5(b) we see that the constitutional supercooling
appears as soon as the inequality

nh · ∇T |z=h+ < nh · ∇TL(C)|z=h+ = −Γ nh · ∇C|z=h+ (1.13)

is satisfied. The presence of the region of constitutional supercooling usually gives
rise to morphological instabilities of a planar interface. As a consequence, so-called
mushy layers may form, which we shall discuss in the next section.

1.3 Mushy layers

1.3.1 Mushy layer as a reactive porous medium

So far we have been discussing the situation when there were solid and liquid
phases present in the system, separated with a simple interface. However, as a con-
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Figure 1.6: An example of a typical microstructure of an interface between mushy layer
and the liquid phase. The example corresponds to the aqueous solution of ammonium
chloride (NH4Cl). The solid dendrites are composed of pure NH4Cl. The horizontal length
of depicted portion of the mush is 8 × 10−3 m, with a typical inter-dendritic length equal
to 3× 10−4 m. Source: Huppert (1990).

sequence of morphological instability, the interface can become highly convoluted,
leading to formation of so-called mushy layer, a region of coexistence of the solid and
liquid phases. From the microscopic point of view, the mushy layer typically consists
of dendritic crystals, as shown in figure 1.6.

The distances between dendrites are typically very small compared to the overall
size of the mushy layer. Therefore, from the macroscopic point of view, the mushy
layer can be treated as a reactive porous medium. In this context, the term reactive
means that the local permeability of the mushy layer can change due to the inter-
nal solidification and dissolution. The mushy layer is separated from the solid and
liquid phase by interfaces: the solid/mush interface, located at z = a(x, t) and the
mush/liquid interface, located at z = b(x, t). The properties of the mushy layer are
given as averages (integrals) of the corresponding physical variables across control
volumes that are large compared to the typical interdendritic spacing but are small
compared to the thickness of the mushy layer.

The key variable describing the local properties of the mushy layer is the local
volume fraction of the liquid phase

χ = χ(x, z, t) ∈ 〈0, 1〉.

Using χ, we can define the local volume fraction of the solid phase as

φ ≡ 1− χ.

The thermal properties of the mush can then be approximated as (cf. Worster 1986)

km ≡ χkl + (1− χ)ks,

(ρCp)m ≡ χρlCpl + (1− χ)ρsCps,

with subscripts l and s denoting the liquid and solid phases, respectively. Since in this
thesis we shall consider equal thermal properties of the solid and liquid phases, we
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obtain km ≡ k and (ρCp)m ≡ ρCp. However, we will present the governing equations
in their general form. As in the situation with solid/liquid interface, we denote
T (x, z, t) the temperature field in the mushy layer and C(x, z, t) the concentration
field expressing the concentration of solute in the liquid portion of the mushy layer.
We assume that solid is free of solute, i.e. C ≡ 0 there.

Let V be any bounded region in the mushy layer. The total volume of liquid and
solid in V , respectively, can be expressed as

|Vliquid| =

∫

V

χ dV, and |Vsolid| =

∫

V

φ dV

and the total amount of solute in V as

|Vsolute| =

∫

V

χC dV

where C̄ ≡ χC is the bulk concentration.
The formation of mushy layer can be interpreted from the thermodynamical point

of view. The dendrites are growing in order to increase the contact area between
the solid and liquid phases and thus enhance the release of latent heat and solute.
The enhanced latent-heat release results in the local increase of temperature; the
enhanced solute rejection results in the local decrease of melting temperature due to
the liquidus relationship that holds at the local solid/mush interfaces. Both these
effects suppress the constitutional supercooling. Thus the growth of the mushy layer
and the morphological instability in general occur in order to reduce the constitutional
supercooling present ahead of the interface. Moreover, it is natural to assume that
the mushy layer grows until the constitutional supercooling is completely eliminated.
That means that the inequality (1.13) expressing the constitutional supercooling is
in fact an equality in the mushy layer so that the condition of thermodynamical
equilibrium

T = Tm − ΓC (1.14)

holds throughout the whole mushy layer.

1.3.2 Governing equations

The equations governing the temperature and concentration fields in the mushy
layer express the local conservation of heat and solute on the scales that are small
compared to the overall extent of the mushy layer, but are large enough to encompass
its microstructure. These equations are

(ρCP )m
∂T

∂t
= ∇ · (km∇T )− ρSL

∂χ

∂t
, (1.15a)

χ
∂C

∂t
= D∇ · (χ∇C)− C

∂χ

∂t
. (1.15b)

It the above equations, the effects of internal solidification are represented by source
terms. The first equation represents the local conservation of heat. The term
−ρSL∂χ/∂t can be expressed equivalently as ρSL∂φ/∂t and can be interpreted as
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the rate at which the latent heat is released during internal solidification. Note that
∂φ/∂t > 0 means the mushy layer is solidifying locally (new dendrites are growing);
conversely, ∂φ/∂t < 0 when the solid portion of the mushy layer is melting. The
second equation represents the local conservation of solute. The term −C∂χ/∂t,
which can be written equivalently as C∂φ/∂t, expresses the rate at which the solute
is rejected upon local solidification.

1.3.3 Conservation laws at the solid/mush and mush/liquid

interfaces

The conditions expressing the conservation heat and solute at the solid/mush
interface are

ρsLχa+
∂a

∂t
k · na = ksna · ∇T |a− − kmna · ∇T |a+ , (1.16a)

Ca+χa+
∂a

∂t
k · na = −Dχa+na · ∇C|a+ (1.16b)

and that expressing the conservation of heat and solute at the mush/liquid interface
are

ρsL(1− χb−)
∂b

∂t
k · nb = kmnb · ∇T |b− − klnb · ∇T |b+ , (1.17a)

Cb(1− χb−)
∂b

∂t
k · nb = D (χb−nb · ∇C|b− − nb · ∇C|b+) . (1.17b)

where na and nb are the outward unit vectors normal to the corresponding interfaces,
defined as

na =
1

na

[

−
∂a

∂x
, 1

]T

, nb =
1

nb

[

−
∂b

∂x
, 1

]T

,

with na := (a2x + 1)1/2 and nb := (b2x + 1)1/2.
Another conditions that we assume to be valid at the interfaces (and that we

have already used when formulating the condition 1.17b) are that of continuity of
the temperature field across both interfaces and the continuity of concentration field
across the mush/liquid interface

Ta− = Ta+ ≡ Ta, (1.18a)

Tb− = Tb+ ≡ Tb, (1.18b)

Cb− = Cb+ ≡ Cb, , (1.18c)

with the unknown interfacial values Ta, Tb and Cb being parts of solution.
The governing equations in the liquid and solid phases are the same as that in the

Stefan problem with solid/liquid interface. However, unlike the Stefan problem, the
mushy layer equations comprise one new variable — the local liquid fraction χ. The
system of differential equations for the mushy layer, as stated above, is not complete.
One more condition is required to close the system. The additional condition to be
imposed is the one of marginal equilibrium at the mush/liquid interface of the form

nb · ∇T |b+ = nb · ∇TL(C)|b+ = −Γnb · ∇C|b+. (1.19)
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Figure 1.7: (a) Schematic plot of directional solidification of a binary alloy, in which the
whole systems is pulled downwards at speed V in an imposed temperature gradient. The
positions of solid/mush and mush/liquid interfaces are fixed in space. (b) Relative motion
of a fixed solid material element relative to the stationary mush/liquid interface during
direction solidification.

The condition ensures that none of the liquid ahead the mush/liquid interface is
constitutionally supercooled (see Worster 1986 for further discussion of this condition
and its relation to the morphological instability of the interface). In fact, (1.19)
states that the mushy layer grows in such a way that the inequality (1.13) becomes
an equality at the mush/liquid interface.

1.4 Mushy-layer equations in general frames of ref-

erence

From the point of applications of solidification in material engineering, of special
interest are the solidifying systems with constant solidification rate V . Such a solidifi-
cation rate can be obtained by pulling the whole system downwards at speed V in an
imposed temperature gradient such that the positions of solid/mush and mush/liquid
interfaces are fixed in space. The situation just described is usually referred to as
directional solidification — see figure 1.7a.

While the position of the interface does not change during directional solidification,
the solid phase formed is pulled downwards at the speed V . This is also true for the
dendrites in the mushy layer. The situation is schematically depicted in 1.7b.

Though in the problem of directional solidification stated above the liquid phase
flows towards the mush/liquid interface, the liquid material elements do not move
relative to the dendrites of the mushy layer. With respect to the frame of reference
moving with the solid, the interfaces are moving at constant speed V vertically up-
wards with the liquid phase being stationary. Usually, when one is studying a flow
in a mushy layer, it is in fact the flow relative the solid phase that is important.
Therefore it is instructive to formulate the local conservation laws with respect to a
frame of reference connected with the solid phase of the mushy layer.

It is clear from the discussion in the previous paragraph, that when formulating a
general mathematical model of a mushy layer with flow, one has to take into account
that the speed of solid phase, the flow velocity and the rate at which the interfaces
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Figure 1.8: Definition sketch representing the three velocities u, v and w. For the
definitions of these quantities, see text.

propagate can be different when measured in a frame of reference connected with
an external observer — the laboratory frame of reference. To make this explicit, we
define the following quantities, all with respect to the laboratory frame of reference:

u velocity of the fluid flow in the mushy layer; in component form, u = (u, v);

v speed of material points embedded in the dendrites (i.e. the speed of solid
material elements);

w rate of propagation of the interface.

In what follows, we will assume that the dendrites do not move with respect to each
other so that v is constant throughout the mushy layer. The situation is schemati-
cally depicted in figure 1.8. In general, the velocities u and w are independent. For
example, in directional solidification v = −V k and w = 0; in diffusion-driven solidi-
fication with a planar interface v = 0 and w = t−1/2k. In general, the growth rate of
the interface can be expressed as w = (∂h/∂t)k and does not have to be constant.

We distinguish between two cases that can occur according to the sign of the
relative velocity of the interface and the solid material points: when (w−v) ·n > 0,
the mush/liquid interface is a freezing interface; when (w−v) ·n < 0, it is a melting

interface. We will consider only the cases when the interface is freezing.
Another important vector quantities describing the mushy layer are the total mass

flux, defined as
q ≡ χu+ φv, (1.20)

and the Darcy velocity χ(u− v), which can be expressed equivalently as

χ(u− v) = q − v. (1.21)

The vector field u− v is the local flow of the liquid phase relative to the solid phase.
In next sections, we shall present the derivation of governing equations describing

the conservation of mass, heat and solute in general inertial frames of reference. The
equations presented here were introduced by Schulze & Worster (2005) under the
assumptions that the material properties of liquid and solid phases were the same and
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that the diffusion of solute was negligible. However, unlike Schulze & Worster (2005),
we shall relax the latter assumption and take the solute diffusivity into account.

In the derivations, we will use the following vector identity

∇ · (AB) = (B · ∇)A+ A∇ ·B, (1.22)

valid for any smooth scalar field A and any smooth vector field B. We will also make
use of the Reynolds transport theorem (see Aris 1990). Consider a smooth flow field
U and a time-dependent material volume V (t) (i.e. a region of fluid deformed by the
flow). Then the time derivative of the integral of some smooth function f (scalar or
vector) can be expressed in the following way

d

dt

∫

V (t)

f dV =

∫

V (t)

[
Df

Dt
+ f∇ ·U

]

dV, (1.23)

where
Df

Dt
≡
∂f

∂t
+ (U · ∇)f (1.24)

is the material (Lagrangian) derivative of f following the fluid element moving with
velocity U . We will denote the material derivatives with respect to the vector fields
u, v and q as Dlf/Dt, Dsf/Dt and Df/Dt, respectively.

1.4.1 Governing equations

Conservation of mass

Consider an arbitrary time-independent (i.e. fixed in space) volume V , lying in
the mushy layer. According to the conservation of mass, the total outflow of mass
per unit of time through the boundary ∂V must be zero, in other words

0 = ρ

∮

∂V

χu · n dS + ρ

∮

∂V

φv · n dS

= ρ

∮

∂V

q · n dS,

where n is the unit outward vector normal to the boundary ∂V . The first integral
in the first line represents the total volume of the liquid per unit of time that is
transported away from V . Similarly, the second integral represents the total amount
of the solid phase per unit of time that is transported away from V . If we use the
divergence theorem and the assumption that the volume V was arbitrary, we get the
formulation of the mass conservation in the following form

∇ · q = 0. (1.25)

Thus, from the point of mass transport, the field q plays the same role as the velocity
field for the flow of an incompressible fluid. Note that ∇ · u 6= 0, since it is not only
the flow field u but also the field v that contribute to the overall transport of mass
within the mushy layer.1

1The non-vanishing divergence of the liquid flow field u is a consequence of the fact that u was
defined on scales that were large compared to the typical interstitial length scales (the distances
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Figure 1.9: Schematic plot of the mass transport through an element dS of the boundary
∂V .

Conservation of heat

Let V (t) be an arbitrary bounded region that is stationary relative to the solid
phase of the mushy layer. Relative to the laboratory (stationary) frame of reference,
in which the fields u, v and q were defined, each point of V (t) is moving at speed
v. The total heat change in V (t) during a small time interval ∆t can be expressed,
using the Reynolds transport theorem and 1.22, in the following way

∆Q =

∫

V (t+∆t)

ρCPT (x, t +∆t) dV −

∫

V (t)

ρCPT (x, t) dV

≈ ∆t
d

dt

∫

V (t)

ρCPT dV

= ∆tρCP

∫

V (t)

[
∂T

∂t
+ (v · ∇)T

]

dV

= ∆tρCP

[∫

V (t)

∂T

∂t
dV +

∮

∂V (t)

Tv · n dS

]

. (1.26)

Since V (t) was fixed relative to the solid phase, the total amount of solid phase in
V (t) changes only through internal solidification/melting. The increase of the total
amount of the solid phase during the time interval of length ∆t is equal to

∆Msolid = ρ

[∫

V (t+∆t)

φ(x, t+∆t) dV −

∫

V (t)

φ(x, t) dV

]

≈ ∆tρ
d

dt

∫

V (t)

φ dV

= ∆tρ

∫

V (t)

[
∂φ

∂t
+ (v · ∇)φ

]

dV

≡ ∆tρ

∫

V (t)

Dsφ

Dt
dV. (1.27)

The amount of latent heat released in V (t) during the time interval ∆t is then equal
to L∆Msolid.

between single dendrites). If one would think instead of a fluid flow in a region whose size was small
compared to the intersticial length scales, the mass transport would be fully determined by the flow
field u.
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Figure 1.10: Schematic plot of an element dS of the boundary ∂V . The advective trans-
port of heat depends only upon the relative velocity of the liquid phase relative to the solid
phase. This relative velocity is given as u−v. Moreover, the solid portion of the boundary
does not contribute to the advective transport.

As a next step, we express the amount of heat that enters V (t) by diffusion and
advection through the boundary. The local rate of heat flow is given as

Q = −k∇T + ρCPTχ(u− v)

= −k∇T + ρCPT (q − v). (1.28)

The advective term2 ρCPTχ(u− v) represents the advection of heat relative to the
solid phase. Since V (t) is stationary relative to the solid phase, the motion of the
solid phase does not contribute to the heat transport – see figure 1.10 for a schematic
plot. The amount of heat that enters V (t) during the time interval ∆t is then equal
to

Qin = ∆t

∮

∂V (t)

Q · (−n) dS

= ∆t

[

k

∫

V (t)

∇2T dV − ρCP

∮

∂V (t)

T (q − v) · n dS

]

. (1.29)

The conservation of heat in V (t) can then be expressed as

∆Q = Qin + L∆Msolid. (1.30)

Inserting (1.26), (1.27) and (1.29) in (1.30) yields

ρCP

[∫

V (t)

∂T

∂t
dV +

∮

∂V (t)

Tq ·n dS

]

=

∫

V (t)

[

k∇2T + ρL
Dsφ

Dt

]

dV. (1.31)

We can re-write the surface integral on the left hand-side using the divergence theo-
rem, together with (1.22) and (1.25), as

∮

∂V (t)

Tq · n dS =

∫

V (t)

(q · ∇)T dV. (1.32)

2When the heat transport is not only by diffusion but also by advection, the rate of heat flux is
given by

Q = −k∇T + ρCPuT.
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Since V (t) was arbitrary, the temperature field in the mushy layer must obey the
following advection-diffusion equation

ρCP
DT

Dt
= k∇2T + ρL

Dsφ

Dt
,

or
DT

Dt
= κ∇2T +

L

CP

Dsφ

Dt
. (1.33)

Conservation of solute

For the sake of generality, we will assume that the solute is not completely rejected
upon solidification so that CS 6= 0, with CS being constant throughout the mush. Let
V be an arbitrary region fixed in space. The total amount M of solute in V is equal
to

ρ

∫

V

C̄ dS ≡ ρ

∫

V

(χC + φCS) dS. (1.34)

We can express the change of M in a small time interval of length ∆t as

∆M = ∆tρ
d

dt

∫

V

C̄ dV

= ∆tρ

∫

V

[
∂χ

∂t
C + χ

∂C

∂t
+
∂φ

∂t
CS

]

dV

= ∆tρ

∫

V

[

χ
∂C

∂t
− (C − CS)

∂φ

∂t

]

dV. (1.35)

The amount of solute that enters V by advection through its boundary is

Madvection = ∆tρ

[∮

∂V

Cχu · (−n) dS +

∮

∂V

CSφv · (−n) dS

]

= −∆tρ

∫

V

∇ · (Cχu+ CSφv) dV. (1.36)

The first surface integral represents the amount of solute contained in the liquid
entering V . Similarly, the second surface integral represents the amount of solute
contained in the solid entering V . The amount of solute diffusing into V is equal

Mdiffusion = ∆tρ

∫

V

D∇ · (χ∇C) dV. (1.37)

If we set A = C and B = χu in (1.22), we obtain

∇ · (Cχu) = χ(u · ∇)C + C∇ · (χu) = χ(u · ∇)C − C∇ · (φv)

= χ(u · ∇)C − C(v · ∇)φ.

In the second equality, we used that ∇ · (χu) = −∇ · (φv), which is a direct conse-
quence of (1.25). In the last equality, we used (1.22) and the fact that v is constant
and therefore is divergence-free. In an analogous way we obtain

∇ · (CSφv) = CS(v · ∇)φ.
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Inserting the last two equalities into (1.36), we get

Madvection = ∆tρ

[∫

V

(C − CS)(v · ∇)φ dV −

∫

V

χ(u · ∇)C dV

]

. (1.38)

The conservation of solute can be expressed as

∆M =Mdiffusion +Madvection,

from which, after inserting (1.35), (1.37) and (1.38) and since V was arbitrary, we
finally get the advection-diffusion equation for the concentration field

χ
DlC

Dt
= D∇ · (χ∇C) + (C − CS)

Dsφ

Dt
. (1.39)

The last equation can be expressed equivalently as

DC

Dt
− φ

DsC

Dt
= D∇ · (χ∇C) + (C − CS)

Dsφ

Dt
, (1.40)

or
DC

Dt
= D∇ · (χ∇C) +

Ds

Dt
[φ(C − CS)]. (1.41)

Darcy equation

The fluid flow in the mushy layer is governed by Darcy equation for a flow in a
porous medium (see Schultze & Worster 2005) of the following form

χ(u− v) =
Π(φ)

µ
(ρg −∇P ), (1.42)

where Π(φ) is the permeability of the porous medium (mushy layer), which depends
upon the local volume fraction of solid, µ is the dynamic viscosity, P is the pressure
and g = (0,−g)T is the gravity.

1.4.2 Conditions at the interfaces

A thorough discussion of the interfacial conditions reviewed below can be found
in Worster (2002).

Conservation of mass

The conservation of mass at the mush/liquid interface implies continuity of the
normal mass fluxes

(qb− − ub+) · nb = 0. (1.43)

Note that in the liquid phase, the mass flux q is the same as the velocity field u.
Moreover, (1.43) is equivalent to

(ub+ − ub−) · nb = φb−(v − ub−) · nb. (1.44)
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This last condition states that unless φ = 0 at the interface (no phase change at the
interface) or v · nb = ub− · nb (a zero normal fluid velocity relative to solid material
points), the normal velocity field is discontinuous across the interface.

Since φ = 1 in the solid phase, the conservation of mass at the solid/mush interface
implies

χa+(ua+ − v) · na = 0, (1.45)

so that the normal component of the Darcy velocity is zero there.

Conservation of heat

The conservation of heat at the mush/liquid interface implies

ρL(1− χb−)(wb − v) · nb = k (∇T |b− −∇T |b+) · nb. (1.46)

The difference between (1.17a) and (1.46) is in term wb − v, which expresses the
rate of solidification as the difference between the rate of interfacial propagation and
the speed of solid material points. In (1.17a), the solid was stationary, hence v = 0
in that case. Since the temperature is continuous across the interface, the terms
representing the advective transport of heat due to the fluid flow or that due to the
motion of dendrites are not present in (1.46). In such case, the full conservation of
heat across the mush/liquid interface would be

ρL(1− χb−)(wb − v) · nb + [−k∇T |b+ + ρCPTb+(ub+ −wb)]
︸ ︷︷ ︸

Q
b+

·(−nb)

= [−k∇T |b− + ρCPTb−(qb− −wb)]
︸ ︷︷ ︸

Q
b−

·(−nb), (1.47)

where Qb+ and Qb− are the local heat fluxes on the liquid and solid sides of the
interface, respectively. The advective components of these vectors depend upon the
mass flow relative to the interface; the term ρCPTb−(qb− −wb) · (−nb) represents the
advective heat flux from the interface to mushy layer and the term ρCPTb+(ub+−wb)·
(−nb) represents the advective heat flux from the liquid phase toward the interface.
Since we assume that the temperature field is continuous, we get from (1.43) that
the difference of the advective fluxes in (1.47) vanishes.

Analogously, the conservation of heat at the solid/mush interface leads to

ρLχa+(wa − v) · na = k (∇T |a− −∇T |a+) · na. (1.48)

Conservation of solute

The conservation of solute at the mush/liquid interface is expressed by the fol-
lowing condition

(Cb − CS)(1− χb−)(wb − v) · nb = D (χb−∇C|b− −∇C|b+) · nb. (1.49)

Since we assume nontrivial solute diffusion, the concentration field is continuous
across the interface, hence the advective transport of solute is not included in (1.49).
The conservation of solute in full form would be

χb−Cb−(ub− −wb) · nb + φb−CS(v −wb) · nb −Dχb−∇C|b− · nb
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= −D∇C|b+ · nb + Cb+(ub+ −wb) · nb. (1.50)

The term χb−Cb−(ub− −wb) ·nb is the advective flux of solute from the mushy layer
towards the interface. In case (v −wb) ·nb < 0, the expression φb−CS|(v −wb) ·nb|
represents the rate at which solute, contained within the dendrites, is transported
into the mushy layer from the mush-side of the interface (the solid phase has the
concentration CS and the solid material elements are moving away from the interface
into the mushy layer). In case (v − wb) · nb > 0 the interface is melting and the
expression φb−CS(v − wb) · nb represents the rate at which the solute is released
ahead of the interface. The condition (1.50) can be manipulated to yield

[Cb]
−

+(qb− −wb) · nb + φb−(Cb− − CS)(wb − v) · nb = D (χb−∇C|b− −∇C|b+) · nb,

where we have used the mass conservation (1.43). In case when D 6= 0 the concentra-
tion field is continuous across the interface so that the first term in the above condition
is zero. In case when D = 0 the concentration does not have to be continuous so that
the conservation of solute reads

[Cb]
−

+(qb− −wb) · nb + φb−(Cb− − CS)(wb − v) · nb = 0.

Analogously, the conservation of solute at the solid/mush interface is expressed as

(Ca − CS)χa+(wa − v) · na = −Dχa+na · ∇C|a+ . (1.51)



Chapter 2

Solidification over a
horizontally-moving boundary

2.1 Introduction

In the previous chapter we reviewed the basics of mathematical modelling of
a solidifying binary substance, with focus on the dynamics of mushy layers — the
reactive porous regions, in which the solid and liquid phases coexists. The simplest
case was that of diffusion-driven solidification with a planar solid/liquid interface.
We have also briefly discussed the directional solidification, in which the solidifying
system was pulled in vertical direction in an imposed temperature gradient, with the
interface being stationary in the laboratory frame of reference. Such solidification is
of importance from both the theoretical and experimental views, as it enables both
the morphological stability analyses of the interface and the analyses of convection.

The experimental configuration that is of interest in our thesis and shall be dis-
cussed in detail in this chapter is the one in which a cooled horizontal boundary (sub-
strate) is moving at a constant speed in horizontal direction in an imposed vertical
temperature gradient. In what follows, we shall assume that the material properties
of the solid and liquid phases are the same.

2.2 Mathematical formulation

We consider a steady-state solidification of a binary alloy over a cooled plate z = 0,
moving horizontally at constant speed U0 > 0. The temperature of the moving plate
is maintained at a value T0 that is above the eutectic temperature TE and below the
liquidus temperature TL(C∞) corresponding to the far-field solute concentration C∞

at z → ∞. The far-field temperature in the liquid is T∞. The binary alloy occupies
the region x > 0, z > 0. The experimental setting of the present problem is the same
as that by Löfgren (2001); a new feature in the present analysis is the presence of a
steady mushy layer separated from the solid and liquid phases by interfaces located
at z = a(x) and z = b(x), respectively. A definition sketch for the problem under
consideration is depicted in figure 2.1.

23
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x
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0

U0

U∞
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b(x)
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Solid

Mush

Liquid

Figure 2.1: A definition sketch for the problem of solidification of a binary alloy over a
horizontally moving boundary. A semi-infinite region x > 0, z > 0 is filled with a binary
alloy of far-field solute concentration C∞ and temperature T∞ (for z → ∞, x fixed). The
cooled lower boundary lies in the plane z = 0 and is moving in horizontal direction at a
constant speed U0. The temperature of the cooled boundary is maintained at a value T0.
The stationary solid/mush and mush/liquid interfaces are located at z = a(x) and z = b(x).

2.2.1 Dimensional governing equations in the mushy layer

The speed of the material points embedded in the dendrites is

v = U0i, (2.1)

while both interfaces are stationary so that

w = 0. (2.2)

We adopt the following assumptions to simplify the physical problem and to enable
us to seek the solutions in a self-similar form:

i) We ignore the gravity as we do not assume any convective motions in the mush
and liquid regions.

ii) We assume that there is no pressure gradient in the interstitial liquid of the
mush.

Darcy equation

The above assumptions imply that there is no flow relative to the dendrites, since
(1.42) reduces to

χ(u− v) = 0, (2.3)

so that in the mushy layer
q = u = v (2.4)

and the streamlines are parallel to the x-axis (see figure 2.1). Moreover, (2.4) implies
that the incompressibility condition (1.25) is automatically satisfied.
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Temperature field

The governing equation (1.33), describing the temperature field, becomes

v · ∇T = κ∇2T −
L

CP
v · ∇χ,

or, after simplification,

U0
∂T

∂x
= κ

(
∂ 2T

∂x 2
+
∂ 2T

∂z 2

)

− U0
L

CP

∂χ

∂x
. (2.5)

Concentration field

The governing equation (1.39), describing the concentration field, transforms to

χv · ∇C = D∇ · (χ∇C)− Cv · ∇χ

or, equivalently,

U0
∂

∂x
(χC) = D

[
∂

∂x

(

χ
∂C

∂x

)

+
∂

∂z

(

χ
∂C

∂z

)]

. (2.6)

Liquidus relationship

Although we expressed the liquidus relationship in (1.14), we will use a more
convenient form of the local thermodynamic equilibrium, namely

T = TL(C) ≡ T0 − Γ̂ (C − C0), (2.7)

where Γ̂ > 0 is the liquidus slope and C0 is such that T0 = TL(C0). However, the
formulation stated in (2.7) is equivalent to that in (1.14). The corresponding phase
diagram, along with the all relevant physical quantities, is depicted in figure 2.2.

Conditions at the interfaces

Since q = u|b− = v, the condition (1.43) reduces to

(ub+ − v) · nb = 0, (2.8)

so that the normal component of the velocity is continuous across the mush/liquid
interface.

We denote by Da/Dt = −v ·na and Db/Dt = −v·nb the local velocities of the solid
material elements relative to the (stationary) solid/mush and mush/liquid interfaces.
Then the conservation of heat and solute at the mush/liquid interface, respectively,
take the following form

ρL(1− χb−)
Db

Dt
= (k∇T |b− − k∇T |b+) · nb, (2.9a)

Cb(1− χb−)
Db

Dt
= D(χb−∇C|b− −∇C|b+) · nb. (2.9b)
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∆C
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Figure 2.2: Approximate binary phase diagram for a system with a mushy layer, used
in our thesis. For the description of particular symbols, see text. Shown is also a typical
trajectory (C, T ) of a solidifying system (solid lines with arrows).

and that at the solid/mush interface become

ρLχa+
Da

Dt
= (k∇T |a− − k∇T |a+) · na, (2.10a)

Ca+χa+
Db

Dt
= −Dχa+na · ∇C|a+ . (2.10b)

Note that, although the problem itself is stationary, the left hand-sides of (2.9a,b) and
(2.10a,b) are non-zero: both interfaces are freezing since (w− v) ·ni = −v ·ni > 0,
i = a, b, hence there is a non-trivial latent heat and solute release.

Governing equations in the solid phase

The temperature field in the solid phase is governed by a stationary advection-
diffusion equation of the following form

v · ∇T = κ∇2T, (2.11)

or, equivalently,

U0
∂T

∂x
= κ

(
∂ 2T

∂x 2
+
∂ 2T

∂z 2

)

. (2.12)

The advective term results from the horizontal advection of heat caused by the pulling
of the substrate (and hence the whole solid phase) at the constant speed U0 in the
x-direction.

Governing equations in the liquid phase

The temperature and concentration fields in the liquid phase are governed by the
stationary advection-diffusion equations

u · ∇T = κ∇2T, (2.13)
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u · ∇C = D∇2C. (2.14)

The stationary, Navier-Stokes equations for the velocity field u are

(u · ∇)u = −
1

ρ
∇P + ν∇2u, (2.15)

∇ · u = 0, (2.16)

where ν is the kinematic viscosity.

Boundary conditions

The boundary conditions imposed at the moving substrate, the mush/liquid in-
terface and that at the far-field are

z = 0 : T = T0, (2.17a)

z = b : u = U0, v = 0, (2.17b,c)

z → ∞ : T → T∞, C → C∞, (2.17d,e)

u→ U∞. (2.17f )

The conditions (2.17b,c) require some additional comments. The mass conservation
(1.43) can be expressed equivalently as

v = (u− U0)
db

dx
. (2.18)

The conditions (2.17b,c) impose the continuity of both the normal and tangential
mass fluxes across the mush/liquid interface and are consistent with the continuity
of the normal mass flux, expressed by (1.43) and (2.18).

2.2.2 Dimensionless formulation

To render the governing equations dimensionless, we scale the velocities with U0

and lengths with κ/U0. In the rest of the thesis we will denote the dimensionless
quantities by the same symbols as the dimensional ones. We define the dimensionless
temperature and concentration, respectively, by

θ =
T − T0
∆T

, and Θ =
C0 − C

∆C
, (2.19)

where
∆T = T∞ − T0, and ∆C = C0 − C∞. (2.20)

Note that θ and Θ may vary from 0 to 1.
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Mushy layer

The dimensionless governing equations in the mushy layer are

∂θ

∂x
=
∂ 2θ

∂x 2
+
∂ 2θ

∂z 2
− S

∂χ

∂x
, (2.21a)

(Θ − C )
∂χ

∂x
+ χ

∂Θ

∂x
= ε

[
∂

∂x

(

χ
∂Θ

∂x

)

+
∂

∂z

(

χ
∂Θ

∂z

)]

, (2.21b)

θ = θL(Θ) ≡ ΓΘ. (2.21c)

The dimensionless groups appearing in the above equations are the inverse Lewis
number ε, the Stefan number S , the concentration ratio C and the dimensionless
liquidus slope Γ , defined respectively by

ε =
D

κ
, S =

L

Cp∆T
, C =

C0

∆C
, Γ = Γ̂

∆C

∆T
. (2.22a–d)

Note that the effective range of C is (1,∞) and that of Γ is (0, 1). To see the latter,
we first realize that Γ̂ = (Tb − T0)/(C0 − Cb) and that

T∞ − T0
C0 − C∞

>
Tb − T0
C0 − Cb

. (2.23)

The last inequality can be verified directly from figure 2.2.

Liquid phase

The dimensionless equations governing the temperature and concentration fields
in the liquid phase are

u
∂θ

∂x
+ v

∂θ

∂z
=
∂ 2θ

∂x 2
+
∂ 2θ

∂z 2
, (2.24a)

u
∂Θ

∂x
+ v

∂Θ

∂z
= ε

(
∂ 2Θ

∂x 2
+
∂ 2Θ

∂z 2

)

. (2.24b)

The dimensionless Navier-Stokes equations take the form

u
∂u

∂x
+ v

∂u

∂z
= Pr

(
∂ 2u

∂x 2
+
∂ 2u

∂z 2

)

, (2.25a)

u
∂v

∂x
+ v

∂v

∂z
= −

dp

dz
+ Pr

(
∂ 2v

∂x 2
+
∂ 2v

∂z 2

)

, (2.25b)

∂u

∂x
+
∂v

∂z
= 0, (2.25c)

where
Pr =

ν

κ
(2.26)

is the dimensionless Prandtl number and p is the dimensionless pressure (note that
p depends only on the z coordinate). However, as we shall see, the second equation
will not be relevant due to boundary-layer reduction.
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Solid phase

The dimensionless heat equation in the solid phase reads

∂θ

∂x
=
∂ 2θ

∂x 2
+
∂ 2θ

∂z 2
. (2.27)

Conditions at the interfaces

The dimensionless conditions at mush/liqud interface are

S (1− χb−)i · (−nb) = (∇θ|b− −∇θ|b+) · nb, (2.28a)

(Θb − C )(1− χb−)i · (−nb) = ε (χb−∇Θ|b− −∇Θ|b+) · nb (2.28b)

and that at the solid/mush interface are

S χa+i · (−na) = (∇θ|a− −∇θ|a+) · na, (2.29a)

(Θa − C )χa+i · (−na) = −εχa+na · ∇Θ|a+ (2.29b)

Boundary conditions

The imposed dimensionless boundary conditions are

z = 0 : θ = 0, (2.30a)

z = b : u = 1, v = 0, (2.30b,c)

z → ∞ : θ → 1, Θ → 1, u→ U , (2.30d,e,f )

where the dimensionless velocity ratio U , defined by

U =
U∞

U0

, (2.31)

represents the scaled far-field horizontal velocity.

2.2.3 Boundary-layer reduction and self-similar formulation

Our goal is to examine self-similar solutions to the problem just stated, with the
dimensionless interfaces having a square-root growth of the form

a(x) = 2λax
1/2, b(x) = 2λbx

1/2, (2.31a,b)

where λa and λb are unknown positive constants. We shall consider a self-similar
variable ζ , defined by

ζ =
z

2x1/2
. (2.32)

However, the system of partial differential equations hitherto presented does not
admit a self-similar solution involving the variable ζ . To facilitate the self-similar
analysis, we consider the limit

x→ ∞, z/x1/2 = O(1), (2.33)
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so that na, nb ∼ k to the leading order. The physical motivation for such limit is that
the horizontal gradients of temperature and concentration are small relative to the
gradients in vertical direction – a procedure that is typical of boundary layer analyses
in fluid dynamics (see, for example, Schlichting 1979). In the limit (2.33), a self-
consistent boundary-layer approximation of the governing dimensionless equations
and the interface conditions can be made formally via the following re-scaling

(x, z) 7→ (lx̂, l1/2ẑ), (2.34)

using a fictitious dimensionless scale l, taking the limit l → ∞ with x̂ = O(1),
ẑ = O(1), collecting the leading order terms and then returning back to the original
variables x and z. Below we state the reduced system of governing equations and the
corresponding conditions at the interfaces. The boundary conditions (2.30a–f ) are
not affected by the boundary-layer reduction.

Mushy layer

∂θ

∂x
=
∂ 2θ

∂z 2
− S

∂χ

∂x
, (2.35a)

(Θ − C )
∂χ

∂x
+ χ

∂Θ

∂x
= ε

∂

∂z

(

χ
∂Θ

∂z

)

, (2.35b)

θ = ΓΘ. (2.35c)

Liquid phase

u
∂θ

∂x
+ v

∂θ

∂z
=
∂ 2θ

∂z 2
, (2.36a)

u
∂Θ

∂x
+ v

∂Θ

∂z
= ε

∂ 2Θ

∂z 2
, (2.36b)

u
∂u

∂x
+ v

∂u

∂z
= Pr

∂ 2u

∂z 2
, (2.37a)

∂u

∂x
+
∂v

∂z
= 0. (2.37b)

Solid phase
∂θ

∂x
=
∂ 2θ

∂z 2
(2.38)

Mush/liquid interface

S (1− χb−)
db

dx
=
∂θ

∂z

∣
∣
∣
∣
b−

−
∂θ

∂z

∣
∣
∣
∣
b+
, (2.39a)

(C − Θb)(1− χb−)
db

dx
= ε

(
∂Θ

∂z

∣
∣
∣
∣
b+

− χb−
∂Θ

∂z

∣
∣
∣
∣
b−

)

. (2.39b)
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Solid/mush interface

S χa+
da

dx
=
∂θ

∂z

∣
∣
∣
∣
a−

−
∂θ

∂z

∣
∣
∣
∣
a+
, (2.40a)

(C − Θa)χa+
da

dx
= εχa+

∂Θ

∂z

∣
∣
∣
∣
a+
. (2.40b)

2.3 Viscous boundary-layer problem in the liquid

phase

The equations (2.37a, b), together with conditions (2.30b, c, f ), constitute a vis-
cous boundary-layer problem. The boundary layer is present due to the assumption
that the Prandtl number is small, which is typical of liquid metal flows. Apart from
the nondimensionalisation scheme, the present viscous boundary-layer problem is the
same as that studied by Löfgren (2001). As Löfgren (2001), we derive the asymp-
totic self-similar solutions for the velocity, temperature and concentration fields in
the limit of small Prandtl number. Due to the different scaling chosen, however, the
asymptotic regime considered here is, in fact, different.

2.3.1 Stream-function formulation

The flow under consideration is incompressible and two-dimensional, hence we
can express the flow velocity u in terms of a scalar stream function ψ(x, z) as

u =
∂ψ

∂z
, v = −

∂ψ

∂x
. (2.41a, b)

Such a velocity field automatically satisfies the incompressibility condition (2.37b).
We will seek the solution to (2.37a, b) and (2.30b, c, f ) in terms of a self-similar

variable ζ , defined in (2.32), such that u(x, z) = u(ζ). Integrating (2.41a) we obtain

ψ(x, z)− ψ(x, b(x)) =

∫ z

b(x)

u
( σ

2x1/2

)

dσ

= 2x1/2
∫ ζ

λb

u(s) ds.

Differentiating the expression ψ(x, b(x)), we get

d

dx
ψ (x, b(x)) =

∂ψ

∂x

∣
∣
∣
∣
z=b(x)

+
∂ψ

∂z

∣
∣
∣
∣
z=b(x)

db

dx

=
λb
x1/2

,

where we have made use of the boundary conditions (2.30b, c) and the definition
of b(x). Hence the values of stream function at the mush/liquid interface can be
expressed as

ψ (x, b(x)) = 2λbx
1/2 +K.
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where K is an arbitrary constant. From (2.41a, b), however, we see that if ψ is a
stream function, then ψ +K is also a stream function for any value of K. Therefore
we can set K = 0. Finally, the stream function has the following form

ψ(x, z) = 2x1/2
[

λb +

∫ ζ

λb

u(s) ds

]

, (2.42)

or equivalently,
ψ(x, z) = 2x1/2f(ζ ;Pr), (2.43)

where f(ζ ;Pr) ≡ λb +
∫ ζ

λb
u(s) ds. Using (2.41a, b) and (2.43), we can express the

velocity field as

u = f ′, (2.44a)

v =
1

x1/2
(ζf ′ − f), (2.44b)

where f ′ ≡ df/dζ .
In terms of the stream function, the equation (2.37a) can be formulated in the

following way
∂ψ

∂z

∂2ψ

∂x∂z
−
∂ψ

∂x

∂ 2ψ

∂z 2
= Pr

∂ 3ψ

∂z 3
.

Using the relations

∂2ψ

∂x∂z
= −

ζ

2x
f ′′,

∂ 2ψ

∂z 2
=

1

2x1/2
f ′′,

∂ 3ψ

∂z 3
=

1

4x
f ′′′,

we obtain a third-order differential equation for the function f

Prf ′′′ + 2ff ′′ = 0, (2.45)

subject to boundary conditions

ζ = λb : f = λb, (2.46a)

f ′ = 1, (2.46b)

ζ → ∞ : f ′ → U . (2.46c)

The condition (2.46a) follows from the fact that ψ|z=b(x) = b(x). Moreover, from
(2.46a) and (2.44b), we can see that the condition v|z=b(x) = 0 is automatically
satisfied.

2.3.2 Asymptotic solution as Pr → 0

Outer solution

We shall seek an outer solution of the boundary-layer problem (2.45) in the form
of a regular asymptotic expansion

fout(ζ ;Pr) ∼ f1(ζ) + Prf2(ζ) +O(Pr2), ζ = O(1), P r → 0, (2.47)
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where fi(ζ) = O(1) for ζ = O(1) as Pr → 0. From (2.46c) we obtain

U ∼ f ′

1(∞) + Prf ′

2(∞) +O(Pr2), P r → 0,

whence

f ′

1(∞) = U ,

f ′

i(∞) = 0, for i ≥ 2.

We insert the expansion (2.47) into the equation (2.45) to obtain

Pr
[
f ′′′

1 + Prf ′′′

2 +O(Pr2)
]
+ 2

[
f1 + Prf2 +O(Pr2)

] [
f ′′

1 + Prf ′′′

2 +O(Pr2)
]
= 0,

or, after some rearrangement,

2f1f
′′

1 + Pr [f ′′′

1 + 2f1f
′′

2 + 2f2f
′′

1 ] +O(Pr2) = 0.

O(Pr0) solution In the zeroth order, we have a differential equation along with
one boundary condition

2f1f
′′

1 = 0, f1 6≡ 0,

f ′

1(∞) = U .

Thus f ′′

1 = 0 and therefore f1(ζ) = U ζ + A, where A is a constant that is yet to be
determined.

O(Pr1) solution The differential equation arising at the first order, along with
appropriate boundary condition, has the form

f ′′′

1 + 2f1f
′′

2 + 2f2f
′′

1 = 0,

f ′

2(∞) = 0,

which yields
(U ζ + A)f ′′

2 = 0,

and thus f ′′

2 = 0. From that we have f2(ζ) = d, for some unknown constant d.

Inner solution

We assume that there is a boundary layer of thickness O[Ω(Pr)], adjacent to the
mush/liquid interface ζ = λ+b . To resolve this boundary layer, we define a scaled
inner coordinate

η ≡
ζ − λb
Ω(Pr)

, where Ω(Pr) → 0 as Pr → 0.

Rescaling the equation (2.45), we get

Prf
(3)
in + 2Ωfinf

(2)
in = 0, (2.48)
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where fin(η) ≡ f(λb + Ωη), with η = O(1) as Pr → 0, and f
(i)
in ≡ difin/dη

i. This
equation is subject to boundary conditions

fin(0) = λb, (2.49b)

f
(1)
in (0) = Ω(Pr). (2.49c)

We seek an asymptotic expansion of the inner solution

fin(η;Pr) ∼ ∆1(Pr)F1(η) + ∆2(Pr)F2(η) +O[∆3(Pr)], (2.50)

for η = O(1) as Pr → 0. To obtain consistent asymptotic balances upon inserting
(2.50) into (2.48), we set

∆1(Pr) = 1, ∆2(Pr) = Ω(Pr) = Pr (2.51a, b)

F1(0) = λb, Fn(0) = 0 (n ≥ 2), (2.51c, d)

F
(1)
1 (0) = 0, F

(1)
2 (0) = 1. (2.51e, f )

After inserting (2.50) into (2.48), we obtain the following sequence of problems

O(Pr1) : F
(3)
1 + 2F1F

(2)
1 = 0, (2.52a)

O(Pr2) : F
(3)
2 + 2F1F

(2)
2 + 2F2F

(2)
1 = 0. (2.52b)

O(Pr1) solution First, assume that F
(2)
1 (0) 6= 0. Then the solution of (2.52a) can

be shown to satisfy the following integro-differential equation

F
(1)
1 (η) = F

(2)
1 (0)

∫ η

0

exp

(

−2

∫ σ

0

F1(s) ds

)

dσ, (2.53)

which can be equivalently expressed as

F1(η) = λb + F
(2)
1 (0)

∫ η

0

∫ ω

0

exp

(

−2

∫ σ

0

F1(s) ds

)

dσ dω. (2.54)

The above equation contains an unknown constant F
(2)
1 (0). However, it turns out

that this constant is, in fact, equal to zero. In that case we get

F1(η) ≡ λb. (2.55)

We will now show that F
(2)
1 (0) = 0. First, we know from the boundary conditions,

that f(λb) = λb > 0. So the values of the stream function at the interface satisfy
ψ(x, b(x)) = b(x). Therefore, ψ must be positive in the whole boundary layer and
so must be the values of function f (see figure 2.3) – see (2.43). Moreover, in the
boundary layer f ∼ fin as Pr → 0 and from (2.50) we know that fin ∼ F1. Thus
F1 > 0 for all η > 0. The inner and outer solutions must match so that

lim
η→∞

fin(η) = lim
ζ→0+

fout(ζ) <∞.
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x

z

ψ(x, z) = b(x1) > 0
ψ(x, z) = b(x2) > 0

[x1, b(x1)]

[x2, b(x2)]

b(x)

Figure 2.3: Each point within the boundary layer lies on a streamline terminating at the
interface. As each streamline corresponds to a contour of the stream function, values of ψ
in the boundary layer must be strictly positive.

Hence F1 must be bounded for η → ∞, i.e. there must exist a constant K > 0 such
that

0 < F1(η) < K, ∀η > 0. (2.56)

Now, assume that F
(2)
1 (0) 6= 0. Then, by integrating both sides of (2.56), we get

exp

(

−2

∫ σ

0

F1(s) ds

)

> e−2Kσ,

which, after double integration, yields an inequality
∫ η

0

∫ ω

0

exp

(

−2

∫ σ

0

F1(s) ds

)

dσ dω >
η

2K
+

1

4K2
(e−2Kη−1).

Finally, using (2.54), we have

F1(η)− λb < F
(2)
1 (0)

[
η

2K
+

1

4K2
(e−2Kη−1)

]

, if F
(2)
1 (0) < 0,

F1(η)− λb > F
(2)
1 (0)

[
η

2K
+

1

4K2
(e−2Kη−1)

]

, if F
(2)
1 (0) > 0.

Thus, for η → ∞, the right hand-side of the above inequalities tends to +∞ when
F

(2)
1 (0) > 0, and to −∞ when F

(2)
1 (0) < 0. In both cases we get a contradiction with

the boundedness of F1. Hence we must set F
(2)
1 (0) = 0.

O(Pr2) solution Using (2.55), the equation (2.52b) takes the form

F
(3)
2 + 2λbF

(2)
2 = 0,

subject to initial conditions

F2(0) = 0, F
(1)
2 (0) = 0.

The explicit solution is as follows

F2(η) = (1 + 2λbB)η +B(e−2λbη−1),

where B is a constant that is yet to be determined by matching of the inner and outer
solutions. Thus, the solution, correct to O(Pr2), in the inner region is as follows

fin(η;Pr) ∼ λb + Pr
[
(1 + 2λbB)η +B

(
e−2λbη −1

)]
, η = O(1), P r → 0.
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Matching of the inner and outer solutions

The outer solution expressed in terms of the inner variable η has the form

fout(ζ 7→ λb + Pr η;Pr) ∼ A+ U λb + Pr d+ PrU η.

The inner solution expressed in the outer region has an expansion of the form

fin

(

η 7→
ζ − λb
Pr

;Pr

)

∼ −2λ2bB + (1 + 2λb)ζ − PrB

= λb − PrB + Pr(1 + 2λbB)η.

To match the inner solution with the outer one, we must set

U = 1 + 2λbB, Pr d = −PrB, U λb + A = λb,

whence

B =
U − 1

2λb
, d =

1− U

2λb
, A = λb(1− λb).

Finally, the outer, inner and composite solutions, expressed in terms of the outer
variable, are

fout(ζ ;Pr) ∼ λb(1− U ) + U ζ + Pr
1− U

2λb
, ζ = O(1), (2.57a)

fin(η;Pr) ∼ λb + Pr

[

U η +
1− U

2λb
(1− e−2λbη)

]

, η = O(1), (2.57b)

f(ζ ;Pr) ∼ λb(1− U ) + U ζ + Pr
1− U

2λb

[

1− exp

(

−2λb
ζ − λb
Pr

)]

. (2.57c)

Note that above asymptotic solutions are valid only if λb ≫ Pr/λb as Pr → 0, or,
equivalently

Pr ≪ λ2b for Pr → 0. (2.58)

Velocity field

The asymptotic solution for the velocity field is

u ∼ 1 + (1− U )

[

exp

(

−2λb
ζ − λb
Pr

)

− 1

]

, (2.59a)

v ∼ −
1 − U

x1/2

{

λb +
Pr

2λb
−

(

ζ +
Pr

2λb

)

exp

(

−2λb
ζ − λb
Pr

)}

. (2.59b)

For fixed values of x, the limiting form of the velocity field, as ζ → ∞, is

u→ U , v →
U − 1

x1/2

(

λb +
Pr

2λb

)

.

Note that v > 0 (v < 0) when U > 1 (U < 1), see figure 2.4. Moreover, for U = 1,
the flow is trivial relative to the solid phase, in which case the problem studied by
Worster (1986) of self-similar growth of a planar solid-liquid interface is reproduced,
with his time variable replaced with our x.
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Mush

Liquid

x

z

b(x)

u

U < 1 (U∞ < U0)

U = 1 (U∞ = U0)

U > 1 (U∞ > U0)

Figure 2.4: Sketch of representative streamlines for qualitatively different values of U . In
the mushy layer, the velocity field is equal to the velocity of moving substrate.

2.4 Thermal boundary-layer problem in the liquid

phase

When formulated using the stream function ψ, the equation (2.36a) takes the
form

∂ψ

∂z

∂θ

∂x
−
∂ψ

∂x

∂θ

∂z
=
∂ 2θ

∂z 2
.

Using (2.32), this is transformed to an ordinary differential equation

θ′′ = −2fθ′ (2.60)

with θ = θ(ζ), which is subject to

ζ = λb : θ = θb, (2.61a)

ζ → ∞ : θ = 1, (2.61b)

with θb being a part of the solution. The solution of (2.60) and (2.61a,b) is of the
form

θ(ζ ;Pr) = θb + (1− θb)
J(ζ ;Pr)

J(∞;Pr)
, (2.62)

where

J(ζ ;Pr) ≡

∫ ζ

λb

exp

(

−2

∫ s

λb

f dσ

)

ds. (2.63)

The integral
∫ s

λb
f dσ can be approximated, using (2.57c), in the following way

∫ s

λb

f dσ ∼
U

2
(s− λb)

2 + Λ(λb)(s− λb) +O(Pr2), (2.64)

with

Λ(λ) ≡ λ + Pr
1− U

2λ
. (2.65)

Therefore, by inserting (2.64) into (2.62) and dropping the O(Pr2) term, we get, after
some manipulation, the asymptotic form of the temperature field as Pr → 0

θ(ζ) ∼ 1 + (θb − 1)
erfc

[
U 1/2(ζ − λb) + U −1/2Λ(λb)

]

erfc [U −1/2Λ(λb)]
, ζ > λb, (2.66)
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where

erfc(λ) = 1− erf(λ), erf(λ) =
2

π1/2

∫ λ

0

e−s
2

ds.

Note that the Prandtl number affects the temperature field through the quantity
Λ(λb) ∼ λb +O(Pr), provided λb = O(1).

2.5 Compositional boundary-layer problem in the

liquid phase

The equation (2.36b) is transformed into the following ordinary differential equa-
tion

εΘ′′ = −2fΘ′, (2.67)

with Θ = Θ(ζ), which is subject to

ζ = λb : Θ = Θb, (2.68a)

ζ → ∞ : Θ → 1, (2.68b)

with Θb being a part of the solution. The solution to (2.67) is

Θ(ζ ;Pr, ε) = Θb + (1−Θb)
I(ζ ;Pr, ε)

I(∞;Pr, ε)
, (2.69)

with

I(ζ ;Pr, ε) ≡

∫ ζ

λb

exp

(

−
2

ε

∫ s

λb

f dσ

)

ds. (2.70)

Using (2.64) and dropping the O(Pr2)-term, we obtain, after some manipulation, the
following form of the concentration field in the liquid phase

Θ(ζ) ∼ 1 + (Θb − 1)
erfc

[
(U /ε)1/2(ζ − λb) + (U ε)−1/2Λ(λb)

]

erfc [(U ε)−1/2Λ(λb)]
, ζ > λb. (2.71)

2.6 Temperature field in the solid phase

The heat equation (2.38) is transformed into the ordinary differential equation

θ′′ + 2ζθ′ = 0, (2.72)

subject to boundary conditions

ζ = 0 : θ = 0, (2.73a)

ζ = λa : θ = θa, (2.73b)

which has the solution

θ = θa
erf(ζ)

erf (λa)
, ζ < λa, (2.74)

with θa yet to be determined from the conditions at the solid/mush interface.



Chapter 3

Solidification with a solid/liquid
interface

3.1 Introduction

Before focusing our attention on the self-similar solutions of the mushy layer
problem formulated in the preceding chapter, we take a look at the situation when
there are only solid and liquid phases present in the system. The problem was origi-
nally formulated by Löfgren (2001), but employing a different scaling of the governing
equations as that used in this thesis. Though the limit of small Prandtl number is
singular for the velocity field in the liquid phase, it is regular for the temperature
and concentration fields as well as for the growth constant λh. However, from the
experimental point of view, of central importance is the ratio of the horizontal flow
velocity forced at infinity to the pulling rate of the substrate, U , introduced in the
previous chapter. It is through this velocity ratio that the flow controls the solidifi-
cation. We shall study the dependence of the solidifying system on U and we also
derive some approximate results in case when U is small. The the influence of U

was not studied by Löfgren (2001).

3.2 Mathematical formulation

The governing equations in the liquid and solid phases are the same as those
in the problem with a mushy layer, the only difference is in the conditions at the
solid/liquid interface – however, these can be obtained from those at the solid/mush
interface by setting χa+ = 1. Thus the dimensionless conservation of heat and solute
at the solid/liquid interface take the form

S
dh

dx
=
∂θ

∂z

∣
∣
∣
∣
h−

−
∂θ

∂z

∣
∣
∣
∣
h+
, (3.1a)

(C − Θh)
dh

dx
= ε

∂Θ

∂z

∣
∣
∣
∣
h+
, (3.1b)

39
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0

x

z

Liquid

Solid

T∞, C∞

Th, Ch

T0, C0

h(x)

U0

U∞

u

Figure 3.1: Definition sketch for the problem of solidification of a binary alloy over a
horizontally moving substrate. A semi-infinite region x > 0, z > 0 is filled with a binary
alloy of far-field solute concentration C∞ and temperature T∞ (for z → ∞ and x fixed).
The cooled lower boundary lies in the plane z = 0 and is moving in horizontal direction
at a constant speed U0. The stationary solid/liquid interface is located at z = h(x). The
horizontal flow velocity at z → ∞ is U∞.

with the dimensionless self-similar interface position

h(x) = 2λhx
1/2 (3.2)

for some positive growth constant λh. The dimensional liquidus relationship at the
interface is

Th = TL(Ch) ≡ T0 − Γ̂ (Ch − C0), (3.3)

where Γ̂ = (Th − T0)/(C0 −Ch) is the dimensional liquidus slope. The dimensionless
liquidus takes the form

θh = θL(Θh) ≡ ΓΘh. (3.4)

All the dimensional scales and dimensionless numbers are the same as that defined in
the previous chapter. A definition sketch for the present problem is shown in figure
3.1.

3.3 Self-similar solutions

The temperature field in the liquid phase has the following approximate form (cf.
(2.66))

θ(ζ) ∼ 1 + (θh − 1)
erfc

[
U 1/2(ζ − λh) + U −1/2Λ(λh)

]

erfc [U −1/2Λ(λh)]
, as Pr → 0 (3.5)

and the concentration field (cf. (2.71))

Θ(ζ) ∼ 1+ (Θh−1)
erfc

[
(U /ε)1/2(ζ − λh) + (U ε)−1/2Λ(λh)

]

erfc [(U ε)−1/2Λ(λh)]
, as Pr → 0. (3.6)

Note that general forms of these solutions are the same as (2.62) and (2.69) with λb
replaced by λh. In the solid phase, the temperature field is (cf. (2.74))

θ = θh
erf(ζ)

erf (λh)
. (3.7)
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The Stefan condition (3.1a), expressed in terms of ζ , reads

2S λh = θ′|h− − θ′|h+, (3.8)

where the temperature gradients on either sides of the interface can be expressed,
using the general-form solution in the liquid phase, as

θ′|h− =
2λhθh
G(λh)

, θ′|h+ =
1− θh

J(∞;Pr)
, (3.9a,b)

with

G(λ) = π1/2λ eλ
2

erf(λ). (3.10)

Thus the Stefan condition can be cast into the following form
[

2λh
G(λh)

+
1

J(∞;Pr)

]

θh −
1

J(∞;Pr)
− 2S λh = 0. (3.11)

The solute conservation at the interface transforms as

2(C − Θh)λh = εΘ′

h, (3.12)

with the concentration gradient on the liquid side of the interface given by

Θ′

h =
1− Θh

I(∞;Pr, ε)
. (3.13)

Combining (3.13) with (3.12) we obtain the concentration at the interface as

Θh = 1 + (1− C )
2λhI(∞;Pr, ε)

ε− 2λhI(∞;Pr, ε)
. (3.14)

The nonlinear equation (3.11), along with the liquidus relationship θh = ΓΘh, serves
as the equation from which λh can be sought for. The integrals J(∞;Pr) and
I(∞;Pr, ε) can be approximated for Pr → 0 in the following way1

J(∞;Pr) ∼
1

2Λ(λh)
F

[
Λ(λh)

U 1/2

]

, (3.17a)

1The quantity Λ(λh) in fact crosses out from the denominators in (3.17a,b) and the integrals
J(∞;Pr) and I(∞;Pr, ε) can then be expressed as

J(∞;Pr) ∼
π1/2

2
U

−1/2 exp

[
Λ2(λh)

U

]

erfc

[
Λ(λh)

U 1/2

]

, (3.15)

I(∞;Pr, ε) ∼
π1/2

2

( ε

U

)1/2

exp

[
Λ2(λh)

εU

]

erfc

[
Λ(λh)

(εU )1/2

]

. (3.16)

However, the reason for introducing the function F in (3.17a,b) is that F is easier to be manipulated
with and facilitates straightforward asymptotic calculations since F (x) ∼ 1 as x→ ∞ (cf. Boisvert
et al. 2010). Though, one must be aware that the forms (3.17a,b) introduce an artificial root
λh = [ 1

2
Pr(U − 1)]1/2 in (3.19), corresponding to Λ(λh) = 0, which exists for U > 1. In the next

two chapters, however, we shall be interested only in cases when U < 1.
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I(∞;Pr, ε) ∼
ε

2Λ(λh)
F

[
Λ(λh)

(εU )1/2

]

. (3.17b)

with
F (λ) = π1/2λ eλ

2

erfc(λ). (3.18)

Using these, together with the liquidus relationship (3.4), we can write (3.11) as

Γ

[

λh
F [Λ(λh)/U

1/2]

G(λh)
+ Λ(λh)

]

Θh − Λ(λh)− S λhF

[
Λ(λh)

U 1/2

]

= 0. (3.19)

and the concentration and its gradient at the interface, respectively, are given as

Θh ∼ 1 + (1− C )
λhF

[
Λ(λh)/(εU )1/2

]

Λ(λh)− λhF [Λ(λh)/(εU )1/2]
, (3.20)

Θ′

h ∼ ε−1(C − 1)
2λhΛ(λh)

Λ(λh)− λhF [Λ(λh)/(εU )1/2]
. (3.21)

3.4 Asymptotic approximations

In typical experiments, the velocity ratio U can take both small and large values
(cf. Löfgren 2001). In what follows, we shall focus our analysis on the case when U is
small since it facilitates a relatively simple asymptotic approximations. Investigation
of solutions for finite values of U , namely U > 1, is a difficult task since numerical
calculations show multiplicity of solutions for λh and their nonexistence for sufficiently
large values of U . In the rest of this chapter, we will assume the regular limit of
negligible latent heat release, i.e. we set S = 0.

The numerical solution for λh as a function of Pr is depicted in figure 3.2(a) for
various values of U . The numerical results in figure 3.2(a) along with scaling analysis
suggest that the limit Pr → 0 for nonzero values of U is regular in (3.19), so that

λh ∼ λ0 +O(Pr), as Pr → 0, (3.22)

with λ0 = O(1) as Pr → 0. The leading-order forms of the interfacial concentration
and its gradient on the liquid side of the interface are

Θh ∼ 1 + (1− C )
F [λ0/(εU

1/2)]

1− F [λ0/(εU 1/2)]
, (3.23a)

Θ′

h ∼ ε−1(C − 1)
2λ0

1− F [λ0/(εU 1/2)]
. (3.23b)

To the leading order in Pr, the equation (3.19) becomes

ΓF

(
λ0

U 1/2

){

1− CF

[
λ0

(εU )1/2

]}

= G(λ0)

{

1− Γ + (ΓC − 1)F

[
λ0

(εU )1/2

]}

.

Appearance of ratio λ0/U
1/2 in the above equation suggest a rescaling λ0 = U 1/2λ̂0

so that the equation becomes

ΓF (λ̂0)
[

1− CF (λ̂0/ε
1/2)

]

= G(U 1/2λ̂0)
[

1− Γ + (ΓC − 1)F (λ̂0/ε
1/2)

]

.



43

0.0
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Figure 3.2: (a) The growth rate λh as a function of Prandtl number, calculated numerically
from (3.19), shown for various values of velocity ratio: U = 10−2 (solid), U = 1 (dashed)
and U = 10 (dot-dashed). Note that at non-zero U , the value of λh attains finite values
as Pr → 0. Moreover, for U = 1 the growth rate is independent of Pr owing to the fact
that the Prandtl number affects the temperature and concentration fields only through the
quantity Λ(λh). (b) The values of the leading order solution λ0 (dashed line), given by
(3.26), compared with the numerical solution of (3.19) for Pr = 10−3 (solid line), both as
functions of U . The values of the other physical parameters in all the computations are
set to ε = 10−1, C = 2 and Γ = 0.5.

In the limit U → 0 with λ̂0 = O(1), the dominant balance in the above equation is

F (λ̂0/ε
1/2) =

1

C
, (3.24)

with the high order terms being of O(U ). To derive (3.24), we used the following
approximation

G(λ) = 2λ2 +O(λ4), (3.25)

valid for small λ. Thus to leading order we have

λh ∼ ε1/2Finv(C
−1)U 1/2, U → 0, (3.26)

with Finv denoting the inverse of F . We can combine (3.26) with (3.23b) to obtain

Θ′

h ∼ 2ε−1/2
CFinv(C

−1)U 1/2, U → 0. (3.27)

The joint limit Pr → 0, U → 0 requires more careful consideration. While the limit
Pr → 0 is regular for λh and the temperature and concentration fields, it is singular
for the velocity field. Since the growth constant can be expressed as λh = λ0+O(Pr),
where λ0 = O(U 1/2) as U → 0, we have to ensure that this expansion, along with
that of f in (2.57c), is asymptotic. To do this, we must require λh ≫ Pr/λh, so that

Pr ≪ U ≪ 1. (3.28)

In case when U = 0, obtained by letting U → 0 in (3.19), the root of (3.19) is
O(Pr1/2), thus violating the asymptotic constraint λh ≫ Pr/λh. However, as we will
show in the next chapter, when a mushy layer is present in the system, the solutions
corresponding to U = 0 are asymptotically consistent.
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Figure 3.3: Temperature (a) and concentration (b) fields in liquid, evaluated from the
asymptotic solutions (3.5) and (3.6), respectively, for different values of small velocity ratios.
In both plots, we use the following values of U : U = 10−3 (solid), U = 10−2 (dashed) and
U = 10−1 (dot-dashed). The other quantities are set to Pr = 10−4, ε = 10−1, C = 2 and
Γ = 0.5. The values of λh are of order O(10−2), therefore the solid phase is not visible in
the plots.

To see how small U affects the temperature and concentration fields, we approx-
imate the leading-order forms (i.e. we set Pr = 0) of (3.5) and (3.6) for U → 0 and
ζ = O(1). For the temperature we obtain

θ ∼
2ε1/2Finv(C

−1)

F [ε1/2Finv(C −1)]
(ζ − λh)U

1/2 (3.29)

and for the concentration

Θ ∼ 2ε−1/2
CFinv(C

−1)(ζ − λh)U
1/2. (3.30)

In deriving (3.29) and (3.30) we used the fact that for Pr = 0 both θh and Θh are
O(U ) when U → 0. The thickness of both thermal and concentration boundary lay-
ers is stretched by factor U −1/2. Thus the decrease in U has the effect of reducing the
concentration gradient at the interface. The temperature and concentration fields are
depicted in figures 3.3(a,b). Moreover, we see from (2.57c) that small U modifies the
viscous boundary layer such that its effective thickness is O(Pr/U 1/2) ≪ O(1/U 1/2).
Therefore, the asymptotic condition (3.28) can be interpreted such that Pr and U

must be small in such a way that the viscous boundary layer resides within the con-
centration one. As a result, the effect of the viscous boundary layer on the transport
of heat and solute is negligible in the leading order (cf. Löfgren 2001) and it is through
the velocity ratio that the flow affects the solidification. Therefore, the concentration
and thermal fields together with the growth rate λh can well be approximated by
their leading-order forms in Pr.
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Figure 3.4: The advective flux of solute with respect to the moving solid phase, scaled
with the x-coordinate, for (a) U < 1 and (b) U > 1. The curves shown in (a) correspond
to U = 10−3 (solid), U = 10−2 (dashed) and U = 10−1 (dot-dashed); those in (b)
correspond to U = 5 (solid), U = 10 (dashed) and U = 20 (dot-dashed). The values of
physical parameters are set to Pr = 10−3, ε = 10−1, C = 2 and Γ = 0.5.

An important physical characteristic of the system is the dimensionless advective
flux A of solute with respect to the moving substrate, defined by

A ≡ −(u− u0) · ∇Θ = 1
2
x−1(f − ζ)Θ′. (3.31)

The minus sign in (3.31) reflects the minus sign in the definition of Θ. In figure 3.4
we plot the values of A, scaled with the x-coordinate, as a function of ξ − λh, for
qualitatively different values of U . Note that this scaled flux does not depend on x.
Moreover, A is zero at the interface and attains a local extremum at a finite distance
from the interface. When U < 1, the streamlines of u − u0 are oriented outwards
from the interface, so the advective flux relative to the interface is negative. However,
any fluid element eventually reaches the interface since in the frame moving with the
solid, the interface position evolves proportionally to t1/2. For U → 0, the scaled
advective flux can be approximated as

xA ∼ ε−1/2
CFinv(C

−1)(f − ζ) exp

(

−
2

ε

∫ ζ

λh

f ds

)

U
1/2

provided Pr ≪ U . Note that xA scales with U 1/2, not U . When U > 1, the
fluid elements move faster than the moving substrate, so the streamlines of u − u0

are directed towards the interface and the relative advective flux of solute is positive.
Another feature that can be seen in figure 3.4 is that the thickness of the region
where xA is effectively non-zero decreases with increasing U . Also note that, while
for U > 1 the maximum values of xA are monotonically increasing with U , it is not
so for U < 1. In case when U = 1, there is zero advective flux of solute relative to



46

the moving substrate. Moreover, note that for U ↑ 1 the thickness of the region with
effectively non-zero advective flux decreases, while it increases for U ↓ 1.



Chapter 4

Mushy layer with solute diffusion

4.1 Introduction

In this chapter, we return back to the situation where the solid and liquid phases
are separated by the mushy layer. The self-similar solutions in the solid phase and
mushy layer turn out to be, up to the dimensionless scaling, formally the same as that
derived by Gewecke & Schulze (2011b) for a mushy layer in a semi-infinite domain,
with their time variable in the definition of ζ replaced by our spatial variable x.
The difference is in the conditions at the mush/liquid interface, through which the
temperature and concentration fields in the liquid phase influence the mushy layer.

We shall also address questions concerning the properties of the liquid fraction at
the solid/mush interface, which apply also to the models with planar interfaces and
have not been addressed by the other authors so far. Throughout the chapter, as well
as in the next one, we will assume that 0 ≤ U ≤ 1.

4.2 Self-similar solutions with nonzero Stefan num-

ber

4.2.1 Governing equations in the mushy layer

Since the temperature and concentration fields in the mushy layer are tied to-
gether via the liquidus relationship (2.35c), the equation (2.35b) is in fact a governing
equation for the liquid fraction and can be cast, after the self-similar transformation,
to the following form

χ′

χ
=

2ζΘ′ + εΘ′′

2ζ(C − Θ)− εΘ′
, (4.1)

which can be readily integrated to yield

χ = χb− exp

(

−

∫ λb

ζ

2sΘ′ + εΘ′′

2s(C − Θ)− εΘ′
ds

)

. (4.2)

47
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The governing equation for the temperature field in the mushy layer becomes

θ′′ + 2ζθ′ = −2S ζχ′, (4.3)

which, due to the liquidus relationship, also determines the governing equation for
the concentration field

Θ′′ + 2ζΘ′ = −2
S

Γ
ζχ′. (4.4)

4.2.2 Conditions at the interfaces

Solid/mush interface

The condition (2.40a), expressing the conservation of heat at the solid/mush
interface, transforms via (2.32) into the following form

2S χa+λa = θ′a− − θ′a+ . (4.5)

The temperature gradient on the solid side of the interface can be expressed, using
(2.74), as

θ′a− =
2λaθa
G(λa)

. (4.6)

Inserting the above expression into (4.5) leads to the following equation

(2S λaχa+ + ΓΘ′

a+)G(λa) = 2ΓλaΘa, (4.7)

where we have used the liquid relationship (2.35c), applied on θa and θ′a. The con-
servation of solute, expressed by (2.40b), transforms into the equation

[2λa(C − Θa)− εΘ′

a+]χa+ = 0. (4.8)

Mush/liquid interface

The conservation of heat, given by (2.39a), transforms to

2S (1− χb−)λb = θ′b− − θ′b+ . (4.9)

At this point we take into account the condition of marginal equilibrium, given by
(1.19). In the present scaling, this condition can be expressed as

θ′b+ = ΓΘ′

b+ . (4.10)

Using (4.10), we can rewrite (4.9) as

2S (1− χb−)λb = Γ (Θ′

b− − Θ′

b+) . (4.11)

The conservation of solute (2.39b) takes the form

2(C − Θb)(1− χb−)λb = ε (Θ′

b+ − χb−Θ
′

b−) . (4.12)
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4.2.3 Integral equation for the liquid fraction in the mushy
layer

At this point, it is instructive to re-write the equation (4.1) as

ε(χΘ′)′ = 2ζ [(C − Θ)χ]′ , (4.13)

which after integration yields the following integral equation

[2ζ(C − Θ)− εΘ′]χ = 2

∫ ζ

λa

(C −Θ)χ ds, (4.14)

which will prove useful in further analysis of the interfacial conditions. To derive
(4.14), we used per-partes integration together with (4.8)1. Note that the integral
in (4.14) is always positive for ζ > λa and so is the left-hand side of this equation2.
Expressing (4.14) at the mush/interface yields

[2λb(C −Θb)− εΘ′

b−]χb− = 2

∫ λb

λa

(C − Θ)χ ds. (4.15)

The integral at the right hand-side of the above equation represents, apart from the
numerical factor, the total amount of solute contained within the mushy layer.

Using (4.15), we can prove that the liquid fraction at the mush/liquid interface is
equal to unity for any value of Stefan number and that the concentration gradient is
continuous across the interface, i.e.

χb− = 1 and Θ′

b− = Θ′

b+ ≡ Θ′

b, for S ≥ 0. (4.16a, b)

To see that, we can express from (4.12) the liquid fraction at the mush/liquid interface
as

χb− = 1 +
ε(Θ′

b− − Θ′

b+)

2λb(C − Θb)− εΘ′

b−
. (4.17)

The last term in the above equation is non-negative, since (4.11) implies that the
numerator in non-negative and (4.15) implies that the denominator is always positive.
On the other hand, χb− ∈ 〈0, 1〉, so the nominator must be zero. The liquid fraction
in mush is therefore

χ = exp

(

−

∫ λb

ζ

2sΘ′ + εΘ′′

2s(C − Θ)− εΘ′
ds

)

. (4.18)

The condition (4.8) states that at least one of the quantities 2λa(C −Θa)− εΘ′

a+

or χa+ is zero. However, in Appendix A.1 we prove, with the use of (4.14), that the
former is always zero for general values of Stefan number, i.e.

2λa(C − Θa)− εΘ′

a+ = 0. (4.19)

1Note that (4.14) is consistent with (4.8).
2Recall that C −Θ > 0 for all ζ > λa.
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This result extends that of Gewecke & Schulze (2011a) to the case when Stefan num-
ber is non-zero. In Appendix A.1 we also show that 2ζΘ′

a+ + Θ′′

a+ ≤ 0 and that
2ζΘ′

a+ + εΘ′′

a+ ≥ 0, from which we derive that Θ′′

a+ is negative and bounded for
S ≥ 0 and that χ′

a+ is bounded for S > 0. Though the sign and the boundedness
of Θ′′

a+ can be as well deduced from the physical character of the solution, however,
the boundedness of the gradient of the liquid fraction as ζ → λ+a for positive values
of Stefan number is not an obvious fact and is our original result.

The determine whether χa+ = 0 for general values of Stefan number is a more
delicate task. In the next section, we shall discuss the values of χa+ in case when
Stefan number is negligible.

4.3 Self-similar solutions with zero Stefan number

The coupling in the equations (4.1) and (4.4) vanishes when S = 0. However,
since the orders of all the governing equations are retained, the asymptotic limit
S → 0 is regular. The rationale behind this limit lies mostly in the fact that the
uncoupled system, unlike the coupled one, can be solved explicitly. The numerical
solution of the coupled system would require application of a complicated shooting
scheme (see Worster 1986 for the numerical solution of a general system of mushy-
layer equations with different thermal properties of each phases and a non-zero Stefan
number).

4.3.1 Solutions with ε = O(1)

Temperature and concentration fields in the mushy layer

The equation (4.3) becomes

θ′′ + 2ζθ′ = 0, (4.20)

with the solution

θ = θa
erf(ζ)

erf(λa)
, (4.21)

where we have used the condition (4.5), which reduces simply to the continuity of the
temperature gradient across the solid/mush interface. Thus the temperature field in
both solid and mush is given by

θ = θa
erf(ζ)

erf(λa)
, 0 ≤ ζ ≤ λb (4.22)

and the concentration field

Θ = Θa
erf(ζ)

erf(λa)
, λa ≤ ζ ≤ λb. (4.23)

The equations (4.7) and (4.19) can be solved for Θa and Θ′

a+ to obtain

Θa =
CG(λa)

G(λa) + ε
and Θ′

a+ =
2λaC

G(λa) + ε
. (4.24a,b)
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Figure 4.1: The liquid fraction in the mushy layer as a function of ζ, calculated from (4.18)
for zero Stefan number and different values of C : C = 1.1 (solid line), C = 2 (dashed line)
and C = 5 (dot-dashed line). The values of the other parameters are set to Pr = 10−2,
ε = 10−2, U = 10−2 and Γ = 0.5. In all calculations χa+ = 0, however, the singularity at
ζ = λ+a disrupts the calculation of the integral in (4.18) near the solid/mush interface.

Liquid fraction at the solid/mush interface

One way to find χa+ is to calculate the integral in (4.18) numerically. However,
due to the condition (4.19) the integral has a singularity at ζ = λ+a , which complicates
the numerical integration in the vicinity of this point. Another way is to derive the
information about χa+ analytically. Gewecke & Schulze (2011a) analysed the liquid
fraction at the solid/mush interface in a model with planar interfaces, zero latent-heat
release and uniform thermal properties. Under such conditions, the temperature field
decoupled completely from the rest of the system, being given by the same function
in all phases. That allowed the authors to show that the governing equation for the
liquid fraction had a singularity with a simple pole located at the solid/mush interface.
Therefore they were able to derive a series solution for χ, using which they found
that χa+ = 0. In Appendix A.2 we again use the integral equation (4.14) to show
that χa+ = 0 when Stefan number is zero. Unlike Gewecke & Schulze (2011a), our
derivation uses only the governing equations without the need to know their explicit
solutions. In addition to this, in Appendix A.3 we also make some remarks concerning
the values of χa+ for positive values of Stefan number, though the determination of
χa+ in such case is still an open task.

In figure 4.1 we plot the liquid fraction in the mushy layer as a function of ζ for
different values of C with S = 0. Though the liquid fraction at the mush side of
the solid/mush interface is zero, the singularity at ζ = λ+a in the integral in (4.18)
complicates the numerical reproduction of this result. The most significant feature is
the steep gradient of χ near the solid/mush interface (cf. Worster 1986 and Gewecke
& Schulze 2011a). Note the behaviour of χ with the increasing C : the larger values of
C result in larger values of liquid fraction in the mushy layer. Recall that increasing
C corresponds to decreasing the overall concentration variation ∆C in the system.
Thus the smaller ∆C results in melting of dendrites of the mushy layer.
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Algebraic equation for λa

The relations (4.24a, b) express the concentration and its gradient on the mush
side of the solid/mush interface as functions of the growth constant λa, which is still
left undetermined. To derive an algebraic equation from which λa can be calculated,
we express (4.23) at the mush/liquid interface to obtain

Θa

erf(λa)
=

Θb

erf(λb)
, (4.25)

which can be combined with (4.24a) to get
[

Θb − C
erf(λb)

erf(λa)

]

G(λa) + εΘb = 0. (4.26)

Algebraic equation for λb

The condition of marginal equilibrium, given by (4.10), together with the conti-
nuity of the concentration gradient across the mush/liquid interface, imply

θ′b− = θ′b+ . (4.27)

The temperature gradients on the mush and liquid sides of the mush/liquid interface,
respectively, can be expressed, using (4.22), as

θ′b− =
2λbθb
G(λb)

, θ′b+ =
1− θb

J(∞;Pr)
. (4.28a,b)

To derive (4.28b), we used (2.62). The continuity of temperature gradients then yields

θb =
G(λb)

2λbJ(∞;Pr) +G(λb)
. (4.29)

The concentration gradients on the both sides of the mush/liquid interface can be
expressed as

Θ′

b− =
2λbΘb

G(λb)
, Θ′

b+ =
1−Θb

I(∞;Pr, ε)
. (4.30a,b)

Using these, the continuity of concentration gradients across the mush/liquid interface
yields

Θb =
G(λb)

2λbI(∞;Pr, ε) +G(λb)
. (4.31)

By combining (4.29) and (4.31) via the liquidus relationship (2.35c) we finally obtain
the algebraic equation for the growth constant λb as follows

2λb [I(∞;Pr, ε)− ΓJ(∞;Pr)] + (1− Γ )G(λb) = 0. (4.32)

The integrals J(∞;Pr) and I(∞;Pr, ε) can be approximated for Pr → 0 in the
following way (cf. (3.17a, b))

J(∞;Pr) ∼
F
[
Λ(λb)/U

1/2
]

2Λ(λb)
, (4.33a)
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Figure 4.2: a) The growth constant λb as a function of the inverse Lewis number ε,
calculated from (4.34) for Pr = 10−2 (solid line) and Pr = 0 (dashed line). The values of
the other parameters are set to U = 10−1, Γ = 0.5 and C = 2. b) The growth constant λb
as a function of U , calculated from (4.34) for Pr = 10−2 (solid line) and Pr = 0 (dashed
line). The values of the other parameters are set to ε = 10−2, Γ = 0.5 and C = 2.

I(∞;Pr, ε) ∼
εF

[
Λ(λb)/(εU )1/2

]

2Λ(λb)
. (4.33b)

Using these, (4.32) becomes

ελbF

[
Λ(λb)

(εU )1/2

]

− ΓλbF

[
Λ(λb)

U 1/2

]

+ (1− Γ )Λ(λb)G(λb) = 0 (4.34)

and the temperature and concentration at the interface are

θb = 1−
λbF

[
Λ(λb)/U

1/2
]

λbF [Λ(λb)/U 1/2] + Λ(λb)G(λb)
, (4.35a)

Θb = 1−
ελbF

[
Λ(λb)/(εU )1/2

]

ελbF [Λ(λb)/(εU )1/2] + Λ(λb)G(λb)
. (4.35b)

Note that the growth constant λb appears explicitly in (4.26) but not vice versa, i.e.
we can compute λb from (4.34) without any knowledge of λb.

Before we move further, we point out that the equation (4.34) admits, besides
the physical one, two solutions that we shall not take into account: the first one
is λb = 0, which is not physical since we require λa < λb, and the second one is
λb = [1

2
Pr(U − 1)]1/2, which is also not a relevant solution (see the footnote before

(3.17a, b)). However, this root exists only for U ≥ 1, which is a parametric regime
that we shall not address.

In figure 4.2(a, b) we plot the growth constant λb, calculated numerically from
(4.34), as a function of ε and U , for both small and zero values of Prandtl number. We
see that the solutions corresponding to small Pr are very close to that with Pr = 0.
Therefore we can approximate the values of λb for small Pr by those with Pr = 0.
Moreover, the plots suggest that the limits ε→ 0 and U → 0 are both regular for λb
and thus interchangeable, a fact that will allow us to find an approximate solution of
(4.34) in a relatively simple form – see the following subsection.
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4.3.2 Solutions in the limit ε→ 0

Since the diffusion of heat is typically more rapid than that of solute, the in-
verse Lewis number, ε, is small. However, the growth of the mushy layer is governed
primarily by the thermal balances at the interfaces. Therefore the advance of the
mush/liquid interface is not restricted by the diffusion of solute away from the inter-
face. As a result, the mushy layer exists even when the diffusion of solute is negligible,
with no solid phase present in the system — such situation corresponds to setting
ε = 0 (cf. Gewecke & Schulze 2011a for the case of a mushy layer on a finite domain).
We shall discuss the case ε = 0 in the next chapter. However, the limit ε → 0 is
singular in the liquid phase, the concentration field having the boundary layer of
thickness O(ε1/2). At this moment, we restrict our attention to showing that the
limit ε→ 0 is regular for the growth constants λa and λb.

We shall prove that λa → 0 as ε → 0, provided λb is finite. First, we conclude
from (4.35b) that Θb → 1 as ε → 0. Next, assume that λa is finite, and so is G(λa),
as ε→ 0. Then, (4.26) implies

erf(λb)

erf(λa)
→

1

C
< 1 as ε→ 0,

which, since erf(λ) is an increasing function, is a contradiction with the requirement
that λa < λb. Thus we have shown that λa → 0 as ε→ 0. For small values of λa, the
following approximations are valid

erf(λa) =
2

π1/2λa +O(λ3a), G(λa) = 2λ2a +O(λ4a). (4.36a,b)

Inserting these into (4.26), with Θb ≈ 1, we obtain a quadratic equation with one
root satisfying λa → 0 as ε→ 0, which has the following aproximate form

λa =
ε

π1/2C erf(λb)
+O(ε2) as ε → 0. (4.37)

Inserting (4.37) into (4.24a, b), we can express the concentration and its gradient at
the bottom of the mushy layer as

Θa+ ≈
2C ε

2ε+ πC 2 erf2(λb)
and Θ′

a+ ≈
2π1/2C 2 erf(λb)

2ε+ πC 2 erf2(λb)
(4.38a,b)

as ε→ 0.
We see from (4.37) that increasing C , which is equivalent to a decreasing variation

of concentration, ∆C, in the system, results in a decreasing thickness of the solid
phase. Since λb is a decreasing function of U , we infer from (4.37) that λa is an
increasing function of U , as was the growth constant λh, discussed in the previous
chapter, in case when U < 1. However, unlike the problem with a solid/liquid
interface, here we have that λa = O(1) as Pr → 0, U → 0. Therefore we do not
need any additional restriction such as (3.28) to retain the asymptotic character of
the expansion of function f , given by (2.57c), as Pr → 0, U → 0.

To see that λb is finite as ε → 0, we realize that the term F [Λ(λb)/(εU )1/2] in
(4.34) is bounded whatever the value of λb as ε → 0. To see this, we used the
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Figure 4.3: The leading-order solution of (4.40a), calculated from (4.42) as a function of Γ
(solid line), compared with the solution of (4.34) with Pr = 10−2, ε = 10−2 and U = 10−2

(dashed line). Note that λ0, λb → ∞ as Γ → 1−. Also note that positive solutions of (4.34)
exist for Γ > Γmin, with Γmin given by (4.44).

asymptotic approximation F (s) ∼ 1 as s → ∞. Thus the limit ε → 0 is regular in
(4.34), the corresponding leading-order solution being the root of

− ΓλbF

[
Λ(λb)

U 1/2

]

+ (1− Γ )Λ(λb)G(λb) = 0. (4.39)

Note that the trivial solution λb = 0 corresponds to the trivial solution of (4.34) and
is not physical. Thus the only consistent solution of the above equation is the finite
one.

Though the equation (4.34) cannot be solved explicitly for λb, we can find λb in a
simple approximate form when ε and U are small. Since the limit Pr → 0 is regular
for λb and figures 4.2(a, b) show that the dependence of λb on Pr is weak, we set
Pr = 0 in (4.34) and (4.39), respectively, to obtain

εF

[
λb

(εU )1/2

]

− ΓF

(
λb

U 1/2

)

+ (1− Γ )G(λb) = 0, (4.40a)

−ΓF

(
λb

U 1/2

)

+ (1− Γ )G(λb) = 0. (4.40b)

As we stated at the end of the previous subsection, the figures 4.2(a, b) suggest
that the limits ε→ 0 and U → 0 are interchangeable. Therefore we can approximate
the solution of (4.40a) as

λb ≈ λ0 −
λ0ε

Γ + 2λ20
−

ΓU

2λ0(Γ + 2λ20)
as ε → 0, U → 0, (4.41)

with λ0 being the root of

G(λ0) =
Γ

1− Γ
. (4.42)
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Figure 4.4: The magnitudes of the first-order effects of small ε (solid line) and small U

(dashed line) in the approximation (4.41) of the growth constant λb for Pr = 0. Note that
both effects are unbounded as Γ → 0.

Note that Γ/(1 − Γ ) → 0 as Γ → 0 and that Γ/(1 − Γ ) → ∞ as Γ → 1−. Since
G(λ0) ≥ 0 for all λ0 ≥ 0, there exists a unique solution of (4.42) for every Γ ∈ (0, 1).
To derive (4.41), we used the following asymptotic approximation (cf. Boisvert et al.
2010)

F (x) ∼ 1− 1
2
x−2 +O(x−4), as x→ ∞ (4.43)

and the fact that λb = O(1) as ε → 0, U → 0. The solution to (4.42) is shown
in figure 4.3, together with the solution of (4.34) for small values of Pr, ε and U .
Note that λ0 → ∞ as Γ → 1−. To interpret this result, recall the definition of Γ ,
given by (2.22d). The limit Γ → 1− corresponds to the dimensional situation when
T∞ = Tb so that there are zero temperature and concentration gradients in the liquid
phase, the temperature being equal to TL(C∞). In the dimensionless formulation,
this is equivalent to θb → 1 and Θb → 1, which is consistent with (4.35a, b), since the
denominators grow faster that the numerators as λb → ∞.

Note that positive solutions of (4.34) exists only for Γ > Γmin, where the lower
bound

Γmin ≡
ε+ Pr(1− U )

1 + Pr(1− U )
(4.44)

can be derived by letting λb → 0 in (4.34), provided Pr > 0 and U 6= 13. The
magnitudes of the first-order effects of ε and U in (4.41) are monotonically decreasing
functions of Γ , as can be seen from figure 4.4. Note that for small Γ , both effects are
unbounded. However, to retain the asymptotic character of (4.41), one must keep Γ
fixed while performing the limit ε → 0.

As can be seen from figure (4.3), the equation (4.42) captures the essential structure
of (4.34), with Pr, ε and U providing the small corrections. This result confirms
that the growth of the mush/liquid interface is primarily determined by the thermal
field (cf. Worster 2000 for a mushy layer with planar interfaces). Recall that Θb → 1
as ε→ 0, whence θb → Γ as ε → 0. Therefore for small values of ε, the dimensionless
liquidus slope Γ approximates the temperature at the mushy/liquid interface. Finally,

3When U = 1, taking the limit λb → 0 in (4.34) yields Γmin = ε1/2.
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Figure 4.5: Growth constant λa as a function of ε, calculated numerically from (4.26)
(solid line), with λb calculated numerically from (4.34), compared with the approximate
form (4.37), with λb given by (4.41) (dashed line). The values of the other parameters are
set to Pr = 10−2, U = 10−2, C = 2 and Γ = 0.5.

in figure 4.5 we plot the growth constant λa as a function of ε. Both the solution of
(4.26) and the approximate solution (4.37), with λb given by (4.41), are shown.

4.3.3 Solutions with U = 0

All the solutions discussed so far corresponded to positive values of U . However,
it is instructive to investigate separately the case when U = 0. In dimensional world,
such situation corresponds to U∞ = 0, i.e. setting the far-field horizontal velocity
to zero. The motivation behind such choice is twofold: it provides simpler explicit
forms for temperature and concentration fields in the liquid phase than that with
U > 0, and it enables determination of a closed-form dependence of the dimensional
positions of the solid/mush and mush/liquid interfaces on the substrate speed U0.
For example, the dimensional form of the mush/liquid interface is

b(x) = 2λb

(
κ

U0

x

)1/2

, (4.45)

with λb being independent of U0 since the dimensionless problem is independent of
U . Therefore

b(x) ∼
1

U
1/2
0

(4.46)

for U∞ = 0 and fixed x. The same is true for the dimensional position of the
solid/mush interface, given by function z = a(x).

The asymptotic procedure for solving the third-order differential equation (2.45)
is valid also for U = 0 provided λb ≫ Pr as Pr → 0. The function f has the
asymptotic expansion

f(ζ ;Pr) ∼ λb +
Pr

2λb

[

1− exp

(

−2λb
ζ − λb
Pr

)]

as Pr → 0. (4.47)
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The integrals J(ζ ;Pr) and I(ζ ;Pr, ε) can be calculated explicitly as

J(ζ ;Pr) ∼
λb

2λ2b + Pr

{

1− exp

[

−
2λ2b + Pr

λb
(ζ − λb)

]}

, (4.48a)

I(ζ ;Pr, ε) ∼
ελb

2λ2b + Pr

{

1− exp

[

−
2λ2b + Pr

ελb
(ζ − λb)

]}

(4.48b)

for Pr → 0. The corresponding limits for ζ → ∞ are

J(∞;Pr) ∼
λb

2λ2b + Pr
, I(∞;Pr, ε) ∼

ελb
2λ2b + Pr

. (4.49a,b)

Inserting these into (4.28b) and (4.30b), we obtain the corresponding gradients on
the liquid side of the mush/liquid interface

θ′b+ = (1− θb)
2λ2b + Pr

λb
, Θ′

b+ = (1− Θb)
2λ2b + Pr

ελb
. (4.50a,b)

The corresponding gradients on the mush side of the mush/liquid interface are given
by (4.28a,b), since the forms of the temperature and concentration fields in the mush
are unaffected by the choice U = 0. Combining (4.50a,b) with the marginal equilib-
rium (4.10) we get the interfacial temperature and concentration at the interface in
the following forms

θb = 1−
1− Γ

1 − ε
, Θb = 1−

ε(1− Γ )

Γ (1− ε)
. (4.51a,b)

Finally, using (2.62) and (2.69) we can express the temperature and concentration
fields in the liquid phase as

θ ∼ 1−
1− Γ

1− ε
exp

[

−
2λ2b + Pr

λb
(ζ − λb)

]

, (4.52a)

Θ ∼ 1−
ε(1− Γ )

Γ (1− ε)
exp

[

−
2λ2b + Pr

ελb
(ζ − λb)

]

. (4.52b)

Note the presence of factor ε−1 in the exponent of (4.52b), in contrast to the factor
ε−1/2 in (2.71). Typical profiles of the temperature and concentration fields, given
by (4.52a, b), are depicted in figure 4.6 together with the profiles corresponding to
positive values of U . The algebraic equation for λb is derived from the continuity
of the temperature gradients across the mush/liquid interface and has the following
form

G(λb)

(

1 +
Pr

2λ2b

)

=
Γ − ε

1− Γ
, (4.53)

which has a positive solution only if its right-hand side is positive, i.e. for Γ > ε, cf.
(4.44). Note that λb = O(1) as Pr → 0, thus satisfying the constraint λb ≫ Pr so
that the expansion (4.47) remains asymptotic. The solutions in the mushy layer and
the solid phase, together with the equation for λa, are affected by the choice U = 0
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only through the values of λb. Note that for Pr → 0 and ε → 0 the equation (4.53)
turns into (4.42).

We can combine (4.50b) and (4.51b) with the integral relation (4.15) to obtain the
total dimensionless amount of solute contained within the mushy layer, given by the
following integral

∫ λb

λa

(C −Θ)χ ds = λb(C − 1)−
εPr(1− Γ )

2λbΓ (1− ε)
. (4.54)

Recall that, in terms of dimensional quantities, C − Θ = C/∆C. We can use (4.54)
to study how the physical parameters affect the redistribution of solute within the
mushy layer. First note that the value of the integral (4.54) is determined dominantly
by the concentration ratio, with the other effects being of order O(εPr) as ε, Pr → 0.
Moreover, we point out that the effect of C increases with λb, i.e. with the increasing
thickness of the mushy layer, while the effect of the inverse Lewis number and Prandtl
number decreases with λb (the large values of λb can be obtained, for example, by Γ
being close to unity, but fixed).

The average bulk composition in the mushy layer is, to the leading order in small
Pr, U and ε, determined by the concentration ratio, i.e.

1

λb − λa

∫ λb

λa

(C − Θ)χ ds = C − 1 +O(Pr) +O(U ) +O(ε), (4.55)

with Γ fixed.
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Figure 4.6: Temperature (a) and concentration (b) fields in the liquid phase as functions of
ζ, given by (2.66) and (2.71) for U = 10−2 (solid lines), compared with the forms (4.52a, b)
(dashed lines). The values of the other parameters are set to Pr = 10−2, ε = 10−2, S = 0
and Γ = 0.5.



Chapter 5

Mushy layer with no solute
diffusion

5.1 Introduction

The diffusion of solute is typically negligibly small compared to the diffusion of
heat. It is therefore reasonable to investigate the limit of large Lewis number, which
is equivalent to the limit ε → 0. While this limit is regular in the mushy layer, it is
singular in the liquid phase, resulting in formation of a thin concentration boundary
layer adjacent to the mush/liquid interface. However, if we adopt the assumption
that the scale on which the properties of mushy layer are homogenized is comparable
to the scale of solute variations within the compositional boundary layer, then we can
set ε = 0. In such case the compositional boundary layer remains unresolved within
the homogenization limit (cf. Worster 2002).

When the solute diffusion is neglected, we can model the conservation of solute
in the mushy layer in two different ways: locally and globally. The models hitherto
discussed were all local as they assumed the conservation of solute within infinitesimal
volume elements. While the local conservation of solute is possible in both cases of
zero and non-zero solute diffusion, the global model is applicable only under the
assumption of zero solute diffusion. The idea of the global conservation model was
first introduced by Huppert & Worster (1985). Another useful reference can be found
in the review by Huppert (1993). Thompson, Huppert & Worster (2003) developed
a global conservation model for diffusion-controlled growth of a ternary alloy under
the assumption that the temperature profile in the mushy layer was linear.

Here, we use the global approach to investigate the effect of the forced boundary-
layer flow in the liquid phase, represented by the dimensionless numbers Pr and U ,
on the characteristics of the mushy layer. Then we discuss the local conservation
model and its relation to the global one. Though the local model with negligible
solute diffusion has already been studied by other authors, new in our investigation
are the dimensionless scalings and the explicit relation between the liquid fractions
in the local and global models in case when Stefan number is negligible.
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5.2 Global conservation model with no solute dif-

fusion

In the global conservation model, we require that the average bulk concentration
(per unit length in the horizontal direction) within the mushy layer is equal to that
in the liquid phase, C∞

1, and that the volume fraction χ = χglob is uniform, i.e.

1

b(x)

∫ b(x)

0

C(x, z)χglob dz = C∞, for all x > 0. (5.1)

The formulation above hinges on the assumption that there is no advective transport
of solute relative to the solid portion of the mush, which is true since, in the mush,
u = 1. Moreover, we assume that there is no solid phase present as there is no diffu-
sion mechanism that would enable the transport of solute away from the solid/mush
interface to the mushy layer.2 In dimensionless formulation, the equation (5.1) reads

1

b(x)

∫ b(x)

0

(C −Θ)χglob dz = C − 1, for all x > 0. (5.2)

The dimensionless governing equation for the temperature field in the mushy layer
is

∂θ

∂x
=
∂ 2θ

∂z 2
. (5.3)

The term S ∂xχ, which would normally be present in the above equation, cf. (2.35a),
is zero since χ is uniform in the mush, so there is no internal phase change that would
result in the release of latent heat, even when the Stefan number is positive. After
the self-similar transformation, (5.3) becomes

θ′′ + 2ζθ′ = 0, (5.4)

with the solution

θ(ζ) = θb
erf(ζ)

erf(λb)
, (5.5)

where the interfacial temperature θb is yet to be determined. The temperature and
concentration fields in the mush are tied through the liquidus relationship

θ = ΓΘ, (5.6)

therefore the concentration field satisfies

∂Θ

∂x
=
∂ 2Θ

∂z 2
, (5.7)

1The concentration of solute in the liquid phase is uniform when there is no solute diffusion; it
is a direct consequence of the equations governing the concentration field in the liquid phase.

2 In the local conservation model with no solute diffusion, the absence of solid phase is a direct
consequence of the local conservation of solute at the solid/mush interface – see section 5.3 of the
present chapter.



63

or
Θ′′ + 2ζΘ′ = 0. (5.8)

The governing equation for the temperature field in the liquid phase is the same
as we have hitherto used. However, the equation for concentration reduces to Θ′ = 0.
Therefore the concentration is homogenous, equal to its far-field value, i.e.

Θ ≡ 1, for ζ ≥ λb. (5.9)

In the present case with no solute diffusion, the principle of marginal equilibrium,
discussed in detail by Worster (2002), implies continuity of concentration across the
mush/liquid interface, so that

Θb− = Θb+ = Θb = 1 (5.10)

and therefore the temperature at the mush/liquid interface is given by the dimen-
sionless liquidus slope as

θb = Γ. (5.11)

Finally, the concentration field in the mush is

Θ(ζ) =
erf(ζ)

erf(λb)
. (5.12)

Expressing (5.2) using the self-similar variable, we get

1

λb

∫ λb

0

(C −Θ)χglob dζ = C − 1. (5.13)

Note that (5.13) is consistent with (4.55), which reduces to (5.2) when ε = 0. The
above relation provides an alternative interpretation of the dimensionless parameter
C : the value by which it excesses unity is equal to the average dimensionless bulk
concentration of the mushy layer. The integral on the left-hand side can be calculated
using per-partes in the following way

∫ λb

0

(C −Θ) dζ = (C − 1)λb +

∫ λb

0

ζΘ′ dζ

= (C − 1)λb −
1
2
(Θ′

b− − Θ′

0+), (5.14)

where we have used (5.8) and (5.10). The concentration gradients at the lower and
upper boundaries of the mushy layer can be obtained from the corresponding explicit
solutions as

Θ′

0+ =
2λb e

λ2b

G(λb)
, and Θ′

b− =
2λb
G(λb)

. (5.15)

Using the expressions above, together with (5.13) and (5.14), we obtain the volume
fraction of the liquid phase in the mushy layer as

χglob =
C − 1

C − 1 +H(λb)
, (5.16)
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Figure 5.1: The volume fraction of liquid in the global conservation model, given by
(5.16), as a function of the self-similar thickness of the mushy layer in case when S = 0,
for different values of concentration ratio: C = 1.1 (solid line), C = 2 (dashed line) and
C = 5 (dot-dashed line). For given C , the minimum value of χ corresponds to the solution
discussed by Worster (2000) under the assumption of linear temperature profile in the mush
(for details, see text).

with

H(λb) ≡
eλ

2
b −1

G(λb)
. (5.17)

It is straightforward to show that χglob is always positive and less than unity. More-
over, note that H(λb) → 1/2 as λb → 0 and H(λb) → 0 as λb → ∞.

The Stefan condition at the mush/liquid interface reads

S (1− χglob)
db

dx
=
∂θ

∂z

∣
∣
∣
∣
b−

−
∂θ

∂z

∣
∣
∣
∣
b+
. (5.18)

Note that, unlike the local conservation model, in which χb− = 1, in the global model
the left hand-side of the Stefan condition is always nonzero when S > 0. Indeed,
in the global model, the solidification occurs only at the interface and the global
conservation forces the uniform volume fraction to be less than unity in the mush.
Using (5.5), we can express the condition (5.18) as

U
1/2 eλ

2
b erf(λb)

eΛ2(λb)/U erfc[Λ(λb)/U 1/2]
=

1

1− Γ

[

Γ + S
1− eλ

2
b

C − 1 +H(λb)

]

. (5.19)

5.2.1 Solutions with zero Stefan number

To simplify the mathematical problem, we will consider the regular limit of neg-
ligible Stefan number. In this limit, the thickness of the mushy layer is independent
of C . Moreover, the concentration ratio affects the system only through the quantity
χglob. This allows us, for given C , to plot χglob as a function of the dimensionless
mushy layer thickness λb (see figure 5.1). Note that

χglob → 1−
1

2C − 1
as λb → 0, (5.20)
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Figure 5.2: Growth constant λb in the case when S = 0, calculated from (5.21) as a
function of U , for Pr = 10−2 (solid line) and Pr = 0 (dashed line). In calculations we set
Γ = 0.5.

which is the value obtained by Worster (2000) under the quasi-stationary approxi-
mation, in which the temperature profile in the mush could be well approximated by
its steady form owing to the fact that the heat conduction was rapid compared to
the rate of solidification. One way to ensure a slow solidification rate is to assume
large values of Stefan number, resulting in a thin mushy layer. Though in the present
case we have S = 0, the temperature profile in the mush can be treated as linear
provided λb is small enough.

With S = 0, the nonlinear equation for λb becomes

ΓλbF

[
Λ(λb)

U 1/2

]

+ (Γ − 1)Λ(λb)G(λb) = 0. (5.21)

We can make further simplification by taking the regular limit Pr → 0 in the above
equation to obtain

ΓF

(
λb

U 1/2

)

+ (Γ − 1)λbG(λb) = 0. (5.22)

In figure 5.2, solutions to (5.21) with small Pr and to (5.22) are shown as functions
of U .

It can be shown that λb = O(1) as U → 0 such that (5.22) reduces to a simple
equation

G(λb) =
Γ

1− Γ
for S = 0, P r → 0, U → 0, (5.23)

which is the same as (4.42).
Before we move further, it is instructive to have a closer look at the definitions of

dimensionless numbers C and Γ . It is straightforward to show that these numbers
are, in fact, not independent, since

CΓ =
Γ̂C0

∆T
. (5.24)

The relation stated above will prove useful in the physical interpretation of different
asymptotic limits, which we shall discuss below.
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Figure 5.3: a) Growth constant λb as a function of C , calculated from (5.25) with S = 10
(solid line) and from (5.23) (dashed line). Note that the solution of (5.23) does not depend
on C . b) Liquid volume fraction as a function of C , calculated using the values of λb from
a): S = 10 (solid line) and S = 0 (dashed line). Note, that there is virtually no difference
between the two curves. In all calculations, we set Γ = 0.5.

C → 1 with Γ fixed

This limit is equivalent to C∞ → 0 so that the bulk composition in the system
decreases to zero; this can be seen also from (5.2). Moreover, (5.16) implies that
χ → 0: as the initial composition decreases, there is less solute to be rejected upon
solidification and hence the growth of dendrites is enhanced.

C → ∞ with Γ fixed

This limit is equivalent to C∞ → C0 with λb fixed. Moreover, (5.24) implies
Γ̂C0/∆T ∼ C → ∞ so that ∆T → 0 (recall that ∆T ≡ T∞−T0). Finally, (5.16) im-
plies χ→ 1: increasing the far-field concentration (and hence the bulk concentration
in the mush) results in melting of dendrites. In order to keep the thickness (in terms
of λb) of the mushy layer unaffected, we need to decrease the far-field temperature of
the melt.

C → ∞ with CΓ fixed

In this limit, Γ ∼ C
−1 → 0 with Γ̂C0/∆T kept fixed. As in the limit with fixed Γ

discussed above, the liquid fraction tends to unity (χ → 1). However, (5.23) implies
that λb → 0. Thus, when C∞ → C0 with C0, ∆T and Γ̂ kept fixed, the thickness of
mushy layer decreases.

5.2.2 Effect of nonzero Stefan number

To include the effect of latent heat release when as U → 0, the equation (5.19)
can be approximated, to leading order, as follows

G(λb)

(

1 +
Pr

2λ2b

)

=
1

1− Γ

[

Γ + S
1− eλ

2
b

C − 1 +H(λb)

]

. (5.25)
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Figure 5.4: a) Growth constant λb as a function of C , calculated from (5.25) with S = 10
(solid line) and from (5.23) (dashed line). In both computations we set CΓ = 1. b) Liquid
volume fraction as a function of C , calculated using the values of λb from a): S = 10 (solid
line) and S = 0 (dashed line). Note that both curves are virtually the same.
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Figure 5.5: The numerical solution of the full equation (5.19) as a function of Γ (solid
line), together with the zero-U solution, given by (5.25) (dashed line), and the leading-
order solution, given by (5.23) (dot-dashed line). The values of dimensionless numbers are
set to Pr = 10−2, U = 10−1, S = 1 and C = 2. Note the regularizing effect of nonzero
Stefan number on the values of λb.

In figure 5.3(a) we plot the solution of (5.25) with Pr = 0 as a function of C

with Γ fixed, along with the solution of (5.23). The corresponding values of χglob are
shown in figure 5.3(b). In figure 5.4(a) we plot the solution of (5.25) with Pr = 0
as a function of C with CΓ fixed. The corresponding values of χglob are shown in
figure 5.4(b). Note that in both cases the positive values of Stefan number result in
the decreasing thickness of the mushy layer, however, the extent of the internal phase
change, represented by the values of χ, is almost unaffected.

The numerical solutions of (5.19), (5.25) and (5.23) are shown in figure 5.5 as
functions of Γ . We have already stated in Chapter 4 that the singularity in λb as
Γ → 1− is the consequence of the zero Stefan number. As can be seen in the global
model, positive values of Stefan number result in finite values of λb as Γ → 1−. The
same effect of nontrivial latent-heat release can be anticipated in the local model
discussed in Chapter 4.
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Figure 5.6: The local liquid fraction in the mushy layer, calculated from (5.32) (dashed
line), compared with that given by (4.18) in the case when solute diffusion is present (solid
line) with ε = 0.5 × 10−2. Note that apart from the narrow region ahead the solid/mush
interface, where the solid curve exhibits steep gradients, there is virtually no differences
between the two cases.

5.3 Local conservation model with no solute dif-

fusion

In section 4.3.2 we discussed the asymptotic limit ε → 0 in the local conservation
model of a mushy layer. We showed that the thickness of the solid phase tended to
zero in this limit, with the thickness of the mushy layer being finite. In this section we
shall focus our attention on the limiting case when the solute diffusion is negligible,
i.e. we set ε = 0. While in the global conservation model the absence of the solid
phase in the system was assumed a priori, however, in the local model it is a direct
consequence of the conservation of solute at the solid/mush interface. The retreat of
the solid phase in case when the solute diffusion is negligible was also discussed by
Gewecke & Schulze (2011a) for the mushy layer in a vertically bounded domain.

In the local conservation model with zero solute diffusion, the bulk composition in
the mushy layer is constant, i.e.

∂

∂x
[(C −Θ)χ] = 0. (5.26)

The above equation follows from (2.35b) by setting ε = 0. The temperature field in
the mushy layer is governed by

∂θ

∂x
=
∂ 2θ

∂z 2
− S

∂χ

∂x
. (5.27)

However, since the limit S → 0 is regular, in what follows, we set S = 0 in order to
derive explicit solutions. The governing equations in the liquid phase does not differ
from those used in the global model, with homogenous concentration Θ ≡ 1.

The equation (5.26) expressed using the self-similar variable reads

2ζ [(C − Θ)χ]′ = 0, (5.28)

which after integration becomes

(C − Θ)χ− (C − 1)χb− = 0, (5.29)
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where we have used that Θb = 1. The value of liquid fraction at the interface can be
deduced from the local conservation of solute at the interface

(C − 1)(1− χb−)
db

dx
= 0, (5.30)

so that
χb− = 1 (5.31)

is the only consistent solution. Thus the liquid fraction in the mush can be expressed
as

χ =
C − 1

C − Θ
. (5.32)

Note that upon integrating (5.29) we obtain the same form of the average bulk com-
position within the mushy layer as the leading order one in (4.55).

The local conservation of solute at the solid/mush interface implies

(C − Θa)χa+
da

dx
= 0. (5.33)

However, from (5.32) we have χa+ = (C −1)/(C −Θa), which is nonzero since C > 1.
Thus the only way to satisfy the above equation is to set da/dx = 0 so that

λa = 0, (5.34)

which implies that there is no solid in the system in case when the solute diffusion
is neglected. Since Θ0 = 0, we obtain the liquid fraction at the bottom of the mushy
layer

χ0+ = 1−
1

C
. (5.35)

Note that χ0+ is always positive even for positive values of Stefan number since to
derive (5.35), we only used (5.28), which does not depend on S .

The temperature field in the mushy layer has the form

θ = Γ
erf(ζ)

erf(λb)
(5.36)

and the concentration field

Θ =
erf(ζ)

erf(λb)
. (5.37)

Recall that θb = Γ due to the liquidus relationship between the temperature and
concentration fields and the fact that Θb = 1. In figure 5.6 we compare the liquid
fraction given by (5.32) with that in case when the solute diffusion is not neglected,
given by (4.18). Note that the two solutions are almost the same, except a narrow
region ahead of the solid/mush interface.

Since we assume S = 0, the Stefan condition at the mush/liquid interface implies
the continuity of temperature gradient at this interface, as was also the case in the
global conservation model. Using the explicit solutions derived above together with
the solution for the temperature field in the liquid, the continuity of temperature
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Figure 5.7: The average local volume fraction χ̄ as a function of C compared with the
volume fraction χglob in the corresponding global conservation model. The values of the
other parameters are Pr = 10−2, U = 10−1, S = 0 and Γ = 0.5.

gradient can be used to derive an algebraic equation for the growth constant λb in
the following form

ΓλbF

[
Λ(λb)

U 1/2

]

+ (Γ − 1)Λ(λb)G(λb) = 0. (5.38)

We obtained the equation that is the same as (5.21) that we derived for the global
conservation model. However, this is not surprising since the only difference between
the global and local models is in the liquid fractions in the mush. Particularly,
the Stefan condition has the same mathematical expression in both models. When
S = 0, the liquid fractions does not enter the Stefan conditions as the left hand-sides
of these conditions are zero.

We have just shown that for zero Stefan number and for given values of Γ , C ,
Pr and U the thickness of the mushy layer in the local conservation model is the
same as that in the global one, as well as the temperature and concentration fields.
Using this information, we can derive a relationship between the liquid fractions in
the global and local models. Since λb and the concentration field in the global and
local models are the same, we can combine (5.13) with (5.32) to obtain

1

λb

∫ λb

0

dζ

χ
=

1

χglob
, (5.39)

that is, the reciprocal liquid fraction in the global model is equal to the average
reciprocal liquid fraction in the local model. In figure 5.7 we plot the average local
liquid volume fraction, defined by

χ̄ =
1

λb

∫ λb

0

χ dζ, (5.40)

together with the liquid fraction in the global model, both as functions of C . Note
that there is only a slight difference between these quantities. Moreover, for C → ∞,
this difference tends to zero.



Conclusions

The explicit solutions to the solidification problems are useful since they facilitate
a straightforward analysis of the physical phenomena involved. Moreover, they can
serve as benchmark for testing numerical solutions of more complicated problems for
which closed-form solutions are not available.

In this thesis we made a contribution to self-similar solutions describing solid-
ification phenomena already known. The specific features of the present setting
are the two-dimensional solid/mush and mush/liquid interfaces along with the two-
dimensional flow in the liquid phase. Although the problem involves two-dimensional
interfaces, when the velocity ratio is equal to unity, however, the governing equa-
tions turn out to be the same as that for the problem with planar interfaces, already
studied by other authors. Therefore, some of our new results can be applied also for
planar interfaces. In what follows we would like to point out the main contributions
of the present study.

Unlike Cheung et al. (2002) and Cheung & Tangthieng (2003), we used the local
conservation of solute to model the liquid fraction in the mushy layer instead of the
lever rule, though the application of the lever rule is a common practice in metallur-
gical literature. However, we use the approach of Worster (1986) and model the local
liquid fraction by a hyperbolic partial differential equation.

The problem with solid/liquid interface, discussed in Chapter 3, was previously
studied by Löfgren (2001). Our main contribution consist in the analysis of the way
the velocity ratio influences the temperature and concentration fields (stretching of
the thermal and viscous boundary layers) and the position of the solid/liquid inter-
face. Moreover, one can take the zero-Prandtl number solutions for the temperature
and concentration fields and the growth rate as good approximations of full solutions.
Such a simplification enables one to find the leading-order solutions in relatively sim-
ple forms, appropriate for further investigation. Another important feature is the
different signs of the solutal advective flux for U > 1 and U < 1.

In Chapter 4, we showed that the liquid fraction at the solid/mush interface is
zero when Stefan number is negligible. Gewecke & Schulze (2011a) showed this for
the self-similar solution of the mushy-layer problem in the semi-infinite region with
planar phase interfaces. However, we showed that this result can be derived directly
from the governing equations without any knowledge of the explicit solutions. The
key step was the transformation of the local conservation equation for the liquid
fraction to an integral equation, which is our own result. The integral equation for
liquid fraction also facilitated a relatively simple proof that the liquid fraction at the
mush/liquid interface is equal to unity for any value of Stefan number. Though this
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result was derived by Worster (1986), however, our derivation is less technical than
that by Worster (1986) and does not require any knowledge of explicit solutions since
it is based only on the formulation of the conservation laws at the interface.

In the case when Stefan number is positive, our new result is that the gradient
of the liquid fraction at solid/mush interface is bounded, unlike the case when the
Stefan number is negligible, in which case the numerical solutions indicate that the
gradient is infinite. The boundedness of the liquid-fraction gradient for positive Stefan
numbers is a direct consequence of the coupling between the liquid fraction and the
temperature field, represented by the heat equation with the source term due to
the local latent-heat release. Therefore the singularity of the liquid-fraction gradient
turns out to be the consequence of the negligible Stefan number. Though the analysis
presented in this thesis focused on a mushy layer with two-dimensional interfaces,
however, the self-similar form of the mushy-layer equations was the same as that for
a mushy layer with planar interfaces, the only difference being in the definition of
the self-similar variable. Therefore the discussion regarding the values of the liquid
fraction on the solid/mush interface is relevant also for the systems with planar
interfaces.

In the situation with the solid/liquid interface, the thickness of the solid phase
decreases to zero as Pr → 0 and U → 0 with Pr ≪ U . However, when the mushy
layer is present, the thickness of the solid phase and the mushy layer tends to a finite
value in this limit. Moreover, the limit becomes regular.

Since the solutal diffusivity is typically small compared to the thermal diffusivity,
we studied the asymptotic limit of small inverse Lewis number ε. In such case we
found that the normalized thickness of the solid phase, λa, scales with ε. Therefore
the growth of the solid phase is controlled by solute diffusion. Since this result holds
also when U = 1, the same scaling applies also to the problem of the mushy layer
with planar interfaces, studied by Worster (1986) and Gewecke & Schulze (2011b).
Moreover, when ε is small, the solid thickness decreases with the concentration ratio
as C −1. On the other hand, the growth of the mushy layer is controlled by thermal
diffusion, since λb is finite as ε → 0. The dimensionless quantity that dominantly
controls the growth of the mushy layer is the dimensionless liquidus slope Γ : while
the thickness of the mushy layer attains finite values for all U ∈ 〈0, 1〉 with Γ fixed,
it is unbounded for values of Γ close to unity. Thus to obtain thick mushy layers,
the parameter Γ is the one that must be varied. However, the singularity in λb as
Γ → 1− is the consequence of the fact that there is no latent-heat release at the
mush/liquid interface to inhibit the growth of the mush when there is no thermal
gradient in the liquid. As can be seen in the global model, positive values of Stefan
number result in finite values of λb as Γ → 1−.

The average bulk composition within the mush in the local conservation model is,
to the leading order in small Pr, ε and U , given by the concentration ratio. More
specifically, the value by which C exceeds unity is equal (to the leading order) to
the average dimensionless bulk composition. In the global model, this is an exact
equality as a direct consequence of the global conservation of solute. Therefore, in
general, the concentration ratio may serve as an indicator of the redistribution of the
solute within the mushy layer.
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One of the main contributions of our thesis is also the dimensionless formulation
used. The typical scalings used so far by other authors were such that the temperature
and concentration in the mushy layer were the same (cf. Worster 1991, Guba &
Worster 2006a and Guba & Worster 2006b). However, we chose the scalings that
distinguish between the temperature and concentration fields in the mushy layer. As
a result, we were able to identify the dimensionless liquidus slope, to the leading order
in ε, with the dimensionless temperature at the mush/liquid interface.

Nonetheless, one should have in mind the assumptions on which the mathematical
formulation of the problem rested. The first one was stationarity in the labora-
tory frame of reference — we completely ignored the transient behaviour, which, in
practice, can substantially influence the evolution of the system towards the steady
state. The second assumption was the semi-infinity in both horizontal and vertical
directions, which was essential for the self-similar analysis.

There are several problems still left open, which could motivate further investiga-
tion. The first one is the possibility of a nontrivial flow in the mushy layer, a question
that in fact served as the original motivation for our thesis. In the present case, we
did not consider the variations of density with temperature and concentration in or-
der to simplify the problem. Since there was no horizontal pressure gradient to drive
the flow (the flow was driven by moving substrate), the only flow in the mushy layer
consistent with the boundary-layer reduction and the self-similar formulation was the
uniform one (i.e. trivial with respect to the dendrites). Finding a nontrivial flow in
the mushy layer, consistent with the self-similar formulation, will require incorpora-
tion of the buoyancy effects, i.e. the variations of the liquid density with temperature
and concentration. A difficult task will also be to correctly determine the boundary
conditions at the mush/liquid interface, since the nontrivial flow in the mushy layer
can eventually cross the mush/liquid interface.

Another open task is the numerical analysis of the liquid fraction at the solid/mush
interface in case when the Stefan number is positive. Though Worster (1986) solved a
more general problem with planar interfaces numerically with positive values of Stefan
number and distinct material properties of liquid and solid phases, however, the
numerical solution of a simpler problem presented here would be useful for validation
of our result that the gradient of liquid fraction is bounded towards the solid/mush
interface.
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Appendix

A.1 Proof of equation (4.19) when S ≥ 0

The condition (4.8) states that at least one of the quantities 2λa(C −Θa)− εΘ′

a+

and χa+ must be zero. However, we shall prove that the former is always zero. To
prove that, assume the converse was true, i.e. 2λa(C − Θa) − εΘ′

a+ 6= 0, so that
χa+ = 0. Moreover, (4.14) implies that 2ζ(C − Θ) − εΘ′ > 0 for ζ > λa since the
integral on the right hand-size of (4.14) is always positive for ζ > λa. Therefore we
get from the continuity that 2λa(C − Θa)− εΘ′

a+ > 0. To sum up, there must exist
some constant K > 0 such that 2ζ(C −Θ)− εΘ′ > K for all ζ ≥ λa, from which we
get ∣

∣
∣
∣

2ζΘ′ + εΘ′′

2s(C − Θ)− εΘ′

∣
∣
∣
∣
<

1

K
|2ζΘ′ + εΘ′′|

for ζ ≥ λa. The expression on the right hand-side of the above inequality is bounded
(we will prove it below) in the mushy layer so that

lim
ζ→λ+a

∫ λb

ζ

2sΘ′ + εΘ′′

2s(C − Θ)− εΘ′
ds 6= ∞,

which contradicts the assumption that χa+ = 0. Therefore the original assumption
was false, i.e. (4.19) holds.

It remains to prove that 2ζΘ′+ εΘ′′ is bounded as ζ → λ+a . To show that, we first
prove that 2ζΘ′ + εΘ′′ ≥ 0 and 2ζΘ′ +Θ′′ ≤ 0 in a sufficiently small neighbourhood
of ζ = λa. We start with (4.4) and assume that 2ζΘ′ + Θ′′ > 0. Hence we obtain
that χ′ < 0, which together with (4.1) implies that 2ζΘ′ + εΘ′′ < 0. To sum up, the
two inequalities that must hold simultaneously are

2ζΘ′ +Θ′′ > 0 and −2ζΘ′ − εΘ′′ > 0 as ζ → λa. (A.1a,b)

These can be added up to yield

(1− ε)Θ′′ > 0, (A.2)

which implies that Θ′′ > 0 since ε is typically small. But this violates the inequality
2ζΘ′ + εΘ′′ < 0 since Θ′ must be positive for the model to be physically consistent.3

3Negative values of Θ′ near the interface would correspond to positive dimensional concentration
gradients, which would indicate the diffusive flux of solute towards the solid/mush interface.
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Therefore 2ζΘ′ + Θ′′ ≤ 0, which together with (4.1) implies that 2ζΘ′ + εΘ′′ ≥ 0.
The two inequalities can be written as

2ζΘ′ +Θ′′ ≤ 0 and −2ζΘ′ − εΘ′′ ≤ 0 as ζ → λa (A.3a,b)

and added up to yield
(1− ε)Θ′′ ≤ 0, (A.4)

whence Θ′′ ≤ 0. This last inequality forces the expression 2ζΘ′+ εΘ′′ to be bounded.
To see this, first note that (4.5) implies that 0 ≤ θ′a+ ≤ θ′a− <∞, which upon applying
the liquidus relationship yields 0 ≤ Θ′

a+ = Γθ′a+ < ∞. Therefore Θ′ is bounded as
ζ → λ+a , so the only way for 2ζΘ′ + εΘ′′ to be unbounded is that Θ′′ is unbounded,
i.e. Θ′′ → −∞. However, this would violate the inequality (A.3b).

To summarize a rather formal discussion above, we have shown that both quantities
Θ′ ≥ 0 and Θ′′ ≤ 0 are bounded as ζ → λ+a . Though, from the physical point of
view, this is not surprising, it has some important consequences regarding the liquid
fraction in the mushy layer — for that reason it deserved such a formal treatment.
The inequality (A.3a) together with (4.4) implies that

0 ≤ χ′

a+ <∞ for S > 0. (A.5)

However, note that to show this and the inequalities (A.3a, b), we needed that S > 0
in (4.4). With S = 0, the equation (4.4) becomes 2ζΘ′ +Θ′′ = 0 and 2ζΘ′ + εΘ′′ =
−(1 − ε)Θ′′ > 0, which can be easily verified from the self-similar solutions, as well
as the boundedness of 2ζΘ′ + εΘ′′. Therefore we conclude that (4.19) holds for any
values of Stefan number, including the case when S = 0. However, we do not know
anything about the boundedness of χ′

a+ when S = 0, since the coupling between χ′

and the concentration field in (4.4) is lost in that case.

A.2 Liquid fraction at the solid/mush interface

when S = 0

Here we shall use the integral relation (4.14) to show that χa+ = 0 in case when
S = 0. We denote the integrand of (4.18) as q(ζ), i.e.

q(ζ) ≡
q1(ζ)

q2(ζ)
(A.6)

with

q1(ζ) ≡ 2ζΘ′(ζ) + εΘ′′(ζ), (A.7a)

q2(ζ) ≡ 2ζ [C − Θ(ζ)]− εΘ′(ζ). (A.7b)

Using the explicit solution (4.23) we obtain

q1(ζ) = (1− ε)
4ζΘa

π1/2 erf(λa)
e−ζ

2

> 0. (A.8)
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Therefore q1(λ
+
a ) > 0. Now, assume that χa+ > 0. Therefore the integral in (4.18)

must be finite. From (4.14) we obtain

q2(ζ) =
2

χ(ζ)

∫ ζ

λa

[C −Θ(s)]χ(s) ds > 0. (A.9)

Therefore
q2(ζ)

ζ − λa
=

2

χ(ζ)

1

ζ − λa

∫ ζ

λa

[C −Θ(s)]χ(s) ds.

Taking ζ → λ+a we obtain a finite limit

lim
ζ→λ+a

q2(ζ)

ζ − λa
= 2(C − Θa). (A.10)

To derive this, we used the assumption that χa+ > 0 and the fact that

lim
ζ→λ+a

1

ζ − λa

∫ ζ

λa

ψ(s)ds ≡
d

dζ

(∫ ζ

λa

ψ(s)ds

)∣
∣
∣
∣
ζ=λ+a

= ψ(λa)

holds for any continuous function ψ. We thus proved that

q(ζ) = O[(ζ − λa)
−1], as ζ → λ+a (A.11)

and therefore4 ∫ λb

ζ

q(s)ds→ +∞, as ζ → λ+a , (A.12)

which implies that χa+ = exp(−∞) = 0, a contradiction with the assumption that
χa+ > 0. Thus we have proved that χa+ = 0. To derive this result, the assumption
of zero Stefan number allowed us to use the explicit solutions (4.23) to show that
q1(λ

+
a ) > 0.

A.3 Liquid fraction at the solid/mush interface

when S > 0

We have already shown that χ′

a+ is bounded when Stefan number is nonzero.
Though the determination whether χa+ is zero or not is still an open task, however,
we shall make some remarks concerning this problem. First, note that to prove
that χa+ = 0, regardless the value of Stefan number, it is sufficient to show that

4Let the function ψ : (a, b〉 → R be integrable on any bounded interval 〈ζ, b〉 with a < ζ < b and
let ψ(ζ) = O[(ζ − a)−p] with p ≥ 1 as ζ → a+. Then the integral

∫ b

a

ψ(s)ds ≡ lim
ζ→a+

∫ b

ζ

ψ(s)ds

is divergent.
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2λaΘ
′

a+ + εΘ′′

a+ > 0. Second, from (4.4) we have, in the limit ζ → λ+a , the following
equality

2λaΘ
′

a+ +Θ′′

a+ = −2
S

Γ
λaχ

′

a+ . (A.13)

The limits in (A.13) are well defined since we have already shown in A.1 that all the
quantities in (4.4) are bounded as ζ → λ+a . If we could show that the right hand-side
of (A.13) tends to zero as S → 0, we could use (A.13) to obtain

2λaΘ
′

a+ + εΘ′′

a+ = −(1 − ε)Θ′′

a+ + r(S), (A.14)

with r(S) denoting the right hand-side of (A.13). The first term in (A.14) tends
to a positive number and the second one, according to the hypothesis, tends to
zero. Thus we obtain that for sufficiently small values of Stefan number the quantity
εΘ′′

a+ + 2λaΘ
′

a+ must be positive. It thus only remains to verify the hypothesis that
r(S) → 0 as S → 0. This is still an open task, which, for example, could be verified
by direct numerical calculations.
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