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Abstract

The Thesis deals with the design of experiments for processes described by stochastic dif-
ferential equations. The traditional approach to designing experiments is based on solving
a deterministic system with subsequent contamination by a white noise, which often does
not correspond to the reality. In contrast to the traditional approach, in the Thesis we as-
sume a randomness to be an inherent element of the observed process. The adjustment of
the stochastic model has a significant impact not only on the optimal allocation of observa-
tions but also on the attainable amount of information.

The main result of the Thesis is two-fold: the first is an explicit closed form of the asymp-
totic Fisher information matrix for linear stochastic differential equations, which can be
used for computation of the ultimate efficiency of a design. On the one hand, the ultimate
efficiency gives an assessment of how much a given design exhausts the ultimate informa-
tion and whether an optimization of experiment is needed. On the other hand, the ultimate
efficiency indicates whether the costs for performing another measurement are adequate to
the gain in the amount of information. The second result of the Thesis is the discussion of
the existence of optimal designs for linear stochastic differential equations, which is essen-
tial for the most basic objective of in the theory of optimal designs, and thus has theoretical
and also practical meaning.

The achieved results are put into contrast with some of the recent publications, the
results are partially extended to a broader class of stochastic differential equations, and we
give a demonstration using the Gompertz growth model.

Keywords: Itō stochastic differential equation, exact design, product covariance structure,
asymptotic Fisher information matrix, efficiency, Gompertz model.
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Abstrakt

Predložená dizertačná práca sa zaoberá navrhovaním experimentov pre procesy popísané
stochastickými diferenciálnymi rovnicami. Klasický prístup k navrhovaniu experimentov
spočíva v riešení deterministického systému s následnou kontamináciou bielym šumom,
čo často nezodpovedá realite. Na rozdiel od klasického prístupu, v dizertačnej práci pred-
pokladáme náhodnost’ ako inherentný prvok pozorovaného procesu. Výsledná zmena
stochastického modelu má zásadný vplyv nielen na optimálnu alokáciu meraní ale aj na
množstvo získatel’nej informácie.

Hlavné výsledky práce sú dva: Prvým je explicitný tvar asymptotickej Fisherovej in-
formačnej matice pre lineárne stochastické diferenciálne rovnice, ktorou môžeme vyčíslit’
tzv. ultimátnu efektívnost’ návrhu. Tá na jednej strane určí, do akej miery daný návrh
vyčerpáva celkovú informáciu a či je potrebná d’alšia optimalizácia experimentu, na druhej
strane indikuje, či náklady na d’alšie pozorovanie sú adekvátne vyvážené množstvom
dodatočne získanej informácie. Druhým sú výsledky týkajúce sa existencie optimálnych
návrhov experimentov pre lineárne stochastické diferenciálne rovnice. Opodstatnenost’
tejto otázky má teoretický i praktický rozmer, nakol’ko dáva zmysel základnej úlohe opti-
malizácie experimentu.

Uvedené výsledky sú v práci dané do kontrastu s nedávnymi publikáciami, sú čias-
točne rozšírené aj na všeobecné stochastické diferenciálne rovnice, a sú demonštrované na
Gompertzovom rastovom modeli.

Kl’účové slová: Itōova stochastická diferenciálna rovnica, exaktný návrh, súčinová kovar-
iančná štruktúra, asymptotická Fisherova informačná matica, efektívnost’ návrhu, Gom-
pertzov model.
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Preface

Stochastic calculus is a field of mathematics that operates on random processes and es-
tablishes a consistent theory of integration of random processes. It is primarily focused
on characterisation of the trajectories of diffusion processes, applications of which can be
found in different areas of research, mainly in physics, biology/medicine and finance.

The story of the theory of stochastic calculus started in 1784, when eminent Dutch phys-
iologist, botanist and chemist Johann Ingen-Housz [46] described the irregular movement
of charcoal dust particle on the surface of alcohol. Later, in 1828, Scottish botanist Robert
Brown [8] observed the same phenomenon for grains of pollen in water. Although none
of the previous gentlemen provided a rigorous mathematical representation of their find-
ings, Robert Brown already asked for it. It took more than 70 years until mathematicians
started to systematically study the trajectories of continuous diffusion processes. In 1900
Louis Bachelier in his Thesis [5] for the first time mathematically defined the process of
Ingen-Housz and Brown, which is in the modern literature known as “Brownian motion”.
Simultaneously, Albert Einstein [20] mathematically derived the same process to describe
the kinetics of particles, response for which was the famous paper of Uhlenbeck and Orn-
stein [104]. An important milestone in further developments was the contribution of Nor-
bert Wiener, an American mathematician and the originator of cybernetics, who proved in
1923 the existence of Brownian motion [108]; for this reason the Brownian motion is often
referred to as Wiener process, and so we do in this Thesis. Since 1920’s, lots of publications
on stochastic dynamics have been printed out, which profiled the focus of the mathemat-
ical theory. From a number of authors, of which the most significant can be found in the
monograph of Øksendal [73], a special attention is paid to the contributions of Itō, McKean,
Skorokhod, Lévy, Feller, Dynkin and, of course, Kolmogorov.

Stochastic differential equations became very popular in applications, which naturally
lead to an extensive progress in statistical inference, mainly in the parameter estimation.
Just a brief survey on the published methods is enough for writing a monograph; see, for
instance, a recent book of Iacus [45]. However, literature offers only a few publications on
designing of the experiments for processes, which solve stochastic differential equations.
The main reason is probably the fact that for the models given by stochastic differential
equations, there is a lack for explicit solutions. In general situations we are not even able to
explicitly evaluate the expectation and covariance structure of the process. Henceforth, we
usually cannot formulate the problem in the standards of design of experiments.

By this Thesis I am trying to open a way for a systematic study of experiments for pro-
cesses that solve stochastic differential equations from the design point of view. Although
I have primarily studied linear equations, some ideas for general models are in the end
available, too.

Originally, the subject of my Thesis should have been somewhat different; with the aim
to contribute to the theory of exact optimal sampling designs subject to correlated observa-
tions with product covariance structures. After I made some progress by putting product



covariance structures partially into relation with some stochastic differential equations (see
Chapter 5), I visited Experiments for Processes With Time or Space Dynamics workshop held at
Isaac Newton Institute, Cambridge, UK. This conference significantly influenced the course
of my further research. When my supervisor Radoslav Harman presented his latest results
on product covariance structures [37] which in my view exhausted the topic enough, I
decided to fully concentrate on the experimental design for stochastic dynamic systems.
After all, this decision turned out to be a good one. Designing of experiments for processes
governed by stochastic differential equations required a completely new way of thinking,
which yielded results that were found to be key for some of my colleagues.

Here, I would like to take the opportunity to thank the people that have gone along
with me. First of all and most importantly, I am grateful to my beloved wife, Andrejka, for
her support, patience and boundless love. I am indebted to Doc. Radoslav Harman, with
whom I co-operated already before graduation, who was a great supervisor and a good
friend during difficult periods of my studies. A special thanks goes to my supervisor-
specialist Prof. Andrej Pázman not only for his well-taken comments, interest and long-
lasting discussions that significantly influenced my research but also for being my tutor
who used his life-time experience to form my personality. I would like to acknowledge
Prof. Daniel Ševčovič for intensive communication on some specific topics of this Thesis.
Finally, I want to thank Doc. Viktor Witkovský for his lectures on econometrics that played
a crucial role in my choice for Statistics, Prof. Dariusz Uciński for a chance to attend some
of the most important scientific events in the last four years and Doc. Milan Hamala for
being the first to support my interest in research in my early studies.

Bratislava, August 22, 2014

Vladimír Lacko



I dedicate this Thesis to the memory of my dear friend

Doc. PaedDr. Ing. Oliver Marton, CSc.
(⋆ 1924 – † 2013)
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Introduction

Many phenomena that are subject to experimental examination are of the dynamic nature.
A number of examples can be found in physics, biology, social behaviour, engineering etc.,
where the fundamental laws are commonly described by differential equations. Although
these models give a good proxy for the reality, there are always differences between theo-
retical and observed values.

A usual situation is depicted in Figure 1 where the lines represent theoretical trajectories
and points correspond to actual states of a system in different times and different initial
values. In statistical inference and design, the differences between theoretical and observed
values are considered as random unobservable errors.

-10 -5 5 10

-10

-5

5

10

Figure 1. Example for theoretical trajectories (lines) and simulated observations (points) of a dynamic system.

There are essentially two approaches how to handle the randomness in dynamic sys-
tems. Let the law L describing the changes in system’s state x(t) = xθ(t) at the time t
depend on some parameter θ. The first approach assumes that the state x(t) solves a deter-
ministic problem exactly (hence x(t) is a deterministic trajectory) and the observations are
contaminated with homoscedastic and independent noise, εi, accredited to the measure-
ment device, i.e., we have

{

L
(

dkx(t)
dtk , dk−1x(t)

dtk−1 , . . . , dx(t)
dt , x(t), t,θ

)

= 0,

X(ti) = x(ti) + εi, i = 1, . . . , n.
(1)

Examples for this case can be found in a number of classical and novel publications; see,
for instance, compartmental models in the book of Seber and Wild [97], enzyme kinetics
by Michaelis and Menten[68] intensively studied by Prof. Atkinson and others, or Li’s
contribution [64] to the theory of D-optimal designs for Gompertz growth law [36].

In the second approach we integrate the “noise” directly into the dynamic law by con-
sidering

L
(

dkX(t)

dtk
,
dk−1X(t)

dtk−1
, . . . ,

dX(t)

dt
,X(t), t,θ, “noise”

)

= 0. (2)

vii



INTRODUCTION viii

Of course, such notation is informal; a more rigorous formulations are given in Chapter 1
on stochastic calculus.

The main difference between the two proposals (1) and (2) lies in the interpretation of
the randomness. The second formulation generates a stochastic process with correlated
observations, while model (2.1) supresses the intrinsic randomness, which is characteristic
for processes in the nature. Indeed, we may argue that correlation can be incorporated also
in the model (1), but, unlike in formulation (2), covariance structure would be artificial.

The presented thesis is focused on the latter approach, that is, we assume the effect of
the randomness to be a part of the dynamic law. The theory for such models has not been
systematically built and we can find only few publications concerning such set up, where
the models are rather very specified than general; see Chapter 4. Obviously, a general setup
(2) would lead to a very broad class of problems, of which investigation would take one
human life. Therefore, we narrow our attention to linear stochastic differential equations,
but we provide also some general results.

A reasonable argument for studying linear problems is that every theory is, at the be-
ginning, built on the most simple (linear) formulations, cf. the theory of dynamic systems,
the theory of experimental design, etc. Secondly, the results for linear problems might give
some indications for further extension of the results to general formulations.

Organisation of the Thesis

The Thesis is divided into three parts.
Because of the interdisciplinarity of the Thesis, Part I gives a summary of the elemental

knowledge necessary for the understanding of the results. Chapter 1 provides a survey
on elements of stochastic calculus, which is crucial for the formulation of the underlying
models. The focal point of the 2nd chapter is the statistical background, where we recap
various topics concerning the Fisher information matrix, terminology of experimental de-
sign, regression experiments and results on optimal designs under uncorrelated errors.

Part II investigates fundamental and most recent results in the theory of optimal design
of experiments with correlated errors. Here, in Chapter 3 we give an outline of the main
differences between the models with and without correlation which is followed by discus-
sions on asymptotic theories and computational aspects. Chapter 4 is focused on design
problems for correlated observations too, but its content is more specialised to processes
described by stochastic differential equations.

The aim of Parts I and II is to give the reader rather a comprehensible insight into the
subject of the Thesis than a stream of mathematically rigorous formulations.

The last Part III provides the candidate’s contribution to the theory of experimental de-
sign for stochastic differential equations in a chronologic order. Chapter 5 exhibits an analy-
sis of designs and information for the non-autonomous non-stationary Ornstein-Uhlenbeck
process, which is a motivation for the subsequent chapters. In Chapter 6 we present the
main results for linear stochastic differential equations. This includes evaluation of the ul-
timate efficiency of designs and a study on existence of optimal designs. Applications are
demonstrated on the Gompertz growth law. It turns out that the ultimate information con-
tained in the trajectories of processes described by general stochastic differential equations
can be to a certain extent written in an explicit form as well, which is the topic of Chapter
7. The relations between the outcomes of Part III and recent publications are reviewed in
Chapter 8.



Goals of the thesis

The subject of the Thesis related to design of experiments for processes governed by sto-
chastic differential equations. The main aim of the Thesis is to ...

• ... study the existence of optimal sampling designs for linear stochastic differen-
tial equations: A proof of existence of optimal sampling design is a fundamental
problem, since it gives a rationale to use of the optimisation techniques and the objec-
tive of optimal design itself. A usual way for verification of the existence of optimal
sampling designs is imposing of conditions which imply the continuity of the Fisher
information matrix at the boundary designs Tn\Tn. For instance, Sacks and Ylvisaker
[92, 93] formulated the continuity of the Fisher information matrix through the con-
tinuity of the reproducing kernel Hilbert spaces. In the majority of publications, e.g.
[16, 53, 39, 40, 37] and others, where the optimal designs were proved to exist (mostly
by their derivation), the authors usually assume parameters that are only present in
the expectation of the process and those that are exclusively in the covariance struc-
ture. On the other hand, instances in which we share parameters in the expectation
and covariance structure exhibit complications, cf. [110].

• ... derive the form of the asymptotic information matrix for linear stochastic dif-
ferential equations: Computation of optimal exact sampling designs in models with
correlated observations is a non-convex problem, and explicit solutions are available
only for few models, see, e.g., [16, 53, 39, 40, 37]. The other authors developed numer-
ical procedures for identification of optimal allocation [81] or they tried to circumvent
these difficulties by building alternative theories based on asymptotic arguments (in
the sense of the number of design points, [92, 93, 94, 106, 107, 24, 111, 17]). In the
presented Thesis we try to circumvent the most basic objective of the optimal design
problem by focusing on the computation of the so-called “ultimate” efficiency [79, 37],
where we compare the collected information for an exact design with the information
contained in the trajectory of the process, which has a practical application [92].

• ... extend the results to the class of general stochastic differential equations: The
analysis of linear problems is always a fundamental step in order to analyse general
nonlinear problems. It is of utmost interest to search for possibilities of extension of
the results to general stochastic differential equations or at least to adapt developed
techniques.
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Chapter 1

Elements of stochastic calculus

The aim of this chapter is to give an insight into the basic concept of Itō stochastic calculus,
whose language we use to formulate the underlying models later in this thesis. The most of
the presented results are well known, and we refer the reader to the classical monographs
by Øksendal [73], Gardiner [35] or Arnold [4].

1.1 Basic definitions

Definition 1. A stochastic process is a collection of t-parametrised random variables {X(t, ω)}t∈T

defined on some probability space (Ω,F ,Pr) with values in R.

For the continuous-time stochastic process, the set T is usually an interval [a, b] or a
half-line [0,∞). In the latter instance, instead of {X(t)}t∈T , we use the notation {X(t)}t≥0.
Although Definition 1 only gives a notation for scalar-valued processes, we are not limited
in the number of dimensions. To understand the concept of Itō integral outlined in this
chapter, the one-dimensional case is sufficient. Nevertheless, in some important cases we
introduce also multivariate counterparts.

Definition 1 designates stochastic processes as collections of random variables, where,
for a given t ∈ T , we have the mapping X(t, ·) : Ω 7→ R. On the other hand, for a fixed
ω ∈ Ω, the mapping X(·, ω) : T 7→ R is a trajectory or path of the stochastic process.

Definition 2. A stochastic process {Y (t, ω)}t∈T is a version of the stochastic process {X(t, ω)}t∈T

on (Ω,F ,Pr) if for all t ∈ T , Pr[{ω ∈ Ω | Y (t, ω) = X(t, ω)}] = 1.

Definition 3. A filtration on the measurable space (Ω,F) is a sequence {Ft}t∈T of σ-algebras such
that Ft1 ⊆ Ft2 ⊆ F for all t1, t2 ∈ T , t1 ≤ t2. The quadruplet (Ω,F , {Ft}t∈T ,Pr) is called a
filtered probability space.

Filtration represents an information flow (not in a statistical sense), or the history of the
process. It determines, which event we are able to discriminate in terms of measurable
cylinders in classical probability theory; see [56].

Definition 4. Let {Ft}t∈T be a filtration on (Ω,F) and let {X(t, ω)}t∈T be a stochastic process
on (Ω,F ,Pr). The process {X(t, ω)}t∈T is said to be Ft-adapted if for each t ∈ T , the mapping
ω 7→ X(t, ω) is Ft-measurable.

For the sake of simplicity in the rest of this chapter we omit a notation of the depen-
dence of a stochastic process on ω ∈ Ω. The only exception is Section 1.4, where we define
stochastic integrals.
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t∗filtered until t∗

Figure 1.1. Filtration represents an information flow about events that could be distinguished. Figure depicts two
different possible paths of a stochastic process. Until time t∗, where the process is filtered we cannot distinguish
these paths, because they differ only at times after t∗ (dashed and dash-dotted lines in the grey area). To recognize
these paths we have to move further in time, when the corresponding σ-algebra is more rich.

Definition 5. By a sampling n-point design τn = (t1, . . . , tn)T on the domain D ⊆ T we under-
stand a sequence of n non-decreasing times from D. We further define Tn ≡ {τn = (t1, . . . , tn)T |
T∗ ≤ t1 < . . . < tn ≤ T ∗} and Tn ≡ {τn = (t1, . . . , tn)T | T∗ ≤ t1 ≤ . . . ≤ tn ≤ T ∗} is the
closure of Tn.

1.2 Kolmogorov’s Extension theorem

A fundamental result with impact on stochastic calculus and stochastic processes is the
Kolmogorov’s Extension Theorem [56]. The theorem was originally formulated for dis-
crete sequences of random variables, but in the modern literature on stochastic differential
equations we can usually find the form applicable to continuous stochastic processes; see,
e.g., [73].

Proposition 1 (Kolmogorov’s Extension Theorem). For all t1, . . . , tn ∈ T , n ∈ N, let νt1,...,tn

be probability measures on R
n such that

νπ(t1),...,π(tn)(A1 × · · · ×An) = νt1,...,tn
(Aπ−1(1) × · · · ×Aπ−1(n))

for all permutations π on {1, . . . , n}, and

νt1,...,tn
(A1 × · · · ×An) = νt1,...,tn,tn+1,...,tn+p

(A1 × · · · ×An × R × · · · × R)

for all p ∈ N, where the set on the right hand side has a total of n + p factors. Then there exists
a probability space (Ω,F ,Pr) and a stochastic process {X(t)}t∈T on (Ω,F ,Pr), X(t) : Ω 7→ R,
such that

νt1,...,tn
(A1 × · · · ×An) = Pr[X(t1) ∈ A1, . . . ,X(tn) ∈ An]

for all ti ∈ T , n ∈ N and all Borel sets Ai.

For a given stochastic process {X(t)}t∈T , some design τ = (t1, . . . , tn)T on T and mea-
surable setsA1, . . . , An, we can theoretically determine the probability thatX(t1) ∈ A1, . . . ,
X(tn) ∈ An. The Extension Theorem solves an opposite problem: if we are given a proba-
bility space and the consistency conditions are satisfied, then there exists a random process
following this probability law.
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1.3 Wiener process

Definition 6. A one-dimensional Wiener process {W (t)}t≥0 on the probability space (Ω,F ,Pr) is
a continuous-time stochastic process characterized by the following three facts:

i) Pr[W (0) = 0] = 1,

ii) for any design τ = (t1, . . . , tn)T on [0,∞), the increments W (tn) −W (tn−1), . . . ,W (t2) −
W (t1) are mutually independent,

iii) for any positive constants t and ∆, the distribution of W (t+ ∆) −W (t) is N (0,∆).

An n-dimensional Wiener process {W (t)}t≥0 is a process, for which the components correspond to
n independent one-dimensional Wiener processes.

The first condition of Definition 6 is only technical, and such process is sometimes called
“mathematical Brownian motion” [96, p39]. Conditions ii) and iii) give a finite-dimensional
distribution of {W (t)}t≥0, which is consistent in the sense of the Kolmogorov’s Extension
Theorem. Hence, there exists a probability space, where {W (t)}t≥0 can be constructed.
Notice that the Wiener process is not defined uniquely.

The Wiener process has an exceptional position amongst stochastic processes, not only
for its special properties, but also from the historical aspect. The second condition in Defini-
tion 6 could be underset by interactions of particles in thermodynamics. The last property
on Gaussian distribution of increments can be explained at least in two ways.

The first interpretation comes from the Einstein’s work in thermodynamics [20], which
does not study an individual particle but a whole cloud of particles. There he states a basic
diffusion equation for the density of particles, which is solved by the Gaussian kernel. A
very simple but detailed explanation of Einstein’s idea based on the fact that the Wiener
process is a continuous limit of a random walk can be found also in the monograph of
Kwok [57]. If X1, . . . ,Xn are independent taking values only ±1 with equal probability
and if we set Sn = X1 + · · · + Xn the partial sum, then from Central Limit Theorem for
n→ ∞ (see, e.g., [45, p20])

Pr

[

S[nt]√
n
< x

]

→ Pr[W (t) < x],

where [nt] stands for integer part of nt.
Other view, again motivated by physics, stays in a multi-dimensional view. More pre-

cisely, Gaussian distribution is, according to the Herschel-Maxwell theorem [9], the only
spherically invariant distribution with independent coordinates, which is a rational re-
quirement: if we have a uniformly distributed direction and the coordinates are mutually
independent, then the Gaussian distribution is the only solution.

An important question concerning the Wiener process is about the continuity of its tra-
jectory. The answer is proposed by Kolmogorov’s Continuity Theorem [101].

Proposition 2 (Kolmogorov’s Continuity Theorem). Let a process {X(t)}t≥0 satisfy the fol-
lowing condition: For all S > 0 there exist positive constants α, β,D such that

E [|X(t) −X(s)|α] ≤ D|t− s|1+β , 0 ≤ s, t ≤ S.

Then there exists a continuous version of {X(t)}t≥0.
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For the n-dimensional Wiener process it can be proved [73, p14] that

E [‖W (t) − W (s)‖4] = n(n+ 1)|t− s|2.
The reader can find more information on the continuity in the book of Durrett [18].

Proposition 3. For the Wiener process we have that

i) E [W (s)W (t)] = min{s, t}, 0 ≤ s, t,

ii) there exists a continuous version,

iii) the paths are Pr-almost surely nowhere differentiable.

An argument for the third part of the previous proposition can be found in quadratic
variation of functions.

Definition 7. Let a sequence of designs {τ (n)}n ∈ CD be covering D. The quadratic variation of a
function f(t) on D is

[f ][a,b] = lim
n→∞

n
∑

k=2

[f(t
(n)
k ) − f(t

(n)
k−1)]

2 (1.1)

It straightforward that for any differentiable function the quadratic variation is identi-
cally equal to zero.

On the other hand, for the Wiener process starting from 0 we can show [73, p19] that
the quadratic variation of {W (t)}t≥0 on [0, s] is Pr-almost surely s (i.e., the sum in (1.1)
converges with respect to L2 space). Consequently, if we take into account the definition of
quadratic variation (1.1), for the Wiener process we can informally write that

∫ b

a

[dW (t)]2 = b− a =

∫ b

a

dt,

or in even more informal notation

[dW (t)]2 ≈ dt. (1.2)

That is, if the norm of the partition induced by the sequence of designs {τ (n)}n tends to
zero, then the behaviour of [dW (t)]2 becomes non-random. An illustrative numerical ex-
ample is depicted in Figure 1.2.

1.4 Concept of Itō integral

The integration theory is one of the most important concepts in mathematics, and a number
of variants have been developed. The ground for this thesis is a consistent integration of
stochastic processes with respect to stochastic processes of the form

∫ b

a

f(t, ω)dW (t, ω). (1.3)

Note that in the standard (Riemann) integration theory if a function G(t) is differen-
tiable, then

∫ b

a

f(t)dG(t) =

∫ b

a

f(t)
dG

dt
(t)dt.

However, for a fixed ω ∈ Ω the function t 7→ W (t, ω) is not differentiable, henceforth we
cannot exploit the standard integration theory. For a question what “dW (t, ω)” is, we have
a formal answer:
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Figure 1.2. A simulation of quadratic variation process for the Wiener process by discretization (cf. (1.1)) for
different time steps. Evidently, if the difference ∆ = tk − tk−1 is becoming smaller, the quadratic variation
becomes “less stochastic” and converges to line y(t) = t.

Definition 8. Let {W (t, ω)}t≥0 be the Wiener process. Then

∫ b

a

dW (t, ω) = W (b, ω) −W (a, ω).

The way of integrating of stochastic processes with respect to stochastic processes given
in (1.3) answers the concept of Itō integral based on Definition 8. As usual, the Itō integra-
tion theory is built up on elementary processes (functions). Clearly, for a constant process
{f(t, ω)}t≥0 = {c}t≥0 we have

∫ b

a

f(t, ω)dW (t, ω) =

∫ b

a

cdW (t, ω) = c

∫ b

a

dW (t, ω) = c[W (b, ω) −W (a, ω)].

Note that c
∫ b

a
dW (t, ω) ∼ N (0,

∫ b

a
f2(t, ω)dt). For an elementary process

{fn(t, ω)}t≥0 =

{

n−1
∑

i=0

f(ti, ω)I[ti,ti+1)(t)

}

t≥0

,

where IA is the indicator function, t0 = a, tn = b and ti < ti+1 for all i, we can define

∫ b

a

fn(t, ω)dW (t, ω) =

n−1
∑

i=0

f(ti, ω)[W (ti+1, ω) −W (ti, ω)]. (1.4)

Again, we find out that
∫ b

a
fn(t, ω)dW (t, ω) ∼ N (0,

∫ b

a
f2(t, ω)dt). It is, therefore, natural to

define the following class of processes:

Definition 9. A process {f(t, ω)}t≥0 is Itō integrable on [a, b] if

i) {f(t, ω)}t≥0 is FW
t -adapted,

ii) the function (t, ω) 7→ f(t, ω) is Borel-measurable in t and F-measurable in ω,
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iii) E [
∫ b

a
f2(t, ω)dt] <∞.

Then we can define an Itō integral for a process {f(t, ω)}t≥0 as a limit of integrals for
elementary functions in (1.4):

Definition 10. Let {{fn(t, ω)}t≥0}n be a sequence of elementary processes such that

E
[

∫ b

a

[f(t, ω) − fn(t, ω)]2dt

]

→ 0 as n→ ∞. (1.5)

(If {f(t, ω)}t≥0 is Itō integrable, then {{fn(t, ω)}t≥0}n described in (1.5) always exists [73].) Then
we define

∫ b

a

f(t, ω)dW (t, ω) = lim
n→∞

∫ b

a

fn(t, ω)dW (t, ω),

where the limit is with respect to L2(Pr).

Proposition 4 (Itō isometry). Let {f(t, ω)}t≥0 be an Itō integrable function on [a, b]. Then

E
[

∫ b

a

f(t, ω)dW (t, ω)

]

= 0

and

E





(

∫ b

a

f(t, ω)dW (t, ω)

)2


 = E
[

∫ b

a

f2(t, ω)dt

]

.

We should discuss several issues on stochastic integrals. Firstly, in the case of Itō in-
tegral the process {f(t, ω)}t≥0 has to be FW

t -adapted. As an alternative, we can take the
concept of the Stratonovich integral, which, in the approximation by simple functions, eval-
uates f(t, ω) at t∗i = (ti + ti+1)/2. In contrast with a Riemann integral, Itō and Stratonovich
integrals do not necessarily converge to each other [73, p35].

Secondly, the Itō integral preserves the properties of integral we are used to from stan-
dard integration theories.

Proposition 5. Let {f(t, ω)}t≥0 and {g(t, ω)}t≥0 be Itō integrable on [a, b], a < c < b, and let
α, β ∈ R. Then

i)
∫ b

a
f(t, ω)dW (t, ω) =

∫ c

a
f(t, ω)dW (t, ω) +

∫ b

c
f(t, ω)dW (t, ω) for Pr-almost all ω,

ii)
∫ b

a
[αf(t, ω) + βg(t, ω)]dW (t, ω) = α

∫ b

a
f(t, ω)dW (t, ω) + β

∫ b

a
g(t, ω)dW (t, ω) for Pr-

almost all ω,

iii)
∫ b

a
f(t, ω)dW (t, ω) is a FW

b -measurable random variable,

iv) if f(t, ω) = f(t), then
∫ t

0
f(ν)dW (ν, ω) = f(t)W (t, ω) +

∫ t

0
W (t, ω)df(t) for Pr-almost all

ω (integration by parts).

For more details on the properties of stochastic integrals we refer the reader to Dur-
rett [18] and Øksendal [73].
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1.5 Itō stochastic differential equations

Differential equations are often used to describe dynamics around us. In the deterministic
theory of dynamic systems we can often find models characterized by equations of the
form

dX(t)

dt
= Ẋ(t) = f [t,X(t)],

with X(0) given. Nevertheless, in the real world this dynamics is usually perturbed by
random interactions, the size of which might depend on the current state X(t), time t or
any other factor. That is, in an informal notation we can write

Ẋ(t) = f [t,X(t)] + σ[t,X(t)]N(t), (1.6)

where N(t) is a “noise”. A reasonable properties that the process {N(t)}t≥0 should possess
(at least approximately) are [73, p21]:

P1) for t1, t2 ≥ 0, t1 6= t2, the random variables N(t1) and N(t2) are independent,

P2) {N(t)}t≥0 is a stationary process with E [N(t)] = 0 for all t.

Any process {N(t)}t≥0 with properties P1 and P2 is not continuous, and if it has a unit
variance, the function (t, ω) 7→ N(t, ω) is not even measurable.

By studying a discretized version of the equation (1.6)

X(tk+1) −X(tk) = f [tk,X(tk)]∆tk + σ[tk,X(tk)]N(tk)∆tk,

where ∆tk = tk+1 − tk. Let N(tk)∆tk = ∆V (tk) = V (tk+1) − V (tk), we get that the
assumptions P1 and P2 on {N(t)}t≥0 imply that V (t) should have zero mean stationary
and independent increments. Nevertheless, the only continuous process with zero mean,
stationary and independent increments is the Wiener process [54].

If we sum up the discretized version of (1.6) and take the limit in the sense of Defini-
tion 10, we obtain

X(t) = X(0) +

∫ t

0

f [ν,X(ν)]dν +

∫ t

0

σ[ν,X(ν)]dW (ν), (1.7)

or, in the differential form

dX(t) = f [t,X(t)]dt+ σ[t,X(t)]dW (t). (1.8)

The measurable function f(t, x) is usually called a “drift”, the measurable function σ(t, x)
is a “volatility” or “diffusion coefficient”, and X(0) is the initial value. Analogously, we
can define a multivariate Itō stochastic differential equation

dX(t) = f [t,X(t)]dt+ σ[t,X(t)]dW (t).

Here, f : [0,∞] × R
n 7→ R

n, σ : [0,∞] × R
n 7→ R

n×n and {W (t)}t≥0 is the n-dimensional
Wiener process.

In the following we define a class of Itō processes [73, p44].

Definition 11. Let {W (t, ω)}t≥0 be the Wiener process on (Ω,F ,Pr), and let {u(t, ω)}t≥0 and
{v(t, ω)}t≥0 be FW

t -adapted processes satisfying

Pr

[∫ t

0

|u(ν, ω)|dν <∞ ∀t≥0

]

= 1, Pr

[∫ t

0

v2(ν, ω)dν <∞ ∀t≥0

]

= 1.
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Then the one-dimensional Itō process is a stochastic process {X(t)}t≥0 on (Ω,F ,Pr) of the form

X(t) = X(0) +

∫ t

0

u(ν, ω)dν +

∫ t

0

v(ν, ω)dW (ν, ω).

Similarly to the Wiener process, we can calculate the quadratic variation also for Itō
processes [45, p37]:

Proposition 6. Let {X(t)}t≥0 be a one-dimensional Itō process. Then the quadratic variation of
{X(t)}t≥0 on D = [a, b], 0 < a < b, is

[X]D =

∫ b

a

v2(t, ω)dt.

1.5.1 Itō’s lemma

Itō’s lemma [47, Thm6], which is an important result of stochastic calculus, was already
sketched by formula (1.2). That is, in contrast with differentiable functions, in total differ-
entials of Itō processes we have to take into account also second order terms.

Proposition 7 (Itō’s lemma). Let {X(t)}t≥0 be an Itō process described by a stochastic differential
equation of the form

dX(t) = f [t,X(t)]dt+ σ[t,X(t)]dW (t),

and g(t, x) be twice continuously differentiable on [0,∞) × R. Then the process {Y (t)}t≥0 given
by

Y (t) = g[t,X(t)]

is an Itō process as well, and

dY (t) =
∂g

∂t

∣

∣

∣

[t,X(t)]
dt+

∂g

∂x

∣

∣

∣

[t,X(t)]
dX(t) +

1

2
σ2[t,X(t)]

∂2g

∂x2

∣

∣

∣

[t,X(t)]
dt

=

(

∂g

∂t
+ f [t,X(t)]

∂g

∂x
+

1

2
σ2[t,X(t)]

∂2g

∂x2

)

∣

∣

∣

[t,X(t)]
dt+ σ[t,X(t)]dW (t).

A multivariate counterpart is at hand: we have a process described by an equation
dX(t) = f [t,X(t)]dt+ σ[t,X(t)]dW (t) and Y (t) = g[t,X(t)], where the function g(t,x) is
scalar-valued and twice continuously differentiable on [0,∞) × R

n. Then

dY (t) =
∂g

∂t

∣

∣

∣

[t,X(t)]
dt+

∂g

∂x

∣

∣

∣

[t,X(t)]
dX(t) +

1

2
[dX(t)]T

∂g

∂x∂xT

∣

∣

∣

[t,X(t)]
dX(t), (1.9)

where we set dWi(t)dt = (dt)2 = 0 and dWi(t)dWj(t) = δijdt, and δij is the Kronecker
delta. If g is a vector function, that is, we have Y (t) = g[t,X(t)], then we compute (1.9) for
each component gi.

1.5.2 Existence and uniqueness of solutions

A solution to a stochastic differential equation is a stochastic process. Similarly to the the-
ory of deterministic dynamic systems, we should ask whether any solution exists and if it
is unique or not. In contrast with deterministic systems, for stochastic processes, we for-
mulate the existence and uniqueness in terms of probability. We distinguish two types of
solutions: weak solutions and strong solutions.
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Definition 12. A weak solution to a stochastic differential equation

dX(t) = f [t,X(t)]dt+ σ[t,X(t)]dW (t),

X(0) ∼ Z

on a measurable filtered probability space (Ω,F , {FW
t }t≥0,Pr), where {W (t)}t≥0 is the Wiener

process and Z is a distribution independent from {W (t)}t≥0, is a pair {(X(t),W (t))}t≥0 of pro-
cesses such that {X(t)}t≥0 is FW

t -adapted and

X(t) = X(0) +

∫ t

0

f [ν,X(ν)]dν +

∫ t

0

σ[ν,X(ν)]dW (ν)

Pr-almost surely for all t ≥ 0.

Definition 13. A strong solution to a stochastic differential equation

dX(t) = f [t,X(t)]dt+ σ[t,X(t)]dW (t),

X(0) ∼ Z

on a measurable filtered probability space (Ω,F , {FW
t }t≥0,Pr), with {W (t)}t≥0 being a fixed

Wiener process and Z being a distribution independent from {W (t)}t≥0, is an FW
t -adapted process

{X(t)}t≥0 such that

X(t) = X(0) +

∫ t

0

f [ν,X(ν)]dν +

∫ t

0

σ[ν,X(ν)]dW (ν)

Pr-almost surely for all t ≥ 0.

The main difference between the definitions of weak and strong solutions consists in
the selection of the underlying Wiener process. If we seek for a weak solution, we give
coefficients f(t, x) and σ(t, x) and ask for a pair {(X(t),W (t))}t≥0, which solves the cor-
responding stochastic differential equation. That is, we simultaneously seek for {X(t)}t≥0

and a version of {W (t)}t≥0, and the weak existence and uniqueness are meant to be with
respect to the probability law. On the other hand, if the version of the process {W (t)}t≥0 is
fixed, then the obtained solution {X(t)}t≥0 is strong and the existence and uniqueness are
meant to be pathwise.

Proposition 8 (Existence and uniqueness of the strong solution). Let α, β ∈ R be some con-
stants, the coefficients f(t, x) and σ(t, x) be measurable functions from [0, T ] × R to R, and let Z
be a random variable such that

i) (at most linear growth of coefficients in x)

∀x∈R∀t∈[0,T ] |b(t, x)| + |σ(t, x)| ≤ α(1 + |x|),

ii) (Lipschitz continuity of coefficients)

∀x,y∈R∀t∈[0,T ] |b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ α(1 + |x|),

iii) Z is independent of σ-algebra FW
t and has a finite second moment.
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Then the stochastic differential equation

dX(t) = f [t,X(t)]dt+ σ[t,X(t)]dW (t), 0 ≤ t ≤ T,

X(0) = Z,

has the unique FW
t -adapted solution {X(t)}t≥0 generated by W (t) and Z with

E
[

∫ T

0

|X(t)|2dt
]

<∞.

The multivariate case is very similar, with the Frobenius norm used instead of the ab-
solute value | · |.

The strong solution is, of course, also a weak solution, but the inverse implication is not
true in a general case. For the existence of a weak solution, the assumption i) of Proposition
8 is sufficient; see [98, 99, 43].

If we say that a process {X(t)}t≥0 is described by some stochastic differential equation,
we understand that {X(t)}t≥0 is its weak solution.

1.6 Transition density kernel and Kolmogorov’s forward equation

In practical applications concerning stochastic differential equations, especially in simula-
tion, inference and experimental design, the knowledge of a transition density kernel is
useful. Let {X(t)}t≥0 be a stochastic process, under the transition density kernel we under-
stand

p(x, s | y, t) =
d

dx
Pr[X(t+ s) < x | X(t) = y].

For the sake of simplicity we will discuss only the univariate case. Analogues for a vector-
valued Itō processes can be found in references cited below.

A fundamental result in this field is the Kolmogorov’s forward equation [55, p458]:

Proposition 9. Let process {X(t)}t≥0 be a solution to a stochastic differential equation of the form

dX(t) = f [t,X(t)]dt+ σ[t,X(t)]dW (t).

Then the transition density kernel p(x, s | y, t) solves the initial problem






∂p

∂s
+

∂

∂x
[f(t+ s, x)p] =

1

2

∂2

∂x2
[σ2(t+ s, x)p],

p(x, 0 | y, t) = δ(x− y),
(1.10)

where δ(·) is the Dirac delta function.

Kolmogorov’s forward equation is often referred to as Fokker-Planck equation, named
after its inventors Adriaan D. Fokker, who derived the law only for stationary processes
[30], and Max Planck, who formulated the equation (1.10) in his publication [82]. For a
detailed historical discussion we recommend the paper of Ebeling et al. [19].

The existence and uniqueness of solutions to the initial problem (1.10) was extensively
studied (see, for instance, [91, 32]), but is beyond the scope of the presented thesis; hence-
forth, we do not provide a detailed discussion of this topic. Besides the original publica-
tions [82, 55], the reader can find the derivation of this law also in [96, 73] and many other
publications. Note also that for the Wiener process, where the diffusion coefficient σ is a
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Figure 1.3. An evolution of a solution to the Kolmogorov’s forward equation for the model dX(t) = 5[1 −

X(t)]X(t)[1 + X(t)]dt + dW (t) with initial distribution uniform on [−0.5, 0.5] (dashed line).

constant and the drift coefficient f is zero, the Kolmogorov’s forward equation reduces to
the standard diffusion equation derived by Einstein in his 1905 paper [20].

A matter of concern is the fact that, with exception of very special stochastic differential
equations, we are usually not able to find a closed form solution for Kolmogorov’s forward
equation. For this reason scientists developed a variety of approximate analytical and nu-
merical methods not only for a density evaluation itself, but also for process simulation
and parameter estimation under discrete observations.

Figure 1.3 depicts an evolution of the transition density kernel for the equation dX(t) =
5[1 − X(t)]X(t)[1 + X(t)]dt + dW (t) with the initial distribution uniform on [−0.5, 0.5].
The shape of the density is usually connected with the properties of the deterministic
counterpart of the model. For instance, in this case the deterministic model dX(t) =
5[1 −X(t)]X(t)[1 +X(t)]dt has three stationary points −1, 0, 1. The stationary points −1, 1
are attractors and 0 is a repellor; consequently, the probability mass represented by the
transition kernel is bimodal and more concentrated around the values −1, 1.

The transition density kernel also describes the limiting role of coefficients of stochastic
differential equation. The following can be shown [55, 96]:

Proposition 10. Let p(x, s | y, t) solve the initial problem (1.10). Then

lim
s→0

1

s

∫

R

(y − x)p(y, s | x, t)dy = f(t, x),

lim
s→0

1

s

∫

R

(y − x)2p(y, s | x, t)dy = σ2(t, x),

lim
s→0

1

s

∫

R

|y − x|2+ǫp(y, s | x, t)dy = 0, ǫ > 0.



Chapter 2

Elements of statistical theory of
experiments

Throughout this chapter we briefly review several important topics in the statistics and
theory of experiments, which have become a “folklore” in the literature. We focus on the
problems concerning point estimation, which includes a discussion on Fisher information
and introduction to design of regression experiments under uncorrelated observations. The
reason for the last topic is that the problems analysed in Parts II and III assume correlated
observations, for which the results are partially in contrast with the standard models with
uncorrelated measurements.

We refer the reader to the monographs of Rao [89], Lehmann and Casella [61] and
Casella and Berger [11], which are pivotal sources for Section 2.1, and the monographs
of Pázman [77] and Pukelsheim [87], which are essential for Sections 2.2 and 2.4.

2.1 Fisher information

Fisher information, or in the full wording “Fisher information that a random observable
contains about the unknown parameter”, named after Sir Ronald A. Fisher, is one of the
most important concepts connected with parameter estimation and information theory, and
plays a crucial role also in the presented Thesis.

There are several degrees of generality, in which we can handle the Fisher informa-
tion. The needs of this thesis are limited to continuous random vectors depending on an
unknown vector parameter, so we narrow the discussion to this class of models with the
following definition:

Definition 14. Let f(x | θ) be a probability density function of a continuous random vector X on
R

n with respect to Lebesgue measure. Then the Fisher information matrix for unknown parameter
θ evaluated at prior guess θ∗ at the true value of the unknown parameter θ is defined by

I (θ∗) = EX

[

∂f(X | θ)

∂θ

∂f(X | θ)

∂θT

]

θ=θ∗

=

∫

x∈Rn

∂f(x | θ)

∂θ

∂f(x | θ)

∂θT
f(x | θ)dx

∣

∣

∣

∣

θ=θ∗

.

Besides Definition 14, which is common for the parameter estimation, Fisher informa-
tion is also very popular in the information theory with strong motivation in physics. More

13
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precisely, what physicist usually take as the Fisher information is its “entropy-like ana-
logue” given by

I (X) = EX

[

∂f(x)

∂x

∂f(x)

∂xT

]

; (2.1)

see the monograph of Frieden [31] for more details. While in Definition 14 we measure how
sensitive are the observations to the parameter, the physical formulation in (2.1) measures
a distortion of the distribution.

Computing the expectation in Definition 14 might be challenging. Under some regular-
ity conditions we can get a more convenient formula for the Fisher information.

Proposition 11. Let f(x | θ) be a probability density function satisfying the following regularity
conditions:

i) Θ is open set,

ii) the support of f(x | θ), i.e. supp(f(· | θ)) = {x | f(x | θ) > 0}, does not depend on θ,

iii) for any x ∈ supp(f(· | θ)) and θ ∈ Θ the derivative ∂f(x|θ)
∂θ

exist,

iv) ∂
∂θ

∫

Rn f(x | θ)dx =
∫

Rn

∂f(x|θ)
∂θ

dx = 0.

Then

I (θ∗) = −EX

[

∂2f(X | θ)

∂θ∂θT

]

θ=θ∗

In particular, for the Gaussian random vector Mardia and Marshall [67] showed the
following.

Proposition 12. Let X be a Gaussian random vector depending on an unknown vector θ, with
the vector of expected values Eθ[X] and the variance-covariance matrix Vθ[X]. Then the Fisher
information matrix is

I (θ∗) =

(

∂ET

θ [X]

∂θ
V−1

θ [X]
∂Eθ[X]

∂θT

)∣

∣

∣

∣

θ=θ∗

+
1

2
tr

{

V−1
θ [X]

∂Vθ[X]

∂θ
V−1

θ [X]
∂Vθ[X]

∂θT

}∣

∣

∣

∣

θ=θ∗

In statistical inference we can often summarize the information by taking a few key
figures. That is, instead of a long list of observations, say X , we take a statistic T (X), for
which dim(T (X)) ≪ dim(X). We may consider different statistics, but only some of them
have the property that we do not lose any information, which is usually desired.

Definition 15. A statistic T (X) is sufficient statistic for parameter θ if the conditional distribution
of the sample X given the value of T (X) does not depend on θ.

Note that sufficient statistics depend solely on the observations and do not depend on
unknown parameters. We can easily verify the sufficiency of a statistic by using the Fisher-
Neymann Factorization Theorem:

Proposition 13 (Fisher-Neymann Factorization Theorem). Let f(x | θ) be a probability den-
sity function for random vector X . A statistic T (X) is sufficient if and only if there exist functions
g(t | θ) and h(x) such that f(x | θ) = g(T (x) | θ)h(x).

A simple example of a sufficient statistic is a bijective mapping, for which we have
f(x | θ) = f(T inv(T (x)) | θ) = g(T (x) | θ), where T inv is the inverse mapping of T . The
fact that sufficient statistics preserve the information has consequences concerning Fisher
information.
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Proposition 14. Let X be a random vector, T (X) be a statistic, and let IX(θ) and IT (X)(θ) be
the corresponding Fisher information matrices. Then IT (X)(θ) �L IX(θ) with equality if and
only if T (X) is a sufficient statistic.

Fisher information is strongly connected with the quality of estimators in different
ways. The first result we refer to is the Cramér-Rao bound:

Proposition 15 (Cramér-Rao bound). Let f(x | θ) be a probability density function of a random
vector and let T (X) be any estimator of θ satisfying

∂E [T (X)]

∂θT
=

∫

Rn

∂

∂θT
[T (x)f(x | θ)]dx, and V[T (X)] <∞.

Then

V[T (X)] �L
∂ET[T (X)]

∂θ
I

−1
X (θ)

∂E [T (X)]

∂θT
.

The origin of the Cramér-Rao bound is accredited to Cramér [14] and Rao [88], after
who the result is named. It should be, however, mentioned [83, p510] that Fisher in his
1935 paper [29] already stated the Fisher information as the lower bound for the asymptotic
variance. References for further extensions of the Cramér-Rao bound can be found in [61,
Sec2.5–2.6].

The Cramér-Rao bound is only a lower bound on the quality of estimator (although
upper bound would be more practical), and the variance of an estimator is exactly equal to
the (matrix) inverse of Fisher information matrix if the estimator is efficient. Although in a
general situation maximum likelihood estimator is not efficient for a finite sample, under
some circumstances the inverse of the Fisher information is a good proxy for the estimator’s
variance. For example, we provide the following modified result of Pázman [79] (for the
sake of simplicity we do not give a rigorous formulation):

Proposition 16 (Pázman [79]). Let X be a Gaussian random vector with E [X] depending on
parameter vector θ. If the diagonal components of the variance matrix V[X] are small, then the
variance of the maximum likelihood estimator is close to the inverse of the Fisher information matrix
evaluated at the (approximately) true value of the parameter, that is

V[θ̂] ≈ I
−1
X (θ̄).

2.2 Experimental designs, information functions and efficiency

Under controlled experiments the measurements in individual trials of experiment depend
on selected experimental conditions, which we formally call experimental design. More
precisely:

Definition 16. An exact n-point design on a set X of possible experimental conditions is a vector
ξn = (x1, . . . , xn) with xi ∈ X , i = 1, . . . , n. A set of all feasible exact n-point designs in the
experiment is denoted by Ξn.

A special type of experiments are those, where the experimental conditions are sam-
pling times. In this case we use the term “sampling design” (see Definition 5), and we set
ξn = τn, X = D and Ξn = Tn.

Under controlled experiments, the Fisher information matrix, which is a legitimate mea-
sure of quality of experiment, is a function of experimental conditions. That is, being given
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Criterion Φ[I ] Geometric description
D [det(I )]1/m Volume of the confidence ellipsoid

Shannon information [13]
A [ 1

m tr{I −1}]−1, I ∈ S
m
++ Average variance of estimates

0 otherwise
E λmin(I ) Maximal radius

of the confidence ellipsoid
c cTI −c Variance of cTθ̂

Table 2.1. Classical optimality criteria

a prior guess θ∗ at the true value of the unknown parameter θ and an exact design ξn, we
get the Fisher information matrix of the form I (ξn,θ

∗).
A question to answer is a selection between two designs. An experimenter naturally

prefers designs with “large” Fisher information matrix. While discrimination between two
designs in a single-parameter model is straightforward, under a multiparameter setup the
situation is different. A usual way for comparing two matrices is using the Loewner order-
ing. That is, a non-negative definite matrix I1 “Loewner dominates” non-negative definite
matrix I2 if the matrix I1 − I2 is non-negative definite, which we denote by I1 �L I2.

Since Loewner ordering on the set of all symmetric non-negative definite matrices S
n
+

forms a partially ordered set, not all matrices are comparable. For that reason we define
information functions:

Definition 17 ([87]). An information function is any function Φ : S
m
+ 7→ [0,∞) which is

non-constant, concave, upper semicontinuous, positive homogeneous and Loewner isotonic (i.e.,
if I1 �L I2 then Φ[I1] ≥ Φ[I2])

An information function represents experimenter’s preferences for the properties of the
estimator – a criterion of experiment. In Table 2.1 we give the most popular classical op-
timality criteria, which conform to certain geometric or statistical properties. For more
details we refer the reader to the monograph of Pázman [77] and Pukelsheim [87].

A generalization of the D-,E- and A-optimality criteria mentioned above is the class of
Kiefer’s Φp-optimality criteria [52, 51, 85, 87]. For a positive-definite matrix I we define
the information function for Φp-optimality as

Φp(I ) ≡







( 1
m tr{I p})1/p for p ∈ (−∞, 0) ∪ (0, 1],

det1/m(I ) for p = 0,
λmin(I ) for p = −∞,

and for a singular non-negative definite matrix I we define

Φp(I ) ≡
{

( 1
m tr{I p})1/p for p ∈ (0, 1],

0 for p ∈ [−∞, 0].

Definition 18. We say that the design ξ∗n is locally Φ-optimal under a prior guess θ∗ if

ξ∗n ∈ arg max
ξ∈Ξn

Φ[I (ξ,θ∗)].

Obviously, for different values of θ∗ we obtain different optimal designs. Several exten-
sions dealing with models, where the informativeness of experiment depends on the true
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value of parameter can be found in the literature; see, e.g., the monograph of Pronzato and
Pázman [84]

In applications we sometimes do not have to perform an experiment under optimal ex-
perimental conditions. For instance, we may prefer designs, which are close to an optimal
design but possess other desirable properties. A common way how to measure the quality
of a design is its efficiency.

Definition 19 ([87]). The efficiency of a design ξn with respect to optimality criterion Φ under a
prior guess θ∗ is

eff(ξn | Φ,θ∗) ≡ Φ[I (ξn,θ
∗)]

arg maxζ∈Ξn
Φ[I (ζ,θ∗)]

.

We should note that although Φ denotes information functions, in many papers Φ rep-
resents any Loewner isotonic or antiisotonic functionals, which are to be maximised or
minimised, respectively. For D-optimality, we can, e.g., maximise Φ[I ] = det1/m(I ), but
also minimise Φ[I ] = ln det(I ). For the sake of simplicity, by Φ we will understand both
situations and, when necessary, we declare this fact explicitly.

2.3 Regression experiments

Definition 20. Let θ ∈ R
m be the unknown vector parameter, X be the set of feasible experimental

conditions, ηθ(x) : x ∈ X 7→ R be the mean value of the observed random variable y(x) and
Σθ(x1, x2) be a symmetric positive-definite function generating the variance-covariance matrix of
the vector of observations y(ξn) (i.e., Σθ(ξT

n , ξn) = Σθ(ξn) ∈ S
n
++ for all ξn ∈ Ξn), where η

and Σ might depend on θ or its subvector (displayed by a relevant subscript). Then by a regression
experiment with the unknown parameter θ, mean value η, covariance function Σ and experimental
designs belonging to Ξn, denoted by a quadruplet (θ, ηθ,Σθ,Ξn), we understand the model

y(ξn) = ηθ(ξn) + ε(ξn),

E [ε(ξn)] = 0n

V[ε(ξn)] = Σθ(ξn).

By a classical regression model we understand the situation (θ, ηθ,Σ,Ξn), i.e., when ∂Σ
∂θT = 0m.

By (θ, ηθ, σ
2
θ,Ξn) we denote the experiment (θ, ηθ,Σθ,Ξn) with Σθ(ξn) = diag(σ2

θ(ξn)), where
σ2

θ(x) is a positive function. If ηθ(x) = fT(x)θ, where f(x) is a vector of regression functions,
then the regression experiment is called linear, otherwise it is non-linear.

Note that the mean value and the covariance structure might have, in general, common
parameters.

Let us consider the classical regression model (θ, ηθ,Σ,Ξn). A usual way how to esti-
mate θ is using the least squares estimator:

θ̂V(ξn) = arg min
θ∈Rm

‖y(ξn) − ηθ(ξn)‖2
V(ξn), (2.2)

where V(ξn) is a positive definite weight matrix depending on the design ξn. Additionally,
if the distribution of the error vector ε(ξn) is Gaussian and V(ξn) = Σ(ξT

n , ξn) = Σ(ξn),
then the least squares estimator is equivalent to the maximum likelihood estimator.

For the classical linear regression experiments (θ,fT(x)θ,Σ,Ξn), we have

θ̂V (ξ) = arg min
θ∈Rm

‖y − fT(ξn)θ‖2
V(ξ) = [f(ξT

n)V−1(ξn)fT(ξn)]−f(ξT

n)V−1(ξn)y(ξn). (2.3)
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To clarify the notation we recall that f(ξT

n) = (f(x1), . . . ,f(xn)) = (fT(ξn))T.
It can be easily shown that for any c ∈ M (f(ξT

n)), we have that E [cTθ̂V(ξn)] = cTθ and

V[cTθ̂V(ξn)] = cT[f(ξT

n)V−1(ξn)fT(ξn)]−f(ξT

n)V−1(ξn)×
Σ(ξn)V−1(ξn)fT(ξn)[f(ξT

n)V−1(ξn)fT(ξn)]−c. (2.4)

A fundamental result in the field of regression models is the Gauss-Markov theorem
[77, 78, 87]:

Proposition 17 (Gauss-Markov theorem). Let y(ξn) satisfy classical linear regression model
(θ,fT(x)θ,Σ,Ξn) (without a specified distribution of errors) and let θ̂Σ(ξn) be the least squares
estimator defined by (2.3). Then for any linear unbiased estimator lTy of a linear function cTθ we
have

V[lTy] ≥ cT[f(ξT

n)Σ−1(ξn)fT(ξn)]−c = V[cTθ̂Σ(ξn)],

with equality if and only if l = cT[f(ξT

n)Σ−1(ξn)fT(ξn)]−f(ξn)Σ−1(ξn).

If the errors of the regression experiment are Gaussian, then f(ξT

n)Σ−1(ξn)fT(ξn) is the
Fisher information matrix. Henceforth, θ̂Σ(ξn) is an efficient estimator, cf. Cramér-Rao
bound.

2.4 Basics of the theory of experimental design for regression models
under uncorrelated observations

Consider an experiment with uncorrelated observations. From the properties of the Fisher
information we get

I (ξn,θ
∗) =

n
∑

i=1

I (xi,θ
∗) =

∑

x∈X

n(x)I (x,θ∗) = n
∑

x∈X

n(x)

n
I (x,θ∗), (2.5)

where n(x) is the number of trials under experimental condition x, that is, the Fisher infor-
mation from experiment is equal to the sum of Fisher information matrices from individual
trials.

Specifically, in the experiment (θ,fT(x)θ, σ2,Ξn) we have

I (x,θ∗) =
f(x)fT(x)

σ2(x)
. (2.6)

Analogously, for the non-linear experiment (θ, ηθ, σ
2,Ξn), we have

I (x,θ∗) =
1

σ2(x)

∂ηθ(x)

∂θ

∂ηθ(x)

∂θT

∣

∣

∣

∣

θ∗

, (2.7)

where θ∗ is a prior guess at the true value of the unknown parameter.

Definition 21. A discrete measure ξ(x) = n(x)/n is called an experimental design associated with
exact design ξn.

In the theory of optimal design of experiments associated experimental designs lead to
a continuous relaxation; see the Kiefer’s paper [50] and references therein.
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Definition 22. By approximate (or asymptotic) experimental design we understand an arbitrary
discrete probability measure ξ(x) with finite support on X . By Ξ we denote the set of all approximate
designs in experiment.

The requirement for the finite support on X follows from the next proposition, which
can be in different levels of generalization found in [12, 22, 28, 85]:

Proposition 18. For any design measure ξ ∈ Ξ exists a design measure ζ ∈ Ξ such that the
cardinality of {x ∈ X | ζ(x) > 0} is at most 1

2m(m+ 1) + 1, where m is the number of unknown
parameters, and I (ξ,θ∗) = I (ζ,θ∗).

While exact designs imply approximate design measures, the opposite is not true. If ξ is
an approximate design, nξ(x) is not necessarily an integer. There, however, exist rounding
methods, for which efficiency has been estimated [86].

Because of the positive homogenity of information functions, in the experiments with
uncorrelated observations under the Fisher information matrix for approximate design ξ
we understand

I (ξ,θ∗) =
∑

x∈X

I (x,θ∗)ξ(x). (2.8)

Clearly, the set Ξ of all approximate designs and the set MΞ of all information matrices
in experiment are convex. Moreover, if f(x) and σ2(x) are continuous and X is compact
then MΞ is compact, too. We recall that an information function Φ is assumed to be concave
and upper semicontinuous (that is −Φ is convex); therefore, the computation of optimal de-
signs is a convex programming problem, which has important implications for existence of
optimal design and computational aspects. For particular model assumptions this prop-
erty was exploited by many authors, who used linear, semi-definite and other types of
mathematical programming; see [105, 38, 95].

One of the main results of the presented theory is the Equivalence Theorem, which
states necessary and sufficient conditions for optimality of approximate designs. The key
is the concept of a directional derivative. The literature offers diverse definitions of the
directional derivative. In the theory of experimental design, for convex set, given points Ω
and Γ, the directional derivative of a (matrix/scalar) function h at the point Ω and in the
direction Γ is

∂h(Ω,Γ − Ω) = lim
∆ց0

h[Ω + ∆(Γ − Ω)] − lim∆ց0 h[Ω + ∆(Γ − Ω)]

∆
. (2.9)

Note that in the definition of the directional derivative as given above, we consider the
directional continuity of the function h at the point Ω, which is important if h is not contin-
uous at Ω and its behaviour in an arbitrary neighbourhood of Ω is analysed.

It follows from the convexity of Ξ and ξ 7→ −Φ[I (ξ,θ∗)] under experiments with un-
correlated observations that

Proposition 19. If I (ξ,θ∗) is defined by (2.8), then the design ξ∗ is Φ-optimal if and only if for
all ξ ∈ Ξ,

∂Φ[I (ξ∗,θ∗),I (ξ,θ∗) − I (ξ∗,θ∗)] ≤ 0.

Moreover, if gradient of Φ, {∇Φ[I ]}ij = ∂Φ[I ]
Iij

, exists then

∂Φ[I (ξ∗,θ∗),I (ξ,θ∗) − I (ξ∗,θ∗)] = −tr{∇Φ[I (ξ∗,θ∗)][I (ξ∗,θ∗) − I (ξ,θ∗)]}.
Proposition 20 (Equivalence Theorem [52]). Let I (ξ,θ∗) be defined by (2.6) and (2.8), Φ be an
information function and let ∇Φ exist. Then a design ξ∗ is Φ-optimal if and only if

min
x∈X

fT(x)∇Φ[I (ξ∗,θ∗)]f(x) = tr{Φ[I (ξ∗,θ∗)]I (ξ∗,θ∗)}.
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Literature review
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Chapter 3

Overview of the experimental design
with correlated observations

The main aim of this chapter is to summarize the most important results in the field of
experimental design for regression models subject to correlated observations. Dependent
observations are typical for experiments related to stochastic processes; therefore, the as-
sumed controllable variable is the time t ∈ D, i.e., we consider sampling designs.

If not stated else, the model underlying this chapter is the classical linear regression
model of the form

(θ,fT(t)θ,Σ,Tn). (3.1)

We recall that θ ∈ R
m is the unknown parameter with estimator given in (2.3), f : D 7→ R

m

is the vector of linearly independent regression functions, Σ : D × D 7→ R is the non-
negative definite covariance function (or covariance kernel), and Tn is the set of designs
with non-decreasing sampling times from D = [T∗, T

∗], T ∗ > T∗ > 0. By the Fisher infor-
mation matrix in the model (3.1) we understand

I (τn,θ
∗) = I (τn) = f(τT

n)Σ−1(τn)fT(τn). (3.2)

In Section 3.1 we briefly present several important differences between regression mod-
els with and without correlated observations. From the experimental design point of view,
the correlation yields computationally challenging optimisation problems. Unlike in the
case of experimental design with uncorrelated errors, for construction of optimal designs
for dependent observations we do not have a complete theory, and various authors either
tried to build heuristic or approximate theories, or studied very specific models.

3.1 Aspects of experimental design for regression models with
correlated observations

The presence of correlation between the measurements makes the relation between the
selected design and the corresponding amount of information less transparent.

In the theory of approximate experimental design with uncorrelated observations, for
a given support of design points, the resulting Fisher information matrix is a linear func-
tion of weights (for both approximate and exact designs it takes an additive form) and the
mapping ξ 7→ −Φ[I (ξ)] is convex. In contrast with this approximate theory presented in
Section 2.4, the Fisher information matrix (3.2) is not additive and is less transparent, the

21
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mapping τn 7→ −Φ[I (τn,θ
∗)] is not convex on Tn, and the set of all information matrices

in the experiment M
Tn

= {I (τn,θ
∗) | τn ∈ Tn} is not convex as well.

Additionally, in many instances the set of competing designs is, because of the model
properties, reduced to the non-compact set Tn ⊂ Tn, or Tn is assumed directly. As a result,
optimal designs need not exist, and such cases are not exceptional.

The dependence between observations leads to less apparent acquiring of the informa-
tion. An illustrative example was given by Pázman [80]: if the observations in the regres-
sion model (3.1) are uncorrelated, i.e., Σ(ti, tj) = 0 if and only if ti 6= tj , we can easily
identify those design points, which give zero information. Following the formula (2.6) we
obtain that such points satisfy equation f(x) = 0m. Now, consider a single-parameter
model (θ, f(t)θ,Σ,Tn) with f(t1) = 0, f(t2) = 1, Σ(t1, t1) = Σ(t2, t2) = 1 and Σ(t1, t2) 6= 0.
If we perform one observation at t2 only, then the amount of information is equal to 1. On
the other hand, if we make the measurements at t1 and t2, then the Fisher information is
equal to [1 − Σ2(t1, t2)]

−1 > 1. In particular, if Σ(t1, t2) ∈ {−1, 1} then the information is
infinite, because we can compute the value of unknown parameter exactly.

Proposition 21 (Pázman [80] motivated by Näther [71]). Let us consider the regression model
(θ,fT(t)θ,Σ,Tn). Let τn ∈ Tn be a design, a(ν) =

∑

t∈τn
[Σ(τn)]−1

ν,tf(t) for ν ∈ τn, and θ be
fixed. If a(t0) = 0m for some t0, then t0 provides zero contribution to the information about θ.

Proposition 22 (Pázman [80]). Let us consider a model (β,fT(t)θ,Σβ,Tn) with Gaussian er-
rors. Let τn ∈ Tn be a design, b(ν1, ν2) =

∑

t,s∈τn
[Σ(τn)]−1

ν1,t
∂Σ(t,s)

∂β
[Σ(τn)]−1

s,ν2
for ν1, ν2 ∈ τn,

and θ and β be fixed. If there is a subvector τ̃ ⊆ τn such that b(t01, t02) = 0m for all t01 ∈ τn \ τ̃

and t02 ∈ τn, then the design points τn \ τ̃ provide zero contribution to the information about β.

Statistical relationship between measurements also has implications on the attainable
amount of information. Due to formula (2.5), if there exists a design point with nonzero
associated design measure and positive definite individual Fisher information matrix, then
for the increasing number of measurements, the amount of information increases above
any limits. On the other hand, this is not always true for models with correlated observa-
tions. If {τ (n)}n ∈ CD is a sequence of designs covering D, then the Fisher information
matrix I (τ (n),θ∗) converges to a matrix I∞(τ ∗) = limn→∞ I (τ (n),θ∗) with the largest
eigenvalue bounded. Consequently, the maximum likelihood estimator is not consistently
estimable; see, e.g., the papers of Crowder [15], Sweeting [103], and the references therein.

Boundedness of the Fisher information matrix (3.2) (in the Loewner ordering sense) in
the presence of correlation also has some practical aspects. Pázman [79] proposed a mod-
ification of the efficiency ratio in Definition 19, where the denominator is substituted for
the value Φ[Ĩ ] with Ĩ being any suitable reference matrix. In particular, under correlated
observations, Pázman [79] further noted that a suitable choice for the reference matrix Ĩ is
the asymptotic Fisher information matrix I∞(θ∗) obtained by observation of the trajectory
of the stochastic process at every time from the experimental domain D. To distinguish
between the conventional efficiency in Definition 19 and the efficiency defined by Pázman,
for the latter we use the nomenclature “ultimate efficiency” suggested by Harman [37].

Definition 23 (Ultimate efficiency). The ultimate efficiency of a design τ with respect to optimal-
ity criterion Φ under a prior guess θ∗ is the ratio

ueff(τ | Φ,θ∗) ≡ Φ[I (τ ,θ∗)]

Φ[I∞(θ∗)]
.

The evidence shows that for a small number of observations, the ultimate efficiency
might be high also for non-optimal designs. If this is the case, then the need for a further



3. OVERVIEW OF THE EXPERIMENTAL DESIGN WITH CORRELATED OBSERVATIONS 23

optimisation of the experiment is questionable. Additionally, Sack and Ylvisaker [92] high-
lighted the use of ultimate efficiency in deciding how many observations the experimenter
should take and whether the costs are appropriate to the information gain if we performed
another observation.

3.2 Asymptotic approach using reproducing kernel Hilbert spaces

Probably the first systematic analysis of the optimal experimental designs for the models of
the form (3.1), on which we focus in this section, was published by Sacks and Ylvisaker [92,
93] in 1960’s. Before this period, we can only find results for specific models subject to de-
pendent observations like those by Hoel [41, 42], who studied optimal designs for general
variance of the least squares estimator for polynomial regression.

Since obtaining of explicit finite sample solutions to experimental design problems for
(3.1) is achievable only exceptionally, to circumvent this difficulty, Sacks and Ylvisaker built
their results on asymptotic arguments using the theory of the reproducing kernel Hilbert
spaces (RKHSs) – a popular and elegant approach to analysis of time series and stochastic
processes; see the papers of Parzen [75, 74]. From 1960’s to 1980’s, the RKHSs and the
approach of Sacks and Ylvisaker have been the motivation and leading tool also in other
publications concerning various models and problems, of which we can point, for instance,
Wahba [106, 107], Sacks and Ylvisaker [94] or Eubank, Smith and Smith [23, 24, 25].

3.2.1 Single-parameter setup

Firstly consider a single-parameter variant of model (3.1) with experimental designs from
Tn, i.e., we assume the observations to satisfy the model (θ, f(t)θ,Σ,Tn). We take the
sampling interval D = [0, T ∗]

According to the Gauss-Markov Theorem, for any n-point design τn ∈ Tn, the variance
of the efficient linear estimator is equal to the scalar value [fT(τn)Σ−1(τn)f(τn)]−1 =
I −1(τn) = ‖f(τn)‖−2

Σ(τn) = ‖f‖τn
. As usual, by an exactly optimal sampling design we

understand such vector τ ∗
n ∈ Tn such that

[fT(τ ∗
n)Σ−1(τ ∗

n)f(τ ∗
n)]−1 ≤ [fT(τn)Σ−1(τn)f(τn)]−1 for all τn ∈ Tn.

Alternatively, for a single-parameter setup, Sacks and Ylvisaker [92] proposed the fol-
lowing asymptotic “solution”:

Definition 24. (Asymptotic optimality for single-parameter setup) We say that a sequence of de-
signs {τ ∗(n)}n covering D is asymptotically optimal, if

lim
n→∞

I −1(τ ∗(n)) − I −1
∞

minτ∈Tn
I −1(τ ) − I

−1
∞

= 1

Evidently, such definition puts some restrictions on the choice of the regression function
f . Let us define ‖f‖Fn

≡ supτ∈Tn
‖f‖τ and ‖f‖F ≡ limn→∞ supτn∈Tn

‖f‖τn
. In the present

setup, for each n, we assume that the regression function f belongs to the set

Fn ≡ {f : D 7→ R | ‖f‖Fn
<∞}.

Since supτn∈Tn
‖f‖τn

is non-decreasing in n, Fn ⊃ Fn+1, and we define

F ≡ {f : D 7→ R | ‖f‖F <∞}.

Similarly to ‖f‖F, we can define the inner product 〈·, ·〉F.
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Proposition 23 ([92]). Fn with the norm ‖ · ‖Fn
forms a Banach space. F with the norm ‖ · ‖F

forms a reproducing kernel Hilbert space associated with Σ, i. e., for each t ∈ D, Σ(·, t) ∈ F, and
for each f ∈ F and each t ∈ D, we can write 〈f,Σ(·, t)〉F = f(t).

Proposition 24 ([92]). Let θ̂n be any sequence of the least squares estimates for θ, where n is the
number of observations. Then there exists a random variable θ̂∞ such that E [θ̂n − θ̂∞] → 0 and θ̂∞
is an unbiased estimator satisfying V[θ̂∞] = ‖f‖−2

F , where ‖f‖−2
F is taken as zero if f /∈ F.

Let for the underlying stochastic process, say {X(t)}t≥0, hold true the equality X(t2) |
X(t1) = X(t1) almost surely if t2 = t1. Then, obviously, replicated sampling times give
no information about the parameters of the process, and for any boundary design τ̃n, i.e.,
τ̃n ∈ Tn \Tn, there exists a design τn ∈ Tn such that I (τn) �L I (τ̃n) (we give a detailed
discussion in Part III). In some instances, we can find sequences of n-point sampling de-
signs {τ (k)

n }k with limk→∞ τ
(k)
n = τ̃n, where the amount of information grows as k → ∞

and limk→∞ I (τ
(k)
n ) 6= I (τ̃n), and so there is no optimal design. Such difficulties arise,

when the Fisher information matrix is not continuous at the boundary points belonging
to Tn \ Tn. To ensure the existence of optimal sampling designs, it is sufficient to find
conditions yielding the continuity of I (τ ) on Tn.

For the model (θ, f(t)θ,Σ,Tn), Sacks and Ylvisaker [92] built their arguments on the
fact that F with the norm ‖ · ‖F forms a reproducing kernel Hilbert space. The idea is to
rewrite the Fisher information ‖f‖2

τn
as ‖Pτn

f‖2
F, where Pτn

is the projection operator
defined on F to the subspace of functions M ({Σ(·, t) | t ∈ τn}). The continuity of the
Fisher information ‖f‖2

τn
in τn on Tn is, hence, equivalent to the continuity of the mapping

τn 7→ Pτn
f on Tn.

We can alternatively define the continuity in terms of convergence of functional spaces
as follows: Consider a a functional space Gǫ(τn) = M ({Σ(·, t) | t ∈ (ti − ǫ, ti + ǫ), i =
1, . . . , n}). Then for any fixed τn, the space Gǫ(τn) is continuous at ǫ = 0 if ∩ǫ>0Gǫ(τn) =
M ({Σ(·, t) | t ∈ τn}). Because of the isomorphism between M ({Σ(·, t) | t ∈ τn}) and
Hilbert space of vectors with the norm ‖ · ‖τn

, the continuity of Gǫ(τn) at ǫ = 0 for all
τn ∈ Tn implies the continuity of ‖f‖2

τn
in τn on Tn.

Definition 25 ([92]). The covariance function Σ is said to have a simple present if in F,
⋂

ǫ>0

M ({Σ(·, t) | t ∈ (ti − ǫ, ti + ǫ), i = 1, . . . , n}) = M ({Σ(·, t) | t ∈ τn})

for all τn = (t1, . . . , tn)T ∈ Tn and all n.

Proposition 25 ([92]). If Σ has a simple present and if {τ (k)
n }∞k=1 is any sequence from Tn with

limit τ̃n ∈ Tn \ Tn, then P
τ

(k)
n
f → Pτ̃n

f for all f ∈ F.

Proposition 26 ([92]). Consider the model (θ, f(t)θ,Σ,Tn), where

f(t) =

∫

D

Σ(s, t)ϕ(s)ds

and ϕ is a continuous function on D. Let the covariance function Σ satisfy the following assump-
tions:

i) Σ(s, t) is continuous on D × D and has continuous derivatives up to order two at every (s, t)
with s 6= t. At (s, t) with s = t we assume that Σ has all right and left derivatives up to order
two.
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ii) For t ∈ (0, T ∗), α(t) = limsրt
∂Σ(s,t)

∂t − limsցt
∂Σ(s,t)

∂t is continuous on (0, T ∗), and
inft∈(0,T∗) α(t) > 0 and supt∈(0,T∗) α(t) <∞, so that α(t) can be extended to D.

iii) For each t0 ∈ D the function limtցt0
∂2Σ(·,t)

∂t2 ∈ F, and supt0∈D

∥

∥

∥
limtցt0

∂2Σ(·,t)
∂t2

∥

∥

∥

F
<∞.

Then

lim
n→∞

n2 inf
τn∈Tn

‖f − Pτn
f‖2

F =
1

12

(∫

D

[α(t)ϕ2(t)]1/3dt

)3

.

Furthermore, the sequence of designs {τ ∗(n)}n with the ith component t∗(n)
i of τ ∗(n) defined by the

smallest solution to the equation

∫ t
∗(n)
i

0

[α(t)ϕ2(t)]1/3dt =
i− 1

n− 1

∫

D

[α(t)ϕ2(t)]1/3dt, i = 1, . . . , n,

is an asymptotically optimal sequence of designs.

3.2.2 Multi-parameter setup

Given the model (3.1) with a vector parameter θ, the situation is similar to the case dis-
cussed in the previous subsection. The assumptions i) – iii) of Proposition 26 remain valid
for multivariate parameter, and the regression functions fi(t)’s, which belong to the repro-
ducing kernel Hilbert space formed by F with ‖ · ‖F induced by the inner product 〈·, ·〉F,
satisfy

fi(t) =

∫

D

R(s, t)ϕi(s)ds, t ∈ D, i = 1, . . . ,m. (3.3)

Proposition 27 ([93]). Let the assumptions i) – iii) of Proposition 26 be satisfied, and ϕ(t) =
(ϕ1(t), . . . , ϕm(t))T be linearly independent. Then f(t) = (f1(t), . . . , fm(t))T are linearly inde-
pendent over D.

The ijth element of the asymptotic Fisher information matrix I∞, i, j = 1, . . . ,m, is
{I∞}ij = 〈fi, fj〉F. Using the terminology of the previous subsection, we can write the
Fisher information matrix for any n-point design τn ∈ Tn as {I (τn)}ij = 〈Pτn

fi,Pτn
fj〉.

Due to this fact, we can derive a similar result for existence of optimal sampling to those in
Proposition 25 [93].

Proposition 28 ([93]). Under the conditions of Proposition 27, the asymptotic Fisher information
matrix is positive definite.

In contrast with the single-parameter setup of the previous subsection, in this section
we compare matrices, for which we employ the information functions [87], which we dis-
cussed in Section 2.2. Following the Definition 24 we define the asymptotic optimality for
mutli-parameter setup:

Definition 26 ([93]). Let Φ be a given information function. We say that a sequence of designs
{τ ∗(n)}n covering D is asymptotically

• Φ1-optimal, if

lim
n→∞

infτn∈Tn
Φ[I −1(τn)] − Φ[I −1

∞ ]

Φ[I −1(τ ∗(n))] − Φ[I −1
∞ ]

= 1,
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• Φ2-optimal, if

lim
n→∞

Φ[I∞] − supτn∈Tn
Φ[I (τn)]

Φ[I∞] − Φ[I (τ ∗(n))]
= 1,

• Φ3-optimal, if

lim
n→∞

inf
τn∈Tn

Φ[I −1(τn) − I −1
∞ ]

Φ[I −1(τ ∗(n)) − I
−1
∞ ]

= 1,

• Φ4-optimal, if

lim
n→∞

inf
τn∈Tn

Φ[I∞ − I (τn)]

Φ[I∞ − I −1(τ ∗(n))]
= 1.

A special position amongst the information functions considered in the paper by Sacks
and Ylvisaker for the purpose of the asymptotic optimality has Φ[I ] = tr{MI }, where M

is a fixed non-negative definite matrix. The reason is two-fold. Firstly, for Φ[M − A] and
A close to the zero matrix 0m×m, we have Φ[M − A] = Φ[M] − tr{∇Φ[M]A} + o(‖A‖),
where ‖A‖ is a matrix norm of A and {∇Φ[M]}ij = ∂Φ[I ]

∂Iij
(M). Thus, Φ[I (τn)] = Φ[I∞−

(I∞ −I (τn))] = Φ[I∞]− tr{∇Φ[I∞](I∞ −I (τn))}+ o(‖I∞ −I (τn)‖), which yields

Φ[I∞] − Φ[I (τn)] = tr{∇Φ[I∞]I∞} − tr{∇Φ[I∞]I (τn)} + o(‖I∞ − I (τn)‖). (3.4)

An analogous formula can be obtained for Φ[I −1(τn)].
Secondly, for some of the selected criteria of asymptotic optimality under information

functions defined by tr{MI }, tr{MI −1} or their supremums through M on appropriate
sets are equivalent to asymptotic optimality of some standard criteria.

The idea for analysis of asymptotically optimal designs is based on the evidence of
Theorem 3.1 by Sacks and Ylvisaker [92] (cf. Proposition 26) that one can express designs as
uniformly distributed quantiles of a certain density function, say h. That is, for a sequence
of designs {τ (n)}n, τ (n) = (t

(n)
0 , t

(n)
1 , . . . , t

(n)
n ) ∈ Tn+1, the ith component is the smallest

solution to the equation
∫ t

(n)
i

0

h(t)dt = i/n,

with the convention that t(n)
0 = 0 and t

(n)
n = T ∗. Such sequences are called regular se-

quences generated by h, denoted by RS(h).

Proposition 29 ([93]). Let {τ (n)}n be a RS(h), α(t) be defined in the assumption ii) of Proposi-
tion 26 and ϕ is related to f through equation (3.3). Then for

lim
n→∞

n2‖f − Pτ (n)f‖2
F =

1

12

∫

D

α(t)ϕ2(t),

any of the following conditions is sufficient:

i)
∫

D
(h2(t))−1dt <∞ and ϕ is a continuous function,

ii) ϕ/h is a continuous function,

iii) there exists a constant K such that for all a, b ∈ D, (b− a)
∫ b

a
h2(t)dt ≤ K

(

∫ b

a
h(t)dt

)2

.
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Proposition 30 ([93]). Let f1, . . . , fm be regression functions of the form (3.3) with associated
ϕ1, . . . , ϕm, and let a1, . . . , am be positive numbers. If {τ (n)}n is any sequence of designs covering
D, then

lim inf
n→∞

n2
m
∑

k=1

‖fk − Pτ (n)fk‖2
F ≥ 1

12





∫

D

(

α(t)
m
∑

k=1

akϕ
2
k(t)

)1/3

dt





3

,

with equality if {τ (n)}n is a RS(h), where

h(t) =

[

α(t)
∑m

k=1 akϕ
2
k(t)

]1/3

∫

D
[α(t)

∑m
k=1 akϕ2

k(t)]
1/3

dt
=

[

α(t)ϕT(t)diag(a)ϕ(t)
]1/3

∫

D
[α(t)ϕT(t)diag(a)ϕ(t)]

1/3
dt
.

The previous proposition is the key for several results on asymptotic optimality. In this
regard we denote

h∗C(t) ≡
[

α(t)ϕT(t)Cϕ(t)
]1/3

∫

D
[α(t)ϕT(t)Cϕ(t)]

1/3
dt
,

where C is a non-negative definite matrix.
In the sequel we give several statements on asymptotic optimality. A more detailed

discussion of these results is provided in the original paper of Sacks and Ylvisaker [93].

Proposition 31 ([93]). Let Φ[I ] = tr{MI }, where M is a non-negative definite matrix. If
{τ ∗(n)}n is a RS(h∗

M
), then {τ ∗(n)}n is asymptotically Φ1- and Φ4-optimal.

Proposition 32 ([93]). Suppose Φ is a strict and continuously differentiable criterion so that
Φ[I∞] − Φ[I (τn)] = tr{M(I∞ − I (τn))} + o(‖I∞ − I (τn)‖), where M is a positive-
definite matrix (cf. analogy with (3.4)). Then {τ ∗(n)}n, which is a RS(h∗

M
), is asymptotically

Φ2-optimal. Specially, for ΦD[I ] = det(I ) (equivalent to D-optimality criterion, but not infor-
mation function), if {τ ∗(n)}n is a RS(h∗

I
−1
∞

), then {τ ∗(n)}n is asymptotically ΦD2-optimal.

Proposition 33 ([93]). Let Φ[I ] = minM∈K tr{MI }, where K is a compact set of non-

negative matrices. Let M
∗ minimize

∫

D

[

α(t)ϕT(t)Mϕ(t)
]1/3

dt over K . Then, if {τ ∗(n)}n

is a RS(h∗
M∗), then {τ ∗(n)}n is asymptotically Φ4-optimal.

Proposition 34 ([93]). Let Φ[I ] = det(I ). Let K = {M | M ≻ 0m×m,det(M) = 1} and

let M
∗ maximise

∫

D

[

α(t)ϕT(t)Mϕ(t)
]1/3

dt over K (even though K is not compact, it could
be shown that the minimum is attained, and thus we can take the closure of K ). If {τ ∗(n)}n is a
RS(h∗

M∗), then {τ ∗(n)}n is asymptotically Φ4-optimal.

Proposition 35 ([93]). Let Φ[I ] = tr{MI }, where M is a non-negative definite matrix. Let
{τ ∗(n)}n be a RS(h∗

I
−1
∞ MI

−1
∞

). If I ({t | h∗
I

−1
∞ MI

−1
∞

(t) > 0}) is non-singular, then {τ ∗(n)}n is
asymptotically Φ1- and Φ3-optimal.

Proposition 36 ([93]). If Φ is strict and continuously differentiable so that Φ[I −1(τn)]−Φ[I −1
∞ ]

= tr{M(I −1(τn)]−I −1
∞ )}+ o(‖I −1(τn)]−I −1

∞ ‖) for some positive definite matrix M, then
a regular sequence {τ ∗(n)}n generated by h

I
−1
∞ MI

−1
∞

is asymptotically Φ1-optimal.

Proposition 37 ([93]). Let K be a compact set of non-negative definite matrices and Φ[I ] =

tr{MI }. Let M
∗ maximise

∫

D

[

α(t)ϕT(t)I −1
∞ MI −1

∞ ϕ(t)
]1/3

dt over K . If {τ ∗(n)}n is a
RS(h∗

I ∗
∞M∗I ∗

∞
) and if limn→∞ I (τ ∗(n)) is non-singular, then {τ ∗(n)}n is asymptotically Φ3-

optimal.
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Proposition 38 ([93]). If K = {M | M ≻ 0m×m,det(M) = 1} and Φ(I ) = det(I ), then

there is a matrix M
∗ ∈ K which maximises

∫

D

[

α(t)ϕT(t)I −1
∞ MI −1

∞ ϕ(t)
]1/3

dt over K and
h∗

I ∗
∞M∗I ∗

∞
generates a regular sequence {τ ∗(n)}n which is asymptotically Φ3- and Φ4-optimal.

Proposition 39 ([93]). Let K be a compact set of non-negative definite matrices and K̄ . Let

Φ(I ) = maxM∈K {MI } = maxM∈K̄ {MI }. Let M
∗ maximise

∫

D

[

α(t)ϕT(t)Mϕ(t)
]1/3

dt

and let {τ ∗(n)}n be a RS(h∗
M∗). If, for all M ∈ K ,

n2tr{M(I∞ − I (τ ∗(n)))} ≤ 1

12

∫

D

α(t)ϕT(t)Mϕ(t)[h∗M∗(t)]−2dt+ o(1),

then {τ ∗(n)}n is asymptotically Φ4-optimal.

3.3 Alternative asymptotic theories

A usual criticism towards explicit optimal designs for best linear unbiased estimator θ̂Σ(τ ),
cf. (2.3), under the model (3.1) with the information matrix (3.2) is that the solutions
might strongly depend on the covariance function, which might be misspecified. Bickel
and Herzberg [6] suggested to estimate the unknown parameter by using ordinary least
squares estimator θ̂In

, where, for an n-point design τn ∈ Tn, the corresponding variance
of the estimator is

V[θ̂In
| τn] = [f(τT

n)fT(τn)]−1f(τT

n)Σ−1(τn)fT(τn)[f(τT

n)fT(τn)]−1 (3.5)

cf. (2.4). Note that V[θ̂In
| τn] is not the Fisher information matrix.

Although θ̂In
is not a minimum variance estimator, the argument for use is a small

difference in loss of efficiency [17, 111] and may possess another good properties [6, 70].
The asymptotics studied in papers of Bickel and Herzberg [6] and [7] is of a different

nature than the one studied by Sacks and Ylvisaker [92, 93]. More precisely, while Sacks
and Ylvisaker assumed a bounded experimental domain (normalised to the unit interval
[0, 1]) with a fixed covariance function Σ(·, ·), Bickel and Herzberg considered a symmetric
experimental domain of the form [−nT ∗, nT ∗] and autocorrelation function γρ[n(ti − tj)],
where ρ(·) is a positive definite function such that ρ(0) = 1 and limz→∞ ρ(z) = 0. The
approach of Bickel and Herzberg is not very practical in applications: for instance, in a
cancer-research experiment the observation time domain is limited due to ethical reasons.

Nevertheless, the use of the variance of the estimator θ̂In
given by (3.5) became a moti-

vation for further research of asymptotic methods in experimental design with dependent
observations provided by Dette, Pepelyshev and Zhigljavsky [17] and Zhigljavsky, Dette
and Pepelyshev [111], who followed approximate design theory [52] (cf. Section 2.4).

The main idea of Dette, Pepelyshev and Zhigljavsky is straightforward: Let ξ(t) be any
probability measure on D and let us denote

M(ξ) =

∫

D

f(t)fT(t)dξ(t)

and
B(ξ, ξ) =

∫

D×D

Σ(t, s)f(t)fT(s)dξ(t)dξ(s).

Then for the variance-covariance matrix of the linear estimator θ̂I we have

V[θ̂I | ξ] ∝ M
−1(ξ)B(ξ, ξ)M−1(ξ).
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Here, ξ ∈ Ξ, where Ξ is the set of all approximate designs on D, and we want to minimise
the measure of variance Φ(V[θ̂I | ξ]) with respect to ξ. (In the context of the notation in
Section 2.2, if Φ is an information function, then we want to maximise Φ(V−1[θ̂I | ξ]). For
the reader it is, however, more practical if we keep the original notation of the paper [17]).
Hence we say that an approximate design ξ∗ is Φ-optimal, if, for all ξ ∈ Ξ,

Φ(V[θ̂I | ξ∗]) ≤ Φ(V[θ̂I | ξ]).

We should note that the presented approach requires the designs ξ not to be supported
by those subsets of D with f(t) = 0m, which is conceptually different to the suggestions
of Pázman [80] (cf. Section 3.1) concerning the amount of information contained in the
observations.

Although there is an attempt to incorporate convexity into the optimisation problem
(the set Ξ), the mapping ξ 7→ Φ(V[θ̂I | ξ]) is not convex in general, so the main difficulty
raised by the presence of correlation is still actual. On the other hand, the fact that we select
designs from a convex set Ξ enabled Dette et al. [17] to comfortably use the concept of the
directional derivative (see, e.g., Section 2.4) which yielded the following proposition:

Proposition 40 ([17]). Let ξ∗ be any approximate design minimising Φ(V[θ̂I | ξ]). Then the
inequality

φ(t, ξ∗) ≤ b(t, ξ∗) (3.6)

holds for all t ∈ D, where

φ(t, ξ) = fT(t)V[θ̂I | ξ]∇Φ(V[θ̂I | ξ])M−1(ξ)f(t),

b(t, ξ) = tr{∇Φ(V[θ̂I | ξ])M−1(ξ)B(ξ, ξt)M
−1(ξ)},

and ξt is a probability measure concentrated at t. Moreover, (3.6) is an equality for ξ∗-almost all t.

A specific formulations of necessary conditions for D-optimality and c-optimality can
be found in [17].

Proposition 41 ([17]). Consider the regression model (θ,fT(t),θ,Σ,Ξ), and let

gξ(t) =

∫

D

Σ(t, s)f(s)dξ(s) − B(ξ, ξ)M−1(ξ)f(t). (3.7)

i) If gξ∗(t) = 0 for all t ∈ D, then the design ξ∗ is universally optimal (i.e., with respect to all
antiisotonic functionals Φ).

ii) If the design ξ∗ is universally optimal, then the function gξ∗(t) can be represented in the form
gξ∗(t) = γ(t)f(t), where γ(t) is a non-negative function such that γ(t) = 0 for all t belonging
to the support of ξ.

Dette et al. [17] studied also some specific models, where the necessary and sufficient
conditions did not require a detailed specifications of covariance functions. In general, this
theory however requires some specifications of Σ, which is not completely in line with the
original idea to construct optimal designs without the knowledge of covariance structure.
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3.4 The virtual noise method of Pázman and Müller

The virtual noise method, which was described by Pázman and Müller [81] is one of the
most prominent alternatives to computation of optimal design subject to correlated errors.

The idea of the method is based on a perturbation of observations by a supplementary
(virtual) noise. Given the regression experiment (θ,fT(t)θ, σ2K,Tn), where K is a known
positive definite function, we contaminate the observations by the white noise πξ,γ(t) with
the variance

V[π(t)] = σ2γ ln

(

ξmax

ξ(t)

)

=







+∞ , ξ(t) = 0
0 , ξ(t) = ξmax

→ 0 , γ → 0 and ξ(t) > 0
.

Here, ξ(t) is any approximate design on D and ξmax = maxD ξ(t). The constant γ > 0 is a
perturbation parameter, which needs to be small.

Now, let τ ξ = suppξ, that is, τ ξ is a sampling design consisting of sampling times sup-
porting the probability measure ξ. The Fisher information matrix of the perturbed problem
is then

I(γ)(ξ) =
1

σ2
f(τT

ξ )

[

K(τ ξ) + γdiag

{

ln

(

ξmax

ξ(t)

)}]−1

fT(τ ξ). (3.8)

The perturbed Fisher information matrix has the following properties:

i) Let {ξn(t)}n∈N be any sequence of designs with common support and limn→∞ ξn(t) =
ξ(t). Then for each γ > 0, limn→∞ I(γ)(ξn) = I(γ)(ξ).

ii) Let ξτ be a uniform design with τ = suppξ. Then I(γ)(ξτ ) = I (τ ξ).

iii) For all ξ and γ > 0, I(γ)(ξ) �L I (τ ξ).

The rationale for the virtual noise method is then given by the following proposition

Proposition 42 ([81]). Let Ξ(n) be the set of all approximate designs with support of no more than
n points, n and γ ≥ 0 be fixed, and suppose that minτp∈Tp:p≤n −Φ[I (τ p)] <∞. Then

i) if
ξ∗ ∈ arg min

ξ∈Ξ(n)

−Φ[I(γ)(ξ)], (3.9)

then also τ = ξsuppξ (i.e., uniform design on suppξ) solves (3.9) and

τ ∈ arg min
τp∈Tp:p≤n

−Φ[I (τ p)]. (3.10)

ii) if τ ∗ solves (3.10), then ξτ∗ solves (3.9).

Problem (3.9) still requires a minimization under the constraint τ p ∈ Tp : p ≤ n which
is discontinuous. We can avoid this constraint if we cut the design measure ξ at the level
1/n. Then problem (3.10) corresponds to a minimization without constraints, cf [81].



Chapter 4

Experimental design for processes
described by stochastic differential

equations

In this section we review the results contributed to the design of experiments for processes
described by stochastic differential equations.

We start this chapter with a discussion on the so-called product covariance structures.
Even though this topic fits better the general overview in the previous chapter, it is listed
in the present chapter due to the strong relation to some stochastic differential equations.

We recall that if any process {X(t)}t≥0 is described by some stochastic differential equa-
tion, then we understand that {X(t)}t≥0 is its weak solution.

4.1 Models with product covariance structures

Consider a regression model (θ,fT(t)θ,Σ,Tn), where

Σ(s, t) = σ2u(min{s, t})v(max{s, t}), (4.1)

and where σ2 is the only unknown factor of the covariance structure. Such instances are
known as models with product covariance structures, which contain, for instance, Brow-
nian motions, Brownian bridges, and stationary and nonstationary Ornstein-Uhlenbeck
processes. Note that we assume designs without replications.

The usual obstacles with design problems with correlated observations is the fact that
the Fisher information matrix depends on the inverse of the covariance matrix: I (τn) =

I (τn,θ
∗) = f(τT

n)Σ−1(τn)fT(τn), cf. (3.2). We can, however, find several notes on the
properties of the matrices with product structure and their inverses. For instance, Gant-
macher [34] provided

det(Σ(τn)) = u(t1)v(tn)

n
∏

i=2

[u(ti)v(ti−1) − u(ti−1)v(ti)],

hence Σ(τn) is regular for τn ∈ Tn if u(t)/v(t) is strictly increasing, and Karlin [49] re-
vealed the Jacobi structure of Σ

−1(τn), i.e., the inverse is a tridiagonal matrix.
Besides some highlights by Sacks and Ylvisaker [92], the available literature offers two

mainstreams in the use of product covariance structure in the theory of experimental de-
sign. The first are the results of Mukherjee [69] on estimation of the path (not the unknown

31
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parameters) of a second order zero mean random process by minimising integrated mean
square error or maximal mean square error.

The second contribution, which is more relevant for the presented thesis, is that of Har-
man and Štulajter [39, 40] and Harman [37]. The key result here is the explicit formula for
the Fisher information matrix:

Proposition 43 ([39]). Let the observations follow the model (θ,fT(t)θ,Σ,Tn) with Σ defined in
(4.1), and let τn be a design. Then

σ2{I (τn)}ij =
fi(t1)fj(t1)

u(t1)v(t1)
+

n
∑

k=2

(

fi(tk)
v(tk) − fi(tk−1)

v(tk−1)

)(

fj(tk)
v(tk) − fj(tk−1)

v(tk−1)

)

(

u(tk)
v(tk) −

u(tk−1)
v(tk−1)

) .

Harman [37] showed the following relation between processes with product covariance
structure and Brownian motions:

Proposition 44 ([37]). Let r(t) = u(t)/v(t) be strictly increasing such that r(t) → 0 to 0 as
t → ∞ and r(t) → +∞ as t → ∞, and denote τ̃ ∗

n = r(τ ∗
n), D̃∗ = [r(T∗), r(T

∗)] and T̃n be the
set of the corresponding sampling designs, and f̃(t) = f(r−1(t))/v(t). Then the design τ ∗

n is an
optimal design for the regression model (θ,fT(t)θ,Σ,Tn) if and only if τ̃ ∗

n is an optimal design for

the regression model (θ, f̃
T

(t)θ, σ2 min{·, ·}, T̃n).

The covariance structure min{·, ·} corresponds to the standard Wiener process. Addi-
tionally, note that the continuity of the Fisher information matrix yields existence of optimal
design belonging to Tn.

4.2 Nonstationary Ornstein-Uhlenbeck processes

Suppose we can observe a nonstationary Ornstein-Uhlenbeck process {X(t)}t≥0 governed
by the stochastic differential equation

dX(t) = θ1[θ2 −X(t)]dt+ σdW (t), X(0) = X0 fixed, (4.2)

where {W (t)}t≥0 is the standard Wiener process.
It is a well-known fact that we can write

X(t) = e−θ1tX0 + (1 − e−θ1t)θ2 + ε(t),

where ε(t) is a Gaussian random process with the product covariance structure (t2 ≥ t1)

C[X(t1),X(t2)] =
σ2

2θ1
u(t1)v(t2),

u(t) = (eθ1t − e−θ1t),

v(t) = e−θ1t.

Optimal sampling of experiments for the nonstationary Ornstein-Uhlenbeck process
was to a certain extend studied by Harman and Štulajter [39], who assumed X0 and θ2 to
be unknown parameters of interest, while θ1 was a known constant.

For an n-point design τn, the corresponding regression model is

X(τn) =







e−θ1t1 1 − e−θ1t1

...
...

e−θ1tn 1 − e−θ1tn







(

X0

θ2

)

+ ε(τn) =
(

e
θ1τn ,1n − e

θ1τn
)

(

X0

θ2

)

+ ε(τn).
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The product covariance structure of the corresponding regression model yields the
Fisher information matrix for (X0, θ2)

T

I (τn) =
2θ1
σ2

(

(1 − e−2θ1t1)−1 (1 + e−θ1t1)−1

(1 + e−θ1t1)−1 tanh
(

θ1

2 t1
)

+
∑n

i=2 tanh
(

θ1

2 (ti − ti−1)
)

)

Since hyperbolic tangent tanh(z) a concave function on the positive halfline,
∑n

i=2 tanh(zi)
is a Schur concave function and thus its optimum is attained for some equivalued vector
zi ≡ z∗. Further,

n
∑

i=2

tanh(zi) = (n− 1)

n
∑

i=2

1

n− 1
tanh(zi) ≤ (n− 1) tanh

(

n
∑

i=1

zi/(n− 1)

)

.

Therefore, for a fixed t1, t1 < T ∗, the Loewner optimal sampling is equidistant with the
corresponding Fisher information matrix [39]

I (t1) =
2θ1
σ2

(

(1 − e−2θ1t1)−1 (1 + e−θ1t1)−1

(1 + e−θ1t1)−1 tanh
(

θ1

2 t1
)

+ (n− 1) tanh
(

θ1

2 · T∗−t1
n−1

)

)

.

Consequently, given the information function, the objective function Φ[I (t1)] is re-
duced to one dimension.

4.3 Stationary Ornstein-Uhlenbeck processes

For the time tending to infinity, distribution of the nonstationary Ornstein-Uhlenbeck pro-
cess {X(t)}t≥0 that solves stochastic differential equation (4.2) with θ1 > 0, converges to
some stationary distribution.

We say that {Y (t)}t≥0 = limν→∞{X(ν + t)}ν+t≥0 is the stationary Ornstein-Uhlenbeck
process. For {Y (t)}t≥0 we have

E [Y (t)] = lim
ν→∞

E [X(ν + t)] = θ2,

C[Y (t), Y (t+ s)] = lim
ν→∞

C[X(ν + t),X(ν + t+ s)] =
σ2

2θ1
e−θ1s.

Note that C[Y (t), Y (t + s)] = σ2

2θ1
eθ1te−θ1(t+s) = u(t)v(t + s), where u(t) = σ2

2θ1
eθ1t and

v(t) = e−θ1t. That is, the covariance structure is of the product form.
Design of experiments for stationary Ornstein-Uhlenbeck processes were studied by

Kisel’ák and Stehlík [53] and Zagoraiou and Antognini [110], who, in contrast with the
formulation implied by the nonstationary Ornstein-Uhlenbeck process (4.2), took the ratio
σ2

2θ1
as one parameter.

Proposition 45 ([53, 110]). Let the mean value parameter θ2 be the only unknown parameter of
the stationary Ornstein-Uhlenbeck process. Then the equidistant design is an optimal design for
estimation.

In addition to the previous proposition, Zagoraiou and Antognini discussed optimal
designs also for estimation of θ1 for the stationary Ornstein-Uhlenbeck process with the
ratio σ2

2θ1
known. We should, however, give some points concerning their contribution.

Firstly, the assumption σ2

2θ1
= 1 significantly influenced the Fisher information matrix as it
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is not just a constant multiple of the Fisher information, and thus we cannot leave out the
part of the Fisher information corresponding to the parameter σ2. Secondly, the assumption
σ2

2θ1
= 1 is very binding in the sense that θ1 inherits unpleasant properties connected with

the discontinuity of the part of Fisher information matrix corresponding to σ2 (We discuss
this phenomenon in Part III), which leads to the following conclusion:

Proposition 46 ([110]). The diagonal entry of the Fisher information matrix corresponding to the
parameter θ1 is Schur convex and thus does not attain its maximum.

The previous proposition does not necessarily imply the non-existence of an optimal
design for a given information function Φ.

4.4 Brownian motions

A Brownian motion is any process of the form {X(t)}t≥0 = {Aθ(t) + σW (t)}t≥0. Such
process is a solution to the stochastic differential equation

dX(t) = aθ(t)dt+ σdW (t),

where a(t) is the derivative of A(t).
Asymptotically optimal designs for Brownian motions were to a certain extent studied

by Sacks and Ylvisaker [92].
For some specific Brownian motions, Harman and Štulajter [40] and Harman [37] de-

rived exactly optimal designs.

Proposition 47 ([40]). Let the observations follow {θ1 + θ2t + θ3t
2 + σW (t)}, the number of

observations n ≥ 0, T∗ ≤ t1 < tn ≤ T ∗ and let δn ≡ [3 − (9 − 24n+ 12n2)1/2]/(2n2 − 4n) + 1.
Further define the set

An ≡ {(t1, tn)T ∈ [T∗, T
∗]2 | t1 ≤ tn − δn(tn − T∗), tn ≥ t1 + δn(T ∗ − t1)}.

Then, for any design τ ∈ Tn, there exists an equidistant design τ̃ with (t̃1, t̃n)T ∈ An such that
I (τ ) �L I (τ̃ ). Moreover, equidistant design with t1 = T∗ and tn = T ∗ is D-, A-, e1-, e2- and
e3-optimal.

Proposition 48 ([40]). Let the observations follow {θ1 +θ2t+θ3t
2 +σW (t)} and T∗ ≤ t1 < tn ≤

T ∗ and γn = (n2 − 2n)/(n2 − 2n + 1). Then γnI∞(t1, tn) �L I (t1, tn), where I∞(t1, tn) is
the asymptotic Fisher information matrix on [t1, tn] and I (t1, tn) is the Fisher information matrix
of the equidistant design.

Proposition 49 ([37]). Suppose we can observe a process {fT(t)θ + σW (t)}t≥0.

i) If f(t) = (1, t,
√
t)T (or any of its submodels), then the optimal n-point design is generated by

a progression with t∗i = (T∗)
(n−i)/(n−1)(T ∗)(i−1)/(n−1), i = 1, . . . , n.

ii) If f(t) = (1, e−λt, eλt)T (or any of its submodels), then the optimal n-point design is generated
by a progression with t∗i = n−i

n−1T∗ + i−1
n−1T

∗, i = 1, . . . , n.

iii) If f(t) = (1, t, 1/t)T (or any of its submodels), then the optimal n-point design is generated by
a progression with t∗i = (n − 1)/(n−i

T∗
+ i−1

T∗ ), i = 1, . . . , n. The same hold true also in the
instance when the error process is the Brownian bridge.



4. EXPERIMENTAL DESIGN FOR PROCESSES DESCRIBED BY SDE 35

4.5 Compartmental models with stochastic trajectories

Jacquez [48] described compartmental model as “a system which is made up of a finite
number of macroscopic subsystems, called compartments or pools, each of which is homo-
geneous and well mixed, and the compartments interact by exchanging materials. There
may be inputs from the environment into one or more compartments, and there may be
outputs (excretion) from one or more compartments into the environment.” Compartmen-
tal models are strongly related to applications in medicine (physiology, pharmacokinetics),
biology (ecosystem ecology), agriculture (fertilizer response), population movements or
epidemics; see, Seber and Wild [97].

We usually define compartmental models by using the system of differential equations.
In this section we focus on linear systems of differential equations of the form

d

dt
X(t) = A(θ)X(t) + b(t), (4.3)

where the vector X(t) represents the amount of material in each compartment at the time
t, A is the matrix of transfer rates and b(t) is the vector of material inputs and outputs at
the time t.

The deterministic dynamic system (4.3) yields a multiresponse nonlinear regression
model

X(t) = Eθ[X(t)] + ε(t)

where ε(ti), i = 1, . . ., are independent zero-mean random vectors with a given covariance
matrix. We remark that for a given sampling design τn ∈ Tn we obtain vector-valued
observations X(t1), . . . ,X(tn).

In applications, we often cannot observe the values of all components of X(t), but a
subset of them (usually one), i.e., we may consider scalar observations of the form Y (t) =

hTX(t). Then, Eθ[Y (t)] = hTEθ[X(t)] and V[Y (t)] = hTV[X(t)]h, and, under the assump-
tion of Gaussian errors, we can use the standard formula for the Fisher information matrix,
cf. Proposition 12 or [67].

Regarding the subject of this thesis, we discuss extensions of the deterministic dynamic
system (4.3) to stochastic dynamic systems represented by (systems of) stochastic differen-
tial equations.

4.5.1 A naive two compartmental model with stochastic trajectories

A direct extension to account for intrinsic within-object variability, Anisimov, Fedorov and
Leonov [3] proposed to model the responses of the compartmental models as follows:

d

(

X1(t)
X2(t)

)

=

(

−θ1 0
θ1 θ2

)(

X1(t)
X2(t)

)

dt+

(

σ1(t) 0
0 σ2(t)

)

d

(

W1(t)
W2(t)

)

, (4.4)

where X1(0) = D is the initial dose, X2(0) = 0, σi(t)’s are non-negative deterministic
functions and (W1(t),W2(t))

T is a two-dimensional Wiener process. The variable subject to
experimental examination is X2(t).

The expectation of the system (4.4), which follows from the deterministic part, is given
by E [X1(t)] = De−θ1t and E [X2(t)] = θ1D

θ1−θ2
(e−θ2t − e−θ1t). Anisimov et al. [3] further

derived the covariance structure for observations X2(τn) denoted by S(τn), which is com-
plicated and, thus, is omitted.

Evidently, searching for optimal designs for estimation of unknown parameters of equa-
tion (4.4) is, again, a non-convex optimisation problem. Anisimov et al. [3] in their paper
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avoided this difficulty by considering a population dynamics problem, where the unknown
parameters θ̃ in individual experiments are sampled randomly from a prescribed distribu-
tion corresponding to the population variability, usually N (θ,D), and observations are
measured with some noise, say δ2. If δ2 is small enough, then the variance of the observa-
tions is approximately [33]

Σ(τn) ≈ S(τn) + δ2I +
∂E [X(τn)]

∂θT
D
∂ET[X(τn)]

∂θ
,

and for an experiment performed on some individual I (τn,θ
∗) based on the well-known

formula of Mardia and Marshall [67]; see also Proposition 12.
The key here is the fact that Anisimov et al. assumed a set of design measures Ξ on the

set of sampling designs Tn. For a given design ξ ∈ Ξ, the Fisher information matrix for the
population experiment is

Ipop(τ ,θ∗) =

∫

τn∈Tn

I (τn,θ
∗)dξ(τn).

That is, we design an experiments with uncorrelated errors.
We should note that the Fisher information matrices of individual patients in population

I (τn,θ
∗) are not generally rank one matrices, hence we cannot use the classical theory of

experimental design, cf. Section 2.4. Nevertheless, computational aspects are covered by a
number of publications and the reader is referred to Yu [109], where a survey on existing
algorithms and proof of their monotonic convergence is given.

4.5.2 A two compartmental model with positive stochastic trajectories

The dynamic system (4.4) allows negative values, which might not satisfy theoretical as-
sumptions in certain applications. For that reason, Fedorov, Leonov and Vasiliev [26] ex-
tended the system 4.4 by adding proportionality of the governed variable into autonomous
diffusion term as follows:

d

(

X1(t)
X2(t)

)

=

(

−θ1 0
θ1 θ2

)(

X1(t)
X2(t)

)

dt+

(

σ1X1(t) 0
0 σ2X2(t)

)

d

(

W1(t)
W2(t)

)

. (4.5)

Again, the expectation of (4.5) comes from the deterministic part of the dynamic system.
The solution of the system of stochastic differential equations (4.5) is known in an explicit
closed form. An important fact is that the solution is not a Gaussian process, although
Fedorov et al. used the Fisher information matrix for a Gaussian model as a proxy for the
true Fisher information matrix.



Part III

Contribution
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Chapter 5

Experiments with nonstationary
Ornstein-Uhlenbeck processes with

time-dependent volatility

The model underlying this chapter is a nonautonomous nonstationary Ornstein-Uhlenbeck
process, that is, an Itō process {X(t)}t≥0 governed by a stochastic differential equation of
the form

dX(t) = κ(X̄ −X(t))dt+ σ(t)dW (t), (5.1)

X0 unknown,

where the initial point X0 and the asymptotic expectation X̄ are unknown parameters, and
κ > 0 is known mean-reversion speed, σ(·) : 〈0,∞) 7→ (0,∞) is (up to a constant multiple)
known deterministic and semicontinuous volatility function. The observations are taken at
given sampling times represented by a sampling design τn ∈ Tn.

The purpose of this chapter, which is based on the candidate’s paper [59], is to discuss
qualitative aspects of optimal n-point designs for estimation of the parameters of the model
(5.1). In this regard, we focus also on the ultimate efficiency of experimental designs.

The model (5.1) is motivated by the (autonomous) nonstationary Ornstein-Uhlenbeck
process, which corresponds to the stochastic differential equation (5.1) with a constant
volatility function σ(t) ≡ σ. The nonautonomous Ornstein-Uhlenbeck process has found
many applications in different research fields such as physics or biology. In physics [62, 96],
the nonstationary Ornstein-Uhlenbeck process is a noise relaxation process, which de-
scribes the velocity of a particle under the influence of a friction. If we consider a Hookean
spring, then the mean-reversion speed κ is given by the ratio of the spring constant k and
the friction coefficient γ, and the volatility σ(t) is constantly equal to

√

2kBT/γ, where kB is
the Boltzmann constant and T is the temperature. In biology, the nonstationary Ornstein-
Uhlenbeck process is often employed for modelling neuronal response [90]. The governed
variable X(t) expresses the voltage difference between the membrane and resting poten-
tials at the trigger zone of the neuron, and we are interested in the initial and stationary
difference in potentials. Here, the mean-reversion speed is the reciprocal of the membrane
constant.

From the point of view of optimal design of experiments, nonstationary Ornstein-Uh-
lenbeck process and its stationary counterpart have been studied by Harman and Štulajter
[39], who showed the optimality of equidistant sampling designs for estimation of the pa-
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rameteres as well as for the prediction, and by Kisel’ák and Stehlík [53] and Zagoraiou and
Antognini [110], who proved that the equidistant sampling is optimal also for parameter
estimation of the stationary Ornstein-Uhlenbeck process. We refer the reader to Chapter 4
for more details.

However, the situation is quite different if we expect, for example, that in the problem of
the Hookean spring the temperature T is a function of the time (e.g., cooling or heating of
the physical system), and we get σ(t) =

√

2kBT (t)/γ. Since the volatility is not constant, as
it can be seen in the (autonomous) nonstationary Ornstein-Uhlenbeck process, we should
use the model (5.1) instead.

5.1 Corresponding linear regression model

After applying the Itō’s lemma to transformation eκt(x − X̄) we obtain the solution to the
stochastic differential equation (5.1)

X(t) = e−κtX0 + (1 − e−κt)X̄ +

∫ t

0

e−κ(t−ν)σ(ν)dW (ν). (5.2)

Thus, the observations of the process driven by (5.1) at the design points t1, . . . , tn satisfy
the linear regression model

X(τ ) = (e−κτ )X0 + (1n − e
−κτ )X̄ + ε(τ ) = F(τ )θ + ε(τ ), (5.3)

where F(τ ) = (e−κτ ,1n − e
−κτ ) is the design matrix, θ = (X0, X̄)T is the vector of un-

known parameters, and ε(τ ) = (εt1 , . . . , εtn
)T is the vector of random errors such that

E [ε(τ )] = 0n and V[ε(τ )] = Σ(τ ). (5.4)

We remark that the distribution of the vector ε(τ ) is Gaussian. In the sequel we will
derive the variance-covariance matrix Σ(τ ), which is crucial for computing the information
matrix M(τ ), and show that Σ(τ ) is positive definite for any τ ∈ Tn.

We shall consider conditioning upon the value x0 of X(0). A basic rule for covariance
gives that

C[X(t),X(t+ s) | X(0) = x0]

= E [X(t)X(t+ s) | X(0) = x0] − E [X(t) | X(0) = x0]E [X(t+ s) | X(0) = x0].

The expectations E [X(t) | X(0) = x0] and E [X(t + s) | X(0) = x0] are known (cf. (5.2)),
henceforth we need to find E [X(t)X(t+ s) | X(0) = x0].

The key for computing E [X(t)X(t + s) | X(0) = x0] is the transition kernel p(x, s |
y, t) = d

dx Pr[X(t+ s) < x | X(t) = y], t, s ≥ 0, of the process X(t) defined by the stochastic
differential equation (5.1), which solves the well-known Kolmogorov’s forward equation.

Since X(t) is a Markov process, for all ̟ ∈ (0, t),its transition density kernel satisfies

Pr[X(t) < x | X(0) = x0] =

∫ x

−∞

(∫

R

p(z, t−̟ | y,̟)p(y,̟ | x0, 0)dy

)

dz.



5. EXPERIMENTS WITH NONSTATIONARY OUP WITH TIME-DEPENDENT VOLATILITY 40

Consequently, using (5.2) we obtain

E [X(t)X(t+ s) | X(0) = x0] =

∫

R

x1f(x1, t | x0, 0)

(∫

R

x2f(x2, s | x1, t)dx2

)

dx1

=

∫

R

xE [X(t+ s) | X(t) = x]f(x, t | x0, 0)dx

= e−κsE [X2(t) | X(0) = x0]

+X̄(1 − e−κs)E [X(t) | X0 = x0]

= e−κsV[X(t) | X0 = x0] + e−κsE2[X(t) | X(0) = x0]

+X̄(1 − e−κs)E [X(t) | X(0) = x0],

which implies that

C[X(t),X(t+ s) | X(0) = x0] = e−κsV[X(t) | X0 = x0] = e−κsV[X(t)]. (5.5)

It can be shown (see [4]) that the variance of X(t) governed by stochastic differential equa-
tion (5.1) follows the ordinary differential equation d

dtV[X(t)] = −2κV[X(t)] + σ2(t) with
the initial condition V[X(0)] = 0. Using standard methods of solving ordinary differential
equations we obtain the explicit solution

V[X(t)] = e−2κt

∫ t

0

e2κνσ2(ν)dν. (5.6)

The same result follows from the Itō isometry:

E
[∫ t

0

f(ν)dW (ν)

]

= 0, and E
[

(∫ t

0

f(ν)dW (ν)

)2
]

= V
[∫ t

0

f(ν)dW (ν)

]

=

∫ t

0

f2(ν)dν.

The relations (5.5) and (5.6) yield:

Lemma 1. The ijth element, i ≤ j, of the variance-covariance matrix Σ(τ ) defined in (5.4) has the
form

{Σ(τ )}ij = u(ti)v(tj), where (5.7)

u(t) = e−κt

∫ t

0

e2κνσ2(ν)dν and

v(t) = e−κt.

The least squares estimator and Fisher information matrix assume the invertibility of
the variance-covariance matrix Σ(τ ). The next lemma states that Σ(τ ) is positive definite.

Lemma 2. The variance-covariance matrix Σ(τ ) given by (5.7) is positive definite for any τ ∈ Tn,
n ≥ 2.

Proof. For a design (t1, t2)
T ∈ T2, i.e., t1 < t2, we have {Σ(t1, t2)}11 = V[X(t1)] > 0 and

det[Σ(t1, t2)] = V[X(t1)]|V[X(t2)] − e−2κ(t2−t1)V2[X(t1)] > 0 because

V[X(t2)] = e−2κt2

∫ t2

0

e2κνσ2(ν)dν

> e−2κ(t2−t1)e−2κt1

∫ t1

0

e2κνσ2(ν)dν = e−2κ(t2−t1)V[X(t1)]. (5.8)
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Now, assume that τn = (t1, . . . , tn)T ∈ Tn, Σ(τn) be positive definite, and, without loss of
generality, τn+1 = (τT

n, tn+1)
T ∈ Tn+1. Then

Σ(τn+1) =

(

Σ(τn) s

sT V[X(tn+1)]

)

,

where s = (e−κ(tn+1−t1)V[X(t1)], . . . , e
−κ(tn+1−tn)V[X(tn)])T. Since Σ(τn) is nonsingular,

the matrix Σ(τn+1) is row-equivalent to
(

Σ(τn) s

0
T

n V[X(tn+1)] − sT
Σ

−1(τn)s

)

.

The expression Σ
−1(τn)s is equal to the nth unit vector (0, . . . , 0, 1)T, cf. [39], hence we

can write sT
Σ

−1(τn)s = e−κ(tn+1−tnV[X(tn)]. We can use the relation (5.8) to prove the
positivity of V[X(tn+1)] − sT

Σ
−1(τn)s.

5.2 Information matrix and optimal designs

The fact that Σ(τ ) has a product structure and the results of Harman and Štulajter [39]
imply that for τ ∈ Tn

I (τ ) =

(

e−2κt1

V[X(t1)]
e−κt1 (1−e−κt1 )

V[X(t1)]
e−κt1 (1−e−κt1 )

V[X(t1)]
(1−e−κt1 )2

V[D(t1)]
+ S(τ )

)

, (5.9)

where

S(τ ) =
n
∑

i=2

(eκti − eκti−1)2

e2κtiV[X(ti)] − e2κti−1V[X(ti−1)]
=

n
∑

i=2

(eκti − eκti−1)2
∫ ti

ti−1
e2κνσ2(ν)dν

. (5.10)

We remark that for τ ∈ Tn the information matrix I (τ ) given in (5.9) is positive definite.
Since the optimality criteria are usually continuous in I on the set of positive definite
matrices and I (τ ) is continuous in τ on Tn, the function Φ[I (τ )] is continuous in τ on
Tn.

Now, assume that t∗1 ≥ T∗ is fixed. It follows from the Loewner isotonicity of optimality
criteria that the design τ ∗ ∈ Tn is optimal, if

S(τ ∗) = max
t2, . . . , tn

t∗1 < t2, tn ≤ T ∗

ti−1 < ti, i = 3, . . . , n

S(t∗1, t2, . . . , tn). (5.11)

Therefore, once we have chosen the value of t∗1, the other design points solve the optimiza-
tion problem (5.11). This approach is very suitable for a numerical optimization: firstly, we
select the value of t1 and then we find the maximum of S(τ ∗) on Tn with t1 given, which
is used for evaluation of the optimality criterion. In this way we can find the maximum
of the optimality criterion through t1. Our numerical experience shows that this approach
gives more reliable results compared to a raw maximization of Φ[I (τ )] on the n-simplex
Tn, even if we employ heuristic methods like simulated annealing or genetic algorithms.

The following lemma ensures that an optimal design is not degenerated into one point.
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Lemma 3. Let n ≥ 3 and τ 0 = tn1n. Then there exists τ 1 = (t1, . . . , tn)T ∈ Tn such that
t1 < tn and I (τ 1) �L I (τ 0).

Proof. Let τ 1 = (t1, . . . , tn)T with t1 < t2 = . . . = tn. To prove the statement of the lemma
it is sufficient to show that the matrix

I (τ 1) − I (τ 0) =

(

e−2κt1

V[X(t1)]
− e−2κtn

V[X(tn)]
e−κt1 (1−e−κt1 )

V[X(t1)]
− e−κtn (1−e−κtn )

V[X(tn)]
e−κt1 (1−e−κt1 )

V[X(t1)]
− e−κtn (1−e−κt1 )

V[X(tn)]
(1−e−κt1 )2

V[X(t1)]
− (1−e−κtn )2

V[X(tn)] + S(τ 1)

)

is non-negative definite. From inequality (5.8) we have that V[X(tn)] > e−2κ(tn−t1)V[X(t1)]
for t1 < tn, which implies the positivity of {I (τ 1) − I (τ 0)}11. Hence, we need to check

whether det[I (τ 1)−I (τ 0)] ≥ 0. Notice that S(τ 1) = (eκtn−eκt1 )2

e2κtnV[X(tn)]−e2κt1V[X(t1)]
. Therefore,

det[I (τ 1) − I (τ 0)] =
e2κtnV[X(tn)] − e2κt1V[X(t1)]

e2κ(t1+tn)V[X(t1)]V[X(tn)]
S(τ 1)

− [e−κt1(1 − e−κtn) − e−κtn(1 − e−κt1)]2

V[X(t1)]V[X(tn)]

=
(eκtn − eκt1)2

e2κ(t1+tn)V[X(t1)]V[X(tn)]
− (eκtn − eκt1)2

e2κ(t1+tn)V[X(t1)]V[X(tn)]
= 0.

Theorem 1. Under the assumption of the model (5.3) with the covariance structure (5.7), there
always exists a (feasible) Φ-optimal n-point design τ ∗

n,Φ ∈ Tn.

Proof. From Lemma 3 we get that t1 6= tn, and the position of the design points t2, . . . , tn
results from the optimization problem (5.11). Hence, we need to show that for any ti ∈
(ti−1, ti+1), i = 2, . . . , n− 1,

(eκti − eκti−1)2
∫ ti

ti−1
e2κνσ2(ν)dν

+
(eκti+1 − eκti)2
∫ ti+1

ti
e2κνσ2(ν)dν

≥ (eκti+1 − eκti−1)2
∫ ti+1

ti−1
e2κνσ2(ν)dν

, (5.12)

that is, we can place a design point ti between any two design points ti−1 and ti+1 in a way
that ti is optimal and distinct from ti−1 and ti+1. If we setA = eκti−eκti−1 ,B = eκti+1−eκti ,
a =

∫ ti

ti−1
e2κνσ2(ν)dν and b =

∫ ti+1

ti
e2κνσ2(ν)dν, then the inequality (5.12) is equivalent to

the statement

∀A,B,a,b>0
A2

a
+
B2

b
≥ (A+B)2

a+ b
.

After some algebraic manipulation we obtain that b2A2 −2bAaB+a2B2 ≥ 0, which is true.
Moreover, the inequality in (5.12) becomes an equality if and only if ti ∈ {ti−1, ti+1}.

The previous theorem states that the Fisher information matrix for the model (5.1) is
continuous on Tn.

In some applications it is natural to estimate the unknown parameters using the most
recent observations. The derivative of S(τ ) with respect to tn

∂S(τ )

∂tn
= [2κ− σ2(tn)U(tn, tn−1)]U(tn, tn−1), where U(x, y) =

e2κx − eκ(x+y)

∫ x

y
e2κνσ2(ν)dν

,

yields:
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Theorem 2. If σ(t) is a nonincreasing function, then t∗n = T ∗ is optimal in the model (5.3) with
the covariance structure (5.7).

Proof. Clearly, the function U(x, y) is continuous and positive. For any tn−1 < tn ≤ T ∗ we
have

σ2(tn)U(tn, tn−1) =
e2κtn − eκ(tn+tn−1)

∫ tn

tn−1
e2κν σ2(ν)

σ2(tn)dν
≤ e2κtn − eκ(tn+tn−1)

∫ tn

tn−1
e2κνdν

= 2κ
e2κtn − eκ(tn+tn−1)

e2κtn − e2κtn−1
< 2κ,

That is ∂S(τ )
∂tn

> 0 for any τ .

Let us take into consideration that we can perform measurements at every point in the
experimental domain [T∗, T

∗], and τn = (t1, . . . , tn)T with t1 = T∗ and tn = T ∗. From the
Taylor series expansion of (5.10) and by setting ti − ti−1 = ∆, i = 2, . . . , n we get that

S(τn) = κ2
n
∑

i=2

(

∫ ti−1+∆

ti−1
eκνdν

)2

∫ ti−1+∆

ti−1
e2κνσ2(ν)dν

= κ2
n
∑

i=2

(eκti−1∆ + o(∆))
2

e2κti−1σ2(ti−1)∆ + o(∆)

= κ2
n
∑

i=2

e2κti−1∆2 + o(∆2)

e2κti−1σ2(ti−1)∆ + o(∆)
= κ2

n
∑

i=2

∆ + o(∆)

σ2(ti−1) + o(∆)/∆
.

Consequently,

S(τn) → S∞(T∗, T
∗) = κ2

∫ T∗

T∗

dν

σ2(ν)
, for n→ ∞ and ∆ → 0,

which, using the relation (5.12) and the technique in the proof of Lemma 3, leads to:

Theorem 3. The information matrix given by the observation of the full path in the model (5.1) is

I∞(T∗, T
∗) =

(

e−2κT∗

V[X(T∗)]
e−κT∗ (1−e−κT∗ )

V[X(T∗)]
e−κT∗ (1−e−κT∗ )

V[X(T∗)]
(1−e−κT∗ )2

V[X(T∗)]

)

+

(

0 0
0 1

)

S∞(T∗, T
∗). (5.13)

Moreover, for any design τ = (t1, . . . , tn)T ∈ Tn with T∗ ≤ t1 and tn ≤ T ∗ holds: i) S(τ ) ≤
S∞(T∗, T

∗), and ii) I (τ ) �L I∞(t1, tn) �L I∞(T∗, T
∗).

The formula stated in (5.13) has an intuitive physical interpretation. In the Hookean
spring problem with a time-dependent temperature, up to a constant multiple the function
σ(t) reflects the square root of the temperature. Thus the lower the temperature the higher
the information about the unknown parameters. In the physical view, low temperature
causes small fluctuations, so the measurements are more precise.

Another theoretical contribution of the formula (5.13) is the information contained in
a subdomain interval. We shall explain this in detail. Let us consider that we perform
one measurement at T∗ and then we can observe the full trajectory of the process on a
subdomain interval (a, a + ∆] of the fixed length ∆, where a ∈ [T∗, T

∗ − ∆]. Then it is op-
timal to perform the measurements on such interval (determined by a), which maximizes
∫ a+∆

a
dν

σ2(ν) . That is, the areas with low σ(t) are more informative, and the measurements
should be more concentrated in such areas. This effect is demonstrated on an example in
the next section

We can use the asymptotic Fisher information matrix M∞(T∗, T
∗) to evaluate the ulti-

mate efficiency of designs.
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5.3 Example

To give a simple demonstration of the previously presented results we will focus on D-
optimal designs for

dX(t) = κ(X̄ −X(t))dt+ e−λtdW (t), (5.14)

where κ > 0 is the mean-reversion speed and λ ∈ R is a known constant. If λ is positive,
then we have a system with exponentially decreasing temperature, and in the case of a
negative value of λ the system is being heated.

Using the relations (5.6) and (5.9) we obtain that

Iλ(τ ) =

(

2(κ−λ)

e2(κ−λ)t1−1

2(κ−λ)(eκt1−1)

e2(κ−λ)t1−1
2(κ−λ)(eκt1−1)

e2(κ−λ)t1−1

2(κ−λ)(eκt1−1)2

e2(κ−λ)t1−1
+ Sλ(τ )

)

,

where

Sλ(τ ) = 2(κ− λ)

n
∑

i=2

(eκti − eκti−1)2

e2(κ−λ)ti − e2(κ−λ)ti−1
.

Obviously, for λ→ κ we have

Iκ(τ ) =

(

1
t1

eκt1−1
t1

eκt1−1
t1

(eκt1−1)2

t1
+ Sκ(τ )

)

, with Sκ(τ ) =
n
∑

i=2

(eκti − eκti−1)2

ti − ti−1
.

Taking the D-optimality criterion Φ[I ] = det1/2(I ) we get

det1/2(I (τ )) =











[

2(κ−λ)

e2(κ−λ)t1−1
Sλ(τ )

]1/2

, λ 6= κ
[

1
t1
Sκ(τ )

]1/2

, λ = κ
.

We remark that for κ = 2 and λ = 1 the function Cλ(τ ) depends only on t1 and tn.
The ultimate ΦD-efficiency of a design is given by

ueffΦD
(τ ) =























[

2λ
κ2 · e2(κ−λ)T∗−1

e2(κ−λ)t1−1
· Sλ(τ )

e2λT∗−e2λT∗

]1/2

, κ 6= λ, λ 6= 0
[

1
κ2(T∗−T∗) · e2(κ−λ)T∗−1

e2(κ−λ)t1−1
Sλ(τ )

]1/2

, κ 6= λ, λ = 0
[

2λ
κ2 · T∗

t1
· Sκ(τ )

e2λT∗−e2λT∗

]1/2

, κ = λ

.

In the sequel we give some numerical results for the model (5.14) with the mean-re-
version speed κ = 2 and bounds for the experimental domain T∗ = 1 and T ∗ = 5.

Figure 5.1 depicts D-optimal 5-point designs. More precisely, for a particular λ a hori-
zontal cut gives optimal positions of the design points. For λ = 0 the design is equidistant,
which is a known result already shown by Harman and Štulajter [40]. For λ > 0, in accord
with Proposition 2, the position of the last design point is equal to T ∗ = 5. The explanation
for the “jump” in optimal position of t1 around λ = 3.8 can be found in flatness of the
function ϕ(t) = maxτ∈Tn(t) det1/2(M(τ )), so the numerical optimization through t1 is less
accurate and more sensitive to roundoff errors. In both cases, λ > 0 and λ < 0, we can
notice that if |λ| is large, then the design points are more concentrated around T ∗ and T∗,
respectively, where the fluctuations are smaller.
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Figure 5.1. D-optimal 5-point designs for the model
(5.14) with κ = 2, T∗ = 1, T ∗ = 5 and different values
of λ. For a given λ the horizontal cut gives the optimal
position of design points.
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Figure 5.2. The relation between the size of a design
sample n and efficiency of D-optimal n-point design
with respect to the maximum possible information for
the model (5.14) with κ = 2, T∗ = 1, T ∗ = 5 and
λ = −3, 0, 3.

In the previous section we noted that small sample designs can be quite efficient with
respect to the maximum possible information, and the contributions of additional mea-
surements to the information are not significant. This is illustrated in Figure 5.2, which
displays the dependence of the efficiency of the D-optimal n-point designs on the size n of
the design sample for the model (5.14).



Chapter 6

Ultimate efficiency of experimental
designs for Ornstein-Uhlenbeck type

processes

Suppose we can observe a univariate continuous-time process {X(t)}t≥0 governed by a
linear Itō stochastic differential equation of the form

dX(t) = [aθ,β(t) + bθ,β(t)X(t)]dt+ σβ(t)dW (t) (6.1)

= fθ,β(t,X(t))dt+ σβ(t)dW (t),

X(0) = X0 ∈ R is fixed.

Our basic assumptions concerning the model are that the derivatives of the drift func-
tion fθ,β(t, x) and volatility σβ(t) exist with respect to the unknown vector parameter
ϑ = (X0,θ

T, β)T ∈ R × R
m−2 × R, that the functions aθ,β(t), ∂aθ,β(t)

∂ϑ
, bθ,β(t), ∂bθ,β(t)

∂ϑ
,

σβ(t) and σ2
β(t) are integrable with respect to t on [0, T ∗], and that σβ(t) is positive almost

everywhere with respect to the Lebesgue measure on the real axis. For convenience, we
replace aθ,β(t) by a(t), bθ,β(t) by b(t), etc.

The choice of parametrisation in equation (6.1) reflects the different asymptotic proper-
ties of the maximum likelihood estimators. In Section 6.2 we show that, in contrast with
the scalar parameter β, the vector parameter ϑI = (X0,θ

T)T ∈ R
m−1 is not consistently

estimable. Notice that the initial value X0 is absent in the governing equation. This con-
sideration is not necessary for this paper, but its rejection might in some instances lead to
“unexpected” results (see Theorem 4 and the discussion thereafter).

The aim of the presented chapter based on the candidate’s paper [60] is two-fold. Firstly,
we discuss the existence of optimal sampling designs, i.e., designs maximising the corre-
sponding measure of information Φ[I (τ )]. Although we do not determine optimal designs
in this chapter, the question of their existence is essential as it gives a rationale for the op-
timisation of the experiment. Secondly, the presence of a correlation between observations
of the process described by stochastic differential equation (6.1) makes searching for opti-
mal designs computationally challenging. To circumvent this difficulty, in Section 6.3 we
look at the experimental design problem from a different perspective by computing the ul-
timate efficiency of designs. This approach is, however, well-founded only if we focus on
the parameter subvector ϑI, which is not binding, because in the applications, ϑI usually
represents the characteristics of the underlying process, while β is regarded as a nuisance
parameter out of the perimeter of interest.

46
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The governing equation (6.1) is motivated by a variety of problems studied in the litera-
ture; a number of them were already mentioned in the previous chapter. The first group of
problems, which we already mentioned in the previous chapter, consists of modifications of
the Ornstein-Uhlenbeck process. Uhlenbeck and Ornstein [104] proposed a simple model
of particle velocity X(t), which can be rewritten to the stochastic differential equation

dX(t) =

(

θ1
θ2

− β

θ2
X(t)

)

dt+

(

2BT

β

)1/2

dW (t), X(0) = X0 fixed, (6.2)

where θ1 is the level of the external force, θ2 is the mass, β is the friction coefficient, T is the
temperature of the system, and B is the Boltzmann constant. We can find in the applications
a more abstract arrangement of stochastic differential equation (6.2) given by

dX(t) = θ1[θ2 −X(t)]dt+ βdW (t), X(0) = X0 fixed, (6.3)

where the mean-reversion speed θ1, the asymptotic mean θ2, and the diffusion coefficient β
are the unknown parameters. Note that, compared to equation (6.2), the drift and diffusion
part of the simpler variant (6.3) do not have any common parameters.

The second group of problems covered by model (6.1) is the family of Brownian motions
of the form {Aθ(t) + βW (t)}t≥0 with unknown parameters θ and β, which coincides with
a stochastic differential equation

dX(t) = aθ(t)dt+ βdW (t),

where a(t) is the derivative of A(t) with respect to t.
In Section 6.5, as an example, we study the Gompertz model of tumour growth de-

scribed by stochastic differential equation dY (t) = [θ2Y (t)−θ1Y (t) lnY (t)]dt+βY (t)dW (t).
Although the governing equation is nonlinear, we show that the process belongs to a
broader class of the so-called “Ornstein-Uhlenbeck type” processes defined in Section 6.4,
to which the results of this paper are applicable.

Given the correlated observations, to write the Fisher information matrix in a suitable
form is usually a crucial step. For the purpose of this paper we find the following lemma
useful:

Lemma 4. Let {X(t)}t≥0 with X(0) fixed be a ϑ-parametrised continuous-time Markov process
with a Gaussian transition density kernel. Then for any τ ∈ Tn, the Fisher information matrix for
X(τ ) takes the form

I (τ ,ϑ∗) = IX(t1)|X(0)(ϑ
∗) +

n
∑

i=2

EX(ti−1)

[

IX(ti)|X(ti−1)(ϑ
∗)
]

,

where IX(ti)|X(ti−1)(ϑ
∗) is the Fisher information matrix for X(ti) conditioned on the value of

X(ti−1), and EX(ti−1)[·] is the expectation with respect to X(ti−1).

Proof. We denote t0 = 0 and consider the derivatives to be evaluated at ϑ∗. Let p(x, s |
y, t) = d

dx Pr[X(t + s) < x | X(t) = y] be the Gaussian transition density kernel of the
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process {X(t)}t≥0, where p(x, 0 | y, t) = δ(x− y), and δ(·) is the Dirac delta function. Then

I (τ ,ϑ∗) = EX(τ )

[

∂2

∂ϑ∂ϑT
ln

(

n
∏

i=1

p(xi, ti − ti−1 | xi−1, ti−1)

)]

=

∫

x1∈R

· · ·
∫

xn∈R

n
∑

i=1

(

∂2

∂ϑ∂ϑT
ln p(xi, ti − ti−1 | xi−1, ti−1)

)

×
n
∏

k=1

p(xk, tk − tk−1 | xk−1, tk−1)dx1 . . . dxn

=

n
∑

i=1

∫

xi−1∈R

∫

xi∈R

(

∂2

∂ϑ∂ϑT
ln p(xi, ti − ti−1 | xi−1, ti−1)

)

×p(xi, ti − ti−1 | xi−1, ti−1)p(xi−1, ti−1 | X(0), 0)dxi−1dxi

=
n
∑

i=1

∫

xi−1∈R

IX(ti)|X(ti−1)(ϑ
∗)p(xi−1, ti−1 | X(0), 0)dxi−1.

Lemma 4 enables us to express the Fisher information matrix of Gaussian Markov pro-
cesses in a practical form, which is also suitable for the asymptotic analysis in Sections 6.2
and 6.3. In addition, we note that the validity of Lemma 4 is not restricted only to univariate
Gaussian Markov processes, but can be applied to any (multivariate) Markov process with
a transition density satisfying classical regularity conditions, which the reader can find, for
instance, in [61, Lem5.3, p116] or in Section 2.1.

6.1 Nonlinear regression model for observations

To assess the amount of information that an experimental design yields, we need to under-
stand the mutual relations between individual observations X(τ ) = (X(t1), . . . ,X(tn))T.
In this Section we formulate the model for X(τ ) in terms of Gaussian nonlinear regression
models.

It is a well-known fact that by applying Itō’s lemma (see Theorem 6 by Itō [47]) to the
transformation e−B(t)X(t), where B(t) is an arbitrary antiderivative of b(t), we can write
X(t) | X(t0) = E [X(t) | X(t0)] + ε(t) | X(t0) for all t ≥ t0 ≥ 0. Here

Eθ,β [X(t) | X(t0)] = eBθ,β(t)−Bθ,β(t0)X(t0) +

∫ t

t0

eBθ,β(t)−Bθ,β(ν)aθ,β(ν)dν (6.4)

is the expectation of the process {X(t) | X(t0)}t≥t0 at the time t, and

ε(t) | X(t0) =

∫ t

t0

eBθ,β(t)−Bθ,β(ν)σβ(ν)dW (ν)

is a zero-mean Gaussian random variable; see, e.g., [35]. (Notice that the assumption t ≥ t0
is only for convenience and that the previous formulas also hold true for t ≤ t0.) The
expression for the variance of {X(t) | X(t0)}t≥t0 , which comes from Itō’s isometry (see,
e.g., Lemma 3.1.5 by [73]), is given by

Vθ,β [X(t) | X(t0)] =

∫ t

t0

e2[Bθ,β(t)−Bθ,β(ν)]σ2
β(ν)dν. (6.5)

The following lemma completes an insight into second central moments:
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Lemma 5. Let {X(t)}t≥0 be a process governed by stochastic differential equation (6.1). Then for
all t1 and t2, t2 ≥ t1 ≥ 0,

Cθ,β [X(t1),X(t2)] = u(t1)v(t2), where

uθ,β(t) = eBθ,β(t)

∫ t

0

e−2Bθ,β(ν)σ2
β(ν)dν,

vθ,β(t) = eBθ,β(t).

Proof. We derive an ordinary differential equation for the covariance function. Since the
process {X(t)}t>0 is Gaussian, the usual regularity conditions for the interchange of the
order of differentiation and integration are satisfied. Taking the expectation of the gov-
erning equation (6.1) yields d

dsE [X(t + s)] = E [f(t + s,X(t + s))], where we recall that
f(t, x) = a(t) + b(t)x. Consequently, for all t, s ≥ 0

d

ds
E [X(t)X(t+ s)] = E

[

X(t)
d

ds
E [X(t+ s) | X(t)]

]

= E [X(t)f(t+ s,X(t+ s))],

E [X(t)]
d

ds
E [X(t+ s)] = E [X(t)]E [f(t+ s,X(t+ s))].

The basic rules for covariance give an ordinary differential equation

d

ds
C[X(t),X(t+ s)] = C[X(t), f(t+ s,X(t+ s))] = b(t+ s)C[X(t),X(t+ s)]

with the initial value C[X(t),X(t + s)] = V[X(t)] at s = 0. The use of standard methods
for solving ordinary differential equations and subsequent setting t1 = t and t2 = t + s
entails that for any t1 and t2, t2 ≥ t1 ≥ 0, C[X(t1),X(t2)] = eB(t2)−B(t1)V[X(t1)]. By setting
the expression for the variance (6.5) to the formula obtained for the covariance, we get the
statement of the lemma.

The expectation of the underlying model (6.4) and Lemma 5 enable us to formulate the
design problem for stochastic differential equation (6.1) in terms of the nonlinear regression

∀τ∈Tn
X(τ ) ∼ N

(

EX0,θ,β [X(τ )],Vθ,β [X(τ )]
)

(6.6)

with {V[X(τ )]}ij = u(ti)v(tj) for 1 ≤ i ≤ j ≤ n. We should highlight that the vector of the
expected values and the variance-covariance matrix may have common parameters.

Note that u(t)/v(t) is a strictly increasing function, and so it follows from the conditions
(4.1) and (4.2) by Sacks and Ylvisaker[92] that for any design τ ∈ Tn, the matrix V[X(τ )] is
positive definite – a desirable property that is not satisfied for designs with replicated sam-
pling times. Nevertheless, by performing experiments under designs without replicated
sampling times, which form a subset of Tn, the amount of information does not decrease:

Lemma 6. Let {X(t)}t≥0 be a process governed by stochastic differential equation (6.1) and ‖ ·‖ be
a metric on R

n. For any design τ 0 ∈ Tn and δ > 0, a design τ ∈ Tn exists such that ‖τ 0−τ‖ < δ
and I (τ ,ϑ∗) �L I (τ 0,ϑ

∗). Specifically, if the design τ 0 belongs to the boundary set Tn \ Tn,
then τ 0 is dominated by any design τ ∈ Tn with t1 = {τ 0}1 and ti = {τ 0}i if {τ 0}i > {τ 0}i−1.

Proof. If τ 0 ∈ Tn then τ = τ 0. Assume that τ 0 ∈ Tn \ Tn, i.e., there exists i ∈ {2, . . . , n}
such that ti−1 = ti. Equations (6.4) and (6.5) yield X(t) | X(t) = X(t) almost surely, which
gives no information about any unknown parameters, so EX(ti)[IX(ti)|X(ti)(ϑ

∗)] = 0m×m.
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As a consequence of Lemma 4, by leaving ti out of the experimental design, the amount
of information does not change. We repeat this procedure until we obtain a design τ 1 ∈
Tn1,D, n1 < n, for which we have I (τ 1,ϑ

∗) = I (τ 0,ϑ
∗). For τ we take any design

from Tn with arbitrary n1 components being given by τ 1, for which ‖τ 0 − τ‖ < δ. Let τ 2

represent those sampling times of τ that are distinct from τ 1. Analogously to Lemma 4,
we can show that I (τ ,ϑ∗) = IX(τ1)|X(0)(ϑ

∗) + EX(τ1)[IX(τ2)|X(τ1)(ϑ
∗)] = I (τ 1,ϑ

∗) +
EX(τ1)[IX(τ2)|X(τ1)(ϑ

∗)], which implies

I (τ ,ϑ∗) − I (τ 0,ϑ
∗) = EX(τ1)[IX(τ2)|X(τ1)(ϑ

∗)] �L 0m×m.

The key elements in the proof of Lemma 6 are the Markov property of {X(t)}t≥0 and
the fact that lim∆→0 Pr[X(t+ ∆) = X(t)] = 1. Analogously to Lemma 4, we can extend the
statement of Lemma 6 to a wider class of problems.

Under the regression model (6.6), for any design τ ∈ Tn, the Fisher information matrix
takes the form

I (τ ,ϑ∗) =

(

{I (τ ,ϑ∗)}ϑIϑI
{I (τ ,ϑ∗)}ϑIβ

{I (τ ,ϑ∗)}βϑI
{I (τ ,ϑ∗)}ββ

)

,

where

{I (τ ,ϑ∗)}α1α2
=

(

∂E [X(τ )]

∂α1
V−1[X(τ )]

∂E [X(τ )]

∂αT

2

)

∣

∣

∣

∣

∣

ϑ∗

+
1

2
tr

{

V−1[X(τ )]
∂V[X(τ )]

∂α1
V−1[X(τ )]

∂V[X(τ )]

∂αT

2

}

∣

∣

∣

∣

∣

ϑ∗

(6.7)

and ϑ∗ is a guess at the true value of the unknown vector parameter ϑ; see [67].

Theorem 4. If the initial value X0 of stochastic differential equation (6.1) is the only unknown
parameter, then it is optimal to take t1 = T∗ regardless of the number of design points. The variance
of the corresponding maximum likelihood estimate is

V[X̂0] =

∫ T∗

0

e2[B(0)−B(ν)]σ2(ν)dν.

Proof. Since ∂E[X(t)]
∂X0

= eB(t)−B(0) = v(t)e−B(0) and ∂V[X(t)]
∂X0

= 0, the relation (4.4) in the
paper of Sacks and Ylvisaker [92] and Lemma 5 imply that for any design τ ∈ Tn, the
information about X0 is given by

I (τ ,X∗
0 ) = V−1[X̂0] =

(∫ t1

0

e2[B(0)−B(ν)]σ2(ν)dν

)−1

.

That is, the information is determined by the first sampling time t1. Since the function
e2[B(0)−B(t)]σ2(t) is positive for almost all t with respect to the Lebesgue measure on the
real axis, I (τ ,X∗

0 ) attains its maximum at t1 = T∗. That is, the information is determined
by the first sampling time t1. Since the function e2[B(0)−B(t)]σ2(t) is positive for almost all
t with respect to the Lebesgue measure on the real axis, I (τ ,X∗

0 ) attains its maximum at
t1 = T∗.

The statement of Theorem 4 might evoke the impression that the information about the
initial state of the processes governed by a linear stochastic differential equation is concen-
trated in the first observation, but this is not true in general:
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Example 1. Let {X(t)}t≥0 be a process governed by equation

dX(t) =
1

2
θ (X0 −X(t)) dt+ e−βt/2dW (t), X(0) = X0, (6.8)

for which we can perform only one observation. In this setup the values θ and β are known (and
positive), while X0 is an unknown parameter. Evidently, the model (6.8) violates the assumption of
the absence of the initial value in the governing equation. Here, the mean value is equal to X0 for all
t ≥ 0, and the Fisher information obtained from the observation performed at the time t ∈ D attains
the value

I (t, θ, β) =











θ − β

e−βt − e−θt
, θ 6= β,

1

e−θtt
, θ = β.

Since I (t, θ, β) is a convex and continuous function, its maximum is allocated at the boundary
of the experimental domain D. For θ 6= β we can find that the sampling time minimising the
Fisher information is given by tmin I = (ln θ − lnβ)/(θ − β) and tmin I = 1/θ for β → θ.
Consequently, if the bounds of the experimental domain satisfy the inequality T∗ < tmin I < T ∗

with I (T∗, θ, β) < I (T ∗, θ, β) or the bounds satisfy tmin I ≤ T∗ < T ∗, then it is optimal to
observe the process as late as possible.

6.2 Existence of locally optimal designs

In this section we turn to the question of the existence of locally optimal sampling designs,
which is crucial for a further (typically numerical) optimisation of the experiment. We say,
as usual, that an optimal design exists if the measure of information achieves its maximum
on the set of competing designs. Due to Lemma 6, the set of competing designs is reduced
to the non-compact set Tn, and thus the maximum of Φ[I (τ ,ϑ∗)] might not be achieved:

Example 2. Suppose we can perform n observations of a process {X(t)}t≥0 governed by a stochas-
tic differential equation

dX(t) = (β + t)−1/2dW (t), X(0) = 0, (6.9)

where β ∈ (0,∞) is an unknown parameter, and β∗ is a prior guess at the true value of β. For a
design τ ∈ Tn Lemma 4 yields the Fisher information matrix

I (τ , β∗) =

(

∂

∂β
lnV[X(t1)]

)2
∣

∣

∣

∣

∣

β∗

+

n
∑

i=2

(

∂

∂β
lnV[X(ti) | X(ti−1)]

)2
∣

∣

∣

∣

∣

β∗

.

Using the expression for the variance (6.5), we obtain ( ∂
∂β lnV[X(ti) | X(ti−1)])

2 = [(β+ ti)
−1 −

(β+ti−1)
−1]2[ln(β+ti)−ln(β+ti−1)]

−2, which is a function decreasing in ti for any β > 0, so the
amount of information increases as ti → ti−1. Moreover, limti→ti−1

( ∂
∂β lnV[X(ti) | X(ti−1)])

2 =

(β + ti−1)
−2; hence the optimum is attained for t1 → T∗ and ti → ti−1 for all i = 2, . . . , n with

the “optimal” value

lim
t1→T∗, ti→ti−1 ∀i≥2

I (τ , β∗) =
[(β∗ + T∗)

−1 − β∗−1]2

[ln(β∗ + T∗) − ln(β∗)]2
+ (n− 1) ∗ (β∗ + T∗)

−2. (6.10)

Indeed, the limiting value (6.10) is supremal only, and for any β > 0 and τ ∈ Tn, we have
I (T∗1n, β) = ( ∂

∂β lnV[X(T∗)])
2 ≤ I (τ , β). Consequently, there is no locally optimal design for

the estimation of β under the process governed by (6.9).
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The previous example demonstrates that difficulties with the existence of locally opti-
mal designs might emerge when the Fisher information I (τ ,ϑ∗) is not continuous at the
boundary Tn \ Tn. This fact underlines the importance of the asymptotic properties of the
Fisher information matrix for conclusions on the existence of locally optimal designs.

By specifying the information function Φ, i.e., if the measure of information is defined
by Φ[I (τ ,ϑ∗)], we consider the problem of the existence of a Φ-optimal design on Tn. The
particular choice of the information function Φ may, however, suppress the effect of the
discontinuity of the Fisher information matrix, and thus different information functions
might lead to different conclusions. In this section we discuss the existence of optimal
designs in a stricter way: we say that an optimal n-point sampling design “exists in the
strong sense” if for any boundary design τ 0 ∈ Tn \ Tn, there exists a design τ ∈ Tn,
such that for any sequence of designs {τ (k)}k on Tn with limk→∞ τ (k) = τ 0, the Fisher
information matrix I (τ ,ϑ∗) Loewner dominates the matrix limk→∞ I (τ (k),ϑ∗). Clearly,
if the condition for the existence of optimal designs in the stronger sense is satisfied, then
an optimal sampling design exists regardless of the choice of information function.

We can exploit the statement of Lemma 4 to get a detailed view of the limiting behaviour
of the Fisher information matrix for the underlying stochastic differential equation (6.1):

Lemma 7. Let {X(t)}t≥0 be a process governed by stochastic differential equation (6.1) and ϑ∗ be
the prior guess at the true value of ϑ. Then, for any constants π1 and π2,

lim
∆→0

(

EX(t+π1∆)

[

IX(t+π2∆)|X(t+π1∆)(ϑ
∗)
]

− I∞(t,ϑ∗)(π2 − π1)∆ − O(t,ϑ∗)
)

= 0m×m,

where

I∞(t,ϑ∗) =

∂fϑ(t,x)
∂ϑ

∣

∣

∣

x=E[X(t)]

∂fϑ(t,x)

∂ϑT

∣

∣

∣

x=E[X(t)]
+ ∂bϑ(t)

∂ϑ

∂bϑ(t)

∂ϑT Vϑ[X(t)]

σ2
β(t)

∣

∣

∣

∣

∣

ϑ∗

and

O(t,ϑ∗) =
1

2

∂ lnσ2
β(t)

∂ϑ

∂ lnσ2
β(t)

∂ϑT

∣

∣

∣

∣

∣

ϑ∗

.

Proof. Since the distribution of X(t+ π2∆) | X(t+ π2∆) is Gaussian, we can write

EX(t+π1∆)[IX(t+π2∆)|X(t+π1∆)(ϑ
∗)] =

EX(t+π1∆)

[

∂E[X(t+π2∆)|X(t+π1∆)]
∂ϑ

∂E[X(t+π2∆)|X(t+π1∆)]

∂ϑT

]

V[X(t+ π2∆) | X(t+ π1∆)]

+
1

2

∂ lnV[X(t+ π2∆) | X(t+ π1∆)]

∂ϑ

∂ lnV[X(t+ π2∆) | X(t+ π1∆)]

∂ϑT
. (6.11)

Our goal is to find the Taylor expansions of EX(t+π1∆)[IX(t+π2∆)|X(t+π1∆)(ϑ
∗)] at ∆ = 0.

From the variance given in (6.5), we have

V[X(t+ π2∆) | X(t+ π1∆)] = σ2(t)(π2 − π1)∆ + o(∆), (6.12)

where o(∆)/∆ → 0 as ∆ → 0. Since ln[σ2(t)(π2 − π1)∆] = lnσ2(t) + ln[(π2 − π1)∆], we get,
for ∆ → 0, that

∂ lnV[X(t+ π2∆) | X(t+ π1∆)]

∂ϑ
→ ∂ lnσ2(t)

∂ϑ
,
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which yields the formula for O(t,ϑ∗). And now for the harder part. After some algebraic
manipulations based on (6.4), we can write the conditioned expectation E [X(t + π2∆) |
X(t+ π1∆)] as follows:

E [X(t+ π2∆) | X(t+ π1∆)] = eB(t+π2∆)−B(t)E [X(t)] +

∫ t+π2∆

t

eB(t+π2∆)−B(ν)a(ν)dν

+ eB(t+π2∆)−B(t+π1∆) (X(t+ π1∆) − E [X(t+ π1∆)]) .

By the differentiation of E [X(t+ π2∆) | X(t+ π1∆)] with respect to ϑ, we obtain

∂E [X(t+ π2∆) | X(t+ π1∆)]

∂ϑ
=
∂[B(t+ π2∆) −B(t)]

∂ϑ
eB(t+π2∆)−B(t)E [X(t)]

+ eB(t+π2∆)−B(t) ∂E [X(t)]

∂ϑ
+

∂

∂ϑ

∫ t+π2∆

t

eB(t+π2∆)−B(ν)a(ν)dν

+
∂[B(t+ π2∆) −B(t+ π1∆)]

∂ϑ
eB(t+π2∆)−B(t+π1∆) (X(t+ π1∆) − E [X(t+ π1∆)])

− eB(t+π2∆)−B(t+π1∆) ∂E [X(t+ π1∆)]

∂ϑ
. (6.13)

In the next step we express ∂
∂ϑ

E [X(t + π1∆)] in terms of E [X(t)] and ∂
∂ϑ

E [X(t)]. It follows
from the formula for the mean value (6.4) that

E [X(t)] = eB(t)−B(t+π1∆)E [X(t+ π1∆)] +

∫ t

t+π1∆

eB(t)−B(ν)a(ν)dν,

and, taking the derivative with respect to ϑ and performing some calculations, yields

∂E [X(t)]

∂ϑ
=
∂[B(t) −B(t+ π1∆)]

∂ϑ
E [X(t)]

− ∂[B(t) −B(t+ π1∆)]

∂ϑ

∫ t

t+π1∆

eB(t)−B(ν)a(ν)dν

+ eB(t)−B(t+π1∆) ∂E [X(t+ π1∆)]

∂ϑ
+

∂

∂ϑ

∫ t

t+π1∆

eB(t)−B(ν)a(ν)dν, (6.14)

where we used the relation

eB(t)−B(t+π1∆)E [X(t+ π1∆)] = E [X(t)] −
∫ t

t+π1∆

eB(t)−B(ν)a(ν)dν.

Extracting eB(t)−B(t+π1∆) ∂
∂ϑ

E [X(t+π1∆)] from the relation (6.14) and subsequently setting
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it to expression (6.13) leads to

∂E [X(t+ π2∆) | X(t+ π1∆)]

∂ϑ
=
∂[B(t+ π2∆) −B(t+ π1∆)]

∂ϑ
eB(t+π2∆)−B(t)E [X(t)]

+
∂

∂ϑ

∫ t+π2∆

t

eB(t+π2∆)−B(ν)a(ν)dν + eB(t+π2∆)−B(t) ∂

∂ϑ

∫ t

t+π1∆

eB(t)−B(ν)a(ν)dν

+
∂[B(t+ π2∆) −B(t+ π1∆)]

∂ϑ
eB(t+π2∆)−B(t+π1∆) (X(t+ π1∆) − E [X(t+ π1∆)])

−∂[B(t) −B(t+ π1∆)]

∂ϑ

∫ t

t+π1∆

eB(t+π2∆)−B(ν)a(ν)dν

=
∂a(t)

∂ϑ
(π2 − π1)∆ +

∂b(t)

∂ϑ
E [X(t)](π2 − π1)∆

+
∂b(t)

∂ϑ
(X(t+ π1∆) − E [X(t+ π1∆)]) (π2 − π1)∆ + o(∆)

=
∂f(t, x)

∂ϑ

∣

∣

∣

∣

x=E[X(t)]

+
∂b(t)

∂ϑ
(X(t+ π1∆) − E [X(t+ π1∆)]) (π2 − π1)∆ + o(∆).

The second equality results from the Taylor expansion of B(t)’s and integrals at ∆ = 0.
Evidently,

EX(t+π1∆)

[

∂E [X(t+ π2∆) | X(t+ π1∆)]

∂ϑ

∂E [X(t+ π2∆) | X(t+ π1∆)]

∂ϑT

]

=

∂f(t, x)

∂ϑ

∣

∣

∣

∣

x=E[X(t)]

∂f(t, x)

∂ϑT

∣

∣

∣

∣

x=E[X(t)]

(π2 − π1)
2∆2 +

∂b(t)

∂ϑ

∂b(t)

∂ϑT
V[X(t)](π2 − π1)

2∆2.

(6.15)

since V[X(t + π1∆)] = V[X(t)] + o(1). By setting (6.15) and (6.12) to (6.11), we obtain the
formula for I∞(t,ϑ∗).

Since the volatility function σ(t) depends solely on the parameter β, due to Lemma 7 the
only element of the Fisher information matrix potentially not continuous at the boundary
designs is {I (τ ,ϑ∗)}ββ . Consequently, we obtain the following result:

Theorem 5. If β is not an unknown parameter of stochastic differential equation (6.1), then an
optimal sampling design exists in the strong sense for the estimation of ϑ = ϑI (for any n and ϑ∗).

Proof. It follows from Lemma 6 that any neighbourhood of a boundary design τ 0 con-
tains a feasible design τ with I (τ ,ϑ∗) �L I (τ 0,ϑ

∗). If β is not an unknown parameter,
then Lemma 7 yields a continuity of the Fisher information matrix at the boundary, i.e.,
limτ→τ0

I (τ ,ϑ∗) = I (τ 0,ϑ
∗).

A technique used in the proof of Theorem 5 can also be applied when θ = (θT

E ,θ
T

V)T

with ∂
∂θV

E [X(t)] = ∂
∂βE [X(t)] = 0 and ∂

∂θE
V[X(t)] = 0. Then the Fisher information about

(X0,θ
T

E )T arising from the Schur complement (see formula (6.20)) is equal to the block of
the Fisher information matrix I (τ ,ϑ∗), which corresponds to (X0,θ

T

E )T. This block is,
however, continuous, and, henceforth, an optimal design for the estimation of (X0,θ

T

E )T

exists in the strong sense.
In a more general situation where the correlation between the observations is present,

the question of the existence of optimal sampling designs is a complex problem. The main
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reason is that the Fisher information matrix and the subsequent optimisation problems are
typically non-convex in the design points.

One possibility for verifying whether the optimal value is achieved by a convergence
to a boundary design is to focus on the local behaviour of the Fisher information matrix at
the boundary points. For this purpose we can use a modification of the traditional concept
of a directional derivative, which has turned out to be a useful tool in the theory of optimal
experimental designs with uncorrelated observations; see, e.g., [77].

The present setup, however, puts limitations on the choice of feasible directions. For
any boundary point τ 0 ∈ Tn \ Tn we can construct a feasible direction τ = (t1, . . . , tn)T

by taking ti = {τ 0}i + πi, i = 1, . . . , n, where πi = 0 if {τ 0}i > {τ 0}i−1, and taking πi >
πi−1 ≥ 0 if {τ 0}i = {τ 0}i−1 and ti > ti−1. We further require {τ 0}i + πi > {τ 0}i−1 + πi−1.
For the Fisher information matrix we can then write

∂I (τ 0,π,ϑ
∗) = lim

∆ց0

I (τ 0 + ∆π,ϑ∗) − lim∆ց0 I (τ 0 + ∆π,ϑ∗)

∆
. (6.16)

The vector τ 0 + ∆π has strictly increasing components and converges to τ 0 as ∆ → 0. In
addition, the directional derivative ∂I (τ 0,π,ϑ

∗) is positive homogeneous in π (see for-
mula (6.18) below), i.e., the condition {τ 0}i + πi > {τ 0}i−1 + πi−1 does not have to be
satisfied, since for any sufficiently small ∆, the vector τ 0 + ∆π is a vector of strictly in-
creasing sampling times. We can, therefore, impose a weaker requirement on the direction
π:

π =

{

0, {τ 0}i > {τ 0}i−1

πi > πi−1, {τ 0}i = {τ 0}i−1
. (6.17)

The use of the directional derivative is obvious: if for any boundary point τ 0, there
exists a direction π in line with (6.17) such that the matrix ∂I (τ 0,π,ϑ

∗) is positive definite,
then the supremum information is not reached when we converge to the boundary Tn,
regardless of the choice of information function, or in other words, an optimal design exists
in the strong sense.

We can analogously take Φ[I (τ ,ϑ∗)] instead of I (τ ,ϑ∗) in the directional derivative
(6.16) if the information criterion is specified.

Let us assume for a while that the initial valueX0 is a known quantity and that {τ 0}n <
T ∗. From Lemmata 4 and 7 we obtain that for π defined by (6.17), we have

lim
∆ց0

I (τ 0 + ∆π,ϑ∗) =

n
∑

i=1,πi=0

EX({τ0}i−1)

[

IX({τ0}i)|X({τ0}i−1)(ϑ
∗)
]

+

n
∑

i=1,πi 6=0

O({τ 0}i,ϑ
∗),

where X(t0) = X(0). Next, if πi 6= 0, then {τ 0}i = {τ 0}i−1 and, for any ∆ sufficiently
small, we get EX({τ0}i−1+πi−1∆)[IX({τ0}i+πi∆)|X({τ0}i−1+πi−1∆)(ϑ

∗)] = I∞(ti,ϑ
∗)(πi −

πi−1)∆ + O({τ 0}i,ϑ
∗) + o(∆). We can thus write

I (τ 0 + ∆π,ϑ∗) =

n
∑

i=1,πi=0

EX({τ0}i−1)

[

IX({τ0}i)|X({τ0}i−1)(ϑ
∗)
]

+

n
∑

i=1,πi 6=0

O({τ 0}i,ϑ
∗)

+
n
∑

i=1,πi 6=0

I∞({τ 0}i,ϑ
∗)(πi − πi−1)∆ + o(∆),
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where o(∆)/∆ → 0 as ∆ → 0. Consequently, for the directional derivative (6.16) we obtain

∂I (τ 0,π,ϑ
∗) =

n
∑

i=1,πi 6=0

I∞({τ 0}i,ϑ
∗)(πi − πi−1). (6.18)

Now we address the assumptions of the previous paragraph. Firstly, the assumption
{τ 0}n < T ∗ can be treated by the fact that

lim
∆→0

EX({τ0}i+πi−1∆)[IX({τ0}i+πi∆)|X({τ0}i+πi−1∆)(ϑ
∗)] =

lim
∆→0

EX({τ0}i−πi∆)[IX({τ0}i−πi−1∆)|X({τ0}i−πi∆)(ϑ
∗)], (6.19)

that is, we perform an infinitesimal perturbation in the “opposite direction”. Secondly, if
X0 is an unknown parameter, then the first row and the first column of I∞(t,ϑ∗) are zero,
and we therefore focus on the submatrix of I∞(t,ϑ∗) corresponding to parameters θ and
β. Finally, since the directional derivative is positive homogeneous in π, its rank does not
depend on π, and we can substitute the value of πi − πi−1 for any positive constant.

Theorem 6. Let {X(t)}t≥0 be a process governed by stochastic differential equation (6.1) and ϑ∗

be the prior guess at the true value of ϑ. If for a boundary design τ 0 ∈ Tn \ Tn, there exist a vector
α = α(τ 0) of non-negative constants such that the matrix

Z(τ 0,α,ϑ
∗) =

n
∑

i=1,{τ0}i={τ0}i−1

αi

(

{I∞({τ 0}i,ϑ
∗)}θθ {I∞({τ 0}i,ϑ

∗)}θβ

{I∞({τ 0}i,ϑ
∗)}βθ {I∞({τ 0}i,ϑ

∗)}ββ

)

is positive definite, then the supremum information is not attained when we converge to τ 0, regard-
less of the choice of information function.

Note that the matrix I∞(t,ϑ∗) is of a rank of at most two. The subadditivity of the
matrix rank (see, e.g., inequality 0.4.5(d) by Horn and Johnson [44]) implies that the rank of
Z(τ 0,α,ϑ

∗) is at most two times the cardinality of the set {i : {τ 0}i 6= {τ 0}i−1}. Theorem
6 is henceforth useful in the verification of the existence of optimal sampling designs in the
strong sense when dim(θ) = 1 (that is, dim(ϑ) = 3), where a convergence to a one-point
design can be checked; nevertheless, it might provide some guidance for higher dimensions
of θ.

We should conclude this section by giving a few points concerning the statistical prop-
erties of estimators. The limiting behaviour of the conditioned Fisher information matrix
EX(t−∆)

[

IX(t)|X(t−∆)(ϑ
∗)
]

given in Lemma 7 indicates that for ∆ → 0, the only nonzero
element of EX(t−∆)[IX(t)|X(t−∆)(ϑ

∗)] corresponds to parameter β. Consequently, with the
increasing number of observations at distinct sampling times from the experimental do-
main D, the amount of information about β increases above any limits, and so β can be
estimated consistently; see the paper by Crowder [15] for a detailed discussion of the con-
sistency of maximum likelihood estimators. This phenomenon has a natural explanation:
Unlike X0 or θ, the parameter β in equation (6.1) is connected with the differential of the
Wiener process {W (t)}t≥0, which has a nonzero quadratic variation and is characterized
by the fractal property known as Brownian scaling. An analogous formulation of this result
can be found in the literature on stochastic differential equations, see, e.g., the monograph
of Iacus [45] for a brief survey, but it is also noted in selected papers on inference in re-
gression problems with correlated observations; see, for instance, a Pázman’s early paper
[76].
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6.3 Ultimate efficiency of designs

The formulation of the ultimate efficiency proposed by Pázman [79] is applicable only if
limn→∞ Φ[I (τ (n),ϑ∗)] is finite. In our situation, where the parameter β is consistently
estimable, if {τ (n)}n≥m ∈ CD, then, for n → ∞, the Fisher information matrix I (τ (n),ϑ∗)
converges to a matrix I∞(ϑ∗) with onlym−1 eigenvalues bounded, and thus the measure
of information might tend to infinity as well.

Henceforth, we focus on the subparameter ϑI: in general, if ϑ = (ϑT

I ,ϑ
T

II)
T is a par-

tition of the unknown parameter and τ ∈ Tn, the Fisher information matrix II(τ ,ϑ
∗)

corresponding to ϑI is given by the Schur complement

II(τ ,ϑ
∗) = {I (τ ,ϑ∗)}ϑIϑI

− {I (τ ,ϑ∗)}ϑIϑII
{I (τ ,ϑ∗)}−ϑIIϑII

{I (τ ,ϑ∗)}ϑIIϑI
, (6.20)

where {I (τ ,ϑ∗)}−ϑIIϑII
is an arbitrary pseudo-inverse of {I (τ ,ϑ∗)}ϑIIϑII

. In addition,
on account of Theorem 3.1(b) by Li and Mathias [63], the Schur complements preserve
Loewner ordering; hence, we have the following result:

Proposition 50. If an optimal sampling design for the estimation of ϑ exists in the strong sense,
then an optimal sampling design for the estimation of ϑI exists in the strong sense.

In the sequel we extend the definition of the ultimate efficiency suggested by Pázman
[79].

Definition 27. Let {τ (n)}n≥m ∈ CD and let ϑ = (ϑT

I ,ϑ
T

II)
T be a partition of the unknown

parameter, for which
λmax ({I∞(ϑ∗)}ϑIϑI) <∞,

where λmax denotes the largest eigenvalue, and

{I (τ (n),ϑ∗)}ϑIϑII{I (τ (n),ϑ∗)}−ϑIIϑII
{I (τ (n),ϑ∗)}ϑIIϑI → 0dim(ϑI)×dim(ϑI), (6.21)

as n → ∞. Then, the (local) ultimate efficiency of a design τ ∈ Tn for the estimation of ϑI with
respect to an information function Φ, briefly, the (local) ultimate Φ-efficiency, is the ratio

ueff(τ | Φ,ϑ∗) =
Φ[II(τ ,ϑ

∗)]

Φ[{I∞(ϑ∗)}ϑIϑI
]
.

We should provide a little more of the discussion on the condition (6.21) in Definition
27. For any sequence of designs {τ (n)}n ∈ CD covering D, the Schur complement (6.20)
implies II(τ

(n),ϑ∗) �L {I (τ (n),ϑ∗)}ϑIϑI
→ {I∞(ϑ∗)}ϑIϑI

and, as a consequence of
Lemma 6, Φ[II(τ

(n),ϑ∗)] ≤ Φ[{I (τ (n),ϑ∗)}ϑIϑI ] ր Φ[{I∞(ϑ∗)]. On the other hand,
the condition (6.21) ensures that Φ[II(τ

(n),ϑ∗)] → Φ[{I∞(ϑ∗)}ϑIϑI
] as n → ∞. Hence,

ueff(τ | Φ,ϑ∗) ≤ 1 and ueff(τ (n) | Φ,ϑ∗) → 1 as n → ∞. The concept of the ultimate
efficiency is also properly defined for instances where the optimal designs do not exist,
because the condition (6.21) remains valid and {I (τ (n),ϑ∗)}ϑIϑI

is continuous on Tn.
From Lemmata 4 and 7 we obtain one of the main results:

Theorem 7. Let {X(t)}t≥0 be a process governed by stochastic differential equation (6.1), and let
{τ (n)}n≥m ∈ CD. Then

lim
n→∞

(

I (τ (n),ϑ∗) − I∞(ϑ∗) −
n
∑

i=2

O(ti,ϑ
∗)

)

= 0m×m,
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where

I∞(ϑ∗) =

∂E[X(T∗)]
∂ϑ

∂E[X(T∗)]

∂ϑT

V[X(T∗)]

∣

∣

∣

∣

∣

ϑ∗

+
1

2

∂ lnV[X(T∗)]

∂ϑ

∂ lnV[X(T∗)]

∂ϑT

∣

∣

∣

∣

∣

ϑ∗

+

∫ T∗

T∗

I∞(t,ϑ∗)dt,

(6.22)
and I∞(t,ϑ∗) and O(t,ϑ∗) are defined in Lemma 7.

Since the parameter β is consistently estimable, using the previous theorem we can, in
line with Definition 27, compute the ultimate Φ-efficiency of designs for parameter subvec-
tor ϑI = (X0,θ

T)T.

6.4 Ornstein-Uhlenbeck type processes

In the previous sections we presented an analysis of a generalised form of the Ornstein-
Uhlenbeck process described by stochastic differential equation (6.1), which enables us to
evaluate the quality of the sampling designs. A reasonable question is whether we can also
use the results for processes other than those governed by equation (6.1).

The motivation comes from the Fisher-Neymann factorization theorem; see, for in-
stance, Theorem 6.5 in [61]. More precisely, if we apply a sufficient statistic to the mea-
surements, then the Fisher information matrix remains unchanged. Henceforth, we can
define the following class of stochastic differential equations.

Definition 28. Let µθβ(t, y) and γβ(t, y) be sufficiently smooth, and let a process {Y (t)}t≥0 be
governed by the stochastic differential equation

dY (t) = µθ,β(t, Y (t))dt+ γβ(t, Y (t))dW (t).

If there exist sufficiently smooth functions aθ,β(t), bθ,β(t), σβ(t) and ϕ(t, y), where ϕ is bijection
in y and ∂ϕ(t,y)

∂ϑ
= 0m for all t ≥ 0 and y ∈ R, such that the process {X(t)}t≥0 = {ϕ(t, Y (t))}t≥0

is governed by the equation

dX(t) = [aθ,β(t) + bθ,β(t)X(t)]dt+ σβ(t)dW (t),

then we say that the process {Y (t)}≥0 is an Ornstein-Uhlenbeck type process with associated coef-
ficients a(t), b(t) and σ(t). We denote this fact by {Y (t)} ∈ OUa(t),b(t),σ(t).

A candidate for the desired sufficient statistic, which transforms the volatility of the
original process to the volatility of the desired form, is

ϕ(t, y) =

∫

σ(t)

γ(t, y)
dy.

The condition that ∂ϕ(t,y)
∂ϑ

= 0m for all t ≥ 0 and y ∈ R might not be easy to verify in ad-
vance, because we do not know the form of σ(t). Nonetheless, if we can write the diffusion
term in the separable form γ(t, y) = σ(t)g(t, y), where ∂g(t,y)

∂ϑ
= 0m for all t ≥ 0 and y ∈ R,

then ϕ is a sufficient statistic. We remark that ϕ depends on a reciprocal of γ(t, y); thus we
might need to impose further positivity conditions on the domain interior of Y (t) for all t,
which is outside the scope of the presented paper.

In the sequel we propose a way to verify whether a given process is of the Ornstein-
Uhlenbeck type. Let ψ(t, y) be the inverse function of ϕ(t, y), that is, ψ(t, ϕ(t, y)) = y. Then
{Y (t)}t≥0 = {ψ(t,X(t))}t≥0. Itō’s lemma implies

∂ψ

∂t

∣

∣

∣

∣

x=ϕ(t,y)

+
∂ψ

∂x

∣

∣

∣

∣

x=ϕ(t,y)

f(t, ϕ(t, y)) +
1

2

∂2ψ

∂x2

∣

∣

∣

∣

x=ϕ(t,y)

σ2(t) = µ(t, y). (6.23)
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By setting the relations for inverse functions

∂ψ

∂t

∣

∣

∣

∣

x=ϕ(t,y)

= −∂ϕ
∂t
/
∂ϕ

∂y
,
∂ψ

∂x

∣

∣

∣

∣

x=ϕ(t,y)

= 1/
∂ϕ

∂y
,
∂2ψ

∂x2

∣

∣

∣

∣

x=ϕ(t,y)

= −∂
2ϕ

∂y2
/

(

∂ϕ

∂y

)3

.

to equation (6.23), we obtain the following theorem:

Theorem 8. Let the process {Y (t)}t≥0 be driven by the stochastic differential equation

dY (t) = µ(t, Y (t))dt+ σ(t)g(t, Y (t))dW (t),

where the functions µ(t, y) and g(t, y) are sufficiently smooth, and ∂g(t,y)
∂θ

= 0 for all t ≥ 0 and
y ∈ R. If the condition

d

dt

∫

dy

g(t, y)
= a(t) + b(t)

∫

dy

g(t, y)
+

1

2
σ2(t)

∂g(t, y)

∂y
− µ(t, y)

g(t, y)
(6.24)

is satisfied for some functions aθ,β(t) and bθ,β(t), then {Y (t)}t≥0 ∈ OUaθ,β(t),bθ,β(t),σβ(t).

In some instances we can consider a process governed by an autonomous stochastic
differential equation of the form

dY (t) = µθ,β(Y (t))dt+ σβg(Y (t))dW (t), (6.25)

where the structure of the drift function µ(y) is usually based on an essential theory in the
given research field. On the contrary, the choice of g(y) might be artificial; we can choose
a diffusion that fits some arrangements. By a differentiation of equation (6.24) with respect
to y, we get

Corollary 1. Let the process {Y (t)}t≥0 ∈ OUaθ,β ,bθ,β ,σβ
be driven by the stochastic differential

equation (6.25) and let µ(y) be given. Then g(y) solves the ordinary differential equation
(

b− ∂µ(y)

∂y

)

g(y) + µ(y)
∂g(y)

∂y
+

1

2
σ2g2(y)

∂2g(y)

∂y2
= 0.

If the solution g(y) at least approximately corresponds to the experimental setting, we
can use the proposed methodology for an assessment of the design’s quality. A practical
demonstration is presented in the next section.

6.5 Example: Gompertz model of tumour growth

Tumour growth models play an important role in therapeutic guidance. Gompertz [36]
proposed in his pioneering paper a growth model, which became the basis for many studies
in cancer research. Various modifications of this growth law have been introduced; we
refer the reader to Norton [72] and Speer et al. [100] for a brief survey. Although the work
of Cameron [10] demonstrates that the Gompertz model is not the best choice for breast
cancer, it seems to fit the data for multiple myeloma well; see Sullivan and Salmon [102].

In the Gompertz growth model the expected size of the tumour Yθ1,θ2
(t) is the solution

to the ordinary differential equation

dY (t)

dt
= θ2Y (t) − θ1Y (t) lnY (t), Y (0) = Y0 known, (6.26)
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where the growth deceleration factor θ1 and the intrinsic growth rate θ2 are unknown pa-
rameters of interest, and the initial size Y0 is usually obtained from a first-time detection.
The solution to equation (6.26) is known in the explicit closed form

Yθ1,θ2
(t) = ee−θ1t ln Y0+(1−e−θ1t)

θ2
θ1 , (6.27)

which might be a factor explaining its popularity in applications.
To improve the quality of the statistical inference, it is important to choose a proper

experimental design. Locally D-optimal designs for model (6.26) were studied by Li [64],
who assumed that the observations Ỹij satisfy the regression model

Ỹij = Yθ1,θ2
(ti) + εij , i = 1, . . . , n, j = 1, . . . , ki.

Here, Ỹij are the observations of the tumour size; ti’s are the design times at which we
perform ki replications; and εij ’s are independent homoscedastic errors.

In this section we consider a variant of the Gompertz growth model, where the size of
the tumour {Y (t)}t≥0 is described by the stochastic differential equation

dY (t) = [θ2Y (t) − θ1Y (t) lnY (t)]dt+ βY (t)dW (t), Y (0) = Y0 known, (6.28)

see Lo [66] for more detail. Remark that the structure of the volatility in equation (6.28)
implies small fluctuations in the tumour size for small tumours, but, to the contrary, if the
size of the tumour is large, then the fluctuations in the size of the tumour are large, too.

Compared to the model of Li [64], for the process {Y (t)}t≥0 governed by equation (6.28),
it has no point to replicate the observations, and so the amount of information about the
parameters might be limited.

If we define {X(t)}t≥0 = {lnY (t)}t≥0, then {X(t)}t≥0 solves

dX(t) =

(

θ2 −
1

2
β2 − θ1X(t)

)

dt+ βdW (t).

That is, the process {Y (t)}t≥0 is an Ornstein-Uhlenbeck type process with the associated
coefficients

aθ2,β(t) = θ2 −
1

2
β2, bθ1

(t) = −θ1 and σβ(t) = β.

By setting θ = (θ1, θ2)
T = ϑI, we get the asymptotic Fisher information matrix for θ

{I∞(ϑ∗)}θθ =
∂E[X(T∗)]

∂θ

∂E[X(T∗)]
∂θ

V[X(T∗)]
+
∂ lnV[X(T∗)]

∂θ

∂ lnV[X(T∗)]

∂θ

+
1

β2

∫ T∗

T∗

(

E2[X(t)] + V[X(t)] −E [X(t)]
−E [X(t)] 1

)

dt,

where E [X(t)] = e−θ1t lnY0 + 1
θ1

(θ2 − 1
2β

2)(1 − e−θ1t), V[X(t)] = β2

2θ1
(1 − e−2θ1t). We note

that with the exception of the information contained in the first observation (which is zero
if T∗ → 0), the asymptotic information depends only on the mean value and the variance
of the process.

Figure 6.1 depicts the dependence of the ultimate efficiency of an equidistant n-point
design on the number of design points. In this example we consider D = [1, 2] and designs
with t1 = 1 and tn = 2, and two different prior values of θ1, θ2 and β. By comparing the
illustrative results (cf. E-optimality), it is evident that the nonlinearity of the regression



6. ULTIMATE EFFICIENCY OF EXPERIMENTAL DESIGNS FOR OU TYPE PROCESSES 61

3 5 7 9 11 13 15
0

0.2

0.4

0.6

0.8

1

Number of design points

U
lti

m
at

e
ef

fi
ci

en
cy

a) θ∗
1 = 3, θ∗

2 = 1 ,β∗
= 1

3 5 7 9 11 13 15
0

0.2

0.4

0.6

0.8

1

Number of design points

U
lti

m
at

e
ef

fi
ci

en
cy

b) θ∗
1 = 1, θ∗

2 = 1, β∗
= 3

Figure 6.1. Ultimate efficiencies of equidistant n-point designs in experimental domain D = [1, 2] with t1 = 1,
tn = 2, Y0 = 1 and different prior estimates θ∗

1
, θ∗

2
and β∗. We consider the D-optimality criterion (——),

E-optimality criterion (- - -) and A-optimality criterion (— —).

model makes the ultimate efficiency sensitive to the choice of the information function and
prior guess at the true value of the unknown parameters.

The prior estimates of the true values of parameters θ1 and θ2 required for local lin-
earization could be obtained from the previous experimental data by estimating, for in-
stance, multiresponse regression models, which capture the relations between the estimates
and different physiological factors.



Chapter 7

On the information contained in the
trajectory of a process governed by a

stochastic differential equation

Consider a general situation, where we observe an Itō process {X(t)}t≥0 described by the
stochastic differential equation

dX(t) = fθ,β(t,X(t))dt+ σβ(t,X(t))dW (t). (7.1)

We shall assume that there exists at least a weak solution to (7.1), its transition density
kernel p(x, s | y, t) = ∂

∂x Pr[X(t + s) < x | X(t) = y] and its first and second derivatives
with respect to the unknown vector parameter ϑ = (θT, β)T are right semi-continuous
at s = 0 and integrable in y with respect to the probability measure µ(A) =

∫

A
p(z, t |

X(0), 0)dz. We further require the transition density to satisfy usual regularity conditions
given in Proposition 11. Such regularity conditions can be verified by using prior estimates
of solutions in the theory of partial differential equations, which is far above the scope of
this thesis.

In Chapter 6, where we used the concept of ultimate efficiency to assess the quality
of designs, we restricted ourselves to linear Itō stochastic differential equations. The key
was the statement of Lemma 4. In general, evaluation of the Fisher information for a pro-
cess driven by the more general stochastic differential equation (7.1) is computationally
challenging, because set of instances with explicit closed form transition densities is lim-
ited (except Ornstein-Uhlenbeck processes this includes, for instance, the Feller square root
process [27] described by dX(t) = θ1[θ2 −X(t)]dt+ β

√

X(t)dW (t)).
Besides the naive discretisation method also known as Euler method, which might not

perform ver well [65, 58], some authors developed more advanced approximate (pseudo-
likelihood) techniques for maximum likelihood estimation (proxies for densities or like-
lihood functions directly), of which we highlight Elerian’s method [21] and Aït-Sahalia’s
method [1, 2]. While the approximate methods give reasonable results for estimation, they
might be sensitive to the guess at the true value of the unknown parameters; see, e. g., [58].

Consequently, for computation of the Fisher information matrix for processes governed
by (7.1) we have to usually use greedy numerical procedures for solving the Kolmogorov’s
forward equation and for computation of its derivatives with respect to the unknown vec-
tor parameter at a prescribed point. This gives a strong argument for the use of the ultimate
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efficiency in deciding whether we need to employ a battery of (thanks to nonlinearity and
nonconvexity usually, again, greedy) optimisation methods.

In this chapter we outline further ideas in evaluating of the amount of information
contained in a trajectory of a process driven by the stochastic differential equation (7.1).

7.1 Limiting behaviour of the solution to the Kolmogorov’s equation

Let p(t, x) = ∂
∂x Pr[X(t) < x] be a solution to the initial problem (1.10), and let us denote

σ2(t, x)/2 = D(t, x), so that we use the conventional notation.
The main problem with the Kolmogorov’s forward equation is the singularity at the

initial time – the Dirac delta function. Using the infinitesimal generator [73] of the process
described by (7.1), we can write the solution in the integral form as follows:

∂p

∂t
(t, x) =

∫

ξ∈R

(

f(t, ξ)
∂

∂x
+D(t, ξ)

∂2

∂x2

)

δ(x− ξ)p(t, ξ)dξ.

By setting the well-known form for the Dirac delta function δ(x − ξ) =
∫

i∞

−i∞
1

2πi

ez(ξ−x)dz,
where i denotes the imaginary unit, and by exploiting properties of exponential function,
we get

p(t+ ∆, x) =

∫

ξ∈R

∫

i∞

−i∞

1

2πi
exp

{

∆

(

−z x− ξ

∆
+ zf(t, ξ) + z2D(t, ξ)

)}

p(t, ξ)dzdξ

+ o(∆).

Using the transform w = z/i, some algebraic manipulations yield

p(t+ ∆, x) =

∫

ξ∈R





∫

w∈R

√

2D(t, ξ)∆√
2π

exp







−
[

w + i

x−ξ
∆ − f(t, ξ)

2D(t, ξ)

]2

D(t, ξ)∆







dw





× 1
√

2π[2D(t, ξ)∆]
exp

{

− [x− (ξ + f(t, ξ)∆)]2

2[2D(t, ξ)∆]

}

p(t, ξ)dξ + o(∆).

The integral
∫

w∈R
. . . dw is equal to 1, hence, by setting 2D(t, ξ) = σ2(t, ξ) we can write

p(t+ ∆, x) =

∫

ξ∈R

Ψ
[

x; ξ + f(t, ξ)∆;σ2(t, ξ)∆
]

p(t, ξ)dξ + o(∆)

=

∫

ξ∈R

(

Ψ
[

x; ξ + f(t, ξ)∆;σ2(t, ξ)∆
]

+ o(∆)
)

p(t, ξ)dξ,

where Ψ[·;µ; υ2] is the probability density function of a Gaussian random variable with the
mean µ and variance υ2.

Consequently, we obtain

p(x,∆ | y, t) = Ψ
[

x; y + f(t, y)∆;σ2(t, y)∆
]

+ o(∆). (7.2)
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7.2 Ultimate information

Due to assumptions on regularity of transition density of the process given by equation
(7.1) and semi-continuity of its derivatives, we obtain that

IX(t+∆)|X(t)(ϑ
∗) =

∂f(t,X(t))
∂ϑ

∂f(t,X(t))

∂ϑT

σ2(t,X(t))

∣

∣

∣

∣

∣

ϑ∗

∆ + o(∆)

+
1

2

∂

∂ϑ
lnσ2(t,X(t))

∂

∂ϑT
lnσ2(t,X(t))

∣

∣

∣

∣

ϑ∗

.

Conjecture 1. Let {X(t)}t≥0 be a process governed by stochastic differential equation (7.1) satis-
fying the assumptions given thereafter, and let {τ (n)}n≥m ∈ CD. Then

lim
n→∞

(

I (τ (n),ϑ∗) − I∞(ϑ∗) −
n
∑

i=2

O(ti,ϑ
∗)

)

= 0m×m,

where

I∞(ϑ∗) = IX(t1)|X(0)(ϑ) +

∫ T∗

T∗

EX(t)

[

∂fϑ(t,X(t))
∂ϑ

∂fϑ(t,X(t))

∂ϑT

σ2
β(t,X(t))

∣

∣

∣

∣

∣

ϑ∗

]

dt,

and

O(t,ϑ∗) =
1

2
EX(t)

[

∂

∂ϑ
lnσ2

β(t,X(t))
∂

∂ϑT
lnσ2

β(t,X(t))

∣

∣

∣

∣

ϑ∗

]

.

Note that by setting f(t, x) = a(t) + b(t)x and σ(t, x) = σ(t), Theorem 1 directly yields
the result of Theorem 7.

In more common situations, the difficulty is, again, that it is not easy to find the dis-
tribution of X(t) explicitly. Nevertheless, given the prior guess ϑ∗ at the true value of the
unknown parameter, numerical evaluation of the ultimate information in Theorem 1 is not
complicated.



Chapter 8

Relation of the results with recent
publications

In this chapter we point out the relation between the results of Chapter 6 and recent publi-
cations.

8.1 Concerning the existence of optimal designs

In Chapter 3 we explained that the property of “present simple” defined by Sack and
Ylvisaker [92] yields continuity of the Fisher information matrix. Continuity of the Fisher
information matrix is the sufficient condition in general, since, using the technique of
Lemma 4, we can write

IX(τ1),X(τ2) = IX(τ1) + EX(τ1)[IX(τ2)|X(τ1)] �L IX(τ1),

and if τ 2 → τ 0 ⊆ τ 1, then the continuity gives a convergence of EX(τ1)[IX(τ2)|X(τ1)]
to zero matrix. What Sacks and Ylvisaker did was that rewrote the continuity condition
into the language of functional spaces, which fitted their theory based on the reproducing
kernel Hilbert spaces.

Chapter 6 revealed that for a stochastic differential equation (6.1), all the elements of the
corresponding Fisher information matrix are continuous except the diagonal entry linked
to the nuisance parameter β. Consequently, Theorem 5 and the discussion thereafter clarify
the existence of optimal designs in the papers of Harman and Štulajter [39, 40], Harman [37]
and Lacko [59], who took the parameter common for mean and variance as known. We can,
however, move even further to stationary processes...

Consider the non-stationary Ornstein-Uhlenbeck process {X(t)}t≥0 described by the
well known equation dX(t) = θ1(θ2 − X(t)) + βdW (t), that is, a process with the drift
f(t, x) = f(x) = θ1(θ2 − x) and constant volatility σ(t) ≡ β. If the value of parameter β
is known, according to Theorem 5, a locally optimal design exists regardless of the choice
of information function. Note that the lower boundary T∗ of the experimental domain is
not specified (only positivity is required), so the same properties hold when T∗ → ∞, i.e.,
when {X(t)}t≥0 is a stationary Ornstein-Uhlenbeck process, where, for any t0 < t, we have
E [X(t)] = θ2, E [X(t) | X(t0)] = e−θ1(t−t0)X(t0) + (1 − e−θ1(t−t0))θ2, V[X(t)] = β2/2θ1,
V[X(t) | X(t0)] = β2(1 − e−2θ1(t−t0))/2θ1 and C[X(t),X(t0)] = β2e−2θ1(t−t0)/2θ1. Actually,
the stationary Ornstein-Uhlenbeck process is again a Gaussian Markov process; henceforth,
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by using Lemma 4 in combination with the idea of Lemma 7, it is not hard to prove the con-
tinuity of the Fisher information matrix at the boundary points. Consequently, for the sta-
tionary Ornstein-Uhlenbeck process, if β is known, then there exists an optimal sampling
design.

Now, let β be in the role of an unknown parameter of the non-stationary Ornstein-
Uhlenbeck process. Obviously, {I∞(t,ϑ∗)}ββ = 0, {I∞(t,ϑ∗)}θβ = {I∞(t,ϑ∗)}T

βθ = 02,
and thus the matrix Z(τ 0,α,ϑ

∗) defined in Theorem 6 is singular for any α, ϑ∗ and, what
is important, for any τ 0, which indicates potential problems with the existence of optimal
sampling designs. Now, we investigate the behaviour of the Fisher information matrix for
some T∗ ≤ t1 < td < t < tu ≤ T ∗ when t converges to td or tu. It follows from Lemma 7
that we need to show the matrix inequality

EX(td)[IX(t)|X(td)(ϑ
∗)] + EX(t)[IX(tu)|X(t)(ϑ

∗)]

− EX(td)[IX(tu)|X(td)(ϑ
∗)] −

(

03×3 03

0
T

3
1
2

)

max
t∈{td,tu}

(

∂ lnσ2(t)

∂β

)2

�L 04×4 (8.1)

for some t. Since V[X(t+s) | X(t)] = β2

2θ1
(1−e−2θ1s), after some algebraic manipulation, we

can show that ( ∂
∂β lnV[X(t) | X(td)])

2 = ( ∂
∂β lnV[X(tu) | X(t)])2 = ( ∂

∂β lnσ2(t))2 = 2/β.
Henceforth, the diagonal entry of the matrix obtained on the left-hand side of the inequality
(8.1) that corresponds to β is zero, and if the matrix is non-negative definite, then the last
column and the last row also have to be zero vectors for some t between td and tu. From
the fact that β is not present in the expectation of X(t) (cf. (6.4)), it is not hard to find a
necessary condition for the existence of a locally optimal design in the strong sense

∂

∂θ1
(lnV[X(t) | X(td)] + lnV[X(tu) | X(t)] − lnV[X(tu) | X(td)]) = 0, td < t < tu,

which is satisfied if and only if t equals td or tu for any td and tu (which are not feasible).
Consequently, for the non-stationary Ornstein-Uhlenbeck process (6.3), the optimal design
in the case of estimating (X0, θ1, θ2, β)T does not exist in the stronger sense. Additionally,
the value of T∗ was not specified, and thus, for T∗ → ∞, the same result also holds true
for the stationary Ornstein-Uhlenbeck process. We can summarise that if the volatility
parameter of the stationary and nonstationary Ornstein-Uhlenbeck processes is unknown,
one has to verify the existence of an optimal sampling design for each selected optimality
criterion separately.

The discussion of existence of optimal designs given above gives a complementary view
of the results of Zagoraiou and Antognini [110], whose assumption that β2/2θ1 stands for
a single parameter leads to the situation when an optimal design for the estimation of θ1
does not exist (although their Fisher information matrix is not proper). The restriction
β2/2θ1 causes a transition of the discontinuity of the Fisher information matrix in σ2 also to
θ1. The focal point here is that for continuous processes, the properties of optimal designs
are sensitive to the choice of parametrisation, especially if unknown parameters appear in
the covariance structure.

8.2 Information matrices

Similarly to the form of the Fisher information matrix of Harman and Štulajter [39] for
the processes with product covariance structures, Lemma 4 writes the Fisher information
matrix for the Markov processes in an additive form with each summand depending on
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two subsequent sampling times. Of course, both forms of the Fisher information matrices
cover different areas of application.

Nonetheless, Lemma 4 might be useful also in instances with product covariance struc-
ture, especially when the unknown parameters are situated also in the covariance func-
tion. A typical example is the non-stationary Ornstein-Uhlenbeck process dX(t) = θ1(θ2 −
X(t)) + βdW (t), where the covariance structure is of the product form. If θ2 and σ2 are the
only unknown parameters, then the use of the formula of Harman and Štulajter is straight-
forward, cf. [39]. On the other hand, when θ1 is an unknown parameter too, then the
Fisher information matrix is more complicated, where Lemma 4 yields more comfortable
formulas. After some effort, we are able to write the Fisher information matrix for the non-
stationary Ornstein-Uhlenbeck process in terms of the first sampling time and differences
between sampling times, which is very popular for stationary processes; see, e.g., [53].



Resumé

Úvod

Mnohé javy, ktorých vlastnosti sú predmetom experimentálneho bádania, majú dynam-
ický, evolučný charakter. V mnohých vedných oblastiach ako fyzika, biológia, medicína,
inžinierstvo ale aj v spoločenskovedných disciplínach môžeme charakter správania sa skú-
manej veličiny popísat’ diferenciálnymi rovnicami.

Napriek tomu, že charakterizácia mnohých fundamentálnych zákonov dobre aprox-
imuje realitu, teoretické a pozorované skutočné hodnoty sa vždy odlišujú, pričom túto
odlišnost’ pripisujeme nepozorovatel’ným náhodným chybám. Preto neznáme vlastnosti
(parametre diferenciálnych rovníc) odhadujeme.

V štatistike existujú dva principiálne odlišné spôsoby ako uchopit’ náhodnost’ pozo-
rovaných hodnôt. Nech L je zákon popisujúci stav veličiny x(t) = xθ(t) v čase t v závislosti
od hodnoty vektora vlastností θ. V prvom, klasickom prístupe predpokladáme, že veličina
x(t) spĺňa predpísaný zákon presne a výsledné pozorovania X(ti) v časoch ti, i = 1, . . . , n,
sú potom výsledkom kontaminácie presných hodnôt x(ti) zväčša bielym šumom pripiso-
vanému chybe meracieho zariadenia, čiže

{

L
(

dkx(t)
dtk , dk−1x(t)

dtk−1 , . . . , dx(t)
dt , x(t), t,θ

)

= 0,

X(ti) = x(ti) + εi, i = 1, . . . , n.
(8.2)

Uvedený prístup možno nájst’ v mnohých tradičných publikáciách.
Druhý prístup integruje šum priamo do zákona tým, že predpokladá

L
(

dkX(t)

dtk
,
dk−1X(t)

dtk−1
, . . . ,

dX(t)

dt
,X(t), t,θ, “šum”

)

= 0. (8.3)

Na rigoróznu formuláciu prístupu (8.3) využívame terminológiu stochastického počtu, vid’
napríklad monografiu [73].

Základný rozdiel medzi situáciou popísanou v (8.2) a (8.3) spočíva v tom, že druhý
prístup generuje stochastický proces s korelovanými pozorovaniami, ktorý pozorujeme
presne, kým prvý prípad potláča prirodzenú vnútornú náhodnost’. Samozrejme, aj v pr-
vom prístupe je možné uvažovat’ koreláciu medzi pozorovaniami, táto by však bola umelá.

Ciele dizertačnej práce

Predložená dizertačná práca sa zaoberá vývojom metód navrhovania experimentov pre
procesy popísané Itōovymi stochastickými diferenciálnymi rovnicami (slabé riešenia) v
tvare

dX(t) = fθ,β(t,X(t))dt+ σβ(t,X(t))dW (t), X(0) = X0 (8.4)
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kde θ je vektor charakteristík procesu, ktorý je predmetom skúmania, β je parameter šumu
mimo sféry záujmu, X0 je neznáma ale pevná počiatočná hodnota a {W (t)}t≥0 je Wienerov
proces.

Stochastická diferenciálna rovnica (8.4) je pomerne všeobecná a uvedená oblast’ nebola
doposial’ systematicky analyzovaná a dostupná literatúra ponúka iba zopár publikácií za-
oberajúcich sa problematikou navrhovania experimentov pre procesy popísa(tel’)né stocha-
stickými diferenciálnymi rovnicami, napríklad [92, 53, 110, 39, 40, 37, 3, 26]. preto sa v
predloženej práci obmedzíme na jednoduchšie, lineárne rovnice v tvare

dX(t) = [aθ,β(t) + bθ,βX(t)]dt+ σβ(t)dW (t), (8.5)

čiže f(t, x) = a(t) + b(t)x a σ(t, x) = σ(t).
Ciel’om dizertačnej práce je ...

• ... študovat’ existenciu optimálnych návrhov experimentov pre procesy popísané
rovnicami v tvare (8.5): Dôkaz existencie optimálnej alokácie časov pozorovania pro-
cesu je fundamentálnou otázkou, nakol’ko z nej vyplýva opodstatnenost’ použitia
optimalizačných metód ako aj zmysel samotnej úlohy optimalizácie experimentu.
Najčastejším spôsobom, ako zodpovedat’ uvedenú otázku, je stanovenie podmienok
spojitosti Fisherovej informačnej matice na hranici množiny prípustných návrhov
Tn \ Tn; napríklad Sacks a Ylvisaker [92, 93] formulovali spojitost’ Fisherovej infor-
mačnej matice cez spojitost’ funkcionálnych priestorov, pričom sa odvolávali na vlast-
nosti Hilbertových priestorov s reprodukčnými jadrami. Vo väčšine publikácií, kde
optimálne návrhy existujú (napr. [53, 39, 40, 37] a iné), autori uvažujú iba neznáme
parametre strednej hodnoty. V prípadoch, kde je neznámy parameter situovaný aj v
kovariančnej štruktúre, dochádza už ku komplikáciám, vid’ [110].

• ... odvodit’ asymptotickú Fisherovu informačnú maticu: Vypočítat’ optimálne časy
pozorovania procesu s korelovanými pozorovaniami pri konečnom výbere je nekon-
vexný problém, a explicitné riešenia uvádza iba málo publikácií, napríklad [16, 53, 39,
40, 37]. Iní autori bud’ vyvíjali numerické metódy identifikácie optimálnych aloká-
cií [81], alebo sa snažili obíst’ náročnost’ uvedenej úlohy budovaním alternatívnych,
často asymptotických (v zmysle počtu pozorovaní) metód [92, 93, 94, 106, 107, 24, 111,
17]. V dizertačnej práci tiež obchádzame základnú optimalizačnú úlohu, a to tak, že
sa zameriavame na výpočet tzv. ultimátnej efektívnosti [79] (nomenklatúra [37]), kde
porovnávame informáciu získanú z konečného návrhu s informáciou, ktorú by sme
teoreticky získali pozorovaním celej trajektórie procesu. Ultimátna informácia má v
plánovaní experimentov dvojaké využitie: na jednej strane nám poskytuje obraz o
tom, do akej miery vyčerpávame totálnu dosiahnutel’nú informáciu a či má vôbec
význam optimalizovat’ experiment, a na strane druhej nám umožňuje určit’, či nák-
lady na d’alšie pozorovanie sú adekvátne eventuálnemu nárastu v množstve získanej
informácie [92].

• ... rozšírit’ výsledky získané pre lineárne stochastické diferenciálne rovnice v tvare
(8.5) na všeobecnejšie stochastické diferenciálne rovnice v tvare (8.4).

Motivácia: analýza neautonómneho nestacionárneho
Ornsteinovho-Uhlenbeckovho procesu

Uvažujme Itōov proces {X(t)}t≥0 popísaný stochastickou diferenciálnou rovnicou

dX(t) = κ(X̄ −X(t))dt+ σ(t)dW (t), (8.6)
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kde počiatočný stav X(0) = X0 a stacionárna stredná hodnota X̄ sú neznáme parame-
tre, κ > 0 je známa rýchlost’ konvergencie k stacionárnej strednej hodnote a σ(t) je až na
konštantný násobok známa polospojitá deterministická funkcia.

Použitím Itōovej lemy l’ahko ukážeme, že

E [X(t)] = e−κtX0 + (1 − e−κt)X̄,

čiže stredná hodnota procesu je lineárnou funkciou neznámych parametrov. Ak teda máme
návrh τ ∈ Tn o rozsahu n, potom pozorovania X(τ ) spĺňajú lineárny regresný model

X(τ ) = (e−κτ )X0 + (1n − e
−κτ )X̄ + ε(τ ) = F(τ )θ + ε(τ ), (8.7)

kde F(τ ) = (e−κτ ,1n − e
−κτ ) je matica návrhu, θ = (X0, X̄)T je vektor neznámych

parametrov a ε(τ ) = (εt1 , . . . , εtn
)T je vektor náhodných chýb taký, že

E [ε(τ )] = 0n and V[ε(τ )] = Σ(τ ). (8.8)

Ked’že proces {X(t)}t≥0 je gaussovský, pre výpočet informačnej matice potrebujeme
charakterizovat’ aj druhé momenty pozorovaní.

Lema 1. Majme vektor pozorovaní X(τ ), τ ∈ Tn, potom ij-tý prvok, i ≤ j, kovariančnej matice
Σ(τ ) definovanej v (8.8) má tvar

{Σ(τ )}ij = u(ti)v(tj), kde

u(t) = e−κt

∫ t

0

e2κνσ2(ν)dν a

v(t) = e−κt.

Lema 2. Kovariančná matica Σ(τ ) definovaná v leme 1 je kladne definitná pre každé τ ∈ Tn,
n ≥ 2.

Z lemy 1 vyplýva, že proces popísaný rovnicou (8.6) má súčinovú kovariančnú štruk-
túru. Použitím výsledku Harmana a Štulajtera [39] o súčinových kovariančných štruk-
túrach dostaneme Fisherovu informačnú maticu pre návrh s rozsahom n:

I (τ ) =

(

e−2κt1

V[X(t1)]
e−κt1 (1−e−κt1 )

V[X(t1)]
e−κt1 (1−e−κt1 )

V[X(t1)]
(1−e−κt1 )2

V[D(t1)]
+ S(τ )

)

,

kde

S(τ ) =

n
∑

i=2

(eκti − eκti−1)2

e2κtiV[X(ti)] − e2κti−1V[X(ti−1)]
=

n
∑

i=2

(eκti − eκti−1)2
∫ ti

ti−1
e2κνσ2(ν)dν

.

V d’alšom ukážeme, že existuje optimálny návrh o rozsahu n z množiny Tn. V prvom
kroku ukazujeme, že optimálny návrh nie je koncentrovaný do jedného bodu.

Lema 3. Nech n ≥ 3 a τ 0 = tn1n. Potom existuje návrh τ 1 = (t1, . . . , tn)T ∈ Tn taký, že t1 < tn
a I (τ 1) �L I (τ 0).

Ked’že optimálny návrh je alokovaný vždy v aspoň dvoch odlišných bodoch, na dôkaz
existencie optimálnych návrhov v množine Tn stačí ukázat’, že opakovaným pozorovaním
nezískame žiadnu dodatočnú informáciu.
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Veta 1. V lineárnom modeli so strednou hodnotou (8.7) a kovariančnou štruktúrou uvedenou v
leme 1 vždy existuje Φ-optimálny návrh o rozsahu n, na množine Tn.

Veta 2. V lineárnom modeli so strednou hodnotou (8.7) a kovariančnou štruktúrou uvedenou v
leme 1, ak je funkcia σ(t) nerastúca, potom je optimálne položit’ t∗n = T ∗.

Veta 3. Asymptotická Fisherova informačná matica získaná pozorovaním procesu popísaného rovni-
cou (8.6) v každom čase na D je

I∞(T∗, T
∗) =

(

e−2κT∗

V[X(T∗)]
e−κT∗ (1−e−κT∗ )

V[X(T∗)]
e−κT∗ (1−e−κT∗ )

V[X(T∗)]
(1−e−κT∗ )2

V[X(T∗)]

)

+

(

0 0
0 1

)

κ2

∫ T∗

T∗

dν

σ2(ν)
.

Navyše, pre l’ubovol’ný návrh τ = (t1, . . . , tn)T ∈ Tn, kde T∗ ≤ t1 a tn ≤ T ∗, platí: i) S(τ ) ≤
S∞(T∗, T

∗), a ii) I (τ ) �L I∞(t1, t2) �L I∞(T∗, T
∗).

Z vety 3 vyplýva, že optimálne časy pozorovania procesu sú viac koncentrované v
oblastiach s nízkou úrovňou volatility, čo má zrejmú fyzikálnu interpretáciu, ktorú v práci
uvádzame spolu s príkladom.

Výsledky pre všeobecné lineárne stochastické diferenciálne rovnice

Model a jeho vlastnosti

Predpokladajme, že pozorujeme proces {X(t)}t≥0 popísaný lineárnou Itōovou stochastic-
kou diferenciálnou rovnicou v tvare

dX(t) = [aθ,β(t) + bθ,β(t)X(t)]dt+ σβ(t)dW (t) (8.9)

= fθ,β(t,X(t))dt+ σβ(t)dW (t),

X(0) = X0 ∈ R je fixné.

Naše základné predpoklady týkajúce sa modelu sú: existujú derivácie funkcií fθ,β(t, x)

a σβ(t) vzhl’adom na neznámy parameter ϑ = (X0,θ
T, β)T ∈ R×R

m−2×R, funkcie aθ,β(t),
∂aθ,β(t)

∂ϑ
, bθ,β(t), ∂bθ,β(t)

∂ϑ
, σβ(t) a σ2

β(t) sú integrovatel’né vzhl’adom na t na intervale [0, T ∗],
a σβ(t) je kladná takmer všade vzhl’adom na Lebesgueovú mieru na reálnej priamke.

Kl’účom ku mnohým odpovediam a dôkazom nasledujúcich tvrdení, ktoré práca dáva,
je fakt, že rovnica (8.9) generuje markovovský gaussovský proces. To nám umožní rozpísat’
Fisherovu informačnú maticu pre analýzy vel’mi vhodným spôsobom:

Lema 4. Nech {X(t)}t≥0 s pevným X(0) je ϑ-parametrizovaný markovský proces so spojitým
časom a gaussovskou prechodovou hustotou. Potom pre každý návrh τ ∈ Tn, Fisherova informačná
matica pre X(τ ) má tvar

I (τ ,ϑ∗) = IX(t1)|X(0)(ϑ
∗) +

n
∑

i=2

EX(ti−1)

[

IX(ti)|X(ti−1)(ϑ
∗)
]

,

kde IX(ti)|X(ti−1)(ϑ
∗) je Fisherova informačná matica pre X(ti) podmienené hodnotou X(ti−1) a

EX(ti−1)[·] je očakávanie vzhl’adom na náhodnú veličinu X(ti−1).

Lema 4 platí aj vo všeobecnejšej situácii, kedy prechodová hustota spĺňa tradičné pod-
mienky regularity, a to aj v prípadoch, kedy pozorujeme viacrozmerný stochastický proces.
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Základom pre hlbšiu analýzu procesu {X(t)}t≥0 z hl’adiska informácie sú jeho pravde-
podobnostné vlastnosti. Zrejme v každom čase tmôžeme sledovaný proces zapísat’ v tvare
X(t) | X(t0) = E [X(t) | X(t0)] + ε(t) | X(t0). Ak B(t) je l’ubovol’ná primitívna funkcia k
funkcii b(t), potom

Eθ,β [X(t) | X(t0)] = eBθ,β(t)−Bθ,β(t0)X(t0) +

∫ t

t0

eBθ,β(t)−Bθ,β(ν)aθ,β(ν)dν,

ε(t) | X(t0) =

∫ t

t0

eBθ,β(t)−Bθ,β(ν)σβ(ν)dW (ν)

a z Itōovej izometrie vyplýva

Vθ,β [X(t) | X(t0)] =

∫ t

t0

e2[Bθ,β(t)−Bθ,β(ν)]σ2
β(ν)dν.

Aby sme si utvorili celkový obraz o {X(t)}t≥0, dokázali sme nasledujúce pomocné tvrde-
nie:

Lema 5. Nech {X(t)}t≥0 je proces popísaný stochastickou diferenciálnou rovnicou (8.9). Potom
pre l’ubovol’né t1 a t2, t2 ≥ t1 ≥ 0,

Cθ,β [X(t1),X(t2)] = u(t1)v(t2), kde

uθ,β(t) = eBθ,β(t)

∫ t

0

e−2Bθ,β(ν)σ2
β(ν)dν,

vθ,β(t) = eBθ,β(t).

Čiže problém návrhu experimentu pre proces (8.9) sme pretransformovali na úlohu
návrhu experimentu pre gaussovský nelineárny regresný model

∀τ∈Tn
X(τ ) ∼ N

(

EX0,θ,β [X(τ )],Vθ,β [X(τ )]
)

Lema 6. Nech {X(t)}t≥0 je proces popísaný stochastickou diferenciálnou rovnicou (8.9) a ‖ · ‖ je
metrika na R

n. Pre každý návrh τ 0 ∈ Tn a δ > 0 existuje návrh τ ∈ Tn taký, že ‖τ 0 − τ‖ < δ a
I (τ ,ϑ∗) �L I (τ 0,ϑ

∗). Špeciálne, ak návrh τ 0 patrí do hraničnej množiny Tn \ Tn, potom τ 0

je dominovaný l’ubovol’ným návrhom τ ∈ Tn, kde t1 = {τ 0}1 a ti = {τ 0}i ak {τ 0}i > {τ 0}i−1.

Dôkaz lemy 6 je založený na markovovskosti procesu {X(t)}t≥0 a na skutočnosti, že
lim∆→0 Pr[X(t + ∆) = X(t)] = 1, a preto uvedený výsledok môžeme zovšeobecnit’ na
širšiu triedu procesov, podobne ako v prípade lemy 4.

Ked’že proces {X(t)}, ktorý rieši rovnicu (8.9), je gaussovský, Fisherova informačná
matica má tvar

I (τ ,ϑ∗) =

(

{I (τ ,ϑ∗)}ϑIϑI
{I (τ ,ϑ∗)}ϑIβ

{I (τ ,ϑ∗)}βϑI
{I (τ ,ϑ∗)}ββ

)

,

kde

{I (τ ,ϑ∗)}α1α2 =

(

∂E [X(τ )]

∂α1
V−1[X(τ )]

∂E [X(τ )]

∂αT

2

)

∣

∣

∣

∣

∣

ϑ∗

+
1

2
tr

{

V−1[X(τ )]
∂V[X(τ )]

∂α1
V−1[X(τ )]

∂V[X(τ )]

∂αT

2

}

∣

∣

∣

∣

∣

ϑ∗

(8.10)

a ϑ∗ je prvotný odhad skutočnej hodnoty neznámeho parametra [67].
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Veta 4. Ak je počiatočná hodnota X0 stochastickej diferenciálnej rovnice (8.9) jediným neznámym
parametrom, potom je optimálne položit’ t1 = T∗ bez ohl’adu na rozsah návrhu. Odpovedajúca
variancia odhadu je

V[X̂0] =

∫ T∗

0

e2[B(0)−B(ν)]σ2(ν)dν.

Dôležitým predpokladom pre platnost’ predchádzajúcej vety je absencia počiatočnej
hodnoty v koeficientoch stochastickej diferenciálnej rovnice.

Existencia lokálne optimálnych návrhov

Ťažkosti s existenciou optimálnych návrhov, a to nielen pre uvažovanú triedu procesov,
ale pre modely s korelovanými pozorovaniami vo všeobecnosti, vznikajú, ked’ Fisherova
informačná matica I (τ ,ϑ∗) nie je spojitá v hraničných bodoch Tn \ Tn. To zdôrazňuje
dôležitost’ asymptotických vlastností Fisherovej informačnej matice. Samozrejme, špeci-
fikáciou informačnej funkcie Φ, t. j., miera informácie je definovaná hodnotou Φ[I (τ ,ϑ∗)],
môžeme potlačit’ vplyv nespojitosti Fisherovej informačnej matice, preto sa zaoberáme
otázkou existencie optimálnych návrhov v “silnom zmysle”, čiže sa pýtame, či pre každý
bod z hraničnej množiny τ 0 ∈ Tn \ Tn existuje návrh τ ∈ Tn taký, že pre l’ubovol’nú
postupnost’ návrhov {τ (k)}k on Tn, kde limk→∞ τ (k) = τ 0, Fisherova informačná mat-
ica I (τ ,ϑ∗) loewnerovsky dominuje maticu limk→∞ I (τ (k),ϑ∗). To znamená, že ak je
splnená podmienka existencie optimálneho návrhu v silnom zmysle, potom existuje opti-
málny návrh bez ohl’adu na výber informačnej funkcie.

Pomocou lemy 4 môžeme preskúmat’ limitné vlastnosti Fisherovej informačnej matice
pre podkladovú stochastickú diferenciálnu rovnicu (8.9):

Lema 7. Nech {X(t)}t≥0 je proces popísaný stochastickou diferenciálnou rovnicou (8.9) a ϑ∗ je
prvotný odhad skutočnej hodnoty parametra ϑ. Potom, pre l’ubovol’né konštanty π1 and π2,

lim
∆→0

(

EX(t+π1∆)

[

IX(t+π2∆)|X(t+π1∆)(ϑ
∗)
]

− I∞(t,ϑ∗)(π2 − π1)∆ − O(t,ϑ∗)
)

= 0m×m,

kde

I∞(t,ϑ∗) =

∂fϑ(t,x)
∂ϑ

∣

∣

∣

x=E[X(t)]

∂fϑ(t,x)

∂ϑT

∣

∣

∣

x=E[X(t)]
+ ∂bϑ(t)

∂ϑ

∂bϑ(t)

∂ϑT Vϑ[X(t)]

σ2
β(t)

∣

∣

∣

∣

∣

ϑ∗

a

O(t,ϑ∗) =
1

2

∂ lnσ2
β(t)

∂ϑ

∂ lnσ2
β(t)

∂ϑT

∣

∣

∣

∣

∣

ϑ∗

.

Ked’že volatilita σ(t) závisí výhradne na parametri β, podl’a lemy 7 jediný prvok Fisher-
ovej informačnej matice, ktorý potenciálne nie je spojitý na hraničnej množine, je diagonál-
ny prvok {I (τ ,ϑ∗)}ββ . Preto platí nasledujúca veta:

Veta 5. Ak β nie je neznámy parameter stochastickej diferenciálnej rovnice (8.9), potom optimálny
návrh pre odhad parametra ϑ = ϑI existuje v silnom zmysle, a to pre každé n a ϑ∗.

Technika dôkazu vety 5 môže byt’ aplikovaná aj ked’ θ = (θT

E ,θ
T

V)T, kde ∂
∂θV

E [X(t)] =
∂

∂βE [X(t)] = 0 a ∂
∂θE

V[X(t)] = 0. Potom Fisherova informácia o (X0,θ
T

E )T vyplývajúca zo
Schurovho doplnku je rovná bloku Fisherovej informačnej matice I (τ ,ϑ∗) zodpovedajúcej
(X0,θ

T

E )T. Tento blok je však spojitý, a teda optimálny návrh pre odhad (X0,θ
T

E )T existuje
v silnom zmysle.
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Vo všeobecnejšej situácii, za predpokladu korelácie pozorovaní je otázka existencie op-
timálnych návrhov komplexný problém, a to hlavne z dôvodu nekonvexnosti informácie.

Jednou z možností ako preskúmat’, či sa supremálna informácia dosahuje pri konver-
gencii postupnosti návrhov k hraničnej množine, je zamerat’ sa na lokálne správanie sa
Fisherovej informácie na hraničnej množine Tn \ Tn. Na tento účel môžeme použit’ pojem
smerovej derivácie [77]. V oblasti navrhovania experimentov, pre konvexné množiny, pre ξ
a ζ dané je smerová derivácia (maticovej/skalárnej) funkcie h v bode ξ a smere ζ zvyčajne
definovaná ako

∂h(ξ, ζ − ξ) = lim
∆ց0

h[ξ + ∆(ζ − ξ)] − lim∆ց0 h[ξ + ∆(ζ − ξ)]

∆
.

Uvedená smerová derivácia je dodefinovaná pre inštancie, kedy funkcia h nie je spojitá v
bode ξ.

Predpoklady modelu všakdávajú určité obmedzenia na výber prípustných smerov. Pre
l’ubovol’ný hraničný bod τ 0 ∈ Tn \Tn skonštruujeme prípustný smer τ = (t1, . . . , tn)T tak,
že vezmeme ti = {τ 0}i + πi, i = 1, . . . , n, kde πi = 0 if {τ 0}i > {τ 0}i−1, a vezmeme πi >
πi−1 ≥ 0 ak {τ 0}i = {τ 0}i−1 a ti > ti−1. d’alej vyžadujeme, aby {τ 0}i+πi > {τ 0}i−1+πi−1.
Pre Fisherovu informačnú maticu potom môžeme definovat’

∂I (τ 0,π,ϑ
∗) = lim

∆ց0

I (τ 0 + ∆π,ϑ∗) − lim∆ց0 I (τ 0 + ∆π,ϑ∗)

∆
.

Vektor τ 0 + ∆π má ostro rastúce zložky a konverguje k τ 0 pre ∆ → 0. Navyše, smerová
derivácia ∂I (τ 0,π,ϑ

∗) je pozitívne homogénna v π, a preto podmienka {τ 0}i + πi >
{τ 0}i−1 +πi−1 nie je nevyhnutná, ked’že pre l’ubovol’ne malé ∆ sú zložky vektora τ 0 +∆π

ostro rastúce. Postačuje teda slabšia podmienka na výber smeru π:

π =

{

0, {τ 0}i > {τ 0}i−1

πi > πi−1, {τ 0}i = {τ 0}i−1
.

Využitím modifikovanej smerovej derivácie sme dokázali nasledujúcu vetu:

Veta 6. Nech {X(t)}t≥0 je proces popísaný stochastickou diferenciálnou rovnicou (8.9) a ϑ∗ je
prvotný odhad skutočnej hodnoty parametra ϑ. Ak pre hraničný návrh τ 0 ∈ Tn \ Tn existuje
vektor α = α(τ 0) nezáporných konštánt taký, že matica

Z(τ 0,α,ϑ
∗) =

n
∑

i=1,{τ0}i={τ0}i−1

αi

(

{I∞({τ 0}i,ϑ
∗)}θθ {I∞({τ 0}i,ϑ

∗)}θβ

{I∞({τ 0}i,ϑ
∗)}βθ {I∞({τ 0}i,ϑ

∗)}ββ

)

je kladne definitná, potom sa supremálna informácia nedosahuje, ked’ konvergujeme k τ 0, a to bez
ohl’adu na vol’bu informačnej funkcie.

Poznamenávame, že matica I∞(t,ϑ∗) má hodnost’ najviac dva. Zo subaditivity hod-
nosti matice ako funkcie vyplýva, že hodnost’ matice Z(τ 0,α,ϑ

∗) je najviac dvojnásobok
kardinality množiny {i : {τ 0}i 6= {τ 0}i−1}. Veta 6 je preto užitočná najmä v prípadoch,
kedy sa overuje existencia optimálnych návrhov v silnom zmysle a dim(θ) = 1 (dim(ϑ) =
3). Napriek tomu môže táto veta dat’ určité indikácie aj pre vyššie dimenzie parametra θ.

Ultimátna efektívnost’ návrhov

Definícia ultimátnej efektívnosti tak, ako je uvedená v článku [79] je aplikovatel’ná iba ak je
limn→∞ Φ[I (τ (n),ϑ∗)] konečná, čo v našej situácii, kde parameter β je konzistentne odhad-
nutel’ný, nemusí platit’. Preto sme sa zamerali na subparameter ϑI: Vo všeobecnosti, ak
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ϑ = (ϑT

I ,ϑ
T

II)
T je delenie parametra na dva subparametre a τ ∈ Tn, potom Fisherova infor-

mačná matica II(τ ,ϑ
∗) zodpovedajúca ϑI je daná Schurovým doplnkom

II(τ ,ϑ
∗) = {I (τ ,ϑ∗)}ϑIϑI

− {I (τ ,ϑ∗)}ϑIϑII
{I (τ ,ϑ∗)}−ϑIIϑII

{I (τ ,ϑ∗)}ϑIIϑI
,

kde {I (τ ,ϑ∗)}−ϑIIϑII
je l’ubovol’ná zovšeobecnená inverzia matice {I (τ ,ϑ∗)}ϑIIϑII

. Na-
vyše Schurov doplnok zachováva loewnerovske usporiadanie matíc [63], preto:

Tvrdenie 1. Ak optimálny návrh pre odhad parametra ϑ existuje v silnom zmysle, potom opti-
málny návrh pre odhad parametra ϑI tiež existuje v silnom zmysle.

Definícia 1 (Modifikácia definície ultimátnej informácie). Nech {τ (n)}n≥m ∈ CD a nech
ϑ = (ϑT

I ,ϑ
T

II)
T je rozdelenie neznámeho parametra, pre ktoré platí

λmax ({I∞(ϑ∗)}ϑIϑI
) <∞,

λmax označuje najväčšie vlastné číslo, a

{I (τ (n),ϑ∗)}ϑIϑII
{I (τ (n),ϑ∗)}−ϑIIϑII

{I (τ (n),ϑ∗)}ϑIIϑI
→ 0dim(ϑI)×dim(ϑI), (8.11)

ako n → ∞. Potom (lokálna) ultimátna efektívnost’ návrhu τ ∈ Tn pre odhad parametra ϑI

vzhl’adom na informačnú funkciu Φ, skrátene (lokálna) ultimátna Φ-efektívnost’, je pomer

ueff(τ | Φ,ϑ∗) =
Φ[II(τ ,ϑ

∗)]

Φ[{I∞(ϑ∗)}ϑIϑI ]
.

Z lemy 4 a lemy 7 sme dostali:

Veta 7. Nech {X(t)}t≥0 je proces popísaný stochastickou diferenciálnou rovnicou (8.9) a nech
{τ (n)}n≥m ∈ CD. Potom

lim
n→∞

(

I (τ (n),ϑ∗) − I∞(ϑ∗) −
n
∑

i=2

O(ti,ϑ
∗)

)

= 0m×m,

kde

I∞(ϑ∗) =

∂E[X(T∗)]
∂ϑ

∂E[X(T∗)]

∂ϑT

V[X(T∗)]

∣

∣

∣

∣

∣

ϑ∗

+
1

2

∂ lnV[X(T∗)]

∂ϑ

∂ lnV[X(T∗)]

∂ϑT

∣

∣

∣

∣

∣

ϑ∗

+

∫ T∗

T∗

I∞(t,ϑ∗)dt,

a I∞(t,ϑ∗) a O(t,ϑ∗) sú definované v leme 7.

Ked’že parameter β je konzistentne odhadnutel’ný, použitím predchádzajúcej vety a v
súlade s definíciou 1 vieme vypočítat’ ultimátnu Φ-efektívnost’ návrhov pre subparameter
ϑI = (X0,θ

T)T.

Procesy Ornsteinovho-Uhlenbeckovho typu

Predchádzajúce výsledky sa síce vzt’ahujú na lineárne stochastické diferenciálne rovnice,
otázkou však je možnost’ rozšírenia výsledkov aj na iné, nelineárne rovnice. Motiváciou tu
je hlavne Fisherova-Neymannova veta o faktorizácii o postačujúcich štatistikách, ktorá nás
doviedla k nasledujúcej definícii:
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Definícia 2. Nech µθβ(t, y) a γβ(t, y) sú dostatočne hladké funkciea nech proces {Y (t)}t≥0 je
popísaný stochastickou diferenciálnou rovnicou

dY (t) = µθ,β(t, Y (t))dt+ γβ(t, Y (t))dW (t).

Ak existujú dostatočne hladké funkcie aθ,β(t), bθ,β(t), σβ(t) a ϕ(t, y), kde ϕ je bijektívna v y a
∂ϕ(t,y)

∂ϑ
= 0m pre všetky t ≥ 0 a y ∈ R, také, že proces {X(t)}t≥0 = {ϕ(t, Y (t))}t≥0 je popísaný

rovnicou
dX(t) = [aθ,β(t) + bθ,β(t)X(t)]dt+ σβ(t)dW (t),

potom hovoríme, že proces {Y (t)}≥0 je Ornsteinovho-Uhlenbeckovho typu s asociovanými koefi-
cientmi a(t), b(t) a σ(t). Tento fakt označujeme symbolom {Y (t)} ∈ OUa(t),b(t),σ(t).

Veta 8. Nech {Y (t)}t≥0 je proces popísaný stochastickou diferenciálnou rovnicou

dY (t) = µ(t, Y (t))dt+ σ(t)g(t, Y (t))dW (t),

kde funkcie µ(t, y) and g(t, y) sú dostatočne hladké a ∂g(t,y)
∂θ

= 0 pre všetky t ≥ 0 a y ∈ R. Ak je
splnená podmienka

d

dt

∫

dy

g(t, y)
= a(t) + b(t)

∫

dy

g(t, y)
+

1

2
σ2(t)

∂g(t, y)

∂y
− µ(t, y)

g(t, y)

pre nejaké funkcie aθ,β(t) a bθ,β(t), potom {Y (t)}t≥0 ∈ OUaθ,β(t),bθ,β(t),σβ(t).

Dôsledok 1. Nech {Y (t)}t≥0 ∈ OUaθ,β ,bθ,β ,σβ
je proces popísaný stochastickou diferenciálnou

rovnicou
dY (t) = µθ,β(Y (t))dt+ σβg(Y (t))dW (t)

a nech µ(y) je dané. Potom g(y) rieši obyčajnú diferenciálnu rovnicu
(

b− ∂µ(y)

∂y

)

g(y) + µ(y)
∂g(y)

∂y
+

1

2
σ2g2(y)

∂2g(y)

∂y2
= 0.

Príklad aplikácie výsledkov na Gompertzovom rastovom modeli

V Gompertzovom rastovom modeli [36] je očakávaná vel’kost’ nádoru Yθ1,θ2
(t) riešením

obyčajnej diferenciálnej rovnice

dY (t)

dt
= θ2Y (t) − θ1Y (t) lnY (t), Y (0) = Y0 známe, (8.12)

kde faktor spomal’ujúci rast θ1 a vnútorná miera rastu θ2 sú neznáme parametre v sfére
záujmu, a počiatočná vel’kost’ Y0 je zvyčajne známa a získaná z prvej detekcie (pri poku-
soch z prvej infekcie). Riešenie rovnice (8.12) je známe v explicitnej uzavretej podobne:

Yθ1,θ2
(t) = ee−θ1t ln Y0+(1−e−θ1t)

θ2
θ1 , (8.13)

čo vysvetl’uje popularitu modelu v aplikáciách.
Lokálne D-optimálny návrh Gomperzovho modelu, kde očakávaná vel’kost’ nádoru

(8.13) je kontaminovaná homoskedastickým bielym šumom, bol analyzovaný v článku [64].
Gompertzov model je možné prepísat’ do stochastickej diferenciálnej rovnice nasle-

dovne [66]:

dY (t) = [θ2Y (t) − θ1Y (t) lnY (t)]dt+ βY (t)dW (t), Y (0) = Y0 známe. (8.14)
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Tu, čím väčší je nádor, tým kolísavejšia je jeho vel’kost’ a naopak.
Ak definujeme {X(t)}t≥0 = {lnY (t)}t≥0, potom {X(t)}t≥0 rieši stochastickú diferen-

ciálnu rovnicu

dX(t) =

(

θ2 −
1

2
β2 − θ1X(t)

)

dt+ βdW (t).

Čiže {Y (t)}t≥0 je proces Ornsteinovho-Uhlenbeckovho typu s asociovanými koeficientmi

aθ2,β(t) = θ2 −
1

2
β2, bθ1

(t) = −θ1 a σβ(t) = β.

Ak položíme θ = (θ1, θ2)
T = ϑI, dostaneme asymptotickú Fisherovu informačnú maticu

pre θ

{I∞(ϑ∗)}θθ =
∂E[X(T∗)]

∂θ

∂E[X(T∗)]
∂θ

V[X(T∗)]
+
∂ lnV[X(T∗)]

∂θ

∂ lnV[X(T∗)]

∂θ

+
1

β2

∫ T∗

T∗

(

E2[X(t)] + V[X(t)] −E [X(t)]
−E [X(t)] 1

)

dt,

kde E [X(t)] = e−θ1t lnY0 + 1
θ1

(θ2 − 1
2β

2)(1 − e−θ1t) a V[X(t)] = β2

2θ1
(1 − e−2θ1t).

Týmto sme získali všetky potrebné údaje pre výpočet ultimátnej efektívnosti návrhov.

Zovšeobecnenie výsledkov pre asymptotickú Fisherovu informačnú
maticu

Uvažujme všeobecnú situáciu, kedy pozorujeme Itōov proces {X(t)}t≥0 popísaný stocha-
stickou diferenciálnou rovnicou

dX(t) = fθ,β(t,X(t))dt+ σβ(t,X(t))dW (t). (8.15)

Predpokladáme, že existuje slabé riešenie rovnice (8.15), jeho prechodová hustota p(x, s |
y, t) = ∂

∂x Pr[X(t + s) < x | X(t) = y] a jej prvé a druhé derivácie vzhl’adom na neznámy
parameter ϑ = (θT, β)T sú polospojité sprava v bode s = 0 a integrovatel’né v y vzhl’adom
na pravdepodobnostnú mieru µ(A) =

∫

A
p(z, t | X(0), 0)dz. d’alej požadujeme, aby pre-

chodová hustota spĺňala obvyklé podmienky regularity.
Potom dostávame nasledujúcu hypotĂ c©zu:

Hypotéza 1. Nech {X(t)}t≥0 je proces popísaný stochastickou diferenciálnou rovnicou (8.15)
spĺňajúcou príslušné predpoklady a nech {τ (n)}n≥m ∈ CD. Potom

lim
n→∞

(

I (τ (n),ϑ∗) − I∞(ϑ∗) −
n
∑

i=2

O(ti,ϑ
∗)

)

= 0m×m,

kde

I∞(ϑ∗) = IX(t1)|X(0)(ϑ) +

∫ T∗

T∗

EX(t)

[

∂fϑ(t,X(t))
∂ϑ

∂fϑ(t,X(t))

∂ϑT

σ2
β(t,X(t))

∣

∣

∣

∣

∣

ϑ∗

]

dt,

a

O(t,ϑ∗) =
1

2
EX(t)

[

∂

∂ϑ
lnσ2

β(t,X(t))
∂

∂ϑT
lnσ2

β(t,X(t))

∣

∣

∣

∣

ϑ∗

]

.
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[47] K. Itō. On a formula concerning stochastic differentials. Nagoya Mathematical Journal,
3:55–65, 1951.

[48] J. A. Jacquez. Compartmental Analysis in Biology and Medicine. Elsevier, 1972.

[49] S. Karlin. Total Positivity. Stanford University Press, 1968.

[50] J. Kiefer. Optimum experimental designs. Journal of the Royal Statistical Society,
21:273–319, 1959.



BIBLIOGRAPHY 81

[51] J. Kiefer. Construction and optimality of generalized Youden designs. In A Survey of
Statistical Design and Linear Models, pages 333–353, 1974.

[52] J. Kiefer. General equivalence theory for optimum designs. The Annals of Statistics,
2:849–879, 1974.

[53] J. Kisel’ák and M. Stehlík. Equidistant and D-optimal designs for parameters of
Ornstein-Uhlenbeck process. Statistics & Probability Letters, 78:1388–1396, 2008.

[54] F. B. Knight. Essentials of Brownian Motion and Diffusion. American Mathematical
Society, 1981.

[55] A. Kolmogorov. Über die analytischen Methoden in der Wahrscheinlichkeitsrech-
nung. Mathematische Annalen, 104:415–458, 1931.

[56] A. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. Julius Springer, 1933.

[57] Y. K. Kwok. Mathematical Models of Financial Derivatives. Springer, 1998.

[58] V. Lacko. Two-factor Convergence Model of Cox-Ingersoll-Ross Type. Master’s the-
sis, Comenius University, 2010.

[59] V. Lacko. Planning of experiments for a nonautonomous Ornstein-Uhlenbeck pro-
cess. Tatra Mountains Mathematical Publications, 51:101–113, 2012.

[60] V. Lacko. Ultimate efficiency of experimental designs for Ornstein-Uhlenbeck type
processes. to appear in Journal of Statistical Planning and Inference, 2014.

[61] E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer, 2nd edition, 1998.

[62] D. S. Lemons. An introduction to stochastic processes in physics. John Hopkins UP, 2002.

[63] C.-K. Li and R. Mathias. Extremal characterizations of the Schur Complement and
resulting inequalities. SIAM Review, 42:233–236, 2000.

[64] G. Li. Optimal and efficient designs for Gompertz regression models. Annals of Insti-
tute of Statistical Mathematics, 64:945–957, 2012.

[65] A. Lo. Maximum likelihood estimation of generalized Itô processes with discretely
sampled data. Economic Theory, 4:231–247, 1988.

[66] C. F. Lo. Stochastic Nonlinear Gompertz Model of Tumour Growth. In Proceedings of
the World Congress on Engineering, 2009.

[67] K. V. Mardia and R. T. Marshall. Maximum Likelihood Estimation of Models for
Residual Covariance in Spatial Regression. Biometrika, 71:135–146, 1984.

[68] L. Michaelis and M. L. Menten. Die Kinetik der Invertinwirkung. Biochemische
Zeitschrift: Beiträge zur chem. Physiologie u. Pathologie, 49:333–369, 1913.

[69] B. Mukherjee. Exactly optimal sampling designs for processes with a product covari-
ance structure. Canadian Journal of Statistic, 31:69–87, 2003.

[70] W. Näther. Effective Observation of Random Fields. Teubner-Texte zur Mathematik 72.
Teubner, 1985.



BIBLIOGRAPHY 82

[71] W. Näther. Exact designs for regression models with correlated errors. Statistics,
16:479–484, 1985.

[72] L. Norton. A Gompertzian Model of Human Breast Cancer Growth. Cancer Research,
44:7067–7071, 1988.

[73] B. Øksendal. Stochastic Differential Equations. Springer, 2000.

[74] E. Parzen. An approach to time series analysis. The Annals of Mathematical Statistics,
32:951–989, 1961.

[75] E. Parzen. Regression analysis of continuous parameter time series. Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1:469–489, 1961.

[76] A. Pázman. Application of basic relations of adjustment computation for time-
continuous measurings. Acta Metronomica, 1, 1965.

[77] A. Pázman. Foundations of optimum experimental design. Riedel, 1986.

[78] A. Pázman. Nonlinear statistical models. Kluwer, 1993.

[79] A. Pázman. Criteria for optimal design of small-sample experiments with correlated
observations. Kybernetika, 43:453–462, 2007.

[80] A. Pázman. Information Contained in Design Points of Experiments with Correlated
Observations. Kybernetika, 46:771–783, 2010.

[81] A. Pázman and W. G. Müller. Optimal design of experiments subject to correlated
errors. Statistics & Probability Letters, 52:29–34, 2001.

[82] M. Planck. Über einen Satz der statistischen Dynamik und seine Erweiterung in
der Quantentheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wis-
senschaften, 24:323–341, 1917.

[83] J. W. Pratt. F. Y. Edgeworth and R. A. Fisher on the Efficiency of Maximum Likelihood
Estimation. The Annals of Statistics, 4:501–514, 1976.

[84] L. Pronzato and Pázman A. Design of Experiments in Nonlinear Models: Asymptotic
Normality, Optimality Criteria and Small-Sample Properties. Springer, 2013.

[85] F. Pukelsheim. On linear regression designs which maximize information. Journal of
Statistical Planning and Inference, 4:339–364, 1980.

[86] F. Pukelsheim. Efficient rounding of approximate designs. Biometrika, 79:763–770,
1992.

[87] F. Pukelsheim. Optimal design of experiments. Wiley, 1993.

[88] C. R. Rao. Information and the accuracy attainable in the estimation of statistical
parameters. Bulletin of the Calcutta Mathematical Society, 37:81–91, 1945.

[89] C. R. Rao. Linear Statistical Inference and its Applications. John Wiley & Sons, 1973.

[90] L. M. Riccardi and L. Sacerdote. The Ornstein-Uhlenbeck process as a model for
neuronal activity. Biological Cybernetics, 37:1–9, 1979.



BIBLIOGRAPHY 83

[91] H. Risken. The Fokker-Planck Equation: Methods of Solution and Applications. Springer,
1996.

[92] J. Sacks and D. Ylvisaker. Designs for regression problems with correlated errors. The
Annals of Mathematical Statistics, 37:66–89, 1966.

[93] J. Sacks and D. Ylvisaker. Designs for regression problems with correlated errors:
Many parameters. The Annals of Mathematical Statistics, 39:49–69, 1968.

[94] J. Sacks and D. Ylvisaker. Designs for regression problems with correlated errors III.
The Annals of Mathematical Statistics, 41:2057–2074, 1970.

[95] G. Sagnol. Computing Optimal Designs of multiresponse Experiments reduces
to Second-Order Cone Programming. Journal of Statistical Planning and Inference,
141:1684–1708, 2010.

[96] Z. Schuss. Theory and applications of stochastic processes: An analytical approach.
Springer, 2010.

[97] G. A. F. Seber and C. J. Wild. Nonlinear Regression. John Wiley & Sons, 1989.

[98] A. V. Skorokhod. On existence and uniqueness of solutions to stochastic diffusion
equations. Sibirskii Matematicheskii Zhurnal, 2:129–137, 1961.

[99] A. V. Skorokhod. On stochastic differential equations. In Proceedings of the 6th all-
union conference on probability theory and mathematical statistics, pages 159–168, 1962.

[100] J. F. Speer, V. E. Petrosky, M. W. Retsky, and et al. A Stochastic Numerical Model of
Breast Cancer Growth That Simulates Clinical Data. Cancer Research, 44:4124–4130,
1984.

[101] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Springer,
1979.

[102] P. W. Sullivan and S. E. Salmon. Kinetics of Tumor Growth and Regression in IgG
Multiple Myeloma. The Journal of Clinical Investigation, 51:1697–1708, 1972.

[103] T. J. Sweeting. Uniform Asymptotic Normality of the Maximum Likelihood Estima-
tor. The Annals of Statistics, 8:1375–1381, 1980.

[104] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the Brownian motion. Physical
Review, 36:823–841, 1930.

[105] L. Vandenberghe and S. Boyd. Applications of semidefinite programming. Applied
Numerical Mathematics, 29:283–299, 1999.

[106] G. Wahba. On the regression design problem of Sacks and Ylvisaker. The Annals of
Mathematical Statistics, 42:1035–1053, 1971.

[107] G. Wahba. Regression design for some equivalence classes of kernels. The Annals of
Statistics, 2:925–934, 1974.

[108] N. Wiener. Differential space. Journal of Mathematical Physics, 2:131–174, 1923.

[109] Y. Yu. Monotonic convergence of a general algorithm for computing optimal designs.
The Annals of Statistics, 38:1593–1606, 2010.



BIBLIOGRAPHY 84

[110] M. Zagoraiou and A. B. Antognini. Optimal design for parameter estimation of
the Ornstein-Uhlenbeck process. Applied Stochastic Models in Business and Industry,
25:583–600, 2009.

[111] A. Zhigljavsky, H. Dette, and A. Pepelyshev. A new approach to optimal design for
linear models with correlated observations. Journal of American Statistical Association,
105:1093–1103, 2010.


