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MULTISTAGE PORTFOLIO OPTIMIZATION
AS A STOCHASTIC OPTIMAL CONTROL PROBLEM

Martin Lauko

Each portfolio optimization problem is a trade off between minimizing risk and maximizing
expected returns. In this paper we consider a multistage portfolio optimization, where the risk
at each stage is expressed by the conditional value-at-risk deviation (CVaRD) risk measure and
the terminal returns maximization is replaced by some kind of lower constraint on a function of
the terminal return. We analyze possible formulations of this problem as some optimal control
problems with different types of terminal conditions. For each proposed formulation we suggest
effective way to solve the problem by means of the dynamic programming equation. Numerical
results illustrate the solutions for a simple model example of pension savings with two funds
within the time horizon of 40 years.
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1. INTRODUCTION

In this paper, we focus on the following problem which we call Optimal fund selection
problem: Let us consider an investor, who wants at each stage i to divide his capital
between two funds: a risk-free one and a risky one. The risk-free fund is composed mainly
from bonds, thus we assume the interest rate ri is known in advance. The risky fund
can be formed out of stocks or indices, so its return zi is random, but we suppose that
the distribution of returns is known and the returns in separate stages (time-periods)
are independent.

We assume the long-term time horizon of savings, e.g., k = 40 years, but with the
possibility for the investor to re-balance (to change the weight in the risky fund) every
year based on the current value of capital in each fund. The investor’s objective is to
minimize risk connected to his investment.

Our motivation for studying this problem is the long-term investments, e.g., the
pension savings. This problem was already discussed in [6], [7], [8] and [9], a similar
problem of the portfolio risk minimization in [1]. Although, we focus on the simple
model case – only a single initial payment without additional contributions – to analyze
possibilities for solving such kind of problems by the optimal control technique: the
stochastic dynamic programming equation. The extension for the real problems with
regular contributions is straightforward.
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Fig. 1: Scheme of the stochastic discrete optimal control problem solution

There are two distinct areas of mathematics that can be used for solving such prob-
lems: the stochastic discrete optimal control and the multistage stochastic programming
with recourse. We can find deep comparison of both areas in the paper [4]. As the au-
thors write, despite different technique used, both areas treat very similar real-life prob-
lems. Our Optimal fund selection problem can be formulated in terms of the stochastic
optimal control as well as the stochastic program. But as Dupačová denotes, if the time
horizon is very long, the optimal control allows us to treat such problem efficiently.

Hence we use the stochastic discrete optimal control approach for our problem. Let
us recall the basic principles of the optimal control: we suppose there is an object,
that is managed by a control during several time periods (stages). The state of the
object follows a difference equation that includes a random variable. The main aim is
to choose a control value in each period to maximize a selected objective function. The
more details can be found in book [5].

The main advantage of the optimal control approach is that we can choose a control
value after the current state is known, as we show in Fig. 1. From mathematical point
of view, we search for a solution in a form of feedback functions vi, the control value is
then a function of the current state xi: ui ≡ vi(xi) for all stages i and states xi. In the
optimal control, the sequence of chosen feedback functions is called a strategy.

1.1. Problem formulation

Now we focus on the problem formulation. We are using stochastic optimal control, thus
we use the following notations:

i – time period (stage), in our case year, i = 0, . . . , k − 1,

xi – capital at the beginning of the year i, x0 initial capital,

ui – share in the risky fund in the year i, ui ∈ Ui ≡ [0, 1]

ri – known risk-free fund return in the year i,

zi – random risky return (year i), it comes from the known distribution zi ∼ Zi

For the risk measurement, we use the conditional value-at-risk, as it has number of
good properties: it is coherent, convex, easy to calculate and widely used in financial
risk management. According Pflug in [10], we can define it as follows.
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Definition 1.1. (Conditional Value-at-Risk) The conditional value-at-risk at prob-
ability level α, 0 < α < 1 of a continuous random variable Y with a distribution function
F is defined as

CV aRα(Y ) =
1

α

∫ α

0

F−1(u) du, (1)

the conditional value-at-risk deviation is

CV aRDα(Y ) = E(Y )− CV aRα(Y ). (2)

Definition 1.2. (Multi-period Conditional Value-at-Risk) Let Y = (Y1, . . . , YT )
be an integrable stochastic process. For a given sequence of constants c = (c1, . . . , cT ),
probabilities α = (α1, . . . , αT ) and a filtration F = (F1, . . . ,FT ), the multi-period con-
ditional value-at-risk is defined as

CV aRα,c(Y ;F) =

T∑
t=1

ctE [CV aRαt(Yt | Ft−1) ] (3)

and the multi-period conditional value-at-risk deviation as

CV aRDα,c(Y ;F) =

T∑
t=1

ctE [CV aRDαt
(Yt | Ft−1) ] . (4)

As we need to measure a risk during several time periods (stages), we need to use the
multi-period version of risk measure. Thus we use the Multi-period Conditional Value-
at-Risk Deviation to sum up ”pure” risk during several periods. More information about
risk measurement in optimal control can be found in [6], [10] or [11].

Now we can formulate our problem in the terms of the optimal control.

Definition 1.3. (Optimal fund selection problem) The following stochastic discrete
optimal control problem is called Optimal fund selection problem for risk minimization:

min E

[
k−1∑
i=0

ci CV aRDα

(
xi+1 |xi

) ]

xi+1 = xi

[
1 + uizi + (1− ui) ri

]
, i = 0, . . . , k − 1,

x0 = a > 0,

ui = vi(xi) ∈ Ui =
[
0, 1
]
, i = 0, . . . , k − 1,

zi ∼ Zi, i = 0, . . . , k − 1.

(5)

In the problem (5), we did not formulate any conditions or restrictions on the terminal
return. Hence the problem (5) represents an unconstrained problem of risk minimization.
The unrestricted stochastic optimal control problems can be solved by a standard form
of the dynamic programming equation. However, as the certain return is always better
than any possible risk, there is a trivial solution for our problem: whole capital goes to
the risk-free fund, ui ≡ 0 and so the problem (5) itself does not make sense.
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To make the problem (5) meaningful we need to add some additional conditions into
it, for example a kind of a terminal constraint such as – the minimum requested level
of terminal capital µ. This, however, will lead to a non-standard stochastic optimal
control problem for which the dynamic programming equation must be modified to
reflect particular terminal constraints.

2. TERMINAL CONSTRAINTS

As discussed above, we want to add an additional terminal constraint to ensure the
requested level of the terminal capital µ. There are several ways how to formulate such
condition.

1. Robust Constraint: xk ≥ µ
This type of constraint needs to be fulfilled in any case, even for those extreme
realizations of the random variable, that have only very low probability. Such
certainty might be very expensive, or sometimes even impossible to achieve. This
type of constraint is discussed in [2] in connection with the robust optimization.
However, it is not very suitable for the stochastic optimal control and we do not
discuss it in this paper.

2. Expected Value Constraint: E [xk |xk−1] ≥ µ
This is a common type of constraint in the stochastic optimization, as it respects
the fact that xk is a random variable. This conditions needs to be fulfilled only in
the average case, we can ignore outliers. This constraint is considered in papers
[1], [6].

3. Probabilistic Constraint: P [xk ≥ µ ] ≥ β,
The probabilistic constraint reflects the stochastic character of xk as well. For
this condition, we focus on the probability that the condition xk ≥ µ would be
fulfilled. We want to achieve this probability greater or equal an arbitrary selected
β. This constraint can be also seen as a generalized relaxed version of the robust
constraint. It is used in [3] for environment-related problems.

The stochastic discrete optimal control problems are usually solved using the dynamic
programming equation proposed by Richard Bellman in 1960s. However, if we add a
terminal constraint, some strategies vi(xi) ∈ Ui might become infeasible. We need to
somehow define the set of feasible control values Wi(xi) for each stage i and for each
state xi, corresponding to the selected terminal constraint, that would contain only such
control values, that fulfills the particular constraint.

Then we can search for the problem (5) solution using the dynamic program:

Vj(x) = max
vj(x)∈Wj(x)

Ej
[
f0j (x, vj(x), zj) + Vj+1(fj(x, vj(x), zj))

]
= Ej

[
f0j (x, v̂j(x), zj) + Vj+1(fj(x, v̂j(x), zj))

]
,

Vk(x) = ϕ(x), for all x.

In the equations, fj(·) stands for the state equation in j-th stage, f0j (·) stands for
objective function in j-th stage and ϕ(·) for terminal objective function (in stage k).
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2.1. Expected value constraint

We first focus on an expected value constraint in the form:

E [xk |xk−1 ] ≥ µ, for all xk−1 ∈ Xk−1 (6)

Based on the paper [1] by Brunovský et al., we can rewrite this constraint and derive
the following sets of feasible control values for i = 0, . . . , k − 1:

Wi(x) =
{
ui ∈ Ui | fi (x, ui, zi) ∈ Xi+1 for all zsi ∼ Zi

}
,

Wk−1(x) =
{
uk−1 ∈ Uk−1 |E fk−1 (x, uk−1, zk−1) ≥ µ

}
,

Xi =
{
x ∈i |Wi(x) 6= ∅

} (7)

In this case, the terminal constraint is understood as a priority – if we are not able
to fulfill the constraint, the particular state is considered infeasible. Unfortunately, this
often leads to infeasibility of the whole problem, especially if the random variable has
an approximated normal distribution.

Thus we decided to use a relaxed condition for Wi(xi). Instead of ”for all” possible
realizations zsi of random variable Zi, we have used the expected value Ezi . The following
conditions are called the alternative formulation of the expected value constraint :

Wi(x) =
{
ui ∈ Ui |Ezi fi (x, vi(x), zi) ∈ Xi+1

}
,

Wk−1(x) =
{
uk−1 ∈ Uk−1 | Ek−1 fk−1 (x, uk−1, zk−1) ≥ µ

}
,

Xi =
{
x ∈i | Wi(x) 6= ∅

} (8)

Note that this formulation is not mathematically equivalent with the condition (6),
but it might be more suitable for the real applications, as this formulation allows us to
use a wider range of the feasible control values. The set of feasible states Xi is bigger
as well.

2.2. Probabilistic constraint

Another possibility to formulate a terminal constraint is the probabilistic constraint as
follows

P [xk ≥ µ ] ≥ β. (9)

In this case we define the minimum probability β, at which the condition xk ≥ µ must
be fulfilled. We understand the probability in (9) corresponding to the random vector
z0, z1, . . . , zk−1.

First we should solve the special optimal control problem suggested by Doyen in [3]
– maximization of the probability P [xk ≥ µ]. That can be done using the following
dynamic program:

Pk(x) = Φ(x),

Pi(x) = max
ui∈Ui

Ei

[
Pi+1

(
fi(x, ui, zi)

) ]
,

where Φ(xk) =

{
1, if xk ≥ µ,
0, otherwise.
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We note, the value function Pi(xi) is equal to the probability that the condition xk ≥ µ
is fulfilled for the particular stage i and for the particular state xi. Hence we can define
the feasible control values and the feasible states for the constraint (9) as follows:

Wi(x) =
{
ui ∈ Ui | Ei [Pi+1 [fi (x, ui, zi)] ] ≥ β

}
,

Xi =
{
x | Pi(x) ≥ β

} (10)

After the calculation of the feasible control value sets (10), we can successfully solve
the problem (5) with the probabilistic constraint (9) using the dynamic programming
equation.

2.3. Problem with Penalization

There is also an alternative way of solving the problem (5) with respect to the terminal
value of the savings. Instead of considering the terminal conditions like (6) or (9), we
can move the constraint into the objective function as a so-called penalization factor :

min E

[
k−1∑
i=0

CV aRDα(xi+1 |xi) + δ · Λ(xk)

]
(11)

The first term in (11) is the former objective function (the risk minimization) and the
second one represents the penalization, with Λ(xk) as the penalization function and δ
its weight. We have used the constant penalization function

Λ(x) =

{
0, if x ≥ µ
1, otherwise,

(12)

but in general any function that is equal 0 only if the constraint is fulfilled can be used.
Using the penalization, we can effectively solve the problems with terminal conditions.

The main advantage of this approach is the fact that all states and all control values
are feasible, so in contrast with the terminal constraint solution, we cannot fall to an
infeasible state. Although, the ”good” states that lead to the feasible solution are
preferred.

In this case, instead of rejecting many infeasible states, we search for a reasonable
compromise solution to fulfil both our objectives (the risk minimization and the achieve-
ment of the predefined terminal value). This solution reflects the fact, that the problem
(5) itself is a trade-off between the risk minimization and the terminal value maximiza-
tion, thus we consider the solution as a trade-off as well.

3. NUMERICAL RESULTS

In this section we present numerical results for the Optimal fund selection problem (5)
with a different terminal constraints. The optimal control values are calculated using
a discrete numerical scheme based on the dynamic programming equation. The set of
feasible control values is calculated prior optimization itself.

In the numerical calculations, the following parameters are used:
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(a) Former formulation (7)
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(b) Alternative formulation (8)

Fig. 2: Feasible states comparison – different sets of feasible states for former and alter-
native formulation. The infeasible states are marked white. Horizontal axis: state xi
(amount of capital), vertical axis: time period i (year)

• Number of periods k = 40 years,

• Starting value x0 = 100,

• Requested terminal value µ = 300,

• Risk-free interest rate – ri = 2% annually,

• Risk fund random return – discrete approximation of the normal distribution with
the expected value z̄i = 6%, the variance σ = 0.1

3.1. Feasible states comparison

Let us start with a deeper investigation of feasible states for the expected value con-
straint. We have calculated the sets of feasible states for the former formulation (7) as
well as for the alternative one (8). The results are displayed in Fig. (2), thus we can
compare them.

In the first case, the starting point x0 = 100 is infeasible. Following the formula (7),
the state is considered feasible if and only if we can reach the terminal value µ = 300
with the absolute certainty, i.e. investing only to the risk-free fund with 2% interest
rate.

Intuitively, this doesn’t make sense – if we invest for example 50% into the risky fund
each year, the expected terminal value is 480, which is way more than the requested
minimal value µ = 300. Despite the probability of reaching this value is very high, it
is not a safety of 100%. Thus from the mathematical point of view, the starting point
x0 = 100 is properly considered infeasible. The expected value terminal constraint leads
to a very restrictive feasibility area.

Therefore we derived a relaxed alternative formulation (8). In this case, the feasibility
area is less restrictive. Any state, that leads to another feasible state in the expected
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(a) Area A
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(b) Area B
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(c) Area C

Fig. 3: Risk minimization results – the problems with terminal conditions. The infeasible
states are marked white. Description of areas: A – expected value alternative formula-
tion (8),
B – min. probability area with β = 90%, C – expected value former formulation (7).

value, is considered feasible. That means, for example, that the starting point x0 = 100
is considered feasible. The smallest feasible starting point is about 40.

On the other hand, using the alternative formulation, there is a chance of falling into
an infeasible state during the saving period if the random return is too low. This is not
possible with the former formulation, as the control value is allowed only if it assures we
would stay in the feasible area for any random return. If we reach an infeasible state, we
can only reconsider the terminal condition, i.e. decrease the value of µ, which is actually
a different problem.

To put it briefly, both formulations for the expected value terminal constraint (7)
and (8) have its own disadvantages and it is our decision which to use. In the following
subsection, we are comparing the solutions for both formulations.

3.2. Risk minimization results

In this part, we provide optimization results for the different problem settings. The
results are calculated using the dynamic programming equation with the pre-calculated
sets of feasible control values corresponding to the particular constraint.

Firstly, figure 3 presents numerical results for the problems with terminal constraints
in a form of expected value (using former and alternative formulation) and the prob-
abilistic constraint. All three solutions are very similar, they are only cropped in a
different shape. This shape is determined by the condition for feasible states that is
used. The white area in the left hand side of the charts stands for the infeasible state
points.

We have calculated results for the penalization problem as well, they are displayed on
Fig. 4 with the increasing penalization weight δ. If we use a higher penalization factor,
the solution should more likely achieve the requested terminal value µ. In the pictures,
we can see the white area (100% risky fund) increasing in the middle. Although, the
green area on the right hand side stays the same, because the certainty of achieving the
requested terminal value comes with a risk-free investment, so there is no reason for a
risky investment.
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(a) δ = 0
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(b) δ = 100
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(c) δ = 250
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(d) δ = 500
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(e) δ = 1 000
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(f) δ = 10 000
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(g) δ = 106

barrier−cvar−briadenie−100000000000000000000

 

 

0 100 200 300 400 500

5

10

15

20

25

30

35

40

0

0.2

0.4

0.6

0.8

1

(h) δ = 1020

barrier−cvar−briadenie−100000000000000000000

 

 

0 100 200 300 400 500

5

10

15

20

25

30

35

40

0

0.2

0.4

0.6

0.8

1

(i) Colour scale

Fig. 4: Risk minimization results – problem with penalization, different weights δ
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To summarize both numerical solutions, we can highlight main differences. First of
all – the feasibility. In the case of penalization, all states are considered feasible, hence in
any case, we always know the optimal control value that shall be used. Whereas with the
terminal conditions, it is possible to fall into an infeasible state, thus the optimal control
value in such case is unknown and we can only reconsider the terminal condition. Hence
the penalization seems to be an effective way how to handle infeasible points problem
occurring in case of the terminal constraint.

On the other hand, in the case of penalization, we do not have any guarantees that
the terminal constraint is fulfilled. As we search for a compromise solution, the paths
leading to the required terminal value are preferred. However, changing the weight δ
changes the solution, we need to choose a proper weight that represents our objectives
regarding the terminal condition.

4. CONCLUSION

In this paper, we treated a problem of fund selection in long-term savings and we dis-
cussed two main questions: how to formulate the terminal constraints in the case of the
stochastic discrete optimal control problem and how to solve such problems using the
dynamic programming equation. We showed several types of constraint formulation and
we proposed a way how to deal with them using the sets of feasible control values.

We illustrated some disadvantages of the particular constraints: mainly the possibil-
ity to reach an infeasible state during the saving period and the problem of an infeasible
starting point. We also presented an effective alternative solution for the fund selec-
tion problem using the penalization term in the objective function and we showed the
advantages of this approach.
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[4] Dupačová, J., Sladký, K.: Comparison of Multistage Stochastic Programs with Recourse
and Stochastic Dynamic Programs with Discrete Time. ZAMM 82 (2002), 753–765.
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