
Univerzita Komenského v Bratislave
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Mlynská dolina
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1 Introduction

The key objective of this study is to determine and investigate the optimal strategy that
the future pensioner – the participant of the Second pillar of the Slovak pension system –
should follow in order to attain to maximize their expected future pension income from
the Second pillar with respect to their specific risk aversion. Based on their personal
characteristics, legislative regulations and financial market data we derived the analytic
model that formulates the optimal decision for the investor about the specific pension
fund selection. Furthermore, besides the model advisory role in the investor’s optimal
fund selection strategy, this model also helps future pensioners to perceive the aspects
impacting the level of their retirement pensions.

The decision about the optimal allocation is made in perspective of the investor interested
in the portfolio terminal value, via their utility criterion with both the portfolio expected
terminal utility and risk combined. The problem is postulated in terms of the solution to
the following Hamilton–Jacobi–Bellman equation derived from continuous version of the
dynamic stochastic optimization model for the portfolio value function V =V (t,y)





0 =
∂V
∂ t

+max
θ∈∆T

t

{
Aε(θ , t,y)

∂V
∂y

+
1
2

B2(θ , t,y)

[
∂ 2V
∂y2 −λ

[
∂V
∂y

]2
]}

, (t,y) ∈ [0,T )×R+

V (T,y) =U(y) =−yd−1 +
λ
2

y2(d−1) , y ∈ R+ ,

where all U =U(y), Aε ≡ Aε(θ , t,y) and B≡ B(θ , t,y) are smooth, investor’s regular contri-
bution rate ε and risk sensitivity parameter λ are small, 0 < ε,λ � 1 and y denotes wealth
already allocated on saver’s private pension account measured relatively to his/her salary.
Presence of the function V (t,y) space derivative squared term, [∂yV ]2 above is not ob-
vious in the standard formulation of such problem (Bellman [2], Bertsekas [5], Evans
[12], Fletcher [14], Kilianová et al. [22], [23], Macová and Ševčovič [26], Melicherčı́k and
Ševčovič [28], Múčka [31], Oksendal [33]). It caused by a special choice of the risk–
sensitive investor’s utility function U(y) arising from his/her criterion reflecting both the
expected portfolio return and volatility.

We show how the foregoing Hamilton–Jacobi–Bellman equation can be transformed into
a quasi–linear parabolic differential equation. The weak solution to the problem is ap-
proached by its double asymptotic expansion with respect to small model parameters
and utilized to estimate the unconstrained optimal investment strategy. We present key
attributes of the optimal allocation policy determined by our model and illustrate it on
the problem of optimal fund selection in the Second Pillar of the Slovak Pension System.

What makes the optimal pension fund portfolio selection issue so attractive? Obviously, it
is a nice non–deterministic highly complex mathematical puzzle, a challenge with many
extremely interesting extensions.
But from a practical point of view, this brain–teaser has a very useful real–world appli-
cation, with many consequences and policy implications. The inevitable economy and

1

social care reforms (e.g. tax reform, the pension system reform, healthcare & long–term
care reforms) are being ultimately underwent in many Western culture countries and re-
main particularly relevant in Slovakia due to two ticking time bombs – poor demography
trends and long–term public finance sustainability. The projected dramatic changes in
the population structure, demographic prospects (characterized by drop in fertility rate,
longevity increase and extreme raise of dependency ratio) and economic effects of age-
ing populations causing a significant pressure on public finance (due to high share of
ageing and demographic structure related share on expenditure), slowing potential eco-
nomic growth and labour market permanent structural changes have strong implications
for pensions and overall budgetary effects of ageing populations.

Hence all the reasons mentioned above prod policy–makers to rebuilt paradigms about
the participation rôle and responsibility of current generation of active and pre–active in-
dividuals on their future income. Therefore facing definitely not rosy future, they also
aim their attention to the optimal long–term saving schemes, investment decisions and
possible financial instruments that can bring additional cash–flow for future pensioners
and thus at least partially reduce the future load of claim on public finance. Thus nowa-
days the momentous question of optimal and safe saving on pension emerges and it is
posed not only by policy makers, financier and economists but also by a non–myopic
part of currently active population.

As we are also concerned about this issue the purpose of this dissertation thesis is to ask
and look for a proper solution to this problem, derive a optimal pension strategy model
that will fit the Slovak pension system, namely, its private, defined–contribution pillar.
The individual’s private pension at retirement is substantially susceptible to investment
allocation policy preferred during the active life of the pensioner as Slovak private pen-
sion scheme is built on defined contribution idea - pension benefits depend on returns
of the pension fund’s portfolio financed via fixed regular contributions of future pen-
sioner during the accumulation period who borne financial risk associated with invest-
ment. Therefore, the optimal wealth allocation strategy is the fundamental issue of this
thesis.

Thesis Objectives

This dissertation thesis stakes out the following fundamental targets:

• Formulate the continuous–time pension investment portfolio selection problem that
encounters any participant of the Second pillar of the Slovak pension system prop-
erly, and find the relationship between optimal portfolio allocation policy and its
intermediate value function;

• Provide (at least approximative) a simple explicit analytic decision mechanism es-
timating a future pensioner’s optimal portfolio selection strategy that based on a
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saver’s time to retirement and already allocated wealth advice him/her how to al-
locate his/her wealth optimally between unlimited number of more or less risky
securities;

– The decision formula should reflect individual characteristics of a risk–sensitive
investor (risk aversion attitude, gross wage growth rate), existing government
restrictions (retirement age, contribution rate) and financial market data;

• Analyse properly the optimal investment strategy decision tool from a qualitative
and quantitative perspective; and highlight the resulting policy implications;

• Calibrate the model on Slovak data and illustrate its behaviour;

– Show how both the optimal allocation policy and the expected terminal port-
folio wealth are affected by varying model parameters;

– Accentuate the effects of changes in fiscal policy parameters – prescribed re-
tirement age and contribution rate;

Beside them, our aim is also top provide a deep explanation of the three–pillar Slovak
pension system and its undergoing reforms, legislative framework and key concepts:

• Clarify and support with data reasons for the pension system reform and describe
the main aspects of the reform in the First pillar;

• elucidate the scope of the private Second pillar, the scope of available wealth alloca-
tion policies and existing government regulations and support with data the actual
investment decisions of its participants.

3

2 Methodology and Literature Review

2.1 Literature Review

Technically we are focused on approximative analytic solution to a specific Hamilton–
Jacobi–Bellman equation arising from stochastic dynamic programming for trading the
optimal investment decision technique for an individual investor during accumulation of
pension savings.
Such an optimization problem often emerges in optimal dynamic portfolio selection and
asset allocation policy for an investor who is concerned about the performance of a portfo-
lio relative to the performance of a given benchmark. We take as our baseline the standard
continuous–time settings pioneered by Bodie et al. [8], Bodie et al. [7], Browne [9], Samuel-
son [37], Merton [29] who were interested in optimal consumption–portfolio strategies,
life–cycle model or Songzhe [41].

Obviously, there are numerous recent very practically oriented models preferring discrete–
time defined contributions pension scheme framework e.g. Gao [15], Kim and Noh [24],
or Noh [32]. Within our work we use the principles of investor’s risk–sensitivity deeply
studied in Bielecki et al. [6].

In this work we refer to novel papers of Múčka [31], Kilianová et al. [22], Macová and
Ševčovič [26] and Kilianová and Ševčovič [23]. In Kilianová et al. [22] the baseline dy-
namic accumulation model for the private second defined–contribution pillar of the Slo-
vak pension system was firstly introduced.
This model was extended and studied later in Melicherčı́k and Ševčovič [28]. Further-
more, in Macová and Ševčovič [26] a simplified analytic tool to determine the optimal
investment strategy for a participant of the second pillar of the Slovak pension system
was developed and its very first quantitative and qualitative analysis was provided.

This instrument along with a similar one obtained via transformation of the original
Hamilton–Jacobi–Bellman problem into a quasi–linear equation presented by Kilianová
and Ševčovič [23] and very new paper of Múčka [31] studying so–called one–stock–one–
bond (portfolio composition problem is limited to only one pair of quite risky and rela-
tively safe securities) problem employing the portfolio value function method, inspired
us to build a new extended model. Its solution was estimated applying the techniques
of Riccati transformation used by e.g. Abe and Ishimura [1], Ishimura and Ševčovič [20],
Ishimura and Mita [18] and asymptotic expansion method (see Holmes [17], Bender and
Orszag [3], O’Malley [34]) allowed us to determine the explicit approximative analytic
optimal allocation policy formula.
In opposed to previously assumed models, the investor’s utility criterion ponder also the
the aspect of the portfolio returns volatility – to endow this attribute into our model we
utilized the approach of e.g. Sharpe [38], Bielecki et al. [6], or Songzhe [41]. Finally this
dissertation thesis is built on fundamentals of the author’s dissertation project text.
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2.2 Used Methodology

In order to derive the model determining the explicit approximative analytic optimal allo-
cation policy formula for a future pensioner we start with a simple discrete–time optimal
portfolio composition problem on finite time–horizon, which was studied in Kilianová
et al. [22], Macová and Ševčovič [26] or Kilianová [21].

Each period a typical sever transfers a fraction ε of his/her salary with a deterministic
growth rate β to a his/her portfolio consisting of only one risky stock and one quite
safe bond instrument and has to make a decision about proper proportion of risky stock
proportion in this portfolio. For the sake of simplicity, we presume that the investment
strategy of the pension fund at time t is given by the proportion θ ∈ [0,1] of stocks and 1−
θ of bonds and the portfolio return rt = rt(θ) ∼N (µt(θ),σ2

t (θ)) is normally distributed
for any choice of the stock to bond proportion θ .
Thus, in terms of the quantity yt representing the number of yearly salaries already saved
at time t = 0,1, . . . ,T −1, the budget–constraint equation can be reformulated recurrently
as follows:

y1 = ε , and yt+1 = G1
t (yt ,rt(θt)) ,

for G1
t (y,rt) = ε + y

1+ rt

1+βt
, t = 1,2, . . . ,T −1 .

(2.1)

Assuming the knowledge of the saver’s utility function U = U(y), our aim is to deter-
mine the optimal value of the weight θ at each time t that maximizes the contributor’s
utility from the terminal wealth allocated on their pension account. Thus, the problem of
discrete stochastic dynamic programming can be formulated as

max
θ∈∆

E(U(yT ) | yt = y) , (2.2)

subject to the constraint (2.1) where the maximum in the stochastic dynamic problem is
taken over all non-anticipative strategies, stocks proportions {θ}T

t taken from

∆T
t = ∆≡ {θ : [t,T ]×R+ 7→ R , θ ∈ [0,1]} , ∀t ∈ [0,T ] .

Therefore under the Bellman’s optimality principle (see Bellman [2], Fletcher [14] or Bert-
sekas [5]) the optimal strategy of the problem (2.1)–(2.2) is the solution to the Bellman
equation of the dynamic programming

W (t,y) =

{
U(y) , t = T ,

max
θ∈∆

EZ
(
W (t +1,F1

t (θ ,y,Z))
)
, t = T −1, . . . ,2,1 , (2.3)

where Z ∈N (0,1) and

F1
t (θ ,y,z)≡ G1

t (y,µt(θ)+σt(θ)z) = y
1+µt(θ)+σt(θ)z

1+βt
+ ε. (2.4)
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In this baseline model setting, investor’s utility function expresses his/her time t expecta-
tions about the terminal value of the pension fund portfolio (e.g. Bergman [4], Pflug and
Romisch [35], Fishburn [13], Markowitz [27] or Sharpe [38]). This discrete–time model is
discussed deeply in e.g. Kilianová et al. [22], Macová and Ševčovič [26], Kilianová [21] or
Múčka [31].

As we are interested in continuous–time strategies, we assume that given a small time in-
crement 0 < τ ≤ 1 the proportion of size ετ of saving deposits is transferred to the saver’s
pension account on short time intervals [0,τ], [τ,2τ], . . . , [T − τ,T ]. Next, taking into con-
sideration the investor’s natural risk–aversion we extend our perception of the saver’s
utility and by the aspect of the portfolio returns volatility, so that at time t a typical partic-
ipant of the second pillar of the Slovak pension system strives to maximize the terminal
wealth–to–salary ratio yT :

max
θ∈∆T

t |[0,T )
{K [yθ

T |yθ
t = y]} , where K (Y ) = E [U(Y )]− λ

2
D [Y ] . (2.5)

where {yθ
t }∞

t=0 in the finite time horizon Ito’s process y a given initial state of {yθ
t } eval-

uated at time t and K denotes a utility criterion functional assumed for a given utility
function U =U(y).

Then, applying the Bellman’s optimality principle the optimal strategy for the problem of
stochastic dynamic programming for 0 < τ� 1 can be formulated in using the concept of
the saver’s portfolio intermediate value function V =V (t,y) similarly to the case of τ = 1
(see (2.3)–(2.4)) as follows:

V (t,y) =





U(y) , t = T ;
max

θ∈∆t+τ
t

{K [V (t + τ,yt+τ(θ)) | yt = y ]} , 0≤ t < t + τ ≤ T ,

and similarly to (2.1), for any y > 0,

yt+τ(θ) = Fτ
t (θ ,yt ,Z) , Z ∼ N(0,1) , 0 < τ � 1 ,

Fτ
t (θ ,y,z) = yexp{[µ(θ)−β − 1

2σ2(θ)]τ +σ(θ)z
√

τ}+ ετ .

Then, letting τ ≡ dt → 0+, using basic properties of random variable mean and variance,
applying stochastic calculus and Itô lemma (see Kwok [25], Oksendal [33], Chiang [10],
Múčka [31], Epps [11], or Macová and Ševčovič [26]) we find out that the intermediate
value function V (t,y) satisfies the subsequent fully non–linear Hamilton–Jacobi–Bellman
equation




0 = ∂V
∂ t + max

θ∈∆T
t

{
Aε(θ , t,y)∂V

∂y +
1
2B2(θ , t,y)

[
∂ 2V
∂y2 −λ

[
∂V
∂y

]2
]}

, (t,y) ∈ [0,T )×R+ ,

V (T,y) =U(y) , y ∈ R+ ,
(2.6)

and
Aε(θ , t,y) = ε +

[
µ(θ)−β

]
y , and B(θ , t,y) = σ(θ)y .
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Next, recalling to Abe and Ishimura [1], Ishimura and Nakamura [19], Ishimura and
Ševčovič [20], Macová and Ševčovič [26] and Múčka [31] we introduce the Riccati trans-
formation

ϕ(s,x) =−∂xxV (s,x)
∂xV (s,x)

, for s = T − t , x = lny , V (s,x) =V (t,y) , (2.7)

for all x ∈ R and s ∈ [0,T ] where ϕ refers to the coefficient of absolute risk aversion of the
(s,x) domain transformed intermediate value function V .
Therefore assuming that both ϕ and V are positive on [0,T ]×R the originally stated
Hamilton–Jacobi–Bellman equation (2.6) is transformed as follows

∂V

∂ s
= G (s,x)

∂V

∂x
, for G (s,x)≡ εe−x−β −φ(ζ (ϕ(s,x))) , (2.8a)

with φ = φ(ζ (ϕ)) the value function of the parametric optimization problem

φ(ζ ) = min
θ∈∆

{
−µ(θ)+

1
2

σ2(θ)ζ
}
. (2.8b)

and the auxiliary function ζ satisfying the subsequent relationship

ζ (ϕ(s,x)) = 1+ϕ(s,x)+λω(ϕ(s,x)) , ω(ϕ(s,x)) = ∂xV (s,x) = κe−
∫ x

x0
ϕ(s,z)dz (2.8c)

for some x0 ∈ R and κ ≡ V ′(s,x0) finite.

Then ϕ is a solution to the Cauchy–type quasi–linear parabolic equation (see Kilianová
and Ševčovič [23])





∂ ϕ
∂ s

=
∂ 2φ(ζ (ϕ))

∂x2 +
∂
∂x

[(1+ϕ)(εe−x−β )−ϕ φ(ζ (ϕ))] , x ∈ R, s ∈ (0,T ] ,

ϕ(0,x) =−U ′′(ex)

U ′(ex)
ex , x ∈ R .

(2.9)

and problems (2.8a)–(2.8b) and (2.9) are equivalent. Furthermore, referring to Kilianová
and Ševčovič [23] in case of µ ∈ Rn and Σ positive definite matrix, the optimal value
function φ(ζ ) given by (2.8b) is C1,1 continuous, ζ 7→ φ(ζ ) is strictly increasing and for the
unique minimizer θ̂ = θ̂(ζ ) ∈ ∆ of (2.8b) it holds that

φ ′(ζ ) =
1
2

θ̂ T (ζ )Σθ̂(ζ ) . (2.10)

Furthermore, recalling (2.8c), we see that ζ ′(ϕ) = 1+λ
ϕ

∂x ϕ
ω(ϕ(s,x)) .

Recalling he unique minimizer θ̂(ζ ) ∈ ∆ of (2.8b) for any subset S of {1, . . . ,N} the set IS

of all functions ζ > 0 for which the index set of θ̂(ζ ) ∈ ∆ zero components coincide with
S we define:

I /0 =
{

ζ > 0 | θ̂i(ζ )> 0 , ∀i = 1, . . . ,N
}
, IS =

{
ζ > 0 | θ̂i(ζ ) = 0 ⇐⇒ i ∈ S

}
.
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Then, concerning the future pensioner’s optimal investment strategy problem we need to
distinguish between two cases. In case of ζ ∈I /0 we directly employ the technique of La-
grange multiplier (see e.g. Smith [40], Fletcher [14], Chiang [10], Smith [39], or Walde [42])
whereas providing that that ζ ∈IS for some non–empty subset S then we may reduce the
problem dimension to a lower N−|S| dimensional simplex ∆S.

Thus, φ(ζ ) is C∞ on the open set
⋃

0≤|S|≤N−1
int (IS) for any S⊂ {0, . . . ,N} and

φ(ζ ) =





ζ
2a
− b

a
− ac−b2

2a
ζ−1 , ζ ∈I /0 ,

ζ
2aS
− bS

aS
− aScS−b2

S
2aS

ζ−1 , ζ ∈ int(IS) ,
(2.11)

where a = 1T Σ−11, b = µT Σ−11, c = µT Σ−1µ and aS, bS and cS are obtained as projections
of a, b, c when the the corresponding rows and columns elements from the matrix Σ and
vector µ are nullified.

Assume that ζ ∈I /0. Therefore employing (2.11) with ζ = ζ (ϕ) given by (2.8c), the quasi–
linear initial value problem (2.9) takes the subsequent form for unknown ϕ = ϕ(s,x) and
γ = (ac−b2)−1/2:





∂ ϕ
∂ s

=
1

2a
∂
∂x

{
∂ ϕ
∂x

[
1+

1
γ2ζ 2(ϕ)

]
ζ ′(ϕ) (s,x) ∈ (0,T ]×R ,

+2a(1+ϕ)(εe−x−β )−ϕ
[

ζ (ϕ)−2b− 1
γ2ζ (ϕ)

]}
,

ϕ(0,x) =−exU ′′(ex)

U ′(ex)
, x ∈ R .

(2.12)
Now it is time to specify the utility function as a linear combination of two CRRA–type
(Bergman [4], Pflug and Romisch [35], Pratt [36] or Sharpe [38])utility functions:

U(y) =−y1−d +
λ
2

y2(1−d) , y > 0 , 0 < λ � 1 , d� 1 .

Next, we write ϕ and U in terms of their asymptotic expansions (see e.g. Holmes [17],
Bender and Orszag [3], Hinch [16] or O’Malley [34]) with respect to parameter λ as fol-
lows for any x ∈ R and s ∈ [0,T ].

ϕ(s,x) =
∞

∑
n=0

λ nϕn(s,x) , and U(ex) =
∞

∑
n=0

λ nUn(ex) . (2.13)

Thus, the absolute and linear terms ϕ0 and ϕ1 of (2.13) can be achieved gradually by
solving the following pair of sub–problems for the function ψ = ψ(s,x) = γ(1+ϕ(s,x))
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defined ψ(s,x) = ψ0(s,x)+λψ1(s,x) for all s ∈ [0,T ] and x ∈ R:

[P0]





∂ψ0

∂ s
=

1
2a

∂
∂x

{[
1+

∂
∂x

][
ψ0−

1
ψ0

]
∂ψ0

∂x

+2a(εe−x + p0)ψ0−
ψ2

0
γ

}
, (s,x) ∈ (0,T ]×R ,

ψ0(0,x) = γd , x ∈ R ,

(2.14)

[P1]





∂ψ1

∂ s
=

1
2a

∂
∂x

{[
1+

1
ψ2

0

][
∂ψ1

∂x
−q1ψ1

]

+2a[εe−x + p1]ψ1 +2
[

1+
1

ψ2
0

]
γq1e−q1x

}
, (s,x) ∈ (0,T ]×R ,

ψ1(0,x) = γ(1−d)e(1−d)x , x ∈ R ,

(2.15)

where p0 =
b
a −β , p1(s,x) =−β + b

a − 1
2a

ψ2
0−1

γψ0
and q1 =

ψ0
γ −1≡ ϕ0.

Firstly, in order to solve approximately the problem [P0] (see (2.14)) we apply again the
technique of ψ0(s,x) asymptotic expansion with respect to 0 < ε � 1, hence estimate

ψ0(s,x)≈ ψ0,0(s,x)+ εψ0,1(s,x) .

Then evidently, ψ0,0 = γd and so what remains is to find the solution to the subsequent
Cauchy problem for ψ0,1(s,x)





∂ψ0,1

∂ s
=

1
2a

[
1+

1
ψ2

0,0

]
∂ 2ψ0,1

∂ x2

+
1
2a

[
1+

1
ψ2

0,0
+2aδ

]
∂ψ0,1

∂x
−ψ0,0e−x , (s,x) ∈ (0,T ]×R ;

ψ0,1(0,x) = 0 , x ∈ R .

The linear approximation to the solution of the problem [P0] defined by (2.14) is given as

ψ0(s,x) = γd

(
1+ ε

e−δ s−1
δ

e−x

)
+o(ε2) , δ =

b−d
a
−β . (2.16)

Next, plugging (2.16) into problem [P1] (see (2.15)) and setting ε = 0 in the resulting prob-
lem leads to the following initial value problem for the unknown ψ1,0 = ψ1,0(s,x)





∂ψ1,0

∂ s
=

1
2a

∂
∂x

{(
1+

1
ψ2

0,0

)
∂ψ1,0

∂x
+

(
1+

1
ψ2

0,0
+2aδ

)
ψ1,0

+2γ(d−1)

(
1+

1
ψ2

0,0

)
e(1−d)x

}
, (0,T ]×R ;

ψ1(0,x) = γ(1−d)e(1−d)x , x ∈ R ,

(2.17)

where ψ0,0 stands for γd and the parameter δ is prescribed by (2.16). The solution to
problem above can be found in the time–space separable form.
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It is inevitable to remark that our approximative solution to the unconstrained problem
(2.12) is in fact the super–solution to the original problem (2.9) and it is given regardless
the number of securities in the investment portfolio as

θ ∗(s,x) =
Σ−1

a

[
1+(aµ−b1)[ζ (s,x)]−1] , (s,x) ∈Ω ,

where ζ−1(s,x)≈ 1
d
+ ε

Φε(s)
d2 e−x +λ

Φλ (s)+1
d2 e−(d−1)x ,

(2.18)

on the region Ω defined as follows:

Ω≡{(s,x) ∈ [0,T ]× (Λ,∞) , d− εΦε(s)e−x−λ [Φλ (s)+1]e−(d−1)x > 0} ,

for Λ≡ 1
d−1

ln
[

λ
2d−1

d

]
,

(2.19)

with the auxiliary functions Φε = dδ−1(1−e−δ s) and Φλ = (d−1)[(1+ φ̃)eδ̃ s− φ̃ ] for δ̃ and
φ̃ arising from the unique solution to (2.17).

10



3 Results

We have derived a simple analytic mechanism that in general for unrestrained number
of securities considered in the saver’s portfolio, enables us to estimate the optimal invest-
ment policy with active natural ban on short positions. Hence, a typical future pensioner
is advised to consider the investment strategy determined by the following formula while
deciding how to allocate the the wealth already accumulated on his/her pension account
among various pension funds.

θ̂(t,y) =





1
a

Σ−1
{

1+(aµ−b1)
1

ζ (T − t, lny)

}
, ζ ∈I /0 ,

1
aS

Σ−1
S

{
1+(aSµS−bS1)

1
ζ (T − t, lny)

}
, ζ ∈ int(IS) ,

(3.1a)

where

ζ−1(s,x)≈ 1
d
+ ε

Φε(s)
d2 e−x +λ

Φλ (s)+1
d2 e−(d−1)x

for Φε = dδ−1(1− e−δ s) , and Φλ = (d−1)[(1+ φ̃)eδ̃ s− φ̃ ] .
(3.1b)

Furthermore, providing that we are interested in unconstrained optimal policy, in (3.1a)
we apply the branch associated with I /0. Otherwise, for any (even empty) subset S ⊂
{0, . . . ,N} the sets

⋃
0≤|S|≤N−1 int (IS) are defined such that

• I /0 the set of all ζ > 0 for which the unique minimizer θ̂(ζ ) ∈ ∆ has positive compo-
nents only,

I /0 =
{

ζ > 0 | θ̂i(ζ )> 0 , ∀i = 1, . . . ,N
}
,

• For any subset S of {1, . . . ,N} the set IS of all functions ζ > 0 for which the index set
of θ̂(ζ ) ∈ ∆ zero components coincide with S;

IS =
{

ζ > 0 | θ̂i(ζ ) = 0 ⇐⇒ i ∈ S
}
.

The coefficients as, bS, cs are determined for the problem dimension reduced to lower
N−|S| dimensional simplex ∆S with nullified rows and columns elements from the matrix
Σ and vector µ corresponding to components with index belonging to S and satisfy

a = 1T Σ−11 , b = µT Σ−11 , c = µT Σ−1µ ,

aS = 1T Σ−1
S 1 , bS = µT

S Σ−1
S 1 , cS = µT

S Σ−1
S µS .

Moreover, in case of the one–stock–one–bond problem, one can simplify the constrained
optimal policy into the subsequent explicit decision tool:

θ̂ (s)(t,y) =





1
ασ

[
βσ +

∆µ
ζ (T − t, lny)

]
, ζ (T − t, lny) ∈Ω∗2 ,

1 0 < ζ (T − t, lny) , ζ (T − t, lny) /∈Ω∗2 ,

ασ ≡
[
σ (s)

]2
−2ρσ (s)σ (b)+

[
σ (b)

]2
> βσ ≡ σ (b)

[
σ (b)−ρσ (s)

]
.

(3.2)
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and the region on which ζ follows the prescription (3.1b),

Ω∗2 ≡
{
(s,x) ∈ [0,T ]× (Λ,∞) , εΦε(s)e−x +λ [Φλ (s)+1]e−(d−1)x < d− ∆µ

ασ −βσ

}
. (3.3)

3.1 Sensitivity Analysis

For the case of one–stock–one–bond problem we have shown that the unconstrained opti-
mal policy planar problem approximate solution exhibits the subsequent very intuitive
qualities which are in consistence with the reality observed:

• falls monotonically in both wealth–to–salary y and time t and it is strictly convex in y,

• descends in risk aversion coefficient d,

• raises in both small model parameters: contribution rate ε and return volatility sen-
sitivity parameter λ ,

• augments in both gross wage growth rate β and retirement age T ,

• enlarges in stock returns µ(s) and drops in bond returns µ(b),

• decreases in both stock returns volatility σ (s) and the coefficient of correlation be-
tween the returns of stocks and bonds, ρ , while grows with bond returns volatility
σ (b) .

Therefore the solution attributes mentioned above have led in several policy implications
and recommendations summarized below.

3.2 Applications

The goal of first application presented in this paper is to establish the saver’s optimal
strategy in pension fund selection, conditioned primarily by their time to retirement, in-
termediate wealth-to-salary ratio and various model parameters.
Referring to Slovak pension system and its private Second pillar from the saver’s point
of view the investment decision essence lies in detecting the best fitting ratio between re-
sources allocated to the Equity–Linked Index Fund (symbolizes stocks) and the Bond Fund
(depicts bonds). In this sense, even the Equity–Linked Index Fund allocation strategy ap-
plied when replicating the performance of the benchmark prescribed by the pension fund
management, is unlimited in the choice of stocks, financial derivatives or exchange traded
funds, for the sake of simplicity we assume the fund investment decisions restricted in
stocks only. Moreover we remark that in this problem there exists an obvious restriction
on the stocks and bonds proportions - naturally, both ratios must be non-negative, so that
no short–selling is allowed.
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2009-2012 2003-2012
Asset mean st.deviation correlation mean st.deviation correlation

MSCI World 0.1053 0.1423
-0.8344

0.0763 0.2050
-0.1688

10-Y Slovak Bonds 0.0439 0.0036 0.0447 0.0047
DAX 0.1328 0.1738

-0.1727
0.1286 0.2270

-0.0951
10-Y German Bunds 0.02552 0.0063 0.0335 0.0085

S&P500 0.1242 0.0964
-0.1518

0.0667 0.1799
-0.0535

10-Y US treasuries 0.0276 0.0068 0.0367 0.0092

Source: Bloomberg, MSCI, ECB, EuroStat, US Treasury

Table 1: Descriptive statistics of selected market data observed in periods 2009–2012 and 2003–2012

Next, we have brought the model to Slovak data. According to recently changed Slovak
legislature, in September 2012 the regular contribution level of a private scheme partic-
ipant dropped from their original value of 9% to 4% of his/her gross wage. This rate
prescription is valid until 2017 and then gradually raises by 0.25 p.p. such that in 2024
it attains the value of 6%. Hence in the baseline scenario we set ε = 0.06. As ε plays the
key role not only in this model, but in its actual application to Slovak pension system, we
have tested several levels of ε to scrutinize the model outcomes for various ε values and
study how its value affect both the portfolio component weights and the expected ter-
minal wealth–to–salary payoffs. Moreover, since each private asset management company
charges fund management fees defined as 1% of an investor’s contribution, within our
model we use the effective contribution rate in all scenarios. We have assumed the over-
all time period T = 40 of saving of an individual pensioner, the value of their risk aversion
attitude coefficient was estimated on 0.04, i.e. λ = 0.04 and the Arrow–Pratt risk aversion
related coefficient d = 10. Regarding the average gross wage growth rate we adopted the
expert judgement taken from the from the Slovak Institute of Financial Policy macroeco-
nomic forecast (see Ministry of Finance of the Slovak Republic [30]) and estimated it as for
3.5% p.a., i.e. β = 0.035. Concerning financial market data, we pay attention to the recent
time periods: 2009–2012 and 2003–2012. Next, the investment portfolio consists of two
securities: 10−Year zero coupon Slovak Government Bonds and MSCI All Country World
Index. Our choice of these financial assets comes from real composition of pension funds
in Slovakia. For the comparison purpose, we provide another two pair of investment
options, namely 10-Year US Treasury Bonds versus S&P500 index, and 10-Year German
Bunds versus DAX index, with the descriptive statistics summarized in Table 1.

On Figure 2 we present the 3D plots as well as the contour plots of the constrained op-
timal share of assets (represented by the MSCI World index) in the pension fund portfo-
lio consisting of 10-Year zero coupon Slovak Government Bonds and MSCI World index
calculated based on financial market data in time periods 2009–2012 and 2003–2012, re-
spectively. This constrained optimal share θ̂ (s) is modelled as a function of time t ∈ [0,T ]
and wealth–to–salary ratio y. The optimal investment strategy is constrained as the share
of assets cannot exceeds 100% since borrowings are forbidden.

On all contour plots (Figures 2b, 3b, 4b) the mean portfolio wealth E[yt ] (red dot line)
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(a) 3D plot of the constrained optimal share of MSCI All
Country World Index (2009–2012 data)

(b) Contour plot of the constrained optimal share of MSCI All
Country World Index (2009–2012 data)

Figure 2: 3D plot and Contour plot of the constrained optimal share of MSCI World index in the portfolio of 10-Year Slovak
Government Bonds and MSCI All Country World Index, based on data between 2009-2012

(a) 3D plot of the constrained optimal share of DAX Index
(2009–2012)

(b) Contour plot of the constrained optimal share of DAX Index
(2009–2012)

Figure 3: 3D plot and Contour plot of the constrained optimal share of DAX Index in the portfolio of 10-Year German Bunds and
DAX World Index, based on data between 2009–2012

is obtained by performing 10000 Monte-Carlo simulations calculated according to the
recurrent equation (2.1). The green dot lines depict the mean wealth plus/minus one
standard deviation of the random variable. The simulations were attained employing the
optimal share of stocks in the pension fund portfolio θ̂ (s) = θ̂ (s)(t,y) depending on the
value of simulated yearly accumulated wealth yt at time t and at the terminal time t = T .

For the comparison purpose we present similar plots for alternative investment strategies:
DAX index versus 10–Year zero coupon German Bunds (Figure 3), and the S&P500 Index
with 10–Year US Treasuries (Figure 4). We consider the baseline setting for all model
parameters but the financial market data which are taken from Table 1 and evaluate the
constrained optimal policies with financial market data observed between 2009–2012.

Providing that financial market data from 2009–2012 were applied and the portfolio con-
sisting of Slovak bonds and MSCI All Country Worlds Index was assumed, we observe
that at the end of simulation period, t = T , the average accumulated wealth–to–salary ratio

14



(a) 3D plot of the constrained optimal share of S&P500 Index
(2009–2012)

(b) Contour plot of the constrained optimal share of S&P500
Index (2009–2012)

Figure 4: 3D plot and Contour plot of the constrained optimal share of S&P500 Index in the portfolio of 10-Year US Treasuries and
S&P500 Index, based on data between 2009–2012

(a) 3D plot of the constrained optimal share of MSCI Index for
ε = 0.09

(b) Contour plot of the constrained optimal share of MSCI Index
for ε = 0.09

Figure 5: 3D plot and Contour plot depicting changes in the constrained optimal share of MSCI Index in the portfolio of 10-Year zero
coupon Slovak Government Bonds and MSCI All Country World Index provided that the saver’s regular contribution rate ε raises to

9%, based on financial market data from 2009-2012.

E[yT ] ≈ 7.05 meaning that the future pensioner following the optimal investment strat-
egy given by θ̂ (s) has accumulated approximately 7.05 multiples of saver’s last yearly
salary. During 2009–2012 both DAX and S&P500 indices outperformed MSCI index and
Slovak bond yield surpassed the yields of foreign bonds with comparable volatilities. So
it should be better for a saver to prefer more dynamic (i.e. risky) investment strategy in
both alternative portfolios and thus on average accumulate much higher wealth–to–salary
ratio, more than 10 multiples of saver’s last yearly salary.

Within our dissertation theses we have provided the description of the effects of changes
in all key model parameters on the constrained optimal share of the MSCI All Country
World index in the investment portfolio θ̂ (s), and on the terminal average accumulated
wealth–to–salary ratio E[yT ]. Inasmuch as we want to emphasize the consequences of vari-
ations in model factors that are directly predetermined by policy–makers and legislative
rules, we aim our attention particularly on the sequels of fluctuations in prescribed con-
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(a) 3D plot of the constrained optimal share of MSCI Index for
ε = 0.04

(b) Contour plot of the constrained optimal share of MSCI Index
for ε = 0.04

Figure 6: 3D plot and Contour plot depicting changes in the constrained optimal share of MSCI Index in the portfolio of 10-Year zero
coupon Slovak Government Bonds and MSCI All Country World Index provided that the saver’s regular contribution rate drops to

4%, based on financial market data from 2009-2012.

tribution rate ε and retirement age T . Within the model we considered financial market
data from the period 2009–2012.

Saver’s Contribution Rate ε . Firstly, on Figure 5 we propose the illustration of the opti-
mal policy behaviour under the crucial model structural parameter variation – we ponder
the 2012 - no policy change scenario increase the saver’s regular contribution rate ε from 6%
to 9% per year and observe higher share of risky investment during the whole accumu-
lation period in compare to the case of ε = 0.6 (Figure 5a) and an essential rise in the
terminal average accumulated wealth–to–salary ratio E[yT ] ≈ 10.65 (Figure 5b). Hence, as-
suming the saver’s equal contribution to both mandatory pillars of the Slovak pension
scheme generating the same expected future pay–offs, the future pensioner may expect
to be able to cover the expenses during approximately 21 years of his/her retirement with
the lower level of government implicit liabilities. Furthermore, his/her investment strat-
egy is aimed more on risky assets in compare to the baseline scenario, as in the first half
of the the accumulation period more than 3/4 of his wealth is stored in the MSCI Index –
and even in the 10 years this share does not decline below 40% of the portfolio.

On the other side, considering the temporal drop of the contribution rate ε to 4% of yearly
salary for a permanent leads to a core conservative strategy in terms of a substantial fall in
MSCI Index weight in the pension fund investment portfolio accompanied with decline in
the terminal average accumulated wealth–to–salary ratio E[yT ] ≈ 4.65 (see Figures 6a–6b).
In our concrete application, 4% saver’s regular contribution to the private pension scheme
represent only 22% of his/her overall pension system payments. Then, assuming the
proportional expected future pay–offs from both public and private mandatory schemes
the future pensioner may expect to be able to cover the expenses during approximately
21 years of his/her retirement with the substantially higher level of government implicit
liabilities.
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(a) 3D plot of the constrained optimal share of MSCI
Index for T = 45

(b) Contour plot of the constrained optimal
share of MSCI Index for T = 45

Figure 7: 3D plot and Contour plot depicting changes in the constrained optimal share of MSCI All Country World Index in the
portfolio of 10-Year zero coupon Slovak Government Bonds and MSCI All Country World Index provided that the accumulation

period length T increases to 45 years, based on financial market data from 2009-2012.

Accumulation Period Length T : Next, on Figure 7 we provide the depiction of the op-
timal policy behaviour under the changes the accumulation period length T .

Elongated working life (equivalent for accumulation period T prolongation) to 45 years
(in contract to 40 years in the baseline scenario) has an effect on raising share of risky
asset in the portfolio (there is a slower shift towards less risky bond and even in the last
decade of the accumulation period more than 40% of wealth is placed in the risky stock)
and thus causes even larger expected terminal wealth–to–salary ratio E[yT ]≈ 9.05.

This is an intuitive scenario as the return volatility accompanying stocks is spread over
time while the portfolio value is expected to raise above the one with lower share of
stocks. Hence a more aggressive investment strategy is allowed as there is more time to
wipe off possible losses associated with risky investment – therefore retirement age delay
brings in higher expected terminal payoffs for the investor.
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4 Conclusion

The main objectives of this dissertation thesis were to formulate properly the continuous–
time pension investment portfolio selection problem that encounters any participant of
the Second pillar of the Slovak pension system properly, and find the relationship be-
tween optimal portfolio allocation policy and its intermediate value function. We were
aimed to build a simple explicit analytic decision mechanism estimating a future pen-
sioner’s optimal portfolio selection strategy that based on a saver’s time to retirement
and already allocated wealth advice him/her how to allocate his/her wealth optimally
between unlimited number of more or less risky securities. The decision formula derived
in this thesis reflects individual characteristics of a risk–sensitive investor (risk aversion
attitude, gross wage growth rate), existing government restrictions (retirement age, con-
tribution rate) and financial market data.
Furthermore we concentrated our attention to provide a deep analysis of the optimal in-
vestment strategy decision tool from a qualitative and quantitative perspective on which
basis we emphasized fundamental policy implications and recommendations. We cali-
brated the model on Slovak data and illustrate its behaviour on various examples.

We certify that the fundamental objectives of this dissertation thesis stated in Section 1
were accomplished, the obtained results are in consistence with intuition and reality ob-
servations.

Furthermore, based on the qualitative and quantitative properties of the unconstrained
optimal policy, we formulate the subsequent policy recommendations: In order to in-
crease the Second pillar retirement benefit of a future pensioner we recommend the policy–
makers to increase regular contribution rate ε , elevate the retirement age and reduce fees
charged by the private asset management companies. A future pensioner is advised to
be more aggressive in his/her investment decision in the beginning of the active life and
as time approaches the planned retirement age and the amount of allocated wealth on
his/her pension account raises, decline gradually the share of investment in risky assets
while moving towards more safe financial market instruments. Hence, a typical saver
should start with risky stocks (or stock indices) and then in very last years before retire-
ment switch to highly rated bonds. Furthermore we suggest a saver to ponder carefully
his/her risk aversion attitude, so that very risk–aware investor should choose more con-
servative investment strategy with higher share of bonds in the investment portfolio. On
the other side, providing that a saver’s gross wage growth rate increased he/she should
follow more dynamic investment strategy. Finally, due to volatile financial markets ac-
tive portfolio management is essential – hence, the pension fund portfolio weight of the
financial instrument which appreciates or its returns are getting more stable (i.e. returns
are higher or less volatile) raises.

Moreover, as the derived theoretical model has been calibrated on Slovak data, its results
can be applied on a typical participant of the Second pillar of Slovak pension system de-
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ciding how to split optimally the wealth already allocated on his/her pension account
between the Index Fund (represented by MSCI All Country World Index) and Bond Fund
(deputized by 10–year zero coupon Slovak government bonds). Providing that the regu-
lar contribution rate ε is 6%, the accumulation period length T = 40 and 2009–2012 finan-
cial market data are taken, saver is advised to place more that 50% of his wealth in the
Index Fund in the first 30 years of the accumulation period (more than 65% during the
first half of the active life) and even in the last decade this proportion should not fall un-
der 30%. Following such strategy would bring him/her approximately 7 yearly salaries.
Furthermore, if the contribution rate increases to 9%, he/she might expect to earn around
10.65 yearly salaries emulating more aggressive strategy with more than 3/4 of invest-
ment allocated in the Index fund during the first half of active life and more than 40%
in the last decade. A similar effect can be observed when the retirement age is elevated
– it is optimal for a future pensioner to choose more dynamic strategy with high share
of wealth invested in the Index Fund and slower shift towards Bond Fund yielding in 9
yearly salaries saved.
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Abstract

This dissertation thesis analyses solutions to a specific fully nonlinear Hamilton–Jacobi–
Bellman equation arising from the problem of optimal investment portfolio construc-
tion that encounters a risk sensitive future pensioner, a typical participant of the private
defined–contribution based Second pillar of the Slovak pension system.
We show how the Hamilton–Jacobi–Bellman equation can be converted using the Riccati
transform into a Cauchy–type quasi–linear parabolic differential equation and solve the
associated parametric convex optimization problem. The weak solution to the studied
problem is approached by its double asymptotic expansion with respect to small model
parameters and utilized to build the analytical model which serves us to estimate the
investor’s optimal pension fund selection strategy. We provide the analysis of the optimal
policy from qualitative as well as quantitative point of view and formulate main policy
implications and recommendations that are applicable for all: policy–makers, pension
fund managers, and the Second pillar participants.
Finally, we bring to model to Slovak data and illustrate how the optimal investment
strategies and saver’s expected terminal wealth accumulated on his/her pension account
change depending on model calibration and its key parameters.

Abstrakt

Táto dizertačná práca analyzuje riešenie špeciálnej plne nelineárnej Hamilton–Jacobi–
Bellmanovej rovnice vyplývajúcej z problému tvorby optimálneho portfólia ktorému čelı́
typický budúci dôchodca, rizikoaverzný účastnı́k druhého piliera slovenského penz-
ijného systému.
Použitı́m Riccatiho trasformácie ukazujeme premenu pôvodnej Hamilton–Jacobi–
Bellmanovej rovnice na začiatočnú kvázilineárnu parabolickú úlohu a riešime prı́slušný
parametrický konvexný optimalizačný problém. Využitı́m techniky dvojitého asymp-
totického rozvoja aproximujeme slabé riešenie študovaného problému a vzniknuý analyt-
ický model použijeme na určenie sporiteľovej optimálnej investičnej stratégie. Model op-
timálnej investičnej stratégie analyzujeme z kvalitatı́vneho aj kvantitatı́vneho hľadiska a
vyvodzujeme hlavné politické závery a odporúčania určné tvorcom legislatı́vy, správcom
penzijných fondov aj sporiteľom v druhom pilieri slovenského penzijného systému.
Nakoniec model nakalibrujeme na slovenské dáta. Pomocou neho ilustrujeme zmeny v
sporiteľovej optimálnej investičnej stratégii a očakávanom majetku naakumulovanom na
jeho osobnom penzijnom účte, ako dôsledok rôznych nastavenı́ kľúčových parametrov
modelu.
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[20] Ishimura, N. and Ševčovič, D. (2013). On traveling wave solutions to a hamilton– jacobi–
bellman equation with inequality constraints. Japan Journal of Industrial and Applied Mathe-
matics, 1:51–67.
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[28] Melicherčı́k, I. and Ševčovič, D. (2010). Dynamic stochastic accumulation model with appli-
cation to pension savings management. Yugoslav Journal of Operations Research, 20:1–27.

[29] Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model.
Journal of Economic Theory, 3:373–413.

[30] Ministry of Finance of the Slovak Republic (2013). Macroeconomic forecast 2013.
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