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1 Introduction

Superlinear parabolic problems represent important mathematical models for various
phenomena occurring in physics, chemistry or biology. Therefore such problems have
been intensively studied by many authors. Beside solving the question of existence,
uniqueness, regularity etc. signi�cant e�ort has been made to obtain a priori estimates
of solutions. A priori estimates are important in the study of global solutions (i.e.
solutions which exist for all positive times) or blow-up solutions (i.e. solutions whose
L∞-norm becomes unbounded in �nite time); superlinear parabolic problems may pos-
sess both of these types of solutions. Uniform a priori estimates also play a crucial
role in the study of so-called threshold solutions, i.e. solutions lying on the borderline
between global existence and blow-up.

Stationary solutions of parabolic problems are particular global solutions and their a
priori estimates are of independent interest since they can be used to prove the existence
and/or multiplicity of steady states, for example. The proofs of such estimates are
usually much easier than the proofs of estimates of time-dependent solutions. On the
other hand, the methods of the proofs of a priori estimates of stationary solutions can
often be modi�ed to yield a priori estimates of global time-dependent solutions.

In this thesis we will prove a priori estimates for positive solutions of two model
problems. In both cases we study a system of two equations in a smoothly bounded
domain Ω ⊂ RN complemented by the homogeneous Dirichlet boundary conditions on
the boundary ∂Ω. The problems involve power nonlinearities and have been intensively
studied in the past (see Section 2 for known results and precise formulation of our main
results). Our approach is based on bootstrap in suitable weighted Lebesgue spaces.

In Section 4 we prove a priori estimates and existence of positive stationary solu-
tions: We consider the elliptic problem

−∆u = a(x)|x|−κvq, x ∈ Ω,

−∆v = b(x)|x|−λup, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

 (1)

where a, b ∈ L∞(Ω) are nonnegative, κ, λ ∈ (0, 2), p, q > 0, pq > 1, and 0 ∈ ∂Ω. We
deal with so-called very weak solutions and we �nd optimal conditions on the exponents
κ, λ, p, q guaranteeing a priori estimates and existence of such solutions. These results
have been published in [29].

1



In Section 5 we study global classical positive solutions of the problem

ut −∆u = urvp, (x, t) ∈ Ω× (0,∞),

vt −∆v = uqvs, (x, t) ∈ Ω× (0,∞),

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

v(x, 0) = v0(x), x ∈ Ω


(2)

where p, q, r, s ≥ 0. In this case, optimal conditions on the exponents p, q, r, s guaran-
teeing a priori estimates and existence of positive stationary very weak solutions have
been obtained in [34], and we �nd su�cient conditions on the exponents guarantee-
ing uniform a priori estimates of global classical solutions. Our method is in some
sense similar to that used in [34] (both methods are based on bootstrap in weighted
Lebesgue spaces and estimates of auxiliary functions of the form uav1−a) but our proofs
are much more involved. In particular, we have to use precise estimates of the Dirich-
let heat semigroup and several additional ad-hoc arguments. These di�culties cause
that our su�cient conditions are quite technical and probably not optimal. On the
other hand, our results are new and our approach is also new in the parabolic setting:
Although the bootstrap in weighted Lebesgue spaces has been used many times in the
case of superlinear elliptic problems (see the references in [34], for example), it has not
yet been used to prove a priori estimates of global solutions of superlinear parabolic
problems. In fact, the known methods for obtaining such estimates always require
some special structure of the problem (see a more detailed discussion in Section 2) and
cannot be used for system (2) in general. In addition, our method is quite robust: It
can also be used if the problem is perturbed or if we replace the Dirichlet boundary
conditions by the Neumann ones, for example.

This thesis is organized as follows. In Section 2 we discuss known results and
methods of proofs of a priori estimates of stationary and time-dependent solutions
of superlinear parabolic problems and we also formulate our main results. Section 3
contains preliminary lemmas and inequalities that we need in subsequent sections. In
Section 4 we prove a priori estimates and existence of positive solutions of system (1).
In Section 5 we prove a priori estimates of positive global solutions of problem (2).

2 Known and main results

Unless stated otherwise, in the whole section we assume that Ω ⊂ RN is a smooth
bounded domain and by a solution we mean a nonnegative classical solution.
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2.1 Elliptic scalar case

One of the simplest examples of superlinear elliptic problems is the Dirichlet problem
for the Lane-Emden (or Lane-Emden-Fowler) equation (see [24, 14, 18]):

−∆u = up, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(3)

where p > 1. The motivation for the study of this problem originates in astrophysics
(see [24, 14]) but this problem and its modi�cations also play a crucial role in the
study of the standing wave solutions of the nonlinear Schrödinger equation or in the
di�erential geometry (the Yamabe problem). Of course, solutions of (3) are also steady
states of the corresponding nonlinear heat (or wave) equation. Finally, problem (3)
and its parabolic counterpart are very useful model problems: On one hand, they look
very simple so that it is de�nitely easier to study their solutions than those of more
complicated systems, and the methods of the proofs developed for these model problems
can often be used for more complicated ones. On the other hand, the structure of these
model problems is extremely rich and their study represents a great mathematical
challenge: In spite of their intensive study (see [38] and the references therein), they
still o�er many open questions.

Let us mention some results about the existence and a priori estimates of solutions
of problem (3). If Ω is starshaped then a positive solution of (3) exists if and only if
p < pS where

pS =
N + 2

(N − 2)+

is the so-called Sobolev exponent, see [1, 31]. The history of a priori estimates of
positive solutions of (3) is quite long. They have been proved �rst in [41] if N = 2 and
p < 3, and then in [27] if p < N/(N − 1), in [6] if p < (N + 1)/(N − 1) and, �nally, in
[19, 11] if p < pS. More precisely, the following theorem was proved in [19, 11]:

Theorem 2.1. Let Ω be a smooth bounded domain and p ∈ (1, pS). Then there exists a

constant C such that for all positive solutions u of (3) satisfy the estimate ||u||∞ ≤ C.

The methods of the proof Theorem 2.1 in [19, 11] were quite di�erent: The method
in [19] was based on scaling arguments and the corresponding Liouville theorem from
[20] (guaranteeing the nonexistence of positive solutions of (3) for Ω = RN and 1 < p <

pS); the method in [11] was based on the method of moving planes and the Pohozaev
identity (which requires a special structure of the problem).

Interestingly, the exponent p = (N + 1)/(N − 1) is also critical for problem (3) in
some sense. More precisely, so-called very weak solutions of problem (3) are known to
be bounded (and, consequently, satisfy the a priori estimate in Theorem 2.1) if and
only if p < (N+1)/(N−1), see [40, 13]. In addition, the proof of the boundedness and
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a priori estimates of very weak solutions is quite easy (it is su�cient to use a relatively
simple bootstrap argument in weighted Lebesgue spaces, see [37]), and can be used in
a much more general situation, where both methods from [19, 11] fail (see [34] and the
references therein).

2.2 Elliptic vector case

The method based on bootstrap in weighted Lebesgue spaces mentioned at the end of
Subsection 2.1 has been successfully used for many elliptic systems, see [37, 34] and the
references therein. Of course, each particular use of this method usually requires some
extra ad-hoc arguments. In particular, in the case of stationary solutions of problem
(2), one of such ad-hoc arguments was a universal bound of the auxiliary function
uav1−a for suitable a ∈ (0, 1). Using this argument and the notation

α := 2
p+ 1− s

pq − (1− r)(1− s)
, β := 2

q + 1− r
pq − (1− r)(1− s)

,

the following theorem was proved in [34]:

Theorem 2.2. Let Ω be a smooth bounded domain, p, q, r, s ≥ 0 satisfy

pq 6= (1− r)(1− s) (4)

and

min{p+ r, q + s}, r, s < N+1
N−1

,

if pq > (1− r)(1− s) then max{α, β} > N − 1.

}
(5)

Then there exists a positive stationary solution of (2). In addition, there exists a

positive constant C depending on Ω, N, p, q, r, s such that ||u||∞ + ||v||∞ < C for any

positive very weak stationary solution of (2).

The nondegeneracy condition (4) in Theorem 2.2 is also necessary for the exis-
tence and a priori estimates of (classical) positive stationary solutions of (2), and the
subcriticality condition (5) is also optimal for the boundedness of very weak positive
stationary solutions of (2) (it corresponds to the condition p < (N +1)/(N −1) for the
scalar problem (3)). On the other hand, it is known that condition (5) is not necessary
for the existence and a priori estimates of classical positive stationary solutions of (2):
An optimal condition for general p, q, r, s does not seem to be known, see the discussion
in [34]. We will use similar approach as in [34] in order to �nd su�cient conditions
on p, q, r, s guaranteeing uniform a priori estimates of global (time-dependent) classical
positive solutions of (2).

4



In this thesis we also use bootstrap in weighted Lebesgue spaces in order to prove a
priori estimates and existence of positive very weak solutions of the non-homogeneous
elliptic system (1), where

p, q > 0, pq > 1, a, b ∈ L∞(Ω), a, b ≥ 0, a, b 6≡ 0 (6)

and some additional assumptions are satis�ed. We say that (u, v) is a very weak
solution of (1) if u, v ∈ L1(Ω), the right-hand sides in (1) belong to the weighted
Lebesgue space L1(Ω; dist(x, ∂Ω) dx) and

−
∫

Ω

u∆ϕ dx =

∫
Ω

a(x)|x|−κvqϕ dx, −
∫

Ω

v∆ϕ dx =

∫
Ω

b(x)|x|−λupϕ dx (7)

for every ϕ ∈ C2(Ω), ϕ = 0 on ∂Ω.
Problem (1) with κ = λ = 0 has been widely studied. Concerning very weak

solutions, necessary and su�cient conditions for their boundedness were found in [5],
[37] and [40]. In those papers the existence of very weak solution was studied, as well.

Problem (1) with a = b ≡ 1, 0 ∈ Ω and general κ, λ ∈ R has been studied by
several authors, who were mainly interested in the existence of classical solutions (if
max{κ, λ} ≤ 0) or solutions of the class C2(Ω\{0}) ∩ C(Ω) (if max{κ, λ} > 0). If
max{κ, λ} ≥ 2, then (48) has no positive solution in this class for any domain Ω

containing the origin; see [3]. If max{κ, λ} < 2, Ω is a bounded starshaped domain
and some additional assumptions are satis�ed, then (1) has a positive solution if and
only if the following condition is satis�ed

N − κ
1 + q

+
N − λ
1 + p

> N − 2; (8)

see e.g. [7], [12], [16], [25] for details. If max{κ, λ} < 2 and Ω = RN , N ≥ 3 , then (1)
has no positive radial solution if and only if (8) is true. The conjecture is, that if (8)
holds, (1) has no positive nonradial solution for Ω = RN ; see [4]. This conjecture has
been partially proved in e.g. [30].

We consider the case 0 ∈ ∂Ω and κ, λ ∈ (0, 2). Our main result guarantees a
priori estimates of positive very weak solutions of (1) and its modi�cations whenever
max{α, β} > N − 1, where

α :=
(2− λ)q + 2− κ

pq − 1
, β :=

(2− κ)p+ 2− λ
pq − 1

, (9)

see Theorem 4.1. These estimates enable us also to prove the following existence result.

Theorem 2.3. Let Ω be a smooth bounded domain, 0 ∈ ∂Ω, κ, λ ∈ (0, 2) and assume

also (6). Let α, β be de�ned by (9).
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(i) Assume max{α, β} > N − 1. Then there exists a positive bounded very weak

solution of problem (1) and each positive very weak solution (u, v) of (1) is bounded

and satis�es the estimate

||u||∞ + ||v||∞ ≤ C(Ω, a, b, p, q, κ, λ).

(ii) Assume max{α, β} < N − 1. Then there exist functions a, b satisfying (6) and
a positive very weak solution (u, v) of problem (1) such that u, v /∈ L∞(Ω).

2.3 Parabolic scalar case

Consider the model parabolic problem

ut −∆u = up, (x, t) ∈ Ω× (0,∞),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω

 (10)

where Ω is a bounded domain with smooth boundary, p > 1, and u0 ∈ L∞(Ω), u0 ≥ 0.
It is known that under some restrictions on the exponent p, global positive solutions
of (10) satisfy various uniform a priori estimates. Let us mention some of them:

i) a priori estimate depending on the initial data

sup
Ω
u(., t) ≤ C(Ω, p, u0) for t ≥ 0,

ii) uniform a priori estimate

sup
Ω
u(., t) ≤ C(Ω, p, ||u0||∞) for t ≥ 0,

iii) universal a priori estimate

sup
Ω
u(., t) ≤ C(Ω, p, τ) for t ≥ τ > 0,

where the constant C may explode as τ → 0+,

iv) asymptotic a priori bound of the form

lim sup
t→∞

||u(., t)||∞ ≤ C(Ω, p).

Estimate of type i) says that each global positive solution of (10) is bounded, uniformly
with respect to t ∈ (0,∞). Such estimates have been �rst obtained in [26] for convex
domains Ω under the assumption p < N+2

N
and then in [8] for general bounded domains
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and p < pS. The proof in [8] heavily used the variational structure of problem (10). In
[26] it was also proved that for p ≥ pS, there exist global unbounded weak (so-called
L1) solutions. In fact, it was proved much later that these unbounded weak solutions
are classical if p = pS but they may blow up in �nite time if p > pS, see the references
in [38].

The stronger estimate of type ii) was derived in [8] for global (not necessarily
positive) solutions of problem (10) under the assumption p < 3N+8

(3N−4)+
and in [21]

for global positive solutions under the optimal assumption p < pS. The positivity
assumption in [21] was removed in [33] (the nonlinearity up is unterstood as |u|p−1u in
the case of sign-changing solutions). All proofs in [8, 21, 33] heavily used the variational
structure of problem (10). Estimates of type ii) have several important applications, see
[38]. In particular, they guarantee that all threshold solutions lying on the borderline
between global existence and blow-up are global, bounded and their ω-limit sets consist
of nontrivial steady states (such results cannot be proved by using the weaker estimate
of type i)).

Universal estimate of type iii) for global positive solutions of (10) has �rstly been
obtained in [17] under the assumption p < N+1

N−1
. The same estimate has then been

proved in [35] for p < pS and N ≤ 3 and in [39] for p < pS if N ≤ 4 and p <

(N − 1)/(N − 3)+ if N > 4. Finally, the following quantitative version of estimate of
type iii) was proved in [32] and [36].

Theorem 2.4. Assume that p < N(N+2)
(N−1)2

or N = 2 (or p < pS, Ω is a ball and u0

is radially symmetric). Then there exists a constant C(Ω, p) > 0 such that all global

positive classical solutions of (10) satisfy the estimate

sup
Ω
u(·, t) ≤ C(1 + t−1/(p−1)), t > 0. (11)

Estimate (11) is based on scaling, doubling arguments, and parabolic Liouville the-
orems for entire solutions of problem (10) in RN×(−∞,∞) and RN

+×(−∞,∞) (where
RN

+ is a halfspace). Similarly as in the case of estimates of type ii) and i), all proofs of
estimate iii) used the special structure of problem (10). Notice also that estimate iii)
implies estimate iv) and estimate iv) implies uniform estimate for stationary positive
solutions of (10).

2.4 Parabolic vector case

As mentioned in Subsection 2.3, all proofs of (optimal) a priori estimates of global
positive solutions of the scalar problem (10) heavily used the special structure of the
problem. In fact, all of them either used directly the variational structure of (10) or
the scaling invariance and the validity of suitable parabolic Liouville theorems (which
are known due to the special structure of (10)).
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Recall that we are interested in problem (2) which, in general, does not have varia-
tional structure. In addition, the known parabolic Liouville theorems for (2) in [15] are
just of Fujita-type (hence require severe restrictions on the exponents) and the nonex-
istence of entire solutions is only guaranteed for solutions (u, v) with both components
being positive. In fact, if p, s > 0, for example, then problem (2) in RN × (−∞,∞)

always possesses semi-trivial solutions of the form (u, v) = (C, 0), where C is a posi-
tive constant, so that standard scaling arguments yielding a priori estimates cannot be
used. Due to these facts, there are no results on a priori estimates of global positive
solutions of (2) in the general (superlinear) case, even if the global existence and blow-
up for (2) have been intensively studied in such general situation. Of course, for some
very special choices of exponents p, q, r, s problem (2) does have variational structure
and then some of the methods mentioned in Subsection 2.3 can be used. Similarly, if
r = s = 0, for example, then the semi-trivial solutions mentioned above do not exist,
so that one can use the corresponding parabolic Liouville theorems.

Since we wish to prove uniform a priori estimates of global positive solutions of (2)
and one of the main applications of such estimates is the proof of global existence and
boundedness of threshold solutions lying on the borderline between global existence and
blow-up, let us �rst mention conditions on p, q, r, s guaranteeing that both global and
blow-up solutions (hence also threshold solutions) of (2) exist. The following theorem
was proved in [2, 42] (see also [9, 43, 44] for other results on blow-up of positive solutions
of (2)).

Theorem 2.5. Let Ω be smooth and bounded, p, q, r, s ≥ 0, p+r > 0, q+s > 0 and let

the initial data u0, v0 ∈ C(Ω̄) be nonnegative and satisfy the compatibility conditions.

(i) Assume that

r ≤ 1, s ≤ 1 and pq < (1− r)(1− s). (12)

Then all solutions of (2) exist globally.
(ii) Assume that

r > 1, p > 0, q = 0, s = 1, λ1 < 1, r ≤ 1 + p
1− λ1

λ1

(13)

or

s > 1, q > 0, p = 0, r = 1, λ1 < 1, s ≤ 1 + q
1− λ1

λ1

, (14)

where λ1 is the least eigenvalue of the negative Dirichlet Laplacian in Ω. Then, for any

initial data u0, v0 ≥ 0, u0, v0 6≡ 0, the solution of (2) blows up in �nite time.

(iii) If (12), (13) and (14) do not hold then the solution of (2) exists globally for

small initial data, and blows up in �nite time for large initial data.
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Next we present our main results concerning problem (2). We will assume that

Ω is smooth and bounded, u0, v0 ∈ L∞(Ω) are nonnegative, (15)

and
p, q, r, s ≥ 0; if q = 0 then either r > 1 or s ≤ 1. (16)

Theorem 2.6. Assume (15), (16) and pq > (r − 1)(s − 1). Assume also that either

r > 1, p > 0, p + r < N+3
N+1

, s + 2
N+1

r−1
p+r−1

< N+3
N+1

or r ≤ 1, 0 < p < 2
N+1

, s <
N+3
N+1

. Let (u, v) be a global nonegative solution of problem (2). Then there exists

C = C(p, q, r, s,Ω, ||u(τ)||∞, ||v(τ)||∞) such that

sup
s′∈[τ,τ+T ]

||u(s′)||∞ + sup
s′∈[τ,τ+T ]

||v(s′)||∞ ≤ C (17)

for every T, τ ≥ 0.

Theorem 2.7. Assume (15), (16) and either max{r, s} > 1 or pq > (r − 1)(s − 1).

Assume also p ≥ 1, p+ r < N+3
N+1

, s ≤ 1,

(p+ r)

(
p− 2

N + 1

)
+ r < 1

and

0 < q <
1− r
p− 2

N+1

(
1− N − 1

N + 1
s

)
.

Let (u, v) be a global nonnegative solution of problem (2). Then, given τ > 0, there

exists C = C(p, q, r, s,Ω, τ, ||u(τ)||1,δ, ||v(τ)||1,δ) such that

||u(t)||∞ + ||v(t)||∞ ≤ C, t ≥ τ.

Remark. The constant C in Theorem 2.7 may explode if τ → 0+, and is bounded
for ||u(τ)||1,δ, ||v(τ)||1,δ bounded. By || · ||1,δ we denote the norm in the weighted Lebesgue
space L1(Ω; dist(x, ∂Ω) dx).

As already mentioned, the proofs of Theorems 2.6 and 2.7 are mainly based on
bootstrap in weighted Lebesgue spaces, universal estimates of auxiliary functions of
the form uav1−a and precise estimates of the Dirichlet heat kernel. Our approach can
also be used, for example, for the following problem with Neumann boundary conditions

ut −∆u = urvp − λu, (x, t) ∈ Ω× (0,∞),

vt −∆v = uqvs − λv, (x, t) ∈ Ω× (0,∞),

uν(x, t) = vν(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

v(x, 0) = v0(x), x ∈ Ω


(18)
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where Ω, p, q, r, s and u0, v0 are as above, λ > 0 and ν is the outer unit normal
on the boundary ∂Ω. The terms −λu,−λv with λ > 0 are needed in (18), since
otherwise (18) cannot admit both global and blow-up positive solutions. Let us also
note that in this case one has to work in standard (and not weighted) Lebesgue spaces
and that the restrictions on the exponents p, q, r, s are less severe than in the case of
Dirichlet boundary conditions: Roughly speaking, one can replace N with N − 1 in
those restrictions (in particular, the condition p + r < N+3

N+1
becomes p + r < N+2

N
in

this case).
If r = s = 0 and p, q > 1 then the following universal estimate of solutions of

problem (2) was proved in [17].

Theorem 2.8. Assume r = s = 0, 1 < p, q < N+3
N+1

and let τ > 0. There exists a

constant C(Ω, p, q, τ) > 0, such that all nonnegative global classical solutions of (2)
satisfy the estimate

sup
Ω
u(., t) + sup

Ω
v(., t) ≤ C(Ω, p, q, τ) for t ≥ τ. (19)

Let us also note that if r = s = 0 and p, q > 1 then a very easy argument in
[17] yields a universal estimate of ||u(τ)||1,δ, ||v(τ)||1,δ for all τ ≥ 0, hence Theorem 2.7
also guarantees estimate (19) in this case and the assumptions on p, q are di�erent
from those in Theorem 2.8. In particular, q need not satisfy the condition q < N+3

N+1
. Of

course, if r = s = 0 then (as mentioned above) one could also use the parabolic Liouville
theorems in [15] together with scaling and doubling arguments to prove quantitative
universal estimates. The main advantage of our results and proofs is the fact that we
do not need the assumption r = s = 0.

3 Preliminaries

We introduce some notation we will use frequently. Denote

δ(x) = dist(x, ∂Ω) for x ∈ Ω,

and for 1 ≤ p ≤ ∞ de�ne the weighted Lebesgue spaces Lpδ = Lpδ(Ω) := Lp(Ω; δ(x) dx).
If 1 ≤ p <∞, then the norm in Lpδ is de�ned by

||u||p,δ =

(∫
Ω

|u(x)|pδ(x) dx

)1/p

.

Recall that L∞δ = L∞(Ω; dx) with ||u||∞,δ = ||u||∞. We will use the notation || · ||p for
the norm in Lp(Ω) for p ∈ [1,∞), as well.
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Let λ1 be the �rst eigenvalue of the problem

−∆φ = λφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω,

}

and ϕ1 to be the corresponding positive eigenfunction satisfying ||ϕ1||2 = 1. There holds

C(Ω)δ(x) ≤ ϕ1(x) ≤ C ′(Ω)δ(x) for all x ∈ Ω. (20)

Therefore the norm

||u||p,ϕ1 =

(∫
Ω

|u(x)|pϕ1(x) dx

)1/p

is equivalent to the norm ||u||p,δ in Lpδ(Ω) for 1 ≤ p <∞.
Let (u, v) be a solution of system (2). Then (u, v) solves the system of integral

equations

u(τ + t) = et∆u(τ) +

∫ τ+t

τ

e(τ+t−s′)∆urvp(s′) ds′,

v(τ + t) = et∆v(τ) +

∫ τ+t

τ

e(τ+t−s′)∆uqvs(s′) ds′
(21)

where τ, t ≥ 0 and
(
et∆
)
t≥0

is the Dirichlet heat semigroup in Ω. In the following
lemma we recall some basic properties of the semigroup

(
et∆
)
t≥0

, which we will use
often. The corresponding proofs can be found e.g. in [17].

Lemma 3.1. Let Ω be arbitrary bounded domain.

i) If φ ∈ L1
δ(Ω), φ ≥ 0 then et∆φ ≥ 0.

ii) ||et∆φ||1,ϕ1 = e−λ1t||φ||1,ϕ1 for t ≥ 0, φ ∈ L1
δ(Ω).

iii) If p ∈ (1,∞) then ||et∆φ||p,ϕ1 ≤ C(Ω)e−λ1t||φ||p,ϕ1 for t ≥ 0, φ ∈ Lpδ(Ω).

iv) ||et∆φ||∞ ≤ C(Ω)e−λ1t||φ||∞ for t ≥ 0, φ ∈ L∞(Ω).

v) Let Ω be of the class C2. For 1 ≤ p < q < ∞, there exists constant C = C(Ω)

such that, for all φ ∈ Lpδ(Ω), it holds

||et∆φ||q,δ ≤ C(Ω)t−
N+1

2 ( 1
p
− 1
q )||φ||p,δ, t > 0.

vi) Let Ω be of the class C2. For 1 ≤ p < ∞, there exists constant C = C(Ω) such

that, for all φ ∈ Lpδ(Ω), it holds

||et∆φ||∞ ≤ C(Ω)t−
N+1
2p ||φ||p,δ, t > 0.
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Assertions iii) and iv) from Lemma 3.1 for 1 ≤ p < q < ∞, t > 0 and ε ∈ (0, 1)

imply

||et∆φ||q,δ = ||eεt∆(e(1−ε)t∆φ)||q,δ ≤ C(Ω)e−λ1εt||e(1−ε)t∆φ||q,δ
≤ C(Ω)e−λ1εt((1− ε)t)−

N+1
2 ( 1

p
− 1
q )||φ||p,δ, φ ∈ Lpδ(Ω).

(22)

Assertions iv) and vi) from Lemma 3.1 for 1 ≤ p <∞, t > 0 and ε ∈ (0, 1) imply

||et∆φ||∞ = ||eεt∆(e(1−ε)t∆φ)||∞ ≤ C(Ω)e−λ1εt||e(1−ε)t∆φ||∞
≤ C(Ω)e−λ1εt((1− ε)t)−

N+1
2

1
p ||φ||p,δ, φ ∈ Lpδ(Ω).

(23)

If we multiply the equations in (21) by ϕ1 and integrate on Ω then assertions i) and
ii) from Lemma 3.1 imply∫

Ω

u(τ + t)ϕ1 dx ≥ e−λ1t
∫

Ω

u(τ)ϕ1 dx,∫
Ω

v(τ + t)ϕ1 dx ≥ e−λ1t
∫

Ω

v(τ)ϕ1 dx.
(24)

Let (u, v) be a solution of system (18). Then (u, v) solves the system of integral
equations

u(τ + t) = etLu(τ) +

∫ τ+t

τ

e(τ+t−s′)L(urvp)(s′) ds′,

v(τ + t) = etLv(τ) +

∫ τ+t

τ

e(τ+t−s′)L(uqvs)(s′) ds′
(25)

where τ, t ≥ 0, etL := e−λtet∆N is the semigroup corresponding to operator

L := ∆− λ

with homogeneous Neumann boundary condition and
(
et∆N

)
t≥0

is the Neumann heat
semigroup in Ω. For the Neumann semigroup, the following estimates are true.

Lemma 3.2. Let Ω be a smoothly bounded domain.

i) For all φ ∈ L1(Ω), it holds

||et∆Nφ||1 = ||φ||1, t ≥ 0.

ii) For 1 ≤ p < q < ∞, there exists a constant C = C(Ω) such that, for all

φ ∈ Lp(Ω), it holds

||et∆Nφ||q ≤ C(Ω) (min{1, t})−
N
2 ( 1

p
− 1
q ) ||φ||p, t > 0.
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iii) For 1 ≤ p < ∞, there exists a constant C = C(Ω) such that, for all φ ∈ Lp(Ω),

it holds

||et∆Nφ||∞ ≤ C(Ω) (min{1, t})−
N
2p ||φ||p, t > 0.

The assertions in Lemma 3.2 are proved in [10, 28]. From i) we have

||etLφ||1 = e−λt||φ||1

and hence we obtain inequalities similar to (24) with ϕ1 replaced by 1 and λ1 replaced
by λ.

In the following we will use the notation from [34]. We set

A :=

{
[ar, as] ∩ (0, 1) if pq ≥ (r − 1)(s− 1) or min{r, s} ≤ 1,

[as, ar] ∩ (0, 1) if pq < (r − 1)(s− 1) and r, s > 1

where

ar :=

{
r−1
p+r−1

if r > 1,

0 if r ≤ 1,
as :=

{
q

q+s−1
if s > 1,

1 if s ≤ 1.

Note that the set A is nonempty provided there holds

if p = 0 then either s > 1 or r ≤ 1,

if q = 0 then either r > 1 or s ≤ 1.

}
(26)

The following lemma is an adaptation of [34, Lemma 7] to systems (2) and (18):

Lemma 3.3. Assume p, q, r, s ≥ 0, pq 6= (1 − r)(1 − s) and (26). For given a ∈ A,
there exists κ′ ≥ 0 and C = C(p, q, r, s, a) such that any global nonnegative solution of

(2) satis�es

(uav1−a)t −∆(uav1−a) ≥ Fa(u, v) ≥ C(uav1−a)κ
′
, t ∈ (0,∞) (27)

where

Fa(u, v) := aua−1v1−a(ut −∆u) + (1− a)uav−a(vt −∆v)

= aur+a−1vp+1−a + (1− a)uq+avs−a, t ∈ (0,∞). (28)

For any global nonnegative solution (18), there holds

(uav1−a)t −∆(uav1−a) + λ(uav1−a) ≥ Ga(u, v) ≥ C(uav1−a)κ
′
, t ∈ (0,∞) (29)

where

Ga(u, v) := aua−1v1−a(ut −∆u+ λu) + (1− a)uav−a(vt −∆v + λv)

= aur+a−1vp+1−a + (1− a)uq+avs−a, t ∈ (0,∞). (30)

If

max{r, s} > 1 or pq > (r − 1)(s− 1) (31)

then κ′ > 1.
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Proof. Let (u, v) be a solution of (2). A direct computation shows

(uav1−a)xi = aua−1v1−auxi + (1− a)uav−avxi

and

(uav1−a)t −∆(uav1−a) = aua−1v1−a(ut −∆u) + (1− a)uav−a(vt −∆v)

+ a(1− a)[ua−2v1−a|∇u|2 + uav−1−a|∇v|2

− 2ua−1v−a∇u · ∇v].

We use the Cauchy-Schwartz inequality to obtain

(uav1−a)t −∆(uav1−a) ≥ aua−1v1−a(ut −∆u) + (1− a)uav−a(vt −∆v)

+ a(1− a)[ua−2v1−a|∇u|2 + uav−1−a|∇v|2

− 2ua−1v−a|∇u||∇v|]
= aua−1v1−a(ut −∆u) + (1− a)uav−a(vt −∆v)

+ a(1− a)ua−2v−1−a[v|∇u| − u|∇v|]2

≥ Fa(u, v) = aur+a−1vp+1−a + (1− a)uq+avs−a.

Thus we proved the �rst inequality in (27). Now we prove the second one. It is su�cient
to �nd θ ∈ [0, 1] such that

θ(q + a) + (1− θ)(r + a− 1) = aκ′,

θ(s− a) + (1− θ)(p+ 1− a) = (1− a)κ′

or equivalently

r − 1 + θ(q − r + 1) = a(κ′ − 1),

p− θ(p− s+ 1) = (1− a)(κ′ − 1).
(32)

Set

Dξ := {θ ∈ [0, 1] : (r − 1 + θ(q − r + 1))(p− θ(p− s+ 1)) > 0},
Rξ := {ξ(θ) : θ ∈ Dξ}

where

ξ : Dξ → (0,∞); ξ(θ) :=
r − 1 + θ(q − r + 1)

p− θ(p− s+ 1)
.

We obtain the derivative of ξ

ξ′(θ) =
pq − (1− r)(1− s)
(p− θ(p− s+ 1))2

.

We see that ξ is monotone and ξ′ > 0 if and only if pq > (1− r)(1− s). Observe that
a ∈ (0, 1) is a solution of (32) with some κ′ 6= 1 and θ ∈ [0, 1] if and only if a

1−a = ξ(θ)
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for some θ ∈ Dξ. Consequently, the second inequality in (27) holds with some κ′ 6= 1,
if a ∈ Aξ, where

Aξ :=

{
a ∈ (0, 1) :

a

1− a
∈ Rξ

}
.

If r, s > 1 and pq > (1 − r)(1 − s) then ξ is increasing. Since there holds ξ(0) =
r−1
p

> 0 and p
p−s+1

> 1 if p + 1 > s, the function ξ is positive and �nite on interval
[0, 1]. Hence it holds

Dξ = [0, 1], Rξ =

[
r − 1

p
,

q

s− 1

]
, Aξ = [ar, as], κ′ > 1.

If r, s > 1 and pq < (1− r)(1− s) then similarly we obtain

Aξ = [as, ar] ∩ (0, 1), κ′ > 1.

If r > 1 ≥ s then due to (26), p > 0 and

Dξ =

[
0,

p

p− s+ 1

)
, Rξ =

[
r − 1

p
,∞
)
, Aξ = [ar, 1), κ′ > 1.

If s > 1 ≥ r then q > 0 and

Dξ =

(
1− r

q − r + 1
, 1

]
, Rξ =

(
0,

q

s− 1

]
, Aξ = (0, as], κ′ > 1.

If r, s ≤ 1 and pq > (1− r)(1− s) then

Dξ =

(
1− r

q − r + 1
,

p

p− s+ 1

)
, Rξ = (0,∞) , Aξ = (0, 1), κ′ > 1.

If r, s ≤ 1 and pq < (1− r)(1− s) then

Dξ =

(
p

p− s+ 1
,

1− r
q − r + 1

)
, Rξ = (0,∞) , Aξ = (0, 1), κ′ < 1.

Now we can write

uθ(q+a)+(1−θ)(r+a−1)vθ(s−a)+(1−θ)(p+1−a) = (uav1−a)κ
′
.

Let θ ∈ Dξ. If θ ∈ {0, 1} then there holds (27). If θ ∈ (0, 1) then we use Young's
inequality to obtain

(uq+avs−a)θ(ur+a−1vp+1−a)1−θ ≤ θuq+avs−a + (1− θ)ur+a−1vp+1−a.

Hence (27) is true if θ ∈ [0, 1].
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If (u, v) is a solution of (18) then we have

(uav1−a)t −∆(uav1−a) + λ(uav1−a) = aua−1v1−a(ut −∆u+ λu)

+ (1− a)uav−a(vt −∆v + λv)

+ a(1− a)[ua−2v1−a|∇u|2

+ uav−1−a|∇v|2 − 2ua−1v−a∇u · ∇v].

The rest of the proof is similar to the proof of (27).
�

Let (u, v) be a global nonnegative solution of system (2). Denote

w = w(t) :=

∫
Ω

uav1−a(t)ϕ1 dx.

The following estimatea are based on ideas from [23]. Let a ∈ A and condition (31) be
true (then κ′ > 1). Then due to Lemma 3.3 and due to Jensen's inequality, it holds

wt + λ1w ≥ C

∫
Ω

uaκ
′
v(1−a)κ′ϕ1 dx ≥ Cwκ

′
, t ∈ (0,∞) (33)

where C = C(Ω, p, q, r, s, a) is independent of w. Since w is global and satis�es the
inequality (33) for all t > 0, it holds

w(t) =

∫
Ω

uav1−aϕ1 dx ≤
(
λ1

C

) 1
κ′−1

for all t ≥ 0 and a ∈ A. (34)

Indeed, assume contradiction to (34). Let there exists t0 > 0 such that w(t0) >(
λ1
C

) 1
κ′−1 . Hence

w(t) ≥
(
λ1 + ε

C

) 1
κ′−1

(35)

for t = t0 and some ε > 0. Then (33) implies wt(t0) > 0, hence wt > 0 on interval
[t0, t

′) where
t′ := sup{t > t0 : wt > 0 on [t0, t)}.

If t′ <∞ then wt(t′) ≤ 0. Then (33) implies w(t′) ≤
(
λ1
C

) 1
κ′−1 . This is not possible due

to our de�nition of t′ and (35) (for t = t0). Hence t′ = ∞ and (35) is true for t ≥ t0.
Then there holds Cλ1

ε+λ1
wκ
′
(t) ≥ λ1w(t) and (33) yields

wt ≥ Cwκ
′ − λ1w ≥

Cε

ε+ λ1

wκ
′
, t ≥ t0.

Thus w cannot exist globally and this proves (33).
Lemma 3.3 also implies

wt(s
′) + λ1w(s′) ≥ C

∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx, s′ ∈ (0,∞). (36)
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Multiplying inequality (36) by eλ1s
′
and integrating on interval [τ, τ + t] with respect

to s′ we get

eλ1(τ+t)w(τ + t)− eλ1τw(τ) ≥ C

∫ τ+t

τ

eλ1s
′
∫

Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′. (37)

Since 0 ≤ w ≤ C, from (37) we deduce that∫ τ+t

τ

e−λ1(τ+t−s′)
∫

Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′ ≤ C. (38)

Since there holds e−λ1(τ+t−s′) ≥ e−λ1t for s′ ∈ [τ, τ + t], the ineqality (38) implies∫ τ+t

τ

∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′ ≤ Ceλ1t ≤ C ′ (39)

where C ′ = C ′(Ω, p, q, r, s, a, t). Similarly we obtain∫ τ+t

τ

e−λ1(τ+t−s′)
∫

Ω

uq+avs−a(s′)ϕ1 dx ds′ ≤ C (40)

and ∫ τ+t

τ

∫
Ω

uq+avs−a(s′)ϕ1 dx ds′ ≤ Ceλ1t ≤ C ′. (41)

Let (u, v) be a global nonnegative solution of system (18). Since (u, v) satis�es
homogeneous Neumann boundary conditions, so does uav1−a and hence Green's formula
implies ∫

Ω

∆(uav1−a(t)) dx = 0

for t ≥ 0 and a ∈ A. Denote

z = z(t) :=

∫
Ω

uav1−a(t) dx.

Lemma 3.3 and Jensen's inequality imply

zt + λz ≥ Czκ
′
, t ∈ (0,∞). (42)

Since z is global and there holds λ > 0, similarly as in the proof of (34) we have

z(t) =

∫
Ω

uav1−a(t) dx ≤
(
λ

C

) 1
κ′−1

for all t ≥ 0 and a ∈ A (43)

if (31) is true. Again, we obtain estimates similar to (38)-(41) with ϕ1 replaced by 1

in (38)-(41) and with λ1 replaced by λ in (38), (40).
Beside Hölder's, Young's and Jensen's inequalities we will also use so-called inter-

polation inequality. We formulate it in the following lemma.
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Lemma 3.4. Let Ω be arbitrary domain in RN and 1 ≤ p < r < q < ∞. If f ∈
Lpδ(Ω) ∩ Lqδ(Ω) then f ∈ Lrδ(Ω) and there holds

||f ||r,δ ≤ ||f ||
p
r
q−r
q−p

p,δ ||f ||
q
r
r−p
q−p

q,δ .

If f ∈ Lpδ(Ω) ∩ L∞(Ω) then f ∈ Lrδ(Ω) and there holds

||f ||r,δ ≤ ||f ||
p
r
p,δ||f ||

r−p
r∞ .

Proof. Let q <∞. Assume f ∈ Lpδ(Ω) ∩ Lqδ(Ω). We have

||f ||rr,δ =

∫
Ω

|f |rδ(x) dx =

∫
Ω

[
(|f |pδ(x))

q−r
q−p

] [
(|f |qδ(x))

r−p
q−p

]
dx.

Now we use Hölder's inequality to estimate

||f ||rr,δ ≤
(∫

Ω

|f |pδ(x) dx

) q−r
q−p
(∫

Ω

|f |qδ(x) dx

) r−p
q−p

= ||f ||
p q−r
q−p
p,δ ||f ||

q r−p
q−p
q,δ . (44)

Since the right-hand side in (44) if �nite, the left-hand side is �nite.
Now let q =∞. Assume f ∈ L∞(Ω) ∩ Lpδ(Ω). Then we obtain

||f ||rr,δ =

∫
Ω

|f |rδ(x) dx =

∫
Ω

[|f |pδ(x)]
[
|f |r−p

]
dx ≤ ||f ||pp,δ||f ||

r−p
∞ .

This �nishes the proof.
�

For F : R → R and x ∈ R we denote F (0)(x) = x and F (j)(x) = F (F (j−1)(x))

(j ∈ N), the j-th iteration of F .

Lemma 3.5. Let F : [a, b)→ R be a continuous function (b ≤ ∞) and

F (x) > x ∀x ∈ [a, b). (45)

Then

∀Q ∈ (a, b) ∃j ∈ N F (j)(a) > Q.

Proof. The function F is continuous on the compact interval [a,Q]. The inequality
(45) implies the existence of µ = µ(Q) > 0 such that for every x ∈ [a,Q] we have

F (x) ≥ µ+ x.

This implies F (j)(a) ≥ jµ+ a for all j ∈ N such that F (j−1)(a) ≤ Q.
�

Now we state lemma similar to Lemma 3.5.
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Lemma 3.6. Let G : [a, b) → R, g : [a, b) → R be continuous functions (b ≤ ∞), g

increasing in [a, b) and

G(x) > g(x) ∀x ∈ [a, b). (46)

Then

∀Q ∈ (g(a), lim
x→b−

g(x)) ∃j ∈ N (G ◦ g−1)(j)(g(a)) > Q.

Proof. We de�ne F : [g(a), lim
x→b−

g(x)) → R, F = G ◦ g−1 and use Lemma 3.5 for

this F .
�

We consider the problem

−∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.

}
(47)

We say that u is a very weak solution of (47) if u ∈ L1(Ω), the right-hand side f in
(47) belongs to L1

δ(Ω) and

−
∫

Ω

u∆ϕ dx =

∫
Ω

fϕ dx

for every ϕ ∈ C2(Ω), ϕ = 0 on ∂Ω.

Lemma 3.7. [38, Theorem 49.1, Theorem 49.2(i)] Let Ω be a bounded domain of class

C2+γ for some γ ∈ (0, 1). Assume that 1 ≤ p ≤ q ≤ ∞ satisfy

1

p
− 1

q
<

2

N + 1
.

Let f ∈ L1
δ(Ω). Then there exists a unique very weak solution u of (47). If f ∈ Lpδ(Ω),

then u ∈ Lqδ(Ω) and

||u||q,δ ≤ C(p, q,Ω)||f ||p,δ.

Lemma 3.8. [38, Remark 49.12(i)] Let f ∈ L1
δ(Ω) satisfy f ≥ 0 a.e. Then the very

weak solution of (47) satis�es

u(x) ≥ C(Ω)||f ||1,δδ(x), x ∈ Ω.

Lemma 3.9. [40] Let N ≥ 2 and let Ω be a smooth bounded domain. Assume that

0 ∈ ∂Ω. Let −2 < γ < N − 1. Then there exist R > 0 and a revolution cone Σ1 of the

vertex 0, with Σ := Σ1 ∩ {x ∈ Rn; |x| < R} ⊂ Ω ∪ {0}, such that the function

φ := |x|−(γ+2)χΣ

belongs to L1
δ(Ω) and the very weak solution u > 0 of the problem

−∆u = φ, x ∈ Ω,

u = 0, x ∈ ∂Ω

}
satis�es the estimate

u ≥ C|x|−γχΣ.
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4 Results for elliptic system

In this section we will assume that Ω is a bounded smooth domain in RN (N ≥ 2),
0 ∈ ∂Ω, p, q > 0, pq > 1, a, b ∈ L∞(Ω), a, b ≥ 0, a, b 6≡ 0, κ, λ ∈ (0, 2). We will prove
that there exists a positive very weak solution (see the de�nition (7)) of the problem

−∆u = a(x)|x|−κvq, x ∈ Ω,

−∆v = b(x)|x|−λup, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

 (48)

To do this we will prove a priori estimates for the problem

−∆u = a(x)|x|−κvq + t(u+ ϕ1), x ∈ Ω,

−∆v = b(x)|x|−λup, x ∈ Ω,

u = v = 0, x ∈ ∂Ω

 (49)

if q ≥ 1, p > 0, and for the problem

−∆u = a(x)|x|−κvq, x ∈ Ω,

−∆v = b(x)|x|−λup + t(v + ϕ1), x ∈ Ω,

u = v = 0, x ∈ ∂Ω

 (50)

if q < 1, p > 1. In both cases we will assume t ≥ 0. The terms t(u + ϕ1) in (49) or
t(v + ϕ1) in (50) are needed to use the topological degree in the proof of the existence
of solutions of (48). Denote

α :=
(2− λ)q + 2− κ

pq − 1
, β :=

(2− κ)p+ 2− λ
pq − 1

. (51)

We will prove the following results:

Theorem 4.1. Assume max{α, β} > N − 1. If q ≥ 1, p > 0, then for every nonneg-

ative very weak solution of problem (49) with t ≥ 0 we have u, v ∈ L∞(Ω) and there

exists constant C(Ω, a, b, p, q, κ, λ) > 0 such that

t+ ||u||∞ + ||v||∞ ≤ C(Ω, a, b, p, q, κ, λ).

If q < 1, p > 1, then the same result holds for nonnegative very weak solutions of

problem (50) with t ≥ 0.

Theorem 4.2. Assume max{α, β} > N −1. Then there exists a positive bounded very

weak solution of problem (48).

Theorem 4.3. Assume max{α, β} < N − 1. Then there exist functions a, b ∈ L∞(Ω),

a, b ≥ 0, a, b 6≡ 0 and a positive very weak solution (u, v) of problem (48) such that

u, v /∈ L∞(Ω).
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Theorem 4.1 will be proved by a bootstrap method in weighted Lebesgue spaces
used in [5], [37], for example. Although [37, Theorem 2.1] also implies the assertion of
Theorem 4.1, the corresponding assumptions on p, q, κ, λ are more restrictive than our
condition max{α, β} > N − 1. Theorem 4.3 is based on a modi�cation of the proof in
[40].

Proof of Theorem 4.1. In the proof we will use C or C ′ to denote constants
which can vary from step to step. We will not emphasize the dependence of these
constants on Ω, a, b, p, q, κ, λ.

Observe that α, β de�ned by (51) satisfy

αp+ λ = β + 2,

βq + κ = α + 2.
(52)

Suppose �rst α ≥ β, so α > N − 1. Using these conditions and (52) we obtain

p <
N + 1− λ
N − 1

, q > 1. (53)

Thus we will deal with system (49) in the following. The case β ≥ α can be treated
similarly dealing with system (50).

Denote f(x, v) = a(x)|x|−κvq + t(u + ϕ1), g(x, u) = b(x)|x|−λup. Let (u, v) be a
very weak solution of (49), u, v ≥ 0. By de�nition of a very weak solution we have
u, v ∈ L1(Ω), f, g ∈ L1

δ(Ω) and for ϕ = ϕ1 it holds

λ1

∫
Ω

uϕ1 dx =

∫
Ω

u(−∆ϕ1) dx =

∫
Ω

fϕ1 dx,

λ1

∫
Ω

vϕ1 dx =

∫
Ω

gϕ1 dx,
(54)

where λ1 is the �rst eigenvalue of the problem

−∆φ = λφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω

}
and ϕ1 is the corresponding positive eigenfunction satisfying ||ϕ1||2 = 1. Using (54) we
have

(λ1 − t)
∫

Ω

uϕ1 dx =

∫
Ω

a|x|−κvqϕ1 dx+ t ≥ 0, (55)

therefore t ≤ λ1 for u 6≡ 0. The equality in (55) further implies that (0, v) is not a
solution of problem (49) for any nonnegative v ∈ L1(Ω) and t > 0. Hence in both cases
we have t ≤ C.

Using (54) and (20) we get

C||f ||1,δ ≤ ||u||1,δ ≤ C ′||f ||1,δ, C||g||1,δ ≤ ||v||1,δ ≤ C ′||g||1,δ. (56)
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In this part of the proof we estimate
∫

Ω

f rδ dx,

∫
Ω

gsδ dx for r, s ≥ 1. Let (u, v)

be a very weak solution of (49), u ∈ Lkδ (Ω), v ∈ Llδ(Ω) for k, l ≥ 1, u, v ≥ 0. Then it
holds ∫

Ω

f rδ dx ≤ C(r)

(∫
Ω

ar|x|−κrvqrδ dx+

∫
Ω

((t u)r + (t ϕ1)r)δ dx

)
≤ C(r, θ1)

(
1 +

∫
Ω

|x|−
κr
θ1

+1
dx+

∫
Ω

(v
qr

1−θ1 + ur)δ dx

)
,

(57)

θ1 ∈ (0, 1), where we successively used boundedness of function a, the Young inequality,
boundedness of t and the assumption 0 ∈ ∂Ω ( then it holds δ(x) ≤ |x|). Similarly it
holds ∫

Ω

gsδ dx ≤ C(s, θ2)

(∫
Ω

|x|−
λs
θ2

+1
dx+

∫
Ω

u
ps

1−θ2 δ dx

)
, θ2 ∈ (0, 1). (58)

We will show that if k, l are large enough, then the right-hand sides in (57), (58) can
be estimated by ||u||k,δ, ||v||l,δ for some r, s ≥ 1.

Now we determine the dependence r, s on k, l. If

r < r̃(l) :=
(N + 1)l

κl + (N + 1)q
,

then there exists θ1 ∈ (0, 1) such that

−κr
θ1

+ 1 > −N, qr

1− θ1

≤ l.

If moreover r ≤ k, estimate (57) then implies f ∈ Lrδ(Ω). Thus

||f ||r,δ ≤ C(r, ||u||k,δ, ||v||l,δ) if r < min{r̃(l), k}. (59)

Similarly

s < s̃(k) :=
(N + 1)k

λk + (N + 1)p

implies the existence of θ2 ∈ (0, 1) such that

−λs
θ2

+ 1 > −N, ps

1− θ2

≤ k.

Estimate (58) then implies g ∈ Lsδ(Ω). Thus

||g||s,δ ≤ C(s, ||u||k,δ) if s < s̃(k). (60)

On the other hand, Lemma 3.7 gives us estimates for ||u||k,δ, ||v||l,δ, k, l ≥ 1. If
f ∈ Lrδ(Ω), then u ∈ Lkδ (Ω) and it holds

||u||k,δ ≤ C(k, r)||f ||r,δ, (61)
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where 1 ≤ r ≤ k ≤ ∞ satisfy 1
r
− 1

k
< 2

N+1
. In particular we can take

k < k̃(r) :=
(N + 1)r

N + 1− 2r
if r ∈

[
1,
N + 1

2

)
.

If r = N+1
2
, 1 ≤ k < ∞ can be chosen arbitrarily and if r > N+1

2
, then we can take

k =∞. Similarly, if g ∈ Lsδ(Ω), then v ∈ Llδ(Ω) and it holds

||v||l,δ ≤ C(l, s)||g||s,δ, (62)

where 1 ≤ s ≤ l ≤ ∞ satisfy

l < l̃(s) :=
(N + 1)s

N + 1− 2s
if s ∈

[
1,
N + 1

2

)
.

If s = N+1
2
, 1 ≤ l < ∞ can be chosen arbitrarily and if s > N+1

2
, then we can take

l =∞.
We know that f ∈ L1

δ(Ω). Estimate (61) implies u ∈ Lkδ (Ω) for 1 < k < k0 where
k0 := N+1

N−1
= k̃(1). Given s < s̃(k0) = N+1

λ+(N−1)p
, the continuity and the monotonicity

of s̃ assures existence of k < k0 such that s < s̃(k) < s̃(k0). Hence g ∈ Lsδ(Ω) for

s ∈
(

1, N+1
λ+(N−1)p

)
(inequality (53) implies N+1

λ+(N−1)p
> 1). If p > 2−λ

N−1
, then v ∈

Llδ(Ω) for l < l0 := l̃(s̃(k0)) = N+1
λ−2+(N−1)p

. Finally we have f ∈ Lrδ(Ω) for r <

min
{
r̃
(

N+1
λ−2+(N−1)p

)
, k0

}
= min

{
N+1

κ+(λ+(N−1)p−2)q
, N+1
N−1

}
=: r0. Then r0 > 1 due to

the assumption α > N−1. If p ≤ 2−λ
N−1

, then N+1
λ+(N−1)p

≥ N+1
2

and due to the continuity

and the monotonicity of l̃ we have v ∈ Llδ(Ω) for all l < ∞. Thus f ∈ Lrδ(Ω) for
r < min

{
N+1
κ
, N+1
N−1

}
=: r′0. The preceding computations show that if k ≤ k0 (l ≤ l0) is

close enough to k0 (l0) or larger, then the right-hand sides in (57), (58) can be estimated
by ||u||k,δ, ||v||l,δ for some r, s ≥ 1.

We have shown that if f ∈ L1
δ(Ω) , then f ∈ Lrδ(Ω) for r < r0 (r < r′0) if p >

2−λ
N−1

(p ≤ 2−λ
N−1

). We claim that there holds

if f ∈ Lrδ(Ω) for some r ∈
[
1,
N + 1

κ

)
, then f ∈ LF (r)

δ (Ω) (63)

for some continuous function F :
[
1, N+1

κ

)
→ R satisfying (45). In the following we

will give expression of such function F . For p > 2−λ
N−1

denote

F̃ (r) :=



min{r̃(l̃(s̃(k̃(r)))), k̃(r)} =

min

{
N + 1

κ+
(
λ+

(
N+1
r
− 2
)
p− 2

)
q
,

(N + 1)r

N + 1− 2r

}
, r ∈

[
1,

(N + 1)p

2p+ 2− λ

)
,

min

{
N + 1

κ
,

(N + 1)r

N + 1− 2r

}
, r ∈

[
(N + 1)p

2p+ 2− λ
,
N + 1

2

)
,

N + 1

κ
, r ∈

[
N + 1

2
,
N + 1

κ

)
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(for such p there holds (N+1)p
2p+2−λ > 1). For p ≤ 2−λ

N−1
denote

F̃ (r) :=


(N + 1)r

N + 1− 2r
, r ∈

[
1,
N + 1

2 + κ

)
if
N + 1

2 + κ
> 1,

N + 1

κ
, r ∈

[
max

{
1,
N + 1

2 + κ

}
,
N + 1

κ

)
.

Function F̃ :
[
1, N+1

κ

)
→ R is continuous and due to the assumption α > N − 1

there holds (45). De�ne F (r) := F̃ (r)+r
2

, then r < F (r) < F̃ (r) for all r ∈
[
1, N+1

κ

)
.

Observe that F̃ (1) = r0 (F̃ (1) = r′0) for p > 2−λ
N−1

(p ≤ 2−λ
N−1

), hence claim (63) has
already been proved for r = 1. For r > 1 �xed the same monotonicity and continuity
argument will be used. If p > 2−λ

N−1
and r < (N+1)p

2p+2−λ , then u ∈ Lkδ (Ω) for k < k̃(r)

due to (61). Consequently from (60) we get g ∈ Lsδ(Ω) for s < s̃(k̃(r)) and then
(62) implies v ∈ Llδ(Ω) for l < l̃(s̃(k̃(r))). Finally (59) implies f ∈ Lr

′

δ (Ω) for r′ <
min{r̃(l̃(s̃(k̃(r)))), k̃(r)} = F̃ (r), hence f ∈ L

F (r)
δ (Ω). Claim (63) in the remaining

cases can be proved similarly.
The assumptions of Lemma 3.5 are satis�ed for F , hence

∃ j ∈ N F (j)(1) >
N + 1

2
+ ε (64)

for ε > 0 small. Using (63) j-times we get f ∈ L
F (j)(1)
δ (Ω), thus f ∈ L

N+1
2

+ε

δ (Ω)

from (64). Lemma 3.7 then implies u ∈ L∞(Ω), from (37) we get g ∈ L
N+1

2
+ε

δ (Ω) and
consequently v ∈ L∞(Ω).

Now we prove
||u||∞ + ||v||∞ ≤ C(||u||1,δ, ||v||1,δ), (65)

where the constant C is bounded for ||u||1,δ, ||v||1,δ bounded. Using (59), (60), (61), (62)
we have

||f ||F (r),δ ≤ C(k, l, r, s, ||f ||r,δ, ||g||s,δ). (66)

Iterating (66) j-times and using (64), (56) we have

||f ||N+1
2

+ε,δ ≤ C||f ||F (j)(1),δ ≤ C(||u||1,δ, ||v||1,δ).

Lemma 3.7 and (60) then imply assertion (65).
Now we turn to prove uniform boundedness of ||u||1,δ and ||v||1,δ. Due to Lemma 3.8

there holds

u ≥ C δ

∫
Ω

a|x|−κvqδ + t(u+ ϕ1)δ dx,

v ≥ C δ

∫
Ω

b|x|−λupδ dx.
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This implies∫
Ω

a|x|−κvqδ + t(u+ ϕ1)δ dx ≥ C

∫
Ω

a|x|−κδq+1 dx

(∫
Ω

b|x|−λupδ dx

)q
≥ C

(∫
Ω

b|x|−λupδ dx

)q (67)

and ∫
Ω

b|x|−λupδ dx ≥ C

(∫
Ω

a|x|−κvqδ + t(u+ ϕ1)δ dx

)p
. (68)

Using (67), (68) and the assumption pq > 1 we get ||f ||1,δ + ||g||1,δ ≤ C. The estimate
||u||1,δ+||v||1,δ ≤ C then follows from (56). Inequality (65) then implies the last assertion
of the theorem.

�

Proof of Theorem 4.2. Suppose �rst α ≥ β. As in proof of Theorem 4.1 it is
enough to deal with system (49) in the following. Again, the case β ≥ α can be treated
similarly dealing with system (50).

Denote now f(x, v) = a(x)|x|−κ|v|q, g(x, u) = b(x)|x|−λ|u|p. Set X := L∞(Ω) ×
L∞(Ω). Given (u, v) ∈ X and t ≥ 0, let St(u, v) = (w,w′) be the unique solution of
the linear problem

−∆w = f + t(|u|+ ϕ1), x ∈ Ω,

−∆w′ = g, x ∈ Ω,

w = w′ = 0, x ∈ ∂Ω.

 (69)

We will prove that there exists a nontrivial �xed point of operator S0. Since f ∈ Lk(Ω)

for k < N
κ

and g ∈ Ll(Ω) for l < N
λ
, we have St(u, v) ∈ W 2,r(Ω) × W 2,r(Ω) for

r ∈ (N
2
,min{N

κ
, N
λ
}). Therefore, St : X → X is compact. Observe that the right-hand

sides in (69) are nonnegative for every (u, v) ∈ X, hence w,w′ are nonnegative. Thus
St has no �xed point beyond the nonnegative cone K = {(u′, v′) ∈ X; u′, v′ ≥ 0} for
any t ≥ 0.

Let ||(u, v)||X = ε for ε > 0 small, θ ∈ [0, 1]. Assume (u, v) = θS0(u, v). Using
Lp-estimates (see [22, Chapter 9]) we have

||u||∞ ≤ C||u||2,r ≤ C||f ||r ≤ C||a|x|−κ||r||v||q∞ ≤ C||v||q∞,

where || . ||2,r denotes the norm in W 2,r(Ω). Similarly we obtain ||v||∞ ≤ C||u||p∞. Com-
bining the last two estimates we have

||u||∞ ≤ C||u||pq∞ ≤ Cεpq−1||u||∞.
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This is a contradiction for ε su�ciently small due to the assumption pq > 1. Hence
(u, v) 6= θS0(u, v) and the homotopy invariance of the topological degree implies

deg(I − S0, 0, Bε) = deg(I, 0, Bε) = 1, (70)

where I denotes the identity and Bε := {(u, v) ∈ X : ||(u, v)||X < ε}.
Theorem 4.1 immediately implies ST (u, v) 6= (u, v) for T large and (u, v) ∈ BR ∩K

and St(u, v) 6= (u, v) for t ∈ [0, T ] and (u, v) ∈ (BR\BR) ∩ K (where R > 0 is large
enough), hence we have

deg(I − S0, 0, BR) = deg(I − ST , 0, BR) = 0. (71)

Equalities (70) and (71) imply deg(I − S0, 0, BR\Bε) = −1, hence there exist u, v ∈
(BR\Bε) ∩K such that S0(u, v) = (u, v). Finally, the maximum principle implies the
positivity of u, v.

�

Proof of Theorem 4.3. Basic ideas used in the proof are from [40]. Lemma 3.9
assures the existence of sets Σφ, Σψ such that φ := χΣφ|x|−(α+2), ψ := χΣψ |x|−(β+2)

belong to L1
δ(Ω), where α, β are de�ned by (51). Let (u, v) be the (positive) very weak

solution of

−∆u = φ, x ∈ Ω,

−∆v = ψ, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.


Lemma 3.9 then implies

u ≥ C|x|−αχΣφ , v ≥ C|x|−βχΣψ , (72)

hence u, v /∈ L∞(Ω). Observe that (72) and (52) imply a′, b′ ∈ L∞(Ω), where a′ :=
|x|κφ
vq
, b′ := |x|λψ

up
are nonnegative functions and (u, v) is a very weak solution of (48)

with a = a′, b = b′.
�

5 Results for parabolic system

In the following proofs, every constant may depend on Ω, p, q, r, s, however we do not
denote this dependence. The constants may vary from step to step.
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For 0 < p < 2
N+1

, r ≤ 1 denote

K :
[
1, p+1

p

)
−→ R ∪ {∞},

K(M) =


M(p+1)(N+1)

(p+1)(N+1)−2M
, M ∈

[
1, (p+1)(N+1)

2

)
,

∞, M ∈
[

(p+1)(N+1)
2

, p+1
p

)
,

k :
[
1, p+1

p

)
−→ R,

k(M) = M(p+r)
M−(M−1)(p+1)

.

(73)

For r > 1, p+ r < N+3
N+1

denote

K ′ :
[
1, p+r

p+r−1

)
−→ R ∪ {∞},

K ′(M) =


M(p+r)(N+1)

(p+r)(N+1)−2M
, M ∈

[
1, (p+r)(N+1)

2

)
,

∞, M ∈
[

(p+r)(N+1)
2

, p+r
p+r−1

)
,

k′ :
[
1, p+r

p+r−1

)
−→ R,

k′(M) = M(p+r)
M−(M−1)(p+r)

.

(74)

Observe that

K(M) > max{M,k(M)} for all M ∈
[
1,
p+ 1

p

)
, (75)

since p < 2
N+1

and

K ′(M) > k′(M) > M for all M ∈
[
1,

p+ r

p+ r − 1

)
, (76)

since p+ r < N+3
N+1

.

Lemma 5.1. Let p + r < N+3
N+1

, p > 0 and conditions (26), (31) be true. Let (u, v) be

a global nonnegative solution of problem (2).

i) Assume r > 1. Then for γ ∈ [p+r,∞] and T ≥ 0, there exists C = C(p, q, r, s,Ω, T )

such that

sup
s′∈[τ,τ+T ]

||u(s′)||γ,δ ≤ C||u(τ)||γ,δ, τ ≥ 0. (77)

ii) Assume r > 1, pq > (r − 1)(s− 1) or r ≤ 1, p < 2
N+1

. Then for

γ ∈
[
max{1, p+ r}, N+3

N+1

)
, there exists C = C(p, q, r, s,Ω) such that

sup
s′∈[τ,τ+T ]

||u(s′)||γ,δ ≤ C(1 + ||u(τ)||γ,δ), τ, T ≥ 0. (78)
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iii) Assume r ≤ 1, p < 2
N+1

. Then for γ ∈ [max{1, p + r},∞] and T ≥ 0, there

exists C = C(p, q, r, s,Ω, T ) such that

sup
s′∈[τ,τ+T ]

||u(s′)||γ,δ ≤ C(1 + ||u(τ)||γ,δ), τ ≥ 0. (79)

Remark. In the assertion i) of Lemma 5.1, the constant C is bounded for T
bounded. Proof of Lemma 5.1 Let γ ∈

[
max{1, p+ r}, N+3

N+1

)
, a ∈ A and ε ∈(

0, 1− p
p+1−a

)
. For τ, T ≥ 0, t ∈ [0, T ] we estimate

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ

+

∫ τ+t

τ

e−λ1(
p

p+1−a+ε)(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
γ )||urvp(s′)||1,δ ds′

]
≤ C

[
||u(τ)||γ,δ +

∫ τ+t

τ

∫
Ω

[
e−λ1(

p
p+1−a)(τ+t−s′)ur−

(p+r)(1−a)
p+1−a vp(s′)

]
×

×
[
e−λ1ε(τ+t−s′)(τ + t− s′)−

N+1
2 (1− 1

γ )u
(p+r)(1−a)
p+1−a (s′)

]
ϕ1 dx ds′

]
.

(80)

Here we used (22) and (21) and the assertions iii) ( ii), if γ = 1) and v) from Lemma
3.1. Now, using Hölder's inequality in the last term in (80) we obtain

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ

+

(∫ τ+t

τ

e−λ1(τ+t−s′)
∫

Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′
) p

p+1−a

×

×
(∫ τ+t

τ

e−λ1
p+1−a
1−a ε(τ+t−s′)(τ + t− s′)−

N+1
2 (1− 1

γ ) p+1−a
1−a ×

×
∫

Ω

up+r(s′)ϕ1 dx ds′
) 1−a

p+1−a
]
.

(81)

Now we use (38) in (81) to estimate

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ + (I(t))

1−a
p+1−a

(
sup

s′∈[τ,τ+T ]

||u(s′)||γ,δ

)κ]
(82)

where

I(t) :=

∫ τ+t

τ

e−λ1
p+1−a
1−a ε(τ+t−s′)(τ + t− s′)−

N+1
2 (1− 1

γ ) p+1−a
1−a ds′ (83)

and

κ :=
(p+ r)(1− a)

p+ 1− a
. (84)
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We prove that the function I is �nite in [0,∞), i.e. due to our assumptions on
p, q, r, s, there holds

N + 1

2

(
1− 1

γ

)
p+ 1− a

1− a
< 1 (85)

for some a ∈ A.
In fact, in the following proof we will choose

a =
r − 1

p+ r − 1
in case i), (86)

a >
r − 1

p+ r − 1
su�ciently close to

r − 1

p+ r − 1
in case ii) for r > 1, (87)

a > 0 su�ciently small in case iii) or ii) for r ≤ 1. (88)

The choice (87) is possible, since due to the assumptions pq > (r− 1)(s− 1) and p > 0

we have a ∈ A. The choices (87) and (88) of a will be speci�ed more precisely during
the proof.

If a is de�ned by (86) or (87) then p+1−a
1−a is close to p+ r and condition p+ r < N+3

N+1

implies the inequality (85).
If a is de�ned by (88) then p+1−a

1−a is close to p + 1 and condition p < 2
N+1

implies
the inequality (85).

Note that the function I de�ned by (83) is continuous, increasing, I(0) = 0, and I
is bounded by a constant independent of τ, T .

First we prove ii). In the estimate (82) we choose a de�ned by (87), if r > 1, or by
(88), if r ≤ 1. In both cases we have κ < 1 (where κ is de�ned by (84)), hence we can
use Young's inequality to obtain

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ + ε

(
sup

s′∈[τ,τ+T ]

||u(s′)||γ,δ

)
+ Cε

]
. (89)

If we choose ε = 1
2C

then the assertion ii) follows.
Assertion iii) for γ ∈

[
max{1, p+ r}, N+3

N+1

)
follows from assertion ii).

To prove i) for γ ∈
[
p+ r, N+3

N+1

)
we choose a de�ned by (86) in estimate (82). Then

κ = 1 and the assertion i) for γ ∈
[
p+ r, N+3

N+1

)
and T0 small enough follows from the

estimate (82).
Till now we obtained the estimate

sup
s′∈[τ,τ+T0]

||u(s′)||γ,δ ≤ C(T0)||u(τ)||γ,δ, γ ∈
[
p+ r,

N + 3

N + 1

)
, τ ≥ 0 (90)

where T0 is su�ciently small and is independent of τ . We check that the estimate (90)
actually holds for every T ≥ 0 with a constant C(T ).
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For T > 0 �xed there exists n ∈ N ∪ {0} such that T ∈ (nT0, (n + 1)T0]. Then for
γ ∈

[
p+ r, N+3

N+1

)
there holds

sup
s′∈[τ+nT0,τ+T ]

||u(s′)||γ,δ ≤ sup
s′∈[τ+nT0,τ+(n+1)T0]

||u(s′)||γ,δ

≤ C(T0)||u(τ + nT0)||γ,δ, τ ≥ 0
(91)

where we used (90) with τ replaced by τ + nT0. For l ∈ {0, . . . , n− 1} we have

||u(τ + (l + 1)T0)||γ,δ ≤ sup
s′∈[τ+lT0,τ+(l+1)T0]

||u(s′)||γ,δ

≤ C(T0)||u(τ + lT0)||γ,δ, τ ≥ 0.
(92)

We choose t′ ∈ [0, T ]. For such t′ there exists k ∈ N ∪ {0}, k ≤ n such that t′ ∈
(kT0, (k + 1)T0]. Using (92) k-times (if t′ > τ + nT0 then we also use (91)) we obtain

||u(τ + t′)||γ,δ ≤ sup
s′∈[τ+kT0,τ+(k+1)T0]

||u(s′)||γ,δ ≤ C||u(τ + kT0)||γ,δ

≤ C2||u(τ + (k − 1)T0)||γ,δ ≤ . . . ≤ Ck+1||u(τ)||γ,δ ≤ Cn+1||u(τ)||γ,δ,

since C = C(T0) ≥ 1 due to the inequality (90). Thus (90) is true for all T0 ≥ 0.
Now we prove the assertion i) for γ ∈

[
N+3
N+1

,∞
]
. Fix K ∈

[
N+3
N+1

,∞
)
. Then there

exists M ∈
[
1, (p+r)(N+1)

2

]
such that K ′(M) > K > k = k′(M) (where functions K ′, k′

are de�ned by (74)). For τ ≥ 0, t ∈ [0, T ] and a de�ned by (86) we estimate

||u(τ + t)||K,δ ≤ C

[
||u(τ)||K,δ +

∫ τ+t

τ

(τ + t− s′)−
N+1

2 ( 1
M
− 1
K )||urvp(s′)||M,δ ds′

]
≤ C

[
||u(τ)||K,δ +

∫ τ+t

τ

(τ + t− s′)−
N+1

2 ( 1
M
− 1
K ) ×

×
(∫

Ω

[
upM

r+a−1
p+1−avpM(s′)

] [
uM

(p+r)(1−a)
p+1−a (s′)

]
ϕ1 dx

) 1
M

ds′

]
.

(93)

Here we used Lemma 3.1 iii) and v). Observe thatM < p+1−a
p

, sinceM ≤ (p+r)(N+1)
2

<
p+r
p+r−1

(the last inequality is true due to the assumption p + r < N+3
N+1

). Hence we can
use Hölder's inequality in the spatial integral to obtain

||u(τ + t)||K,δ ≤ C

[
||u(τ)||K,δ +

∫ τ+t

τ

(τ + t− s′)−
N+1

2 ( 1
M
− 1
K ) ×

×
(∫

Ω

ur+a−1vp+1−a(s′)ϕ1 dx

) p
p+1−a

(∫
Ω

uM
(p+r)(1−a)
p+1−a−pM (s′)ϕ1 dx

) p+1−a−pM
M(p+1−a)

ds′

]

≤ C

[
||u(τ)||K,δ + sup

s′∈[τ,τ+T ]

||u(s′)||κ
M

(p+r)(1−a)
p+1−a−pM ,δ

∫ τ+t

τ

[
(τ + t− s′)−

N+1
2 ( 1

M
− 1
K )
]
×

×
(∫

Ω

ur+a−1vp+1−a(s′)ϕ1 dx

) p
p+1−a

ds′

]
(94)
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where κ is de�ned by (84). Notice that κ = 1 and k = M (p+r)(1−a)
p+1−a−pM due to our choice

of a. We use Hölder's inequality in the time integral in (94) to have

||u(τ + t)||K,δ ≤ C

[
||u(τ)||K,δ + sup

s′∈[τ,τ+T ]

||u(s′)||k,δ ×

×
(∫ τ+t

τ

∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′
) p

p+1−a

×

×
(∫ τ+t

τ

(τ + t− s′)−
N+1

2 ( 1
M
− 1
K ) p+1−a

1−a ds′
) 1−a

p+1−a
]
.

(95)

De�ne

I0(t) :=

∫ τ+t

τ

(τ + t− s′)−
N+1

2 ( 1
M
− 1
K ) p+1−a

1−a ds′. (96)

We use (39) to obtain

||u(τ + t)||K,δ ≤ C

[
||u(τ)||K,δ + C(T ) sup

s′∈[τ,τ+T ]

||u(s′)||k,δ (I0(T ))
1−a
p+1−a

]

where I0 is de�ned by (96). Observe that I0 is �nite on [0,∞), since

N + 1

2

(
1

M
− 1

K

)
p+ 1− a

1− a
< 1. (97)

This follows from the de�nition (74) of function K ′ and our choice of K. The function
I0 is continuous, increasing, I0(0) = 0, however I0 is unbounded on [0,∞). Since
k < K, we have

||u(τ + t)||K,δ ≤ C

[
||u(τ)||K,δ + C(T0) (I0(T ))

1−a
p+1−a sup

s′∈[τ,τ+T ]

||u(s′)||K,δ

]
. (98)

For T0 su�ciently small, there holds C(T0) (I0(T0))
1−a
p+1−a < 1

2C
and the inequality (98)

implies
sup

s′∈[τ,τ+T0]

||u(s′)||K,δ ≤ C(T0)||u(τ)||K,δ (99)

for K ∈
[
N+3
N+1

,∞
)
. Again, as in the proof of i) for γ ∈

[
p+ r, N+3

N+1

)
this estimate is

true for every T ≥ 0.
If M ∈

(
(p+r)(N+1)

2
, p+r
p+r−1

)
then we can choose K =∞ and k ∈ (k′(M),∞). Using

estimates similar to (93)-(98) (instead of iii) and v) in Lemma 3.1 used to prove (93)
we use iv) and vi) )we have

sup
s′∈[τ,τ+T ]

||u(s′)||∞ ≤ C(T )||u(τ)||∞.
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Now we prove the assertion iii) for γ ∈
[
N+3
N+1

,∞
]
. Fix K ∈

[
N+3
N+1

,∞
)
. Then there

exists M ∈
[
1, (p+1)(N+1)

2

]
such that K(M) > K > max{1, k(M)} (where functions

K, k are de�ned by (73)). Now �x k ∈ (max{1, k(M)}, K). Since k(1) = p + r and
possibly p + r < 1, we need also to assume k > 1. For τ ≥ 0, t ∈ [0, T ] and a de�ned
by (88) we estimate

||u(τ + t)||K,δ ≤ C

[
||u(τ)||K,δ +

∫ τ+t

τ

(τ + t− s′)−
N+1

2 ( 1
M
− 1
K )||urvp(s′)||M,δ ds′

]
≤ C

[
||u(τ)||K,δ +

∫ τ+t

τ

(τ + t− s′)−
N+1

2 ( 1
M
− 1
K ) ×

×
(∫

Ω

[
upM

r+a−1
p+1−avpM(s′)

] [
uM

(p+r)(1−a)
p+1−a (s′)

]
ϕ1 dx

) 1
M

ds′

]
.

(100)

Here we used the assertions iii) and v) from Lemma 3.1. Observe that

M ≤ (p+ 1)(N + 1)

2
<
p+ 1

p
(101)

yields M < p+1−a
p

. In fact, this is possible, if we choose a su�ciently small depending
on �xedM . The last inequality in (101) is true due to the assumption p < 2

N+1
. Hence

we can use Hölder's inequality in the spatial integral in (100) to obtain

||u(τ + t)||K,δ ≤ C

[
||u(τ)||K,δ +

∫ τ+t

τ

(τ + t− s′)−
N+1

2 ( 1
M
− 1
K ) ×

×
(∫

Ω

ur+a−1vp+1−a(s′)ϕ1 dx

) p
p+1−a

(∫
Ω

uM
(p+r)(1−a)
p+1−a−pM (s′)ϕ1 dx

) p+1−a−pM
M(p+1−a)

ds′

]

≤ C

[
||u(τ)||K,δ + sup

s′∈[τ,τ+T ]

||u(s′)||κ
M

(p+r)(1−a)
p+1−a−pM ,δ

∫ τ+t

τ

[
(τ + t− s′)−

N+1
2 ( 1

M
− 1
K )
]
×

×
(∫

Ω

ur+a−1vp+1−a(s′)ϕ1 dx

) p
p+1−a

ds′

]
(102)

where κ is de�ned by (84). Notice that κ < 1 and M (p+r)(1−a)
p+1−a−pM is close to k(M) and

M (p+r)(1−a)
p+1−a−pM < k, if we choose a su�ciently small; this choice depends on k,M �xed.

We use Hölder's inequality in the time integral in (102) to have

||u(τ + t)||K,δ ≤ C

[
||u(τ)||K,δ + sup

s′∈[τ,τ+T ]

||u(s′)||κk,δ ×

×
(∫ τ+t

τ

∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′
) p

p+1−a

×

×
(∫ τ+t

τ

(τ + t− s′)−
N+1

2 ( 1
M
− 1
K ) p+1−a

1−a ds′
) 1−a

p+1−a
]
.

(103)
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Now we use (39) to obtain

||u(τ + t)||K,δ ≤ C

[
||u(τ)||K,δ + C(T ) sup

s′∈[τ,τ+T ]

||u(s′)||κk,δ ×

×
(∫ τ+t

τ

(τ + t− s′)−
N+1

2 ( 1
M
− 1
K ) p+1−a

1−a ds′
) 1−a

p+1−a
]

≤ C

[
||u(τ)||K,δ + C(T ) (I0(T ))

1−a
p+1−a sup

s′∈[τ,τ+T ]

||u(s′)||κk,δ

]
,

(104)

where the function I0 is de�ned by (96). The inequality (97) is true for a su�ciently
small. Hence the function I0 is �nite on [0,∞). Since k < K, for arbitrary T ≥ 0 and
K ∈

[
N+3
N+1

,∞
)
we have

||u(τ + t)||K,δ ≤ C(T )

[
||u(τ)||K,δ + sup

s′∈[τ,τ+T ]

||u(s′)||κK,δ

]
. (105)

Since κ < 1, we use Young's inequality to deduce

||u(τ + t)||K,δ ≤ C(T )

[
||u(τ)||K,δ + Cε + ε sup

s′∈[τ,τ+T ]

||u(s′)||K,δ

]
. (106)

Setting ε = 1
2C(T )

we �nally obtain desired estimate.

If M ∈
(

(p+1)(N+1)
2

, p+1
p

)
then we can choose K = ∞ and k ∈ (k(M),∞). Using

estimates similar to (100)-(106) (instead of iii) and v) in Lemma 3.1 used to prove
(100) we use iv) and vi) ) we have

sup
s′∈[τ,τ+T ]

||u(s′)||∞ ≤ C(T ) (1 + ||u(τ)||∞) .

�

Lemma 5.2. Let p + r < N+3
N+1

, p > 0 and conditions (26), (31) be true. Let (u, v) be

a global nonnegative solution of problem (2).

i) Assume r > 1. Then for γ ∈
(

1, 1
2−(p+r)

]
and T ≥ 0, there exists C =

C(p, q, r, s,Ω, T ) such that∫ τ+T

τ

||u(s′)||γ,δ ds′ ≤ C||u(τ + T )||1,δ, τ ≥ 0. (107)

ii) Assume r ≤ 1, p + r > 1. Then for γ ∈
(

1, 1
2−(p+r)

]
and T ≥ 0, there exists

C = C(p, q, r, s,Ω, T ) such that∫ τ+T

τ

||u(s′)||γ,δ ds′ ≤ C(1 + ||u(τ + T )||1,δ), τ ≥ 0. (108)

If p+ r ≤ 1 then the estimate (108) is true for γ ∈
[
1, N+1

N−1

)
.
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Proof of Lemma 5.2 We de�ne exponent

γ =
1

2− (p+ r)
. (109)

The conditions 1 < p+r < N+3
N+1

imply p+r < γ < N+1
N−1

. For τ, T ≥ 0 and t ∈ (τ, τ +T ]

we estimate

||u(t)||γ,δ ≤ C

[
(t− τ)−

N+1
2 (1− 1

γ )||u(τ)||1,δ +

∫ t

τ

(t− s′)−
N+1

2 (1− 1
γ )||urvp(s′)||1,δ ds′

]
(110)

where we used Lemma 3.1 iii) and v). Integrating (110) on interval [τ, τ + T ] with
respect to t we have∫ τ+T

τ

||u(t)||γ,δ dt ≤ C

[
||u(τ)||1,δ

∫ τ+T

τ

(t− τ)−
N+1

2 (1− 1
γ ) dt

+

∫ τ+T

τ

∫ t

τ

(t− s′)−
N+1

2 (1− 1
γ )||urvp(s′)||1,δ ds′ dt

]
.

(111)

Now we use Fubini's theorem in the last term in (111) to obtain∫ τ+T

τ

||u(t)||γ,δ dt ≤ C

[
T 1−N+1

2 (1− 1
γ )||u(τ)||1,δ

+

∫ τ+T

τ

(∫ τ+T

s′
(t− s′)−

N+1
2 (1− 1

γ ) dt

)
||urvp(s′)||1,δ ds′

]
.

(112)

Since s′ ∈ [τ, τ + T ], we can estimate∫ τ+T

s′
(t− s′)−

N+1
2 (1− 1

γ ) dt ≤ CT 1−N+1
2 (1− 1

γ ).

Note that
N + 1

2

(
1− 1

γ

)
< 1,

since γ < N+1
N−1

.
Using (112) we have∫ τ+T

τ

||u(t)||γ,δ dt ≤ CT 1−N+1
2 (1− 1

γ )
[
||u(τ)||1,δ +

∫ τ+T

τ

||urvp(s′)||1,δ ds′
]

≤ C

[
||u(τ)||1,δ +

∫ τ+T

τ

∫
Ω

[
up

r+a−1
p+1−avp(s′)

] [
u

(p+r)(1−a)
p+1−a (s′)

]
ϕ1 dx ds′

]
.

(113)

Now Hölder's inequality in the last term in (113) implies∫ τ+T

τ

||u(t)||γ,δ dt ≤ C

[
||u(τ)||1,δ +

(∫ τ+T

τ

∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′
) p

p+1−a

×

×
(∫ τ+T

τ

||u(s′)||p+rp+r,δ ds′
) 1−a

p+1−a
]
.

(114)
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As in the proof of Lemma 5.1 we use (39) to obtain∫ τ+T

τ

||u(t)||γ,δ dt ≤ C

[
||u(τ)||1,δ + C(T )

(∫ τ+T

τ

||u(s′)||p+rp+r,δ ds′
) 1−a

p+1−a
]
. (115)

In the last term in (115) we use the interpolation inequality (Lemma 3.4)

||u(s′)||p+rp+r,δ ≤ ||u(s′)||
γ−(p+r)
γ−1

1,δ ||u(s′)||
γ(p+r−1)
γ−1

γ,δ , s′ ∈ [τ, τ + T ]. (116)

From the de�nition (109) of γ we see that γ(p+r−1)
γ−1

= 1. Hence∫ τ+T

τ

||u(t)||γ,δ dt ≤ C(T )

[
||u(τ)||1,δ +

(∫ τ+T

τ

||u(s′)||
γ−(p+r)
γ−1

1,δ ||u(s′)||γ,δ ds′
) 1−a

p+1−a
]

≤ C(T )

||u(τ)||1,δ +

(
sup

s′∈[τ,τ+T ]

||u(s′)||1,δ

) γ−(p+r)
γ−1

1−a
p+1−a (∫ τ+T

τ

||u(s′)||γ,δ ds′
) 1−a

p+1−a

 .(117)
Using Young's inequality we have∫ τ+T

τ

||u(t)||γ,δ dt ≤ C(T )

||u(τ)||1,δ

+ Cε

(
sup

s′∈[τ,τ+T ]

||u(s′)||1,δ

)β

+ ε

(∫ τ+T

τ

||u(s′)||γ,δ ds′
) (118)

where β = γ−(p+r)
γ−1

1−a
p
. For ε su�ciently small in (118) we have

∫ τ+T

τ

||u(t)||γ,δ dt ≤ C(T )

||u(τ)||1,δ +

(
sup

s′∈[τ,τ+T ]

||u(s′)||1,δ

)β
 . (119)

Using the estimate (119) we are ready to prove the assertions of the Lemma. First
we prove the assertion i). If r > 1 then we choose a = r−1

p+r−1
in the de�nition of β,

hence β = 1. We use (24) to obtain∫ τ+T

τ

||u(t)||γ,δ dt ≤ C(T )

[
eλ1T ||u(τ + T )||1,δ + sup

s′∈[τ,τ+T ]

eλ1(τ+T−s′)||u(τ + T )||1,δ

]
≤ C(T )eλ1T ||u(τ + T )||1,δ

and i) then follows.
Now we prove the assertion ii) for p + r > 1. We choose arbitrary a ∈ A in the

de�nition of β, hence β < 1. In this case we again use Young's inequality in the last
term in (119) to obtain∫ τ+T

τ

||u(t)||γ,δ dt ≤ C(T )

[
||u(τ)||1,δ + 1 + sup

s′∈[τ,τ+T ]

||u(s′)||1,δ

]
. (120)
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Using (24) the assertion ii) for p+ r > 1 follows.
If p+ r ≤ 1 then for γ ∈

[
1, N+1

N−1

)
we obtain

∫ τ+T

τ

||u(t)||γ,δ dt ≤ C

[
||u(τ)||1,δ + C(T )

(∫ τ+T

τ

||u(s′)||p+r1,δ ds′
) 1−a

p+1−a
]

≤ C(T )

[
||u(τ)||1,δ + sup

s′∈[τ,τ+T ]

||u(s′)||
(p+r)(1−a)
p+1−a

1,δ

]

in the same way as we obtained (115). Since (p+r)(1−a)
p+1−a < 1, we can use Young's

inequality to obtain (120). Using (24) the assertion ii) for p+ r ≤ 1 follows. The proof
of Lemma 5.2 is complete.

�

In Lemma 5.3 we will use the following notation. For r ≤ 1 and 0 < p < 2
N+1

denote

K0 :
[
1, p+1

p

)
−→ R ∪ {∞},

K0(M) =

{ M(N+1)
(N+1)−2M

, M ∈
[
1, N+1

2

)
,

∞, M ∈
[
N+1

2
, p+1

p

)
.

(121)

For r > 1 denote

K ′0 :
[
1, p+r

p+r−1

)
−→ R ∪ {∞},

K ′0(M) =

{ M(N+1)
(N+1)−2M

, M ∈
[
1, N+1

2

)
,

∞, M ∈
[
N+1

2
, p+r
p+r−1

)
.

(122)

Lemma 5.3. Let p + r < N+3
N+1

, p > 0 and conditions (26), (31) be true. Let (u, v) be

a global nonnegative solution of problem (2).

i) Assume r > 1. Then for T ≥ 0, there exists C = C(p, q, r, s,Ω, T ) such that∫ τ+T

τ

||u(s′)||K,δ ds′ ≤ C||u(τ)||k,δ, τ ≥ 0 (123)

for K ′0(M) > K > k = k′(M), M ∈
[
1, N+1

2

]
. If M ∈

(
N+1

2
, p+r
p+r−1

)
then we can

take K =∞.

ii) Assume r ≤ 1, 2
N+1

> p. Then for T ≥ 0, there exists C = C(p, q, r, s,Ω, T ) such

that ∫ τ+T

τ

||u(s′)||K,δ ds′ ≤ C(1 + ||u(τ)||max{M,k},δ), τ ≥ 0 (124)

for K0(M) > K > k > k(M), k ≥ 1, M ∈
[
1, N+1

2

]
. If M ∈

(
N+1

2
, p+1

p

)
then

we can take K =∞.
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Proof of Lemma 5.3 We choose a as follows

a =
r − 1

p+ r − 1
for part i), (125)

a > 0 su�ciently close to 0 for part ii). (126)

The choice (126) of a will be speci�ed more precisely during the proof.
First we prove i). Observe that N+1

2
< p+r

p+r−1
and K ′0(M) > K ′(M) for every

M ∈
[
1, p+r

p+r−1

)
due to conditions 1 < p+ r < N+3

N+1
(see the de�nition (74) of functions

K ′, k′ and the de�nition (122) of K ′0). Hence (76) implies

K ′0(M) > k′(M) > M for all M ∈
[
1,

p+ r

p+ r − 1

)
. (127)

For K ′0(M) > K > k = k′(M), M ∈
[
1, N+1

2

]
, τ, T ≥ 0 and t ∈ (τ, τ + T ] we

estimate

||u(t)||K,δ ≤ C

[
(t− τ)−

N+1
2 ( 1

M
− 1
K )||u(τ)||M,δ

+

∫ t

τ

(t− s′)−
N+1

2 ( 1
M
− 1
K )||urvp(s′)||M,δ ds′

]
.

(128)

where we used Lemma 3.1 iii) and v). Integrating (128) on interval [τ, τ + T ] with
respect to t we have∫ τ+T

τ

||u(t)||K,δ dt ≤ C

[
||u(τ)||M,δ

∫ τ+T

τ

(t− τ)−
N+1

2 ( 1
M
− 1
K ) dt

+

∫ τ+T

τ

∫ t

τ

(t− s′)−
N+1

2 ( 1
M
− 1
K )||urvp(s′)||M,δ ds′ dt

]
.

(129)

Observe that for such K,M there holds

N + 1

2

(
1

M
− 1

K

)
< 1.

Now we use Fubini's theorem in the last term in (129) to obtain∫ τ+T

τ

||u(t)||K,δ dt ≤ C

[
T 1−N+1

2 ( 1
M
− 1
K )||u(τ)||M,δ

+

∫ τ+T

τ

(∫ τ+T

s′
(t− s′)−

N+1
2 ( 1

M
− 1
K ) dt

)
||urvp(s′)||M,δ ds′

]
.

(130)

Since s′ ∈ [τ, τ + T ], we can estimate∫ τ+T

s′
(t− s′)−

N+1
2 ( 1

M
− 1
K ) dt ≤ CT 1−N+1

2 ( 1
M
− 1
K ).
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As in the proof of Lemma 5.2 we rewrite (130) into the estimate∫ τ+T

τ

||u(t)||K,δ dt ≤ CT 1−N+1
2 ( 1

M
− 1
K )
[
||u(τ)||M,δ +

∫ τ+T

τ

||urvp(s′)||M,δ ds′
]

≤ C(T )

[
||u(τ)||M,δ +

∫ τ+T

τ

(∫
Ω

[
upM

r+a−1
p+1−avpM(s′)

]
×

×
[
uM

(p+r)(1−a)
p+1−a (s′)

]
ϕ1 dx

) 1
M

ds′
] (131)

where a is de�ned by (125). Observe that M < p+1−a
p

, since M < p+r
p+r−1

. Therefore we
can use Hölder's inequality in the spatial integral in the last term in (131) to estimate∫ τ+T

τ

||u(t)||K,δ dt ≤ C(T )

[
||u(τ)||M,δ +

∫ τ+T

τ

(∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx

) p
p+1−a

×

×
(∫

Ω

uM
(p+r)(1−a)
p+1−a−pM (s′)ϕ1 dx

) p+1−a−pM
M(p+1−a)

ds′

]
.

(132)

Using Hölder's inequality in the time integral we have∫ τ+T

τ

||u(t)||K,δ dt ≤ C(T )

[
||u(τ)||M,δ +

(∫ τ+T

τ

∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′
) p

p+1−a

×

×
(∫ τ+T

τ

||u(s′)||p+r
M

(p+r)(1−a)
p+1−a−pM ,δ

ds′
) 1−a

p+1−a
]
.

(133)

Now the inequality (39) implies∫ τ+T

τ

||u(t)||K,δ dt ≤ C(T )

[
||u(τ)||M,δ + C(T )

(∫ τ+T

τ

||u(s′)||p+r
M

(p+r)(1−a)
p+1−a−pM ,δ

ds′
) 1−a

p+1−a
]
.(134)

Note that (p+r)(1−a)
p+1−a = 1 and M (p+r)(1−a)

p+1−a−pM = k for our choice (125) of a. Hence using
Lemma 5.1 i) we have∫ τ+T

τ

||u(t)||K,δ dt ≤ C(T ) (||u(τ)||M,δ + ||u(τ)||k,δ) ≤ C(T )||u(τ)||k,δ, (135)

since k > M .
If M ∈

(
N+1

2
, p+r
p+r−1

)
then we can choose K =∞ and k′(M) < k <∞. Hence the

estimates (128)-(135) imply∫ τ+T

τ

||u(t)||∞ dt ≤ C(T )||u(τ)||k,δ, (136)

thus we proved i).

38



Now we prove ii). Observe that N+1
2

< p+1
p

and K0(M) > K(M) for every M ∈[
1, p+1

p

)
due to conditions 0 < p < 2

N+1
(see the de�nition (73) of functions K, k and

the de�nition (121) of K0). Hence (75) implies

K0(M) > max{k(M),M} for all M ∈
[
1,
p+ 1

p

)
. (137)

Choose K0(M) > K > k > k(M), k ≥ 1, M ∈
[
1, N+1

2

]
. We need k ≥ 1, since

k(1) = p+ r and possibly p+ r < 1. For τ, T ≥ 0 and t ∈ (τ, τ + T ] we estimate

||u(t)||K,δ ≤ C

[
(t− τ)−

N+1
2 ( 1

M
− 1
K )||u(τ)||M,δ

+

∫ t

τ

(t− s′)−
N+1

2 ( 1
M
− 1
K )||urvp(s′)||M,δ ds′

]
.

(138)

where we used Lemma 3.1 iii) and v). Integrating (138) on interval [τ, τ + T ] with
respect to t we have∫ τ+T

τ

||u(t)||K,δ dt ≤ C

[
||u(τ)||M,δ

∫ τ+T

τ

(t− τ)−
N+1

2 ( 1
M
− 1
K ) dt

+

∫ τ+T

τ

∫ t

τ

(t− s′)−
N+1

2 ( 1
M
− 1
K )||urvp(s′)||M,δ ds′ dt

]
.

(139)

Observe that for such K,M there holds

N + 1

2

(
1

M
− 1

K

)
< 1.

Now we use Fubini's theorem in the last term in (139) to obtain∫ τ+T

τ

||u(t)||K,δ dt ≤ C

[
T 1−N+1

2 ( 1
M
− 1
K )||u(τ)||M,δ

+

∫ τ+T

τ

(∫ τ+T

s′
(t− s′)−

N+1
2 ( 1

M
− 1
K ) dt

)
||urvp(s′)||M,δ ds′

] (140)

Since s′ ∈ [τ, τ + T ], we can estimate∫ τ+T

s′
(t− s′)−

N+1
2 ( 1

M
− 1
K ) dt ≤ CT 1−N+1

2 ( 1
M
− 1
K ).

We rewrite (140) into the estimate∫ τ+T

τ

||u(t)||K,δ dt ≤ CT 1−N+1
2 ( 1

M
− 1
K )
[
||u(τ)||M,δ +

∫ τ+T

τ

||urvp(s′)||M,δ ds′
]

≤ C(T )

[
||u(τ)||M,δ +

∫ τ+T

τ

(∫
Ω

[
upM

r+a−1
p+1−avpM(s′)

]
×

×
[
uM

(p+r)(1−a)
p+1−a (s′)

]
ϕ1 dx

) 1
M

ds′

]
,

(141)
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where a is de�ned by (126). Observe that

M <
p+ 1− a

p
, (142)

since M < p+1
p
: the inequality (142) is true, if for M �xed we choose a su�ciently

small. Hence we can use Hölder's inequality in the spatial integral in the last term in
(141) to estimate∫ τ+T

τ

||u(t)||K,δ dt ≤ C(T )

[
||u(τ)||M,δ +

∫ τ+T

τ

(∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx

) p
p+1−a

×

×
(∫

Ω

uk̃(M)(s′)ϕ1 dx

) p+1−a−pM
M(p+1−a)

ds′

] (143)

where k̃(M) = M (p+r)(1−a)
p+1−a−pM . Using Hölder's inequality in the time integral in (143) we

have∫ τ+T

τ

||u(t)||K,δ dt ≤ C(T )

[
||u(τ)||M,δ +

(∫ τ+T

τ

∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′
) p

p+1−a

×

×
(∫ τ+T

τ

||u(s′)||p+r
max{1,k̃(M)},δ

ds′
) 1−a

p+1−a
]
.

Now the inequality (39) implies∫ τ+T

τ

||u(t)||K,δ dt ≤ C(T )

[
||u(τ)||M,δ + C(T )

(∫ τ+T

τ

||u(s′)||p+r
max{1,k̃(M)},δ

ds′
) 1−a

p+1−a
]
.(144)

Note that κ′ = (p+r)(1−a)
p+1−a < 1 and k̃(M) is close to k(M) and thus k̃(M) < k for a

su�ciently small. If p + r < 1 then k̃(1) < 1 for a small. Hence using Lemma 5.1 iii)
we have ∫ τ+T

τ

||u(t)||K,δ dt ≤ C(T )
[
||u(τ)||M,δ + (1 + ||u(τ)||k,δ)κ

′
]
.

Using Young's inequality in the last term we obtain∫ τ+T

τ

||u(t)||K,δ dt ≤ C(T ) (1 + ||u(τ)||M,δ + ||u(τ)||k,δ) ≤ C(T )
(
1 + ||u(τ)||max{k,M},δ

)
.(145)

If M ∈
(
N+1

2
, p+1

p

)
is su�ciently close to p+1

p
then k(M) > M and we can choose

K =∞ and k(M) < k <∞. Hence the estimates (138)-(145) imply∫ τ+T

τ

||u(t)||∞ dt ≤ C(T ) (1 + ||u(τ)||k,δ) ,

thus we proved ii).
�

40



Theorem 5.1. Let p + r < N+3
N+1

, p > 0 and conditions (26), (31) be true. Let (u, v)

be a global nonnegative solution of problem (2).

i) Assume r > 1. Then for every τ > 0, there exists C = C(p, q, r, s,Ω, τ) such that

||u(t)||∞ ≤ C||u(t)||1,δ (146)

for every t ≥ τ .

ii) Assume r ≤ 1, p < 2
N+1

. Then for every τ > 0, there exists C = C(p, q, r, s,Ω, τ)

such that

||u(t)||∞ ≤ C(1 + ||u(t)||1,δ) (147)

for every t ≥ τ .

Remark.The constant C from both assertions of Theorem 5.1 may explode if τ →
0+.

Proof of Theorem 5.1 First we prove i). Let

γ =
1

2− (p+ r)
.

Conditions 1 < p + r < N+3
N+1

imply p + r < γ < N+1
N−1

. Fix 1 > τ0 > 0 and let t > 0 be
arbitrary. Note that there exists τ ′ ∈ [τ0 + t, 2τ0 + t] such that

||u(τ ′)||γ,δ = τ−1
0

∫ 2τ0+t

τ0+t

||u(s′)||γ,δ ds′. (148)

Obviously, this τ ′ may depend on t and u. Since 2τ0 + t ∈ [τ ′, τ ′ + τ0], there holds

||u(2τ0 + t)||γ,δ ≤ sup
s′∈[τ ′,τ ′+τ0]

||u(s′)||γ,δ. (149)

We use Lemma 5.1 i) with τ replaced by τ ′ to obtain

sup
s′∈[τ ′,τ ′+τ0]

||u(s′)||γ,δ ≤ C||u(τ ′)||γ,δ (150)

where C does not depend on τ ′, τ0. Lemma 5.2 i) implies∫ 2τ0+t

τ0+t

||u(s′)||γ,δ ds′ ≤ C||u(2τ0 + t)||1,δ. (151)

Finally, the equality (148) and the estimates (149)-(151) imply

||u(2τ0 + t)||γ,δ ≤ sup
s′∈[τ ′,τ ′+τ0]

||u(s′)||γ,δ ≤ C||u(τ ′)||γ,δ

= Cτ−1
0

∫ 2τ0+t

τ0+t

||u(s′)||γ,δ ds′ ≤ Cτ−1
0 ||u(2τ0 + t)||1,δ,
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thus
||u(2τ0 + t)||γ,δ ≤ C(τ0)||u(2τ0 + t)||1,δ. (152)

Now �x l ∈ N, l > 1 and K, k such that K ′0(M) > K > k = k′(M), M ∈
(
1, N+1

2

]
(see the de�nition (74), (122) of function k′, K ′0, respectively). This choice is possible
due to inequality (127). Again, there exists τ ′ ∈ [lτ0 + t, (l + 1)τ0 + t] such that

||u(τ ′)||K,δ = τ−1
0

∫ (l+1)τ0+t

lτ0+t

||u(s′)||K,δ ds′. (153)

Since (l + 1)τ0 + t ∈ [τ ′, τ ′ + τ0], there holds

||u((l + 1)τ0 + t)||K,δ ≤ sup
s′∈[τ ′,τ ′+τ0]

||u(s′)||K,δ. (154)

We use Lemma 5.1 i) with τ replaced by τ ′ to obtain

sup
s′∈[τ ′,τ ′+τ0]

||u(s′)||K,δ ≤ C||u(τ ′)||K,δ (155)

where C does not depend on τ ′. Lemma 5.3 i) implies∫ (l+1)τ0+t

lτ0+t

||u(s′)||K,δ ds′ ≤ C||u(lτ0 + t)||k,δ. (156)

Finally, the equality (153) and the estimates (154)-(156) imply

||u((l + 1)τ0 + t)||K,δ ≤ sup
s′∈[τ ′,τ ′+τ0]

||u(s′)||K,δ ≤ C||u(τ ′)||K,δ

= τ−1
0

∫ (l+1)τ0+t

lτ0+t

||u(s′)||K,δ ds′ ≤ Cτ−1
0 ||u(lτ0 + t)||k,δ

where C does not depend on τ ′, τ0 and t. Thus

||u((l + 1)τ0 + t)||K,δ ≤ C(τ0)||u(lτ0 + t)||k,δ. (157)

If we choose p+r
p+r−1

> M0 >
N+1

2
then in (157), we can take K =∞ and k = k0 for

some
∞ > k0 > k′(M0). (158)

Hence we have
||u((l + 1)τ0 + t)||∞ ≤ C(τ0)||u(lτ0 + t)||k0,δ (159)

for all l ∈ N, l > 1. Now we apply bootstrap argument on (157): SinceK ′0(M) > k′(M)

for M ∈
[
1, N+1

2

)
and K ′0(N+1

2
) =∞, there exists small enough ε > 0 such that

K̃ := min

{
2γ

p+ r
k′, (1− ε)K ′0

}
> (1 + ε)k′ =: k̃ on

[
1,

p+ r

p+ r − 1

)
(160)
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and K̃(1) > γ > k̃(1) > p + r. This follows from continuity of functions K ′0, k
′. For

M ∈
[
1, p+r

p+r−1

)
given, there holds K ′0(M) > K̃(M) > k̃(M) > k = k′(M) and K̃ <∞.

Hence (157) yields

||u((l + 1)τ0 + t)||K̃(M),δ ≤ C(τ0)||u(lτ0 + t)||k̃(M),δ. (161)

Let m1 = 1 and for i ∈ N denote mi+1 = (k̃)−1(K̃(mi)). Observe that K̃(mi) > k̃(mi),
mi <

p+r
p+r−1

and mi+1 > mi. The estimate (161) implies

||u((l + 1)τ0 + t)||K̃(mi),δ
≤ C(τ0)||u(lτ0 + t)||k̃(mi),δ

, i, l ∈ N. (162)

Due to Lemma 3.6 there exists l0 = l0(p, q, r, s) ∈ N such that K̃(ml0) > k0 (where k0

is chosen by (158)). Therefore (159) implies

||u((l0 + 3)τ0 + t)||∞ ≤ C(τ0)||u((l0 + 2)τ0 + t)||K̃(ml0 ),δ. (163)

Using (162) l0-times (for l = 2, . . . , l0 + 1 and i = 1, . . . , l0) we have

||u((l0 + 2)τ0 + t)||K̃(ml0 ),δ ≤ C(τ0)||u(2τ0 + t)||k̃(m1),δ.

This inequality, γ > k̃(m1), (163) and (152) imply

||u((l0+3)τ0+t)||∞ ≤ C(τ0)||u(2τ0+t)||k̃(m1),δ ≤ C(τ0)||u(2τ0+t)||γ,δ ≤ C(τ0)||u(2τ0+t)||1,δ.

Finally, (24) yields

||u((l0 + 3)τ0 + t)||∞ ≤ C(τ0)||u(2τ0 + t)||1,δ ≤ C(τ0)eλ1(l0+1)τ0||u((l0 + 3)τ0 + t)||1,δ.

Letting τ0 = τ
l0+3

implies the assertion i).
Now we prove ii). We choose

γ =
1

2− (p+ r)
, if p+ r > 1

or

γ ∈
(

1,
N + 1

N − 1

)
, if p+ r ≤ 1,

and t, τ0 are as at the beginning of the proof of i). There exists τ ′ ∈ [τ0 + t, 2τ0 + t]

such that

||u(τ ′)||γ,δ = τ−1
0

∫ 2τ0+t

τ0+t

||u(s′)||γ,δ ds′. (164)

Obviously, this τ ′ may depend on t and u. Since 2τ0 + t ∈ [τ ′, τ ′ + τ0], there holds

||u(2τ0 + t)||γ,δ ≤ sup
s′∈[τ ′,τ ′+τ0]

||u(s′)||γ,δ. (165)
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We use Lemma 5.1 iii) with τ replaced by τ ′ to obtain

sup
s′∈[τ ′,τ ′+τ0]

||u(s′)||γ,δ ≤ C (1 + ||u(τ ′)||γ,δ) (166)

where C does not depend on τ ′, τ0. Lemma 5.2 ii) implies∫ 2τ0+t

τ0+t

||u(s′)||γ,δ ds′ ≤ C (1 + ||u(2τ0 + t)||1,δ) . (167)

Finally, the equality (164) and the estimates (165)-(167) imply

||u(2τ0 + t)||γ,δ ≤ C (1 + ||u(τ ′)||γ,δ) = C

(
1 + τ−1

0

∫ 2τ0+t

τ0+t

||u(s′)||γ,δ ds′
)

≤ C(τ0) (1 + ||u(2τ0 + t)||1,δ) .
(168)

Now �x l ∈ N, l > 1 and K such that K0(M) > K > max{k(M), 1}, M ∈(
1, N+1

2

]
(see the de�nition (73), (121) of function k, K0, respectively). Then �x

k ∈ (K,max{k(M), 1}). These choices are possible due to inequality (137). Again,
there exists τ ′ ∈ [lτ0 + t, (l + 1)τ0 + t] such that

||u(τ ′)||K,δ = τ−1
0

∫ (l+1)τ0+t

lτ0+t

||u(s′)||K,δ ds′. (169)

Since (l + 1)τ0 + t ∈ [τ ′, τ ′ + τ0], there holds

||u((l + 1)τ0 + t)||K,δ ≤ sup
s′∈[τ ′,τ ′+τ0]

||u(s′)||K,δ. (170)

We use Lemma 5.1 iii) with τ replaced by τ ′ to obtain

sup
s′∈[τ ′,τ ′+τ0]

||u(s′)||K,δ ≤ C (1 + ||u(τ ′)||K,δ) (171)

where C does not depend on τ ′, τ0. Lemma 5.3 ii) implies∫ (l+1)τ0+t

lτ0+t

||u(s′)||K,δ ds′ ≤ C (1 + ||u(lτ0 + t)||k,δ) . (172)

Finally, the equality (169) and the estimates (170)-(172) imply

||u((l + 1)τ0 + t)||K,δ ≤ C (1 + ||u(τ ′)||K,δ)

≤ C(τ0)

(
1 +

∫ (l+1)τ0+t

lτ0+t

||u(s′)||K,δ ds′

)
≤ C(τ0) (1 + ||u(lτ0 + t)||k,δ)

(173)

where C does not depend on τ ′ and t.
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If we choose M1 >
N+1

2
then in (173), we can take K = ∞ and ∞ > k1 > k′(M1)

such that there holds

||u((l + 1)τ0 + t)||∞ ≤ C(τ0) (1 + ||u(lτ0 + t)||k1,δ) (174)

for all l ∈ N, l > 1. As in the proof of i) we apply bootstrap argument on (173): using
(173) l1-times (for l = 2, . . . , l1 + 1; l1 = l1(p, q, r, s)) we have

||u((l1 + 2)τ0 + t)||K1,δ ≤ C(τ0) (1 + ||u(2τ0 + t)||γ,δ) (175)

for some K1 > k1 (note that p+ r = k(1) and γ > max{1, p+ r}). This inequality and
(175) imply

||u((l1 + 3)τ0 + t)||∞ ≤ C(τ0)(1 + ||u(2τ0 + t)||γ,δ).

It is possible to use (168) and (24) to obtain

||u((l1 + 3)τ0 + t)||∞ ≤ C(τ0) (1 + ||u(2τ0 + t)||γ,δ) ≤ C(τ0) (1 + ||u(2τ0 + t)||1,δ)
≤ C(τ0)

(
1 + eλ1(l1+1)τ0||u((l1 + 3)τ0 + t)||1,δ

)
.

Letting τ0 = τ
l1+3

implies the assertion of the theorem.
�

Corollary 1. Assume p + r < N+3
N+1

, 2
N+1

> p > 0 and let conditions (26), (31) be
true. If r > 1 then assume also pq > (1− r)(1− s). Let (u, v) be a global nonnegative

solution of problem (2). Then for τ > 0, there exists C = C(p, q, r, s, τ,Ω) such that

sup
s′∈[τ,τ+T ]

||u(s′)||∞ ≤ C(1 + ||u(τ)||∞), T ≥ 0. (176)

Proof. This follows from (146) (if r > 1) or (147) (if r ≤ 1) and Lemma 5.1 ii).
�

Lemma 5.4. Assume p + r < N+3
N+1

, 2
N+1

> p > 0, s < N+3
N+1

, (26) and (31). If r > 1

then assume also pq > (1 − r)(1 − s). Let (u, v) be a global nonnegative solution of

problem (2). Then there exists C = C(p, q, r, s,Ω, ||u(τ)||∞, ||v(τ)||∞, sup
s′∈[τ,τ+T ]

||v(s′)||1,δ)

such that

sup
s′∈[τ,τ+T ]

||v(s′)||∞ ≤ C, T, τ ≥ 0. (177)

Proof of Lemma 5.4 Due to Corollary 1 we can write u(x, t) ≤ C(||u(τ)||∞) for
(x, t) ∈ Ω × [τ,∞) (note that the constant C in (176) is independent of T ). Then v
satis�es

vt −∆v ≤ C(||u(τ)||∞)qvs, (x, t) ∈ Ω× [τ,∞) (178)

where s < N+3
N+1

.
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Assume s > 1. We choose arbitrary γ such that

1

2− s
< γ <

N + 1

N − 1
. (179)

Note that 1
2−s <

N+1
N−1

, since s < N+3
N+1

.
For �xed T > 0 and t ∈ [0, T ] we estimate

||v(τ + t)||γ,δ ≤ C(||u(τ)||∞)

[
||v(τ)||γ,δ

+

∫ τ+t

τ

e−
λ1
2

(t+τ−s′)(t+ τ − s′)−
N+1

2 (1− 1
γ )
∫

Ω

vs(s′)ϕ1 dx ds′
]
.

(180)

In (180) we estimate term ||v(τ)||γ,δ by a constant C(||v(τ)||∞) to obtain

||v(τ + t)||γ,δ ≤ C(||u(τ)||∞)

[
C(||v(τ)||∞) + sup

s′∈[τ,τ+T ]

||v(s′)||ss,δ ×

×
∫ τ+t

τ

e−
λ1
2

(t+τ−s′)(t+ τ − s′)−
N+1

2 (1− 1
γ ) ds′

]
.

(181)

Note that the integral in (181) is bounded by a constant independent of t, hence

||v(τ + t)||γ,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 + sup

s′∈[τ,τ+T ]

||v(s′)||ss,δ

]
. (182)

As in the proof of Lemma 5.2 we use the interpolation inequality and Young's inequality
to obtain

||v(s′)||ss,δ ≤ ||v(s′)||
γ−s
γ−1

1,δ ||v(s′)||
γ(s−1)
γ−1

γ,δ ≤ Cε||v(s′)||
γ−s

(γ−1)(1−θ)
1,δ + ε||v(s′)||

γ(s−1)
(γ−1)θ

γ,δ (183)

where θ ∈ (0, 1). Due to our choice (179) of γ there holds γ(s−1)
γ−1

< 1, hence there exists
θ ∈ (0, 1) such that

γ(s− 1)

(γ − 1)θ
= 1.

Finally, (183) implies

||v(τ + t)||γ,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)×

×

1 + Cε

(
sup

s′∈[τ,τ+T ]

||v(s′)||1,δ

) γ−s
(γ−1)(1−θ)

+ ε sup
s′∈[τ,τ+T ]

||v(s′)||γ,δ

 .
Choosing ε su�ciently small yields

sup
s′∈[τ,τ+T ]

||v(s′)||γ,δ ≤ C(||u(τ)||∞, ||v(τ)||∞, sup
s′∈[τ,τ+T ]

||v(s′)||1,δ), γ ∈
(

1,
N + 1

N − 1

)
.

(184)
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For 0 < s ≤ 1 we choose arbitrary γ such that

1 < γ <
N + 1

N − 1
.

For �xed T > 0 and t ∈ [0, T ] we estimate

||v(τ + t)||γ,δ ≤ C(||u(τ)||∞)

[
||v(τ)||γ,δ

+

∫ τ+t

τ

e−
λ1
2

(t+τ−s′)(t+ τ − s′)−
N+1

2 (1− 1
γ )||v(s′)||ss,δ ds′

]
≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 + sup

s′∈[τ,τ+T ]

||v(s′)||1,δ

]
≤ C(||u(τ)||∞, ||v(τ)||∞, sup

s′∈[τ,τ+T ]

||v(s′)||1,δ),

hence the estimate (184) follows.
For s = 0 the assertion (184) follows from estimate analogous to (178).
Now we prove that (184) holds for γ =∞. For s ≥ 2

N+1
we denote

K1 : [1,∞) −→ R ∪ {∞},

K1(Q) =

{
Q(N+1)

s(N+1)−2Q
, Q ∈

[
1, s(N+1)

2

)
,

∞, Q ≥ s(N+1)
2

.

(185)

Assume sup
s′∈[τ,τ+T ]

||v(s′)||1,δ ≤ C. Our goal is to prove

if s ≥ 2

N + 1
, sup
s′∈[τ,τ+T ]

||v(s′)||Q,δ ≤ C, Q ∈
[
1,
s(N + 1)

2

]
then sup

s′∈[τ,τ+T ]

||v(s′)||K,δ ≤ C

(186)
for

K < K1(Q) (187)

and

if sup
s′∈[τ,τ+T ]

||v(s′)||Q,δ ≤ C, Q > max

{
1,
s(N + 1)

2

}
then sup

s′∈[τ,τ+T ]

||v(s′)||∞ ≤ C.

(188)
In (186) and (188) the constant C may depend on (u, v), more precisely
C = C(||u(τ)||∞, ||v(τ)||∞, sup

s′∈[τ,τ+T ]

||v(s′)||1,δ).

We estimate

||v(τ + t)||K,δ ≤ C(||u(τ)||∞)

[
||v(τ)||K,δ

+

∫ τ+t

τ

e
−λ1
2

(t+τ−s′)(t+ τ − s′)−
N+1

2 ( 1
M
− 1
K )
(∫

Ω

v(s′)Msϕ1 dx

) 1
M

ds′

]
.

(189)
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In (189) we estimate term ||v(τ)||K,δ by a constant C(||v(τ)||∞) to obtain

||v(τ + t)||K,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 + sup

s′∈[τ,τ+T ]

||v(s′)||sMs,δ ×

×
∫ τ+t

τ

e
−λ1
2

(t+τ−s′)(t+ τ − s′)−
N+1

2 ( 1
M
− 1
K ) ds′

]
.

(190)

To prove the assertion (186) we choose

M =
Q

s
.

Due to this de�nition of M and our choice (187) of K there holds

N + 1

2

(
1

M
− 1

K

)
< 1.

Hence the integral in (190) is bounded by a constant independent of t and we can
estimate

||v(τ + t)||K,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 + sup

s′∈[τ,τ+T ]

||v(s′)||sMs,δ

]
. (191)

Therefore (186) follows from (191).
Now we prove (188). Similar estimates to (189) and (190) (with K =∞) are true

in case of Q > s(N+1)
2

. In (190) we set M = Q
s
. Then we use the assertions iv) and vi)

in Lemma 3.1 instead of iii) and v) in the estimate (189). We obtain

||v(τ + t)||∞ ≤ C

[
1 + sup

s′∈[τ,τ+T ]

||v(s′)||sQ,δ

]
. (192)

Thus (188) holds.
Let �rst s ≥ 2

N+1
. Since s < N+3

N+1
, there holds

K1(Q) > Q for Q ≥ 1 (193)

and to �nish the proof for s ≥ 2
N+1

we use bootstrap argument: Due to the inequality
(193) there exists ε > 0 such that K̃(Q) := min{(1 + ε)Q, (1 − ε)K1(Q)} > Q for
Q ≥ 1. Denote Q1 = 1 and Qi+1 = K̃(Qi) for i ∈ N. Due to Lemma 3.5 there exists
i0 ∈ N such that Qi0 >

s(N+1)
2

. Since we proved (186), there holds

sup
s′∈[τ,τ+T ]

||v(s′)||Qi0 ,δ ≤ C(||u(τ)||∞, ||v(τ)||∞, sup
s′∈[τ,τ+T ]

||v(s′)||1,δ).

The assertion (188) then implies

sup
s′∈[τ,τ+T ]

||v(s′)||∞ ≤ C(||u(τ)||∞, ||v(τ)||∞, sup
s′∈[τ,τ+T ]

||v(s′)||1,δ).
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Thus the proof for s ≥ 2
N+1

is �nished.
If s < 2

N+1
then the assertion of the Lemma follows immediately from the estimate

(192). Indeed, since the estimate (184) is true, then there holds

sup
s′∈[τ,τ+T ]

||v(s′)||Q,δ ≤ C(||u(τ)||∞, ||v(τ)||∞, sup
s′∈[τ,τ+T ]

||v(s′)||1,δ).

for some Q > 1. Then (188) �nishes the proof.
�

Proof of Theorem 2.6 First assume s ≥ 1. For η ∈ [0, 1− a) denote

γ′(η) :=
s− a

1− η − a
,

ε(η) :=
(q + a)(s− 1 + η)

s− a
.

(194)

The assumption s ≥ 1 guarantees that ε(η) > 0 for all η ∈ (0, 1− a).
In the following proof we will choose

a =
r − 1

p+ r − 1
in case r > 1, (195)

a > 0 su�ciently small in case r ≤ 1. (196)

If a is de�ned by (195) then the condition

pq > (r − 1)(s− 1)

implies ε(0) < q and the condition

s+
2

N + 1

r − 1

p+ r − 1
<
N + 3

N + 1
(197)

implies γ
′
(0) < N+3

N+1
. Hence

1 < γ
′
(η) <

N + 3

N + 1
, ε(η) < q (198)

for η > 0 su�ciently small.
If a is chosen by (196) then there holds (198) for small η > 0. The choice of a may

vary from step to step.
Now we choose η such that in the both cases (195) and (196) there holds (198) and

for the rest of the proof denote

γ′ := γ′(η), ε′ := ε(η). (199)
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For t ∈ [0, T ] and ε ∈
(

0, 1
γ′

)
we estimate

||v(τ + t)||γ′,δ ≤ C

[
||v(τ)||γ′,δ

+

∫ τ+t

τ

e
−λ1

(
1− 1

γ′+ε
)

(τ+t−s′)
(τ + t− s′)−

N+1
2

(
1− 1

γ′

)
||uqvs(s′)||1,δ ds′

]
≤ C

[
||v(τ)||γ′,δ +

∫ τ+t

τ

e
−λ1

(
1− 1

γ′+ε
)

(τ+t−s′)
(τ + t− s′)−

N+1
2

(
1− 1

γ′

)
×

×
∫

Ω

uε
′
vsuq−ε

′
(s′)ϕ1 dx ds′

]
.

(200)

The term uq−ε
′
can be estimated by a constant depending on ||u(τ)||∞ due to Corollary

1. The term ||v(τ)||γ′,δ can be estimated by C||v(τ)||∞. Hence it holds

||v(τ + t)||γ′,δ ≤ C(||v(τ)||∞)

[
1 + (1 + ||u(τ)||∞)q−ε

′ ×

×
∫ τ+t

τ

e
−λ1

(
1− 1

γ′+ε
)

(τ+t−s′)
(τ + t− s′)−

N+1
2

(
1− 1

γ′

)
×

×
∫

Ω

uε
′
vs(s′)ϕ1 dx ds′

]
.

(201)

We rewrite the estimate (201) to obtain

||v(τ + t)||γ′,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 +

∫ τ+t

τ

e
−λ1

(
1− 1

γ′+ε
)

(τ+t−s′) ×

× (τ + t− s′)−
N+1

2

(
1− 1

γ′

) ∫
Ω

[uε
′
vs−1+η(s′)][v1−η(s′)]ϕ1 dx ds′

]
.
(202)

Since s ≥ 1 and η ∈ (0, 1− a), we have 0 < s−1+η
s−a < 1. Hence we can use Hölder's

inequality in (202) to obtain

||v(τ + t)||γ′,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 +

∫ τ+t

τ

e
−λ1

(
1− 1

γ′+ε
)

(τ+t−s′) ×

× (τ + t− s′)−
N+1

2

(
1− 1

γ′

)(∫
Ω

uq+avs−a(s′)ϕ1 dx

)1− 1

γ
′

×

×
(∫

Ω

v(1−η)γ′(s′)ϕ1 dx

) 1
γ′

ds′

]
.

(203)

Now we can write

||v(τ + t)||γ′,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 + sup

s′∈[τ,τ+T ]

||v(s′)||1−η(1−η)γ′,δ ×

×
∫ τ+t

τ

[
e−λ1ε(τ+t−s′)(τ + t− s′)−

N+1
2

(
1− 1

γ′

)]
×

×
(
e−λ1(τ+t−s′)

∫
Ω

uq+avs−aϕ1 dx

)1− 1
γ′

ds′

]
.

(204)
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Hölder's inequality in the time integral in (204) implies

||v(τ + t)||γ′,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 + sup

s′∈[τ,τ+T ]

||v(s′)||1−η(1−η)γ′,δ ×

×
(∫ τ+t

τ

e−λ1γ
′ε(τ+t−s′)(τ + t− s′)−

N+1
2

(γ′−1) ds′
) 1

γ′

×

×
(∫ τ+t

τ

e−λ1(τ+t−s′)
∫

Ω

uq+avs−aϕ1 dx ds′
)1− 1

γ′
]
.

(205)

We apply the inequality (40) to the estimate (205) to get

||v(τ + t)||γ′,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 + sup

s′∈[τ,τ+T ]

||v(s′)||1−η(1−η)γ′,δ ×

×
(∫ τ+t

τ

e−λ1γ
′ε(τ+t−s′)(τ + t− s′)−

N+1
2

(γ′−1) ds′
) 1

γ′
]
.

(206)

The integral in (206) is uniformly bounded with respect to t, τ ≥ 0, since

N + 1

2
(γ′ − 1) < 1 (207)

due to (198). Hence

||v(τ + t)||γ′,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 + sup

s′∈[τ,τ+T ]

||v(s′)||1−η(1−η)γ′,δ

]
. (208)

Using Young's inequality in (208) we deduce that

||v(τ + t)||γ′,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 + Cε + ε sup

s′∈[τ,τ+T ]

||v(s′)||(1−η)γ′,δ

]
. (209)

Recall that η ∈ (0, 1). We set ε > 0 small enough in (209) and thus there holds

sup
s′∈[τ,τ+T ]

||v(s′)||γ′ ,δ ≤ C(||u(τ)||∞, ||v(τ)||∞).

Corollary 1 and Lemma 5.4 now imply

sup
s′∈[τ,τ+T ]

||u(s′)||∞ + sup
s′∈[τ,τ+T ]

||v(s′)||∞ ≤ C(||u(τ)||∞, ||v(τ)||∞). (210)

Assume 0 ≤ s < 1. Similarly as in (200) (here we can choose arbitrary ε ∈ (0, 1))
we estimate

||v(τ + t)||1,δ ≤ C

[
||v(τ)||1,δ +

∫ τ+t

τ

e−λ1ε(τ+t−s′)
∫

Ω

uqvs(s′)ϕ1 dx ds′
]

≤ C

[
||v(τ)||1,δ +

(
sup

s′∈[τ,τ+T ]

||u(s′)||∞

)q ∫ τ+t

τ

e−λ1ε(τ+t−s′)
∫

Ω

vs(s′)ϕ1 dx ds′

]
.
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Corollary 1 implies

||v(τ + t)||1,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 +

∫ τ+t

τ

e−λ1ε(τ+t−s′)
∫

Ω

vs(s′)ϕ1 dx ds′
]
. (211)

From (211) we obtain

||v(τ + t)||1,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 + sup

s′∈[τ,τ+T ]

||v(s′)||s1,δ
∫ τ+t

τ

e−λ1ε(τ+t−s′) ds′

]
.(212)

Since the integral in the estimate (212) is bounded with respect to τ, t, we can write

||v(τ + t)||1,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

[
1 + sup

s′∈[τ,τ+T ]

||v(s′)||s1,δ

]
. (213)

If s = 0 then we are done and (210) holds. If s > 0 then using Young's inequality in
(213) we deduce that

||v(τ + t)||1,δ ≤ C(||u(τ)||∞, ||v(τ)||∞)

(
1 + Cε + ε sup

s′∈[τ,τ+T ]

||v(s′)||s1,δ

)
.

For ε > 0 small we �nally come to

sup
s′∈[τ,τ+T ]

||v(s′)||1,δ ≤ C(||u(τ)||∞, ||v(τ)||∞), (214)

hence (210) is true due to Lemma 5.4 and the proof of the Theorem is complete.
�

Theorem 5.2. Assume p, q, r, s as in Theorem 2.6 and s > 1. Let (u, v) be a global

nonnegative solution of problem (2). Then for τ0 > 0 and T ≥ 0, there exists C =

C(p, q, r, s,Ω, τ0, T, ||u(τ0)||∞) such that

||v(t+ T )||s,δ ≤ C||v(t)||1,δ (215)

for every t ≥ τ0.

Remark. The constant C from Theorem 5.2 may explode if τ0 → 0+, and may be
large for T large.

Proof of Theorem 5.2. In the proof we will use the following notations

a =
r − 1

p+ r − 1
in case r > 1, (216)

a > 0 su�ciently small in case r ≤ 1 (217)
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and

γ′ =
s− a
1− a

, ε′ =
(q + a)(s− 1)

s− a
. (218)

First we prove the following estimate

sup
s′∈[τ,τ+T ]

||v(s′)||γ′,δ ≤ C(T, ||u(τ0)||∞)||v(τ)||γ′,δ, τ ≥ τ0 (219)

where the constant C is bounded for T bounded. Note that s > 1 implies s < γ′ and
due to the assumption

s+
2

N + 1
max

{
0,

r − 1

p+ r − 1

}
<
N + 3

N + 1

and any of de�nitions (216), (217) there holds

γ′ <
N + 3

N + 1
. (220)

For t ∈ [0, T ] and ε ∈
(

0, 1
γ′

)
we estimate

||v(τ + t)||γ′,δ ≤ C

[
||v(τ)||γ′,δ +

∫ τ+t

τ

(τ + t− s′)−
N+1

2

(
1− 1

γ′

)
||uqvs(s′)||1,δ ds′

]
≤ C

[
||v(τ)||γ′,δ +

∫ τ+t

τ

(τ + t− s′)−
N+1

2

(
1− 1

γ′

) ∫
Ω

uε
′
vsuq−ε

′
(s′)ϕ1 dx ds′

]
.

(221)

Corollary 1 implies

||v(τ + t)||γ′,δ ≤ C

||v(τ)||γ′,δ +

(
sup

s′∈[τ,τ+T ]

||u(s′)||∞

)q−ε′

×

×
∫ τ+t

τ

(τ + t− s′)−
N+1

2

(
1− 1

γ′

) ∫
Ω

uε
′
vsu(s′)ϕ1 dx ds′


≤ C

[
||v(τ)||γ′,δ + (1 + ||u(τ0)||∞)q−ε

′ ×

×
∫ τ+t

τ

(τ + t− s′)−
N+1

2

(
1− 1

γ′

) ∫
Ω

uε
′
vs(s′)ϕ1 dx ds′

]
≤ C(||u(τ0)||∞)

[
||v(τ)||γ′,δ +

∫ τ+t

τ

(τ + t− s′)−
N+1

2

(
1− 1

γ′

) ∫
Ω

uε
′
vs(s′)ϕ1 dx ds′

]
.

(222)
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We rewrite (222) and use Hölder's inequality (note that 0 < s−1
s−a < 1) to obtain

||v(τ + t)||γ′,δ ≤ C(||u(τ0)||∞)

[
||v(τ)||γ′,δ +

∫ τ+t

τ

(τ + t− s′)−
N+1

2

(
1− 1

γ′

)
×

×
∫

Ω

[uε
′
vs−1(s′)][v(s′)]ϕ1 dx ds′

]
≤ C(||u(τ0)||∞)

[
||v(τ)||γ′,δ +

∫ τ+t

τ

(τ + t− s′)−
N+1

2

(
1− 1

γ′

)
×

×
(∫

Ω

uq+avs−a(s′)ϕ1 dx

)1− 1
γ′
(∫

Ω

vγ
′
(s′)ϕ1 dx

) 1
γ′

ds′

]
.

Now we can write

||v(τ + t)||γ′,δ ≤ C(||u(τ0)||∞)

[
||v(τ)||γ′,δ + sup

s′∈[τ,τ+T ]

||v(s′)||γ′,δ ×

×
∫ τ+t

τ

[
(τ + t− s′)−

N+1
2

(
1− 1

γ′

)](∫
Ω

uq+avs−a(s′)ϕ1 dx

)1− 1
γ′

ds′

]
.

(223)

Hölder's inequality in the time integral in (223) implies

||v(τ + t)||γ′,δ ≤ C(||u(τ0)||∞)

[
||v(τ)||γ′,δ + sup

s′∈[τ,τ+T ]

||v(s′)||γ′,δ ×

×
(∫ τ+t

τ

(τ + t− s′)−
N+1

2
(γ′−1) ds′

) 1
γ′
(∫ τ+t

τ

∫
Ω

uq+avs−a(s′)ϕ1 dx ds′
)1− 1

γ′
]
.

(224)

We apply the inequality (41) to the estimate (224) to get

||v(τ + t)||γ′,δ ≤ C(T, ||u(τ0)||∞)

[
||v(τ)||γ′,δ + sup

s′∈[τ,τ+T ]

||v(s′)||γ′,δ ×

×
(∫ τ+t

τ

(τ + t− s′)−
N+1

2
(γ′−1) ds′

) 1
γ′
] (225)

where the constant C is bounded for T bounded. For T0 su�ciently small there holds∫ τ+t

τ

(τ + t− s′)−
N+1

2
(γ′−1) ds′ <

1

2C(T0, ||u(τ0)||∞)
for t ∈ (0, T0],

since the condition N+1
2

(γ′ − 1) < 1 is true due to (220). Hence

sup
s′∈[τ,τ+T0]

||u(s′)||γ′,δ ≤ C(T0, ||u(τ0)||∞)||v(τ)||γ′,δ.

As in the proof of Lemma 5.1 i), this estimate holds for every T0 ≥ 0.
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Next for τ ≥ τ0, T ≥ 0, t ∈ (τ, τ + T ], we prove∫ t+T

t

||v(s′)||γ,δ ds′ ≤ C(T, ||u(τ)||∞)||v(t+ T )||1,δ, γ =
1

2− γ′
. (226)

We estimate

||v(t)||γ,δ ≤ C

[
(t− τ)−

N+1
2 (1− 1

γ )||v(τ)||1,δ +

∫ t

τ

(t− s′)−
N+1

2 (1− 1
γ )||uqvs(s′)||1,δ ds′

]
.(227)

The conditions 1 < γ′ < N+3
N+1

imply γ′ < γ < N+1
N−1

, hence

N + 1

2

(
1− 1

γ

)
< 1,

Integrating (227) on interval [τ, τ + T ] with respect to t we have∫ τ+T

τ

||v(t)||γ,δ dt ≤ C

[
||v(τ)||1,δ

∫ τ+T

τ

(t− τ)−
N+1

2 (1− 1
γ ) dt

+

∫ τ+T

τ

∫ t

τ

(t− s′)−
N+1

2 (1− 1
γ )||uqvs(s′)||1,δ ds′ dt

] (228)

Now we use Fubini's theorem in the last term in (228) to obtain∫ τ+T

τ

||v(t)||γ,δ dt ≤ C

[
T 1−N+1

2 (1− 1
γ )||v(τ)||1,δ

+

∫ τ+T

τ

(∫ τ+T

s′
(t− s′)−

N+1
2 (1− 1

γ ) dt

)
||uqvs(s′)||1,δ ds′

] (229)

Since s′ ∈ [τ, τ + T ], we can estimate∫ τ+T

s′
(t− s′)−

N+1
2 (1− 1

γ ) dt ≤ CT 1−N+1
2 (1− 1

γ ).

Due to (229) we have∫ τ+T

τ

||v(t)||γ,δ dt ≤ CT 1−N+1
2 (1− 1

γ )
[
||v(τ)||1,δ +

∫ τ+T

τ

||uqvs(s′)||1,δ ds′
]

≤ C(T )

||v(τ)||1,δ +

(
sup

s′∈[τ,τ+T ]

||u(s′)||∞

)q−ε′ ∫ τ+T

τ

∫
Ω

[uε
′
vs−1(s′)][v(s′)]ϕ1 dx ds′

 .(230)
Corollary 1 yields∫ τ+T

τ

||v(t)||γ,δ dt

≤ C(T )

[
||v(τ)||1,δ + (1 + ||u(τ0)||∞)q−ε

′
∫ τ+T

τ

∫
Ω

[uε
′
vs−1(s′)][v(s′)]ϕ1 dx ds′

]
.

(231)
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Now Hölder's inequality in the last term in (231) implies∫ τ+T

τ

||v(t)||γ,δ dt ≤ C(T, ||u(τ)||∞)

[
||v(τ)||1,δ

+

(∫ τ+T

τ

∫
Ω

uq+avs−a(s′)ϕ1 dx ds′
)1− 1

γ′
(∫ τ+T

τ

∫
Ω

vγ
′
(s′)ϕ1 dx ds′

) 1
γ′
]
.

(232)

We use (41) to obtain∫ τ+T

τ

||v(t)||γ,δ dt ≤ C(T, ||u(τ)||∞)

[
||v(τ)||1,δ +

(∫ τ+T

τ

||v(s′)||γ
′

γ′,δ ds′
) 1

γ′
]
. (233)

In the last term in (233) we use the interpolation inequality

||v(s′)||γ
′

γ′,δ ≤ ||v(s′)||
γ−γ′
γ−1

1,δ ||v(s′)||
γ(γ′−1)
γ−1

γ,δ , s′ ∈ [τ, τ + T ].

From the de�nition (226) of γ we see that γ(γ′−1)
γ−1

= 1. Hence∫ τ+T

τ

||v(t)||γ,δ dt ≤ C(T, ||u(τ)||∞)

[
||v(τ)||1,δ +

(∫ τ+T

τ

||v(s′)||
γ−γ′
γ−1

1,δ ||v(s′)||γ,δ ds′
) 1

γ′
]

≤ C(T, ||u(τ)||∞)

||v(τ)||1,δ +

(
sup

s′∈[τ,τ+T ]

||v(s′)||1,δ

) γ−γ′
γ−1

1
γ′ (∫ τ+T

τ

||v(s′)||γ,δ ds′
) 1

γ′

 .(234)

Using Young's inequality we have

∫ τ+T

τ

||v(t)||γ,δ dt ≤ C(T, ||u(τ)||∞)

||v(τ)||1,δ

+ Cε

(
sup

s′∈[τ,τ+T ]

||v(s′)||1,δ

) γ−γ′
(γ−1)(γ′−1)

+ ε

(∫ τ+T

τ

||v(s′)||γ,δ ds′
) .

(235)

Note that γ−γ′
(γ−1)(γ′−1)

= 1. For ε su�ciently small in (235) we have∫ τ+T

τ

||v(t)||γ,δ dt ≤ C(T, ||u(τ)||∞)

[
||v(τ)||1,δ + sup

s′∈[τ,τ+T ]

||v(s′)||1,δ

]
,

hence (24) yields the assertion (226).
Using both estimates (219) and (226) we are ready to prove the assertion of the

theorem. We use similar estimates as in the proof of Theorem 5.1. We choose t, T ≥ 0.
Note that there exists τ ′ ∈ [t, τ0 + t] such that

||v(τ ′)||γ,δ = τ−1
0

∫ τ0+t

t

||v(s′)||γ,δ ds′. (236)
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Again, this τ ′ may depend on t and v. Since τ0 + t+ T ∈ [τ ′, τ ′ + τ0 + T ], there holds

||v(τ0 + t+ T )||γ′,δ ≤ sup
s′∈[τ ′,τ ′+τ0+T ]

||v(s′)||γ′,δ. (237)

We use the estimate (219) with τ , T replaced by τ ′, τ0 + T , respectively, to obtain

sup
s′∈[τ ′,τ ′+τ0+T ]

||v(s′)||γ′,δ ≤ C(T, ||u(τ0)||∞)||v(τ ′)||γ′,δ ≤ C(T, ||u(τ0)||∞)||v(τ ′)||γ,δ (238)

where C does not depend on τ ′, since the constant in the estimate (219) is independent
of τ . The estimate (226) with τ0 instead of T implies∫ τ0+t

t

||v(s′)||γ,δ ds′ ≤ C(T, ||u(τ0)||∞)||v(τ0 + t)||1,δ. (239)

Finally, the equality (236) and the estimates (237)-(239) imply

||v(τ0 + t+ T )||γ′,δ ≤ C(τ0, T, ||u(τ0)||∞)||v(τ0 + t)||1,δ for t ≥ 0.

Since s < γ′, �nally we obtain

||v(t+ T )||s,δ ≤ C(τ0, T, ||u(τ0)||∞)||v(t)||1,δ

for t ≥ τ0 and T ≥ 0.
�

Lemma 5.5. Let p ≥ 1, p + r < N+3
N+1

and conditions (26), (31) be true. Let (u, v) be

a global nonnegative solution of problem (2). Moreover assume

(p+ r)

(
p− 2

N + 1

)
+ r < 1. (240)

Then for

γ ∈

(
p+ r,

1− r
p− 2

N+1

)
and τ ≥ 0 there exists C = C(p, q, r, s,Ω) such that

||u(t)||γ,δ ≤ C (1 + ||u(τ)||γ,δ) for t ≥ τ.

Proof of Lemma 5.5 We choose

γ ∈

(
p+ r,

1− r
p− 2

N+1

)
. (241)

This choice is possible due to the assumption (240). Next observe that the assumption
p+ r < N+3

N+1
implies 1−r

p− 2
N+1

> 1. We will choose

a ∈ A su�ciently close to 0. (242)
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The constant a will be speci�ed more precisely during the proof.
Now we introduce the following exponents α1, α2, α3 satisfying conditions

α1, α2, α3 > 0, α1 + α2 + α3 = 1, (243)

(1− a)α1 + (p+ 1− a)α2 = p, (244)
r + γ(p− 1)

γp− (1− r)
< α2 <

p

p+ 1
, α2 su�ciently close to

r + γ(p− 1)

γp− (1− r)
. (245)

The condition γ > p+ r implies r+γ(p−1)
γp−(1−r) <

p
p+1

.
We observe that there exist α1, α2, α3 such that the conditions (243)-(245) are true.

Indeed, we choose α2 to satisfy the condition (245). We set

α1 =
p− α2(p+ 1− a)

1− a
, (246)

hence (244) is true. Since α2 <
p
p+1

, we have p− α2(p+ 1) > 0. For every a ∈ A there
holds α1 > 0. The inequalities

r + γ(p− 1)

γp− (1− r)
≥ γ(p− 1)

γp− (1− r)
≥ p− 1

p

imply α2 >
p−1
p
, hence p(1− α2) < 1. Therefore

α1 + α2 =
p(1− α2)

1− a
< 1 (247)

for a < 1− p(1− α2). Finally we set

α3 = 1− α1 − α2 (248)

and this with (247) proves (243).
We de�ne exponent

κ = r − aα1 − (r + a− 1)α2.

For a small there holds
0 < κ < 1. (249)

For ε ∈ (0, 1− α2), τ, T ≥ 0, t ∈ [0, T ] we estimate

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ

+

∫ τ+t

τ

e−λ1(α2+ε)(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
γ )||urvp(s′)||1,δ ds′

]
= C

[
||u(τ)||γ,δ +

∫ τ+t

τ

e−λ1ε(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
γ ) ×

×
∫

Ω

[
uav1−a]α1

[
e−λ1(τ+t−s′)ur+a−1vp+1−a(s′)

]α2 ×

×
[
u

κ
α3 (s′)

]α3

ϕ1 dx ds′

]
.

(250)
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Here we used (22), (21), the assertions iii) and v) from Lemma 3.1 and the equality
(244). Now, using Hölder's inequality in the last term in (250) we obtain

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ +

∫ τ+t

τ

e−λ1ε(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
γ ) ×

×
(∫

Ω

uav1−a(s′)ϕ1 dx

)α1
(∫

Ω

e−λ1(τ+t−s′)ur+a−1vp+1−a(s′)ϕ1 dx

)α2

×

×
(∫

Ω

u
κ
α3 (s′)ϕ1 dx

)α3

ds′

]
.

Due to the estimate (34), there holds

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ +

∫ τ+t

τ

e−λ1ε(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
γ ) ×

×
(∫

Ω

e−λ1(τ+t−s′)ur+a−1vp+1−a(s′)ϕ1 dx

)α2

×

×
(∫

Ω

u
κ
α3 (s′)ϕ1 dx

)α3

ds′

]
.

(251)

Now we prove
κ

α3

< γ. (252)

Due to the equality (244), α1 + (p+ 1)α2 is close to p and so γ(1 + pα2− p) is close to
γ(1− α1 − α2) = γα3. The condition α2 >

r+γ(p−1)
γp−(1−r) implies

r + α2(1− r) < γ(1 + pα2 − p),

hence r+α2(1−r)
α3

< γ. Thus we proved (252) for a small.
The inequality (252) and the estimate (251) yield

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ + sup

s′∈[τ,τ+T ]

||u(s′)||κγ,δ ×

×
∫ τ+t

τ

e−λ1ε(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
γ )×

×
(∫

Ω

e−λ1(τ+t−s′)ur+a−1vp+1−a(s′)ϕ1 dx

)α2

ds′

]
.

(253)

Using Hölder's inequality in (253) we obtain

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ + sup

s′∈[τ,τ+T ]

||u(s′)||κγ,δ ×

×
(∫ τ+t

τ

e−λ1(τ+t−s′)
∫

Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′
)α2

×

×
(∫ τ+t

τ

e
− λ1ε

1−α2
(τ+t−s′)

(τ + t− s′)−
N+1

2 (1− 1
γ ) 1

1−α2 ds′
)1−α2

]
.

(254)
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Now we use (38) in (254) to estimate

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ + sup

s′∈[τ,τ+T ]

||u(s′)||κγ,δ ×

×
(∫ τ+t

τ

e
− λ1ε

1−α2
(τ+t−s′)

(τ + t− s′)−
N+1

2 (1− 1
γ ) 1

1−α2 ds′
)1−α2

]
.

(255)

We prove that the integral in (255) is uniformly bounded with respect to τ, t, i.e. for
some α2 close to r+γ(p−1)

γp−(1−r) there holds

N + 1

2

(
1− 1

γ

)
1

1− α2

< 1. (256)

For α2 su�ciently close to r+γ(p−1)
γp−(1−r) , there holds(

1− 1

γ

)
1

1− α2

is su�ciently close to
γp− (1− r)

γ
.

Our choice (241) of γ implies

γp− (1− r)
γ

<
2

N + 1
,

hence the inequality (256) is true.
We use the estimate (255) to obtain

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ + sup

s′∈[τ,τ+T ]

||u(s′)||κγ,δ

]
. (257)

Since the inequality (249) is true, we use Young's inquality in (257) to obtain

||u(τ + t)||γ,δ ≤ C

[
||u(τ)||γ,δ + Cε + ε sup

s′∈[τ,τ+T ]

||u(s′)||γ,δ

]
.

Thus for ε > 0 small the assertion follows.
�

Lemma 5.6. Let p ≥ 1, p + r < N+3
N+1

and conditions (26), (31) be true. Let (u, v) be

a global nonnegative solution of problem (2). Then there holds∫ τ+T

τ

||u(t)||γ′,δ dt ≤ C (1 + ||u(τ + T )||1,δ) for γ′ ∈
[
1,
N + 1

N − 1

)
(258)

where C = C(p, q, r, s,Ω, T ).
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Proof of Lemma 5.6. We choose
1

2− (p+ r)
< γ′ <

N + 1

N − 1
.

Note that p+ r ≤ 1
2−(p+r)

< N+1
N−1

, since 1 ≤ p+ r < N+3
N+1

.
We introduce the following exponents α1, α2, α3 satisfying conditions (243), (244)

with a ∈ A and
r + γ′(p− 1)

γ′p− (1− r)
< α2 <

1− r
2− r

≤ p

p+ 1
. (259)

Note that the condition γ′ > 1
2−(p+r)

implies r+γ′(p−1)
γ′p−(1−r) <

1−r
2−r and p + r ≥ 1 implies

1−r
2−r ≤

p
p+1

. Observe that there exist α1, α2, α3 such that the conditions (243), (244)
and (259) are true due to similar arguments as in the proof of Lemma 5.5 (we only
replace γ with γ′).

For τ, T ≥ 0, t ∈ (τ, τ + T ] we estimate

||u(t)||γ′,δ ≤ C

[
(t− τ)

−N+1
2

(
1− 1

γ′

)
||u(τ)||1,δ

+

∫ t

τ

(t− s′)−
N+1

2

(
1− 1

γ′

)
||urvp(s′)||1,δ ds′

]
where we used Lemma 3.1 iii) and v). As in the proof of Lemma 5.2 we obtain∫ τ+T

τ

||u(t)||γ′,δ dt ≤ CT
1−N+1

2

(
1− 1

γ′

) [
||u(τ)||1,δ +

∫ τ+T

τ

||urvp(s′)||1,δ ds′
]
, (260)

since
N + 1

2

(
1− 1

γ′

)
< 1.

Using (260) we have∫ τ+T

τ

||u(t)||γ′,δ dt ≤ C(T )

[
||u(τ)||1,δ +

∫ τ+T

τ

∫
Ω

[
uav1−a(s′)

]α1 ×

× [ur+a−1vp+1−a(s′)]
α2

[
u

κ
α3 (s′)

]α3

ϕ1 dx ds′
] (261)

where a ∈ A and κ = r − aα1 − (r + a− 1)α2. Due to the condition (243), we can use
Hölder's inequality in the last term in (261) to have∫ τ+T

τ

||u(t)||γ′,δ dt ≤ C [||u(τ)||1,δ +

∫ τ+T

τ

[∫
Ω

uav1−a(s′)ϕ1 dx

]α1

×

×
[∫

Ω

ur+a−1vp+1−a(s′)ϕ1 dx

]α2
[∫

Ω

u
κ
α3 (s′)ϕ1 dx

]α3

ds′
]
.

We use (34) to obtain∫ τ+T

τ

||u(t)||γ′,δ dt ≤ C

[
||u(τ)||1,δ +

∫ τ+T

τ

[∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx

]α2

×

×
[∫

Ω

u
κ
α3 (s′)ϕ1 dx

]α3

ds′
]
.

(262)
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We use Hölder's inequality in the time integral in (262) to have

∫ τ+T

τ

||u(t)||γ′,δ dt ≤ C

||u(τ)||1,δ +

(∫ τ+T

τ

∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′
)α2

×

×
(∫ τ+T

τ

||u(s′)||
κ

1−α2
κ
α3
,δ ds′

)1−α2
]
.

(263)

It is easy to see that κ
α3
≥ 1 for a su�ciently small. If κ

α3
> 1 then in the last term in

(263) we use the interpolation inequality (Lemma 3.4)

||u(s′)||
κ

1−α2
κ
α3
,δ ≤ ||u(s′)||

α3
1−α2

γ′− κ
α3

γ′−1

1,δ ||u(s′)||
α3

1−α2

γ′( κα3
−1)

γ′−1

γ′,δ , s′ ∈ [τ, τ + T ]. (264)

Observe that the inequality α2 >
r+γ′(p−1)
γ′p−(1−r) implies κ

α3
< γ′ (cf. the proof of inequality

(252)) and α2 <
1−r
2−r implies κ

1−α2
< 1 . Hence there holds

α3

1− α2

γ′( κ
α3
− 1)

γ′ − 1
=

κ

1− α2

γ′(1− α3

κ
)

γ′ − 1
<
γ′(1− 1

γ′
)

γ′ − 1
= 1. (265)

We use the inequalities (264) and (263) to obtain

∫ τ+T

τ

||u(t)||γ′,δ dt ≤ C(T )

||u(τ)||1,δ

+

(∫ τ+T

τ

||u(s′)||
α3

1−α2

γ′− κ
α3

γ′−1

1,δ ||u(s′)||
α3

1−α2

γ′( κα3
−1)

γ′−1

γ′,δ ds′

)1−α2


≤ C(T )

||u(τ)||1,δ +

(
sup

s′∈[τ,τ+T ]

||u(s′)||1,δ

)α3

γ′− κ
α3

γ′−1

×

×

(∫ τ+T

τ

||u(s′)||
α3

1−α2

γ′( κα3
−1)

γ′−1

γ′,δ ds′

)1−α2

 .
Due to (265) we can write

∫ τ+T

τ

||u(t)||γ′,δ dt ≤ C(T )

||u(τ)||1,δ +

(
sup

s′∈[τ,τ+T ]

||u(s′)||1,δ

)α3

γ′− κ
α3

γ′−1

×

×
(∫ τ+T

τ

||u(s′)||γ′,δ ds′
)α3γ

′( κα3
−1)

γ′−1

 .
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Using Young's inequality we have

∫ τ+T

τ

||u(t)||γ′,δ dt ≤ C(T )

||u(τ)||1,δ

+

(
sup

s′∈[τ,τ+T ]

||u(s′)||1,δ

)κ

+

(∫ τ+T

τ

||u(s′)||γ′,δ ds′
)κ]

.

Note that κ < 1 for a small. Hence Young's inequality and (24) imply∫ τ+T

τ

||u(t)||γ′,δ dt ≤ C(T )

[
1 + ||u(τ)||1,δ + sup

s′∈[τ,τ+T ]

||u(s′)||1,δ

]
+

1

2

∫ τ+T

τ

||u(t)||γ′,δ dt.

This proves the Lemma.
�

Lemma 5.7. Let p ≥ 1, p + r < N+3
N+1

, s ≤ 1 and condition (31) be true. Let (u, v) be

a global nonnegative solution of problem (2). Moreover assume (240) and

0 < q <
1− r
p− 2

N+1

(
1− N − 1

N + 1
s

)
(266)

Then for τ, T ≥ 0 there exists C = C(p, q, r, s,Ω, τ, ||u(τ)||1,δ, ||v(τ)||1,δ) such that

||u(t)||k,δ + ||v(t)||k,δ ≤ C for k ∈
[
1,
N + 1

N − 1

)
, t ≥ τ.

Remark. The constant C from Lemma 5.7 may explode if τ → 0+, and is bounded
for ||u(τ)||1,δ, ||v(τ)||1,δ bounded.

Proof of Lemma 5.7. We use Lemmas 5.5 and 5.6 and arguments as in the proof
of Theorem 5.1 to obtain

sup
s′∈[τ,τ+T ]

||u(s′)||γ,δ ≤ sup
s′∈[τ ′,τ ′+τ+T ]

||u(s′)||γ,δ ≤ C (1 + ||u(τ ′)||γ,δ)

= C

(
1 + 2

τ

∫ τ

τ
2

||u(t)||γ,δ dt

)
≤ C(τ) (1 + ||u(τ)||1,δ) ≤ C0

(267)

for τ ∈ (0, 1), γ chosen by (241), C0 = C0(τ, ||u(τ)||1,δ) and some τ ′ ∈
[
τ
2
, τ
]
. C0 may

vary from step to step, but always depends on parameters in brackets. The constant
in (267) may explode if τ → 0+. We prove the following assertion

sup
s′∈[τ,τ+T ]

||v(s′)||k,δ ≤ C0 (1 + ||v(τ)||k,δ) , T ≥ 0 (268)

for k < N+1
N−1

close to N+1
N−1

.
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For τ > 0, T ≥ 0, t ∈ [0, T ] we estimate

||v(τ + t)||k,δ ≤ C

[
||v(τ)||k,δ

+

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k)
∫

Ω

uqvs(s′)ϕ1 dx ds′
]
.
(269)

Assume s ∈ (0, 1). We use Hölder's inequality in the spatial integral in (269) to obtain

||v(τ + t)||k,δ ≤ C

[
||v(τ)||k,δ +

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k) ×

×
(∫

Ω

u
q
θ (s′)ϕ1 dx

)θ (∫
Ω

v
s

1−θ (s′)ϕ1 dx

)1−θ

ds′

] (270)

where θ = 1− s
k
∈
(
0, 1− N−1

N+1
s
)
. Due to the assumption (266) for k < N+1

N−1
su�ciently

close to N+1
N−1

there holds

q <
(1− r)(1− s

k
)

p− 2
N+1

,

hence
q

θ
<

1− r
p− 2

N+1

. (271)

Thus there exists γ > q
θ
satisfying the condition (241) and we can use Lemma 5.5,

(267) and (270) to estimate

||v(τ + t)||k,δ ≤ C0

[
||v(τ)||k,δ +

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k) ×

×
(∫

Ω

v
s

1−θ (s′)ϕ1 dx

)1−θ

ds′

]
.

Since s
1−θ = k, we can write

||v(τ + t)||k,δ ≤ C0

[
||v(τ)||k,δ + sup

s′∈[τ,τ+T ]

||v(s′)||sk,δ ×

×
∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k) ds′

]
.

(272)

For k < N+1
N−1

close to N+1
N−1

the integral is �nite and uniformly bounded with respect to
τ, t, hence the estimate (272) implies

||v(τ + t)||k,δ ≤ C0

[
||v(τ)||k,δ + sup

s′∈[τ,τ+T ]

||v(s′)||sk,δ

]
. (273)
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In (273) we use Young's inequality to obtain

||v(τ + t)||k,δ ≤ C0

[
||v(τ)||k,δ + Cε + ε sup

s′∈[τ,τ+T ]

||v(s′)||k,δ

]
.

This proves the assertion (268).
If s = 1 then from (269) we deduce

||v(τ + t)||k,δ ≤ C

[
||v(τ)||k,δ +

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k) ×

×
∫

Ω

[
uav1−a(s′)

]ε [
u
q−aε
θ (s′)

]θ [
v

1−(1−a)ε
1−ε−θ (s′)

]1−ε−θ
ϕ1 dx ds′

] (274)

where a ∈ A and 0 < ε < ε′ < 1 for ε′ such that θ := θ(ε′) = 1− ε′ − 1−(1−a)ε′

k
∈ (0, 1)

(this is possible, if k > 1). Note that q−aε
θ

> 0 for ε > 0 small, since q > 0. Hence
there holds 1−(1−a)ε

1−ε−θ < k. We use Hölder's inequality in the spatial integral in (274) to
obtain

||v(τ + t)||k,δ ≤ C

[
||v(τ)||k,δ +

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k) ×

×
(∫

Ω

uav1−a(s′)ϕ1 dx

)ε(∫
Ω

u
q−aε
θ (s′)ϕ1 dx

)θ
×

×
(∫

Ω

v
1−(1−a)ε
1−ε−θ (s′)ϕ1 dx

)1−ε−θ

ds′

]
.

Using (34) we have

||v(τ + t)||k,δ ≤ C

[
||v(τ)||k,δ +

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k) ×

×
(∫

Ω

u
q−aε
θ (s′)ϕ1 dx

)θ
||v(s′)||1−(1−a)ε

k,δ ds′

]
.

Due to the assumption (266) for k < N+1
N−1

su�ciently close to N+1
N−1

and ε′ small there
holds

q <
(1− r)(1− 1

k
)

p− 2
N+1

,

hence
q − aε
θ(ε′)

<
1− r
p− 2

N+1

for ε′ su�ciently small. Thus there exists γ > q−aε′
θ(ε)

satisfying the condition (241) and
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we can use Lemma 5.5 and (267) to estimate

||v(τ + t)||k,δ ≤ C0

[
||v(τ)||k,δ

+

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k)||v(s′)||1−(1−a)ε

k,δ ds′

]
.

Hence we have

||v(τ + t)||k,δ ≤ C0

[
||v(τ)||k,δ + sup

s′∈[τ,τ+T ]

||v(s′)||1−(1−a)ε
k,δ ds′

]
.

Since 1− (1− a)ε < 1, we can use Young's inequality to obtain

||v(τ + t)||k,δ ≤ C0 (1 + ||v(τ)||k,δ)

for k < N+1
N−1

close to N+1
N−1

.
It remains to prove the assertion (268) for s = 0. In this case we estimate

||v(τ + t)||k,δ ≤ C

[
||v(τ)||k,δ

+

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k)
∫

Ω

uq(s′)ϕ1 dx ds′
]

≤ C

[
||v(τ)||k,δ + sup

s′∈[τ,τ+T ]

||u(s′)||qq,δ ×

×
∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k) ds′

]
.

(275)

Finally, we use Lemma 5.5 with any γ > q satisfying the condition (241) to obtain the
assertion (268).

We prove ∫ τ+T

τ

||v(t)||k,δ dt ≤ C(T,C0) (1 + ||v(τ + T )||1,δ) (276)

for k ∈
[
1, N+1

N−1

)
. For τ > 0, T ≥ 0, t ∈ (τ, T + τ ] we estimate

||v(t)||k,δ ≤ C

[
(t− τ)−

N+1
2 (1− 1

k)||v(τ)||1,δ

+

∫ t

τ

(τ − s′)−
N+1

2 (1− 1
k)
∫

Ω

uqvs(s′)ϕ1 dx ds′
]
.

(277)

As in the proof of Lemma 5.2 we use (277) to obtain∫ τ+T

τ

||v(t)||k,δ dt ≤ CT 1−N+1
2 (1− 1

k)
[
||v(τ)||1,δ +

∫ τ+T

τ

∫
Ω

uqvs(s′)ϕ1 dx ds′
]
. (278)
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Let s ∈ (0, 1]. Then Hölder's inequality implies∫ τ+T

τ

||v(t)||k,δ dt ≤ CT 1−N+1
2 (1− 1

k)

[
||v(τ)||1,δ

+

∫ τ+T

τ

(∫
Ω

u
q
θ (s′)ϕ1 dx

)θ (∫
Ω

v
s

1−θ (s′)ϕ1 dx

)1−θ

ds′

]
where θ = 1 − s

k
∈
(
0, 1− N−1

N+1
s
)
. There holds (271) for k < N+1

N−1
close to N+1

N−1
and

there exists γ > q
θ
satisfying (241). Thus due to Lemma 5.5, (267) and the de�nition

of θ we have∫ τ+T

τ

||v(t)||k,δ dt ≤ C0T
1−N+1

2 (1− 1
k)
[
||v(τ)||1,δ +

∫ τ+T

τ

||v(s′)||sk,δ ds′
]
. (279)

If s ∈ (0, 1) then (279) implies∫ τ+T

τ

||v(t)||k,δ dt ≤ C(T,C0)

[
||v(τ)||1,δ +

(∫ τ+T

τ

||v(s′)||k,δ ds′
)s]

.

Young's inequality and (24) then yield the assertion (276). If s = 1 then (279) implies∫ τ+T

τ

||v(t)||k,δ dt ≤ C0T
1−N+1

2 (1− 1
k)
[
||v(τ)||1,δ +

∫ τ+T

τ

||v(s′)||k,δ ds′
]
.

For T0 su�ciently small with help of (24) we deduce∫ τ+T0

τ

||v(t)||k,δ dt ≤ C(T0, C0)||v(τ + T0)||1,δ.

This estimate is actually true for every T ≥ 0 �xed, hence the assertion (276) is true
also for s = 1.

If s = 0 then the assertion (276) follows from Lemma 5.5, (267) and (278).
Combining (268) and (276) (cf. the proof of (276)) we obtain

sup
s′∈[τ,τ+T ]

||v(s′)||k,δ ≤ C0(1 + ||v(τ)||1,δ) ≤ C1 (280)

for k ∈
[
1, N+1

N−1

)
, C1 = C1(τ, ||u(τ)||1,δ, ||v(τ)||1,δ). The constant C1 may vary from step

to step, but always depends on parameters in brackets. Now we prove

sup
s′∈[τ,τ+T ]

||u(s′)||k,δ ≤ C1 (1 + ||u(τ)||k,δ) (281)

for k < N+1
N−1

su�ciently close to N+1
N−1

.
For r > 0 we estimate

||u(τ + t)||k,δ ≤ C

[
||u(τ)||k,δ

+

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k)
∫

Ω

urvp(s′)ϕ1 dx ds′
]
.
(282)
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We use Hölder's inequality in the spatial integral in (282) to obtain

||u(τ + t)||k,δ ≤ C

[
||u(τ)||k,δ +

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k) ×

×
(∫

Ω

u
r

1−θ (s′)ϕ1 dx

)1−θ (∫
Ω

v
p
θ (s′)ϕ1 dx

)θ
ds′

] (283)

where θ = 1− r
k
∈
(
0, 1− N−1

N+1
r
)
. Observe that p + r < N+3

N+1
< N+1

N−1
implies p

1−N−1
N+1

r
<

N+1
N−1

. For k < N+1
N−1

su�ciently close to N+1
N−1

, there holds

p

θ
<
N + 1

N − 1

and we use the estimate (280) to obtain

||u(τ + t)||k,δ ≤ C1

[
||u(τ)||k,δ +

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k) ×

×
(∫

Ω

u
r

1−θ (s′)ϕ1 dx

)1−θ

ds′

]

≤ C1

[
||u(τ)||k,δ + sup

s′∈[τ,τ+T ]

||u(s′)||rk,δ ×

×
∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k) ds′

]

≤ C1

[
||u(τ)||k,δ + sup

s′∈[τ,τ+T ]

||u(s′)||rk,δ

]
.

(284)

Since r < 1 in (284) we can use Young's inequality to obtain

||u(τ + t)||k,δ ≤ C1

[
||u(τ)||k,δ + Cε + ε sup

s′∈[τ,τ+T ]

||u(s′)||k,δ

]
.

This proves the assertion (281).
Now we prove (281) for r = 0. We estimate

||u(τ + t)||k,δ ≤ C

[
||u(τ)||k,δ

+

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k)
∫

Ω

vp(s′)ϕ1 dx ds′
]

≤ C

[
||u(τ)||k,δ + sup

s′∈[τ,τ+T ]

||v(s′)||pp,δ ×

×
∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 (1− 1
k) ds′

]
.

(285)
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Finally, we use (280) to obtain the assertion (281).
We prove ∫ τ+T

τ

||u(t)||k,δ dt ≤ C(T,C1) (1 + ||u(τ + T )||1,δ) (286)

for k ∈
[
1, N+1

N−1

)
. For τ > 0, T ≥ 0, t ∈ [τ, τ + T ] we estimate

||u(t)||k,δ ≤ C

[
(t− τ)−

N+1
2 (1− 1

k)||u(τ)||1,δ

+

∫ t

τ

(t− s′)−
N+1

2 (1− 1
k)
∫

Ω

urvp(s′)ϕ1 dx ds′
]
.

(287)

As in the proof of Lemma 5.2 we use (287) to obtain∫ τ+T

τ

||u(t)||k,δ dt ≤ CT 1−N+1
2 (1− 1

k)
[
||u(τ)||1,δ +

∫ τ+T

τ

∫
Ω

urvp(s′)ϕ1 dx ds′
]
. (288)

If r > 0 then Hölder's inequality implies∫ τ+T

τ

||u(t)||k,δ dt ≤ C(T )

[
||u(τ)||1,δ

+

∫ τ+T

τ

(∫
Ω

u
r

1−θ (s′)ϕ1 dx

)1−θ (∫
Ω

v
p
θ (s′)ϕ1 dx

)θ
ds′

]

where θ = 1 − r
k
∈
(
0, 1− N−1

N+1
r
)
. Observe that p + r < N+1

N−1
implies p

1−N−1
N+1

r
< N+1

N−1
.

For k < N+1
N−1

su�ciently close to N+1
N−1

, there holds p
θ
< N+1

N−1
. Hence using (280) we have∫ τ+T

τ

||u(t)||k,δ dt ≤ C(T,C1)

[
||u(τ)||1,δ +

∫ τ+T

τ

||u(s′)||rk,δ ds′
]
. (289)

Finally, (289) and Jensen's inequality imply∫ τ+T

τ

||u(t)||k,δ dt ≤ C(T,C1)

[
||u(τ)||1,δ +

(∫ τ+T

τ

||u(s′)||k,δ ds′
)r]

.

Young's inequality and (24) then yield the assertion (286). If r = 0 then the assertion
(286) follows from (288) and (280).

Combining (281), (286) (cf. the proof of (276)) we �nally get the assertion of the
Lemma.

�

Proof of Theorem 2.7. Denote C0 = C0(τ, ||u(τ)||1,δ, ||v(τ)||1,δ). C0 may vary
from step to step, but always depends on parameters in brackets. Let τ > 0, T ≥ 0.
Assume that there holds

sup
s′∈[τ,τ+T ]

||u(s′)||k,δ + sup
s′∈[τ,τ+T ]

||v(s′)||k,δ ≤ C0, for some k ∈
(
N + 1

N − 1
− ε0,∞

)
(290)
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where ε0 > 0 is su�ciently small. In Lemma 5.7 we proved (290) for k ∈
[
1, N+1

N−1

)
. For

the whole proof we choose

M =
k

p+ r
, M ′ =

k

q + s
.

For k chosen in (290), it holds M,M ′ > 1, since max{p+ r, q+ s} < N+1
N−1

. This is true,

since q + s <
(1−r)(1−N−1

N+1
s)

p− 2
N+1

+ s ≤ N+1
N−1

(1− N−1
N+1

s) + s = N+1
N−1

.

If r > 0 then we use Hölder's inequality to obtain(∫
Ω

uMrvMp(s′)ϕ1 dx

) 1
M

≤
(∫

Ω

u
Mr
1−η (s′)ϕ1 dx

) 1−η
M
(∫

Ω

v
Mp
η (s′)ϕ1 dx

) η
M

(291)

for s′ ∈ [τ, τ + T ] and η ∈ (0, 1). If we choose η = Mp
k

= p
p+r

then (291) and (290)
imply (∫

Ω

uMrvMp(s′)ϕ1 dx

) 1
M

≤ ||u(s′)||rk,δ||v(s′)||pk,δ ≤ C0. (292)

If s > 0 then similarly we obtain(∫
Ω

uM
′qvM

′s(s′)ϕ1 dx

) 1
M′

≤ ||u(s′)||qk,δ||v(s′)||sk,δ ≤ C0. (293)

Assume r > 0. For 1 < K ≤ ∞ satisfying

N + 1

2

(
1

M
− 1

K

)
< 1

and t ∈ [0, T ] we estimate

||u(τ + t)||K,δ ≤ C

[
||u(τ)||K,δ +

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 ( 1
M
− 1
K ) ×

×
(∫

Ω

uMrvMp(s′)ϕ1 dx

) 1
M

ds′

]
.

(294)

In particular, we can take

K < k1(M) :=


N + 1
N+1
M
− 2

, M ∈
[
1, N+1

2

)
,

∞, M ≥ N+1
2

(295)

if M ≤ N+1
2

and K =∞ for M > N+1
2
. We use (292) and (294) to obtain

||u(τ + t)||K,δ ≤ C0

[
||u(τ)||K,δ +

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 ( 1
M
− 1
K ) ds′

]
.
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Hence we have
sup

s′∈[τ,τ+T ]

||u(s′)||K,δ ≤ C0(1 + ||u(τ)||K,δ). (296)

If r = 0 then for t ∈ [0, T ] we estimate

||u(τ + t)||K,δ ≤ C

[
||u(τ)||K,δ +

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 ( 1
M
− 1
K ) ×

×
(∫

Ω

vMp(s′)ϕ1 dx

) 1
M

ds′

]
.

Now the assertion (296) follows from the de�nition of M and the assumption (290).
For 1 < K ≤ ∞ satisfying

N + 1

2

(
1

M ′ −
1

K

)
< 1

and t ∈ [0, T ] we estimate

||v(τ + t)||K,δ ≤ C

[
||v(τ)||K,δ +

∫ τ+t

τ

e−
λ1
2

(τ+t−s′)(τ + t− s′)−
N+1

2 ( 1
M′−

1
K ) ×

×
(∫

Ω

uM
′qvM

′s(s′)ϕ1 dx

) 1
M′

ds′

]
.

(297)

In particular, we can take K < k1(M ′). If s > 0 then we use this estimate with (293)
to obtain

sup
s′∈[τ,τ+T ]

||v(s′)||K,δ ≤ C0(1 + ||v(τ)||K,δ). (298)

If s = 0 then the assertion (298) follows from (297).
For k1 (M) > K > M (function k1 is de�ned in (295)), t ∈ (τ, τ + T ] we estimate

||u(t)||K,δ ≤ C

[
(t− τ)−

N+1
2 ( 1

M
− 1
K )||u(τ)||M,δ

+

∫ t

τ

(t− s′)−
N+1

2 ( 1
M
− 1
K )||urvp(s′)||M,δ ds′

]
.

(299)

As in the proof of Lemma 5.2 we use (299) to obtain∫ τ+T

τ

||u(t)||K,δ dt ≤ C(T )

[
||u(τ)||M,δ +

∫ τ+T

τ

(∫
Ω

uMrvMp(s′)ϕ1 dx

) 1
M

ds′

]
. (300)

If r > 0 then we use (292) to get∫ τ+T

τ

||u(t)||K,δ dt ≤ C(T,C0) (1 + ||u(τ)||M,δ) ≤ C(T,C0) (1 + ||u(τ)||k,δ) , (301)
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since k > M .
If r = 0 then the assertion (301) follows from (300).
For k1 (M ′) > K > M ′ (function k1 is de�ned in (295)), t ∈ (τ, τ + T ] we estimate

||v(t)||K,δ ≤ C

[
(t− τ)−

N+1
2 ( 1

M′−
1
K )||v(τ)||M ′,δ

+

∫ t

τ

(t− s′)−
N+1

2 ( 1
M′−

1
K )||uqvs(s′)||M ′,δ ds′

]
.

(302)

As in the proof of Lemma 5.2 we use (302) to obtain∫ τ+T

τ

||v(t)||K,δ dt ≤ C(T )

[
||v(τ)||M ′,δ +

∫ τ+T

τ

(∫
Ω

uM
′qvM

′s(s′)ϕ1 dx

) 1
M′

ds′

]
.(303)

If s > 0 then we use (293) to get∫ τ+T

τ

||v(t)||K,δ dt ≤ C(T,C0)
(
1 + ||v(τ)||max{k,M ′},δ

)
. (304)

If s = 0 then the assertion (304) follows from (303).
As in (267) we use the estimates (296) with (301) and (298) with (304) to obtain

sup
s′∈[τ,τ+T ]

||u(s′)||K,δ + sup
s′∈[τ,τ+T ]

||v(s′)||K,δ ≤ C0

for all K < k1

(
k

max{p+r,q+s}

)
=: k2(k). Note that k2(k) =∞ for k ≥ (max{p+r,q+s})(N+1)

2

and we can take K =∞ for k > (max{p+r,q+s})(N+1)
2

. As in the proof of Lemma 5.4 we
use bootstrap argument: Due to the inequality k2(k) > k for k ≥ N+1

N−1
− ε0 with ε0

su�ciently small, there exists ε > 0 such that K̃(k) := min{(1+ε)k, (1−ε)k2(k)} > k.
Hence if

sup
s′∈[τ,τ+T ]

||u(s′)||k,δ + sup
s′∈[τ,τ+T ]

||v(s′)||k,δ ≤ C0

then
sup

s′∈[τ,τ+T ]

||u(s′)||K̃(k),δ + sup
s′∈[τ,τ+T ]

||v(s′)||K̃(k),δ ≤ C0.

Denote k1 = N+1
N−1
− ε0 and ki+1 = K̃(ki) for i ∈ N. Due to Lemma 3.5 there exists

i0 ∈ N such that ki0 >
(max{p+r,q+s})(N+1)

2
. Hence there holds

sup
s′∈[τ,τ+T ]

||u(s′)||∞ + sup
s′∈[τ,τ+T ]

||v(s′)||∞ ≤ C0.

Thus the proof of theorem is �nished.
�
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Corollary 2. Let p, q, r, s be as in Theorem 2.7 with r = s = 0 and p, q > 1. Then
for every τ > 0, there exists C = C(Ω, p, q, τ) (the constant C may explode if τ → 0+)
such that

||u(t)||∞ + ||v(t)||∞ ≤ C, t ≥ τ

for every global nonnegative solution (u, v) of problem (2).
Proof. In [17, Proposition 4.1], it was proved that

||u(t)||1,δ + ||v(t)||1,δ ≤ C, t ≥ 0,

hence Theorem 2.7 implies the assertion.
�

Theorem 5.3. Consider problem

ut −∆u = uv − b1u, (x, t) ∈ Ω× (0,∞),

vt −∆v = b2u, (x, t) ∈ Ω× (0,∞),

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

v(x, 0) = v0(x), x ∈ Ω


(305)

where Ω is a bounded domain with smooth boundary, N ≤ 2, b1 = 0, b2 > 0 and

u0, v0 ∈ L∞(Ω). Then there exists C = C(Ω, b2) such that

lim sup
t→∞

(||u(t)||∞ + ||v(t)||∞) ≤ C

for every global nonnegative solution (u, v) of problem (305).

Remark. The proof of Theorem 5.3 can be very easily modi�ed for system (305)
with b1 > 0, however also the proof of Theorem 2.7 has to be (very easily) modi�ed.

Proof of Theorem 5.3. The constants in this proof may depend on Ω, b2, however
we will not emphasize this dependence. Observe that for problem (305), it holds
A = (0, 1), since r = p = q = 1 and s = 0 (in sense of the problem (2)). Lemma 3.3
implies ∫

Ω

uav1−a(s′)ϕ1 dx ≤ C, a ∈ (0, 1). (306)

Thus there holds∫ τ+t

τ

e−λ1(τ+t−s′)
∫

Ω

(
uav2−a(s′) + u1+a′v−a

′
(s′)
)
ϕ1 dx ds′ ≤ C (307)

for a, a′ ∈ (0, 1). A direct computation shows

u
2+a
2 =

[
u
a2

2 v
(2−a)a

2

] [
u

2+a−a2
2 v−

(2−a)a
2

]
.
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We use Young's inequality to obtain

u
2+a
2 ≤ a

2
uav2−a +

2− a
2

u1+av−a.

We use this inequality and (307) to deduce∫ τ+T

τ

e−λ1(τ+T−s′)
∫

Ω

u
2+a
2 (s′)ϕ1 dx ds′ ≤ C (308)

or ∫ τ+T

τ

∫
Ω

uα0(s′)ϕ1 dx ds′ ≤ C(T ), α0 ∈
[
1,

3

2

)
.

Hölder's inequality then implies∫ τ+T

τ

∫
Ω

u(s′)ϕ1 dx ds′ ≤
(∫ τ+T

τ

∫
Ω

u
2+a
2 (s′)ϕ1 dx ds′

) 2
2+a
(∫ τ+T

τ

∫
Ω

ϕ1 dx ds′
) a

2+a

≤ (C(T ))
2

2+aT
a

2+a .

In particular, we have ∫ τ+1

τ

∫
Ω

u(s′)ϕ1 dx ds′ ≤ C1 (309)

where C1 is independent of u and τ . The constants Ci, i ∈ N will be �xed during the
proof (where Ci, i > 1 will appear below).

Now we prove that there exists t0 ≥ 0 possibly depending on v, such that∫
Ω

v(t0)ϕ1 dx ≤ 4

λ1

b2C1. (310)

To prove (310) we multiply the second equation in (305) by ϕ1 and integrate on Ω ×
(τ, τ + 1) for τ ≥ 0. Thus using (309) we have∫

Ω

v(τ + 1)ϕ1 dx + λ1

∫ τ+1

τ

∫
Ω

v(s′)ϕ1 dx ds′

= b2

∫ τ+1

τ

∫
Ω

u(s′)ϕ1 dx ds′ +

∫
Ω

v(τ)ϕ1 dx

≤ b2C1 +

∫
Ω

v(τ)ϕ1 dx.

(311)

Denote C2 :=

∫
Ω

v(0)ϕ1 dx. If there holds

C2 ≤
4

λ1

b2C1

then (310) is true with t0 = 0. If there holds

C2 >
4

λ1

b2C1
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then necessarily ∫
Ω

v(t1)ϕ1 dx <
1 + λ1

2

λ1 + 1
C2 (312)

for some t1 ∈ (0, 1). Indeed, if
∫

Ω

v(t)ϕ1 dx ≥
1 + λ1

2

λ1 + 1
C2 for all t ∈ (0, 1) then (311) for

τ = 0 implies(
1 +

λ1

2

)
C2 =

1+
λ1
2

λ1+1
C2 +

1+
λ1
2

λ1+1
λ1C2

≤
∫

Ω

v(1)ϕ1 dx+ λ1

∫ 1

0

∫
Ω

v(s′)ϕ1 dx ds′

≤ b2C1 +

∫
Ω

v(0)ϕ1 dx = b2C1 + C2 <

(
1 +

λ1

4

)
C2,

a contradiction.
Denote C3 :=

∫
Ω

v(t1)ϕ1 dx. If there holds

C3 ≤
4

λ1

b2C1

then (310) is true with t0 = t1. If there holds

C3 >
4

λ1

b2C1

then using the same argument as for (312) we obtain

∫
Ω

v(t2)ϕ1 dx <
1 + λ1

2

λ1 + 1
C3 <

(
1 + λ1

2

λ1 + 1

)2

C2

for some t2 ∈ (t1, t1 + 1).
In n-th such step we obtain∫

Ω

v(tn)ϕ1 dx <
1 + λ1

2

λ1 + 1
Cn+1 <

(
1 + λ1

2

λ1 + 1

)n

C2

for some tn ∈ (tn−1, tn−1 + 1) if

C2, C3, . . . , Cn+1 >
4

λ1

b2C1. (313)

Note that there exists n0 = n0(C2) such that∫
Ω

v(tn0)ϕ1 dx <

(
1 + λ1

2

λ1 + 1

)n0

C2 ≤
4

λ1

b2C1.
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Hence we proved (310) with t0 = tn0 if there holds (313) with n replaced by n0.
For t ≥ 0, a ∈ (0, 1), ε ∈ (0, a) γ ∈

[
1, N+1

N−1

)
and t0 from (310) we estimate

||v(1 + t0 + t)||γ,δ ≤ C

[
(t+ 1)−

N+1
2 (1− 1

γ )||v(t0)||1,δ

+

∫ 1+t0+t

t0

e−λ1(ε+1−a)(1+t0+t−s′)(1 + t0 + t− s′)−
N+1

2 (1− 1
γ )×

×
∫

Ω

u(s′)ϕ1 dx ds′
]
.

(314)

Observe that there holds u = (uav1−a)a (u1+av−a)
1−a. We use this identity in (314) and

Hölder's inequality to obtain

||v(1 + t0 + t)||γ,δ ≤ C

[
||v(t0)||1,δ

+

∫ 1+t0+t

t0

e−λ1(ε+1−a)(1+t0+t−s′)(1 + t0 + t− s′)−
N+1

2 (1− 1
γ )×

×
(∫

Ω

uav1−a(s′)ϕ1 dx

)a (∫
Ω

u1+av−a(s′)ϕ1 dx

)1−a

ds′

]
.

The estimate (306) yields

||v(1 + t0 + t)||γ,δ ≤ C

[
||v(t0)||1,δ

+

∫ 1+t0+t

t0

e−λ1ε(1+t0+t−s′)(1 + t0 + t− s′)−
N+1

2 (1− 1
γ )×

×
(
e−λ1(1+t0+t−s′)

∫
Ω

u1+av−a(s′)ϕ1 dx

)1−a

ds′

]
.

For a < 1 close to 1 we have
N + 1

2

(
1− 1

γ

)
1

a
< 1,

hence using Hölder's inequality we have

||v(1 + t0 + t)||γ,δ ≤ C

[
||v(t0)||1,δ +

∫ 1+t0+t

t0

e−λ1(1+t0+t−s′)
∫

Ω

u1+av−a(s′)ϕ1 dx ds′
]
.

Finally, we apply (310) and (307) to obtain

||v(t)||γ,δ ≤ C, t ≥ T (315)

for some T = T (v) large and γ ∈
[
1, N+1

N−1

)
. The estimate (309) with τ = T implies

||u(t′)||1,δ ≤ C for some t′ ∈ (T, T + 1). Finally, (315) yields

||u(t′)||1,δ + ||v(t′)||1,δ ≤ C

and we use Theorem 2.7 (where u, p, r is interchanged with v, q, s, respectively) to
conclude the proof.

�
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Conclusion

The aim of this thesis is to obtain a priori estimates for positive global solutions of
problem

ut −∆u = urvp, (x, t) ∈ Ω× (0,∞),

vt −∆v = uqvs, (x, t) ∈ Ω× (0,∞),

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

v(x, 0) = v0(x), x ∈ Ω,


(316)

where Ω is a smooth bounded domain in RN , u0, v0 ∈ L∞(Ω) are nonnegative functions
and p, q, r, s ≥ 0. For general p, q, r, s, usual methods fail. It turns out that the method
from [34] used for an elliptic problem can be modi�ed to yield the desired results. The
modi�cation is nontrivial and requires several technical restrictions on the exponents
p, q, r, s. Despite these restrictions, our theorems still can be used for several interesting
problems studied by other authors: See Theorem 5.3 or the case r = s = 0.

Beside modi�cations of the ideas in [34], we also heavily used estimates of Dirichlet
heat semigroup in weighted Lebesgue spaces and the variation-of-constants formula.
Our method is suitable for many perturbations or modi�cations of problem (316) and
also for problem (18) with homogeneous Neumann boundary conditions.

In the thesis, we also present our results form [29] for the following elliptic problem

−∆u = a(x)|x|−κvq, x ∈ Ω,

−∆v = b(x)|x|−λup, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

 (317)

where Ω is a bounded domain with smooth boundary, p, q > 0, pq > 1, a, b ∈ L∞(Ω),
a, b ≥ 0, a, b 6≡ 0, κ, λ ∈ R. Using bootstrap in weighted Lebesgue spaces, we proved
a priori estimate of nonnegative very weak solutions, and using these estimates and
topological degree arguments we also proved the existence of positive very weak solution
of (317).
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Resumé

V tejto dizerta£nej práci sa venujeme apriórnym odhadom kladných globálnych rie²ení
parabolickej úlohy (316). Pre v²eobecné p, q, r, s klasické metódy zlyhávajú. Ukazuje
sa, ºe metóda z [34] pouºitá pre eliptický problem môºe by´ modi�kovaná tak, aby
dávala ºelané výsledky. Táto modi�kácia je netriviálna a vyºaduje viaceré technické
obmedzenia na exponenty p, q, r, s. Napriek týmto obmedzeniam, môºu by´ na²e vety
pre viaceré zaujímavé úlohy ²tudované inými autormi: Pozri Vetu 5.3 alebo prípad
r = s = 0.

Okrem modi�kácií my²lienok z [34] takisto sme podstatne vyuºili odhady Dirich-
letovej tepelnej semigrupy vo váhových Lebesgueových priestoroch a formulu variácie
kon²tánt. Na²a metóda je vhodná pre viaceré perturbácie alebo modi�kácie úlohy (316)
a tieº pre úlohu (18) s homogennými Neumannovými hrani£nými podmienkami.

V tejto dizerta£nej práci tieº predkladáme na²e výsledky z [29] pre eliptický sys-
tém (317). Pouºitím bootstrapu vo váhových Lebesgueových priestoroch sme dokázali
apriórny odhad nezáporných ve©mi slabých rie²ení a pouºitím týchto odhadov a metódy
topologického stup¬a sme tieº dokázali existenciu kladného ve©mi slabého rie²enia úlohy
(317).
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