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We consider the parabolic system u;, — Au = u"vP, vy — Av = ul®
in  x (0,00), complemented by the homogeneous Dirichlet boundary
conditions and the initial conditions (u,v)(+,0) = (ug, vp) in €2, where
Q is a smooth bounded domain in RY and ug,vy € L®(Q) are non-
negative functions. We find conditions on p, ¢, r, s guaranteeing a priori
estimates of nonnegative classical global solutions. More precisely every
such solution is bounded by a constant depending on suitable norm of
the initial data. Our proofs are based on bootstrap in weighted Lebesgue
spaces, universal estimates of auxiliary functions and estimates of the
Dirichlet heat kernel. We also present results from [29] on the elliptic
system —Au = a(z)|z| v, —Av = b(x)|z| P, z € Q, complemented
by the homogeneous Dirichlet boundary condition, where 2 is a smooth
bounded domain, a,b € L*®(£2) are nonnegative and not identically zero.
Under some assumptions on p, ¢, k, A we prove a priori estimates and ex-
istence of positive very weak solutions of the system.
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Uvazujme parabolicky systém u, — Au = u"™vP, vy — Av = ufv®,
(x,t) € Q x (0,00), doplneny homogénnymi Dirichletovymi okra-
jovymi podmienkami a rieSenie (u,v) spliia pociatoéni podmienku
(u,v)(+,0) = (ug,vp)(x), x € Q, kde Q je hladka ohrani¢ena oblast
v RN ug,vg € L(Q) st nezaporné funkcie. Néjdeme podmienky
na p,q,r,s, ktoré zaruc¢uju apriéorne odhady nezapornych klasickych
globalnych rieSeni. Presnejsie, kazdé také rieSenie je ohranic¢ené kons-
tantou, ktora zavisi na vhodnej norme pociato¢nych dat. Nase dokazy
si zalozené na bootstrape vo vahovych Lebesgueovych priestoroch,
univerzalnych odhadoch pomocnych funkcii a odhadoch Dirichletovho
tepelného jadra. Taktiez predkladame vysledky z [29] pre elipticky
systém —Au = a(z)|z| "9, —Av = b(z)|z| P, € Q, (x,t) €
Q x (0,00), doplneny homogénnymi Dirichletovymi okrajovymi pod-
mienkami, kde Q je hladkd ohrani¢en& oblast, a,b € L>(Q) st
nezaporné a nie si identicky rovné nule. Za nejakych podmienok
na p,q, k, A dokdzeme apriorne odhady a existenciu kladnych velmi
slabych rieSeni systému.
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1 Introduction

Superlinear parabolic problems represent important mathematical models for various
phenomena occurring in physics, chemistry or biology. Therefore such problems have
been intensively studied by many authors. Beside solving the question of existence,
uniqueness, regularity etc. significant effort has been made to obtain a priori estimates
of solutions. A priori estimates are important in the study of global solutions (i.e.
solutions which exist for all positive times) or blow-up solutions (i.e. solutions whose
L*>-norm becomes unbounded in finite time); superlinear parabolic problems may pos-
sess both of these types of solutions. Uniform a priori estimates also play a crucial
role in the study of so-called threshold solutions, i.e. solutions lying on the borderline
between global existence and blow-up.

Stationary solutions of parabolic problems are particular global solutions and their a
priori estimates are of independent interest since they can be used to prove the existence
and/or multiplicity of steady states, for example. The proofs of such estimates are
usually much easier than the proofs of estimates of time-dependent solutions. On the
other hand, the methods of the proofs of a priori estimates of stationary solutions can
often be modified to yield a priori estimates of global time-dependent solutions.

In this thesis we will prove a priori estimates for positive solutions of two model
problems. In both cases we study a system of two equations in a smoothly bounded
domain Q C RY complemented by the homogeneous Dirichlet boundary conditions on
the boundary 0€2. The problems involve power nonlinearities and have been intensively
studied in the past (see Section 2 for known results and precise formulation of our main
results). Our approach is based on bootstrap in suitable weighted Lebesgue spaces.

In Section 4 we prove a priori estimates and existence of positive stationary solu-

tions: We consider the elliptic problem

—Au = a(z)|x|", x € Q,
—Av = b(z)|z| P, z €9, (1)
u = v =0, x € 08,

where a,b € L*>(Q) are nonnegative, x, A € (0,2), p,g > 0, pg > 1, and 0 € 9. We
deal with so-called very weak solutions and we find optimal conditions on the exponents

K, A\, p,q guaranteeing a priori estimates and existence of such solutions. These results
have been published in [29].



In Section 5 we study global classical positive solutions of the problem

ur — Au u"vP, (z,t) € 2 x (0,00), )

vy —Av = ul, (x,t) € Q2 x (0, 00),
u(z,t) = o(z,t) = 0, (x,t) € 92 x (0,00), (2)
ww,0) = wl@),  we
v(z,0) = wvy(x), z € J

where p,q,r,s > 0. In this case, optimal conditions on the exponents p, ¢, r, s guaran-
teeing a priori estimates and existence of positive stationary very weak solutions have
been obtained in [34], and we find sufficient conditions on the exponents guarantee-
ing uniform a priori estimates of global classical solutions. Our method is in some
sense similar to that used in [34] (both methods are based on bootstrap in weighted
Lebesgue spaces and estimates of auxiliary functions of the form u®v'~%) but our proofs
are much more involved. In particular, we have to use precise estimates of the Dirich-
let heat semigroup and several additional ad-hoc arguments. These difficulties cause
that our sufficient conditions are quite technical and probably not optimal. On the
other hand, our results are new and our approach is also new in the parabolic setting:
Although the bootstrap in weighted Lebesgue spaces has been used many times in the
case of superlinear elliptic problems (see the references in [34|, for example), it has not
yet been used to prove a priori estimates of global solutions of superlinear parabolic
problems. In fact, the known methods for obtaining such estimates always require
some special structure of the problem (see a more detailed discussion in Section 2) and
cannot be used for system (2) in general. In addition, our method is quite robust: It
can also be used if the problem is perturbed or if we replace the Dirichlet boundary
conditions by the Neumann ones, for example.

This thesis is organized as follows. In Section 2 we discuss known results and
methods of proofs of a priori estimates of stationary and time-dependent solutions
of superlinear parabolic problems and we also formulate our main results. Section 3
contains preliminary lemmas and inequalities that we need in subsequent sections. In
Section 4 we prove a priori estimates and existence of positive solutions of system (1).
In Section 5 we prove a priori estimates of positive global solutions of problem (2).

2 Known and main results

Unless stated otherwise, in the whole section we assume that Q C RY is a smooth

bounded domain and by a solution we mean a nonnegative classical solution.



2.1 Elliptic scalar case

One of the simplest examples of superlinear elliptic problems is the Dirichlet problem
for the Lane-Emden (or Lane-Emden-Fowler) equation (see [24, 14, 18|):

—Au = uP, x €,

3
u = 0, x€0df, (3)

where p > 1. The motivation for the study of this problem originates in astrophysics
(see [24, 14]) but this problem and its modifications also play a crucial role in the
study of the standing wave solutions of the nonlinear Schrédinger equation or in the
differential geometry (the Yamabe problem). Of course, solutions of (3) are also steady
states of the corresponding nonlinear heat (or wave) equation. Finally, problem (3)
and its parabolic counterpart are very useful model problems: On one hand, they look
very simple so that it is definitely easier to study their solutions than those of more
complicated systems, and the methods of the proofs developed for these model problems
can often be used for more complicated ones. On the other hand, the structure of these
model problems is extremely rich and their study represents a great mathematical
challenge: In spite of their intensive study (see [38] and the references therein), they
still offer many open questions.

Let us mention some results about the existence and a priori estimates of solutions
of problem (3). If €2 is starshaped then a positive solution of (3) exists if and only if

p < ps where
N +2

=
is the so-called Sobolev exponent, see [1, 31|. The history of a priori estimates of
positive solutions of (3) is quite long. They have been proved first in [41] if N = 2 and
p < 3, and then in [27] if p < N/(N — 1), in [6] if p < (N 4+ 1)/(N — 1) and, finally, in
[19, 11] if p < ps. More precisely, the following theorem was proved in [19, 11]:

Theorem 2.1. Let Q be a smooth bounded domain and p € (1,pg). Then there exists a
constant C' such that for all positive solutions u of (3) satisfy the estimate |u] < C.

The methods of the proof Theorem 2.1 in [19, 11] were quite different: The method
in [19] was based on scaling arguments and the corresponding Liouville theorem from
[20] (guaranteeing the nonexistence of positive solutions of (3) for Q = R and 1 < p <
ps); the method in [11] was based on the method of moving planes and the Pohozaev
identity (which requires a special structure of the problem).

Interestingly, the exponent p = (N +1)/(IN — 1) is also critical for problem (3) in
some sense. More precisely, so-called very weak solutions of problem (3) are known to
be bounded (and, consequently, satisfy the a priori estimate in Theorem 2.1) if and
only if p < (N+1)/(N —1), see [40, 13]. In addition, the proof of the boundedness and
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a priori estimates of very weak solutions is quite easy (it is sufficient to use a relatively
simple bootstrap argument in weighted Lebesgue spaces, see [37]), and can be used in
a much more general situation, where both methods from [19, 11] fail (see [34] and the
references therein).

2.2 Elliptic vector case

The method based on bootstrap in weighted Lebesgue spaces mentioned at the end of
Subsection 2.1 has been successfully used for many elliptic systems, see [37, 34| and the
references therein. Of course, each particular use of this method usually requires some
extra ad-hoc arguments. In particular, in the case of stationary solutions of problem
(2), one of such ad-hoc arguments was a universal bound of the auxiliary function
u®!~? for suitable a € (0,1). Using this argument and the notation

p+1—s
pg—(1—r)(1-s)

the following theorem was proved in [34]:

q+1—r

=2 pg—(1—=r)(1—s)

b =2

Theorem 2.2. Let €2 be a smooth bounded domain, p,q,r,s > 0 satisfy

pg# (1 —r)(1—s) (4)
and
min{p +r,q + s},r,s < T, 5)
if pg > (1 —r)(1 —s) then max{a,B} > N — 1.

Then there exists a positive stationary solution of (2). In addition, there ezists a
positive constant C depending on Q, N,p,q,r,s such that |u]s + || < C for any
positive very weak stationary solution of (2).

The nondegeneracy condition (4) in Theorem 2.2 is also necessary for the exis-
tence and a priori estimates of (classical) positive stationary solutions of (2), and the
subcriticality condition (5) is also optimal for the boundedness of very weak positive
stationary solutions of (2) (it corresponds to the condition p < (N+1)/(N —1) for the
scalar problem (3)). On the other hand, it is known that condition (5) is not necessary
for the existence and a priori estimates of classical positive stationary solutions of (2):
An optimal condition for general p, g, 7, s does not seem to be known, see the discussion
in [34]. We will use similar approach as in [34] in order to find sufficient conditions
on p, q,r, s guaranteeing uniform a priori estimates of global (time-dependent) classical
positive solutions of (2).



In this thesis we also use bootstrap in weighted Lebesgue spaces in order to prove a
priori estimates and existence of positive very weak solutions of the non-homogeneous

elliptic system (1), where
p,g>0,pg>1 abe L), a,b>0, a,b#0 (6)

and some additional assumptions are satisfied. We say that (u,v) is a very weak
solution of (1) if u,v € L'(Q), the right-hand sides in (1) belong to the weighted
Lebesgue space L'(€; dist(z,99) dr) and

—/uAgp dx:/a(a:)|x]_“vqu dz, —/vAcp da::/b(x)m_)‘upga de (7)
Q Q Q Q

for every ¢ € C%(Q), » = 0 on 5.

Problem (1) with Kk = A = 0 has been widely studied. Concerning very weak
solutions, necessary and sufficient conditions for their boundedness were found in [5],
[37] and [40]. In those papers the existence of very weak solution was studied, as well.

Problem (1) with a = b = 1, 0 € Q and general xk, A\ € R has been studied by
several authors, who were mainly interested in the existence of classical solutions (if
max{x, A} < 0) or solutions of the class C*(2\{0}) N C(Q) (if max{x, A} > 0). If
max{k, A} > 2, then (48) has no positive solution in this class for any domain
containing the origin; see [3]. If max{k,A\} < 2, Q is a bounded starshaped domain
and some additional assumptions are satisfied, then (1) has a positive solution if and
only if the following condition is satisfied

N—-—kx N-=\
+

> N —2; 8
1+gq 1+p (8)

see e.g. |7], [12], [16], [25] for details. If max{x,A\} <2 and Q@ =RY N >3 | then (1)
has no positive radial solution if and only if (8) is true. The conjecture is, that if (8)
holds, (1) has no positive nonradial solution for Q = RY; see [4]. This conjecture has
been partially proved in e.g. [30].

We consider the case 0 € 9 and k,A € (0,2). Our main result guarantees a
priori estimates of positive very weak solutions of (1) and its modifications whenever
max{a, f} > N — 1, where

2—-XNg+2—~&

o = , ﬂ::
pq—1

2—kK)p+2—2A
pq—1

: (9)
see Theorem 4.1. These estimates enable us also to prove the following existence result.

Theorem 2.3. Let 2 be a smooth bounded domain, 0 € OS2, k, A € (0,2) and assume
also (6). Let a, 8 be defined by (9).



(i) Assume max{c, 8} > N — 1. Then there exists a positive bounded very weak

solution of problem (1) and each positive very weak solution (u,v) of (1) is bounded

and satisfies the estimate

luloe + [vloe < C(82,a,b,p,q, 5, A).

(it) Assume max{«, S} < N — 1. Then there exist functions a,b satisfying (6) and

a positive very weak solution (u,v) of problem (1) such that u,v ¢ L>(Q).

2.3

Parabolic scalar case

Consider the model parabolic problem

u — Au = uP, (x,t) € Q x (0, 00),
u(z,t) = 0, (x,t) € 09 x (0, 00),
u(z,0) = up(x), x €

(10)

where  is a bounded domain with smooth boundary, p > 1, and uy € L>®(Q), ug > 0.

It is known that under some restrictions on the exponent p, global positive solutions

of (10) satisfy various uniform a priori estimates. Let us mention some of them:

i)

i)

iii)

iv)

a priori estimate depending on the initial data

supu(.,t) < C(Q,p,ug) for t>0,
Q

uniform a priori estimate

sup u(.,t) < C(Q,p, Jug|) for >0,
Q

universal a priori estimate

supu(.,t) < C(Q,p,7) for t>7>0,
Q

where the constant C' may explode as 7 — 07,

asymptotic a priori bound of the form

limsup [u(., )]s < C(€2, p).
t—o0

Estimate of type i) says that each global positive solution of (10) is bounded, uniformly

with respect to t € (0,00). Such estimates have been first obtained in [26] for convex

domains €2 under the assumption p <

N+2
N

6

and then in [8] for general bounded domains



and p < pg. The proof in [8] heavily used the variational structure of problem (10). In
[26] it was also proved that for p > pg, there exist global unbounded weak (so-called
L' solutions. In fact, it was proved much later that these unbounded weak solutions
are classical if p = pg but they may blow up in finite time if p > pg, see the references
in [38].

The stronger estimate of type ii) was derived in [8] for global (not necessarily
positive) solutions of problem (10) under the assumption p < % and in [21]
for global positive solutions under the optimal assumption p < pgs. The positivity
assumption in [21] was removed in [33] (the nonlinearity u? is unterstood as |u|P~'u in
the case of sign-changing solutions). All proofs in [8, 21, 33| heavily used the variational
structure of problem (10). Estimates of type ii) have several important applications, see
[38|. In particular, they guarantee that all threshold solutions lying on the borderline
between global existence and blow-up are global, bounded and their w-limit sets consist
of nontrivial steady states (such results cannot be proved by using the weaker estimate
of type 1)).

Universal estimate of type iii) for global positive solutions of (10) has firstly been

N+1
N-1°

proved in [35] for p < ps and N < 3 and in [39] for p < pg if N < 4 and p <
(N —=1)/(N —3)" if N > 4. Finally, the following quantitative version of estimate of
type iii) was proved in [32| and [36].

obtained in [17] under the assumption p < The same estimate has then been

Theorem 2.4. Assume that p < ](V]SJXB?

is radially symmetric). Then there exists a constant C(Q,p) > 0 such that all global

or N =2 (or p < ps, Q is a ball and

positive classical solutions of (10) satisfy the estimate

supu(-,t) < C(1 ¢t /#=D)y, t>0. (11)
Q

Estimate (11) is based on scaling, doubling arguments, and parabolic Liouville the-
orems for entire solutions of problem (10) in RY x (—o00, 00) and RY x (—o00, o) (where
Rﬂ\r/ is a halfspace). Similarly as in the case of estimates of type ii) and i), all proofs of
estimate iii) used the special structure of problem (10). Notice also that estimate iii)
implies estimate iv) and estimate iv) implies uniform estimate for stationary positive
solutions of (10).

2.4 Parabolic vector case

As mentioned in Subsection 2.3, all proofs of (optimal) a priori estimates of global
positive solutions of the scalar problem (10) heavily used the special structure of the
problem. In fact, all of them either used directly the variational structure of (10) or
the scaling invariance and the validity of suitable parabolic Liouville theorems (which
are known due to the special structure of (10)).

7



Recall that we are interested in problem (2) which, in general, does not have varia-
tional structure. In addition, the known parabolic Liouville theorems for (2) in [15] are
just of Fujita-type (hence require severe restrictions on the exponents) and the nonex-
istence of entire solutions is only guaranteed for solutions (u,v) with both components
being positive. In fact, if p,s > 0, for example, then problem (2) in RY x (—o0, c0)
always possesses semi-trivial solutions of the form (u,v) = (C,0), where C' is a posi-
tive constant, so that standard scaling arguments yielding a priori estimates cannot be
used. Due to these facts, there are no results on a priori estimates of global positive
solutions of (2) in the general (superlinear) case, even if the global existence and blow-
up for (2) have been intensively studied in such general situation. Of course, for some
very special choices of exponents p,q,r, s problem (2) does have variational structure
and then some of the methods mentioned in Subsection 2.3 can be used. Similarly, if
r = s = 0, for example, then the semi-trivial solutions mentioned above do not exist,
so that one can use the corresponding parabolic Liouville theorems.

Since we wish to prove uniform a priori estimates of global positive solutions of (2)
and one of the main applications of such estimates is the proof of global existence and
boundedness of threshold solutions lying on the borderline between global existence and
blow-up, let us first mention conditions on p, ¢, r, s guaranteeing that both global and
blow-up solutions (hence also threshold solutions) of (2) exist. The following theorem
was proved in |2, 42| (see also |9, 43, 44] for other results on blow-up of positive solutions

of (2)).

Theorem 2.5. Let ) be smooth and bounded, p,q,r,s > 0, p+r >0, g+s > 0 and let

the initial data ug,vg € C(2) be nonnegative and satisfy the compatibility conditions.
(1) Assume that

r<l,s<1 and pg<(l—r)(1—s). (12)

Then all solutions of (2) exist globally.
(11) Assume that
1—X)\
A1

r>1,p>0,¢g=0, s=1, <1, r<1+p (13)

or Y
A

where \1 1s the least eigenvalue of the negative Dirichlet Laplacian in Q. Then, for any

s>1,¢>0,p=0,r=1, \i<1, s<1+¢g (14)

initial data ug, vy > 0, ug,vg Z 0, the solution of (2) blows up in finite time.
(1i1) If (12), (13) and (14) do not hold then the solution of (2) exists globally for
small initial data, and blows up in finite time for large initial data.



Next we present our main results concerning problem (2). We will assume that
2 is smooth and bounded, ug, vy € L>(£2) are nonnegative, (15)

and
p,q,r, 8> 0; if ¢ = 0 then either r > 1 or s < 1. (16)

Theorem 2.6. Assume (15), (16) and pq > (r — 1)(s — 1). Assume also that either

N+3 1 N+3 2
r>1,p>0,p+r<NH,s+]\,+1pfrrl<N+1 orr <1, 0<p< g, s<

x—ﬁ. Let (u,v) be a global nonegative solution of problem (2). Then there exists

C=C(p,q,r, 8,2 |u(T)|oo, [0(T)]| ) such that

sup Ju(s)|oo + sup fo(s)]oo < C (17)
s'e[r,7+T) s'elr,m+T)

for every T, T > 0.

Theorem 2.7. Assume (15), (16) and either max{r,s} > 1 or pg > (r — 1)(s — 1).

N+3
Assume alsop > 1, p+r < 373, s < 1,

9
s 1
@+m(p N+1)+T<

0<qge 12" (1 N_1>
< ——— | 1—- s .
e N+1

and

Let (u,v) be a global nonnegative solution of problem (2). Then, given T > 0, there
erists C = C(p,q,r, s, 7, |u(T)|1s, |0(7)|1s) such that

[u®)]oc + ()] < C, =7

Remark. The constant C in Theorem 2.7 may explode if 7 — 0%, and is bounded
for |u(7)|1s, |v(7)]1,s bounded. By |- |15 we denote the norm in the weighted Lebesgue
space L'(£2; dist(z,09) dx).

As already mentioned, the proofs of Theorems 2.6 and 2.7 are mainly based on
bootstrap in weighted Lebesgue spaces, universal estimates of auxiliary functions of

a,l—a

the form u®v"~ and precise estimates of the Dirichlet heat kernel. Our approach can
also be used, for example, for the following problem with Neumann boundary conditions

—Au = u"vP — \u, (x,t) € Q2 x (0,00), )

—Av = ut®— v, (x,t) € Q x (0, 00),
uy(z,t) = v(z,t) = 0, (x,t) € 0Q x (0,00), (18)
u(z,0) = wup(x), x € ),
v(z,0) = wvo(x), xr € )




where €, p,q,r, s and wug, vy are as above, A > 0 and v is the outer unit normal
on the boundary 90Q. The terms —Au, —Av with A > 0 are needed in (18), since
otherwise (18) cannot admit both global and blow-up positive solutions. Let us also
note that in this case one has to work in standard (and not weighted) Lebesgue spaces
and that the restrictions on the exponents p, q,r, s are less severe than in the case of

Dirichlet boundary conditions: Roughly speaking, one can replace N with N — 1 in

those restrictions (in particular, the condition p + r < %—ﬁ becomes p + r < % in
this case).
If r=3s =0 and p,q > 1 then the following universal estimate of solutions of

problem (2) was proved in [17].

Theorem 2.8. Assumer = s =0, 1 < p,q < ]Nv—ﬁ’ and let 7 > 0. There exists a
constant C(Q,p,q,7) > 0, such that all nonnegative global classical solutions of (2)

satisfy the estimate

sgp u(.,t) + Slépv(.,t) <C(Qp,qT1) for t>T. (19)

Let us also note that if » = s = 0 and p,q > 1 then a very easy argument in
[17] yields a universal estimate of |u(7)[1 s, [v(7)]1,s for all 7 > 0, hence Theorem 2.7
also guarantees estimate (19) in this case and the assumptions on p,q are different
from those in Theorem 2.8. In particular, g need not satisfy the condition ¢ < %—ﬁ Of
course, if r = s = 0 then (as mentioned above) one could also use the parabolic Liouville
theorems in [15] together with scaling and doubling arguments to prove quantitative
universal estimates. The main advantage of our results and proofs is the fact that we

do not need the assumption r = s = 0.

3 Preliminaries
We introduce some notation we will use frequently. Denote
d(z) = dist(x,00) for z € Q,

and for 1 < p < oo define the weighted Lebesgue spaces L§ = LY(Q2) := LP(§; 0(z) dx).
If 1 <p < oo, then the norm in L% is defined by

i = ([ utopse) as) v

Recall that Ly® = L*(Q;dx) with |u]|ews = |u]|w. We will use the notation | - |, for
the norm in LP(Q) for p € [1,00), as well.

|

10



Let Ay be the first eigenvalue of the problem

“Ap = Mo, 1€Q,
o = 0, x€dQ,

and 1 to be the corresponding positive eigenfunction satisfying |o1]2 = 1. There holds

C(Q)o(x) < p1(z) < C'(Q)d(x) for all z € Q. (20)

s = ([ WP ar)

is equivalent to the norm |uf,s in LE(Q) for 1 < p < cc.

Therefore the norm

Let (u,v) be a solution of system (2). Then (u,v) solves the system of integral
equations

(21)

where 7,¢ > 0 and (em)po is the Dirichlet heat semigroup in 2. In the following

lemma we recall some basic properties of the semigroup (em) i>0» Which we will use
often. The corresponding proofs can be found e.g. in [17].

Lemma 3.1. Let Q) be arbitrary bounded domain.
i) If p € LYQ), ¢ >0 then ¢ > 0.

ii) |2l = €Ml fort >0, ¢ € Li().

iit) If p € (1,00) then |€2¢)p o < C(Q)e™ By p fort >0, ¢ € LE(Q).

) |2 d]o < C(Q)e M ¢|oo for t >0, ¢ € L=(Q).

v) Let Q be of the class C*. For 1 < p < q < oo, there exists constant C = C(2)
such that, for all ¢ € LY(QY), it holds

N41(1_ 1

[ 6]0s < CQt 2 G|, t>0.

vi) Let Q be of the class C*. For 1 < p < oo, there exists constant C' = C(Q) such
that, for all ¢ € LE(Q), it holds

_N+1
[e ¢l < COE 2 [¢lp5, > 0.

11



Assertions iii) and iv) from Lemma 3.1 for 1 < p < ¢ < 0o, t > 0 and ¢ € (0,1)
imply

le®lgs = (el 2g)lgs < C(Q)e M2 ] 45
N+1(1

< o@et(1—e)t) 7 Gi)|gl,s ¢ € LE(Q).

(22)

Assertions iv) and vi) from Lemma 3.1 for 1 < p < oo, t > 0 and € € (0,1) imply

”6tA¢”OO _ HestA(e(l—s)tA¢)||oo S (J;«Vglz}e—het”e(l—e)tAQS"oo
< CQe M ((L—e)t)” 2 7|olps, ¢ € LE(Q).

(23)

If we multiply the equations in (21) by ¢; and integrate on ) then assertions i) and
ii) from Lemma 3.1 imply

/ u(T +t)py de > e~ Mt / u(T)pr d,
]U(T +t)py dz > eAltjv(T)wl dz.
Q Q

Let (u,v) be a solution of system (18). Then (u,v) solves the system of integral

(24)

equations

T4t
u(t +t) = etlu(r) + / eTH=DL (P (8') ds,
o+t , (25)
v(T +1t) = elo(r) + / eTH=OL (1y%) (8) ds’

where 7,t > 0, etr := e Me!2N is the semigroup corresponding to operator
L:=A—-\

with homogeneous Neumann boundary condition and (etAN ) +>0 18 the Neumann heat

semigroup in 2. For the Neumann semigroup, the following estimates are true.
Lemma 3.2. Let €2 be a smoothly bounded domain.

i) For all ¢ € LY(Q), it holds

[e >l = o]y, t=0.

ii) For 1 < p < q < oo, there exists a constant C = C(Q) such that, for all
¢ € LP(Q), it holds

Je26l, < () (min{1, 1) 3673 gl >0

12



iii) For 1 < p < oo, there exists a constant C' = C(§) such that, for all ¢ € LP(Q),
it holds
N
|2V @l < C(Q) (min{1,t})" 2 |¢],, ¢>0.

The assertions in Lemma 3.2 are proved in [10, 28]. From i) we have

le“l = e |6l

and hence we obtain inequalities similar to (24) with ¢; replaced by 1 and A; replaced
by A.
In the following we will use the notation from [34]. We set

s { [a,,as) N (0,1) if pg > (r —1)(s — 1) or min{r,s} <1,
' las,a,] N (0,1) ifpg<(r—1)(s—1)andr,s>1

where

e i r >, g i s> 1
CLT = Q. .—
0 if r<I, ° 1 if s<1.

Note that the set A is nonempty provided there holds

if p =0 then either s > 1orr <1, (26)
if ¢ = 0 then either r > 1 or s < 1.
The following lemma is an adaptation of |34, Lemma 7| to systems (2) and (18):

Lemma 3.3. Assume p,q,r,s > 0, pg # (1 —r)(1 — s) and (26). For given a € A,

there exists k' > 0 and C = C(p, q,r, s,a) such that any global nonnegative solution of
(2) satisfies

(u'™%), — A(u'™?) > F,(u,v) > C(u®0'™)", t e (0,00) (27)
where
Fo(u,v) = au® o' (uy — Au) + (1 — a)uv™(v; — Av)
= qu' TP 4 (1 — a)u?™™* ™, t € (0,00). (28)
For any global nonnegative solution (18), there holds

(u '), — A(u ') + Mu ') > Go(u,v) > C(u'™)", te (0,00)  (29)

where
Ga(u,v) = au 0w, — Au + M) + (1 — a)uv™(v, — Av + \v)
= qu' TP 4 (1 — a@)uT ™, t € (0,00). (30)
If
max{r,s} >1 or pg>(r—1)(s—1) (31)
then k' > 1.

13



Proof. Let (u,v) be a solution of (2). A direct computation shows

(o' ™), = au o'y, + (1 — a)uv v,

(3
and

(u o), — A(u'™) = au* 7wy — Au) + (1 — a)uv™(vy — Av)
+ a(l —a)u* 20" Vul? + v 17| Vo|?
2u* vV - Vo).

We use the Cauchy-Schwartz inequality to obtain

+ a(l —a)[u* %' Vul|? + v 17| Vo |?
— 2u W Vu|| Vol

= au 'y — Au) + (1 — a)uv™*(v; — Av)
+ a(l = a)u* 20 w|Vu| — u|Vl|]?

Fo(u,v) = au™ o P10 4 (1 — q)utTv .

(w7 — A(u®0'7) > au o (uy — Au) + (1 — a)uv~%(v; — Av)

Y

Thus we proved the first inequality in (27). Now we prove the second one. It is sufficient
to find 6 € [0, 1] such that

Olg+a)+(1-0)(r+a—1)=ar,
Os—a)+(1—=0)p+1—a)=(1-a)x
or equivalently

r—1460(g—r+1)=a(x —1),
p—0p—s+1)=(1—-a)x —1). (32)

Set
De:={0€0,1]: (r—=1+60(g—r+1))(p—0(p—s+1)) >0},
Re = {£(0) : 0 € D}
where

r—1+6(g—r+1)
p—0p—s+1)

§:De— (0,00); &(8) =

We obtain the derivative of £

v Pg— (1 —=7)(1—5)
O = s T D

We see that £ is monotone and ¢ > 0 if and only if pg > (1 — r)(1 — s). Observe that
a € (0,1) is a solution of (32) with some ' # 1 and 0 € [0, 1] if and only if ;% = £(0)

14



for some 6 € D,. Consequently, the second inequality in (27) holds with some s’ # 1,
if a € A¢, where

AEZ: {aE(O,l):%EP%}.

If r,s > 1 and pg > (1 —r)(1 — s) then ¢ is increasing. Since there holds £(0) =

% > 0 and p_’S’H > 1if p+ 1 > s, the function ¢ is positive and finite on interval

[0, 1]. Hence it holds

r—1 q

De=[0,1], Re= { } . A =lap, a4, K >1.

p 's—1
If r,s > 1and pg < (1 —r)(1 — s) then similarly we obtain
Ae = las,a,] N (0,1), & > 1.

If > 1> s then due to (26), p > 0 and

b r—1 /
De=|0,——— |, Re= ,00 |, A¢=la,1), K >1.
= M o R

If s>12>rthen g>0 and

1—r q
Di=|— 1 R:=10, —— As = (0, a4, "> 1.
f (q—r+1’ ] ‘ (73_1}’ e el

If r,s <1and pg > (1—r)(1—s) then

1—7r P
D, = Re = (0 As = (0,1 "> 1.
I3 (q_r_i_lap_s_i_l)) 3 (700)7 '3 (7 )7 K

If r,s <1andpg<(1—r)(l—-s)then

p 1—r )
D = = Ae = (0,1 1.
¢ <p—s+1’q—r+1)’ Re=1(0,00), Ae=(0.1), #'<

Now we can write
0(q+a)+(1—0)(r+a—1),,0(s—a)+(1—0)(p+1—a) a 1—a)f§’.

u v = (u'v

Let 6 € De. If 0 € {0,1} then there holds (27). If § € (0,1) then we use Young’s
inequality to obtain

<uq+avsfa)9(ur+a71,vp+1fa)179 S euquaUsfa + (1 o 9>ur+aflvp+1fa.

Hence (27) is true if 6 € [0, 1].
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If (u,v) is a solution of (18) then we have

(u' =)y — A(uv' ™) + AMu'™) = au ol (uy — Au+ M)
+ (1 —a)u*v™%(vy — Av + \v)
+ a(l — a)u2v' 7| Vul?
+ wTVol? = 2ut TV - Vol

The rest of the proof is similar to the proof of (27).

Let (u,v) be a global nonnegative solution of system (2). Denote

w=w(t) = /Quavla(t)wl dz.

The following estimatea are based on ideas from [23|. Let a € A and condition (31) be
true (then ' > 1). Then due to Lemma 3.3 and due to Jensen’s inequality, it holds

wy + \w > C’/ u““/v(l_“)”,% dz > Cw®, te€ (0, 00) (33)
Q

where C' = C(Q,p,q,r,s,a) is independent of w. Since w is global and satisfies the
inequality (33) for all ¢ > 0, it holds

A\ T
w(t) = / uv' % dr < (61) for all t > 0 and a € A. (34)
Q

Indeed, assume contradiction to (34). Let there exists ¢y > 0 such that w(ty) >

(%)ﬁ Hence

)\14‘8 ﬁ
>
o= (M)

for t = tp and some £ > 0. Then (33) implies wy(ty) > 0, hence w; > 0 on interval
[to, ') where

(35)

t':=sup{t > to: w; > 0 on [to,?)}.

If #' < oo then wy(t') < 0. Then (33) implies w(t') < (3)~~'. This is not possible due
to our definition of ¢ and (35) (for t = ty). Hence t' = oo and (35) is true for ¢ > t,.
Then there holds %w“' (t) > Mw(t) and (33) yields

/ Ce
wy > Cw® — \w > w®, t >t
5-'-)\1

Thus w cannot exist globally and this proves (33).
Lemma 3.3 also implies

wi(s") + Mw(s') > C/ w TP (g da, s € (0, 00). (36)
O
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Multiplying inequality (36) by e and integrating on interval [r, 7 + t] with respect
to s’ we get

T4
M7 4 1) — MTu(r) > C / - / W (g de ds. (37)
T Q
Since 0 < w < C, from (37) we deduce that
T+t ,
/ e~ (rHt=s) / w TP (8 oy dr ds’ < C. (38)
T Q
Since there holds e™*(7+=5) > =Mt for ' € [7, 7 + ], the ineqality (38) implies
T+t
/ / w TP (o) da ds’ < CeMt < (39)
T Q

where C" = C'(Q, p,q,7,8,a,t). Similarly we obtain

T+t
r Q

and T+t
/ / ut (s )y da ds’ < CeMt < . (41)
T Q

Let (u,v) be a global nonnegative solution of system (18). Since (u,v) satisfies
homogeneous Neumann boundary conditions, so does u%'~® and hence Green’s formula

implies
/ A(uv'™(t)) dz =0
Q

for t > 0 and a € A. Denote

Lemma 3.3 and Jensen’s inequality imply
u+A2>C2, te(0,00). (42)

Since z is global and there holds A > 0, similarly as in the proof of (34) we have

A\ 7
z(t) = / uv'(t) dz < <5) forallt>0and a€ A (43)
Q

if (31) is true. Again, we obtain estimates similar to (38)-(41) with ¢; replaced by 1
in (38)-(41) and with A; replaced by A in (38), (40).

Beside Holder’s, Young’s and Jensen’s inequalities we will also use so-called inter-
polation inequality. We formulate it in the following lemma.
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Lemma 3.4. Let Q be arbitrary domain in RY and 1 < p <r < g < oco. If f €

LE(Q) N LE(Q) then f € L5(Q2) and there holds

pg—r qar-p
T4—p T 4q—p

[flrs < 1AL 77 1 F g8

If f e LE(Q) N L>X(Q) then f € L5(Y) and there holds

r—
r
oo -

P
[flrs < 11550

Proof. Let ¢ < co. Assume f € LY(Q2) N LE(2). We have

1tz = [ 170G o = [ [(r8)5] [(s150) 7] a.

Now we use Holder’s inequality to estimate

q

s < ([uswyan) ™ ([ isrs an) ™ -

Since the right-hand side in (44) if finite, the left-hand side is finite.
Now let ¢ = oo. Assume f € L>®°(2) N LE(Q2). Then we obtain

pI= . 9==
LflLs 1S

M%zémW@®54MWMWVﬂMSM%MQ-

This finishes the proof.

(44)

O

For F: R — R and 2 € R we denote F("(z) = x and FU(z) = F(FU~Y(z))

(7 € N), the j-th iteration of F.
Lemma 3.5. Let F' : [a,b) — R be a continuous function (b < o) and
F(z) >x Vz € la,b).

Then
VQ € (a,b) FjeN F9a) > Q.

(45)

Proof. The function F is continuous on the compact interval [a, @]. The inequality

(45) implies the existence of u = p(Q) > 0 such that for every x € [a, Q] we have

F(x) > p+x.
This implies FU)(a) > ju + a for all j € N such that FUY(a) < Q.
Now we state lemma similar to Lemma 3.5.
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Lemma 3.6. Let G : [a,b) — R, g : [a,b) — R be continuous functions (b < 00), g
increasing in |a,b) and
G(z) > g(z) Vz € [a,b). (46)
Then
vQ € (g(a), lim g(x)) FjEN (Gog ) (g(a) > Q.
Proof. We define F' : [g(a),iligli g(r)) > R, F = Gog ! and use Lemma 3.5 for
this F'.

O
We consider the problem

(47)

—Au = f’ era
u = 0, xe€d

We say that u is a very weak solution of (47) if v € L'(Q), the right-hand side f in

(47) belongs to L}(Q) and
—/uAgpdx:/fgpdx
Q Q

for every p € C?(€2), ¢ = 0 on 9.
Lemma 3.7. [38, Theorem 49.1, Theorem 49.2(i)| Let Q be a bounded domain of class

C?**7 for some v € (0,1). Assume that 1 < p < q < oo satisfy
1 1 2

P q SNt
Let f € L§(Q). Then there exists a unique very weak solution u of (47). If f € LE(Q),
then w € LY(Q) and
[ulg.s < Cp, ;D flps-
Lemma 3.8. [38, Remark 49.12(i)| Let f € L}(Q) satisfy f > 0 a.e. Then the very
weak solution of (47) satisfies
u(x) = C( Q)] fls0(z), = e

Lemma 3.9. [40] Let N > 2 and let Q2 be a smooth bounded domain. Assume that
0€0Q. Let =2 <y < N —1. Then there exist R > 0 and a revolution cone X of the
vertez 0, with ¥ := X1 N{zx € R™; |z| < R} C QU {0}, such that the function
o= |33|_(7+2)X2
belongs to L(Q)) and the very weak solution u > 0 of the problem
—Au = ¢, reQ,
u = 0, =€

satisfies the estimate
u>Clz|xs.

19



4 Results for elliptic system

In this section we will assume that 2 is a bounded smooth domain in RY (N > 2),
0€9Q, pg>0 pg>1,abe L>®), a,b >0, a,b#0, k, A € (0,2). We will prove
that there exists a positive very weak solution (see the definition (7)) of the problem

—Au = a(z)z| ", z€Q,
—Av = b(z)|z|MuP, €9, (48)
u = v =0, x € 0N).

To do this we will prove a priori estimates for the problem
—Au = a(z)lz["v +t(ut¢1), T

—Av = b(z)|z| P, x €, (49)
u = v =0, x € 0N

—Au = a(z)|x| "0, x € Q,
—Av = b(x)|z|MP +tv+¢1), x€Q, (50)
u = v = 0, x € 0N

if ¢ <1, p> 1. In both cases we will assume ¢ > 0. The terms t(u + ¢1) in (49) or

t(v+ ¢1) in (50) are needed to use the topological degree in the proof of the existence

of solutions of (48). Denote
2-XNg+2—~r

o= , Bi=
pg—1

(2 - /;;p_+12 — )\. (51)

We will prove the following results:

Theorem 4.1. Assume max{ca, 5} > N —1. If ¢ > 1, p > 0, then for every nonneg-
ative very weak solution of problem (49) with t > 0 we have u,v € L>®(Q) and there
exists constant C(, a,b,p,q, k,\) > 0 such that

t+uloo + [vloe < C(Q,0,b,p, 4,5, ).

If ¢ < 1, p > 1, then the same result holds for nonnegative very weak solutions of
problem (50) with t > 0.

Theorem 4.2. Assume max{«, 5} > N —1. Then there ezists a positive bounded very
weak solution of problem (48).

Theorem 4.3. Assume max{a, 5} < N —1. Then there exist functions a,b € L>(Q),
a,b >0, a,b £ 0 and a positive very weak solution (u,v) of problem (48) such that
u,v ¢ L2(Q).
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Theorem 4.1 will be proved by a bootstrap method in weighted Lebesgue spaces
used in [5], [37], for example. Although [37, Theorem 2.1] also implies the assertion of
Theorem 4.1, the corresponding assumptions on p, g, K, A are more restrictive than our
condition max{a, 3} > N — 1. Theorem 4.3 is based on a modification of the proof in
[40].

Proof of Theorem 4.1. In the proof we will use C' or C’ to denote constants
which can vary from step to step. We will not emphasize the dependence of these
constants on €0, a,b,p, q, K, \.

Observe that «, § defined by (51) satisfy

ap+ A = [+2,

52
Bg+Kr = a+2. (52)
Suppose first a > 3, so &« > N — 1. Using these conditions and (52) we obtain
N+1-X
< — > 1. 53
P71 ¢ (53)

Thus we will deal with system (49) in the following. The case 5 > « can be treated
similarly dealing with system (50).

Denote f(z,v) = a(z)|z|™"v? + t(u + 1), g(z,u) = b(z)|z|~*uP. Let (u,v) be a
very weak solution of (49), u,v > 0. By definition of a very weak solution we have
u,v € LY(Q), f,g € L) and for ¢ = ¢; it holds

/\1/Qucp1 dxz/ﬂu(—Agpl) dx:/Qfgol dux, )

At [ vy dr = / g1 du,
Q Q

where A; is the first eigenvalue of the problem

_A¢ = A¢7 erv
o = 0, xe€dQ

and ¢ is the corresponding positive eigenfunction satisfying |p1]2 = 1. Using (54) we
have

(O — t)/wpl d = / ale| ooy de 4t > 0, (55)
Q Q

therefore ¢ < Ay for u # 0. The equality in (55) further implies that (0,v) is not a
solution of problem (49) for any nonnegative v € L*(2) and ¢ > 0. Hence in both cases
we have t < C.

Using (54) and (20) we get

Clfls < lulis < CNfls, Clghs < lvlhis < Clglas. (56)
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In this part of the proof we estimate / 7o du, /935 dz for r;s > 1. Let (u,v)
Q Q

be a very weak solution of (49), u € L¥(Q), v € LY(Q) for k,1 > 1, u,v > 0. Then it
holds

/fré de < C(r) (/ a’|x| =" dx+/((tu)r+(tg01)r)5 dx)
0 0 0
< C(r,60,) (1+/ |0t dx+/(v1“’él +un)s dx),
Q 0

01 € (0, 1), where we successively used boundedness of function a, the Young inequality,
boundedness of ¢ and the assumption 0 € 09 ( then it holds §(z) < |z|). Similarly it
holds

/gsédx < C(s.0) (/ e dx+/u1’”%5dx), 6 c(0,1). (38
Q Q Q

We will show that if &, are large enough, then the right-hand sides in (57), (58) can
be estimated by |u|s, |v]is for some r, s > 1.

(57)

Now we determine the dependence r,s on k,[. If

- (N +1)l
r<r(l) = ——m—mW—,
(0 kl+ (N +1)q
then there exists 0; € (0, 1) such that
KT qr
——+1>-N <l
6 " L 1—6

If moreover r < k, estimate (57) then implies f € L%(Q). Thus

[flrs < CCr, [l [v]es) i r < min{r(l), k}. (59)
Similarly
- (N+ 1)k
k) =
s < k) Me+ (N +1)p
implies the existence of 0, € (0, 1) such that
As s
——+1>-N <k
g, 7T 104, S
Estimate (58) then implies g € Li(€2). Thus
lglss < C(s, Julrs) if s < 5(k). (60)

On the other hand, Lemma 3.7 gives us estimates for |u|ys, |v]is, k.0 > 1. If
f € LE(Q), then u € LE(Q) and it holds

lulks < ) f s, (61)
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where 1 <r <k <o0 satisfy — = < N_+1 In particular we can take

(N+1)r . Nl

If r = 2 11 < k < oo can be chosen arbitrarily and if r > NH , then we can take
k = oco. Similarly, if g € L3(2), then v € L5(Q) and it holds

[v]is < C(L 5)]glss, (62)

where 1 < s <[ < oo satisfy
~ (N+1)s . N+1
= —— if
[ <l(s) Nii_2s | s €

If s = 2 , 1 <1 < oo can be chosen arbitrarily and if s N— then we can take
] —

We know that f € L}(Q). Estimate (61) implies u € LE(Q) for 1 < k < ko where
ko := FE = k(1). Given s < 5(ko) = %, the continuity and the monotonicity
of 5 assures existence of k < ko such that s < s(k) < (ko). Hence g € L3(Q) for

s € <1 &> (inequality (53) implies L~ > 1). If p > 2;_/\1, then v €

? A+(N-1)p A+(N-1)p N
LL(Q) for | < Iy := I(3(k)) = %. Finally we have f € L;(Q) for r <
min {’F(%) ko} = min{n+()\+(]>[\f+11)p72)q’ %ﬂ} =:1r9. Then ry > 1 due to
the assumption @ > N —1. If p < 2=2 then /\+](V]\;r_11)p > & and due to the continuity
and the monotonicity of | we have v € LY(Q) for all | < co. Thus f € L(N) for
r < min {Nljl, %} =: 7). The preceding computations show that if £ < ko (I <) is

close enough to kg (ly) or larger, then the right-hand sides in (57), (58) can be estimated
by |u|ks, |v]is for some 7, s > 1.

We have shown that if f € Lj(Q2) , then f € L(Q) for r < ro (r <ry) if p > 22
(p < 222). We claim that there holds

N+1
if f e L5(Q) for some r € [1 —+> , then f € L(;F(T)(Q) (63)
K

for some continuous function F : [1,H) — R satisfying (45). In the following we
will give expression of such function F'. For p > ]%,;fl denote

( min{7(I(5(k(r)))), k(r)} =
. N+1 (N+1)r} | (N-I—l)p)
~ /~£+(>\+(¥—2)p—2)q’]\7+1—2r T 2p+2-— A
F(r) = N1 (N+1)7~} e[ N1
kK 'N+1-2r 2p4+2—-X" 2
N+17 e N+17N+1>
\ K 2 K
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(for such p there holds 22 > 1) For p < < 222 denote

2p+2—X
(N+1)r N+1)\ .. N+1
~ 1 o el if > 1,
ﬁ(r)‘: N+1-2r 24+ kK 24+ kK
' N+1 { N+1} N+1>
, r € |maxq 1, , .
K 2+ K K

Function F : [1, %) — R is continuous and due to the assumption @ > N — 1
there holds (45). Define F(r) := w, then r < F(r) < ﬁ( ) for all r € [1,%H).
Observe that FI(1) = ro (F(1) = r{) for p > 22 (p < 224), hence claim (63) has
already been proved for r = 1. For » > 1 fixed the same monotomclty and continuity
argument will be used. If p > 2% and r < éNJE)i, then u € Lk(Q~) for k < k(r)
due to (61). Consequently from (60) we get g € L3(Q2) for s < §(k(r)) and then
(62) implies v € LL(Q) for I < I(3(k(r))). Finally (59) implies f € L () for r' <
min{7([(3(k(r)))), k(r)} = F(r), hence f € LF"(Q). Claim (63) in the remaining

cases can be proved similarly.

The assumptions of Lemma 3.5 are satisfied for F', hence

_ . N+1
3jeN FO(1) > T++e (64)

. FO(1) NELye
for € > 0 small. Using (63) j-times we get f € L (), thus f € L;* ()
from (64). Lemma 3.7 then implies u € L>°(92), from (37) we get g € L;VTHJFE(Q) and
consequently v € L®(€).

Now we prove

[tloo + [0loe < Cllulis, [v]1), (65)
where the constant C'is bounded for |u|, s, |v]1s bounded. Using (59), (60), (61), (62)

we have

[flpe)s < O s, [ flrs: 19]ss)- (66)

Tterating (66) j-times and using (64), (56) we have

£ 1351005 < ClfLporays < Cllulis ol

Lemma 3.7 and (60) then imply assertion (65).
Now we turn to prove uniform boundedness of |u; s and |v]s. Due to Lemma 3.8
there holds

IS
v

05/ alz] "9 + t(u + ¢1)0 dx,
v o> C(S/qb]a:|)‘up5 dz.
Q
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This implies

q
/ alz| "6 +t(u+ )0 de > C / alx| "6t dz (/ blo|uPs dx)
Q Q Q (67)

q
C (/ bla| P dx)
0

p
/ blz|uPsdz > C (/ alz] "9 + t(u + ¢1)0 dx) : (68)
0 0

v

and

Using (67), (68) and the assumption pg > 1 we get | f|is + [g9]1.s6 < C. The estimate
|ulis+v]is < C then follows from (56). Inequality (65) then implies the last assertion
of the theorem.
O

Proof of Theorem 4.2. Suppose first « > S. As in proof of Theorem 4.1 it is
enough to deal with system (49) in the following. Again, the case > « can be treated
similarly dealing with system (50).

Denote now f(z,v) = a(z)|z| ™ v|9, g(z,u) = b(x)|z|MulP. Set X = L>®(Q) x
L>(€2). Given (u,v) € X and t > 0, let Sy(u,v) = (w,w’) be the unique solution of
the linear problem

SAw = ft(ul ), TEQ,
—Auw' = g, x € Q, (69)
w = w =0, x € 0f).

We will prove that there exists a nontrivial fixed point of operator Sy. Since f € L*(Q)
for k < & and g € LY(Q) for | < &, we have Sy(u,v) € W?7(Q) x W?2"(Q) for
re (%,min{%, % ). Therefore, S; : X — X is compact. Observe that the right-hand
sides in (69) are nonnegative for every (u,v) € X, hence w,w’ are nonnegative. Thus
S; has no fixed point beyond the nonnegative cone K = {(u/,v') € X; u/,v' > 0} for
any t > 0.

Let |(u,v)|x = € for ¢ > 0 small, § € [0,1]. Assume (u,v) = 6Sy(u,v). Using

LP-estimates (see [22, Chapter 9]) we have
luloo < Clular < Clflr < Clale|™" | [o]E, < Clo]i,

where | . |2, denotes the norm in W?27(2). Similarly we obtain |v]. < Cfuf?,. Com-
bining the last two estimates we have

[uloo < Cllulf2 < CeHulo
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This is a contradiction for e sufficiently small due to the assumption pq > 1. Hence
(u,v) # 0Sp(u,v) and the homotopy invariance of the topological degree implies

deg(I — So,0, B.) = deg(I,0,B.) = 1, (70)

where I denotes the identity and B, := {(u,v) € X : |(u,v)|x < €}.

Theorem 4.1 immediately implies Sr(u,v) # (u,v) for T large and (u,v) € BpNK
and Si(u,v) # (u,v) for t € [0,T] and (u,v) € (Bg\Bgr) N K (where R > 0 is large
enough), hence we have

deg(I — Sy,0, Bg) = deg(I — Sr,0, Br) = 0. (71)

Equalities (70) and (71) imply deg(I — Sy, 0, Bg\B.) = —1, hence there exist u,v €
(Br\B.) N K such that Sy(u,v) = (u,v). Finally, the maximum principle implies the
positivity of u,v.
U
Proof of Theorem 4.3. Basic ideas used in the proof are from [40]. Lemma 3.9
assures the existence of sets Xy, ¥y, such that ¢ = xg,|z|7*™), ¢ = xy, |z|7 2
belong to L}(2), where o, 8 are defined by (51). Let (u,v) be the (positive) very weak
solution of

—Au = ¢, x € €,
—Av 1/}7 S QJ
u = v =0, xe€d

Lemma 3.9 then implies
u > Om_aXZw v 2> O|x‘_BXE¢7 (72)

hence u,v ¢ L>(§2). Observe that (72) and (52) imply o', € L®(Q2), where a' :=
20 = Y e nonnegative functions and (u,v) is a very weak solution of (48)

ve uP

witha=d, b=1"V.

O

5 Results for parabolic system

In the following proofs, every constant may depend on 2, p, q,r, s, however we do not
denote this dependence. The constants may vary from step to step.
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For 0 <p < N+1’ r < 1 denote

K [1%1) S RU{oo},
_Mp+H(N+D - ar o 1, (p+1)(N+1) N44 )

_ (p+1)(N+1)—2M>
ROD = o v [ f) (73)
Eoo L) SR
_ M(p+r)
MM) = =y

N+3
For r > 1, p+r < 377 denote

K {1 p+r>—>RU{oo},

? pt+r—1
M(p+r)(N+1) (pr)(V+1)
K'(M) = ey ME|L 2 ) ,
(p+r)(N+1) r
o0, M € z ) 7p£j:71> ) (74)
. +r
kKoo [1,pﬁr_1? — R,
_ Mt
(M) = st
Observe that
1
K (M) > max{M, (M)} forall M e {1 ]i>, (75)
p
since p < N+1 and
K'(M)>K(M)>M forall M e {1, ﬂ) , (76)
p+r—1
N+3

since p+ 1 < Nl

Lemma 5.1. Let p+1r < %—ﬁ’, p > 0 and conditions (26), (31) be true. Let (u,v) be

a global nonnegative solution of problem (2).

i) Assumer > 1. Then for~ € [p+r,oo] and T > 0, there exists C = C(p,q,r,s,2,T)
such that
sup Ju(s') 4,5 < Clu(T)]1e, 720 (77)
s'e[r,7+T)|
ii) Assumer >1,pg>(r—1)(s—1)orr<1,p< N+1 Then for

v E [max{l p+r}, %f{’) there exists C' = C(p,q,r,s,) such that

sup Ju(s) s < C(1+ [u(r)y5), 7T 20. (78)

s'elr,7+T]
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i) Assume r < 1, p < 2. Then for v € [max{1,p + r},00] and T > 0, there
N+1

exists C' = C(p,q,r,s,Q,T) such that

sup Ju(s')|ys < C(1+ JulT)ly8), 720 (79)
s'e[r,7+T)

Remark. In the assertion i) of Lemma 5.1, the constant C' is bounded for T
bounded. Proof of Lemma 5.1 Let v € [max{l,p—i—r},%—ﬁ’), a € A and ¢ €

(o 1— ) For 7,7 > 0,1 € [0, T] we estimate
p+1 a

[u( + D)5 < C | ul(T)]5

T4t
N / oM (= a+s)(7+t78’)(7. 4t S/)*%(k%)||u’"vp(s')||175 ds'}

<C [Hu .6 +/ / (5i= T+t—5’)ur_(17;rjr)1( ~a) (s’ )} "

M(l 1) (pt+r)(1—a)

« |:e—>\18(7'+t—$/)(7- +t— S) 2 uﬁ(s')} o1 do ds’ ] .

Here we used (22) and (21) and the assertions iii) ( ii), if v = 1) and v) from Lemma
3.1. Now, using Hélder’s inequality in the last term in (80) we obtain

lu(r + D)5 < C [”U(T)”%é

T+t ) i
+ (/ e—)\l('r-‘rt—s ) / Ur+a_1vp+1_a(8/)901 dx dS,) %
T Q (81)

T+t
)\ Pfl=e _g _N+1(q_1\ptl-a
> (/ 6)\1 1*“8(T+ts)<7—|—t—8/) 2(1 7)1a %
-

1;0,
ptl—a
X / uPt" (s do ds’)

Q

Now we use (38) in (81) to estimate

[u(r + D)l < C | Jul)lhys + (1) 777 ( sup HMS’)IW) ] (82)

s'€[r,7+T)|
where o
1() ::/ . (g s)(T—f—t— S,) %(1,i>p+iaa 4¢ (83)
and .
p+1—a



We prove that the function [ is finite in [0,00), i.e. due to our assumptions on
p,q,7,s, there holds

= <1 (85)

N+1 1 I\ p+1—a
2 1—a
for some a € A.

In fact, in the following proof we will choose

—1
o= in case i), (86)
p+r—1
r—1 ) r—1 ) .
a > ——— sufficiently close to —— in case ii) for r > 1, (87)
p+r—1 ptr—1
a >0 sufficiently small in case iii) or ii) for r < 1. (88)

The choice (87) is possible, since due to the assumptions pg > (r—1)(s—1) and p > 0
we have a € A. The choices (87) and (88) of a will be specified more precisely during

the proof.

If a is defined by (86) or (87) then 2= is close to p+r and condition p+r < %ﬁ’
implies the inequality (85).

If a is defined by (88) then % is close to p 4+ 1 and condition p < N+1 implies

the inequality (85).

Note that the function I defined by (83) is continuous, increasing, 1(0) = 0, and /
is bounded by a constant independent of 7,T.

First we prove ii). In the estimate (82) we choose a defined by (87), if » > 1, or by
(88), if < 1. In both cases we have k < 1 (where & is defined by (84)), hence we can
use Young’s inequality to obtain

lu(r + )16 < C (89)

s'e[r,r+T

[u(T)ls + € ( sup }”U(S,)”%é) +Ce

If we choose ¢ = % then the assertion ii) follows.
Assertion iii) for v € [max{1,p+r}, %—I‘f) follows from assertion ii).
To prove i) for v € [p+ r, §£2) we choose a defined by (86) in estimate (82). Then

' N+1
=1 and the assertion i) for v € [p+r, J]\fol)’

estimate (82).
Till now we obtained the estimate

) and Ty small enough follows from the

N+3
p Ju(s)s < COhs 7€ [ptnyey) 720 (00

s'elr,7+T0]

where T is sufficiently small and is independent of 7. We check that the estimate (90)
actually holds for every 7" > 0 with a constant C(T).
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For T' > 0 fixed there exists n € NU {0} such that T" € (nTy, (n + 1)Tp]. Then for

v E [p + 7, %—ii’) there holds

sup Ju(s)|,5 < sup Ju(s") ],
s'€[r+nTo,7+T) s'€[r+nTo,7+(n+1)To] (9]_)

< C(To)|u(r +nTy)lys, 720
where we used (90) with 7 replaced by 7 + nT,. For I € {0,...,n — 1} we have

Ju(r + (+1)To)|,s < sup Ju(s)]4.6
s'€[r+1To,m+(1+1)To) (92)

< C(M)|u(r +To)ye, 720

We choose t' € [0,7]. For such ' there exists k € NU {0}, k¥ < n such that ¢’ €
(kTy, (k + 1)Tp). Using (92) k-times (if ¢’ > 7 4+ nTj then we also use (91)) we obtain

[u(r + )55 < sup lu(s) s < Clu(r + kTo)ly.
s'e[r+kTo, 7+ (k+1)To]

< Culm+ (k= DTo) s < - < CF ()5 < C ()]s,

since C' = C(Tp) > 1 due to the inequality (90). Thus (90) is true for all Ty > 0.
Now we prove the assertion i) for v € [%—ﬁ, oo}. Fix K € [%—ﬁ’,oo). Then there
exists M € [1, W] such that K'(M) > K > k = k(M) (where functions K’', k'

are defined by (74)). For 7 > 0, ¢t € [0, 7] and a defined by (86) we estimate
T+t 171
fur 4 Olis < C [lulis+ [ (74t F QD) )

ot
< C ||u(7')||K75+/ (T+t— S/)fT(Mif) X (93)

X </ [ulei‘fii UPM(S/)} [UM(’”;Q(};“) (3')] V1 dx) N dS/] .
Q

Here we used Lemma 3.1 iii) and v). Observe that M < p+11;“, since M < w <
p_’:fil (the last inequality is true due to the assumption p +r < 2+3). Hence we can

N+1
use Holder’s inequality in the spatial integral to obtain

T+t
Ju(r + )5 < C | Julr)|xs + / (T+t— S,)_T(ﬁ_f) x

p+l—a—pM

p
prl—a (p+7)(1—a) "M(pFti—a)
X </ e O dx) ’ (/ WM (o) dx) ’ ds/]

TH _Ni1(1 1
[Olis + 5w )y gunoa, [ [7+1-)"FED)]
P T

s'elr,7+T] +1—a—pM’

P¥i=a
X </ u TP (8 oy dx) ds’
Q
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where « is defined by (84). Notice that K = 1 and k = MEU=9) qye to our choice
p+l—a—pM

of a. We use Holder’s inequality in the time integral in (94) to have

lu(r + Dlls < C lu(r)lks+  supJu(s)]es x

s'elr,7+T)

T+t ;ﬂrl%a

% (/ /uT+a_1Up+1_a(S,)g01 dr dS,) % (95)
T Q
T+t

([ ) ] |

T+t N+ 1 1 —
Io(t) ::/ (1+1t— s')fT(Wfﬁ) - ds’. (96)

Define

We use (39) to obtain

[u(T +)lks < C

|u(T)|xs +C(T) sup |u(s)|xs ([O(T));;Jlrlaa]

s'e[r,m+T)

where [ is defined by (96). Observe that I is finite on [0, c0), since
N+1/1 1\p+l-a
A (N |
2 (M K) 1—a (07)

This follows from the definition (74) of function K’ and our choice of K. The function
Iy is continuous, increasing, [o(0) = 0, however I, is unbounded on [0,00). Since
k < K, we have

[u() ks + C(Tp) (Io(T)) 7 ] [u(s) x5 - (98)
s'e[r,T

lu(m +1)|xs < C

For Tj sufficiently small, there holds C(7}) (IO(TO))Pﬂa < 55 and the inequality (98)

implies

sup  Ju(s) s < C(To)|ul)] x5 (99)
s'e[r,7+To]
for K € [%—ﬁ, oo). Again, as in the proof of i) for v € [p + 7, %—ﬁ) this estimate is

true for every 7' > 0.
If M e <(p+r)(N+1) L ) then we can choose K = oo and k € (K'(M), 00). Using

2 ’ pr—1
estimates similar to (93)-(98) (instead of iii) and v) in Lemma 3.1 used to prove (93)

we use iv) and vi) )we have

sup fu(s') oo < C(T)|u(7)]oc-

s'e[r,7+T)
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Now we prove the assertion iii) for v € [J]\Vf—fl’, oo}. Fix K € [%—ﬁ, oo). Then there

exists M € [1, W} such that K(M) > K > max{l,k(M)} (where functions
K, k are defined by (73)). Now fix k € (max{1,k(M)}, K). Since k(1) = p+ r and
possibly p + r < 1, we need also to assume k > 1. For 7 > 0, ¢t € [0, T] and a defined

by (88) we estimate

T+t
[ulr + B)xs < C |[Ju(m)|xs + / (r+t— )T @R o (o) s ds']

T+t 1
< [+ [ (rre-s) PR (100)
« (/ [UPM;ﬁ:iUpM(S/)} [UM(p:14)1(i;a) (Sl)] o1 d.”l?) dS/] _
Q

Here we used the assertions iii) and v) from Lemma 3.1. Observe that

M < (101)

(p+1)(N+1) _ p+1
2 p

yields M < ]%. In fact, this is possible, if we choose a sufficiently small depending

on fixed M. The last inequality in (101) is true due to the assumption p < NLH Hence

we can use Holder’s inequality in the spatial integral in (100) to obtain

T+t
Ju(r + &)l < C [Ju(r)ls + / (r 41— ) )

p+l—a—pM

p
ptl—a (p+7)(1—a) M(p+i—a)
X (/ ur TP (g dx) ’ (/ WM (o) 0 d:r) ’ ds/]
¢ ° (102)

T ON41(1 1
)l s [ g [ [+t )R]

s'e[r,r+T p+l1—a—pM>’

p
p+l—a
% </ Ur+a_11}p+1_a(8/>g01 dl‘) dS/]
Q

where x is defined by (84). Notice that x < 1 and M-EHU=9 g cloge to k(M) and

p+1l—a—pM
M% < k, if we choose a sufficiently small; this choice depends on k, M fixed.

We use Holder’s inequality in the time integral in (102) to have

<C

lu(r +Dls < C|lu(T)les+  sup  Juls)]is x

s'e[r,7+T)

T+t T —a

% (/ /ur+alvp+1a(5/)g01 dx dS/) % (103)
T Q
T+t L

piia
< ([ gt )" ]




Now we use (39) to obtain

[u(r + ks < C|lu(m)lks +C(T) sup Juls)lis x

s'e|r,m+T)

1—a
T+t 1 ptl—a p+l—a
([ esemwytmpes o) ] (o

Ju(7) |1 + C(T) (Io(T)) 775 sup IIU(S')IIZﬁ] ’

s'e[r,m+T)

X

< C

where the function Iy is defined by (96). The inequality (97) is true for a sufficiently
small. Hence the function Iy is finite on [0, 00). Since k < K, for arbitrary 7' > 0 and
K e [N+3 oo) we have

N+1»
Ju(m +D)lks < CT) [|u(r) s+ sup IIU(S')II%,al : (105)
s'e[r,7+T)|
Since k < 1, we use Young’s inequality to deduce
[u(m+ )]s < C(T) ||ulr)|ks + Cc + Sup ”U(S/)”K,&] : (106)
s'elr,m+T
Setting € = #(T) we finally obtain desired estimate.

If M e <w, 1‘%1) then we can choose K = 0o and k € (k(M),00). Using
estimates similar to (100)-(106) (instead of iii) and v) in Lemma 3.1 used to prove
(100) we use iv) and vi) ) we have

sup [u(s') oo < C(T) (14 u(7)[)

s'€[r,7+T)

Lemma 5.2. Let p+1r < %—ﬁ, p > 0 and conditions (26), (31) be true. Let (u,v) be

a global nonnegative solution of problem (2).

i) Assume r > 1. Then for v € <1
C(p,q,r,s,,T) such that

>m] and T" > 0, there exists C' =

T+T
/ u(s) g ds' < Clu(r + T)ls, 73 0. (107)

ii) Assume r < 1, p+r > 1. Then for v € (1,%} and T > 0, there exists
C=0C(p,q,7,s,2T) such that

T+T
[ ) 48 < O+ Jutr 4+ Dlis), 720 (108)
If p+1r <1 then the estimate (108) is true for v € [1, M)

N-1
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Proof of Lemma 5.2 We define exponent

1

PPy ot (109)

"}/:

The conditions 1 < p+7r < %ﬁ imply p+r < v < N“ . Form,T>0andt e (r,7+T)]

we estimate

+1

\wwmscerVWWﬁWme+/a—ﬂ”é“ﬂwwwwmmynm

where we used Lemma 3.1 iii) and v). Integrating (110) on interval [r,7 4+ T with
respect to t we have

[HTWNthﬂ< C{M<|h¢/”T@_T>ﬂfoi>w

T+T
/ / (t—s) _% %>||urvp(s’)||175 ds’ dt} :

Now we use Fubini’s theorem in the last term in (111) to obtain

(111)

T+T

nmmwwsckﬂﬁWimmmﬁ

T T+T T+T )
+ / ( / (t—s) 03 dt) ||uwp(s’>|\1,§dsf}.

Since ' € [1,7 + T, we can estimate

/T+T(t — gy ) ae < o 03),

/

(112)

Note that

N+1 1
_+(1__)<1’
2 Y

since v < 241

Using (112) we have

T+T T+T
[ s ar <m0 s+ [T s 0]
T+T 1 p+r Z——a
< C |:||U, ||1 Fy +/ / u pil aUp )} |:u( ;+)1(—a )(3,):| @1 dx dS/:| .

Now Holder’s inequality in the last term in (113) implies

T+T 7+T Z”rl%a
/ |u(®)].s dt < C |Ju(T)]1s + (/ / u TPy da ds') X
T T Q

T+T N pﬁifaa
/ T /
([ )T
,

(113)

(114)
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As in the proof of Lemma 5.1 we use (39) to obtain

l1—a

/T "ttt < [Hu(f)um L) ( / e, ds’) +] )

In the last term in (115) we use the interpolation inequality (Lemma 3.4)

/ +r / % / 'Y(p+_7"1_1) /
o < )y el STl (116)
From the definition (109) of v we see that % = 1. Hence
T+T T+T y—(p+r) piifa
/ —1 / /
[ s ae <o [t ([ 1060 1) 08
1) 10 1 (117)
=1 pt+l-a T+T ptl—a
<) [Iu(rls + ( p }Hu(s’)Hw) ([ 1)1 a)
s'elr,T+T T

Using Young’s inequality we have

/ T [u@lys dt < C(T) | u(T)]1s

’B T+T
oo s fuls)hs +e( [ ds’)
s'elr,m+T] T

1_7“. For ¢ sufficiently small in (118) we have

(118)

where 8 = %

T+T A
/ [u(®)],5 dt < C(T) I\U(T)||1,5+< sup }HU(SI)H1,5> : (119)

s'elr,m+T

Using the estimate (119) we are ready to prove the assertions of the Lemma. First

we prove the assertion i). If » > 1 then we choose a = p_’;il in the definition of j3,
hence 5 = 1. We use (24) to obtain

M u(r +T)|is+ sup 6A1(7+T’3')\|u(7 + 1)1
s'e[r,7+T)

[ s o

< C(DeM ulr +T)lwe

and i) then follows.

Now we prove the assertion ii) for p + r > 1. We choose arbitrary a € A in the
definition of 3, hence # < 1. In this case we again use Young’s inequality in the last
term in (119) to obtain

/ ()l dt < C(T)

Ju(r)]1s +1+  sup ||U(8’)||1,6]- (120)
s'e[r,7+T)|
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Using (24) the assertion ii) for p +r > 1 follows.

If p+r <1 then for v € [1, %) we obtain

T+T N ﬁ
fu(r) s + C(T) ( [ ey ds’)

P+T)l(1 a)
lu(r) s+ sup Jul(s)], 5"
s'€[r,7+T)

+T
/ ()]s dt < C

< CO(T)

(ptr)(1—a)
p+l—a

inequality to obtain (120). Using (24) the assertion ii) for p+r < 1 follows. The proof

in the same way as we obtained (115). Since < 1, we can use Young’s

of Lemma 5.2 is complete.

O
In Lemma 5.3 we will use the following notation. For r < 1 and 0 < p < NLH
denote
Ko - [11%1) S RU {00},
o - e Me L), (121)
o(M) = 0, M e {TH ptl )
For r > 1 denote
K [1}%) LR U {oo},
M(N+1) N+1
Ky(M) = { (VDD M e [1, M) (122)
e B

Lemma 5.3. Let p+1r < %—ﬁ, p > 0 and conditions (26), (31) be true. Let (u,v) be

a global nonnegative solution of problem (2).

i) Assume r > 1. Then for T > 0, there exists C = C(p,q,r,s,Q,T) such that
T+T
[ )lies 4 < Clu(ls, 720 (123)

for K)(M) > K >k =K(M), M e [1,X2] If M € (N“ _ptr_ ) then we can

2 7 p+r—1
take K = oo.

i) Assumer <1
that

’N+1 > p. Then for T > 0, there exists C = C(p,q,r,s,Q,T) such

+T
/ u() s ds' < O+ [u(M) lmasariys)s 72 0 (124)

for Ko(M) > K > k > k(M), k> 1, M € [1,25]. If M e (531, 221) then

we can take K = oo.
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Proof of Lemma 5.3 We choose a as follows

-1
a = ]ﬁ for part 1), (125)
a>0 sufficiently close to 0  for part ii). (126)

The choice (126) of a will be specified more precisely during the proof.
First we prove i). Observe that ¥ < P and K{(M) > K'(M) for every

p+r—1
M e [1, pﬁt;) due to conditions 1 < p+1r < %—jﬁ’ (see the definition (74) of functions
K’, k' and the definition (122) of K{)). Hence (76) implies
Ky(M) > K(M)> M forall Me |1,—220 ) (127)
"p+r—1

For K)(M) > K > k =K (M), M € [L,LEL], 7T > 0and ¢t € (1,7 + T] we

2
estimate

lu(®)|xs < cr%t—T>N3<MKWuuwMﬁ
(128)

where we used Lemma 3.1 iii) and v). Integrating (128) on interval [r,7 + T with
respect to t we have

Lr (129
+ / (t — s/)fT(W*?)||urvp(s/)||M75 ds’ dt] .

Observe that for such K, M there holds
N+1/1 1 <1
2 M K '

Now we use Fubini’s theorem in the last term in (129) to obtain

T+T

w@hmﬂscﬁlﬂhwﬂwvmu

T T+T T+T
+/ (/ (t — 5’)‘%(%‘%) dt> |u"vP(s") |ars ds'|

Since s € [r, 7 + T, we can estimate

(130)



As in the proof of Lemma 5.2 we rewrite (130) into the estimate

T+T Nl N T+T
[ s ar < e PR (s + [T el as)
’ T+T ' r+a—1
< C(T) ||u(T)||M75+/ (/ [upMprava(S/)] x  (131)
T Q

et (—a)

X [u wi—a(s’)} ©1 dx)la] ds'}

where a is defined by (125). Observe that M < ”J’%, since M < z%' Therefore we
can use Holder’s inequality in the spatial integral in the last term in (131) to estimate

4T T+T p+1107a
L/ Ju(t) s dt < OHSHMﬂhm+/‘ (/u”“%ﬁkﬂﬂwuu) x
’ " zﬁl*ﬂ (132)
ds’ ]

(p+7)(1—a) M(p+1—a)
X (/ uMP-‘rl—a—p]M (8/)()01 dx)
Q

Using Holder’s inequality in the time integral we have

T+T pﬂ%a
|w(T)|ars + (/ / u TP (N oy da ds’) N
T Q

T+T N pﬁiﬁ“a
X u(s) P . ds’)
L e s,

Now the inequality (39) implies

T+T
/ Ju(t)xcs dt < C(T)

(133)

/T Ju(®)]xs dt < C(T)

p+l—a—pM>

T+T N pﬁ%‘a
|u(7) |2z, + C(T) (/ HU(3,)|§/1 (ptr)(1-a) ds,) (134)

Note that (p;i)l—(:f) =1 and M% = k for our choice (125) of a. Hence using

Lemma 5.1 i) we have

+T
/ [u(®)] s dt < C(T) (Ju(r)lars + lulr)]rs) < CT)|ulr)]ks, (135)

since k > M.
If M e (%, pﬁil) then we can choose K = oo and k'(M) < k < co. Hence the

estimates (128)-(135) imply

4T
/ [u(t)]oo dt < CCT) (T s, (136)
thus we proved 1i).
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Now we prove ii). Observe that 2 < ]‘%1 and Ko(M) > K(M) for every M €
[1, 7%) due to conditions 0 < p < 725 (see the definition (73) of functions K, k and
the definition (121) of Kj). Hence (75) implies

Ko(M) > max{k(M),M} forall M € [1, 1%1) : (137)

Choose Ko(M) > K > k > k(M), k> 1, M € [1,%]. We need k > 1, since

k(1) = p+ r and possibly p+r < 1. For 7,7 > 0 and ¢ € (7,7 + T] we estimate
SNEL(L_ L)
Ju(®lxs < C [(f —7)7 2 W u(T) | as
(138)

where we used Lemma 3.1 iii) and v). Integrating (138) on interval [r,7 4+ T with
respect to t we have

T+T T+T Nil/1 1
[ mOlsde< € flumls [ @00 a
f b (139)
+ / (t — 5/)_%(ﬁ_?)“ur2}p(sl)”]\45 ds dt:|
Observe that for such K, M there holds
N+1/1 1 <1
2 M K '
Now we use Fubini’s theorem in the last term in (139) to obtain
T+T
[ s ars 000D
v (140)

T+T T+T )
+/ (/ (t—s) 7 () dt> [ vP (') ars ds’

/

Since ¢’ € [1,7 + T, we can estimate

We rewrite (140) into the estimate
T+T N - T+T
[ s ar s o P00 (s + [T el as

o(1) [uumuMﬁ / ( / [ M ()] X (4

(ptr)(1—a) M
[U,M pJprJrlfa (Slﬂ 01 dl’) M dS/] ’

IN

X
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where a is defined by (126). Observe that
p+1—a
p

M < : (142)

since M < ’%1: the inequality (142) is true, if for M fixed we choose a sufficiently
small. Hence we can use Holder’s inequality in the spatial integral in the last term in

(141) to estimate

T+T T+T p+1177a
[ s as o s+ [ [areneee )
- T Q

p+(17a7p1\)4

~ M(p+1—a

X (/ uFM) (5", dx) ds’]
0

where %(M) — M etnl=a) {ging Hlder’s inequality in the time integral in (143) we

p+l1—a—pM
THT 4T -
[ s acs o s+ ([ [t e@eanas) T

T+T n piljfaa
n||ptr !
X (/T Ju(s )|max{1,E(M)},6 ds) '

Now the inequality (39) implies

(143)

have

T+T T+T pizifa
/ Ju(t)lics dt < CT) [Ju(m)as + C(T) ( / I d) ](144)

Note that ' = (”JT# < 1 and k(M) is close to k(M) and thus k(M) < k for a

sufficiently small. If p +r < 1 then k(1) < 1 for a small. Hence using Lemma 5.1 iii)

we have

T ,
[ lu®ls de < @) [Juolaes + 1+ () 1o

Using Young’s inequality in the last term we obtain

/T [u®)lxs dt < C(T) (1 + Ju(r)lars + [u(m)lks) < C(T) (1 + [u(T) lmaxgrary,6) (145)

If M e <NT, 7%1) is sufficiently close to 1%1 then k(M) > M and we can choose

K = oo and k(M) < k < co. Hence the estimates (138)-(145) imply

+T
/ [u®)lee dt < C(T) (1 + [ulT)[6)

thus we proved ii).
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Theorem 5.1. Let p+1r < %—ﬁ, p > 0 and conditions (26), (31) be true. Let (u,v)

be a global nonnegative solution of problem (2).

i) Assumer > 1. Then for every T > 0, there exists C = C(p, q,r,s,9,T) such that
Ju®)]eo < Clu®)]1,s (146)

for every t > 1.

_2

~oi- Then for every T > 0, there exists C = C(p,q,7,5,9,7)

ii) Assumer <1,p<
such that

[u®)]oe < C A+ [u®)]16) (147)

for every t > 1.

Remark.The constant C from both assertions of Theorem 5.1 may explode if 7 —
0.
Proof of Theorem 5.1 First we prove i). Let

1
T o)
Conditions 1 < p+1r < %—ﬁ’ imply p+r <vy< % Fix 1 > 75> 0and let £ > 0 be
arbitrary. Note that there exists 7/ € [1p + ¢, 270 + t] such that
2710+t
—1

[u(7) s = 79 / [u(s) .6 ds'. (148)

To+t

Obviously, this 7/ may depend on ¢ and u. Since 279+t € [7/, 7' + 70|, there holds

Ju2ro + )lys < sup - fu(s)]5q- (149)

s'e[r! 7 +10]

We use Lemma 5.1 i) with 7 replaced by 7" to obtain

sup Ju(s)[ys < Clu(m) s (150)

s'e[r! ;7 +70]
where C' does not depend on 7/, 79. Lemma 5.2 i) implies
2710+t
[ ) s 45 < CluCr + s (151)
T0+1t

Finally, the equality (148) and the estimates (149)-(151) imply

[umo+)lys < sup  fu(s) ]y < Clu(r)]5.6

s'elr! 7 +70)

2710+t
= ot [ ) 45 < O a2+ )l
To+t
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thus
|u(270 + ) ]5.6 < C(70)|u(270 + 1) [1,6- (152)

Now fix I € N,I > 1 and K, k such that K{(M) > K > k=K (M), M € (1,]
(see the definition (74), (122) of function %/, K, respectively). This choice is possible
due to inequality (127). Again, there exists 7" € [I1g + ¢, (I + 1)70 + t] such that

(I+1) 7o+t
s =" [ (s les ds. (153)
I

T0+t

Since (I + )19+t € [7/, 7 + 7o), there holds

lu((C+ Do+ 8)xs < sup Juls)]xs (154)

s'e[r! 7 +70]

We use Lemma 5.1 i) with 7 replaced by 7’ to obtain

sup Ju(s) |k < Clu(r)| ks (155)

s'e[r! 7 +10]
where C' does not depend on 7/. Lemma 5.3 i) implies
(I4+ )10+t
/ [u(s) s ds' < Clu(lzo + )]s, (156)
lmo+t

Finally, the equality (153) and the estimates (154)-(156) imply

[u((C+ Do+ H)xs < sup Juls)|xs < Clu(m)xs

s'elr! v +10)

(I+1) 10+t
=t [ )l 4 < O fullr + s
lTo+t

where C' does not depend on 7/, 79 and ¢. Thus

[u((l+ )70 + )| x5 < Cl70)[ullTo + 1) k.s- (157)
If we choose pf—j‘_il > My > ¥+ then in (157), we can take K = oo and k = kg for
some
oo > ko > k/(Mo) (158)
Hence we have
[u((l + )70 + D)oo < C(70)|ullro + 1)]ko.s (159)

foralll € N, I > 1. Now we apply bootstrap argument on (157): Since K (M) > k'(M)

for M € [1,%) and K{ (%) = oo, there exists small enough ¢ > 0 such that

% 2y X p+r
K = K (1—¢e)K] 1 K =k 1, —— 1
m1n{p+r ,(1—¢) 0}>( +¢€) on [7p+r—1) (160)
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and K(1) > v > k(1) > p+r. This follows from continuity of functions K|, k. For
M e [1 pir ) given, there holds K})(M) > K(M) > k(M) > k = K¥'(M) and K < .

? pt+r—1

Hence (157) yields
[u((+ D70 + Dl 7(ar)s < Cr0)lullro + Dz 6 (161)

Let my = 1 and for i € N denote m;,; = (k) (K(m;)). Observe that K (m;) > k(m;),

ptr

) and m; 1 > m;. The estimate (161) implies

m; <
|u((+ )70 + O g6 < C(70)|ullmo + t)||',5(mi),5, 7,1 € N. (162)

Due to Lemma 3.6 there exists lo = lo(p, ¢, 7, s) € N such that l?(mlo) > ko (where ko
is chosen by (158)). Therefore (159) implies

[u((lo +3)70 + ) oo < C70)[u((lo + 2)70 + D)l 7 () 6 (163)
Using (162) lp-times (for l =2,...,lo+ 1 and i =1,...,ly) we have
Ju((lo + 2)70 +t) Hf((mlo),a < C(10)[u(270 + ) |7y -
This inequality, v > k(m1), (163) and (152) imply
[u((lo+3)70+0) o0 < C(70)[u(2T048) [y 5 < C(T0)[uZT0+8) |5 < C70) [u(270+8) 15
Finally, (24) yields
[u((lo +3)70 + )]0 < C(70)[u(270 + t) 1.5 < Cmo)e ™ u((lo + 3)70 +1)]1,5.

Letting 7o = ;o5 implies the assertion i).

Now we prove ii). We choose

1
=——— ifp+r>1
7 2—(p+r) p
or N 1
7€<17N—i_1)7 1fp+71§17

and t, 7y are as at the beginning of the proof of i). There exists 7/ € [y + ¢, 279 + {]
such that
2710+t
-1
o )s =7 [l (161
T0+t

Obviously, this 7 may depend on ¢ and u. Since 279+t € [7/, 7' + 70|, there holds

[um0+ )6 < sup  Ju(s')]ys- (165)

s'e[r! ;v +70)
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We use Lemma 5.1 iii) with 7 replaced by 7’ to obtain

sup Ju(s)lys < C(1+ Ju(r)]-.6) (166)

s'e[r! ' +70]
where C' does not depend on 7/, 75. Lemma 5.2 ii) implies
2710+t
[ ) a8 < 00+ Tutzr + 1) (167)
To+t

Finally, the equality (164) and the estimates (165)-(167) imply

219+t
[0+ )15 < C (1 + Ju(r)]16) = C (1 + To_l/ [u(s) .6 dS')
(168)
< Cno) (T Juro +)]s) -
Now fix [ € N,/ > 1 and K such that Ko(M) > K > max{k(M),1}, M €
(1, 52] (see the definition (73), (121) of function k, Ko, respectively). Then fix

k € (K,max{k(M),1}). These choices are possible due to inequality (137). Again,
there exists 7/ € [l1g + t, (I + 1)79 + t] such that
(14 1)mo+t
s = [ (s les ds. (169
I

To+t

Since (I + 1)m9 +t € [/, 7' + 7o), there holds

lu((+ Do+ )lks < sup  Juls)]xs. (170)

s'elr! ;7' +70]

We use Lemma 5.1 iii) with 7 replaced by 7’ to obtain

sup fu(s') ke < C(1+ Ju(m)[xo) (171)

s'e[r! 7 +70]
where C' does not depend on 7/, 75. Lemma 5.3 ii) implies
(I4+1) 70+t
/ Ju(s) ks ds" < C (1 + Ju(lmo + £)|ks) - (172)
lTo+t

Finally, the equality (169) and the estimates (170)-(172) imply

Ju(+ D10+ t)|xs < C L+ [ulm)]xs)
(I+1)mo+t
< C(m) (1 +/l |u(s") | k.5 ds’) (173)

To+t
< C(TQ) (1 + HU(ZT() + t)”k,(g)

where C' does not depend on 7" and ¢.
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If we choose M; > 2 then in (173), we can take K = oo and oo > ky > k(M)
such that there holds

[u((Z+ )70 + )]0 < C(70) (1 + [ullro + 1)k .5) (174)

for alll € N, [ > 1. As in the proof of i) we apply bootstrap argument on (173): using
(173) li-times (for l =2,...,l; + 1; 3 = l1(p,q, 7, s)) we have

[u((lh +2)70 + )| K16 < C(70) (1 + [u(270 +1)]5.5) (175)

for some K > k; (note that p+r = k(1) and v > max{1,p+r}). This inequality and
(175) imply
[u((l +3)70 + ) oo < C70) (1 + [u(270 + 1))

It is possible to use (168) and (24) to obtain

Ju((li +3)70 + t)|oo < C(70) (1 + [u(2m0 +t)|45) < C(70) (1 + [u(2m0 +1)[16)
< Clmo) (14 MG lu((ly + 3)m0 4 1) |1.s5) -

Letting 70 = 75 implies the assertion of the theorem.
U
Corollary 1. Assume p+1r < %ﬁ’, =7 > P > 0 and let conditions (26), (31) be

true. If r > 1 then assume also pg > (1 —r)(1 —s). Let (u,v) be a global nonnegative
solution of problem (2). Then for 7 > 0, there exists C = C(p,q,r,s,7,8) such that

sup u(s)|oe < C(1 4 Ju(r)]e), T = 0. (176)
s'€[r,7+T)]
Proof. This follows from (146) (if » > 1) or (147) (if r < 1) and Lemma 5.1 ii).

U
Lemma 5.4. Assume p+1r < %ﬁ,NH >p>0,s< %ﬁ, (26) and (31). Ifr > 1
then assume also pq > (1 —r)(1 —s). Let (u,v) be a global nonnegative solution of

problem (2). Then there exists C = C(p,q,r, s, |u(T)] oo, [0(T)|oo, sup Jv(s")]1s)
s'e[r,7+T)|

such that
sup  Ju(s)|e <C, T,7>0. (177)
s'€[r,m+T]

Proof of Lemma 5.4 Due to Corollary 1 we can write u(z,t) < C(|u(7)|s) for
(x,t) € Q x [1,00) (note that the constant C' in (176) is independent of T'). Then v
satisfies

— Av < C(|u(1)]o0)®®,  (x,t) € Q X [1,00) (178)

N43

where s < ESE
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Assume s > 1. We choose arbitrary ~ such that

N +1
<y < =T 179
T< N1 (179)

2—s

1 N+1 N+3
Note that ;= < 377, since s < 5.

For fixed T > 0 and ¢ € [0,7] we estimate

fo(r + )5 < Ol o) [HU(T)HM

o Moty (180)
+ / e 2= o — 3’)*T(1*§) / v*(s")pr do ds’] .
T Q
In (180) we estimate term |v(7)|,s by a constant C(|v(7)]e) to obtain
[o(r + )16 < CJu(m)le) |Clv(T)le) + supJu(s)]55 %
s'e[r,7+T)| (181)

T+t
X / e’%(t”*sl)(t +7— s’)*%(k%) ds’
Note that the integral in (181) is bounded by a constant independent of ¢, hence

[o(m + Dy < CUlu(m) oo [0(T) o) |1+ supJu(s)]3;5

s'e[r,7+T]

(182)

Asin the proof of Lemma 5.2 we use the interpolation inequality and Young’s inequality
to obtain

y—s y(s=1) y(s=1)

a=s _a=s y(s=1)
[o(s)5s < T (L5 < Cello(s)s 7" +elo(s) s (183)

where 6 € (0,1). Due to our choice (179) of v there holds % < 1, hence there exists
0 € (0,1) such that
Ws—1) _,
(v=1o
Finally, (183) implies

[o(r +D)l5.5 < Clulm)loos [0(7) o) %

=109
x |1+C. | sup  Ju(s)]s +e sup  Ju(s)]ys
s'€lr,r+T] s'e[r,7+T)

Choosing ¢ sufficiently small yields

sup  [v(s) |16 < C(Ju(T)oos [0(T)|oo;  sUP () 18), 7€<1,
s'€[r,7+T] s'elr,7+T)

N+1
Vi)
(184)
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For 0 < s <1 we choose arbitrary v such that

N+1

1< < .
TSN

For fixed ' > 0 and t € [0, 7] we estimate

[o(m +8)15 < C(lu(r)]e) [HU(T)H%&

T+t
+ / e F (¢ 47— ) ) ()3 ds/}

IN

C(lu(r)lo: [v(7)) |1+ sup ||U(S')||1,5]
s'e|r,m+T)

< Clu(m)loos V()]s sup Ju(s')]10),
s'elr,m+T]

hence the estimate (184) follows.
For s = 0 the assertion (184) follows from estimate analogous to (178).

Now we prove that (184) holds for v = co. For s > 725 we denote

Ky : [l,00) — RU{oo},

Q(N+1) s(N+1)
Ki(Q) = { svh=2@ Qe [17 BEE > ) (185)
s(N+1)
00, Q> =5
Assume sup |u(s')]1s < C. Our goal is to prove
s'e[r,7+T)
2 N+1
ifts>—— sup |u(s)]gs<C, Q€ [1, u} then sup |u(s')|ks <C
N+1 s'€[r,7+T) 2 s'elr,m+T)
(186)
for
and

N +1
if sup Ju(s)]os <C, Q> max {1, u} then sup [u(s)]e < C.
s'€[r,m+T] 2 s'elr,7+T]

(188)
In (186) and (188) the constant C' may depend on (u,v), more precisely

C = C([w(m)]oos [0(T)lo,  sup fo(s")]1.0)-

s'€[r,T+T]
We estimate

[o(r + D)lxs < Clulr)]oo) [IIU(T)HK,a

" . (189)
+ / e W=t 47— S’)*%(ﬁf%) (/ v(s) My dx) ds,] :
i Q



In (189) we estimate term |v(7)|ks by a constant C(|v(7)|~) to obtain

[o(m + Dlxs < CulT)loo; [0(T)loe) |1+ sup o5 iss5 X

s'€[r,7+T)

T4t
« / e_TAl(H_T_S’)(t + T — 8’)7%(ﬁ7%) dS/
T

(190)

To prove the assertion (186) we choose
M =
Due to this definition of M and our choice (187) of K there holds

N+1<1 1)
L (=—-2) <

Hence the integral in (190) is bounded by a constant independent of ¢ and we can
estimate

lo(r + D)lxs < Cllulm)loo, [0(T) )

1+ sup ||U(8')was,5]- (191)
s'e[r,7+T)

Therefore (186) follows from (191).
Now we prove (188). Similar estimates to (189) and (190) (with K = oo) are true
in case of @) > NH) . In (190) we set M = €. Then we use the assertions iv) and vi)

in Lemma 3.1 1nstead of iii) and v) in the estimate (189). We obtain

[v(T+ 8w <C |1+ sup ||U(8/)||SQ,¢;] : (192)
s'elr,7+T]
Thus (188) holds.
Let first s > N_+1 Since s < %f{’, there holds
Ki(Q)>Q forQ>1 (193)

and to finish the proof for s > N “7 we use bootstrap argument: Due to the inequality
(193) there exists ¢ > 0 such that K(Q) := min{(1 4+ £)Q, (1 — £)K,(Q)} > Q for
Q > 1. Denote @y =1 and Q41 = I?(Q ) for i € N. Due to Lemma 3.5 there exists
ip € N such that Q;, > NH . Since we proved (186), there holds

sup [o(s")]@iy0 < C(JtT) oo [0(T) oo sUD [0(5")]1,6)-
s'€[r,7+T] s'elr,m+T]

The assertion (188) then implies

sup  [0(s) oo < C(Ju(T)loo, [0(7) oo, sUP Jo(s)]15)-

s'elr,7+T] s'elr,7+T]
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Thus the proof for s > NLH is finished.
If s < NLH then the assertion of the Lemma follows immediately from the estimate

(192). Indeed, since the estimate (184) is true, then there holds

sup [u(s') s < C[u(T) oo, [0(T)oos  sup (') 1.0).
s'€[r,7+T] s'e[r,7+T)

for some ) > 1. Then (188) finishes the proof.

U
Proof of Theorem 2.6 First assume s > 1. For n € [0,1 — a) denote
s—a
Y(n) = m,
194
_ laras—1+m) 1oy
e(n) = .
s—a
The assumption s > 1 guarantees that £(n) > 0 for all n € (0,1 — a).
In the following proof we will choose
r—1 )
a=—-7" in case r > 1, (195)
p+r—1
a >0 sufficiently small in case r < 1. (196)
If a is defined by (195) then the condition
pg>(r—=1)(s = 1)
implies £(0) < ¢ and the condition
2 r—1 N+3
< 197
STNTiprr_1 Ni1 (197)
implies 7'(0) < =2 Hence
/ N +3
1 1
<)<y < <qg (198)

for n > 0 sufficiently small.

If a is chosen by (196) then there holds (198) for small » > 0. The choice of @ may
vary from step to step.

Now we choose 1 such that in the both cases (195) and (196) there holds (198) and
for the rest of the proof denote

v i=A9(n), & :=¢en). (199)
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For t € [0,7] and ¢ € <0 i,) we estimate

Ty
[v(m+D)lyvs < C o))y

T+t , N
+ / e—)\1 (1—%-"—8) (T+t—s )(7_ 4+t s/)—T‘H (1—%) ||uqu<8/) Hl,é ds’
4 (200)

T+ N1

< C|lolyst [ UFNN g0

T

X /uslvsuqsl(s’)wl dx ds’] :
Q

The term u?=¢ can be estimated by a constant depending on |u(7)|s due to Corollary
1. The term |v(7)].s can be estimated by C|v(T)]«. Hence it holds

[o(m + )5 < Clo(T)]o) {1 + (1 Ju(r)o) ™ %

T+t N1

/ 67,\1(175+s>(7+t75’)(7_ N S/)*T(P?) X (201)
X /uslvs(s’)gal dz ds’} :
0

We rewrite the estimate (201) to obtain

X

”U(T + t)“v’,é < C(HU(T)HOO7 "U(T)Hoo) |:1 4 /T €—>\1 (1—$+a)(7+t—s’) y
" (202)
< (=) 0 [ da s

Since s > 1 and n € (0,1 —a), we have 0 < =7 < 1. Hence we can use Holder’s

inequality in (202) to obtain
T -2 (1—i+s>(’r+t—s’)
[o(m + 86 < Cllu(r) oo, [0(T)]o0) 1+/ e U x

-
X (T+t-— s’)_%<1_7> (/ uTt (s ) dx) T (203)
Q

X (/ v (84 dx)w ds’] :
Q

[o(r +O)lly5 < Clu(T) oo, [0(T)]o0)

Now we can write

1+ sup [o(sH|77,, . %
el T] ” ( )H(l )y,

T+t
x / [e"\lg(TH_S/)(T +i— sy v'>] x (204)

1-=
« (e)\1(7+t5’)/uq+avs—as@1 dx) 7 ds/]
Q
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Hoélder’s inequality in the time integral in (204) implies

[o(r +O)lys < Cllu()los: [o(T)lee) (14 sup o)) 5 %

s'e|r,m+T)

1
T+t ~
% (/ 67)\1'7’5(7’4’15*5/)(7— 4+t — 3/)*%(’7/*1) d8/> ! X (205)

T+t , 1-
% (/ 67)\1(7'+tfs ) / uqua s— agp dx ds ) )
T Q

We apply the inequality (40) to the estimate (205) to get
1+ sup ||U( )”(1 T])'y’5

s'e[r,7+T) ) ] (206)

2

[o(r + D)lls < Cllu(T) oo, [0(T)]o0)

T+ A~/ 2 N+1 / 7
X / e V=) (r Ly )T (D g

The integral in (206) is uniformly bounded with respect to t,7 > 0, since

N+1
Ml o< (207)
due to (198). Hence
[o(7 + D)5 < Culm)loos [0(T)]oe) |1+ Sup HU(S/)HH"W,(;] : (208)
s'elr,T

Using Young’s inequality in (208) we deduce that

[o(m + )5 < Cllulm)loo, [0(T) )

s'elr,m+T)

1+ C.+¢ sup ”U(Sl)”(l—n)w’ﬁ] . (209)

Recall that n € (0,1). We set £ > 0 small enough in (209) and thus there holds

sup u(s')],r 5 < CJu(T) oo, [0(7)]o0)-

s'e[r,7+T]

Corollary 1 and Lemma 5.4 now imply

sup fu(s) oo+ sup Ju(s) oo < C(J7) oo, [0(7)o0)- (210)

s'e[r,7+T) s'e[r,7+T)

Assume 0 < s < 1. Similarly as in (200) (here we can choose arbitrary € € (0, 1))
we estimate

T+t
lo(r+t)]1s <C {HU(T)HL(; +/ e~ Me(rHt=s) / uiv®(s')py da ds'}
T Q

q T+t
”U(T)”Lg—l— sup ||u(8/)||oo / €_>\1€(7+t_5/)/vs(8,)901 dx dS, )
s'e[r,7+T) T Q

ol

<C




Corollary 1 implies

T+1
[o(r + s < Culr) s To(r)]c) [1 T / e Nie(rH=s) / ()1 da ds’] (211)
T Q

From (211) we obtain

[o(r + D)5 < Clulm) oo, [0(T) )

T+t
1+ sup ||v(s’)”‘1q75/ e Me(rHt=s) ds/] (212)
s'€[r,7+T] T

Since the integral in the estimate (212) is bounded with respect to 7, ¢, we can write

[o(m + )16 < C(Ju(T)]oc, [0(T) )
s'e[r,m+T)

1+ sup ||U(S’)||’i,5]- (213)

If s = 0 then we are done and (210) holds. If s > 0 then using Young’s inequality in
(213) we deduce that

[v(m+ D)1 < C(JulT)]o0, [0(T)]s) (1 +C.+e sup HU(S/)H,(s) -
s'e[r,T

For € > 0 small we finally come to

sup Ju(s)1,5 < C(Ju(T)|oos V(7)) (214)
s'e[r,7+T)|

hence (210) is true due to Lemma 5.4 and the proof of the Theorem is complete.
O

Theorem 5.2. Assume p,q,r,s as in Theorem 2.6 and s > 1. Let (u,v) be a global
nonnegative solution of problem (2). Then for 19 > 0 and T > 0, there ezists C =
C(p7Q7T757Q77—07T7 ||u<TO)HOO) such that

[o(t +T)ss < Clo®) s (215)
for every t > 1.

Remark. The constant C' from Theorem 5.2 may explode if 75 — 07, and may be
large for T' large.
Proof of Theorem 5.2. In the proof we will use the following notations
r—1

a=—-" in case r > 1, (216)
p+r—1

a >0 sufficiently small in case r <1 (217)
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and .
7/: S—(I) 6,: (Q+a)(3_ ) (218)
1—a s—a

First we prove the following estimate

s [v(s)]y.6 < C(T, |u(ro) o) [0(T) |45, 7270 (219)
s'elr, T+

where the constant C' is bounded for T" bounded. Note that s > 1 implies s < 7' and
due to the assumption

n 2 0 r—1 <N—i—3
S —— Inax
N+1 p+r—1 N+1

and any of definitions (216), (217) there holds

N+3
T ——. 220
TSNt (220)
Fort € [0,7] and ¢ € (0, %) we estimate
T / *M<1*%) q,,8( /
[o(r + )6 < C{lo(m)lys + (r+t—s) >V fulv®(s')]rs ds
Tt " wn -1 ) / (221)
<C |:”’U(T)”,Y/75 —i—/ (t4+t—45") 2 (1) / u® v ui™" (') py dz ds’} :
T Q
Corollary 1 implies
q—¢’
[o(m + )6 < C [lo(r)lys + ( sup ||U(8')||oo> X
s'e[r,m+T)
T+t 1 ,
X / (T+t— s/)f%(kV) / u® vu(s )y do ds
T Q
(222)

< C lo(T)lys + (14 fu(mo) o)™ x

N+1 1

T+t L )
x/ (T—i—t—S/)_T( _w’)/uE v*(s")py do ds']
T Q
T+t ,7M(1,L> & sr g ,
< C(ulmo)lo) | To(P)lys + / (rtt— sy T 07 / () da d|
T 9]
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We rewrite (222) and use Holder’s inequality (note that 0 < 2= < 1) to obtain

[o(7 + D)y < CJu(mo)]lo) [uvm\m n / . sq—%(l—%) y

« /Q v (Y] [o(s Yooy ds’]

< C(fu(ro) ) [uvwm s [T

« ( /Q W (), dx)l_”l' ( /Q o (5 )on dx)

Now we can write

4\‘ -

[oN

CIJ\
L

[o(7 + )]s < Clul7o)]o) [ )y + Sup [o(s') 7.5 %
s'e[r, T+
T4t 1 1- (223)
></ [(7‘~|—t—s) A ’}(/u‘”“sa( )gpldx) ds'].
T Q
Hoélder’s inequality in the time integral in (223) implies
[o(7 + D)y < CJul7o) o) [HU(T)UM + sup Ju(s)]ys X
s'e|r,m+T)
T+t ~1q (224)
x(/ (7-+t—5)—T _1)ds> (/ /uq+“5a goldxds) ]
We apply the inequality (41) to the estimate (224) to get
[o(r + D)5 < C(T, [u(70) ) [HU(T)M + supJu(s)]ys %
s'e[r,m+T)
(225)

T+t i
X (/ (r+t—s)"2 0D ds’) ’ ]

where the constant C' is bounded for 7" bounded. For Tj sufficiently small there holds

1
2C(To, [u(70)]0)

T+t
/ (r+t—g) 20 D¢ < for ¢t € (0, Tp),

since the condition (7 — 1) < 1 is true due to (220). Hence

sup Ju(s') 1.5 < C(To, fu(7o) o) [0(T) 6.

s'e[r,7+T0o]

As in the proof of Lemma 5.1 i), this estimate holds for every Ty > 0.
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Next for 7 > 19, T'> 0, t € (1,7 + T, we prove

1
2—9"

/t [o(s) .5 ds” < C(T, Ju(T)loo) ot + T)l1s, v = (226)

We estimate

N+1

uwwnwgc[<t—T>-]¥“<l—i>uv<f>||1,a+ / (t =) () Jutol () |15 ds' | (227)

N43 : N+1
1 imply 7' <7y < ¥, hence

N+1 1
_+(1__)<17
2 Y

Integrating (227) on interval [7, 7 + T with respect to ¢ we have

The conditions 1 < ' <

T+T

o()],s dt < © {nv( ha [ =) 0D

T+T
/ / (t— )2 =) uted (s7) 15 ds’ dt]

Now we use Fubini’s theorem in the last term in (228) to obtain

(228)

T+T

Jo(t)]g dt < C {T 0D o) g -

+ /THT ( / (t — &)y F0-9) dt) 151 ds,]

Since s € [r, 7 + T, we can estimate

T+T
/ (t—s) 2 03) q < o= (3),

!

Due to (229) we have

[ Wk @< or =200 [ls s /

T+T

Jutv(s '>||wds']

(230)
<o) [lo@hs+ | s Juls)le / / “ ool )er de ds
s'€[r,7+T)
Corollary 1 yields
T+T
[ 1@k
g (231)

< (1) [uvmul,a (Lt ulmo) o)™ / ' / [0 ()] [o(s ) dz ds’
5]



Now Hélder’s inequality in the last term in (231) implies

/T [o(®)].5 dt < C(T fu(7)]oo) [”U(T)HLJ

T+T 1‘& T+T , p”
+ (/ / utt (s )y da ds’) (/ / v (8" )y dx ds/)
T Q T Q

We use (41) to obtain

(232)

=

] |

1
57

[ 1ol dt < O ur)le) [nvmum( [ a9) ] (233)

In the last term in (233) we use the interpolation inequality

, e (-1

[o(HI 5 < ToOIs ()57 8 €l +T1.

From the definition (226) of v we see that % = 1. Hence

1

!
v +

[ 1t dt < O ur)l) [uvmuw( [ O s 0

/
Y=

< C(T, Ju(m)loo) | o(7) 15 + < sup HU(S’)Hm) -

s'e[r,7+T)

LT (234)

</TT+T [o(s")]. ds’) '

2
X

Using Young’s inequality we have

/T [o(t)]4s dt < C(T' JulT)l0) | Jo(7)]16
: (235)

o swp ) +a( / ||v<s’>u%ads')
s'e[r,7+T) T

Note that % = 1. For ¢ sufficiently small in (235) we have

T+T
/ [v(@)]s dt < C(T, Ju(7)] ) [||U(T)||1,6 + sup ||U(S')||1,6] :
T s'elr,t

hence (24) yields the assertion (226).

Using both estimates (219) and (226) we are ready to prove the assertion of the
theorem. We use similar estimates as in the proof of Theorem 5.1. We choose t,T" > 0.
Note that there exists 7/ € [t, 79 + t] such that

T0+1t
[o(r)lys = 757 / [o(s") s s (236)
t
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Again, this 7 may depend on ¢ and v. Since 7o+t + T € [7/, 7" + 79 + T}, there holds

[v(ro+t+T)|ys < sup  u(s)]ye. (237)
s'e[r!, 7' +710+T)

We use the estimate (219) with 7, T replaced by 7/, 79 + T, respectively, to obtain

sup o8 |y.s < (T fu(ro) o) [o(T) s < C(T Jul(70) o) [0(7) |15 (238)

s'e[r! 7' +7o+T]

where C' does not depend on 7/, since the constant in the estimate (219) is independent
of 7. The estimate (226) with 7 instead of 7" implies

/tm“ [o(s) .6 ds” < C(T, Ju(70) o) [0(70 + 1) 1.6- (239)
Finally, the equality (236) and the estimates (237)-(239) imply
[o(70 + 1 +T)]5 < C(70, T’ Julmo) o) (70 + )15 for ¢ = 0.
Since s < +/, finally we obtain
[o(t +T)lss < C(ro, T’ Julo) o) [0(E)]1.5

fort > 19and T > 0.
O

Lemma 5.5. Let p > 1, p+r < %—I‘f and conditions (26), (31) be true. Let (u,v) be

a global nonnegative solution of problem (2). Moreover assume

(p+r) <p—NL+1>+T<1. (240)

1—r7r
Yye\ptr,——a—
P— N

and T > 0 there exists C = C(p,q,r,s,) such that

Then for

[u@®)]6 < C A+ [ulT)]y5)  Jort =T

Proof of Lemma 5.5 We choose

1—7r
Y€ (P‘f‘ra — > (241)

T N+1

This choice is possible due to the assumption (240). Next observe that the assumption

p+r< %—f{) implies pj—;‘ > 1. We will choose
N+1

a € A sufficiently close to 0. (242)
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The constant a will be specified more precisely during the proof.

Now we introduce the following exponents ay, oo, ag satisfying conditions

Qaq, Og, Q3 >0, a1+ oo + g = 1, (243)
(I—a)oy +(p+1—a)a =p, (244)
-1 —1
rtap=1 <o < L, ay sufficiently close to w (245)
w—(1-r) p+1 w—(1-r)

. . fng THY=D o p
The condition v > p + r implies —(1—r) > pi

We observe that there exist o, ag, a3 such that the conditions (243)-(245) are true.
Indeed, we choose as to satisfy the condition (245). We set

p—ax(p+1—a)

= 246
aq 1—a ) ( )
hence (244) is true. Since ap < -£5, we have p — as(p +1) > 0. For every a € A there

holds a; > 0. The inequalities
r+qy(p-1) > 1p—1) -l
w—1Q=r) " w-—>1-7r)" p
imply ag > ’%1, hence p(1 — ag) < 1. Therefore

1 —
o = PEZ9) (247)
1—a
for a <1 —p(1 — az). Finally we set
3 = 1 — 1 — Q9 (248)

and this with (247) proves (243).
We define exponent

k=r—aa;— (r+a—1)ay.

For a small there holds
0<r<l. (249)

Fore € (0,1 — aw), 7,7 > 0,t € [0,T] we estimate
Ju(r +8)lhs < C |lu(m)lys
T+t , N41 1
+ / e late) (=) (p 4y s')_TO_?) |u"vP(s") |15 ds’

T+t L
=C {HU(T)HW; + / e =) (r 4y ) () (250)

X/ [uavl—a}al |:e—)\1(T+t—s’)ur+a—1vp+1—a(S/)}a2 %
Q
X [ua%(s’)] 3g01 dz ds’ ] .

o8



Here we used (22), (21), the assertions iii) and v) from Lemma 3.1 and the equality
(244). Now, using Holder’s inequality in the last term in (250) we obtain

T+t
”u(T—l-t)H%(; < C |:||u<7—>H'y,5+/ €7A1€(T+tfs/)<7.+t_S/)—%(l_%> X

T

a1 a2
X (/ uavl—a(sl)gpl dx) (/ 6_)\1(T—H_S/)ur+a_lvp+1_a<5/)g01 dl‘) >
Q Q
X (/ ues (s")py dx) ds’
Q

Due to the estimate (34), there holds

i A / +1(1_1
lu(r +t)],6 <C [||u(7-)||%5 _|_/ e M=) (| s’)*T( 1) o
T o
- (/ e M(TH=yrraslypiza( gy o) dSU) x (251)
0
K as
X (/ ues (s') ey dx) ds’
0
Now we prove
< (252)
Qs

Due to the equality (244), a; + (p+ 1)as is close to p and so (1 + pay — p) is close to
v(1 — a; — ag) = yas. The condition ay > % implies

r+as(l—r) <~y(1+pay —p),
hence MO‘Z—(;_T) < 7. Thus we proved (252) for a small.

The inequality (252) and the estimate (251) yield

lu(r + )15 <C [HU(T)H%(S + sup fu(s)]5s %
s'e|r,m+T)

T+t
> / €*>\1€(T+t*3')(7- + 1t — 5’)_¥<1_%> X (253)
a2
x (/ 67)\1(T+tfs/)ur+aflvp+1fa(S/)(pl dx) dS/] )
Q
Using Holder’s inequality in (253) we obtain

[u(r + ) < C | lu(@lys+ sup Juls)]]5 x

s'e[r,7+T)|

T+t a2
% (/ 67/\1(T+t75l) / ur+aflvp+1fa<8/)901 da dS/) % (254)
T Q
T+t - , 1-as
X (/ eililaz (r+t=s )(7‘ +t— s')f%(lf%)ﬁ ds’) ] .
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Now we use (38) in (254) to estimate

[u(r +t)ls < C [Ju(@)lrs+ sup Ju(s)]] x

s'€[r,7+T)

T+t - 1-az
; ( [ e g dsf) ] |

We prove that the integral in (255) is uniformly bounded with respect to 7,t, i.e. for

(255)

some o close to % there holds

N+1 1\ 1
Sy F P < 1. (256)
2 Y 1—&2

For ay sufficiently close to ng U there holds

1 1 —(1—-
(1 — —) is sufficiently close to M
v) 1 —as v
Our choice (241) of v implies
w-—(1-r 2
v N+1
hence the inequality (256) is true.
We use the estimate (255) to obtain
lu(r + 85 < C |fu(T)lys + sup ||U(S')||§,5] : (257)
s'e[r, 7+

Since the inequality (249) is true, we use Young’s inquality in (257) to obtain

Ju(r + )15 < C
s'e|r,m+T)

|w(7)]y6 + Ce+€  sup IIU(S')II%(s] :
Thus for € > 0 small the assertion follows.

O

Lemma 5.6. Let p > 1, p+r < %ﬁ’ and conditions (26), (31) be true. Let (u,v) be

a global nonnegative solution of problem (2). Then there holds

T+T . N+1
[ s scs Dl por e (L) )

where C' = C(p,q,r,5,Q,T).
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Proof of Lemma 5.6. We choose

1, N+l
> (p+r) I SN-T
Note that p +r < 2_(;+T) < N since 1 <p+r < 59

We introduce the following exponents oy, as, a3 satistying conditions (243), (244)
with a € A and

"(p—1 1-—
M N el (259)
vp—(1—r) 2—r " p+1
Note that the condition 7' > #ﬁr) implies % < 5= and p+r > 1 implies

= < -47. Observe that there exist oy, as, a3 such that the conditions (243), (244)

and (259) are true due to similar arguments as in the proof of Lemma 5.5 (we only
replace v with /).
For 7,17 > 0,t € (1,7 + T] we estimate

51(-3)
[u@lys <C|{t=7) () s
t 1
+ / (t— s’)’%@*v) [u"vP(s") 1.6 ds'}
where we used Lemma 3.1 iii) and v). As in the proof of Lemma 5.2 we obtain

+T 1,M<1fL) T+T . , ,
[ s ar <t 0 s [ el as| o)

since

Using (260) we have

4T 4T
/ WWW%“SC@wWWm+[ Kﬁf”@ﬂx o
% [ur—l—a—lvp—i-l—a(sf)]a? [uf% (s’)] o1 do ds’:|

where a € A and kK =r — acy — (1 + a — 1)as. Due to the condition (243), we can use
Hoélder’s inequality in the last term in (261) to have

T+T T+T al
[ ohsars e+ [T [ei ]
T T &
as

Qs
X [/ u T P (8 gy daz} {/ ues (s') dx] ds’] :
Q Q

We use (34) to obtain
T+T T+T a2
/ ||U(t)||,y/75 dt S C |:||U(7')”175 —|—/ |:/ u7‘+a—lvp+1—a(sl)901 dl’:| %
r T Q

X Vﬂ uss (s dx} h ds'] .
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We use Holder’s inequality in the time integral in (262) to have

T+T T+T a2
/ ”u(t)”%(; dt S C ||U(T)||175 + </ /uT-&-a—lUp-I—l—a(S/)SDl dx dS,) <
r T Q

(263)
T+T K 1-a2
x ( [ Iz o) ] .
T @3’

It is easy to see that -~ > 1 for a sufficiently small. If =* - > 1 then in the last term in
(263) we use the 1nterpolat10n inequality (Lemma 3.4)

’ K
Y- a3 ag ’Y(@*U

|IU(S’)||1~“§ < Ju(s )Ill I (s Mys> 70 SelnT+T (264)

Observe that the 1nequahty ag > Tﬂ gp i; implies = <" (cf. the proof of inequality

(252)) and ap < 3=~ i

(£ -1 ‘(1 — s '1-4%
Qa3 ’7(0[3 ): K '7( H)<7( V):l (265)
l—ay o —1 l—ay, v —1 v =1
We use the inequalities (264) and (263) to obtain
T+T
/ [u@lys dt < C(T) |fulT)]1s
+T v’—% ag YV (E5-D l-o
i (/ s 7 () ds’)
I
< CO) (lu(m)lrs + ( sup ||U(S’)||1,5> x
s'e[r,7+T]
4T Loy VEE-D 1-az
x (/ )5 T ds>
Due to (265) we can write
T+T a;”;—a?
/ [u@)lys dt < C(T) |Ju(r)]1s + ( sup ]HU(S/)HL(F) X
T s'e[r,T+T

ag'y/(a—’("g—l)

T+T ~—1
< ([ 1aas)
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Using Young’s inequality we have

T
/ [u@)lys dt < C(T) |fulr)]1s

k T+T K
+ < sup ||u(5’)‘|1’5> + (/ lw(s) .5 dsf) ] )
s'elr,7+T] T

Note that k£ < 1 for a small. Hence Young’s inequality and (24) imply

1 T+T
Lt fuls+ swp ful)ls| +5 [ Tl de

s'elr,m+T)

T+T
/ [u(®)]ys dt < C(T)

This proves the Lemma.

U
Lemma 5.7. Letp> 1, p+1r < %i‘f, s <1 and condition (31) be true. Let (u,v) be
a global nonnegative solution of problem (2). Moreover assume (240) and
1—r N -1
0<g< 5 (1 - s) (266)

Then for 7,7 > 0 there exists C = C(p,q,7,8,Q, T, |u(T)|1s, [0(T)|15) such that

N +1

[a(O)lks + [o(O)es < C for k € {1 ﬁ> s

Remark. The constant C from Lemma 5.7 may explode if 7 — 07, and is bounded
for |u(7)|1s, |v(7)]1,s bounded.

Proof of Lemma 5.7. We use Lemmas 5.5 and 5.6 and arguments as in the proof
of Theorem 5.1 to obtain

sup [u(s')].s < sup Ju(s) |y < C (1 + [u(m)]6)
s'e[r,m+T) s'e[r!, 7' +7+T)

) (267)
_ ¢ (H% [l dt) < O(r) (1 + [u(r)]5) < Co

for 7 € (0,1), 7 chosen by (241), Cy = Cy(7, |u(7)]1,5) and some 7’ € [Z,7]. Co may
vary from step to step, but always depends on parameters in brackets. The constant

in (267) may explode if 7 — 07. We prove the following assertion

sup [o(s) ke < Co (L4 Jo(T)rs), T 20 (268)
s'elr,T+T

for k < N+1 close to N+1
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For 7 > 0,7 > 0,t € [0,T] we estimate

lo(r + )lus < C [Hv<r>||k,5
T+t
+ / 6_/\71(T+t_5/)(7' +t— s’)f%(k%) / ulv®(s') gy da ds’] .
T Q

Assume s € (0,1). We use Holder’s inequality in the spatial integral in (269) to obtain

(269)

[o(7 +Dks <

« (/Q () dx)e (/qufe@')% dx)l_e ds’]

where § = 1—£ € (0,1 — £=5). Due to the assumption (266) for k < £=5 sufficiently
close to 341 there holds

T+t
T B

q < 5 )
P—wa
hence 1
—T
1o =7 (271)
0 p—5g

Thus there exists v > 1 satisfying the condition (241) and we can use Lemma 5.5,

(267) and (270) to estimate

T+t
[o(r +Dlks < Co [[o(T)lrs + / e*%(ﬁt*s/)(T +1— s’)—%(l—%) X

X ( /Q 079 () dx)l_e ds/] :

5 = k, we can write

[o(m+Dlks < Co [Jo(T)ks+  sup Jo(s)]is x

s'elr,7+T)

T+t
" / 6_%1(T+t—s’)<7_ 4t 8’)*%(1*%) ds'] )

(272)

For k < N“ close to NH the integral is finite and uniformly bounded with respect to
7,1, hence the estlmate (272) implies

[o(m+B)ks < Co

[o(T)lks +  sup IIU(S')IIZ,al- (273)

s'e[r,m+T)
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In (273) we use Young’s inequality to obtain

[o(T +1)]ks < Co
s'e[r,7+T)

[o(m)lks + Ce +& sup Hv(s/)Hk,zs] :

This proves the assertion (268).
If s =1 then from (269) we deduce

N+1 1

T4t
[o(r+ )l < C[M@N%w+/ e (e - )R

0 1-e—0 (274)
X /Q[uavl_“(s’)r[uq_ofw(s')} [v%(s’)] 1 dw ds’]

where a € A and 0 < € < &’ < 1 for € such that 6 := 6(¢’) :1—5’—%7@8/ €(0,1)
(this is possible, if & > 1). Note that 5% > 0 for € > 0 small, since ¢ > 0. Hence
there holds % < k. We use Holder’s inequality in the spatial integral in (274) to
obtain

+1

T+t
Jo(r + D)l < CHMﬂhﬁ+/‘ e HH (1))

€ 0
X (/ u o' (s") da:) (/ w7 (s d$> X
Q Q
1—e—0
1—(1—a)e ’ ,
X (/v =0 (5" )¢ d:c) ds]
Q

Using (34) we have

T+t
o+ H)lls < CFMﬂhﬁ+/’ e 1 )0

0
X ( /Q u' e (s dx) [o(s) st~ ds’].

Due to the assumption (266) for k& < 2+ sufficiently close to £14 and &’ small there
holds .
1—r)(1—1
)
P—7Nqa
hence
q— ac - 1—r
0e) p— w5

q—ag’

6(e)

for &' sufficiently small. Thus there exists v > satisfying the condition (241) and
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we can use Lemma 5.5 and (267) to estimate

Jo(m + )]k < Co

[o(7) 1.6
T+t
+ e?W”%H%—w”fW9w>W““5].

Hence we have

[o(m +B)ks < Co

[vlks+ sup o))" a)gdS/]'

s'e|r,m+T)
Since 1 — (1 — a)e < 1, we can use Young’s inequality to obtain
[o(7 +)]rs < Co (14 [0(7)].s)

for k < N“ close to N*i

It remains to prove the assertion (268) for s = 0. In this case we estimate

WU+Wm§CmWﬂW
T+t i
+ / e*%(”t’sl)(T +t— s’)_N%(l_%) / ul(s" )y da ds’}
T Q

<

(275)

[o(T)lks + sup  Ju(s)[Gs X
s'e|r,m+T)

T+t
X / e B (r oy o) (%) ds’] :

Finally, we use Lemma 5.5 with any v > ¢ satisfying the condition (241) to obtain the
assertion (268).
We prove

T+T
/‘nwwmmscawmu+wv+ﬂhw (276)

for k€ [1,441). For 7> 0,7 > 0,¢ € (7, T + 7] we estimate

Mwhgso&—ﬂNf@UMﬂm

t
_|_/ (7— _ 3’)_T+(1_E> / uqu(sl)gpl dx d$/:| .
T Q

As in the proof of Lemma 5.2 we use (277) to obtain

T+T N4 1 T+T
[ wohsar<or P00 [+ [T [ wnee)eraeas]. @
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Let s € (0,1]. Then Holder’s inequality implies

T+T 1 N+1 1 1
/ [o(®)s dt < CTF (D) | Jo(r) s

[ (o) ([ s

where § =1 -7 € (0 1— N—Jr}s) There holds (271) for k < % close to % and

there exists v > 1 satisfying (241). Thus due to Lemma 5.5, (267) and the definition
of 6 we have

T+T N+1 . T+T ) )
[ s at < a0 s+ [ 1laas]. o)

If s € (0,1) then (279) implies
T+T +T s
/ |lv(t)|rs dt < C(T, Cy) [HU(T)HL(; + (/ lo(s") ks ds’) 1 .

Young’s inequality and (24) then yield the assertion (276). If s = 1 then (279) implies

T+T LN 1 T+T
/ [o(t) s dt < CoT M (1-¢) [”v(ﬂul,ﬁf Jv(s") .o ds’}.

For Ty sufficiently small with help of (24) we deduce

%\»Q

T+T0o
/ [v(®)lks dt < C(To, Co)o(r + To)|1s-

This estimate is actually true for every T' > 0 fixed, hence the assertion (276) is true
also for s = 1.
If s = 0 then the assertion (276) follows from Lemma 5.5, (267) and (278).
Combining (268) and (276) (cf. the proof of (276)) we obtain

sup  |v(s) ks < Co(1 4 Ju(7)1s) < Co (280)

s'elr,7+T]

for k € [1, 84, C1 = Ci(7, |w(7)]15, [v(7)]1,5). The constant C; may vary from step

to step, but always depends on parameters in brackets. Now we prove
sup fu(s) ks < Cr (14 Ju(T)ks) (281)
s'e[r,7+T)|

N+1

for k < 2L sufficiently close to X+

For r > 0 we estimate
\MwwmﬁSOWmmﬁ

T+t A1 / +1 1 (282)
+ / e 2= (r 4t — g )77(1 0 / uvP(s")py da ds’
i Q
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We use Holder’s inequality in the spatial integral in (282) to obtain

T+t
Ju(r +8)]ks < C {HU(T)Hk,& + / e FH= ()T (1)

< (frrna) ([ i) o .

where 0 =1 — 7 € (0 1-— N—Hr) Observe that p+r < %ﬁ’ < % implies — Lr <

+
. For k < £ sufficiently close to £, there holds

p N+1

N -1

and we use the estimate (280) to obtain

lu(m+D)les < G

T+t
fu s + [ e H ) 0D

( /Q ut (') dac)l_e ds’]

[u(T)les + sup Juls)ks X (284)

s'e[r,7+T)

T+t
y / e—>‘2—1(7+t—8')(7- +t— S’)_%O_%) dS/]

X

IN

< G [I\U(T)Hk,ﬁ sup ||U(5,)HZ,5]-

s'elr,m+T]

Since r < 1 in (284) we can use Young’s inequality to obtain

[u(r +Dlks < C

[u(T)l5 + Cc +&  sup ||U(S')Hk,5] :
s'e[r,m7+T)

This proves the assertion (281).
Now we prove (281) for r = 0. We estimate

u(r + Oles < € {uumuk,g

T+t
N / €_g<7+t_sf)(7+t_8/>;1(1,1)/@19(3')@1 dz ds’]
i Q

< COllu(n)les+ sup Jo(s)]p, *

s'elr,m+T)

T+t
« / 6—’\71(7—&-1&—3’)(7- +t— S/)i%(lii) ds/] .
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Finally, we use (280) to obtain the assertion (281).
We prove

T+T
/ a(®)s dt < C(T, C1) (L + Ju(r + T)]1s) (286)
for k € [1,241). For 7 > 0,7 > 0,¢ € [r,7 + T we estimate

N+1

lu()s < C {(t ) D () s
+/:(t—s')—Nz“(1—i>/qup( Ner dz ds].

As in the proof of Lemma 5.2 we use (287) to obtain

T+T N1 L T+T
[ s a < e F 0D @l + [T [ wee ] ess)
- T Q

If » > 0 then Hoélder’s inequality implies

(287)

T
/ [u@lks dt < C(T) [”u(T)”l,é

" /T”T ( [ dx)l_e ( e dx)eds’]

where § =1 — 7 € (0,1 — 7). Observe that p +r < { implies 17157; < i

For k < £ sufficiently close to &1, there holds 2 < £+1. Hence using (280) we have
T+T T+T

/ Ju(®)]ks dt < C(T, C) [”U(T)Ilw +/ Ju(s) ks ds/] : (289)

Finally, (289) and Jensen’s inequality imply

[ s < een e+ ([ aas) |

Young’s inequality and (24) then yield the assertion (286). If r = 0 then the assertion
(286) follows from (288) and (280).
Combining (281), (286) (cf. the proof of (276)) we finally get the assertion of the

Lemma.

O

Proof of Theorem 2.7. Denote Cy = Co(7, |u(7)|16,[|v(7)|1s). Co may vary

from step to step, but always depends on parameters in brackets. Let 7 > 0,7 > 0.
Assume that there holds

N +1

sup  Ju(s)|ks + sup Jo(s) ks < Co, for some k € (— — €, oo) (290)
s'e[r,7+T) s'elr,7+T) N -1
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where g9 > 0 is sufficiently small. In Lemma 5.7 we proved (290) for k € [1, %£}) . For
the whole proof we choose

M- k ) k
p+r’ q+s
For k chosen in (290), it holds M, M’ > 1, since max{p+r,q+ s} < J£. This is true,
since ¢ + s < (=n0- 3519 p)(l vir) < (1 - N_HS)+S_ o,

If r > 0 then we use Holder’s inequality to obtain

</9qu Mp (¢ dx)“lf - (/QUMT( N dx)ﬁ" (/Qvﬂflp(s/)(p1 dx)i’f 291)

Mp
k

for s € [r,7+T)] and n € (0,1). If we choose n =
imply

= 2 then (291) and (290)

o
( [, dx) < Juls)slo()E 5 < Co (299)
If s > 0 then similarly we obtain
1
/ , M/’
([ (e an) ™ <Ll < G (293)

Assume r > 0. For 1 < K < oo satisfying

N+1/1 1 <1
2 M K

and t € [0, T] we estimate

T+t
Ju(r + )lxs < C [HU(T)”K,a + [ PG X

1 (294)
M
X (/ MryMp (), dx> ds'| .
Q
In particular, we can take
N +1
g Me L),
K<k(M)=<¢ S5 —2 (295)
OO, M Z _+1

if M <t and K = oo for M > 2L We use (292) and (294) to obtain

lu(T+t)| ks < Co
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Hence we have

sup Ju(s) s < Co(1 + [u(T)]x0)- (296)
s'e[r,m+T)

If r = 0 then for t € [0,T] we estimate

T+t A ,
||u(7')||K75 —+ / 6_7(7'-"-1?—8 )(7_ +t— S/)*T

< ([ dx)bl{ ds’] .

Now the assertion (296) follows from the definition of M and the assumption (290).

For 1 < K < oo satisfying
N+1/1 1 <1
2 M K

[u(m +1)lxs < C

and ¢ € [0,T] we estimate
[o(r +D)lxs < C

1
, , M/’
X (/ uM M (5", dx) ds’] .
Q

In particular, we can take K < ki (M’). If s > 0 then we use this estimate with (293)
to obtain

sup u(s") s < Co(1 + [v(7)x.5)- (298)
s'elr,7+T)

If s = 0 then the assertion (298) follows from (297).
For ky (M) > K > M (function k; is defined in (295)), t € (7,7 + T] we estimate

lu@®)|xs < C [(t — ) G R Ju(r) s
(299)

As in the proof of Lemma 5.2 we use (299) to obtain

T+T ﬁ
Hu(T)HM,a—l—/ (/ uMoMP (") gy dm) ds’| . (300)
T Q

If r > 0 then we use (292) to get

[ s ae < o)

T
/ [u(t)x.s dt < C(T,Co) (1 + Ju(7)[ars) < C(T, Co) (L + Ju(7)lrs) . (301)
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since k > M.
If » = 0 then the assertion (301) follows from (300).
For ky (M') > K > M’ (function k; is defined in (295)), t € (7,7 + T] we estimate

lo()lies < C[(t—T)NQH(WK)HU(T)HM',J
(302)

As in the proof of Lemma 5.2 we use (302) to obtain

7—+T ! ! #
lo(T)| a5 -I—/ (/ uM M3 (5 dm) ds'| .(303)
T Q

If s > 0 then we use (293) to get

4T
/ lo(®)]xs dt < C(T)

T+T
/ [o()lxs dt < C(T, Co) (1 + [0(7) lmaxr,11.6) - (304)

If s = 0 then the assertion (304) follows from (303).
As in (267) we use the estimates (296) with (301) and (298) with (304) to obtain

sup  [u(s)|xs+ sup  Jo(s)|ks < Co
s'€[r,7+T] s'e[r,7+T)

for all K < kq (4) —: ky(k). Note that ky(k) = oo for k > (maX{p+r7612+8})(N+1)

max{p+r,q+s}

max{p+r,g+s})(N+1
2

and we can take K = oo for k > ¢ ). As in the proof of Lemma 5.4 we

use bootstrap argument: Due to the inequality ko(k) > k for k > 2 — o with &
sufficiently small, there exists ¢ > 0 such that K (k) := min{(1+¢)k, (1 —e)ka(k)} > k.
Hence if

sup Ju(s') ks +  sup Jo(s') ks < Co
s'e[r,7+T)| s'€[r,7+T)

then

sup|u()l g5+ s Jo(s) 7 < Co-
s'e[r,7+T) s'€[r,7+T)

Denote ky = % —¢go and ki1 = I?(k:z) for i € N. Due to Lemma 3.5 there exists

iop € N such that k;, > (max{p”"’;s})w“). Hence there holds

sup  Ju(s)]oo + sup  Ju(s)]oo < Co.
s'e[r,7+T) s'€[r,7+T)

Thus the proof of theorem is finished.
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Corollary 2. Let p,q,r, s be as in Theorem 2.7 with r = s = 0 and p,q > 1. Then
for every 7 > 0, there exists C' = C(, p,q,7) (the constant C' may explode if 7 — 07)
such that

[u(@)oc +vB)]e <C, =7

for every global nonnegative solution (u,v) of problem (2).
Proof. In [17, Proposition 4.1|, it was proved that

[u@®)]s + lo@)]s <€, =0,

hence Theorem 2.7 implies the assertion.

U
Theorem 5.3. Consider problem
w— Au = uv — bu, (x,t) € Q2 x (0,00), )
v —Av = bou, (x,t) € Q2 x (0, 00),
u(z,t) = wv(z,t) = 0, (x,t) € 9N x (0,00), (305)
u(z,0) = wup(x), x €,
v(z,0) = wvy(x), ASRY) J

where Q s a bounded domain with smooth boundary, N < 2, by = 0, by > 0 and
up, vg € L>*(Q2). Then there exists C = C(2, be) such that

limsup ([u(t)]oo + [0(t)]o0) < C

t—o0

for every global nonnegative solution (u,v) of problem (305).

Remark. The proof of Theorem 5.3 can be very easily modified for system (305)
with b; > 0, however also the proof of Theorem 2.7 has to be (very easily) modified.

Proof of Theorem 5.3. The constants in this proof may depend on €2, by, however
we will not emphasize this dependence. Observe that for problem (305), it holds
A= (0,1),since r = p =g =1and s =0 (in sense of the problem (2)). Lemma 3.3
implies

/ u v (s dr < C, a € (0,1). (306)
Q
Thus there holds
T+t !/ / /
/ e A(rHt=s )/ (u“v%a(s/) +uttrye (s’)) o1 drds’ < C (307)
T Q

for a,a’ € (0,1). A direct computation shows

24a ﬁ (2—a)a 2+a—a2 _(2—a)a
U2 =|uzv 2 u 2 v 2 .
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We use Young’s inequality to obtain

a 2 -
2+ <% a 2,(1_'_ 5 au1+a,07a'
We use this inequality and (307) to deduce
T+T / 2+a
/ _)‘1(T+T_S)/u > (s)prdrds <C (308)
Q

or

T+T 3
/ / 301 dZEdS <O( )7 Qp € |:17§)

Hoélder’s inequality then implies

T T+T 2+La T+T Tia
/ /u(s’)gpl dr ds’ < (/ /u 2 (8')py da ds) (/ / 1 dx ds')
T Q Q T Q
<

(C 2+aT2+a.

/ / N1 da ds’ < G (309)

where (' is independent of v and 7. The constants C;, ¢ € N will be fixed during the

In particular, we have

proof (where C;, i > 1 will appear below).
Now we prove that there exists ty > 0 possibly depending on v, such that

4
/U(to)(pl dx S —bgOl. (310)
Q A1

To prove (310) we multiply the second equation in (305) by ¢; and integrate on € X
(1,7 + 1) for 7 > 0. Thus using (309) we have

T+1
/U(T+ 1)y do + )\1/ /v(s’)gpl dz ds’
Q T Q
T+1
= by /u(s')gpl dx ds'—l—/v(T)gpl dx (311)
T Q Q

< b201+/v(7')<p1 dz.
Q

Denote Cy := / v(0)p; dz. If there holds
Q

4
< —b
Cy < N 2Cy
then (310) is true with ¢y = 0. If there holds

4
02 > )\—lbzcl
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then necessarily

143
/{;U(tl)gol dx < N+ 102 (312)

)\

for some ¢; € (0,1). Indeed, if/ v(t)pr do > CQ for all ¢t € (0,1) then (311) for

Q A+

7 = 0 implies

A AL A
(1+ 1)02 = 20+ 32Ny

< / gpldx—l—)\l// N1 da ds’

A
S b201 +/ (0)@1 xr = bgCl + CQ ( 41) CQ,
Q

a contradiction.

Denote Cs5 := / v(t1)pr da. If there holds
Q

4
Cs < )\—15201

then (310) is true with ¢y = ¢;. If there holds

4
Cg > )\—lbgcl

then using the same argument as for (312) we obtain

2
143 1+ 3
t dz < 2 (05 < e
/QU(2)901 x M+l 3 (Al—i—l) 2
for some ty € (t1,t + 1).
In n-th such step we obtain

1+ % 1+ 4"
d c, 2 ) ¢
/Q () de < 3= “<<>\1+1> 2

for some t,, € (t,—1,tn_1 + 1) if

4
Cg, Cg, ce Cn—i—l > )\—bgcl (313)
1

Note that there exists ny = ny(Cy) such that

14+ 4\ 4
t d 2 < —b
/QU( no)(pl T < ()\1+1> C < /\1 201
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Hence we proved (310) with ¢, = t,,, if there holds (313) with n replaced by ny.

For t >0, a€ (0,1), € (0,a) v € [1,X2) and ¢, from (310) we estimate

[o(1+ o+ 8)ls sc&+an@wamﬁ

1to+t
+/ ’ e*’\l(EH*“)(HtO“’SI)(l+t0+t—8/)_%(1_%)x (314)

to

X /u(s’)gpl dzx ds’] :
Q

Observe that there holds u = (u%'~%)* (u!*99=2)'~*. We use this identity in (314) and
Holder’s inequality to obtain

[o(t+t0+1)l5s < C {lo(to)]is

14+to+t
+/ ’ 6—A1(5+1—a)(1+t0+t—s’)(1_’_to_f_t_sf)—%(l—%)x

to

« (jng%ﬂa(y)¢1<ir>a <]Qzﬂ+ava<y)¢l<ir)l_a dsi

The estimate (306) yields
Mﬂ+m+®MaSCUMMMa

15to+t
+/ ’ e—A15(1+to+t—s’)(1+t0+t_5/)—7+1(17%)x

to

l1—a
% (6Al(lHOHS/)/ul"_av_a(sl)gm dx) dS/] .
Q

For a < 1 close to 1 we have
N+1 1\ 1
)
2 v/ a

hence using Hoélder’s inequality we have

T4+to+t ,
%O+M+MMSC“MMMwﬁ/ ehosr) [

u (s )y da ds’} :
to Q

Finally, we apply (310) and (307) to obtain
lv(@)]s<C, t=T (315)

for some T' = T(v) large and vy € [1,8+7). The estimate (309) with 7 = 7" implies

lu(t)|1s < C for some t' € (T,T + 1). Finally, (315) yields
[w(@)1s + o) < C

and we use Theorem 2.7 (where u,p,r is interchanged with v,q, s, respectively) to
conclude the proof.
[

76



Conclusion

The aim of this thesis is to obtain a priori estimates for positive global solutions of

problem
u—Au = u"P, (x,t) € Q2 x (0,00), )
v —Av = ul®, (x,t) € Q2 x (0, 00),
u(z,t) = wv(z,t) = 0, (x,t) € 0N x (0,00), (316)
u(z,0) = wup(z), x €€,
oe0) = wle),  weq, J

where € is a smooth bounded domain in RY, ug, vy € L*°(2) are nonnegative functions
and p,q,r, s > 0. For general p, g, 7, s, usual methods fail. It turns out that the method
from [34] used for an elliptic problem can be modified to yield the desired results. The
modification is nontrivial and requires several technical restrictions on the exponents
p,q,1,s. Despite these restrictions, our theorems still can be used for several interesting
problems studied by other authors: See Theorem 5.3 or the case r = s = 0.

Beside modifications of the ideas in [34], we also heavily used estimates of Dirichlet
heat semigroup in weighted Lebesgue spaces and the variation-of-constants formula.
Our method is suitable for many perturbations or modifications of problem (316) and
also for problem (18) with homogeneous Neumann boundary conditions.

In the thesis, we also present our results form |29] for the following elliptic problem

—Au = a(z)|x|v, z € Q,
—Av = bx)|z|MuP, xeqQ, (317)
u = v = 0, x € 01,

where  is a bounded domain with smooth boundary, p,q > 0, pg > 1, a,b € L>®(Q),
a,b >0, a,b# 0, k, A € R. Using bootstrap in weighted Lebesgue spaces, we proved
a priori estimate of nonnegative very weak solutions, and using these estimates and

topological degree arguments we also proved the existence of positive very weak solution
of (317).
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Resumé

V tejto dizertacnej praci sa venujeme apriornym odhadom kladnych globalnych rieseni
parabolickej tlohy (316). Pre v8eobecné p,q,r, s klasické metody zlyhavaja. Ukazuje
sa, ze metoda z [34] pouzita pre elipticky problem moze byt modifikovana tak, aby
davala zelané vysledky. Tato modifikicia je netrivialna a vyzaduje viaceré technické
obmedzenia na exponenty p, q,r,s. Napriek tymto obmedzeniam, mozu byt naSe vety
pre viaceré zaujimavé tlohy Studované inymi autormi: Pozri Vetu 5.3 alebo pripad
r=s=0.

Okrem modifikacii myslienok z [34] takisto sme podstatne vyuzili odhady Dirich-
letovej tepelnej semigrupy vo vahovych Lebesgueovych priestoroch a formulu varidcie
konstant. Nasa metoda je vhodna pre viaceré perturbacie alebo modifikacie tlohy (316)
a tiez pre tlohu (18) s homogennymi Neumannovymi hrani¢nymi podmienkami.

V tejto dizertacnej praci tiez predkladame nase vysledky z [29] pre elipticky sys-
tém (317). Pouzitim bootstrapu vo vahovych Lebesgueovych priestoroch sme dokazali
apriorny odhad nezéapornych vel'mi slabych rieSeni a pouzitim tychto odhadov a metody
topologického stupha sme tiez dokazali existenciu kladného vel'mi slabého rieSenia tlohy
(317).
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