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Abstract

PERES, SAMUEL: Solvability of second order ordinary differential equations with
non-linear boundary conditions [dissertation thesis]. Comenius University in Brat-
islava; Faculty of Mathematics, Physics and Informatics; Department of Applied
Mathematics and Statistics. Supervisor: Prof. RNDr. Marek Fila, DrSc. Bratislava,
2013. 77 pp.

This thesis deals with the existence and multiplicity of positive and sign-
changing solutions of a non-linear second order ordinary differential equation with
symmetric non-linear boundary conditions, where both of the non-linearities are
of power type. It extends known results to a larger set of parameters, as well
as provides answers to two long-standing open questions. The main tool is the
shooting method.

Keywords: second order ordinary differential equation, non-linear boundary
condition, existence and multiplicity of solutions, shooting method, time map.
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Abstrakt

PERES, SAMUEL: Riesitelnost obycéajnych diferencidlnych rovnic druhého rddu
s nelinedrnymi okrajovymi podmienkami [dizertacna pracal. Univerzita Komenské-
ho v Bratislave; Fakulta matematiky, fyziky a informatiky; Katedra aplikovanej
matematiky a Statistiky. Skolitel: Prof. RNDr. Marek Fila, DrSc. Bratislava, 2013.
77 s.

Praca sa zaobera existenciou a multiplicitou kladnych rieseni a rieseni menia-
cich znamienko istej nelinedrnej obycajnej diferencidlnej rovnice druhého radu so
symetrickymi nelinedarnymi okrajovymi podmienkami, pricom obidve nelinarity si
mocninové. Rozsiruje predtym zname vysledky na vécSiu mnozinu parametrov a
taktiez ddva odpoved na dve dlho otvorené otdzky. Hlavnym néstrojom je metéda
strelby.

KIi¢ové slova: obycajné diferencidlna rovnica druhého radu, nelinedrna okra-
jova podmienka, existencia a multiplicita rieSeni, metéda strelby, zobrazenie do-
strelu.
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Foreword

Differential equations are an indispensable tool for all the branches of physics,
having also countless applications in other sciences such as biology and economics.
They have been studied for more than three centuries, and they are a virtually
inexhaustible source of mathematical problems.

For most of differential equations no explicit formulae giving their solutions
can be derived. In that case, one can only examine the existence and number
of solutions, develop approximate methods for finding them, and investigate their
qualitative properties, such as dependence on the parameters occuring in the equa-
tion and the initial or boundary conditions, smoothness, positivity or number of
zeros, symmetry, monotonicity, periodicity, boundedness or asymptotic behaviour,
a priori estimates, stability and mutual position of solutions.

The difficulties with studying differential equations are often caused by non-
linearities. In this dissertation thesis we investigate a boundary value problem
containing non-linearities both in the equation and the boundary conditions. The
problem has the form

{ W (z) = alu(z) P u(z), z € (=1,1),
u (1) = F|u(ED|7 u(£D).

Here a and [ can take any positive value, while the conditions on p and ¢ will be
specified later. As one can see, the boundary conditions are symmetric, and both
of the non-linearities are of power type. Our aim is to determine the number of
classical solutions for as large set of values of the parameters as possible.

Most of this thesis concernes positive solutions, which solve the simpler-looking
problem

{ u'(z) = auP(x), x € (=1,1),
u' (1) = 2w (L),

while p and ¢ can be arbitrary real numbers. On the other hand, if one is interested
in the existence and multiplicity of sign-changing solutions, only p > 0, ¢ € R can
be considered. We present results for p > —1, ¢ > 0 and p = —1, ¢ = 0 regarding
positive solutions, and for p = 1, ¢ € (0,1) and p > 1, ¢ € [%,7%1) regarding
sign-changing solutions.

Our principal references are [5] and [6]. In these articles the solvability of the
discussed problem was examined for p,¢q > 1 in the class of positive solutions and
for p > 1, ¢ > 1 in the class of sign-changing solutions respectively. However,
both of them left a question partially open. (Namely, the question of the existence
and multiplicity of positive non-symmetric and sign-changing non-antisymmetric
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solutions.) The answers will be given in this work, together with results concerning
some of the values of p and ¢ not considered in the articles mentioned above.

We apply the so-called shooting method, which was also used in the cited art-
icles. Its substance is to express the solutions of the given boundary value problem
by means of the solutions of the same differential equation subject to appropriate
initial conditions, leading to the definition of some functions called time maps, the
properties of which directly determine the number of solutions of the considered
boundary value problem. Thus, we will need only the tools of real analysis. On the
other hand, it is not so easy to examine the properties of the time maps, because
they are given by a formula containing an improper integral, which can be calcu-
lated only for some special values of p, and the upper limit of which is given only
implicitly.
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Introduction

Consider the problem

() = alu(z) P u(), z € (=10, (1)
! (1) = = [u( D)7 (D),

where a,l > 0, and p,q € R in the case of positive solutions, while p > 0, ¢ € R in
the case of sign-changing solutions.

The first systematic study of positive solutions of was done by M. Chipot,
M. Fila and P. Quittner in [5]. They also studied the N-dimensional version of (1)),
but they were interested mainly in global existence and boundedness or blow-up
of positive solutions of the corresponding /N-dimensional parabolic problem

uy = Au — alul’u in {2 x (0, 00),
g_z = [ul* in 82 x (0, 00), (2)
'LL(', 0) = Up in ﬁ?

where 2 C R” is a bounded domain, n is the unit outer normal vector to 912,
ug : 2 — [0,00), p,g > 1 and @ > 0. The cited article provides a complete
answer for the question of the existence and number of positive symmetric (i. e.
even) solutions of for p,q > 1. However, only partial results were presented in
it regarding positive non-symmetric solutions, the study of which is much more
complicated.

Let us remark that positive symmetric solutions of (and also solutions of
for N = 1) were independently studied in [I2].

Sign-changing solutions of were systematically investigated for the first
time in [6] by M. Chipot and P. Quittner, considering p > 1 and ¢ > 1. The
number of sign-changing antisymmetric (i. e. odd) solutions was determined for all
these values of p and ¢, but again, only partial results were achieved concerning
sign-changing non-antisymmetric solutions.

The results from [5] have been generalised in many other directions: In [I5]
the behaviour of positive solutions of was examined for all p,q > 1. Positive
solutions of the elliptic problem with —Au + «” on the right-hand side of the
equation were dealt with in [13] for A € R, p,q > 1, and later in [10] for A € R,
p,q >0, (p,q) ¢ (0,1)%. In [I1] and [16], positive and sign-changing solutions of the
parabolic problem with more general non-linearities f(u), g(u) instead of a|u|P~'u,
|u|?"tu were studied, while f(x,u), g(x,u) were considered in [2]. Many results
concerning elliptic problems with non-linear boundary conditions were summarised
in [I7]. Further extensions of the results from [5] can be found in [I}, [3, [4] [7, [8, ©9].
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However, this thesis focuses only on , and extends known results to larger
sets of parameters. It is divided into two chapters, the first dealing with positive
solutions of , and the second with its sign-changing solutions and with the
Cauchy problem for v’ = au~'/?, which can be explicitely solved. The chapters
are divided into sections.

Section [1] explains the shooting method: Clearly, all the positive solutions of
for given [ > 0 can be obtained from the solutions of the same differential
equation subject to the initial conditions u(0) = m and «(0) = 0, choosing ap-
propriate values of m > 0. This initial value problem possesses a unique solution
for arbitrary m > 0. The connection between m and [ is given by some functions
called time maps, for which a formula will be derived, showing the need of studying
positive symmetric and positive non-symmetric solutions separately. Furthermore,
thirteen cases—numbered I to XIII—regarding the values of p and ¢ should be
distinguished. This thesis discusses the first five of them, which embrace p > —1,
qg>0and p=—1, g =0, as opposed to p,q > 1 from [5]. We will see that the
properties of the time maps are much more diverse and more difficult to examine
outside the set p,q > 1.

In Section [2| an improper parametric integral as a function of its upper limit
will be examined in detail. This integral is contained in the time map formula, and
its properties will be used in the subsequent sections, in which the behaviour of
the time maps will be determined in the individual cases.

Cases [-1V will be studied successively in Sections Together they cover
p=-1l,g=0andp > —-1,0< ¢ < 7%1, and for these values all the positive
solutions of are symmetric.

Conversely, in case V (p > —1, ¢ > 1%1), possesses both positive symmetric
and positive non-symmetric solutions, which will be dealt with in Sections [7] and
The number of positive non-symmetric solutions of will be determined for
all p > 1, completing the results of [5]. However, their study for p € (0,1), which
seems to be even more complicated, remains unfinished.

Section @ deals with sign-changing solutions of , assuming p > 1. (Although
has sense for any p > 0, ¢ € R, we do not consider p € (0, 1), because in that
case the initial value problem with «(0) = «/(0) = 0 has infinitely many solutions,
which causes difficulties for the study of ) More specifically, we will investigate
only sign-changing non-antisymmetric solutions, for the existence of which it is
neccessary to suppose ¢ € (0, 1%1) We extend the results of [6] to p =1, g € (0,1)
andp>1,qé€e [%, ’%1)

Finally, in Section [10| we explicitely solve the Cauchy problem for v” = au
with a > 0, using some formulae from Section [1] as well as Cardano’s formula.

—-1/2



Chapter 1

Positive solutions

1 The shooting method and the time maps

If u is a positive solution of (1)), then u/(—I) < 0 < w/(l), therefore u has
a stationary point xy € (—[,1). So the function u(- + x¢) solves

u(0) = m, (L.1)
u'(0) =0

for some m > 0. In the following theorem we summarise the facts known about
the solvability of this problem. The proof for p, ¢ > 1 can be found in [5], for other
p, q it is done analogously.

1.1 Theorem (for p,q > 1 see [B, pp. 53-54])

Suppose m,a > 0, p € R. Then has a unique mazximal solution. We will
denote it by Uppa and its domain by (—Ampa, Ampa). Function wy, . is even,
strictly convex, unbounded from above and fulfils

1-p
m2 (U pa(T)
=l = V2a IP( ]707”0 ) y T E (_Am,p,avAmp,a)v (1.2)

where I, : [1,00) — [0,00) is given as

p+1 .
/ Vp+1_1v ifp# -1,

/1 vVinV Ip=-1

and )
ma < 00 if p>1,
Appa = ——=— lim L L3
Finally, for v € (= Ay pas Ampa) we have:
2
, Voo (a() ) i
[t pa(@)] =4 VP (L.4)

\/2a lnumpa lnm) ifp=—1.
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1.2 Definiton

For given p,q € R, a,l > 0 denote the set of all positive symmetric (i. e. even)
and positive non-symmetric solutions of by S(1) = S(;p,q,a) and N(I) =
N(I;p, q,a) respectively.

1.3 Remark ([5, pp. 53-54])
Assume p,q € R, a,l > 0. Obviously, S(I) consists of all such functions , pq|j-1
that 0 <1 < A pe and uy, , (1) = uf, , ,(1). On the other hand, if [; # Iy are such

numbers that 0 < l; < Appa, Up,,a(li) = ul, ,(1;) for i = 1,2 and [) + I = 2I,

m’p?“’

then ty,pa(- — (b — 12)/2)| 2y € N(1).

1.4 Lemma (for p,q > 1 see [B, pp. 54-55])
Let p,q € R, a > 0. Then the following statements are equivalent for arbitrary
m,l > 0:

(i) l < Ay pa and ul,, (1) =ul (1),

m’p’a m7p?a
(ii) the equation

124 ran mpPt1

0=F(m,x) = Fpgalm,z) = 2;] p+1 p+l (I.5)
— —Inz+1nm ifp=—1
2a

with the unknown x > 0 has some solution R > m, and

e
2 "\m)’
Proof: In order to derive (ii) from (i), it suffices to use ([.4), denote w,pq(l) =:

R > m and realise ([[.2)) for z = [. The reversed implication is proved essentially in
the same way. O

Function F(m,-) has obviously different behaviour for p > —1, p = —1 and
p < —laswell as for ¢ > 0, ¢ = 0 and g < 0. It also matters which of the exponents
2¢, p + 1 is greater. So we have to distinguish thirteen cases shown in Figure [I}

1.5 Lemma (for p,q > 1 see [0, proofs of Lemma 3.1 and 3.2 with pp. 57-58])
Let p,q € R, a,m > 0. Function F(m,-) has at most two zeros, and both lie

in (m,o00). We denote them R,,.(m) =: R(m) if there is only one zero, and
Rypga(m) = Ri(m) and Raypgq(m) =: Ro(m) if there are two, while Ryi(m) <
Rg(m)

Let us also introduce

1 1
(Qq—p—l)P+1<a>24‘p‘l ifp# -1, ¢>0, ¢> 2

2q q (V, VII),

=
[
=

3
p,q,a = (_> pr = _]-7 q > 0 (V[)7

1\ p+1
(—“ ) ifp<—1, ¢=0 (VIII).
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at
1
VI v ¢="%
VII v
: 111

VIII I

1 0 T P
X
X XTIT
X1 XTI

Figure 1: Cases I to XIII.

The following holds for the number of zeros:

(i) Ifg<0orqg< Z%l orp=—1,q=0 (cases I-11I, IX-XIII), then F(m,-)
has ezxactly one zero for arbitrary m > 0. Moreover, forp > —1,0 < ¢ < ’%1
(case 11I) we have

1

R(m) > (9) e (L6)

q

(ii) Ifp>—1,q= ’%1 (case IV), then F(m,-) has one zero for ¢ < a and none
forq > a.

(iii) If p < =1, ¢ = 0 (case VIII), then F(m,-) has one zero for m < M and
none for m > M.

(iv) Ifg >0 and ¢ > Z* (cases V-VII), then F(m,-) has two zeros form < M,
one for m = M and none for m > M. Meanwhile,

5T
Ri(m) < (E) < Ry(m). (1.7)
q
——
=R(M)
Moreover,
(cxm ifp=—1,q=0(I),
i P T ifp> —1, ¢ =0 (II)
R(m) = 2a orp<—1, q=0, m <M (VII),

a Em ifp>-1, ¢g=22 <a (IV)
L \a—q 07"p<—1,q:1%1(X).

Proof: Investigating the behaviour of F(m,-), we obtain the facts collected in
Table [1] They are sufficient to determine the number of zeros of F(m, -) in cases I-
IV and VIII-XIIT as well as to verify .
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;lg}) F(m,x) | monotonicity on (0, c0) wlglgo F(m, x)
ILp=-1,9q=0 00
—— decreases
Lp>-1,q=0 I >0
increases on —00
0 (a/q)l/@q—p—l)]
I p>—1,0 ptl (0, ’
P> U<g<5 decreases on
[(a/q)l/(2q—p—1)7 Oo)
mPt1 > 0
p+1 decreases if ¢ < a, _Oollf ¢<a,
V. p> —1, q:pT‘H is constant if ¢ = a, —”;Tl >0if ¢ = aq,
increases if ¢ > a o ifg>a
Vip>-—-1,q> pTH decreases on
VL. p=-1,¢>0 (0, (a/q)l/(2q7p71)], ~
’ increases on
VILp < —1,¢>0 [(a/q)!/G17P=1), 0)
1 mPH!
%()ffp-i_l M
>01irm >
VIL p<—1,¢=0 ’
p q =0ifm=M,
<0ifm<M
00
IX.p<-—1, 2l <g<o0
X g decreases —
p<—1,q="1¢ pri <0
1
XI. p<—1,¢< %
XILp=—1,¢<0
—00
XII.p>—-1,q<0

Table 1: The properties of F(m, )

In cases V-VII, F(m,-) has exactly one relative minimum, the value of which
can be easily calculated. So there exist two zeros if and only if this minimum is
negative, what happens just for m < M. Further, for m = M there is only one
zero and for m > M there is none. The validity of is apparent.

Now let us prove that each zero of F(m,-) is greater than m. In cases I-IV
and VIII-XIII it is guaranteed by the simple fact that F(m, m) = m??/2a > 0 for
p,q € R, a,m > 0. In cases V and VII for m < M, we need to consider

1
a 2qg—p—1
m< M < <—>
q
too, similarly in case VI.

Finally, equation ([.5]) is linear in Inz and xP*! in cases I and II, VIII, IV, X
respectively, so explicit solutions can be found. O

Let us notice that the set of parameters p,q > 1, which was investigated in
[5], forms only part of cases I1I-V, and we will see that more complicated and
interesting things happen outside it.
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Although there is no difference in the properties of F(m,-) summarised in
Table [1| between cases IX, X and XI, it is not clear whether or not different results
hold for in these cases. For this reason we have not merged them into one case.

Now, as a simple consequence of Lemma [1.5, we formulate a non-existence
result related to , and afterwards we introduce the notion of the time map.

1.6 Theorem
Letp e R, a>0.

(i) If ¢ < 0 or ¢ < B (cases I-IV and VIII-XIII), then N(I) = 0 for all
[>0.

(ii) Ifp> —1, ¢ =& > a (case IV), then S(I) = 0 for all | > 0.

1.7 Definiton
Let p,q € R, a > 0 and

MmyzLMAm%=i2;@(&%§mU

for all such m that R,,.(m) is defined. We introduce Li.,,.(m) =: Li(m) and
Loy ga(m) =: Ly(m) analogously. Functions L, L; and Ly will be called time
maps (associated with (L.1])).

Using Lemmata [1.4] and [I.5] we can reformulate the statement of Remark
in the following way:

1.8 Lemma
For allp,q € R, a,l > 0:

S(l) = {umvpvah—z,q : L(m) =1 or Li(m) =1 or Ly(m) = l}7
()~ Ly (m) ifqg>0
um? al- :i: M ’ N L1<m)+L2(m):2l} and q > }il
N(Z) = { Y ( 2 > [—1,]] (VfVH), 2
0 otherwise.

Thus, to determine the number of positive symmetric solutions of for given
p,q € R, a,l > 0, we need to calculate the limits of functions L, L, Ly at the
endpoints of their domains, to find the intervals where the functions are monotone
and finally to estimate their possible relative extrema. For non-symmetric solutions
we execute the same with Ly + Ly if ¢ > 0a g > ’%1 (cases V-VII). Therefore, we
now derive formulae for the derivatives of the time map and other functions we
will need in the rest of this article.

1.9 Lemma (for p,q > 1 see [0, proofs of Theorem 3.1 and Lemma 3.5])
Assume p,q € R, a > 0. Let R be one of the functions R, Ry, Ry, and suppose that
its domain is an interval, denote it by I. Let L € {L, Ly, Ly} be the corresponding
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time map. Then R, L € C*(I), and the following formulae hold for m € I:

R = () =T 9

(R(m ) 2(‘;am€)+2 R¥(m)R (m), (1.9)
(m 29 — p— 1 s RTP(m)
( ( m ) g, 1 — %Rqupfl(m)7 (I.10)
£(m) :Wﬁ( m) + %Rq(mm’(m), (L11)
E//( ) p+ 1£,( ) %
e (1.12)

~ (<q = IR ) + g = p) RIF () (R ()

Proof: The C*-smoothness of R and the formula for its derivative follows from
the implicit function theorem due to Lemma [L.5] If R € {Ry, Ra} (cases V-VII),
then is used as well. The other formulae can be derived from in such
a way as it is done in [5] for p > 1. O

Now we introduce some further functions, the relation of which to the time

maps will be seen from the subsequent lemma. They will be used in the proofs of
Lemmata [5.5 and [7.6]

1.10 Definiton
Let p,g e R, p#1,a>0 and

K(m) = K q(m) :=

2¢—p—1  RIP(m)
(p—Da 1—2Ry%, 2" (m)

for all such m that R, ,.(m) is defined. We introduce Kj,4q(m) =: K;(m) and
Ky q.a(m) =: Ko(m) analogously.

1.11 Lemma

Assume p,q € R, p # 1, a > 0. Let R be one of functions R, Ry, Ry, and
suppose that its domain is an interval, denote it by I. Let L € {L, Ly, Lo} and K €
{K, K1, Ky} be the corresponding functions. Then KK € C*(I), and the following
holds for all m € I:

L'(m)=0 <= L(m)=K(m),
K/m) = =L (g D IRH ) + g — p) RI (m) (R (m)

(p — 1)am?
Proof: Both of the assertions can be proved using Lemma [1.9] ]
1.12 Remark

Let p,g € R, a > 0 and let R, £ and I have the same meaning as in Lemma |1.11]
It follows from (|[.8]) that R has no stationary point. So it can be seen from ([[.11])
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that if p = 1 (the case not dealt with in Lemma [I.11)), then either £’ = 0 (for
g = 1) or £ has no stationary point (for g # 1).

In the subsequent sections we will look for extrema of £, among other things.
So assume now only p # 1. If m € [ is a stationary point of £, then £"(m) =0
(the case when it is more difficult to determine whether there is an extremum) if

and only if

q= ]%1 or (q—1)gR* " (m) = (p—qa. (1.13)

Let us notice that it is also a necessary and sufficient condition under that K'(m) =
0 holds. Thus:

(i) Ifqz’%lorp:qzo,thenlC’E .
(ii) If g =0, p#0,—1 or ¢ = 1, then K has no stationary point.
(iii) If ¢ #0,1, ’%1, then ([.13]) is equivalent to

(p—qla
(q—1)q’

which can hold for at most one m € I due to the strict monotonicity of
R. Therefore, if (p,q) does not belong to cases V-VII, then K = K has
at most one stationary point, which will be denoted by m = M, ., (see
Lemma . On the other hand, if ¢ > 0, ’%1 (cases V-VII), then R; and
Ry have disjoint ranges (due to (I.7))), so at most one of K; and K, can
have a stationary point, which will be denoted by m = m,,, as well (see

Definition [7.2] and Lemmata [7.3] (i), [7.6] [7.7)).

R¥M P (m) =
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2 Properties of function I,

In this section we collect statements about I, (see Theorem for its defini-
tion) needed for later investigation of the time maps. More specifically, asymptotic
expansions at both 1 and oo, explicit formulae for special values of p, and continuity
and differentiability results will be provided.

We will use standard asymptotic notations: If f, g are functions defined in some
punctured neighbourhood of a point a € R U {£o0}, then

~g(r), * —a means lim M =
fw) ~ (), = — lim S =1,
=o(g(x)), T —a means lim M =
1) = olg(x)), = — lim 5 =0,
f(z) =0O(g(x)), * - a means liriljllp % < 00.

2.1 Lemma
For arbitrary p € R we have

Ip(y) :2\/y—1<1—%(y—lHO(y—l)), y — 1.

Proof: Suppose p # —1. Then

where

_ p+1 _ 1 1 _ L r+o(\/z), =«
fp(x)—\/(1+:c)p“—1_\/z\/m—ﬁ 4\/_Jr (Vz), x—0.

(We used the Maclaurin polynomial of y — (14 y)* for a =p+ 1 and a = —3.)
So it suffices to integrate the obtained asymptotic expansion from 0 to y — 1.
The case p = —1 is analogous. O]

2.2 Definiton

For all s > 0 set
2s —1

25+ 1

Ps =

Thus,
> _ 1 _3 _5
{pn}nzo - (17 T3y T 5y 7o ')7
< 12 3
{pn—i_%}nzo N (O’ T2 3T g )
The integral I, can be explicitly calculated for these values.

2.3 Theorem
Let n e NU{0}. Then

Lyoyoly) =2/ + 1L (y77 1), =1, (1.14)
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where
- 1 ny\
= >
¢E§:2k+1(k>z’ 220
k=0
and ~ ]
Iy, (y) = 2(2n+1)1n(ym), y>1, (L.15)
where

fn(Z) (( )) <1n(\/_+\/z— \/1——2 ;::i k), z > 1

(We set (—=1)I1:=1.)
Proof: Using the substitution

VP12 — 1 =1/ Vit —1=u

and denoting
vz " _
/ (v* +1)" du =: I,(z),
0

we obtain ([.14). The integral I,(z) can be calculated by the binomial theorem.
By the substitutions

2
Vpn"l‘l = V2n+1 =

oy v e [O, g), sinv =: u

we obtain ([.15]) with
du

o= [

Integrating _/T\n(z) by parts, we can derive the recurrent relation

- oMm—1[~ 1 [ 1,
I,(2) = 5 (In_l(z)—i-Qn_l 1—;2),

from which the formula in the theorem follows. O

We will also use the following special cases of (.15 and ([.14)):

L(y) = V2In(y + V32 - 1), (1.16)
In(y) =2y — 1, (1.17)
22

Now the most important statement of this section follows, yielding the asymp-
totic expansion of I,(y) for y — oo, p > —1. It is essential for investigating the
behaviour of the time maps in many cases, but was not needed in [5] for p,q > 1.
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2.4 Lemma
For ke NU{0} and p € (—1,00) ~ {px} put
(2% — 1) 2 2k - 1)l 1
GOl R DG —p) | @R Bl kprL)

Z bk(p) eR

keNU{0}
PLFD

Then the following holds for y — oco:
(i) If p> 1, then

br(p) ==

and for p > —1 set

]p(y>
N/ES

(i) If pne1 < p < pn for some n € NU {0}, then

= B, +o(1).

—k(p+1)
Z Zhp) + B, + o(1).
/ +
b >0
(iii) If p = pn for some n € NU {0}, then
Ly) Ly (2n — 1)
;+ T~ (—br(p))y = PtV 4 W Iny + B, + o(1).
k=0 v

>0 >0

Furthermore, p — B, belongs to C* on each of intervals (poy, ©0), (p1,po), (P2, D1),
.., and decreases on each of them, while

lim B, =o00, lim B,=0,
p—po+ p—00

and for all n € N we have:

lim B,=o00, B

P—Pnt1t Pnt1/2 — 0, lim Bp =~
n

P—=DPn—

Proof: It consists of

1. expressing I,(y) as the sum of a series (see ([.19)),
2. proving the finiteness of B, and verifying statements (i), (ii), (iii),

3. and examining the properties of the function p — B,

1. Let p > —1 and y > 1. The substitution V := 2=/ ®+1) gives:

L,(y) 1 /1 [ S,
fd X p xZ.
vr+1 p+1Jiypa v1i-2x

Using the Maclaurin series of the function x — 1/4/1 — x, we get that

L(y) 1 /1 — k=D i
= R P dz.
vVp+1 p+1 1/yp+1 kgo (2k)" . v
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Levi’s monotone convergence theorem allows us to exchange the order of
integration and summation, resulting in

I,(y) _ -
Jpr1 T 2 ) (1.19)

where .
bi(p) (1 — yT"““’*”) if p # pr.,

ap(Y) = 4 (2% — 1) _
W Iny if p = pg.

2. It is obvious that for all £ € NU{0} and p > —1, ay, is increasing, positive
on (1,00), and

lim ag,(y) = (1.20)

Yy—0o0

00 if p < pi.

Now let m € NU {0} and p > p,,. Stirling’s formula (n! ~ v/27n(n/e)"
for n — oo) implies that

1

Vr(p+ 1)k

which guarantees the convergence of > 7~ by(p) (and also the finiteness of
B,). We are going to prove that

bi(p) ~

k — o0,

Tim > arp(y) = D be(p) (1.21)

because statement (i) follows from ([.19) and with m = 0, while
statements (ii), (iii) from (I.19)) and with m =n + 1.

The inequality “<” in @ is clear from and the increase of ay, .
In order to prove the opposite inequality, let us choose any € > 0. We have

that o .
€
D bilp) > > bilp) - 5
k=m k=m

for some ny > m. The positivity of i, on (1, 00) together with ([.20)) yields
that there exists a number K > 1 such that

o0 no n0o
> ) > D any) > D bilp) - 5
k=m k=m k=m

for all y > K. Joining the last two inequalities, we obtain ([.21]).

3. The decrease of p — B, on intervals (pg,o0), (p1,p0), (p2.p1), ... follows
immediately from the decrease of functions b, on these intervals.

Let us now prove that (p — B,) € C®((—1,00) \ U, Zo{pn}). We will
use the C*°-smoothness of functions b. If we choose arbitrary m,n € NU
{0} and [o, B] C (pn,o0), then applying the Weierstraf criterion, we can
verify that Y oo (bx)™ converges uniformly on [, 3], therefore we can
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differentiate it term by term. So the sum of Y~ by, belongs to C*([w, ]),
thus also to C*®((pn, 00)), from which the C'*°-smoothness of the function
p+ Byon (—1,00) N\ U, o{pn} follows.

The one-sided limits of p — B, in py, p1, ... are found easily. They—
together with its continuity and decrease on (p,.1,p,)—guarantee the ex-
istence of a unique point p} € (pp41,pn) such that B,. = 0. Statement (ii)
gives the expansion

u 1 (2k=1)!1/ 1 Natn—k By .,
I = 2V/n+1 ( ; 1> Zruvie |0
.y W) =2Vt ;Qn—2k+1 o Y T oW

for y — 0o. On the other hand, from ([.14), using the binomial theorem
and the Maclaurin polynomial of z — /1 4+ x of degree n, we obtain that

I 1 [n ;
Ipn+%(y)=x/5~2x/n+1\/1—ZZ%H(Z,)(Z—U
=0
= i Cnpz T O<i>
k=0 \/E

for z = y/™+) — 60 and some constants Cnis k= 0,1,...1n. Consequently,
Dp = Pnt1/2-

Finally, in order to find lim,_, B,, we employ the uniform convergence
of Y722 o by, on (o, 00) for a > 1, and so we exchange the order of the limit
and the sum. ]

The asymptotic expansion of /_; can be derived much easier.

2.5 Lemma
For every y > 1, n € N:

n—1

k-1 gy ( y )
I(y) = to(—Y ). = 0.
1(y) Z ok IpFtiz,, 72, Yy

k=0

Proof: Set

L= [ 5%

e In"t2y
for all N € NU {0} and y > 1. Integrating by parts, we can derive the recurrent
relation

- B Y 2n + 1-
L(y) = iy e+ Tjn—i-l(y)'
Using it n times, we obtain
- C AV &S @k—DI oy
[, = [ + / - + Rn 9
1(3/) 0(3/) . \/W p ok lnkH/Q y (y)
where
AV = (2k—DI'  (2n—1)N- @n—1I  y
Rn(y) = / \/W - ok € on n(y) ~ on 1 n+1/2
1 n n )
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for y — oo, which can be proved using I’Hopital’s rule. O

Notice that although Lemma [2.5| gives an asymptotic expansion, the corres-

ponding series
L ok Ink+1/2

diverges for all y > 1.
The last two assertions concern the continuity and differentiability of I,(y) as
a function of two variables.

2.6 Theorem
The function (y,p) — IL,(y) is continuous on [1,00) x R. Furthermore, p — I,(y)
1s decreasing on R for any y > 1.

Proof: Let us express [,(y) as

I,(y) = / "AV.p)av,

/ 1
AV,p) =

1
NN if p 1, V>1.
Obviously, A is continuous in both of its variables, and is decreasing in V. Con-
sequently, it is continuous (on (1,00) x R). Similarly, if we prove the continuity
of p— I,(y) for all y > 1 (for y = 1 it is evident), then using the continuity and
increase of I, for any p € R, we will have that (y,p) — [,(y) is continuous.
For this purpose, it will be important to know the behaviour of A(V,-). We can
derive that for any p # —1 and V > 1:

0 1
1 Vp—i—l
A R T

where

—-1>0,

which can be equivalently written as Inz < z —1 for x := 1/V?* € (0,1)U (1, c0).
Thus, 1/A*(V,-) is increasing on R, therefore A\(V;-) is decreasing, and the second
assertion of the lemma holds.

Now choose arbitrary y > 1, pg € R. Since A(-, pg) is an integrable majorant of
{AC, ) Fpspo on (1,y), and A(V, -) is continuous, we have the continuity of p — I,(y)

on [pg, ). O
2.7 Theorem
The function (y,p) — I,(y) is continuously differentiable on (1,00) x (—1,00),
while o L) 1 (Y Vv
p\Y n
—— = —=dV = J, [.22
b= 3], e = (1-22)

forally>1,p>—1.
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Proof: Firstly, we prove that p — I,(y)/+/p + 1 is continuously differentiable on
(—1,00) for any y > —1, and fulfils ([.22)). So chose arbitrary y > 1 and py > —1.
We have

L(y) /y 1
= d >
FE) 7= v, b = Po
————

=:u(V,p)
with 5 .
" _ n
a—p(V,p)— Nk <0, Ve (lLy), p>po.
Since
Ou VerH(Vetl 4 2) In* v
8_]72(‘/7])) = 4(Vp+1 — 1)5/2 > U, Ve (]—ay)7 p Z Do,

—g—g(-,po) is a majorant of {%%(-,p)}pzpo. And it is also integrable because

o yrotln v 1

‘/7 = - ~ )
ap( pO) 2<Vp0+1 _ 1)3/2 2(]90 + 1) V=1

V-1

(Taylor polynomials can be used). Consequently, p — I,(y)/+/p + 1 is differentiable
on (pg, 00), and holds. Moreover, p — J,(y) is continuous on (pg, 00) due to
the continuity of 32(V,-) for all V' € (1, y).

In order to obtain the continuous differentiability of (y,p) — I,(y)/v/p+1
(or equivalently of (y,p) — I,(y)), we have to validate the continuity of its par-
tial derivatives: Since J,(y) is continuous in p, and is apparently continuous and
decreasing in y, it is indeed continuous. And the continuity of

2 I(y) _ 1
dyvp+1 Jyrtl —1

is obvious. O
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3 Casel (p=-1,q=0)
This case is the simplest one since from Lemma it directly follows that

L(m) = \/%_a Ll(eﬂ, m > 0.

Thus, the time map, which determines the relation between m = «(0) and [ for u €
S(1), is linear. So substituting into Lemma , we obtain the following theorem:

3.1 Theorem
Assume p=—1,q=0, a > 0. Then for arbitrary [ > 0:

S() = {um,—l,a’[_u] =
N()=0.
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4 Casell (p>—1,q=0)
In this section we answer the question of the solvability of for
p>—1,¢=0,a>0 (1.23)

finding lim,,, o L(m) and lim,, ., L(m), and proving the monotonicity of L. How-
ever, let us first summarise the properties of R that will be used in the subsequent

lemmata.

4.1 Lemma
Let (1.23)) hold. Then R’ >0, and

p+1\71
2a ’

lim R(m) = (

m—0

1 1
R(m) :m(l—i- Sy +0(mp+1>), m — oo.

Proof: It suffices to use the explicit formula for R(m) given by Lemma [1.5]

4.2 Lemma
Assume ([.23). Then

lim L(m) = 2 [p+1 =
m—0 — =:L,0a(0)=:L ' —1,1
2 (5) = b0 =20 v -1,
0 if p> 0,
lim L(m) =4 1 ifp=0,
m—r0o0

00 if p € (—1,0).

]

Proof: For p > 1 and p = 1, lim,,_,c L(m) is easily found using Lemma and

(L.3). In the case of p € (—1,1), it is of type =:

JNELGD)
lim L(m) = lim p(—mp)
m—0 m—=0 /2qm =z

[un

Y

and we calculate it by I’Hopital’s rule, ([.10)) and Lemma .
According to Lemmata [4.1] and 2.1}

2 1—p
L(m)N\/ij M_l’ m_>oo’
a V m

R(m) 1
m 2amp+1’

while

m — Q.

1
amP

Connecting these two expansions, we obtain that L(m) ~
the second assertion follows.

for m — oo, and

O
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4.3 Lemma

Let (1.23) hold. Then:

(i)
(i)
(iii)

If p> 0, then L' < 0.
Ifp=0, then L =<,
If =1 <p<0, then L' > 0.

Proof:

(i)

(i)
(ii)

Firstly, let us consider p > 0. Due to , the case p > 1 is clear. So let
0 < p < 1. If L has a stationary point mg > 0, then L”(mg) > 0 according
to ([.12)) and Lemma , thus it is a point of strict relative minimum.
Therefore, either L has no stationary point or it has exactly one, which is

a point of global minimum. However, the second possibility contradicts the
fact that lim,, e L(m) = 0 (Lemma [4.2)).

For p = 0, Lemma gives the formula R(m) = m + 5-, so L(m) = 1
according to ([.17]).

Finally, let us have p € (—1,0), and let us proceed as for p € (0,1). Now L
attains a strict relative maximum in each of its stationary points. On the
other hand, lim,, , L(m) = oo so the only possibility is that L' > 0 on

(0, 00). O
l/\ lJ
L(0)
L L
e >
0 m 0 m
(b) 0<p<1 (a) p>1
l/\ l/\
L
L(0) L
_ 1
L(0)
) \
0 m 0 m
(¢) p=0 (d -1<p<0

Figure 2: The relation between m = «(0) and [ for v € S(I) in case I (p > —1,

q =0, a > 0) according to Lemmata , and See also Theorem .

From the results of the last two lemmata (which are summarised in Figure ,
applying Lemma [1.8 we obtain the main statement of this section:
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4.4 Theorem
Assume and 1 > 0. Then N(I) = 0, and the following holds for positive
symmetric solutions of :

If p> 1, then |S(I)| = 1, and L is decreasing. (Recall that L(u(0)) =1 for any
ueS().)

If p =20, then has a solution only for | = %, namely

S<1> :{x»—>g:c2+m, xe[-11] : m>0}.
a 2
If p <1 and p # 0, then

m—r0o0

1 if 1 is between L(0) and lim L(m),
IS = ,
0 otherwise,

and L is strictly monotone. (See Lemmal[{.4 about L(0) and lim,, , L(m).)
The last question we will answer in this section is whether L. o ,(0) is monotone.

4.5 Lemma
Suppose that ([.23)) holds, let p be the unique solution of the equation p*—Tp—2 = 0

in (—1,0), and set
Pl e, (11
a = 5 e3-p € (2_62’5 .
Then:

(i) Ifa > @, then £ Ly04(0) >0 forp € (—1,1).

(ii) Ifa =a, then 8%Lp,g,a(O) >0 forp e (—1,1)~{p}, and %Lp,ova(0)|p:§

0.

(i) If0 < a < @, then p — L, 04(0) has two stationary points: p1 = pi(a) €

(—=1,p) and ps = pa(a) € (p,1), while %Lno,a(O) >0 forp e (—1,p1) U
(p2,1), and ,%Lp,o,a(o) <0 for p € (p1,p2)-

Furthermore, for all a > 0 we have

lim L,0q(0) =0, lim L,0,(0)= oc.

p——1+ p—1—

Proof: The limits of L, (,(0) can be easily calculated. We also have that

s, p+1 (p+1)?
—L 1 —
ap 20a(0)>0 <= In oa -

—1=:1,(p) <O0.
So we need to examine the properties of v,. It is not difficult to derive that

Yi(p) >0 <= p*—Tp—2=:0(p) > 0.

Since ¢ is decreasing on (—1,1), and p(0) < 0 < lim,,_; o(p), it has a unique
zero p € (—1,0). It means that v, increases on (—1,p|, and decreases on [p, 1).
However, lim,, 14 9,(p) = lim, ,1_ ¥,(p) = —o0, thus L. ,(0) has the properties
from parts (i), (ii) or (iii) if ¥a(p) < 0, e (D) = 0 or ¥,(p) > 0 respectively.
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Using that o(p) = 0, we obtain:

P+l 2

Va(p) = In 2a 3—D

Furthermore, a — 1,(p) is decreasing, so ¥, (p) < 0 indeed for a > @, and ¥, (p) > 0
for a € (0,a). It remains to check that @ € (5, ). However, it can be directly
proved that ¢, < 0 for a > %, soa < % and 1,(0) > 0, and consequently, ¥, (p) > 0
foragﬁ,soﬁ>ﬁ. O

Let us mention that p ~ —0.289, @ ~ 0.088, and using Cardano’s formula one

can also derive that e
3v3

7 arccos == — 21

p= 2\/; cos 7?:ﬁ .




5. Case Il (p>—-1,0< g < ’%1) 22

5 CaselIll (p > —1,0 < q < 2

A part of case I1I was already examined in [5] (see Lemmal5.2)). For the rest we
will need the asymptotic expansions of R(m) for m — 0 and m — oo (Lemmal5.1]),
and also Lemma [2.4 We will deal only with

1
p>-1,0<q<?T2 4o (1.24)

5.1 Lemma
Let (1.24)) hold. Then R’ >0, and

R(m) mpHl

1= p+1 =0

R(0) Gr—p— i) o)

M =1+ imQQ—P—l 4 wm2(2q—P—1) + 0(m2(2q—p—1)) m — 00

m 2a 8a? ’ ’

where

m—0

RUO) = Rygl0) = fim im) = (2) 7

Proof: It is clear from and Lemma (i) that R > 0, so R has a positive
and finite limit (denoted by R(0)) at 0, the value of which can be obtained from
the equality

. RP(0) [ ogpr 2a
O—%{ﬂ)o}"(m,R(m))—T<R (0)—p+1>.

Now we will look for such ¢, d > 0 that

R(m) p
——— =1~ .
R(0) cm®, m—0

So let us calculate the following limit using ’'Hopital’s rule and :

R(m
lim R((O)) ! = — pt1 lim m?ti—
m=0  m¢ (2¢ — p — 1)dRP*1(0) m—0 '

It should be positive and finite, determining the value of c¢. Therefore, we have
d=p+ 1, and c is also given as in the lemma.

The decrease of m — R(m)/m > 1 (see ([.9)) guarantees the existence of its
positive and finite limit at co. So we can use I’'Hopital’s rule and to derive

that Rim) poq
. m . m
A= T —,ilféo(m) ~ A

Consequently, A = 1. The asymptotic expansion of R(m)/m for m — oo can be
also found by the method of undetermined coefficients, which we used for m — 0.
However, let us show an iterative method borrowed from [B, proof of Lemma 3.3]:
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Multiplying the equality F(m, R(m)) = 0 (see ([.5))) by (p+1)/mP*!, and express-
ing R(m)/m from it, we obtain:

R(m) _ (1 N Zilmqul(M)quil, (1.25)

m 2a m

The expression (R(m)/m)?@ on the right-hand side can be replaced by 1+ o(1), so

_1
M =1+ Zilm%—p—l + O(qu—p—l) o =1+ im2q—p—1 + 0<m2q—p—1)
m 2a 2a

(We used the Maclaurin polynomial of z + (1 4 z)"/®*1).) Now let us insert the
asymptotic expansion we have just obtained in the right-hand side of ([.25]) again.
It yields

1

M =1+ Iilm%—p—l + wm%?q—p—l) + O(m2(2q—p—1)) pH?
m a 2a2

which can be rewritten in the form from the lemma.

Let us remark that we could use this iterative method in the case of m — 0 as

well. We only would replace ([.25]) by

mpt!

i) = &) (1- )

which can be derived from the equality F(m, R(m)) = 0 multiplying it by (p +
1)/RPtY(m). O

5.2 Lemma (for p,q > 1 see [5, Theorem 3.1))
If (1.24) holds and p > 1, then

lim L(m) = oo, L' <0 on (0,00), lim L(m) = 0.
m—0 m—00

Proof: The proof from [5] for p,q > 1 is also valid for p > 1, and the case p = 1
is similar. O

In the next two lemmata we find the limits of L—denoted by L(0) and L(oo)—
for p < 1. For the proof of Lemma [5.5] it is also necessary to know the sign of
L — L(0) and L — L(c0) near 0 and oo respectively, for certain values of p, q.

5.3 Lemma
Assume ([.24]) and p < 1. Then

2 1
lim L(m) = —— (p il
m—0 1—p\ 2a

) — Lygal0) = L(0)

and furthermore, L > L(0) in some neighbourhood of 0 for —% <p <0, and

L < L(0) in some neighbourhood of 0 for 0 < p < 1.
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Proof: The lim,, ,o L(m) is found in the same way as in Lemma . So choose any
pE (—%, 1), and let us calculate the second term of the asymptotic expansion of
L(m) for m — 0, which will allow us to determine whether L < L(0) or L > L(0)
near 0. Lemma [5.1] yields:

Rim) = RO)(1+ 0(m™)) = RO)(1+0(m%) ).
Joining it with the expansion of I,(y) from Lemma [2.4] we obtain:

p+1

% Bm2 +0<m2>.

As we know, B, > 0 for p € (—3,0), and B, < 0 for p € (0, 1), guaranteeing the
validity of the statement of the lemma for these values of p.
It remains to examine p = 0. In that case we can use ([.17)). So

2 1 2 q
%/_/
>0
due to Lemma [5.1] O
5.4 Lemma
If (1.24) holds and p < 1, then
0 if ¢ < p,
lim L(m) = % qu =p,
m—00
o ifqg>p

and furthermore, L > % in some neighbourhood of oo for q = p.

Proof: The proof of the first statement does not differ from that of Lemma
So let ¢ = p, and join the expansions of Lemmata [2.1] and [5.1] for m — oc:

1 3p p 1 1
L(m):a\/1+4 mP=1 + o(mp- 1)(1—%m’3 + o(m?~ )>
1 p 1 1
=——|—3a m?P~t 4 o(mP).
Since p € (0,1) and thus 5% > 0, L > % indeed near oc. O

5.5 Lemma
Suppose that ([.24) holds, and for q > |p| set

M= Mpga = ((p + g;((zq_—lzj — 1)) P+ (a(q—:p)) =

(i) Ifp< 1, q<p, then L' <0 on (0,00).
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(il) If p >0, ¢ > p, then L has a stationary point mo.p4q =: mo € (0,m], while
L' <0 on (0,mg), L' >0 on (mg, 00).

(i) If p <0, ¢ > —p, then L' >0 on (0,00) \ {m}.
(iv) If g < —p, then L' > 0 on (0, 00).
Proof: It is similar to the proof of Lemma [4.3] So suppose that mg > 0 is a sta-
tionary point of L. From ([.12) it is clear that L”(mg) has the same sign as
q e
(1- q)aR2q P mo) +p —q = Opg.a(mo) =: 0(mo).

Therefore, if ¢ < p, then L has at most one stationary point, and if it has some,
then it attains a strict relative minimum there. However, L cannot increase near
oo (see Lemma [5.4)), thus statement (i) holds.

In the rest of the proof we will deal with ¢ > p. We have

|

L"(mg) >0 <= R(my) < (H)W = Rypga=

and
R>R(0) < (2¢—p—-1)(p+q) <0 < ¢> —p.

Since (R(0),00) is the range of R, each stationary point of L is a point of strict
relative maximum for ¢ < —p, and statement (iv) follows due to Lemma .

We will suppose ¢ > —p from now on (together with ¢ > p), thus —% <p<L
Consequently,

1
L"(mg) >0 <= mo < RYR) = }_2(1 — %TBQHH) -
So Lemma guarantees that L does not attain any relative extremum in (772, 00).
Furthermore, if p < 0, then no point of relative extremum lies in (0,7) as well
(see Lemma [5.3)), as it is stated in (iii). On the other hand, if p > 0, then a similar
consideration shows that L has exactly one relative extremum, which is a global
minimum attained at some point mq € (0,7], and in case of mg < m, M may be
a stationary point of L as well. In order to complete the verification of statement
(i), let us show that L cannot have two stationary points for 0 < p < 1, ¢ > p:
From Lemmall.11]we see that K’(m) has the opposite sign to o(m) for any m > 0.
Consequently K decreases on (0,7]. However, if L had a relative minimum at
some point my € (0,m), and M were another stationary point of L, we would
have K(mg) = L(mg) < L(m) = K(m) (see Lemma [L.11)), a contradiction to
K(mg) > K(m). ]

The properties of L ascertained in this section are summarised in Figure
which shows all the possible graphs of L with the corresponding sets of parameters
in the (p, ¢)-plane, distinguished by colours. (Note that although we have not ruled
out in Lemmal5.5] the possibility that 7 is a stationary point of L for p < 0, ¢ > —p,
it has no influence on the number of solutions of ([I)).) Using Lemma , We can
state the main result of this section. Recall that L(u(0)) = [ for any u € S(I), and

see also Lemmata 5.3 and [5.5| concerning L(0), lim,, , L(m) and my.
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5.6 Theorem

Assume (1.24) and 1 > 0. Then N'(1) = 0, and the following holds for the positive
symmetric solutions of :
If p> 0 and q > p, then

2 if 1 € (L(myo), L(0)),
SO =491 ifl€{L(mo)}U[L(0),00),
0 otherwise,

and L decreases on (0,mg] and increases on [mg,c0), see Figure 3,
In all the other cases,

m—0o0

S0 1 ifl is between L(0) and lim L(m),
S| =
0 otherwise,

and L is strictly monotone, see Figure [3,
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L(0)
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L
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q=p p<l,g<p p>1
N A
lﬂ I L
L
L(0)
L(mo) > L(0)
' > e
0] mg m 0 m
p>0,9g>p p<0

Figure 3: The relation between m = u(0) and [ for u Ei in case III (p > —1,

0<gqg< ’%1, a > 0) according to Lemmata , 5.3 and |5 . See also

Theorem [5.6
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6 CaselV (p>—1,q= erl)

In this case we have from Lemma that the time map is defined only for
q < a, and is given by

Thus, it is a bijection of (0, 00) onto (0,00) for p # 1, and a constant function for
p = 1. Namely, we can use ([.16)) to derive that

L Vatl 1ln(¢a+1)2:1 Va+1
\/‘ \/a— C2Va \Va-—-1 2\/a \/5—1

Furthermore, solving for p = 1, we obtain that um,1.(z) = mch(y/az). So
according to Lemma [1.8] we can state the following:

Ll,l,a( )

6.1 Theorem
1

Letp>—1,q= ’%, a > 0. Then for arbitrary | > 0:

( 2
V2a 1P .
{um,Pﬂ‘[l,l] Pme= (ml) pr 7é 17 q<a,

S() = ifp=1, a>1,
{z — mch(Vaz),z € [-1,]] : m >0} lf_p 1], Vat!

3va Va1
0 otherwise,

\
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7 CaseV (p>—1,q > pTH), symmetric
solutions

Recall that due to Lemma (iv), we have the following time maps in case V:
Ly < Ly defined on (0, M) and L defined on {M}. In this section we describe their

behaviour for 1
p>—1,q>p2 , a>0. (1.26)

7.1 Lemma (for p > 1 see [0, p. 57 and Lemma 3.3])
Assume (1.26]). Then R} > 0, while

2¢—p—1
lim M =1, lim Ri(m)= R(M) = (2)
m—0 m m—M q
and R < 0, while
i Bal) = (22 )77 e Rypn(0) = Bal0), iy Balim) = ROW)
ml% o(m) = P =: Roypqa(0) =: R2(0), ml_{nM 2\m) = :
Moreover,
Ry(m) _q_ mpt1 - 2q+p2( - 2+ +0(m2(p+1))
Ry(0) (2q=p=1)R37(0)  2(2¢—p—1)2R;""(0)
form — 0.

Proof: It is clear from Lemma (iv) and that R} > 0 and R, < 0. The
limits of Ry(m), Ri(m)/m and Ry(m) can be calculated in the same way as in [5]
for p > 1, and the derivation of the asymptotic expansion of Ry(m) for m — 0 does
not differ from that of R(m) for m — 0 and m — oo in the proof of Lemmal5.1 O

7.2 Definiton
For p, ¢, a satisfying ([.26) and g < |p| set

7.3 Lemma (for p > 1 see [0, Lemmata 3.1, 3.4, 3.3, 3.2 and 3.5))
If (1.26)) holds, then

lim Li(m) = L(M),  lim Li(m) = oo,

0 if ¢ > p,
M%MWUZ 2 if ¢ = p, (1.27)
m—r

oo ifq<np,

and the following holds concerning the monotonicity of Ly:
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(i) If ¢ > p, then L} > 0.
(ii) If ¢ < p, then there exists such a point me.pq. =: mo € [m, M) that
L} <0 on (0,mg), Ljy>0 on (mg, M).

Proof: It does not differ from the proof that can be found in [5] for p,q > 1. Let
us mention that ([.27)) is obtained as the consequence of

1
Li(m) = amq’p + o(m?7?), m — 0. (1.28)
[

7.4 Lemma (for p > 1 see [5, Lemmata 3.1, 3.4 and 3.3])
If (L.26) holds, then

. o . / _
lim Ly(m) = L(M),  lim Ly(m) = —oo,
00 ifp>1,

lim Ly(m) = 2 [pL1\TsT

m—0 — =: Loy qa(0) =: Lo(0 ‘ —1,1).
(5 sraal0) =t Ls0)  ifp€ (-11)

Proof: The limits at M can be calculated in the same way as it was done in [5]
for p, ¢ > 1, while the proof of the second part of the lemma is essentially the same
as that of Lemma 4.2 O

7.5 Lemma
Assume (1.26) with p < 1. Then

(i) ifp>0o0rq< —porp> —%, q = —p, then Ly < Ly(0) in some neigh-
bourhood of 0,

(ii) and if p < 0, ¢ > —p orp < —%, q = —p, then Ly > Ly(0) in some
netghbourhood of 0.

(See Figure [J] showing these two sets in the (p,q)-plane.)

Proof: We use the asymptotic expansions of I,(y) and Ry(m) from Lemmata
and respectively, and our goal is to find the second term of the asymptotic
expansion of Ly(m) for m — 0, and to determine its sign. However, as we will see,
it has eight different forms depending on the value of p and gq.

All the asymptotic expansions in this proof will concern y — oo and m — 0.

1. For —3 < p < 1 the expansion of Ly(m) looks like that of L(m), and is

derived in the same way as in the proof of Lemma [5.3]

2. If p = —1, then writing B,+o0(1) as O(1) and Ry(m) as Ry(0)(1+0(m?/?)),

we obtain:
]. 3 2/3 2 Rg(m)
L — /2R M2 O(m2/3
2(m) 5\ o (m)—i—2\/£m n - + O(m*?)
1 1
= Ly(0) + ——m??In — + O(m??).
2( ) 2\/3—a m ( )
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at

7=
q=—p\‘

4

-1 -1 _
2

(=}
—
SN

Figure 4: The behaviour of L near 0 in case V for p < 1 according to Lema
if (p,q) belongs to the purple set, then Ly < Ly(0) near 0, and if (p,q) belongs
to the blue set, then Ly > L9(0) near 0. (Recall that lim,,_,o La(m) = L2(0), see

Lemma )

3. Now let —1 <p < —%. In general, we have the expansion

I(y) 2 1 1 apn
g 2 J— 2 +
for some function p,, which is given by different formulae depending on p,
and will be specified later. It can be derived from Lemma that

1—p 1-p 1—p
R,2 (m)=R,2 (0)| 1— mPH!

 (1-pg+3p+1)
8(2¢ —p — 1)2R;7*(0)

m2e+l) 4 O(mQ(erl)))

_spt1 _spt1 3p+1
R, 2 (im)=R, * (0)| 1+ mPT 4+ o(mPH! ),
) = B 0 (1 e o)

which yield:
Ls(m) = Ls(0) + Cp7q7amp+1 + Dp,q,am2(p+1)

p+1 1 [ Ry(m) 2(p+1 (1.29)
4 2a m 2 Qp( . + O(m (p+ ))7
where

>0 if q> —p,
o 2(p +q) - if g = —p
p?q?a - + B - 7

3 1)(2¢ —p—1)RETL (0
( p _'_ )( q p ) 27p7Q7a( ) < O lf q < _p7

8¢g+p—1

Dp,q,a -

4(2q — p — 1)2RI7(0)

2;p,q,a
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Using that g,(y) = o(y~CPtY/2) and Ry(m) = O(1), we can rewrite ([.29)
in the form
Ly(m) = Ly(0) + Cpgam?™ + o(m? ), (1.30)
thus further calculations are needed for ¢ = —p.
(a) Let us consider —g = p € (—2,—3). Since g,(y) = B, + o(1) and
O(m2P+) = o(mI=P)/2) we have

1 1-p 1-p
Lo(m) = Ly(0) + /2 2*; BT +o(m'T)  (131)

from ([.29). According to Lemma , B, <0forpe (—%, —%), and
B, > 0 for p (—%, —%) In the case p = —% the expansion from

Lemma does not suffice for us, but we can use ([.18]) together
with m

V Ra(m) = 4a — V/m — P o(m)
to derive that

LQ(m):mTa\/l—\g—am— 12224—0(7%)(14—@ = +0(m))

= Lu(0) = =+ o(m).

(b) If —q = p = —2, then inserting g,(y) = 2 Iny + O(1) and Ry(m) =
O(1) in ([[.29), we obtain that

1
Lg(m) = LQ(O) + m4/5 ln E =+ O(m4/5) .

3
8v/ba

(¢) Finally, for —¢ =p € (=1, —2) we have

( )_ 3 75p2+3 X < 75p2+3>
Op\Y) = 4(5p+3)y o\y )

which together with Ry(m) = R2(0) + o(1) and (L.29) yields

2p(p + 1)
(5p + 3)(3p + 1)2R57(0)

[ J/

~
>0

Lo(m) = Loy(0) + m2e 4 0(m2(p+1)). O

The next three lemmata deal with the monotonicity and the stationary points
of LQ.

7.6 Lemma
Assume ([.26]). The following holds:

(i) Ifp>0o0rp>—1 g=—p, then

Ly <0 on (0, M).
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(ii) Ifp<0,q>—porp< —%, q = —p, then Ly has a unique stationary point
Mop.g.a =: Mo € (0, M), while

Ly >0 on (0,mg), Ly <0 on (mg,M).

(i) If ¢ < —p, then one of the following holds:
A: Ly <0 on (0,M),
B: Ly <0 on (0,m), Ly(m) =0 and Ly, < 0 on (M, M),

C: Ly <0 on (0,my), Ly >0 on (my,ms), and Ly, < 0 on (mg, M) for
some my = Mipqa € (0,M), Mg = Maypqq € [, M).

Proof: The case p > 1 is trivial, so let p < 1, and suppose that my € (0, M) is
a stationary point of L,. Recall that L}, < 0 near M due to Lemma[7.4]

Firstly, let us consider ¢ > 1. Then Lj(mg) < 0, so there are only two pos-
sibilities: Either L) < 0 on (0, M) or Ly has a unique stationary point, which is
a point of strict relative maximum. Lemma guarantees that the first one holds
for p > 0 and the second one for p < 0.

Now let ¢ < 1. Consequently:

alg — 2g—p—1 —
Li(mg) <0 <= Ray(mg) < (H) =: Rypga = Ra. (1.32)

Recall that (R(M), Ry(0)) is the range of Ry. The inequality Ry > R(M) holds
always, while Ry < Ry(0) only for ¢ < —p. (In the latter case, we have Ry(m) =
Ry.) So if ¢ > —p, then each stationary point of L, is a point of strict relative
maximum, and by means of Lemma we have again that L, < 0 for p > 0 and
for —q =p € [—%, —%), and L, has a unique stationary point for p < 0, ¢ > —p
and for p < —%, q=—p.

From now on we will consider only ¢ < —p (thus, —1 < p < —% and ¢ < 1). So
we have

L5(mg) <0 <= mg > Ry (R,) =m.

It means that L, has at most one stationary point (a point of strict relative min-
imum) in (0,77), at most one (a point of strict relative maximum) in (72, M), and
m may be a stationary point as well. Suppose that m and some my > m are both
stationary points of La, thus Ly increases on [mz, ms|. Since K5 decreases on [m, M),
we have Ly(m) = K»(m) > Ks(ms) = Ly(ms) (see Lemma [1.11]), a contradiction.
Therefore, Ly has at most one stationary point in [, M). Furthermore, due to
Lemma only A, B or C can hold. O

7.7 Lemma

Assume 11.26: and q < —p. There exists a continuous function q¢* : (—1, —%) — R
such that pTH < q*(p) < —p forp € (—1,—%), lim, ,_1/2¢*(p) = %, and the
following holds:

(i) Ifp>—3,g<-porp<—=i q<q(p), then

Ly <0 on (0, M).
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(ii) Ifp < —% and q = q*(p), then m is a stationary point of Lo, while
Ly <0 on (0,m), Ly<0 on (m,M).

(iii) Ifp < —% and ¢*(p) < q < —p, then Ly has two stationary points my.p qq =
My, Mapqa =: Mo, While m; <M < my, and

Ly <0 on(0,my), Ly>0on(my,ms), Ly<O0 on(mg, M).

In addition, for all p € (—1, —%), q = q*(p) is the only solution of the equation

L(9(p,q)) = 7 1p\/2<q —p){1 = Q)ﬁl%p(p, q) = f*(p.q) =0 (1.33)

§(pq) = (< 2a(0 1) ))

2g—p—1)(p+q

Proof: From Lemmal7.6|we already know that only A, B or C can hold for ¢ < —p.
Let us notice the crucial role of the sign of Lj(m): If it is +, then C holds, if 0,
then B or C occurs, and if —, then A holds. So we derive the following condition:

__29—p—1
(1-gqR, * Zi3
Ry, >0 < f* >0
CL(]_ . p) 2 f (p7 Q)
(see ([.32)) for the definition of Ry), and in the sequel we

L. find limgpi1y2 f5 (0, @)
2. and lim,,_, f*(p, q),

L/2;p,q,a<mp,q7a) >0 <= Ly(m) —

3. and investigate the monotonicity of f*(p,-).

Afterwards we will be able to describe the sets where f* (or equivalently L) (7))
is positive, zero and negative, resp.

1. Since limgy,(p11)/2 9(p, q¢) = 0o, using the first term of the asymptotic ex-
pansion of I,(y) for y — oo (see Lemma [2.4)), we obtain:

* 3p+1
i L@ 3p+ <0,

25t 2 (pg)  (L=p)VP T

thus

p+1
q— 2

2. We are going to find lim,,_, f*(p,¢), so we denote —q — p =: r for the
sake of simplicity. All the asymptotic expansions in this step will concern
r — 0+ or y — oco. We will see that the first two terms of the asymptotic
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expansions of I,(g(p,q)) and G*(p,q) are identical, therefore we need to
calculate the first three. We have:

3p+1 1
_2Vp+1 1+ 2p£)+1)r ™ 2p(p+1)r2 1-p

G =
(P, q) - i 97 (p.q)
2/pF1 —1 1 e
P e e 24 00%) 57 (pag)
L—p 2p(p+1)  2p*(p+1)

2v/p+1 —1 2_10p—T7 W 1=p
:p—(l—l— b r—? 5 P 2r2+0(r3))g 2 (p,q).
dp(p+1)  32p*(p+1)

It will be useful to write the asymptotic expansion of I,(y) in the form

Ip(y) 2 p—1 1 1-p
= 2
il T\ e U T el
where function g, will be specified later. Joining the last formula with
1 3p+1 L+ 7
= r
*p+1 2p+1 1 2
g 2p(p+1) 1+ P+ )" (1.34)
3p+1 ( 4p° +3p+1 2)
=—7(1- r+O(r?) |,
2p(p+1) plp+1)Bp+1) )

we obtain that

. 2l p—1 (1-p)(4p*+3p+1) , 3
B a) =7, ( o) ARGt | o ))

97 (p.q) + VP tlop(d(p. ).
consequently
i Vv +1(29p° 4 21p* + 15p — 1 L1p
f(p, )=( P 2( PP P )T2+0(r3))9 2 (p,q)
16p*(p+1)2(3p+ 1)(p — 1) (1.35)

+ v+ 1o,(9(p; q))-

(a) Let —2 < p < —1, thus g,(y) = B, + o(1). Since
* 2P _p— 1
i (pa) = O<r2<P+11>) = 0<T—2)

f*(p,q) = /p+1B,+o(1).

So lim,,_, f*(p,q) is negative for p € (—%, —1), zero for p = —

and positive for p € (—%, —%) due to Lemma [2.4]

we have

1
29

(b) If p = —2, then inserting g,(y) = 2 Iny+0O(1) and LZ]kTp(p, q) = O0(%)
in ([.35), we obtain that

f*(p,q) = %ln% +0(1) — oo.

82
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(¢) For p € (—1,—2) we have

B 3 1 1 -
op(y) = T 1(Gp £ 3) 0D +o 20 yz.

Thus, yields
() = (
(See (L39).)

So we have derived that

4(p +1)3/2
pBp+1)(5p +3)(p —

<0 1f——<p<——
lim f*(p,q)4 =0 ifp=—3,
q——p . 1
>0 if —1<p<—3.

3. The increase of f*(p,-) can be proved using

or _ [ ptl 9 Vv (2¢—p—1)(p—q)(p+q) 09
a—q(p, q) = (g —1 8—q(p, q) — > a—q(p, q)
*—p 1 .
’ (1-p)av/2q(g—p)(1=q) /3 (p, Q)gm 2
- 2_1q \/ (2q—pp—_1;(p+q) (q(l _qq)_(]i_p) 0. 0) + (+q) gé », q))
and
ag( q) =~ ¢ 20t 9(p,q)
dq q1—q)2¢—p—1(p+q) """
which yield
ofr . pta [prap—a).
a—q(P,Q) = 2h— 1>\/ 50— p—1 g(p,q) > 0.

From 1., 2. and 3. we can see that if p € [-1, —3), ¢ € (p+1 ), then f*(p,q) <
0, i. e. Ly < 0. Moreover, f*(p,-) has a unique zero—denote it by ¢*(p)—for all
pE (_17 _%)7 and

o if 221 < ¢ < ¢*(p), then Ly(m) < 0, so A holds,
o if ¢*(p) < ¢ < —p, then Li(m) > 0, so C holds with my > 7,

e and if ¢ = ¢*(p), then L,(m) = 0, so either B holds or C with my = m.
Nevertheless, we prove that only B can hold for ¢ = ¢*(p): So suppose
that C holds for some p = py € (—1, —%) and ¢ = ¢*(po), consequently,
LYy o 4 (wo),a(T) > 0 for some m € (0, M). From the definition of R, and the
implicit function theorem it follows that Ra,,..(m) is continuous, which
together with - and Theorem guarantees the continuity of
Ly, o(m). Thus, L o(m) > 0if ¢ > 0 is small enough, giving

2;p0,9* (po)—¢
a contradlctlon
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At this moment, assertions (i)—(iii) have been proved. Since f* is continuous due
to Theorem [2.6] from the implicit function theorem we have the continuity of ¢* as
well. So there only remains to find its limit at —3. Recall that limg_; /s f*(—3,q) =
0, and choose arbitrary € € (0, 3). From the increase of f*(—3, ) we have f*(—3,1—
e) < 0, therefore f*(p,3 —e) < 0 for all p € (—3 — 6,—3) and some suitable
6 € (0,3), and the increase of f*(p,-) yields that ; —e < ¢*(p) < —p for p €
(—% — 0, —%) So we conclude that lim,_, /5 ¢*(p) = % O
7.8 Lemma

There exists
lim ¢"(p) =: ¢"(—1) € (0,1),

p——1

and it is the only solution of the equation

in (0,1), where
¥*(q) = emtm.

Proof: Recall the definitions of f* and ¢ from Lemma An easy calculation

and Theorem yield that lim, , ; g(p,q) = ¥*(¢) and lim,,_; f*(p,q) = ¢*(q)
for all ¢ € (0,1). In the sequel we examine the behaviour of p*.

Since limg_,0 ¥*(¢q) = o0 and I_;(y) = o(y) for y — oo (see Lemma [2.5)),

sy — L
©*(q) = NGT

Set r := 1 — ¢, and consider r — 04. Using Lemma [2.5| with n = 4 and the
formulae

(1 + 0(1))@/}*(q) — —00, qg— 0.

L _r_ 5.2 13 1

g (q) _ﬁ(l i3 128r3+0(7”)>’
1 roor?

n 4+ (q) :’(1 T2 Zw(ﬁ))’

L e 2

ln2w*(q) =7 (1 r—i-O(r )),
1 _ .3

m—r (1+O(T’>),

we obtain that
* r 7 2 89 3 4 *
I (¢ (Q)):\/F(1+1+3—27" +E87’ +O(7" ))w (q).

On the other hand,

1—¢?
2q

T\ /2 _ ro7 25
:\/F<1_§> (1—r) 1/2:\/7_”<1+Z+§T2+mr3+0(7“4)>.
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Thus,

»7/2 7/2

©*(q) = Tw*(l — r)(l + O(r)) = T2 erts (1 + O(r)) — 0.

It is not hard to derive that

(0)0) = V@)
and
*\/ _ 1 - 1_(]2 *\/ 2(] q2+1 *
(SO)((D_(\/W 2 )(w)(Q)‘i‘ 1— 2 4¢ V*(q)
l—q [1-¢* |
= 20 2—q¢ (¢) > 0.

So we conclude that ¢* has a unique zero ¢y € (0, 1). Since ¢* increases, and
lim,, 1 f*(p,q) = ¢*(¢q), we have that for arbitrary ¢ € (0, min{qo, 1 — go}) there
exists such ¢ > 0 that

Vpe (—=1,-146): f*(p,go—¢) <0< f*(p,q0 +¢).

Consequently,
Vpe (—=1,—-146): qo—e<q¢"(p)<qo+e

due to the increase of f*(p,-) (see step 3. of the proof of Lemma and therefore,
limy, -1 ¢*(p) = qo. [

Numerical calculations indicate that ¢* is probably decreasing, concave, its
graph touches the graph of ¢ = —p in —%, and ¢*(—1) ~ 0.730.

We append Figure [5| with all the possible graphs of L; and L, and the corres-
ponding sets of (p, q), based on the lemmata of this section. (Let us notice that the
graph of ¢* in it is the output of the numerical solution of ) These results
are sufficient to determine the number of the symmetric solutions of in case V
depending on p, ¢, a, | (see Lemma except for p < —%, a(p) < ¢ < —p
because it is required to investigate, for which p, g is Ly(0) > La(ms). In view of
Lemmata (ii) and [7.7] (ii), it can be expected that this domain is divided by
a continuous curve into three sets where Ly(0) = Lo(msg) for (p,q) lying on the
curve, Ly(0) < Lo(mg) above it, and L9(0) > Lo(ms) under it. This hypothesis
is also consistent with numerical calculations and may be an object of further
research.

So let us state the main result of this section.

7.9 Theorem
Suppose ([.26]).

(a) If ¢ < p, then
{Is@®)] : 1 >0} ={0,1,2}.
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(b) If g =p, then
{IS@)| : 1 >0} ={0,1}.

(¢) If p>1 and q > p, then
IS)|=1 forl>D0.
(d) Ifo<p<lorp>-Li g<—porp<—3 qg<q(p), then
(sl + 10} = {01}

(e) Ifp<0,qg>—-porp< —%, q = —p, then

{Is()] : 1>0} ={0,1,2}.
(f) If p < —% and ¢*(p) < q¢ < —p, then

{Is)| : 1>0} ={0,1,2,3}.

The exact dependence of |S(I)| on I as well as the monotonicity properties of L,
and Ly are indicated in Figure[3, (Recall Lemmal[1.8)
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t
9=-rs _ __ _______.pp__________
q9=¢q*(p)
- - - —01/2
, a=p
- —-—1/3
[
o
| | >
1 _% _% 0 1 p
N lﬂ
L2 LZ
L(M) L(M)F - - - — - -
I L1
- I I
I I N I N
0 mg M m 0 M m
(@) g¢<p
l’F l’F N
L(0) L,(0)
L
L2(0) or
L(M) LM} ------ L(M)
L,/
I
>
( ()) 0 M m 0
e
(d 0<p<lorp> %q —porp<—— q < q*(p)
l’r l’r
or
I
I
' >
mi me M m

(f)

p<-3¢(® <g<-p

Figure 5: The relation between m = u/(0) and l for u E S(

a > O) according to Lemmata

+1
q > 5,

Theorem [7.0l

i

case V (p > —1,
and [7 . See also
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8 CaseV (p>—1,q > pTH), non-symmetric
solutions

Assume ([[.26) and ! > 0. Then, following from Lemmata (iv) and [L.§

can possess positive non-symmetric solutions, and their number is determined by
the properties of L + L. We already know from Lemmata [7.3] and [7.4] that

) 00 ifp>1,
71n1§0([/1 + LQ)(m> - { L2(0) ifp c (_1’ 1)7 (136)

m—M

In this section the question of the monotonicity of L; + Lo will be examined.

It was shown in [5, Theorems 34|, that if (I.26|) holds, then

1
l<p<4 or p>4,q2p—1——2 (1.37)
p_

is a sufficient condition for the decrease of L+ Lo. However, we prove in Lemma (8.2
that (Ly 4+ Ls)’ < 0 for all p > 1, without assuming (L.37). On the other hand, the
case of p < 1 is much more complicated, and we have succeeded only in describing
the behaviour of L; + Ly near 0 and M (see Lemmata 8.9 [8.10] and [8.11)),
except two special cases dealt with in Lemma [8.5]

The first lemma is essential for the proof of Lemma 8.2

8.1 Lemma

If (T.26)) holds, then RiRy < R*(M).

Proof: Choose p > —1, ¢ > 2 a >0, m € (0, M), and set « := Ro(m)/R(M).
Evidently, a > 1 (see ) Our aim is to prove that

R(M
Ry(m) < % (1.38)
Since F(m,-) is decreasing on (0, R(M)], (I.38)) is equivalent to
R(M
F(m, Ri(m)) > f(m, %)
which can be rewritten in the form
R(M
F(m,aR(M)) — F<m, %) >0,
using the definition of R;(m) and Rs(m). One can derive that
R(M
F(m,aR(M)) — F(m, M) = RPH (M) (Fa(29) — Falp + 1)),
o ———
>0
where . .
F,(x):= u, x>0, (1.39)
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therefore, the verification of the increase of F, on (0,00) will make the proof
complete. Defining

G(z) = (z2+1)lnz—z2+1, z>1,
we have that
G(a®)
r2a®
Thus, it suffices to prove that G(z) > 0 for z > 1. And it holds indeed because
G(1) =0, G'(1) =0 and

Fo(r) =

22 —1

G"(z) =2lnz+ =

> 0, z> 1. ]

8.2 Lemma
If (1.26) holds with p > 1, then (L1 + L)' < 0.

Proof: Let p > 1, ¢ > 4’%1, a>0and m e (0, M).

1. For arbitrary y > 1 we have
1 P 2 P+l — ]
_ptl (VN o2 oL
Vpe+l 1 Yy yP P+ 1

2 \/ R (m) —mrtt_ RI(m)
Val(m) p+1 a

(Recall that F(m, R;(m)) = 0.) Using Lemma and the last inequality,
we obtain that

(L1 + Lo) (m) < RQ—f;M)(F (%) wr (fa%) ))

Consequently,

L;i(m) : i=1,2.

where

(2g —p—1)a®7?
1 — z24-p-1

F(?&D + F<%> <0 (1.40)

is a sufficient condition for (L; + Ls)'(m) < 0.

F(x):=F,,(z) = (1 —p)a®P+ , z e (0,1)U(1,00).

Thus,

2. Let us prove that F'is increasing on (0,1) for allp > 1, ¢ > ’%1.
For this purpose, it is useful to introduce parameters

a:=p-—1, B :=2(p—q).
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Thus, we consider a > 0, < . One can derive that

_ B/2
I _ —B/2 (O( B)ZE
(x) ar Mt
r—B/2-1
F/ _ a—f
(x) 2(1 _ xa—ﬁ)z g(x )7
N————
>0

where
9(2) = gap(z) == af2® + (20 — 5af + B%)z + 5>
So it suffices to prove that g > 0 on (0, 1).
If 3 <0, then the statement follows from the facts that g(0) = 3% > 0,
g(1) = 2(a — B)? > 0, and g is concave. Therefore, assume 3 > 0. In that
case, g is strictly convex, attaining its minimum at

—2a% + a8 — B2
203
If zp <0, then g(z) > g(0) > 0 for z € (0,1). If 2y > 0, then

— B)2(—4a? + 1203 — B2
(a—B)%( Za; of B)Z(a—ﬁ)2<zo+%+£)>0,

= 20;0,8 =+ 20-

9(20) =

yielding again that g > 0 on (0,1).
So F' is indeed increasing on (0, 1).

3. Lemmata |8.1) and (iv) imply that

Ry(m) _ R(M)
<

R(M) — Ry(m)

R(M) ) (Rz(m))
F{ ——= | +F <0
(32(m) R(M)
is a sufficient condition for ([.40]). And since the range of Ry/R(M) is a sub-
set of (1,00) (actually, it equals to (1, R2(0)/R(M)), see Lemma [7.1)), the

verification of

0< < 1.

Thus, due to 2.,

Vp > 1, q>p+

Lo F(1)+F(x)go (1.41)

xZ

will finish the proof.
Let us reformulate ([.41)) by means of « and 3, and let us multiply the
resulting inequality by 2%/2(1 — 2%7), to obtain the equivalent assertion

Va>0, f<a, x>1: wuyapg(x) = Bz + oz P —az’ — 5> 0.

Trivially, ugs = 0, so we will consider only o > 0. Since u, (1) = 0, it
suffices to prove that u, g is non-decreasing on [1, 00). However,

Uo,5() = O‘xﬁ_l(?ﬂca_ﬁ + (o= )z — B)

-~

>0 =:q,3()
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with v, g(1) = a — 8 > 0, so it suffices to verity the non-decrease of v, 3 on
[1,00). And that is guaranteed by the equality

v, 5() = (o — Bz (B2P + a —28),

-~

~
>0 :5wa,,ﬁ(x)

Wa,5(1) = a — B > 0 and the non-decrease of w, g. O

8.3 Remark

The proof of Lemma [8.2| was motivated by [0, Remark 5.3, where a sufficient con-
dition for (L, +Ls)" < 0 (L; and L, being the time maps associated with , see
Definition , looking similar to , had been derived. That condition is based
on a different integral estimate, and will be verified in the proof of Lemma

Lemma [8.2—together with ([.36]) and Lemma [1.8—leads to this result:

8.4 Theorem
If (1.26)) holds with p > 1, then

2 ifl> L(M),
N (D] = .

0 ifl < L(M).
(See Lemma and Definition concerning L(M).)

The rest of this section will be devoted to p < 1.

8.5 Lemma

(i) Ifp=0,qg=1, a> 0, then

Li+ Ly =2 on (0, M) = (o%)

(i) Ifp=—3,q=13, a>0, then

1
Li+ Ly = % on (0,M) = (0,a”).

Proof: In the case of ¢ = p+ 1 > 0, (.5 is quadratic in x?, so one can solve it
explicitely, obtaining

Ria(m) = (g)<1 F4/1- %mq);, m € (0, M) = (o, (2%)) (1.42)

(i) If p=0 and ¢ = 1, then by virtue of (.17)) and ([.42]), we obtain

2 2 2
Lm(m)z\/2—%‘;2,/1—7”1:1;,/1—7”1, m € (0, M).
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(ii) Similarly,

L1,2(m)=4—a(14E —@><13F 1—\/7%+—m>

3 a a
8 4
_8a_da i vm(i, VM
3 3 a a
forp:—%,q:%due to (L.18]) and ([.42). ]

Recall that
lim (L1 4 Ly)(m) = L(0)

for p < 1 according to Lemmata [7.3 and [7.4]

8.6 Lemma
Assume ([.26]) with p < 1. Then

(i) ifp>00rp=0,g>1orq< —porp> —%, q = —p, then L1+ Ly < Lo(0)
i some netghbourhood of 0,

(i) and if p=0,qg<1orp<0,q¢>—p orp<—3, ¢=—p, then Ly + Ly >
Ly(0) in some neighbourhood of 0.

(See Figure (] showing these two sets in the (p,q)-plane.)

4
_1 _

=)
—
SN2

NIRRT T TY T

Figure 6: The behaviour of L; + Lo near 0 in case V for p < 1 according to
Lema 8.6} if (p,q) belongs to the blue set, then L; + Ly < Ly(0) near 0, and
if (p,q) belongs to the brown set, then L; + Ly > L(0) near 0. (Recall that

limm%O(Ll -+ LQ)(TTL) = LQ(O), see )

Proof: It is clear from Lemmata and that Ly + Ly > Ly(0) near 0 if
either p < 0, g > —porp< —%, g = —p. In order to verify the statement of the
lemma for the remaining pairs (p, ¢), we will find the second term of the asymptotic
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expansion of (L; + Lo)(m) for m — 0, and determine its sign, using ([.28) and
several equalities from the proof of Lemmal[7.5] All the asymptotic expansions will
concern m — 0.

o If p € (0,1), then m? = o(m(1P)/2) so by means of step 1. of the proof
of Lemma [Z.5] we have

(Ly + Lo)(m) = La(0) + pQ—aprmlzP + o<m7), (1.43)

while B, < 0 (see Lemma [2.4)).
e If p =0, then according to step 1. of the proof of Lemma [7.5]

(L1 + La)(m) = L2(0) — QQQE 1 (%) "t o(m)

for ¢ > 1, and
1
(L1 + Lo)(m) = Lo(0) + qu + o(m?)

for ¢ < 1.

e Now consider ¢ < —p (and consequently, p < —%) Using (|[.30]) and realising
that m9=? = o(m?™!), we obtain

(L1 + Lo)(m) = L2(0) + Cp g mPt! ¢ 0(mp+1).
——

<0
e Finally, if —¢ = p € (—3,—3), then the equality m?? = o(m*~#)/2) and
(L.31]) yield the asymptotic expansion of the form as in ([.43]) with B, <0
due to Lemma 2.4 O

To determine the behaviour of L; + Lo near M is much more difficult. For
this purpose, the second term of the corresponding asymptotic expansion will be
investigated, the finding of which requires the following lemma:

8.7 Lemma

If (1.26)) holds, then

Ry 2(m) VM —m p+2q—2
2N o M- M- M-
ROD) F 7 6ol ( m) + o( m), m —

Proof: Assume ([.26). From Lemma we already know the first term of the
asymptotic expansion of Rys(m)/R(M) for m — M—. The next two terms will
be found by means of the method of undetermined coefficients from the proof of
Lemma However, let us first notice that , as an equation in m, has the
explicit solution

1 as
m = a:(l — ]%xqul> =:1pqa(z) = 7(2), x € (0, Ry(0)),



8. Case V (p>-—1,q> ’%1), non-symmetric solutions 47

which determines the inverse functions of R; and Ry, and will be an important
tool of this proof.

All the asymptotic expansions appearing below will concern m — M— or
z— 0.

1. We search for such dqi,dy > 0 and ¢; < 0, ¢ > 0 that
Ri(m)
R(M)

for i = 1,2. (Recall that according to Lemma [7.1, R;/R(M) is increasing
for + = 1 and decreasing for ¢ = 2, which explains the choice of the sign of
¢;.) Using the substitution

-1~ CZ(M — m)di

—1=:z (1.44)

one obtains
R;(m)

Ai = lim Md = lim d:
moM= (M —m)& =50F (M~ (R(M)(1 + 2)))”

where z — 0F means z — 0— for ¢ = 1 and z — 0+ for ¢ = 2. This limit
(which should be finite and non-negative, determining the value of ¢;) will
be calculated using the asymptotic expansion of the denominator of the last
fraction. Therefore, it is convenient to derive the equality

M — T(R(M)(l + Z))

1

2 1 p+1
:M—]\/[(l—l—z)( q __pT (1+2)2qp1>

2g—p—1 2g—p—1

- M[l - (1+z)(1 - QQP_;pl_l((Hz)?q—P—l - 1))”1].

N J/
-

=:h(z)

Approximating (1 + 2)?¢7?~! with its 2nd order Maclaurin polynomial, one
obtains

which results in
e (qM)di|z]2:”
Consequently, d; = % and ¢; = A; = F1//qM.
2. Now we seck ¢; # 0 and d; > 3 fulfilling

i VM — .
M_li—m,\,%(]\/[_m)dz
R(M) VM
for i« = 1,2. So we have to calculate the corresponding limit
Ri(m) — 14+ vVM—m 24+
B;:= lim 20 Vil _ i V

m_l)f]\l}_ (M — m)di z—0F (qM
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((I.44) was used again), which requires the knowledge of one more term of
the asymptotic expansion of h(z). Therefore, we derive that

2 _
 pg+2q 5q+323+0(23)>

h(z)zl—(1+z)(1—z~l—(1—q)z2 3

2q — 2
= ¢z (1+p++z+o(z)),

which yields
_pt29-2,2 + 0(22)

Bi = lim 6
2—0F (qM)dz ~|2d;
meaning that d; =1 and ¢; = _P_ngjqwﬁ‘ B

The next step is to calculate the expansion of L; + Lo.

8.8 Lemma

If holds, then
(L1 + Lo)(m)

—oL(M) + (ﬂ(q_p 2 (R(M )> -1, (R(M ))> Mo oM —m)

3V

for m — M—. Recall that

1

R(M) _ 2q o
M \2q—p-—-1 '

Proof: Assume ([.26]). Unless otherwise stated, all the asymptotic expansions

within this proof will concern = := % — 0+. So we have
M3 p—1 R;(m)
L; = 1 IL,| ————— [.4

T R T

for i = 1,2. By means of Lemma [8.7] and
2 —p—1)*?

) = () + 20— p— 1y — o)~ B2y g oty - ),
which holds for y — yo := %M) (and follows from the definition of the Taylor

polynomial), we obtain
R;i(m) Ve  4q—p+2
J Y LA (I A B e
p<M(1—I)> ,,(y0< :F\/é+ 6q =+ ol)

2 —p—1 20 —p—1(qg—p+2
q(f yo\/}Jr\/q p6q(q p+2)

— L(y0) ¥ Yo + o(x).

It can be inserted in ([.45]), resulting in
x
S
aRP~1(M)
V2(g—p+2) 12 ) x
+ [y +H(p—1)I —— o0
( 3\/6 Yo (p ) p(yO) 2\/W

Li(m) = L(M)

(),
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which confirms the conclusion of the lemma. O

8.9 Lemma
Assume (1.26) with p < 1. There exist continuously differentiable functions q :
(-1,1) = R and g : (=1,—%) — R such that ¢ > 1 on (—1,0), q(p) > 2L for
p € |0,1), ’%1 <qlp) <p++2p(p—1) forpe (-1, —%), and the following holds:
(i) Ifq>q(p) orp < —%, q <q(p), then Ly + Ly > 2L(M) in some neighbour-
hood of M.
(ii) Ifp > —%, q<q(p) orp< —%, q(p) < q < q(p), then Ly + Ly < 2L(M) in
some neighbourhood of M.
In addition, for all p € [—%, 1), g = q(p) is given as the only solution of

ﬁ(q?;/g 2 .0 + (0 - VI (9(0.0) = fp) =0 (L40)

in (5=, 00), where
1

g =(~—2 )"

Similarly, for all p € (—1, —%), q = q(p) and q = q(p) are the only solutions of

(T46) in [p+ +/2p(p — 1), 00) and (B2, p + /2p(p — 1)] respectively.

(See Figure@ showing the graphs of ¢ and G, as obtained by numerical solution

of (L4G).)

Proof: It is clear from Lemma [8.§ that L; 4+ Ly > 2L(M) near M if f(p,q) > 0,
while Ly + Ly < 2L(M) near M if f(p,q) < 0. Obviously,

lim fp,qg) =00, pe(=11). (1.47)

In the sequel we
1. find limqﬁ% f(p,q),
2. examine the monotonicity of f(p,-)
3. and prove that f(p,1) <0 for all p € (—1,0),

which will make us able to describe the sets of (p,q) where f is positive, zero or
negative.

1. Let p € (—1,1). Since limqﬁ% g(p,q) = oo, Lemma can be used. We
need only the first term of the asymptotic expansion of I,(y) for y — oo to

calculate
y flpg)  —Tp—1
im =

25 g (pq)  3VPHT

thus limq_ﬂ%l f(p.q) is equal to oo for p < —1, and —oo for p > —1.
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q/\
q=q(p)7
g = &t
1 2
q=p+
V/2p(p—1)-
N ¢
q=3(p){ T
-13/7
|
|
|
_" | \
-1 _% 0 15

Figure 7: The behaviour of L1 + Ly near M in case V for p < 1 according to

Lema- if (p,q

) belongs to the blue set, then Ly + Ly > 2L(M) near M, and

if (p,q) belongs to the brown set, then L; + Ly < 2L(M) near M. (Recall that
limy,, 0 (Ly + Lo)(m) = 2L(M), see (1.36]).)

Now assume that p =

—%, and set r := 2¢g — p — 1. Approximating I,(y)

with its two-term asymptotic expansion for y — oo, we obtain that

(o)~

for r — 0+.
To sum up,

VT

Tr+36 26 (_1
37(7r +6) 7 74
:Br(r) :O(:?l/s)
6
7B_1/7 <0
lfp € (_ 7_%)7

2. Let p € (—1,1) again. One can calculate that

86

(1-p)(g—p+2)v/2g—p—10g

B 1/7 —|— 0(1)

a—f(p q) = atp 2 9(p,q) +
aq ’ 3QV A /gp+1 p q ’
p+1 dg
+ (= =2 (1,
=1) gp“(p,CJ)—l@q(p 2
_ V2¢—p-1

% (p,q)

((p+q—2)g(p, q) + Q(p—l)(p+5q—2)g—2(p, Q)>
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and p 0.0)
g g\p, q
—Pa) =",
dq q2q—p—1)
consequently,
of 2 2 9(p, q)
—(p,q) = —2pq — p° + 2 .
5g 70 = (¢ —2pa —p* +2) 3Py —p1
=:£(p,q) 0

It is easy to see that

£Ep,q) =0 <= p<O0andg=p=++2p(p—1),
while p — /2p(p — 1) < 22 for all p < 1, and p+ /2p(p — 1) > 2% only
if p< —%.
So we conclude that

o ifpec [—%, 1), then f(p,-) increases on (’%1, 00),

e if pe (—1,—1), then f(p,-) decreases on (1%1,]) + 4/2p(p — 1)] and

increases on [p + +/2p(p — 1), 00).

3. In this step we prove that f(p,1) < 0 for all p € (—1,0), or equivalently,

((2)7) ) e

Our method is to gradually derive simpler and simpler sufficient conditions
of ([.48)), the last of which will be proved directly.

(a) Since p — I,(y) decreases on R for all y > 1 according to The-
orem a sufficient condition for can be obtained replacing
I, on its left-hand side with I (see also (L.17))). After squaring, this
new inequality reads

2\ (2 ) (2T € (~1,0)
1—p 18\1—p 1-p) »7F e

Denoting l%p =: x, it simplifies to
1)2p7-1
Vi 271 —1> % v € (1,2).

It is convenient to introduce the notation w(z) := x| by means
of which the last inequality transforms to

r? —Tr+1 (x+1)* ,
- — 1 1,2). .4

(b) Let us prove that

(4 —x)

3 w(z) > 1, z € (1,2). (1.50)
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Equivalently, it can be written as
((z) :==zlnz+ (z —1)(In(4 — z) — In8), z € (1,2).

We have
222 — 152 + 16

(e —4)2

and one can see that ¢” is positive on [1,z() and negative on (zo, 2,

while 2y = (15 — v/97)/4. Consequently, ¢’ > (’(1) = In x>0

n (1, o], and since (1) = 0, the positivity of ¢ on (1, ] follows.

Therefore, the concavity of ¢ on [zg,2] with {(2) = 0 ensures its
positivity on [z, 2), and ( - is verified.

Replacing the r1ght hand side of (| - with the left-hand side

of , we obtain a sufficient condition for ([.49), which can be

simplified to

") =

9(2? + 20z — 8)

< 1,2). [.51
o) < NP sey (151)
(¢) Our next auxiliary inequality is
6 9(2? + 20z — 8)
< € (1,2),
v+ 1 w0 CE€W?

which is equivalent to
P(z) := 42 + 92 — 482 4 28 < 0, r € (1,2),

and which can be proved realising that P(1) = -7 < 0, P(2) =0
and P” > 0 on (1,2). It provides a sufficient condition for ([.51)) in

the form of
6

z+1

w(zr) < , x € (1,2),

or equivalently,
n(z) ==z + (z — 1)(In(z + 1) — In6) <0, z € (1,2),
which is a true inequality, since (1) = n(2) = 0 and

(x—1)(z* 4+ 3z + 1)

" = 1.2).
n"(z) 2z 1) 0, r € (1,2)
Define
" p+/2p(p—1) if pe (—1,—3),
o) =94 p+1 .
— if pe [-1,1).

As a consequence of 1., 2. and 3., limg_,q, ) f(p,q) <0 for all p € (—1,1). Taking
7)) and the increase of f(p,-) on (¢q1(p), 00) into account as well, we obtam that

vpe (—1,1):  3q(p) € (a(p).o0):  f(p,ap)) = 0.
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Clearly, if p € (=1,1), ¢ > q(p), then f(p,q) > 0 and consequently, L; + Ly >
2L(M) near M. On the other hand, if p € (—1,1), ¢ € [¢1(p), q(p)), then f(p,q) <
0, and Ly + Ly < 2L(M) near M. Furthermore, ¢ > 1 on (—1,0) due to 3., while
the continuous differentiability of ¢ follows from the implicit function theorem and
the continuous differentiability of f (see Theorem .

Similarly, since f(p, q1(p)) <0 for p € (-1, —%), 1. and 2. imply that

Vpe (-1,-1): Fgp) € (B alp):  f(p.alp) =0.

Again, f(p,q) is positive for p € (=1,-1), ¢ € (’%I,G(p)), and negative for p €

(—1, —%), q € (@(p), ¢1(p)], making clear the behaviour of Ly + Ly near M for these
values of p and ¢, and obviously, g is continuously differentiable. O

The next lemma describes the basic properties of .

8.10 Lemma
There exists

lim g(p) =:q(—1) € (1, 00),

p——1

and it is the only solution of the equation

V2g+3) 4 (&) —0 (152)

= YT T s — 9]
©(q) NG e 1

in [1,00). Furthermore, ¢ > 1 on (—1,0), qA(—%) = %, q0)=1,g <1 on(0,1),
and lim,_,; q(p) = 1.

Proof: It is a part of Lemma that ¢ > 1 on (—1,0). We also know from it
that Ly + Lo # 2L(M) near M for p = 0, g € (0,00) ~ {g(0)}, which, in view of
Lemma [8.5| (i), yields q(0) = 1. It remains to

1. prove the existence and properties of lim, , 1 g(p),
2. figure out q(—3)
3. and prove that ¢ < 1 on (0, 1).

We will obtain lim,_,; g(p) as a direct consequence of 3. and q(p) > ’%1.

1. Theorem and some elementary calculations yield that lim, , ; f(p,q) =
©(q) for any g > 0 (see Lemma [8.9| for the definition of f).
Clearly, lim,_,« ¢(q) = co. Since I_1(e!/??) = O(,/q)e'/*® for ¢ — 0 due
to Lemma [2.5]

p(q) = %eﬁ (1+0(g)) — o0, q—0,

It is not hard to derive that

oy @=1D@+3) 1
@(Q)—We )

q>0,
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which implies that ¢ is decreasing on (0, 1] and increasing on [1, c0). Fur-
thermore,

p(1) = %l\/Q_— 21.1(Ve) < %\/2_— 21p(vVe) = 4(@ —\/Ve- 1> <0

(see Theorem [2.6| and ([.17)).

So one can see that ¢|(1,.) has a unique zero, which will be denoted by
qo- Since ¢ = lim, 1 f(p,-), and it increases on (1,00), we have that for
arbitrary € € (0,qo — 1) there exists § > 0 such that

Vpe (=1,-1+48): f(p,qo—¢) <0< f(p,q+e)
and therefore,
Vpe (—=1,—-14+9): q—e<qp) <q +e¢,

following from the increase of f(p,-) on (1,00) (see step 2. of the proof of
Lemma . Consequently, lim, , 1 g(p) = qo.
2. One can calculate that

f(_l )_4\/§q(2q+5) §]_1/2<( 4q >2> 2v/2(4¢% — 8q + 3)

277) T Bag—1p2 2 1g—1) ) 3(dq— 1)

3

for ¢ > %, which vanishes only for ¢ = % and ¢ = %, meaning that a(—%) =3.

3. Now we prove that f(p,1) > 0 for all p € (0, 1), guaranteeing that ¢ < 1 on
(0,1). It is equivalent to

((Z)) R )T oo 0

which will be gradually simplified, similarly to step 3. of the proof of
Lemma R.9]

(a) The first sufficient condition for (L.53)) is

> —Tr+1 (x+1)*
-y W) - g W)

<1, z>2  (L54)

(again, w(x) = £%/@V), which can be derived in a way completely
analogous to the corresponding part of the proof of Lemma [8.9

(b) The opposite inequality of (I.50) does not hold for all = > 2. Instead,

=1, z>2 (155)

will be used, which is equivalent to

k() =(r—1)In2 —Inz >0, x> 2,
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and the validity of which follows from the facts that x(2) = 0 and

1 1
/f’(x):ln2——>ln2—§>0, xr > 2.
T

Due to (I.55)), 1 can be replaced with w(z)/2 on the right-hand side
of (I.54)), yielding a sufficient condition for ([.54)), which can be re-

written as

18(22% — 142 + 11)

: > 9.
(x4 1)% .

w(z) > —

(c¢) The final simplification will be done by virtue of the inequality

6 18(22% — 14z + 11)
> —
r+1 (x +1)* ’

T > 2,

equivalent to
Q(z) == 2 + 92 — 392 + 34 > 0, x> 2,

which holds since Q(2) = 0 and @’(z) > 9 > 0 for x > 2. So now the
only assertion to prove is

6
x+1’

w(z) > x> 2.

And to do so, we just have to recall part (c) of step 3. of the proof of
Lemma [8.9] and to realise that n(z) > 0 for > 2 because 7/(2) =
2 —In2>0andn” > 0on (2,00). O

According to numerical calculations, g(—1) ~ 2.151, ¢ seems to be convex,
having ming ~ 0.822 ~ ¢(0.495), and its graph seems to touch the graph of
q= ’%1 at 1.

Recall that the line ¢ = —p forms the border between those sets of (p, q) where
Li+ Ly < Ly(0) and Ly + Ly > Ly(0) near 0 (see Lemma . According to
Lemma [8.9] the graph of § plays a similar role in the behaviour of L; 4+ Ly near
M. Therefore, if we are interested in the behaviour of Ly + Ly on (0, M), we have
to know the mutual position of these to curves.

8.11 Lemma
There exists

lim 5(p) = g(~1) € (0,1),

p——
and it is the only solution of the equation (1.52)) in (0, 1]. Furthermore, g(p) < —p
forpe (=1,-3),q(—3) = 3, a(p) > —p for p € (—3,—1%) and lim,,_7(p) = 2.

Proof: The existence and properties of lim, , ;g(p) can be validated the same
way as it is done in step 1. of the proof of Lemma for lim,,_1 q(p). And
it is clear from step 2. of the same proof and from the definition of § (or from
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Lemma (ii)) that g(—%) = %. Further, since 2t < g(p) < p+ v/2p(p — 1) for
p € (—1,—%) (see Lemma, the value of lim,_, 1,7 g(p) is evident.

It remains to determine the sign of g(p) +p for p € (=1, —3). (Forp € [-3, —3)
we obviously have —p < I%l < q(p).) Let

I'(p) :—g(p,—p)—( 2 )i

3p+1

__J-p)  LUIR) 2V2 -
o) = p-DVvP+1  Vp+1  3/=plp+ 1)F (),

We prove soon that
1. @ decreases on [—32, —3),

2. & <0on(—1 -3

-1
3. and @ >0 on (—1,—1).

It will mean that f(p,—p) is positive for p € (—%,—%) and negative for p €

(—1,—3). Since for all p € (=1,—3%): —p € (B2, p++/2p(p — 1)), f(p,-) decreases
on (l%lap‘i‘ 2p(p — 1)) (see step 2. of the proof of Lemma and f(p,q(p)) = 0,

the assertion of the lemma regarding the relationship between g(p) and —p will
follow.

1. Let p € (=1, —31). We have

F’(ﬁ)z( LS SR )F(p)
p(Bp+1) p+1 3p+1)p+1

and

1-p ! 3p+1 !
=) = < I(p )
(r=" o)) 5y L)
_< l-p 1 I 2p ) [3p+11'(p)
2p(3p+1) p+1 3p+1 2p p+1
Thanks to Theorem @ is differentiable, and

w+1  3p+2 2p ) [-3p—1 I(p)
(p) = Jp(I'(p)) <3p+1 3p+1) 3p+l p+1 plp+1)

<0 ~~ -

=:H(p) <0

Numerical calculations indicate that @ is decreasing. If we could prove it,
the proof would be complete (since we know that &(—3) = 0). The non-
positivity of H is a sufficient condition for it.

Instead of H, we will investigate h, defined as
h(p) := 3§p + 1) H(p)

o pe (L5~ {3}

3+ 1L(2p+1) I 2p T3 317
~ Bp+1)(3p+2) 3p+1’
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because it has a simpler derivative:

15p% + 15p + 4
h'(p) = 5 5 <O0.
pBp+1)*(3p+2)

Since lim,, 1 h(p) = 0, h < 0 on (—1,—2). One can also derive that
lim, , 9/3+ h(p) = oo and lim,, 13- h(p) = —oo. Consequently, h > 0
on (—%,pp) and h < 0 on (py, —3) for some py € (—3, —3). It means that
the sufficient condition for the decrease of @ is met only for p € (po, —%)
Since h(—2) = In3 — ¢ < 0, we have py < —2. (According to numerical

5
calculations, py ~ —0.434.)

2. The proof of & < 0 on (—%, —%] is based on the method of gradual simpli-

fication from step 3. of the proof of Lemma [8.9
(a) Let

= . Lapp) 22 L —1,-1
)= vP+1 3 —p(p+1)F @ pelhs)

Due to Theorem [2.6, &(p) < 0 is a sufficient condition for &(p) < 0
for p € (=3, —2]. (Naturally, the same holds even for p € (-3, —3),
but numerical calculations suggest that ® < 0on (—%, p1) and o >0
on (p, —%) with p; &~ —0.338. This explains why we have executed
step 1.) Using , the condition we want to verify can be rewritten
as

9 ﬁ 9 ﬁ 2 1 9 1;1;
Pt Pt Pt
3p+1 3p+1 p\3p—+1

or equivalently as

z— z— 2 — z—
(:Eﬁ — 1) (ajf@j) + 2> < 3z 23:%, r € (2,3,

22
where x := 35%. After introducing
T(z) = x‘féij), x> 1,
we can rearrange it into the form
3r(x) + m°(x) + —5— 7" (x) < 4, x € (2,3]. (1.56)
x
(b) Now the inequality
273(x)
2 < 4, x € (2,3 (L.57)

will be used. Its validity follows from its equivalent form

((z):=(x+2)Inz — (x—1)4In2 < 0, x € (2,3],
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after realising that ¢(2) =0, ((3) =In22 <0 and ("(z) = £ > 0
for x € (2,3). So the right-hand side of can be replaced by
the left-hand side of , yielding a sufficient condition for ,
which can be simplified to

2 — Qr(x) N 2 — 3377_2(20) <3, z € (2,3]. (1.58)

2 2

Let us now prove that
20 + 5
3x

The given inequality can be rearranged into

n(z) == (2—2)Inz +4(z — 1)(In(2z 4+ 5) — In9) >0, x € (2,3].

T(x) < =3, x € (2,3]. (1.59)

One can derive that
P(x)
/! —
(@) x2(2x 4 5)?
with
P(x) = 122° + 682% — 652 — 50.

Apparently, P(z) > 75 > 0 for x € (2,3) and consequently, 7 is
strictly convex on (2, 3]. And since 7(2) = 0 and 7/(2) = 5 —1In2 > 0,
we have that n > 0 on (2, 3].

Thanks to ([.59)), a sufficient condition for (I.58)) follows, namely

522 + 5z — 6

> — € (2,3
It is easy to see that
3v+4 5z’ +5r—6
T+ T+ o v e (2,3

>
5 33z —2) '
because it is equivalent to
Q(z) :=22% — Tz + 6 > 0, r € (2,3,
while % and 2 are the roots of (). So proving
3r+4
5 )
will finish step 2. Let us express ([.60]) in the form
k() == Bz —2)Inz+4(1 —z)(In(3z +4) —In5) >0, z € (2,3].
We have

T(x) > x € (2,3], (1.60)

S(x)
22(3x + 4)?

/ﬂ?”(l’) -

where

S(x) = 92° + 422 — 962 — 32.
Since S(2) = 16 > 0 and S’(z) > 180 > 0 for x > 2, k is strictly
concave on (2, 3], which together with x(2) = 0 and x(3) = In % >
0 yields that x > 0 indeed on (2, 3].
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3. Parts (a), (b) and (c) of step 2. are applicable for the proof of the positivity

of & on (—1,—3) with minor changes.

(a) It sufficies to prove that ® >0 on (—1, —%), which is equivalent to
2 —3x
2
(b) Since ¢(1) = ¢(2) =0 and ¢"(x) < 0 for z € (1,2), ¢ > 0 on (1,2),

yielding a sufficient condition for in the form

22 2-3
’ 7(T) + — xTZ(x) > —3, z € (1,2). (1.62)
T

3r%(x) + 73 (2) + (x) > 4, z € (1,2). (1.61)

2
(¢c) We have P(1) = =35 < 0, P(2) = 188 > 0 and P'(z) > 107 > 0
for z > 1. Consequently, P has a unique root o in (1,2), and 7 is
strictly concave on (1,zg] and strictly convex on [xg,2). However,
n(1) =n(2) =0, and 7/(1) = 1+41In§ < 0, which ensure that 7 < 0

on (1,2), and
(z) < 5% 4+ b5x — 6
33z —2) ’

is a sufficient condition for ([.62)).

x € (1,2)

(d) As we have seen, Q(2) = 0 and therefore, we cannot proceed as in
part (d) of step 2. Instead, let us prove that

8x + 4 - 522 4+ 5z — 6
r+38 33z —2) '
The desired inequality is equivalent to
T(x) = 52° — 272* + 462 — 24 > 0, x € (1,2).
Let us notice that 7” < 0 on (1,2) and 7" > 0 on (2, 2). And since
T(1) =T(2) =0 and T"(2) = —2 < 0, the positivity of 7" on (1,2)

z € (1,2).

follows.
Consequently, it sufficies to prove that
S8z +4
< , € (1,2).
) <=L we (1)

Let us reformulate it as
p(z) :=4(z —1)(In4 +In(2z + 1) — In(z + 8)) — 3z — 2) Inz > 0,
z € (1,2).
After differentiating we obtain that
Ul(x)
22 (x4 8)2(2c 4+ 1)

p'(x) =
where
U(x) = 122° + 2122* — 1612° — 52227 + 7362 + 128.

We have that U(1) = 405 > 0, U’(1) = 117 > 0, U"(1) = 774 > 0
and U"(z) > 4842 > 0 for x > 1, meaning that p is strictly concave
on (1, 2). The last fact we have to realise is that u(1) = p(2) =0. O
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Numerical calculations indicate that g(—1) & 0.624, it has a unique stationary
point (~ —0.185, while g(—0.185) ~ 0.421) as well as a unique inflection point
(~ —0.400), and its graph touches the graph of ¢ = 1%1 at —%.

For p < 1 we have succeeded in describing the behaviour of L 4+ Lo only near
0 and M, except p =0, ¢ =1 and p= —1, ¢ = 1, for which L; + L, is constant,
and except p € (—=1,0)U (0,1), ¢ = q(p) and p € (=1,—3) U (=3, —7), ¢ = 7(p),
for which we have no information at all. However, using numerical calculations
one can observe that L; 4+ Ly has probably at most one relative extremum for any
p€(-1,1),¢> 2L (p,q) ¢ {(0,1), (-3, 1)}. If it is true, the behaviour of Ly + Ly
on (0,M) is clear for all p € (—1,1), ¢ ¢ {q(p),q(p)}, and due to the continuous
dependence of Ly, 44(m) and Loy, .(m) on ¢, the proof of which is evident, even
for ¢ = q(p) and ¢ = q(p).

The results of this section concerning the properties of L + Ly are summarised
in Figure [§ which shows the graphs of L; + Ly and the corresponding sets of

(p, q). Let us notice that the graphs of ¢ and g in it are the output of the numerical

solution of (|[.46)).
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at

= m\ )y
L,(0)
\Y
L S~ Li+ L
-, = =
d N ~
2L(M) - - - - — - 5 S
oy . 370y 3 2L (1)
L, (0) [ [
| |
| 4,\ | 4,\
0 M m 0 M m 0
p<0,q§7ﬂp) 0Sp<11,q>?ﬂp)
orp< —7, —p<q<q(p) orp>—5,9<—p
orp< —3,q<q(p)
1= m\ l,r
L(0)
N
2L(M)_____::7| AL(M)P- - - - - - > Ly + L
I \ z 2L(M)——=1T 22
,’— L1+L2: \\_—’// I |
L(0) I L; + Ly, |
1 \ 1 \ 1 \
0 M m 0 M m 0 M n
—%SIPSO,q1<6(p) 0<p<1¢<qW p=0¢g=1
or—§§pl<—7,6(p)<q<?ﬂp) orp<—3,d) <g<-p orp=-—-3,94=3
orp<—3, —p<q<qp)

Figure 8: The behaviour of Ly + Ly in case V (p > —1, ¢ > 7%1, a > 0) according
to and Lemmata , , and

The dashed graphs mean that for those values of p and ¢ the behaviour of L; + Lo
has been examined only near 0 and M, and the graph has been plotted assuming
that Ly + Lo has at most one stationary point. (This assumption is consistent with
numerical calculations.)



62

Chapter 11

Some related results

9 Sign-changing non-antisymmetric solutions

This section will start by recalling the shooting method from [6]. Lemmatal[9.1]
and will be stated under weaker assumptions on ¢ than the corres-
ponding assertions cited from [6], but we do not provide the proofs because they
are unchanged.

Let p>1,q € R, a,l>0.If uis a sign-changing solution of and xq is its
zero, then u(- + ) solves

u” = alulPtu,

u(0) =0, (IL.1)

u'(0) =146
for some 6 € R. Since u — alu|P~'u is locally Lipschitz continuous on R,
has a unique maximal solution, which is obviously odd. It will be denoted by %y, ,
and its domain by (—/g 4, Agpa). Clearly, Uy, = 0 on R and thus, zg € (—1,1)
and 0 # 0. One can also see that u is strictly convex on the intervals where it
has positive values, and strictly concave on the intervals where it has negative
values. As a consequence, uy, , > 0if § > 0, and w , , < 0 if § < 0. In addition,
U_gpq = —Uppa, therefore we will restrict our further considerations to 6 > 0.

Let us also introduce the notation N*(I) = N*(I;p,q,a) for the set of all
sign-changing non-antisymmetric (i. e. not odd) solutions of ([I)). Obviously, N*(1)
consists of all such functions +tg (- — (I1 — l2)/2)|j—1y that § > 0, I} + Iy = 2,
Iy 7£ [y and 0 < lz < Ag,p@, ﬂg,p,a(li) = ﬂg,p,a(li> for i = 1,2.

9.1 Lemma (for ¢ > 1 see [0, pp. 114-116])
Letp > 1,q € R, a >0, and set b := %. Then the following statements are
equivalent for arbitrary 6,1 > 0:

(i) 1 < Agpa and Uy pall) = ﬂg,p,a(l),
(ii) the equation
0= ‘T(@u I) = fp,q,a(gyx) = .ZUQq _ b:EP'H . 92

with the unknown x > 0 has some solution R, and

| = e—iﬁfp,b(e—fﬁﬁ),
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where y d
s
= —_— > 0.
]p,b(y) /0 \/ma Yy = 0
Clearly, F(0,-) has different behaviour for ¢ € (—o0,0), {0}, (0, 254), {&1},
(2%, 00). In the rest of this section, we will deal only with the third case.

9.2 Lemma (for ¢ > 1 see [0, p. 115])
Letp>1,0<qg< ’%1, a,f >0, and let us introduce

p+1—2q/q\ri-=
0= 6=/ (2)

If 0 > O, then F(0,-) has no zero. If § = O, then the only zero of F(0,-) is

<g> e = Ryqa(0) = R(O).

a
If § < O, then F(0,-) has two zeros, which will be denoted by Ri.pq.4(0) =: Ri(0),
1=1,2, being

Ry(0) < R(O) < Ry(0).

9.3 Definiton
Letp21,0<q<7%1,a>0,andput
Li(0) = Ligqal0) = 0755 1y (07757 R, 0(0))
fori=1,2 and ¢ € (0,0). We introduce Lypga(©) =: L(O) analogously. Functions
L, Ly and Ly will be called time maps (associated with (I1.1])).

Using Lemmata and , we can describe N = (1) by means of the time maps:

9.4 Lemma
For allp>1, q € (0, ’%1) and a,l > 0:

Ly(0) — Ly (0 — _

NE() = {iﬂe,p,a('i%)‘ . Lq(0) + Lo(0) :21},
[—l,l]

where the two £+ symbols on the right-hand side are independent (i. e. there are four

sign-changing non-antisymmetric solutions corresponding to any 6 > 0 satisfying

T1(0) + Io(0) = 21).

We need to know the limits of Ly + Lo at 0 and ©, and whether L, + L, is
monotone. Therefore, we now cite the following two lemmata and afterwards state
the new results.

9.5 Lemma (for ¢ > 1 see [0, Lemma 5.2])
prZl,O<q<1%1 and a > 0, then
eh_l%Li(Q) = L(O), i=1,2,
lim Ly () = oo.
0—0
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Let p>1,1< ¢ < 2 and a > 0. According to [6, Theorem 1.3 (iii)], if

(P—q¢)(2¢+1-p)p+1)>29(p-1)

or equivalently,
p(p—1)
p+1

then (L; + L)’ < 0. However, we prove this property in Lemma without
assuming ([1.2)), including also some ¢ < 1.

q> , (11.2)

9.6 Lemma (for ¢ > 1 see [0, proof of Lemma 5.1])
Ifp>1,0<qg< 1%1, a>0,i€ {1,2}, then L; is differentiable on (0, O0), fulfilling

—1—gq
— p—1 — p+1—2q R, "(6)
) (p+1)0 @) (p+1)ab 1 — a R (p)

9.7 Lemma o
Ifp>1, O<q<7%1 and a > 0, then R1Ry < R (O).

Proof: It is much the same as the proof of Lemma . Soletp>1,0<¢g< ’%1,
a > 0,0 ¢ (0,0), and set a := Ry(f)/R(O) > 1. Using the increase of F(0,-)
on (0, R(©)) and the definition of R;(f) and R,(f), one can see that it suffices to
prove that

0> F(0,aR(6)) — ?(9, @) = 2qR™(0)(Fa(2q) — Falp +1))

(see (L.39)) for the definition of F), which is a true inequality due to the increase
of F,. O

9.8 Lemma o

If a >0 and eitherp=1, q€ (0,1) orp>1, g€ [%, ’%1), then (L1 + L)' < 0.
Proof: Consider p>1,0< ¢ < ’%1, a>0,60¢€(0,0), and put b := %. We will
proceed similarly to the proof of Lemma [8.2]

1. We start with the estimate suggested in [6, Remark 5.3]:
)

]p,b<y) > Yy > 07

which results in

L:(0) >R 0), i=1,2.

Applying this inequality to the formula included in Lemma [9.6] one can
derive a sufficient condition for (L; + L2)'(f) < 0 in the form of

F(%l(—g))) +F(%2(—g)>) <0, (I1.3)
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where
(p+1—2q)x'?

F(z) = Fpg(r) = (1 —p)gz' "+ 1 — gptl—2¢ '

x € (0,1)U(1,00).

2. Now we prove the increase of F on (0, 1). Setting
a:=p—12>0, B:=2(¢—1) €(-2,a),
we obtain that
= B gy, (@ =B af -
Fla)=—al|lZ 41| P2 07 p(g) — 2P/,
(z) a(2+ e P (x) 5 T

Since F' increases on (0,1) due to step 2. of the proof of Lemma , F
increases on (0,1) as well.

3. Using the same ideas as in step 3. of the proof of Lemma [8.2] we can see
that it suffices to verify the inequality

Top(7) = Bla+2)2* + a(B+2)2° " —a(B +2)2” — Bla+2) >0

for all z > 1 and «, g fulfilling either « = 0, § € (=2,0) or @ > 0, § €
[—1, ). The first case is clear. In the second one we have that @, (1) = 0

and
U, 5(1) = o (?(a +2)z°77 + (o — B)(B+2)z" " = (B + 22)
>0 — T ()

so the verification ot the non-negativity of 7,5 on (1,00) will finish the
proof. And since U, 5(1) = 2(a — 5)(8+ 1) > 0 and

U, 4(2) = (= B)a* (B + 2)2” + (B + 2)(a — 28)),

N N /

TV TV
a,8(@)

>0 =W,
we just need to observe that W,z > 0 on (1,00) because Wy 5(1) = 2(a —
B)(8+1) > 0 and w, s is non-decreasing. O

9.9 Remark

The proof of Lemma does not work for p > 1, g € (0, %), a>0,1i. e. for a >0,
B € (=2,—1), because in that case we have %, 5(1) = a¥, (1) < 0, implying
that . g < 0 in the right neighbourhood of 1. In addition, numerical calculations
suggest that if p > 1 is big enough and ¢ € (0, %) is small enough, then L; + L,
has a stationary point where a minimum is attained.

Joining the results of Lemmata and we immediately obtain the

following assertion:

9.10 Theorem
If a,l > 0 and eitherp=1,q€ (0,1) orp>1, q € [%,1%1), then

0 ifl<L(O)

(See Lemma and Deﬁm’tion concerning L(6).)
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10 Explicit solution of the Cauchy problem for
v’ = au='? with a > 0

The subject of this section is the initial value problem

u" = au—1/27
u(0) = a, (I1.4)
u'(0) = 5,

which can be solved explicitely for any a,a > 0 and § € R.

10.1 Theorem

Let a,a > 0, B € R, and set vy := 8% — 4a\/a. Problem possesses a uUnique
mazximal solution, which will be denoted by u, and which is given by the following
formulae:

(i) If v < 0, then

Y\2:( 6a*

where

2

f<w>:<(vw+mww_m)2+1>, w0

" B(6ay/a — 57)
a —
=— : I1.5
o 6a? (IL5)
Furthermore, sgnxy = —sgn 3, the graph of u is symmetric with respect to

T = g, and minu = u(zg) = ()%

4a
(ii) If v =0, then setting

20&3/4 0
= > U,
3Va
we have
T 4/3
u(z) :a<sgnﬁ~8+1> , z € D(u),
where

o if 5 > 0, then D(u) = (—d,o00), v > 0, lim,,_4u(z) = 0 and
lim, , 4u'(x) =0,
e and if § < 0, then D(u) = (—o0,d), v < 0, lim, ,qu(zr) = 0 and
lim, ,4u'(x) = 0.
(iii) If v > 0, then setting
_ 72+ Bl (6av/a — B°)

d:= >0
6a? ’
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we have
Y\2 [ 6a®

u(x):<ﬁ> J W(sgnﬁ-x—i—d)—l), x € D(u),

where
) 2
§ <<\3/w+\/w2—1+\3/w—\/w2—1) —1—1) if w>1,
J(w) =
2

<4COSQM— > if we [—1,1],

and

o if 5 > 0, then D(u) = (—d,o00), v > 0, lim,,_4u(z) = 0 and
lim, ,_qu'(z) = /7,

e and if § < 0, then D(u) = (—o0,d), v < 0, lim, ,qu(z) = 0 and
lim, qu'(z) = —\/7.

Proof: Choose a,a > 0 and 3 € R. Since u — au~'/? is locally Lipschitz continu-

ous on (0,00), (IL.4) has a unique maximal solution denoted by w, and its domain
D(u) is an open interval. We will proceed as follows:

1. If u has a stationary point, we will express u by means of ,, _1 /2, for some
m > 0 using the formulae from Theorem |1.1{ and ([.18)).

2. If w is strictly monotone, we will derive formulae for (II.4)) analogous (and
in analogous way) to that for .

Step 1. will lead to assertion (i), while step 2. to assertions (ii) and (iii).

1. Suppose that zg € R is a stationary point of u. (We will see soon for which

values of a, a, B this occurs.) Set m := u(zy) > 0 and v = Uy, _1/2,0-
Then clearly, sgnxzg = —sgn 3, u(z) = v(r — xg) for x € R, o = v(—my),
B = v'(—x), the graph of u is symmetric with respect to x = x,, and
minu = m.

Our goal is to ascertain under which conditions on a, o and (3, u possesses
a stationary point, to express xy and m by means of a, a and [ if that
condition is met, and to derive an explicit formula for v.

Inserting p = —% and x = zg in , one obtains

18] = 2y/a(Va = Vm),

=

~20
So we have to require v < 0, and afterwards we have

m = <%)2. (1L.6)

which is equivalent to

Similarly, yields

o
— sgnﬁ Xy = |Z‘0| = \/2_al_1/2 (—), (II?)
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from which, by means of ([.18)), (IL.5)) follows.

As we have just seen, 7 < 0 is a necessary condition for the existence of
a stationary point of u. However, it is a sufficient condition as well: If we

have v < 0 and define m and ¢ as in ([1.6)) and (IL.7]), then comparing ([1.7)

with ([.2)) for p = —% and r = —xg, and inserting p = —% and r = —x in

(L.4), we can see that w,, —1/2,4(- — 20) solves (LL.4) and consequently, it is
identical with u, which therefore indeed has a stationary point.
Since I_1, is a bijection of [1, 00) onto [0, 00) (see ([.3))), one can rewrite

0D as

YN\2 . _ 8v/2a?
U(I) = U(I’ - [Eo) = (@) _[_11/2 (M—S/Q|ZL' - .750| s S R,

so it sufficies to prove that

- 3z
It (2)=1 , z>0. I1.8
S =1(15) 2 (1s)
By means of ([.18), I_;/; can be expressed as

24/ 2 ~
_\/_]
3

L ap(y) = (Vy—1), y>1,
IY)=VY(Y +3), Y >0
(Compare with (I.14).) Using Cardano’s formula, we obtain that

~ 3z 2
I (2) = Il( )—l—l), 2>0,
—1/2() ( 2\/5 jtl
2
~ A Z\? sl Z Z\?
A N Z 1 Y 1 Z>
(Z2) 2+ (2)+ + 5 <2)+ , >0,

so (IL.8]) follows, and the proof of (i) is complete.

2. Now let v > 0. (Consequently, u is monotone.) Since u fulfils the equation

in ([L.4), we have
0= )i ) - ) = (V9 2l ) e Dl

-~

=:x(y)

(D(u) will be specified later). Apparently, x is a constant function with the
function value x(0) = 3. Thus, it is easy to see that

(u'(y))? = 4a/u(y) +v,  y € D(u). (11.9)

The monotonicity of u ensures that sgnu/(y) = sgn g for any y € D(u).
Therefore,
u'(y)

4a\/@+7

= sgn f3, y € D(u).
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Now choose = € D(u), and integrate the last equality on [0, z] with respect
to y, using the substitution u(y) =: v:

u(x) dv
sgnf-x = _—.
o  Vdayu+y

(a) If v = 0 (case (ii)), then the integral in (II.10)) can be easily calcu-
lated, yielding

(I1.10)

2
sgnf-x = ﬁugﬂ‘(x) —d, x € D(u).

Necessarily, sgn 3 - x > —d. One can also see that u is indeed given
as in the lemma, and sgnf - x > —d is a sufficient condition for
z € D(u). The limits of u(z) and «'(x) for ¥ — —sgn 5 - d are clear

as well (recall ([1.9)).
(b) Now suppose v > 0, which corresponds to case (iii). Using the sub-
stitution
da~/v
f)/

+1=V

in ([1.10)), we obtain that

sgnf - x = Ll <J<M+1) —J(ﬁj)), v € D(u),

12a? v ¥
where
~ 3 /Y V-1
JV)y==] —dv=vY(Y-3), Y>1
=3[ % v -3
Consequently,
32 [ _/da+/
sgnﬁ-x:fy T u(:c)+1 +2 ] —d, x € D(u),
12a? 0

and since J is a bijection of (1,00) onto (—2,00), the necessity of
sgn B - x > —d and the validity of

u(z) = <%>2(j_1(22;22(sgnﬁ-x+d)—2) —1) : x € D(u)

follow. On the other hand, sgn 5-x > —d is obviously also a sufficient
condition for z € D(u), and the limits of u and v’ at —sgn 3 - d are

clear as well (see (I1.9))).

It remains to find the inverse of .J. Apparently, J (Y) = Z is

equivalent to
(VYY) =3VY - Z =0.
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Treated as a cubic equation in VY, it has a unique real root

\/7:3§+ <§)2—1+3§— (g)Z—l (> 0)

for Z > 2, and a unique positive real root

A
ﬁchos%

for Z € [—2,2]. Consequently,

JNZ) = \/@Jr 1, Z>-2,

which completes the proof of (iii). O
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Afterword

In this thesis we got familiar with the shooting method, which made it possible
to simplify the question of the solvability of to the question of the properties
of the time maps, which are real functions of one real variable. Examining their
properties, we were able to determine the number of positive symmetric solutions
of forp > —1,¢ >0 and p = —1, ¢ = 0 (see Theorems , , , and
, the number of its positive non-symmetric solutions for p > 1, ¢ > ’% (see
Theorem with some partial results for p € (—1,1), ¢ > 2% (see Lemmata
and , and the number of its sign-changing non-antisymmetric solutions for
p=1¢€(0,1)and p>1,¢q€ [}, ]%1) (see Theorem , while the number of
its sign-changing antisymmetric solutions for p > 1, ¢ > 1 is known from [6]. Let
us also mention Theorem [10.1], which gives an explicit formula for the solution of
the Cauchy problem for v = au~'/? assuming a > 0.

The predominant majority of the results mentioned above are new results
achieved by the author. Theorems [8.4] and provide the answers for two long-
standing open questions arising in [5] and [6], while the other statements deal with
values of parameters not considered before. The contents of Sections with the
exception of Theorem [2.7] were published in [14], while the results of Section [§until
Theorem together with Section [ have been submitted for publication.

The given topic has not been exhausted by this thesis at all. There remains to
verify analytically the numerically predicted properties of ¢* (see the paragraph be-
low the proof of Lemma, q (see the paragraph below the proof of Lemma
and § (see the paragraph below the proof of Lemma , as well as to determine
the sign of Ly(0) — La(ms) in case V for p < —3, ¢ € (¢*(p), —p) in dependence on
P, q (see the second paragraph below the proof of Lemma , and to investigate
the so far unknown properties of L; + Lo in case V for p < 1 (see the second
paragraph below the proof of Lemma . And naturally, a further goal can be
to determine the number of positive solutions of in cases VI-XIII, the number
of its sign-changing antisymmetric solutions for p > 1, ¢ > 1, and the number of
its sign-changing non-antisymmetric solutions for p > 0, g € (0, %) Moreover, one
could also study the sign-changing solutions of for p e (0,1), ¢ € R.

Throughout this whole thesis, we could get by only using the knowledge of
real analysis (except for the use of Picard’s existence theorem), but in spite of
this, this topic cannot be called too simple or uninteresting. On the contrary, the
author consideres it especially nice and hopes that the reader has acquired a similar
impression.
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Resumé

V predloZenej dizertaénej praci sme skiimali riesitelnost okrajovej tilohy

u'(z) = alu(@) P u(z), z € (=L1),
u' (1) = F|u(ED)| 7 u(£l),

kde a,l > 0.
Najvissia cast prace bola venovand $tidiu existencie a poctu jej kladnych
rieSeni, ¢ize kladnych rieseni tlohy

{ u'(z) = au(x), x € (—=1,1),
u'(£1) = +ul(£1),

kde mozno uvazovat Tubovolné p,q € R. Dan4 tiloha bola prvykrat systematicky
Studovana v ¢lanku [5], avsak iba pre p,q > 1. Nasim cielom bolo rozsirit jeho
vysledky pre ¢o najvéicsiu mnozinu parametrov p, q.

Néstrojom k tomu — ako aj ndstrojom citovaného ¢lanku — bola metdda strelby,
ktori mozno zhrnit nasledovne: Zrejme kazdé kladné rieSenie spomenutej okra-
jovej tlohy pre zadané [ > 0 sa da ziskaf z rieSeni tej istej diferencidlnej rovnice
uvazovanej spolu so zaciatotnymi podmienkami u(0) = m a «/(0) = 0 pre vhodné
m > 0. Této zaciatoénd tloha mé jediné riesenie pre lubovolné m > 0. Vztah
medzi m a [ je dany istymi funkciami nazyvanymi zobrazenia dostrelu, pre ktoré
mozno odvodit aj vzorec. Ten ukazuje nutnost studia kladnych symetrickych (t. j.
parnych) a kladnych nesymetrickych rieseni osobitne. NavysSe treba rozlisit trinast
pripadov — é&fslovanych 1 az XIIIT — ohladom hodnoét parametrov p a ¢, pricom
kladné nesymetrické riesenia existuja iba v pripapdoch V-VII.

V tejto praci sa ndm podarilo urcit pocet kladnych symetrickych rieseni v pr-
vych piatich pripadoch, spolu zahfnajicich p > —1, ¢ > 0ap = —1, ¢ = 0, pricom
sme si mohli v&imnut, Ze vlastnosti zobrazeni dostrelu st omnoho rozmanitejsie a
tazsie vysetritelné mimo mnoziny p, g > 1. Otazka poctu kladnych nesymetrickych
rieSeni pre p,q > 1 bola v [5] zodpovedana iba Ciasto¢ne, my sme v8ak na nu nasli
tplnt odpoved a ziskali aj ¢iastocné vysledky pre ti cast pripadu V, ktord nebola
sticastou [5].

Tiez sme sa zaoberali rieSeniami uvazovanej okrajovej ilohy meniacimi zna-
mienko, ktoré boli prvykrat systematicky studované v [6] pre p > 1, ¢ > 1. Pritom
sme pouzili metédu strelby s tou zmenou, Ze zaciatoéné podmienky boli u(0) = 0
a u'(0) = 6 pre vhodné 0 € R. Pocet antisymetrickych (t. j. nepdarnych) rieseni
meniacich znamienko bol v [0] urceny pre vsetky p > 1, ¢ > 1, avSak pocet
neantisymetrickych rieSeni meniacich znamienko iba pre istt ¢ast uvazovanych
hodnét parametrov. My sme vysetrili aj zvysnd ¢ast spolu s niektorymi doteraz
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neuvazovanymi hodnotami parametrov, konkrétne s p = 1, ¢ € (0,1) a p > 1,
q € [5.1].

Na tomto mieste eSte spomenieme vedlajsi vysledok prace v podobe expli-
citného vzorca pre riesenie Cauchyho tlohy pre v’ = au="?, kde a > 0.

Vdaka metdde strelby sme mohli previest otézku riesitelnosti studovanej okra-
jovej tulohy na otazku priebehu zobrazeni dostrelu, ¢ize realnych funkcii jednej
redlnej premennej, a teda sme dalej uz vystacili s prostriedkami redlnej analyzy.
Vysetrit ich priebeh vsak nebolo aZ také Tahké, lebo st dané vzorcom obsahujicim
nevlastny parametricky integrdl, ktory sa da vypocitat iba pre niektoré specidlne
hodnoty parametra p, kym jeho hornd hranica je dand implicitne.
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List of symbols

Here the reader can find all the symbols used at least twice in this thesis except
their occurrences in proofs. References for their definitions are provided as well.
Some symbols (namely, L(0), m and mg) have been introduced repeatedly for
different values of their parameters, but all their definitions correspond with each
other.

Positive solutions of :

a Lemma

br(p) Lemma

B, Lemma

F(m,x) = F,qa(m,z) Lemmall.4

L,(y) Theorem [1.1

Jp(v) Theorem [2.7

K(m) = K, 4a(m) Definition [1.10;

Ki(m) = Kypg4a(m) Definition |1.10

Ky(m) = Kaypg.a(m) Definition |1.10

L(m) = Ly 4q(m) Definition |1.7]

L(0) = Ly 4.4(0) Lemma [4.2]
Lemma

Ly(m) = Lyypg.a(m) Definition

Ly(m) = Loy g.a(m) Definition |1.7]

Ly(0) = Layp4.4(0) Lemma 7.4 (éase V)

Npa Theorem [1.1

mM=TMpga Lemma 5.5 (case I1I)
Definition [7.2| (case V)

Mo = Mop.ga Lemma |5.5| (case I1I)
Lemma [7.3 (case V)
Lemma [7.6 (case V)

my = Mipga Lemma [7.7] (case V)

My = Mapga Lemma [7.7 (case V)

M=DM,,, Lemma 1.5

N()=N(;p,q,a) Definition [1.2]

D Lemma (4.5 (case 1I)
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s
»

*

L)
*
/N N
|'B
[S—
S—

Q

) =)
=

L =L

)
—
3 |
~—
—_
~—

<
N
2

R(m) = Ry q,a(m)
Ri(m) = Ripga(m)
Ra(m) = Rapga(m)
R2(O) Ry, iP5 a( )
S(l) =S8(p. g, a)

um?p’a

Definition |§|

Lemma

Lemma

Lemma

Lemma

Lemma
Section
Lemma
Lemma

Lemma

Lemma
Deﬁnltlon

Theorem |_|

Sign-changing solutions of (|1)):

F0,7) = Fpqad,)
L b(y)

f(@) = Zwm(e)

L (0) = I1;10 q,a(g)
z2(9) - Z2;p,q a(e)
Agpa

N*E(1) = N*(l;p, q,a)
R(@) - Ep,q,a(@)

Ry (9> = El;p,q,a(e)
R2(9> = R2;p,q,a(9)
O =044

Ug,p,a

Definition
Definition
Definition
beginning of Section

d

beginning of Section
Lemma
Lemma
Lemma
Lemma
beginning of Section@
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