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FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY
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Abstract

Peres, Sámuel: Solvability of second order ordinary differential equations with
non-linear boundary conditions [dissertation thesis]. Comenius University in Brat-
islava; Faculty of Mathematics, Physics and Informatics; Department of Applied
Mathematics and Statistics. Supervisor: Prof. RNDr. Marek Fila, DrSc. Bratislava,
2013. 77 pp.

This thesis deals with the existence and multiplicity of positive and sign-
changing solutions of a non-linear second order ordinary differential equation with
symmetric non-linear boundary conditions, where both of the non-linearities are
of power type. It extends known results to a larger set of parameters, as well
as provides answers to two long-standing open questions. The main tool is the
shooting method.

Keywords: second order ordinary differential equation, non-linear boundary
condition, existence and multiplicity of solutions, shooting method, time map.
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Abstrakt

Peres, Sámuel: Riešitel’nost’ obyčajných diferenciálnych rovńıc druhého rádu
s nelineárnymi okrajovými podmienkami [dizertačná práca]. Univerzita Komenské-
ho v Bratislave; Fakulta matematiky, fyziky a informatiky; Katedra aplikovanej
matematiky a štatistiky. Školitel’: Prof. RNDr. Marek Fila, DrSc. Bratislava, 2013.
77 s.

Práca sa zaoberá existenciou a multiplicitou kladných riešeńı a riešeńı menia-
cich znamienko istej nelineárnej obyčajnej diferenciálnej rovnice druhého rádu so
symetrickými nelineárnymi okrajovými podmienkami, pričom obidve nelinarity sú
mocninové. Rozširuje predtým známe výsledky na väčšiu množinu parametrov a
taktiež dáva odpoved’ na dve dlho otvorené otázky. Hlavným nástrojom je metóda
strel’by.

Kl’́učové slová: obyčajná diferenciálna rovnica druhého rádu, nelineárna okra-
jová podmienka, existencia a multiplicita riešeńı, metóda strel’by, zobrazenie do-
strelu.
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Foreword

Differential equations are an indispensable tool for all the branches of physics,
having also countless applications in other sciences such as biology and economics.
They have been studied for more than three centuries, and they are a virtually
inexhaustible source of mathematical problems.

For most of differential equations no explicit formulae giving their solutions
can be derived. In that case, one can only examine the existence and number
of solutions, develop approximate methods for finding them, and investigate their
qualitative properties, such as dependence on the parameters occuring in the equa-
tion and the initial or boundary conditions, smoothness, positivity or number of
zeros, symmetry, monotonicity, periodicity, boundedness or asymptotic behaviour,
a priori estimates, stability and mutual position of solutions.

The difficulties with studying differential equations are often caused by non-
linearities. In this dissertation thesis we investigate a boundary value problem
containing non-linearities both in the equation and the boundary conditions. The
problem has the form{

u′′(x) = a|u(x)|p−1u(x), x ∈ (−l, l),
u′(±l) = ±|u(±l)|q−1u(±l).

Here a and l can take any positive value, while the conditions on p and q will be
specified later. As one can see, the boundary conditions are symmetric, and both
of the non-linearities are of power type. Our aim is to determine the number of
classical solutions for as large set of values of the parameters as possible.

Most of this thesis concernes positive solutions, which solve the simpler-looking
problem {

u′′(x) = aup(x), x ∈ (−l, l),
u′(±l) = ±uq(±l),

while p and q can be arbitrary real numbers. On the other hand, if one is interested
in the existence and multiplicity of sign-changing solutions, only p > 0, q ∈ R can
be considered. We present results for p > −1, q ≥ 0 and p = −1, q = 0 regarding
positive solutions, and for p = 1, q ∈ (0, 1) and p > 1, q ∈ [1

2
, p+1

2
) regarding

sign-changing solutions.
Our principal references are [5] and [6]. In these articles the solvability of the

discussed problem was examined for p, q > 1 in the class of positive solutions and
for p ≥ 1, q > 1 in the class of sign-changing solutions respectively. However,
both of them left a question partially open. (Namely, the question of the existence
and multiplicity of positive non-symmetric and sign-changing non-antisymmetric



Foreword ix

solutions.) The answers will be given in this work, together with results concerning
some of the values of p and q not considered in the articles mentioned above.

We apply the so-called shooting method, which was also used in the cited art-
icles. Its substance is to express the solutions of the given boundary value problem
by means of the solutions of the same differential equation subject to appropriate
initial conditions, leading to the definition of some functions called time maps, the
properties of which directly determine the number of solutions of the considered
boundary value problem. Thus, we will need only the tools of real analysis. On the
other hand, it is not so easy to examine the properties of the time maps, because
they are given by a formula containing an improper integral, which can be calcu-
lated only for some special values of p, and the upper limit of which is given only
implicitly.
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Introduction

Consider the problem{
u′′(x) = a|u(x)|p−1u(x), x ∈ (−l, l),
u′(±l) = ±|u(±l)|q−1u(±l),

(1)

where a, l > 0, and p, q ∈ R in the case of positive solutions, while p > 0, q ∈ R in
the case of sign-changing solutions.

The first systematic study of positive solutions of (1) was done by M. Chipot,
M. Fila and P. Quittner in [5]. They also studied the N -dimensional version of (1),
but they were interested mainly in global existence and boundedness or blow-up
of positive solutions of the corresponding N -dimensional parabolic problem

ut = ∆u− a|u|p−1u in Ω × (0,∞),

∂u

∂n
= |u|q−1u in ∂Ω × (0,∞),

u(·, 0) = u0 in Ω,

(2)

where Ω ⊂ RN is a bounded domain, n is the unit outer normal vector to ∂Ω,
u0 : Ω → [0,∞), p, q > 1 and a > 0. The cited article provides a complete
answer for the question of the existence and number of positive symmetric (i. e.
even) solutions of (1) for p, q > 1. However, only partial results were presented in
it regarding positive non-symmetric solutions, the study of which is much more
complicated.

Let us remark that positive symmetric solutions of (1) (and also solutions of
(2) for N = 1) were independently studied in [12].

Sign-changing solutions of (1) were systematically investigated for the first
time in [6] by M. Chipot and P. Quittner, considering p ≥ 1 and q > 1. The
number of sign-changing antisymmetric (i. e. odd) solutions was determined for all
these values of p and q, but again, only partial results were achieved concerning
sign-changing non-antisymmetric solutions.

The results from [5] have been generalised in many other directions: In [15]
the behaviour of positive solutions of (2) was examined for all p, q > 1. Positive
solutions of the elliptic problem with −λu + up on the right-hand side of the
equation were dealt with in [13] for λ ∈ R, p, q > 1, and later in [10] for λ ∈ R,
p, q > 0, (p, q) /∈ (0, 1)2. In [11] and [16], positive and sign-changing solutions of the
parabolic problem with more general non-linearities f(u), g(u) instead of a|u|p−1u,
|u|q−1u were studied, while f(x, u), g(x, u) were considered in [2]. Many results
concerning elliptic problems with non-linear boundary conditions were summarised
in [17]. Further extensions of the results from [5] can be found in [1, 3, 4, 7, 8, 9].
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However, this thesis focuses only on (1), and extends known results to larger
sets of parameters. It is divided into two chapters, the first dealing with positive
solutions of (1), and the second with its sign-changing solutions and with the
Cauchy problem for u′′ = au−1/2, which can be explicitely solved. The chapters
are divided into sections.

Section 1 explains the shooting method: Clearly, all the positive solutions of
(1) for given l > 0 can be obtained from the solutions of the same differential
equation subject to the initial conditions u(0) = m and u′(0) = 0, choosing ap-
propriate values of m > 0. This initial value problem possesses a unique solution
for arbitrary m > 0. The connection between m and l is given by some functions
called time maps, for which a formula will be derived, showing the need of studying
positive symmetric and positive non-symmetric solutions separately. Furthermore,
thirteen cases—numbered I to XIII—regarding the values of p and q should be
distinguished. This thesis discusses the first five of them, which embrace p > −1,
q ≥ 0 and p = −1, q = 0, as opposed to p, q > 1 from [5]. We will see that the
properties of the time maps are much more diverse and more difficult to examine
outside the set p, q > 1.

In Section 2 an improper parametric integral as a function of its upper limit
will be examined in detail. This integral is contained in the time map formula, and
its properties will be used in the subsequent sections, in which the behaviour of
the time maps will be determined in the individual cases.

Cases I–IV will be studied successively in Sections 3–6. Together they cover
p = −1, q = 0 and p > −1, 0 ≤ q ≤ p+1

2
, and for these values all the positive

solutions of (1) are symmetric.
Conversely, in case V (p > −1, q > p+1

2
), (1) possesses both positive symmetric

and positive non-symmetric solutions, which will be dealt with in Sections 7 and
8. The number of positive non-symmetric solutions of (1) will be determined for
all p ≥ 1, completing the results of [5]. However, their study for p ∈ (0, 1), which
seems to be even more complicated, remains unfinished.

Section 9 deals with sign-changing solutions of (1), assuming p ≥ 1. (Although
(1) has sense for any p > 0, q ∈ R, we do not consider p ∈ (0, 1), because in that
case the initial value problem with u(0) = u′(0) = 0 has infinitely many solutions,
which causes difficulties for the study of (1).) More specifically, we will investigate
only sign-changing non-antisymmetric solutions, for the existence of which it is
neccessary to suppose q ∈ (0, p+1

2
). We extend the results of [6] to p = 1, q ∈ (0, 1)

and p > 1, q ∈ [1
2
, p+1

2
).

Finally, in Section 10 we explicitely solve the Cauchy problem for u′′ = au−1/2

with a > 0, using some formulae from Section 1 as well as Cardano’s formula.
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Chapter I

Positive solutions

1 The shooting method and the time maps

If u is a positive solution of (1), then u′(−l) < 0 < u′(l), therefore u has
a stationary point x0 ∈ (−l, l). So the function u(·+ x0) solves

u′′ = aup,

u(0) = m,

u′(0) = 0

(I.1)

for some m > 0. In the following theorem we summarise the facts known about
the solvability of this problem. The proof for p, q > 1 can be found in [5], for other
p, q it is done analogously.

1.1 Theorem (for p, q > 1 see [5, pp. 53–54])
Suppose m, a > 0, p ∈ R. Then (I.1) has a unique maximal solution. We will
denote it by um,p,a and its domain by (−Λm,p,a, Λm,p,a). Function um,p,a is even,
strictly convex, unbounded from above and fulfils

|x| = m
1−p
2

√
2a

Ip

(
um,p,a(x)

m

)
, x ∈ (−Λm,p,a, Λm,p,a), (I.2)

where Ip : [1,∞)→ [0,∞) is given as

Ip(y) =


∫ y

1

√
p+ 1

V p+1 − 1
dV if p 6= −1,∫ y

1

dV√
lnV

if p = −1

and

Λm,p,a =
m

1−p
2

√
2a

lim
y→∞

Ip(y)

{
<∞ if p > 1,

=∞ if p ≤ 1.
(I.3)

Finally, for x ∈ (−Λm,p,a, Λm,p,a) we have:

|u′m,p,a(x)| =


√

2a

p+ 1

(
up+1
m,p,a(x)−mp+1

)
if p 6= −1,√

2a
(
lnum,p,a(x)− lnm

)
if p = −1.

(I.4)
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1.2 Definiton
For given p, q ∈ R, a, l > 0 denote the set of all positive symmetric (i. e. even)
and positive non-symmetric solutions of (1) by S(l) = S(l; p, q, a) and N (l) =
N (l; p, q, a) respectively.

1.3 Remark ([5, pp. 53–54])
Assume p, q ∈ R, a, l > 0. Obviously, S(l) consists of all such functions um,p,a|[−l,l]
that 0 < l < Λm,p,a and u′m,p,a(l) = uqm,p,a(l). On the other hand, if l1 6= l2 are such
numbers that 0 < li < Λm,p,a, u

′
m,p,a(li) = uqm,p,a(li) for i = 1, 2 and l1 + l2 = 2l,

then um,p,a(· − (l1 − l2)/2)|[−l,l] ∈ N (l).

1.4 Lemma (for p, q > 1 see [5, pp. 54–55])
Let p, q ∈ R, a > 0. Then the following statements are equivalent for arbitrary
m, l > 0:

(i) l < Λm,p,a and u′m,p,a(l) = uqm,p,a(l),

(ii) the equation

0 = F(m,x) := Fp,q,a(m,x) :=


x2q

2a
− xp+1

p+ 1
+
mp+1

p+ 1
if p 6= −1,

x2q

2a
− lnx+ lnm if p = −1

(I.5)

with the unknown x > 0 has some solution R > m, and

l =
m

1−p
2

√
2a

Ip

(
R

m

)
.

Proof: In order to derive (ii) from (i), it suffices to use (I.4), denote um,p,a(l) =:
R > m and realise (I.2) for x = l. The reversed implication is proved essentially in
the same way.

Function F(m, ·) has obviously different behaviour for p > −1, p = −1 and
p < −1 as well as for q > 0, q = 0 and q < 0. It also matters which of the exponents
2q, p+ 1 is greater. So we have to distinguish thirteen cases shown in Figure 1.

1.5 Lemma (for p, q > 1 see [5, proofs of Lemma 3.1 and 3.2 with pp. 57–58])
Let p, q ∈ R, a,m > 0. Function F(m, ·) has at most two zeros, and both lie
in (m,∞). We denote them Rp,q,a(m) =: R(m) if there is only one zero, and
R1;p,q,a(m) =: R1(m) and R2;p,q,a(m) =: R2(m) if there are two, while R1(m) <
R2(m).

Let us also introduce

M := Mp,q,a :=



(
2q − p− 1

2q

) 1
p+1
(
a

q

) 1
2q−p−1 if p 6= −1, q > 0, q > p+1

2

(V, VII),(
a

eq

) 1
2q

if p = −1, q > 0 (VI),(
−p+ 1

2a

) 1
p+1

if p < −1, q = 0 (VIII).
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Figure 1: Cases I to XIII.

The following holds for the number of zeros:

(i) If q < 0 or q < p+1
2

or p = −1, q = 0 (cases I–III, IX–XIII), then F(m, ·)
has exactly one zero for arbitrary m > 0. Moreover, for p > −1, 0 < q < p+1

2

(case III) we have

R(m) >

(
a

q

) 1
2q−p−1

. (I.6)

(ii) If p > −1, q = p+1
2

(case IV), then F(m, ·) has one zero for q < a and none
for q ≥ a.

(iii) If p < −1, q = 0 (case VIII), then F(m, ·) has one zero for m < M and
none for m ≥M .

(iv) If q > 0 and q > p+1
2

(cases V–VII), then F(m, ·) has two zeros for m < M ,
one for m = M and none for m > M . Meanwhile,

R1(m) <

(
a

q

) 1
2q−p−1

︸ ︷︷ ︸
=R(M)

< R2(m). (I.7)

Moreover,

R(m) =



e
1
2am if p = −1, q = 0 (I),(
mp+1 +

p+ 1

2a

) 1
p+1 if p > −1, q = 0 (II)

or p < −1, q = 0, m < M (VIII),(
a

a− q

) 1
2q

m
if p > −1, q = p+1

2
< a (IV)

or p < −1, q = p+1
2

(X).

Proof: Investigating the behaviour of F(m, ·), we obtain the facts collected in
Table 1. They are sufficient to determine the number of zeros of F(m, ·) in cases I–
IV and VIII–XIII as well as to verify (I.6).
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lim
x→0
F(m,x) monotonicity on (0,∞) lim

x→∞
F(m,x)

I. p = −1, q = 0 ∞
decreases

−∞

II. p > −1, q = 0 1
2a+

mp+1

p+1 > 0

III. p > −1, 0 < q < p+1
2

mp+1

p+1 > 0

increases on(
0, (a/q)1/(2q−p−1)

]
,

decreases on[
(a/q)1/(2q−p−1),∞

)
IV. p > −1, q = p+1

2

decreases if q < a,
is constant if q = a,
increases if q > a

−∞ if q < a,
mp+1

p+1 > 0 if q = a,

∞ if q > a

V. p > −1, q > p+1
2 decreases on(

0, (a/q)1/(2q−p−1)
]
,

increases on[
(a/q)1/(2q−p−1),∞

) ∞VI. p = −1, q > 0

∞

VII. p < −1, q > 0

VIII. p < −1, q = 0

decreases

1
2a + mp+1

p+1
> 0 if m > M ,
= 0 if m = M ,
< 0 if m < M

IX. p < −1, p+1
2 < q < 0

mp+1

p+1 < 0X. p < −1, q = p+1
2

XI. p < −1, q < p+1
2

XII. p = −1, q < 0
−∞

XIII. p > −1, q < 0

Table 1: The properties of F(m, ·)

In cases V–VII, F(m, ·) has exactly one relative minimum, the value of which
can be easily calculated. So there exist two zeros if and only if this minimum is
negative, what happens just for m < M . Further, for m = M there is only one
zero and for m > M there is none. The validity of (I.7) is apparent.

Now let us prove that each zero of F(m, ·) is greater than m. In cases I–IV
and VIII–XIII it is guaranteed by the simple fact that F(m,m) = m2q/2a > 0 for
p, q ∈ R, a,m > 0. In cases V and VII for m ≤M , we need to consider

m ≤M <

(
a

q

) 1
2q−p−1

too, similarly in case VI.
Finally, equation (I.5) is linear in lnx and xp+1 in cases I and II, VIII, IV, X

respectively, so explicit solutions can be found.

Let us notice that the set of parameters p, q > 1, which was investigated in
[5], forms only part of cases III–V, and we will see that more complicated and
interesting things happen outside it.
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Although there is no difference in the properties of F(m, ·) summarised in
Table 1 between cases IX, X and XI, it is not clear whether or not different results
hold for (1) in these cases. For this reason we have not merged them into one case.

Now, as a simple consequence of Lemma 1.5, we formulate a non-existence
result related to (1), and afterwards we introduce the notion of the time map.

1.6 Theorem
Let p ∈ R, a > 0.

(i) If q ≤ 0 or q ≤ p+1
2

(cases I–IV and VIII–XIII), then N (l) = ∅ for all
l > 0.

(ii) If p > −1, q = p+1
2
≥ a (case IV), then S(l) = ∅ for all l > 0.

1.7 Definiton
Let p, q ∈ R, a > 0 and

L(m) := Lp,q,a(m) :=
m

1−p
2

√
2a

Ip

(
Rp,q,a(m)

m

)
for all such m that Rp,q,a(m) is defined. We introduce L1;p,q,a(m) =: L1(m) and
L2;p,q,a(m) =: L2(m) analogously. Functions L, L1 and L2 will be called time
maps (associated with (I.1)).

Using Lemmata 1.4 and 1.5, we can reformulate the statement of Remark 1.3
in the following way:

1.8 Lemma
For all p, q ∈ R, a, l > 0:

S(l) =
{
um,p,a

∣∣
[−l,l] : L(m) = l or L1(m) = l or L2(m) = l

}
,

N (l) =


{
um,p,a

(
· ± L2(m)−L1(m)

2

)∣∣∣
[−l,l]

: L1(m)+L2(m)=2l

} if q > 0
and q > p+1

2

(V–VII),

∅ otherwise.

Thus, to determine the number of positive symmetric solutions of (1) for given
p, q ∈ R, a, l > 0, we need to calculate the limits of functions L, L1, L2 at the
endpoints of their domains, to find the intervals where the functions are monotone
and finally to estimate their possible relative extrema. For non-symmetric solutions
we execute the same with L1 +L2 if q > 0 a q > p+1

2
(cases V–VII). Therefore, we

now derive formulae for the derivatives of the time map and other functions we
will need in the rest of this article.

1.9 Lemma (for p, q > 1 see [5, proofs of Theorem 3.1 and Lemma 3.5])
Assume p, q ∈ R, a > 0. Let R be one of the functions R, R1, R2, and suppose that
its domain is an interval, denote it by I. Let L ∈ {L,L1, L2} be the corresponding
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time map. Then R,L ∈ C∞(I), and the following formulae hold for m ∈ I:

R′(m) =

(
m

R(m)

)p
1

1− q
a
R2q−p−1(m)

, (I.8)(
R(m)

m

)′
=

2q − p− 1

2amp+2
R2q(m)R′(m), (I.9)(

Ip

(
R(m)

m

))′
=

2q − p− 1√
2a

m
p−3
2

Rq−p(m)

1− q
a
R2q−p−1(m)

, (I.10)

L′(m) =
1− p
2m
L(m) +

2q − p− 1

2amp+1
Rq(m)R′(m), (I.11)

L′′(m) = − p+ 1

2m
L′(m) +

2q − p− 1

2am2p+1

·
(

(q − 1)
q

a
R2q−p−1(m) + q − p

)
Rp+q−1(m)(R′(m))3.

(I.12)

Proof: The C∞-smoothness of R and the formula for its derivative follows from
the implicit function theorem due to Lemma 1.5. If R ∈ {R1, R2} (cases V–VII),
then (I.7) is used as well. The other formulae can be derived from (I.8) in such
a way as it is done in [5] for p > 1.

Now we introduce some further functions, the relation of which to the time
maps will be seen from the subsequent lemma. They will be used in the proofs of
Lemmata 5.5 and 7.6.

1.10 Definiton
Let p, q ∈ R, p 6= 1, a > 0 and

K(m) := Kp,q,a(m) :=
2q − p− 1

(p− 1)a

Rq−p
p,q,a(m)

1− q
a
R2q−p−1
p,q,a (m)

for all such m that Rp,q,a(m) is defined. We introduce K1;p,q,a(m) =: K1(m) and
K2;p,q,a(m) =: K2(m) analogously.

1.11 Lemma
Assume p, q ∈ R, p 6= 1, a > 0. Let R be one of functions R, R1, R2, and
suppose that its domain is an interval, denote it by I. Let L ∈ {L,L1, L2} and K ∈
{K,K1, K2} be the corresponding functions. Then K ∈ C∞(I), and the following
holds for all m ∈ I:

L′(m) = 0 ⇐⇒ L(m) = K(m),

K′(m) =
2q − p− 1

(p− 1)am2p

(
(q − 1)

q

a
R2q−p−1(m) + q − p

)
Rp+q−1(m)(R′(m))3.

Proof: Both of the assertions can be proved using Lemma 1.9.

1.12 Remark
Let p, q ∈ R, a > 0 and let R, L and I have the same meaning as in Lemma 1.11.
It follows from (I.8) that R has no stationary point. So it can be seen from (I.11)
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that if p = 1 (the case not dealt with in Lemma 1.11), then either L′ ≡ 0 (for
q = 1) or L has no stationary point (for q 6= 1).

In the subsequent sections we will look for extrema of L, among other things.
So assume now only p 6= 1. If m ∈ I is a stationary point of L, then L′′(m) = 0
(the case when it is more difficult to determine whether there is an extremum) if
and only if

q =
p+ 1

2
or (q − 1)qR2q−p−1(m) = (p− q)a. (I.13)

Let us notice that it is also a necessary and sufficient condition under that K′(m) =
0 holds. Thus:

(i) If q = p+1
2

or p = q = 0, then K′ ≡ 0.

(ii) If q = 0, p 6= 0,−1 or q = 1, then K has no stationary point.

(iii) If q 6= 0, 1, p+1
2

, then (I.13) is equivalent to

R2q−p−1(m) =
(p− q)a
(q − 1)q

,

which can hold for at most one m ∈ I due to the strict monotonicity of
R. Therefore, if (p, q) does not belong to cases V–VII, then K = K has
at most one stationary point, which will be denoted by m = mp,q,a (see
Lemma 5.5). On the other hand, if q > 0, p+1

2
(cases V–VII), then R1 and

R2 have disjoint ranges (due to (I.7)), so at most one of K1 and K2 can
have a stationary point, which will be denoted by m = mp,q,a as well (see
Definition 7.2 and Lemmata 7.3 (ii), 7.6, 7.7).
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2 Properties of function Ip

In this section we collect statements about Ip (see Theorem 1.1 for its defini-
tion) needed for later investigation of the time maps. More specifically, asymptotic
expansions at both 1 and∞, explicit formulae for special values of p, and continuity
and differentiability results will be provided.

We will use standard asymptotic notations: If f , g are functions defined in some
punctured neighbourhood of a point a ∈ R ∪ {±∞}, then

f(x) ∼ g(x), x→ a means lim
x→a

f(x)

g(x)
= 1,

f(x) = o(g(x)), x→ a means lim
x→a

f(x)

g(x)
= 0,

f(x) = O(g(x)), x→ a means lim sup
x→a

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞.
2.1 Lemma
For arbitrary p ∈ R we have

Ip(y) = 2
√
y − 1

(
1− p

12
(y − 1) + o(y − 1)

)
, y → 1.

Proof: Suppose p 6= −1. Then

Ip(y) =

∫ y−1

0

fp(x) dx,

where

fp(x) =

√
p+ 1

(1 + x)p+1 − 1
=

1√
x

1√
1 + p

2
x+ o(x)

=
1√
x
− p

4

√
x+ o(

√
x), x→ 0.

(We used the Maclaurin polynomial of y 7→ (1 + y)α for α = p + 1 and α = −1
2
.)

So it suffices to integrate the obtained asymptotic expansion from 0 to y − 1.
The case p = −1 is analogous.

2.2 Definiton
For all s ≥ 0 set

ps := −2s− 1

2s+ 1
.

Thus, {
pn
}∞
n=0

=
(
1,−1

3
,−3

5
,−5

7
, . . .

)
,{

pn+ 1
2

}∞
n=0

=
(
0,−1

2
,−2

3
,−3

4
, . . .

)
.

The integral Ip can be explicitly calculated for these values.

2.3 Theorem
Let n ∈ N ∪ {0}. Then

Ipn+1/2
(y) = 2

√
n+ 1 Ĩn

(
y

1
n+1 − 1

)
, y ≥ 1, (I.14)
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where

Ĩn(z) =
√
z

n∑
k=0

1

2k + 1

(
n

k

)
zk, z ≥ 0

and
Ipn(y) =

√
2(2n+ 1) În

(
y

2
2n+1

)
, y ≥ 1, (I.15)

where

În(z) =
(2n− 1)!!

(2n)!!

(
ln
(√

z +
√
z − 1

)
+

√
1− 1

z

n∑
k=1

(2k − 2)!!

(2k − 1)!!
zk

)
, z ≥ 1.

(We set (−1)!! := 1.)

Proof: Using the substitution

√
V pn+1/2 − 1 =

√
V

1
n+1 − 1 =: u

and denoting ∫ √z
0

(
u2 + 1

)n
du =: Ĩn(z),

we obtain (I.14). The integral Ĩn(z) can be calculated by the binomial theorem.
By the substitutions

V pn+1 = V
2

2n+1 =:
1

cos2 v
, v ∈

[
0, π

2

)
, sin v =: u

we obtain (I.15) with

În(z) =

∫ √1− 1
z

0

du

(1− u2)n+1
.

Integrating În(z) by parts, we can derive the recurrent relation

În(z) =
2n− 1

2n

(
În−1(z) +

1

2n− 1

√
1− 1

z
zn
)
,

from which the formula in the theorem follows.

We will also use the following special cases of (I.15) and (I.14):

I1(y) =
√

2 ln
(
y +

√
y2 − 1

)
, (I.16)

I0(y) = 2
√
y − 1, (I.17)

I−1/2(y) =
2
√

2

3

√√
y − 1

(√
y + 2

)
. (I.18)

Now the most important statement of this section follows, yielding the asymp-
totic expansion of Ip(y) for y → ∞, p > −1. It is essential for investigating the
behaviour of the time maps in many cases, but was not needed in [5] for p, q > 1.
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2.4 Lemma
For k ∈ N ∪ {0} and p ∈ (−1,∞) r {pk} put

bk(p) :=
(2k − 1)!!

(2k)!!

2

(2k + 1)(p− pk)
=

(2k − 1)!!

(2k)!!

1
p−1
2

+ k(p+ 1)
,

and for p > −1 set

Bp :=
∑

k∈N∪{0}
pk 6=p

bk(p) ∈ R.

Then the following holds for y →∞:

(i) If p > 1, then
Ip(y)√
p+ 1

= Bp + o(1).

(ii) If pn+1 < p < pn for some n ∈ N ∪ {0}, then

Ip(y)√
p+ 1

=
n∑
k=0

(−bk(p)︸ ︷︷ ︸
>0

)y
1−p
2
−k(p+1)︸ ︷︷ ︸
>0

+Bp + o(1).

(iii) If p = pn for some n ∈ N ∪ {0}, then

Ip(y)√
p+ 1

=
n−1∑
k=0

(−bk(p)︸ ︷︷ ︸
>0

)y
1−p
2
−k(p+1)︸ ︷︷ ︸
>0

+
(2n− 1)!!

(2n)!!
ln y +Bp + o(1).

Furthermore, p 7→ Bp belongs to C∞ on each of intervals (p0,∞), (p1, p0), (p2, p1),
. . . , and decreases on each of them, while

lim
p→p0+

Bp =∞, lim
p→∞

Bp = 0,

and for all n ∈ N we have:

lim
p→pn+1+

Bp =∞, Bpn+1/2
= 0, lim

p→pn−
Bp = −∞.

Proof: It consists of

1. expressing Ip(y) as the sum of a series (see (I.19)),

2. proving the finiteness of Bp and verifying statements (i), (ii), (iii),

3. and examining the properties of the function p 7→ Bp.

1. Let p > −1 and y ≥ 1. The substitution V := x−1/(p+1) gives:

Ip(y)√
p+ 1

=
1

p+ 1

∫ 1

1/yp+1

1√
1− x

x−
1
2
− 1
p+1 dx.

Using the Maclaurin series of the function x 7→ 1/
√

1− x, we get that

Ip(y)√
p+ 1

=
1

p+1

∫ 1

1/yp+1

(
∞∑
k=0

(2k−1)!!

(2k)!!
xk−

1
2
− 1
p+1

)
dx.
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Levi’s monotone convergence theorem allows us to exchange the order of
integration and summation, resulting in

Ip(y)√
p+ 1

=
∞∑
k=0

ak,p(y), (I.19)

where

ak,p(y) =


bk(p)

(
1− y

1−p
2
−k(p+1)

)
if p 6= pk,

(2k − 1)!!

(2k)!!
ln y if p = pk.

2. It is obvious that for all k ∈ N∪{0} and p > −1, ak,p is increasing, positive
on (1,∞), and

lim
y→∞

ak,p(y) =

{
bk(p) if p > pk,

∞ if p ≤ pk.
(I.20)

Now let m ∈ N ∪ {0} and p > pm. Stirling’s formula (n! ∼
√

2πn(n/e)n

for n→∞) implies that

bk(p) ∼
1√

π(p+ 1)k3/2
, k →∞,

which guarantees the convergence of
∑∞

k=m bk(p) (and also the finiteness of
Bp). We are going to prove that

lim
y→∞

∞∑
k=m

ak,p(y) =
∞∑
k=m

bk(p) (I.21)

because statement (i) follows from (I.19) and (I.21) with m = 0, while
statements (ii), (iii) from (I.19) and (I.21) with m = n+ 1.

The inequality “≤” in (I.21) is clear from (I.20) and the increase of ak,p.
In order to prove the opposite inequality, let us choose any ε > 0. We have
that

n0∑
k=m

bk(p) >
∞∑
k=m

bk(p)−
ε

2

for some n0 ≥ m. The positivity of ak,p on (1,∞) together with (I.20) yields
that there exists a number K > 1 such that

∞∑
k=m

ak,p(y) >

n0∑
k=m

ak,p(y) >

n0∑
k=m

bk(p)−
ε

2

for all y > K. Joining the last two inequalities, we obtain (I.21).

3. The decrease of p 7→ Bp on intervals (p0,∞), (p1, p0), (p2, p1), . . . follows
immediately from the decrease of functions bk on these intervals.

Let us now prove that (p 7→ Bp) ∈ C∞((−1,∞) r
⋃∞
n=0{pn}). We will

use the C∞-smoothness of functions bk. If we choose arbitrary m,n ∈ N ∪
{0} and [α, β] ⊆ (pn,∞), then applying the Weierstraß criterion, we can
verify that

∑∞
k=n(bk)

(m) converges uniformly on [α, β], therefore we can
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differentiate it term by term. So the sum of
∑∞

k=n bk belongs to C∞([α, β]),
thus also to C∞((pn,∞)), from which the C∞-smoothness of the function
p 7→ Bp on (−1,∞) r

⋃∞
n=0{pn} follows.

The one-sided limits of p 7→ Bp in p0, p1, . . . are found easily. They—
together with its continuity and decrease on (pn+1, pn)—guarantee the ex-
istence of a unique point p∗n ∈ (pn+1, pn) such that Bp∗n = 0. Statement (ii)
gives the expansion

Ip
n+1

2

(y) = 2
√
n+1

n∑
k=0

1

2n−2k+1

(2k−1)!!

(2k)!!

(
y

1
n+1

) 1
2
+n−k

+
Bpn+1/2√
n+1

+ o(1)

for y → ∞. On the other hand, from (I.14), using the binomial theorem
and the Maclaurin polynomial of x 7→

√
1 + x of degree n, we obtain that

Ip
n+1

2

(y) =
√
z · 2
√
n+ 1

√
1− 1

z

n∑
i=0

1

2i+ 1

(
n

i

)
(z−1)i

=
n∑
k=0

cn,kz
1
2
+n−k +O

(
1√
z

)
for z = y1/(n+1) →∞ and some constants cn,k, k = 0, 1, . . . n. Consequently,
p∗n = pn+1/2.

Finally, in order to find limp→∞Bp, we employ the uniform convergence
of
∑∞

k=0 bk on (α,∞) for α > 1, and so we exchange the order of the limit
and the sum.

The asymptotic expansion of I−1 can be derived much easier.

2.5 Lemma
For every y > 1, n ∈ N:

I−1(y) =
n−1∑
k=0

(2k − 1)!!

2k
y

lnk+1/2 y
+O

(
y

lnn+1/2 y

)
, y →∞.

Proof: Set

In(y) :=

∫ y

e

dV

lnn+1/2 V

for all N ∈ N ∪ {0} and y > 1. Integrating by parts, we can derive the recurrent
relation

In(y) =
y

lnn+1/2 y
− e +

2n+ 1

2
In+1(y).

Using it n times, we obtain

I−1(y) = I0(y) +

∫ e

1

dV√
lnV

=
n−1∑
k=0

(2k − 1)!!

2k
y

lnk+1/2 y
+Rn(y),

where

Rn(y) =

∫ e

1

dV√
lnV

−
n−1∑
k=0

(2k − 1)!!

2k
e +

(2n− 1)!!

2n
In(y) ∼ (2n− 1)!!

2n
y

lnn+1/2 y
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for y →∞, which can be proved using l’Hôpital’s rule.

Notice that although Lemma 2.5 gives an asymptotic expansion, the corres-
ponding series

∞∑
k=0

(2k − 1)!!

2k
y

lnk+1/2 y

diverges for all y > 1.
The last two assertions concern the continuity and differentiability of Ip(y) as

a function of two variables.

2.6 Theorem
The function (y, p) 7→ Ip(y) is continuous on [1,∞)× R. Furthermore, p 7→ Ip(y)
is decreasing on R for any y > 1.

Proof: Let us express Ip(y) as

Ip(y) =

∫ y

1

λ(V, p) dV,

where

λ(V, p) =


√

p+ 1

V p+1 − 1
if p 6= −1, V > 1,

1√
lnV

if p = −1, V > 1.

Obviously, λ is continuous in both of its variables, and is decreasing in V . Con-
sequently, it is continuous (on (1,∞) × R). Similarly, if we prove the continuity
of p 7→ Ip(y) for all y > 1 (for y = 1 it is evident), then using the continuity and
increase of Ip for any p ∈ R, we will have that (y, p) 7→ Ip(y) is continuous.

For this purpose, it will be important to know the behaviour of λ(V, ·). We can
derive that for any p 6= −1 and V > 1:

∂

∂p

1

λ2(V, p)
> 0 ⇐⇒ lnV p+1 +

1

V p+1
− 1 > 0,

which can be equivalently written as lnx < x−1 for x := 1/V p+1 ∈ (0, 1)∪ (1,∞).
Thus, 1/λ2(V, ·) is increasing on R, therefore λ(V, ·) is decreasing, and the second
assertion of the lemma holds.

Now choose arbitrary y > 1, p0 ∈ R. Since λ(·, p0) is an integrable majorant of
{λ(·, p)}p≥p0 on (1, y), and λ(V, ·) is continuous, we have the continuity of p 7→ Ip(y)
on [p0,∞).

2.7 Theorem
The function (y, p) 7→ Ip(y) is continuously differentiable on (1,∞) × (−1,∞),
while

∂

∂p

Ip(y)√
p+ 1

= −1

2

∫ y

1

V p+1 lnV

(V p+1 − 1)3/2
dV =: Jp(y) (I.22)

for all y > 1, p > −1.
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Proof: Firstly, we prove that p 7→ Ip(y)/
√
p+ 1 is continuously differentiable on

(−1,∞) for any y > −1, and fulfils (I.22). So chose arbitrary y > 1 and p0 > −1.
We have

Ip(y)√
p+ 1

=

∫ y

1

1√
V p+1 − 1︸ ︷︷ ︸
=:µ(V,p)

dV, p ≥ p0

with
∂µ

∂p
(V, p) = − V p+1 lnV

2(V p+1 − 1)3/2
< 0, V ∈ (1, y), p ≥ p0.

Since

∂2µ

∂p2
(V, p) =

V p+1
(
V p+1 + 2

)
ln2 V

4(V p+1 − 1)5/2
> 0, V ∈ (1, y), p ≥ p0,

−∂µ
∂p

(·, p0) is a majorant of {∂µ
∂p

(·, p)}p≥p0 . And it is also integrable because

∂µ

∂p
(V, p0) = − V p0+1 lnV

2(V p0+1 − 1)3/2
∼ 1

2(p0 + 1)
√
V − 1

, V → 1

(Taylor polynomials can be used). Consequently, p 7→ Ip(y)/
√
p+ 1 is differentiable

on (p0,∞), and (I.22) holds. Moreover, p 7→ Jp(y) is continuous on (p0,∞) due to
the continuity of ∂µ

∂p
(V, ·) for all V ∈ (1, y).

In order to obtain the continuous differentiability of (y, p) 7→ Ip(y)/
√
p+ 1

(or equivalently of (y, p) 7→ Ip(y)), we have to validate the continuity of its par-
tial derivatives: Since Jp(y) is continuous in p, and is apparently continuous and
decreasing in y, it is indeed continuous. And the continuity of

∂

∂y

Ip(y)√
p+ 1

=
1√

yp+1 − 1

is obvious.
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3 Case I (p = −1, q = 0)

This case is the simplest one since from Lemma 1.5 it directly follows that

L(m) =
m√
2a

I−1

(
e

1
2a

)
, m > 0.

Thus, the time map, which determines the relation between m = u(0) and l for u ∈
S(l), is linear. So substituting into Lemma 1.8, we obtain the following theorem:

3.1 Theorem
Assume p = −1, q = 0, a > 0. Then for arbitrary l > 0:

S(l) =

{
um,−1,a

∣∣
[−l,l] : m =

√
2a

I−1
(
e

1
2a

) l} ,
N (l) = ∅.
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4 Case II (p > −1, q = 0)

In this section we answer the question of the solvability of (1) for

p > −1, q = 0, a > 0 (I.23)

finding limm→0 L(m) and limm→∞ L(m), and proving the monotonicity of L. How-
ever, let us first summarise the properties of R that will be used in the subsequent
lemmata.

4.1 Lemma
Let (I.23) hold. Then R′ > 0, and

lim
m→0

R(m) =

(
p+ 1

2a

) 1
p+1

,

R(m) = m

(
1 +

1

2amp+1
+ o

(
1

mp+1

))
, m→∞.

Proof: It suffices to use the explicit formula for R(m) given by Lemma 1.5.

4.2 Lemma
Assume (I.23). Then

lim
m→0

L(m) =


∞ if p ≥ 1,

2

1− p

(
p+ 1

2a

) 1
p+1

=: Lp,0,a(0) =: L(0) if p ∈ (−1, 1),

lim
m→∞

L(m) =


0 if p > 0,
1
a

if p = 0,

∞ if p ∈ (−1, 0).

Proof: For p > 1 and p = 1, limm→0 L(m) is easily found using Lemma 4.1 and
(I.3). In the case of p ∈ (−1, 1), it is of type ∞∞ :

lim
m→0

L(m) = lim
m→0

Ip
(R(m)

m

)
√

2am
p−1
2

,

and we calculate it by l’Hôpital’s rule, (I.10) and Lemma 4.1.
According to Lemmata 4.1 and 2.1:

L(m) ∼
√

2

a
m

1−p
2

√
R(m)

m
− 1, m→∞,

while
R(m)

m
− 1 ∼ 1

2amp+1
, m→∞.

Connecting these two expansions, we obtain that L(m) ∼ 1
amp

for m → ∞, and
the second assertion follows.
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4.3 Lemma
Let (I.23) hold. Then:

(i) If p > 0, then L′ < 0.

(ii) If p = 0, then L ≡ 1
a
.

(iii) If −1 < p < 0, then L′ > 0.

Proof:

(i) Firstly, let us consider p > 0. Due to (I.11), the case p ≥ 1 is clear. So let
0 < p < 1. If L has a stationary point m0 > 0, then L′′(m0) > 0 according
to (I.12) and Lemma 4.1, thus it is a point of strict relative minimum.
Therefore, either L has no stationary point or it has exactly one, which is
a point of global minimum. However, the second possibility contradicts the
fact that limm→∞ L(m) = 0 (Lemma 4.2).

(ii) For p = 0, Lemma 1.5 gives the formula R(m) = m + 1
2a

, so L(m) = 1
a

according to (I.17).

(iii) Finally, let us have p ∈ (−1, 0), and let us proceed as for p ∈ (0, 1). Now L
attains a strict relative maximum in each of its stationary points. On the
other hand, limm→∞ L(m) = ∞ so the only possibility is that L′ > 0 on
(0,∞).

Figure 2: The relation between m = u(0) and l for u ∈ S(l) in case II (p > −1,
q = 0, a > 0) according to Lemmata 1.8, 4.2 and 4.3. See also Theorem 4.4.

From the results of the last two lemmata (which are summarised in Figure 2),
applying Lemma 1.8, we obtain the main statement of this section:
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4.4 Theorem
Assume (I.23) and l > 0. Then N (l) = ∅, and the following holds for positive
symmetric solutions of (1):

If p ≥ 1, then |S(l)| = 1, and L is decreasing. (Recall that L(u(0)) = l for any
u ∈ S(l).)

If p = 0, then (1) has a solution only for l = 1
a
, namely

S
(

1

a

)
=

{
x 7→ a

2
x2 +m, x ∈ [−l, l] : m > 0

}
.

If p < 1 and p 6= 0, then

|S(l)| =

{
1 if l is between L(0) and lim

m→∞
L(m),

0 otherwise,

and L is strictly monotone. (See Lemma 4.2 about L(0) and limm→∞ L(m).)

The last question we will answer in this section is whether L·,0,a(0) is monotone.

4.5 Lemma
Suppose that (I.23) holds, let p be the unique solution of the equation p3−7p−2 = 0
in (−1, 0), and set

a :=
p+ 1

2
e

2
3−p−2 ∈

(
1

2e2
,
1

e

)
.

Then:

(i) If a > a, then ∂
∂p
Lp,0,a(0) > 0 for p ∈ (−1, 1).

(ii) If a = a, then ∂
∂p
Lp,0,a(0) > 0 for p ∈ (−1, 1)r{p}, and ∂

∂p
Lp,0,a(0)|p=p = 0.

(iii) If 0 < a < a, then p 7→ Lp,0,a(0) has two stationary points: p1 = p1(a) ∈
(−1, p) and p2 = p2(a) ∈ (p, 1), while ∂

∂p
Lp,0,a(0) > 0 for p ∈ (−1, p1) ∪

(p2, 1), and ∂
∂p
Lp,0,a(0) < 0 for p ∈ (p1, p2).

Furthermore, for all a > 0 we have

lim
p→−1+

Lp,0,a(0) = 0, lim
p→1−

Lp,0,a(0) =∞.

Proof: The limits of Lp,0,a(0) can be easily calculated. We also have that

∂

∂p
Lp,0,a(0) > 0 ⇐⇒ ln

p+ 1

2a
− (p+ 1)2

1− p
− 1 =: ψa(p) < 0.

So we need to examine the properties of ψa. It is not difficult to derive that

ψ′a(p) > 0 ⇐⇒ p3 − 7p− 2 =: %(p) > 0.

Since % is decreasing on (−1, 1), and %(0) < 0 < limp→−1 %(p), it has a unique
zero p ∈ (−1, 0). It means that ψa increases on (−1, p], and decreases on [p, 1).
However, limp→−1+ ψa(p) = limp→1− ψa(p) = −∞, thus L·,0,a(0) has the properties
from parts (i), (ii) or (iii) if ψa(p) < 0, ψa(p) = 0 or ψa(p) > 0 respectively.
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Using that %(p) = 0, we obtain:

ψa(p) = ln
p+ 1

2a
+

2

3− p
− 2 = 0 ⇐⇒ a = a.

Furthermore, a 7→ ψa(p) is decreasing, so ψa(p) < 0 indeed for a > a, and ψa(p) > 0
for a ∈ (0, a). It remains to check that a ∈ ( 1

2e2
, 1
e
). However, it can be directly

proved that ψa < 0 for a ≥ 1
e
, so a < 1

e
and ψa(0) ≥ 0, and consequently, ψa(p) > 0

for a ≤ 1
2e2

, so a > 1
2e2

.

Let us mention that p ≈ −0.289, a ≈ 0.088, and using Cardano’s formula one
can also derive that

p = 2

√
7

3
cos

arccos 3
√
3

7
√
7
− 2π

3
.
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5 Case III (p > −1, 0 < q < p+1
2

)

A part of case III was already examined in [5] (see Lemma 5.2). For the rest we
will need the asymptotic expansions of R(m) for m→ 0 and m→∞ (Lemma 5.1),
and also Lemma 2.4. We will deal only with

p > −1, 0 < q <
p+ 1

2
, a > 0. (I.24)

5.1 Lemma
Let (I.24) hold. Then R′ > 0, and

R(m)

R(0)
= 1− mp+1

(2q − p− 1)Rp+1(0)
+ o
(
mp+1

)
, m→ 0

R(m)

m
= 1 +

1

2a
m2q−p−1 +

4q − p
8a2

m2(2q−p−1) + o
(
m2(2q−p−1)), m→∞,

where

R(0) = Rp,q,a(0) = lim
m→0

R(m) =

(
2a

p+ 1

) 1
2q−p−1

.

Proof: It is clear from (I.8) and Lemma 1.5 (i) that R′ > 0, so R has a positive
and finite limit (denoted by R(0)) at 0, the value of which can be obtained from
the equality

0 = lim
m→0
F(m,R(m)) =

Rp+1(0)

2a

(
R2q−p−1(0)− 2a

p+ 1

)
.

Now we will look for such c, d > 0 that

R(m)

R(0)
− 1 ∼ cmd, m→ 0.

So let us calculate the following limit using l’Hôpital’s rule and (I.8):

lim
m→0

R(m)
R(0)
− 1

md
= − p+ 1

(2q − p− 1)dRp+1(0)
lim
m→0

mp+1−d.

It should be positive and finite, determining the value of c. Therefore, we have
d = p+ 1, and c is also given as in the lemma.

The decrease of m 7→ R(m)/m ≥ 1 (see (I.9)) guarantees the existence of its
positive and finite limit at ∞. So we can use l’Hôpital’s rule and (I.8) to derive
that

A := lim
m→∞

R(m)

m
= lim

m→∞

(
m

R(m)

)p
=

1

Ap
.

Consequently, A = 1. The asymptotic expansion of R(m)/m for m → ∞ can be
also found by the method of undetermined coefficients, which we used for m→ 0.
However, let us show an iterative method borrowed from [5, proof of Lemma 3.3]:
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Multiplying the equality F(m,R(m)) = 0 (see (I.5)) by (p+1)/mp+1, and express-
ing R(m)/m from it, we obtain:

R(m)

m
=

(
1 +

p+ 1

2a
m2q−p−1

(
R(m)

m

)2q
) 1

p+1

. (I.25)

The expression (R(m)/m)2q on the right-hand side can be replaced by 1 + o(1), so

R(m)

m
=

(
1 +

p+ 1

2a
m2q−p−1 + o

(
m2q−p−1)) 1

p+1

= 1 +
1

2a
m2q−p−1 + o

(
m2q−p−1)

(We used the Maclaurin polynomial of x 7→ (1 + x)1/(p+1).) Now let us insert the
asymptotic expansion we have just obtained in the right-hand side of (I.25) again.
It yields

R(m)

m
=

(
1 +

p+ 1

2a
m2q−p−1 +

(p+ 1)q

2a2
m2(2q−p−1) + o

(
m2(2q−p−1))) 1

p+1

,

which can be rewritten in the form from the lemma.
Let us remark that we could use this iterative method in the case of m→ 0 as

well. We only would replace (I.25) by

R(m) = R(0)

(
1− mp+1

Rp+1(m)

) 1
2q−p−1

,

which can be derived from the equality F(m,R(m)) = 0 multiplying it by (p +
1)/Rp+1(m).

5.2 Lemma (for p, q > 1 see [5, Theorem 3.1])
If (I.24) holds and p ≥ 1, then

lim
m→0

L(m) =∞, L′ < 0 on (0,∞), lim
m→∞

L(m) = 0.

Proof: The proof from [5] for p, q > 1 is also valid for p > 1, and the case p = 1
is similar.

In the next two lemmata we find the limits of L—denoted by L(0) and L(∞)—
for p < 1. For the proof of Lemma 5.5 it is also necessary to know the sign of
L− L(0) and L− L(∞) near 0 and ∞ respectively, for certain values of p, q.

5.3 Lemma
Assume (I.24) and p < 1. Then

lim
m→0

L(m) =
2

1− p

(
p+ 1

2a

) q−1
2q−p−1

=: Lp,q,a(0) =: L(0)

and furthermore, L > L(0) in some neighbourhood of 0 for −1
3
< p ≤ 0, and

L < L(0) in some neighbourhood of 0 for 0 < p < 1.
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Proof: The limm→0 L(m) is found in the same way as in Lemma 4.2. So choose any
p ∈ (−1

3
, 1), and let us calculate the second term of the asymptotic expansion of

L(m) for m→ 0, which will allow us to determine whether L < L(0) or L > L(0)
near 0. Lemma 5.1 yields:

R(m) = R(0)
(
1 +O

(
mp+1

))
= R(0)

(
1 + o

(
m

1−p
2

))
.

Joining it with the expansion of Ip(y) from Lemma 2.4, we obtain:

L(m) = L(0) +

√
p+ 1

2a
Bpm

1−p
2 + o

(
m

1−p
2

)
.

As we know, Bp > 0 for p ∈ (−1
3
, 0), and Bp < 0 for p ∈ (0, 1), guaranteeing the

validity of the statement of the lemma for these values of p.
It remains to examine p = 0. In that case we can use (I.17). So

L(m) = L(0)

√
1 +

2q

1− 2q
(2a)

1
1−2qm+ o(m) = L(0) +

2q

1− 2q
(2a)

q
1−2q︸ ︷︷ ︸

>0

m+ o(m)

due to Lemma 5.1.

5.4 Lemma
If (I.24) holds and p < 1, then

lim
m→∞

L(m) =


0 if q < p,
1
a

if q = p,

∞ if q > p

and furthermore, L > 1
a

in some neighbourhood of ∞ for q = p.

Proof: The proof of the first statement does not differ from that of Lemma 4.2.
So let q = p, and join the expansions of Lemmata 2.1 and 5.1 for m→∞:

L(m) =
1

a

√
1 +

3p

4a
mp−1 + o

(
mp−1

)(
1− p

24a
mp−1 + o

(
mp−1))

=
1

a
+

p

3a2
mp−1 + o

(
mp−1).

Since p ∈ (0, 1) and thus p
3a2

> 0, L > 1
a

indeed near ∞.

5.5 Lemma
Suppose that (I.24) holds, and for q > |p| set

m := mp,q,a :=

(
(p+ q)(2q − p− 1)

2q(q − 1)

) 1
p+1
(
a(q − p)
q(1− q)

) 1
2q−p−1

.

(i) If p < 1, q ≤ p, then L′ < 0 on (0,∞).
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(ii) If p > 0, q > p, then L has a stationary point m0;p,q,a =: m0 ∈ (0,m], while
L′ < 0 on (0,m0), L′ > 0 on (m0,∞).

(iii) If p ≤ 0, q > −p, then L′ > 0 on (0,∞) r {m}.

(iv) If q ≤ −p, then L′ > 0 on (0,∞).

Proof: It is similar to the proof of Lemma 4.3. So suppose that m0 > 0 is a sta-
tionary point of L. From (I.12) it is clear that L′′(m0) has the same sign as

(1− q)q
a
R2q−p−1(m0) + p− q =: %p,q,a(m0) =: %(m0).

Therefore, if q ≤ p, then L has at most one stationary point, and if it has some,
then it attains a strict relative minimum there. However, L cannot increase near
∞ (see Lemma 5.4), thus statement (i) holds.

In the rest of the proof we will deal with q > p. We have

L′′(m0) > 0 ⇐⇒ R(m0) <

(
a(q − p)
q(1− q)

) 1
2q−p−1

=: Rp,q,a =: R

and
R > R(0) ⇐⇒ (2q − p− 1)(p+ q) < 0 ⇐⇒ q > −p.

Since (R(0),∞) is the range of R, each stationary point of L is a point of strict
relative maximum for q ≤ −p, and statement (iv) follows due to Lemma 5.4.

We will suppose q > −p from now on (together with q > p), thus −1
3
< p < 1.

Consequently,

L′′(m0) > 0 ⇐⇒ m0 < R−1(R) = R

(
1− p+ 1

2a
R

2q−p−1
) 1

p+1

= m.

So Lemma 5.4 guarantees that L does not attain any relative extremum in (m,∞).
Furthermore, if p ≤ 0, then no point of relative extremum lies in (0,m) as well
(see Lemma 5.3), as it is stated in (iii). On the other hand, if p > 0, then a similar
consideration shows that L has exactly one relative extremum, which is a global
minimum attained at some point m0 ∈ (0,m], and in case of m0 < m, m may be
a stationary point of L as well. In order to complete the verification of statement
(ii), let us show that L cannot have two stationary points for 0 < p < 1, q > p:
From Lemma 1.11 we see that K ′(m) has the opposite sign to %(m) for any m > 0.
Consequently K decreases on (0,m]. However, if L had a relative minimum at
some point m0 ∈ (0,m), and m were another stationary point of L, we would
have K(m0) = L(m0) < L(m) = K(m) (see Lemma 1.11), a contradiction to
K(m0) > K(m).

The properties of L ascertained in this section are summarised in Figure 3,
which shows all the possible graphs of L with the corresponding sets of parameters
in the (p, q)-plane, distinguished by colours. (Note that although we have not ruled
out in Lemma 5.5 the possibility thatm is a stationary point of L for p ≤ 0, q > −p,
it has no influence on the number of solutions of (1).) Using Lemma 1.8 , we can
state the main result of this section. Recall that L(u(0)) = l for any u ∈ S(l), and
see also Lemmata 5.2, 5.3, 5.4 and 5.5 concerning L(0), limm→∞ L(m) and m0.
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5.6 Theorem
Assume (I.24) and l > 0. Then N (l) = ∅, and the following holds for the positive
symmetric solutions of (1):

If p > 0 and q > p, then

|S(l)| =


2 if l ∈ (L(m0), L(0)),

1 if l ∈ {L(m0)} ∪ [L(0),∞),

0 otherwise,

and L decreases on (0,m0] and increases on [m0,∞), see Figure 3.
In all the other cases,

|S(l)| =

{
1 if l is between L(0) and lim

m→∞
L(m),

0 otherwise,

and L is strictly monotone, see Figure 3.
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Figure 3: The relation between m = u(0) and l for u ∈ S(l) in case III (p > −1,
0 < q < p+1

2
, a > 0) according to Lemmata 1.8, 5.2, 5.3, 5.4 and 5.5. See also

Theorem 5.6.
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6 Case IV (p > −1, q = p+1
2

)

In this case we have from Lemma 1.5 that the time map is defined only for
q < a, and is given by

L(m) =
1√
2a

Ip

((
a

a− q

) 1
2q

︸ ︷︷ ︸
=:rq,a

)
m

1−p
2 , m > 0.

Thus, it is a bijection of (0,∞) onto (0,∞) for p 6= 1, and a constant function for
p = 1. Namely, we can use (I.16) to derive that

L1,1,a(m) =
1√
a

ln

√
a+ 1√
a− 1

=
1

2
√
a

ln

(√
a+ 1√
a− 1

)2

=
1

2
√
a

ln

√
a+ 1√
a− 1

.

Furthermore, solving (I.1) for p = 1, we obtain that um,1,a(x) = m ch(
√
ax). So

according to Lemma 1.8, we can state the following:

6.1 Theorem
Let p > −1, q = p+1

2
, a > 0. Then for arbitrary l > 0:

S(l) =



{
um,p,a

∣∣
[−l,l] : m =

( √
2a

Ip(rq,a)
l

) 2
1−p
}

if p 6= 1, q < a,

{
x 7→ m ch(

√
ax), x ∈ [−l, l] : m > 0

} if p = 1, a > 1,

l = 1
2
√
a

ln
√
a+1√
a−1 ,

∅ otherwise,

N (l) = ∅.
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7 Case V (p > −1, q > p+1
2

), symmetric

solutions

Recall that due to Lemma 1.5 (iv), we have the following time maps in case V:
L1 < L2 defined on (0,M) and L defined on {M}. In this section we describe their
behaviour for

p > −1, q >
p+ 1

2
, a > 0. (I.26)

7.1 Lemma (for p > 1 see [5, p. 57 and Lemma 3.3])
Assume (I.26). Then R′1 > 0, while

lim
m→0

R1(m)

m
= 1, lim

m→M
R1(m) = R(M) =

(
a

q

) 1
2q−p−1

and R′2 < 0, while

lim
m→0

R2(m) =

(
2a

p+ 1

) 1
2q−p−1

=: R2;p,q,a(0) =: R2(0), lim
m→M

R2(m) = R(M).

Moreover,

R2(m)

R2(0)
= 1− mp+1

(2q−p−1)Rp+1
2 (0)

− 2q+p

2(2q−p−1)2R
2(p+1)
2 (0)

m2(p+1) + o
(
m2(p+1)

)
for m→ 0.

Proof: It is clear from Lemma 1.5 (iv) and (I.8) that R′1 > 0 and R′2 < 0. The
limits of R1(m), R1(m)/m and R2(m) can be calculated in the same way as in [5]
for p > 1, and the derivation of the asymptotic expansion of R2(m) for m→ 0 does
not differ from that of R(m) for m→ 0 and m→∞ in the proof of Lemma 5.1.

7.2 Definiton
For p, q, a satisfying (I.26) and q < |p| set

m := mp,q,a :=

(
(p+ q)(2q − p− 1)

2q(q − 1)

) 1
p+1
(
a(p− q)
q(q − 1)

) 1
2q−p−1

.

7.3 Lemma (for p > 1 see [5, Lemmata 3.1, 3.4, 3.3, 3.2 and 3.5])
If (I.26) holds, then

lim
m→M

L1(m) = L(M), lim
m→M

L′1(m) =∞,

lim
m→0

L1(m) =


0 if q > p,
1
a

if q = p,

∞ if q < p,

(I.27)

and the following holds concerning the monotonicity of L1:
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(i) If q ≥ p, then L′1 > 0.

(ii) If q < p, then there exists such a point m0;p,q,a =: m0 ∈ [m,M) that

L′1 < 0 on (0,m0), L′1 > 0 on (m0,M).

Proof: It does not differ from the proof that can be found in [5] for p, q > 1. Let
us mention that (I.27) is obtained as the consequence of

L1(m) =
1

a
mq−p + o

(
mq−p), m→ 0. (I.28)

7.4 Lemma (for p > 1 see [5, Lemmata 3.1, 3.4 and 3.3])
If (I.26) holds, then

lim
m→M

L2(m) = L(M), lim
m→M

L′2(m) = −∞,

lim
m→0

L2(m) =


∞ if p ≥ 1,

2

1− p

(
p+ 1

2a

) q−1
2q−p−1

=: L2;p,q,a(0) =: L2(0) if p ∈ (−1, 1).

Proof: The limits at M can be calculated in the same way as it was done in [5]
for p, q > 1, while the proof of the second part of the lemma is essentially the same
as that of Lemma 4.2.

7.5 Lemma
Assume (I.26) with p < 1. Then

(i) if p ≥ 0 or q < −p or p ≥ −1
2
, q = −p, then L2 < L2(0) in some neigh-

bourhood of 0,

(ii) and if p < 0, q > −p or p < −1
2
, q = −p, then L2 > L2(0) in some

neighbourhood of 0.

(See Figure 4 showing these two sets in the (p, q)-plane.)

Proof: We use the asymptotic expansions of Ip(y) and R2(m) from Lemmata 2.4
and 7.1 respectively, and our goal is to find the second term of the asymptotic
expansion of L2(m) for m→ 0, and to determine its sign. However, as we will see,
it has eight different forms depending on the value of p and q.

All the asymptotic expansions in this proof will concern y →∞ and m→ 0.

1. For −1
3
< p < 1 the expansion of L2(m) looks like that of L(m), and is

derived in the same way as in the proof of Lemma 5.3.

2. If p = −1
3
, then writing Bp+o(1) as O(1) and R2(m) as R2(0)(1+O(m2/3)),

we obtain:

L2(m) =
1

2

√
3

a
R

2/3
2 (m) +

1

2
√

3a
m2/3 ln

R2(m)

m
+O(m2/3)

= L2(0) +
1

2
√

3a
m2/3 ln

1

m
+O

(
m2/3

)
.
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Figure 4: The behaviour of L2 near 0 in case V for p < 1 according to Lema 7.5:
if (p, q) belongs to the purple set, then L2 < L2(0) near 0, and if (p, q) belongs
to the blue set, then L2 > L2(0) near 0. (Recall that limm→0 L2(m) = L2(0), see
Lemma 7.4.)

3. Now let −1 < p < −1
3
. In general, we have the expansion

Ip(y)√
p+ 1

=
2

1− p
y

1−p
2 − 1

3p+ 1
y−

3p+1
2 + %p(y)

for some function %p, which is given by different formulae depending on p,
and will be specified later. It can be derived from Lemma 7.1 that

R
1−p
2

2 (m) = R
1−p
2

2 (0)

(
1− 1− p

2(2q − p− 1)Rp+1
2 (0)

mp+1

− (1− p)(4q + 3p+ 1)

8(2q − p− 1)2R
2(p+1)
2 (0)

m2(p+1) + o
(
m2(p+1)

))
and

R
− 3p+1

2
2 (m) = R

− 3p+1
2

2 (0)

(
1 +

3p+ 1

2(2q − p− 1)Rp+1
2 (0)

mp+1 + o
(
mp+1

))
,

which yield:

L2(m) = L2(0) + Cp,q,am
p+1 +Dp,q,am

2(p+1)

+

√
p+ 1

2a
m

1−p
2 %p

(
R2(m)

m

)
+ o
(
m2(p+1)

)
,

(I.29)

where

Cp,q,a = − 2(p+ q)

(3p+ 1)(2q − p− 1)Rp+q
2;p,q,a(0)


> 0 if q > −p,
= 0 if q = −p,
< 0 if q < −p,

Dp,q,a = − 8q + p− 1

4(2q − p− 1)2Rq+2p+1
2;p,q,a (0)

.
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Using that %p(y) = o(y−(3p+1)/2) and R2(m) = O(1), we can rewrite (I.29)
in the form

L2(m) = L2(0) + Cp,q,am
p+1 + o

(
mp+1

)
, (I.30)

thus further calculations are needed for q = −p.

(a) Let us consider −q = p ∈ (−3
5
,−1

3
). Since %p(y) = Bp + o(1) and

O(m2(p+1)) = o(m(1−p)/2), we have

L2(m) = L2(0) +

√
p+ 1

2a
Bpm

1−p
2 + o

(
m

1−p
2

)
(I.31)

from (I.29). According to Lemma 2.4, Bp < 0 for p ∈ (−1
2
,−1

3
), and

Bp > 0 for p ∈ (−3
5
,−1

2
). In the case p = −1

2
the expansion from

Lemma 2.4 does not suffice for us, but we can use (I.18) together
with √

R2(m) = 4a−
√
m− m

4a
+ o(m)

to derive that

L2(m) =
16a

3

√
1−
√
m

2a
− m

16a2
+ o(m)

(
1 +

√
m

4a
− m

16a2
+ o(m)

)
= L2(0)− m

a
+ o(m).

(b) If −q = p = −3
5
, then inserting %p(y) = 3

8
ln y + O(1) and R2(m) =

O(1) in (I.29), we obtain that

L2(m) = L2(0) +
3

8
√

5a
m4/5 ln

1

m
+O

(
m4/5

)
.

(c) Finally, for −q = p ∈ (−1,−3
5
) we have

%p(y) = − 3

4(5p+ 3)
y−

5p+3
2 + o

(
y−

5p+3
2

)
,

which together with R2(m) = R2(0) + o(1) and (I.29) yields

L2(m) = L2(0) +
2p(p+ 1)

(5p+ 3)(3p+ 1)2Rp+1
2 (0)︸ ︷︷ ︸

>0

m2(p+1) + o
(
m2(p+1)

)
.

The next three lemmata deal with the monotonicity and the stationary points
of L2.

7.6 Lemma
Assume (I.26). The following holds:

(i) If p ≥ 0 or p ≥ −1
2
, q = −p, then

L′2 < 0 on (0,M).
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(ii) If p < 0, q > −p or p < −1
2
, q = −p, then L2 has a unique stationary point

m0;p,q,a =: m0 ∈ (0,M), while

L′2 > 0 on (0,m0), L′2 < 0 on (m0,M).

(iii) If q < −p, then one of the following holds:

A: L′2 < 0 on (0,M),

B: L′2 < 0 on (0,m), L′2(m) = 0 and L′2 < 0 on (m,M),

C: L′2 < 0 on (0,m1), L′2 > 0 on (m1,m2), and L′2 < 0 on (m2,M) for
some m1 = m1;p,q,a ∈ (0,m), m2 = m2;p,q,a ∈ [m,M).

Proof: The case p ≥ 1 is trivial, so let p < 1, and suppose that m0 ∈ (0,M) is
a stationary point of L2. Recall that L′2 < 0 near M due to Lemma 7.4.

Firstly, let us consider q ≥ 1. Then L′′2(m0) < 0, so there are only two pos-
sibilities: Either L′2 < 0 on (0,M) or L2 has a unique stationary point, which is
a point of strict relative maximum. Lemma 7.5 guarantees that the first one holds
for p ≥ 0 and the second one for p < 0.

Now let q < 1. Consequently:

L′′2(m0) < 0 ⇐⇒ R2(m0) <

(
a(q − p)
q(1− q)

) 1
2q−p−1

=: R2;p,q,a =: R2. (I.32)

Recall that (R(M), R2(0)) is the range of R2. The inequality R2 > R(M) holds
always, while R2 < R2(0) only for q < −p. (In the latter case, we have R2(m) =
R2.) So if q ≥ −p, then each stationary point of L2 is a point of strict relative
maximum, and by means of Lemma 7.5 we have again that L′2 < 0 for p ≥ 0 and
for −q = p ∈ [−1

2
,−1

3
), and L2 has a unique stationary point for p < 0, q > −p

and for p < −1
2
, q = −p.

From now on we will consider only q < −p (thus, −1 < p < −1
3

and q < 1). So
we have

L′′2(m0) < 0 ⇐⇒ m0 > R−12

(
R2

)
= m.

It means that L2 has at most one stationary point (a point of strict relative min-
imum) in (0,m), at most one (a point of strict relative maximum) in (m,M), and
m may be a stationary point as well. Suppose that m and some m2 > m are both
stationary points of L2, thus L2 increases on [m,m2]. Since K2 decreases on [m,M),
we have L2(m) = K2(m) > K2(m2) = L2(m2) (see Lemma 1.11), a contradiction.
Therefore, L2 has at most one stationary point in [m,M). Furthermore, due to
Lemma 7.5, only A, B or C can hold.

7.7 Lemma
Assume (I.26) and q < −p. There exists a continuous function q∗ : (−1,−1

2
)→ R

such that p+1
2

< q∗(p) < −p for p ∈ (−1,−1
2
), limp→−1/2 q

∗(p) = 1
2
, and the

following holds:

(i) If p ≥ −1
2
, q < −p or p < −1

2
, q < q∗(p), then

L′2 < 0 on (0,M).
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(ii) If p < −1
2

and q = q∗(p), then m is a stationary point of L2, while

L′2 < 0 on (0,m), L′2 < 0 on (m,M).

(iii) If p < −1
2

and q∗(p) < q < −p, then L2 has two stationary points m1;p,q,a =:
m1, m2;p,q,a =: m2, while m1 < m < m2, and

L′2 < 0 on (0,m1), L′2 > 0 on (m1,m2), L′2 < 0 on (m2,M).

In addition, for all p ∈ (−1,−1
2
), q = q∗(p) is the only solution of the equation

Ip(g(p, q))− 1

1− p

√
2(q − p)(1− q)

q
∗
g

1−p
2 (p, q)︸ ︷︷ ︸

=:G∗(p,q)

=: f ∗(p, q) = 0 (I.33)

in (p+1
2
,−p), where

∗
g(p, q) =

(
2q(q − 1)

(2q − p− 1)(p+ q)

) 1
p+1

.

Proof: From Lemma 7.6 we already know that only A, B or C can hold for q < −p.
Let us notice the crucial role of the sign of L′2(m): If it is +, then C holds, if 0,
then B or C occurs, and if −, then A holds. So we derive the following condition:

L′2;p,q,a(mp,q,a) > 0 ⇐⇒ L2(m)− (1− q)R
2q−p−1

2
2

a(1− p)
R

1−p
2

2 > 0 ⇐⇒ f ∗(p, q) > 0

(see (I.32) for the definition of R2), and in the sequel we

1. find limq→(p+1)/2 f
∗(p, q)

2. and limq→−p f
∗(p, q),

3. and investigate the monotonicity of f ∗(p, ·).
Afterwards we will be able to describe the sets where f ∗ (or equivalently L′2(m))
is positive, zero and negative, resp.

1. Since limq→(p+1)/2
∗
g(p, q) = ∞, using the first term of the asymptotic ex-

pansion of Ip(y) for y →∞ (see Lemma 2.4), we obtain:

lim
q→ p+1

2

f ∗(p, q)
∗
g

1−p
2 (p, q)

=
3p+ 1

(1− p)
√
p+ 1

< 0,

thus
lim

q→ p+1
2

f ∗(p, q) = −∞.

2. We are going to find limq→−p f
∗(p, q), so we denote −q − p =: r for the

sake of simplicity. All the asymptotic expansions in this step will concern
r → 0+ or y → ∞. We will see that the first two terms of the asymptotic
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expansions of Ip(
∗
g(p, q)) and G∗(p, q) are identical, therefore we need to

calculate the first three. We have:

G∗(p, q) =
2
√
p+ 1

1− p

√√√√1 + 3p+1
2p(p+1)

r + 1
2p(p+1)

r2

1 + r
p

∗
g

1−p
2 (p, q)

=
2
√
p+ 1

1− p

√
1 +

p− 1

2p(p+ 1)
r +

1

2p2(p+ 1)
r2 +O(r3)

∗
g

1−p
2 (p, q)

=
2
√
p+ 1

1− p

(
1 +

p− 1

4p(p+ 1)
r − p2 − 10p− 7

32p2(p+ 1)2
r2 +O

(
r3
)) ∗
g

1−p
2 (p, q).

It will be useful to write the asymptotic expansion of Ip(y) in the form

Ip(y)√
p+ 1

=
2

1− p

(
1 +

p− 1

2(3p+ 1)

1

yp+1

)
y

1−p
2 + %p(y),

where function %p will be specified later. Joining the last formula with

1
∗
gp+1(p, q)

=
3p+ 1

2p(p+ 1)
r

1 + 2
3p+1

r

1 + 2p+1
p(p+1)

r + 1
p(p+1)

r2

=
3p+ 1

2p(p+ 1)
r

(
1− 4p2 + 3p+ 1

p(p+ 1)(3p+ 1)
r +O

(
r2
))
,

(I.34)

we obtain that

Ip(
∗
g(p, q)) =

2
√
p+1

1−p

(
1 +

p−1

4p(p+1)
r +

(1−p)(4p2+3p+1)

4p2(p+1)2(3p+1)
r2 +O

(
r3
))

· ∗
g

1−p
2 (p, q) +

√
p+1%p(

∗
g(p, q)),

consequently

f ∗(p, q) =

(√
p+ 1(29p3 + 21p2 + 15p− 1)

16p2(p+ 1)2(3p+ 1)(p− 1)
r2 +O

(
r3
)) ∗
g

1−p
2 (p, q)

+
√
p+ 1%p(

∗
g(p, q)).

(I.35)

(a) Let −3
5
< p < −1

3
, thus %p(y) = Bp + o(1). Since

∗
g

1−p
2 (p, q) = O

(
r

p−1
2(p+1)

)
= o

(
1

r2

)
,

we have
f ∗(p, q) =

√
p+ 1 Bp + o(1).

So limq→−p f
∗(p, q) is negative for p ∈ (−1

2
,−1

3
), zero for p = −1

2
,

and positive for p ∈ (−3
5
,−1

2
) due to Lemma 2.4.

(b) If p = −3
5
, then inserting %p(y) = 3

8
ln y+O(1) and

∗
g

1−p
2 (p, q) = O( 1

r2
)

in (I.35), we obtain that

f ∗(p, q) =
3
√

5

8
√

2
ln

1

r
+O(1) −→ ∞.
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(c) For p ∈ (−1,−3
5
) we have

%p(y) =

(
− 3

4(5p+ 3)

1

y2(p+1)
+ o

(
1

y2(p+1)

))
y

1−p
2 .

Thus, (I.35) yields

f ∗(p, q) =

(
4(p+ 1)3/2

p(3p+ 1)(5p+ 3)(p− 1)
r2 + o

(
r2
)) ∗
g

1−p
2 (p, q) −→ ∞.

(See (I.34).)

So we have derived that

lim
q→−p

f ∗(p, q)


< 0 if − 1

2
< p < −1

3
,

= 0 if p = −1
2
,

> 0 if − 1 < p < −1
2
.

3. The increase of f ∗(p, ·) can be proved using

∂f ∗

∂q
(p, q) =

√
p+1

∗
gp+1(p, q)−1

∂
∗
g

∂q
(p, q)−

√
(2q−p−1)(p−q)(p+q)

2q

∂
∗
g

∂q
(p, q)

+
q2−p

(1−p)q
√

2q(q−p)(1−q)
1√ ∗

gp+1(p, q)

∗
g(p, q)

=
1

2q

√
(2q−p−1)(p+q)

p−q

(
q2−p

q(1−q)(1−p)
∗
g(p, q) + (p+q)

∂
∗
g

∂q
(p, q)

)
and

∂
∗
g

∂q
(p, q) = − q2 − 2pq + p

q(1− q)(2q − p− 1)(p+ q)
∗
g(p, q),

which yield

∂f ∗

∂q
(p, q) =

p+ q

q2(p− 1)

√
(p+ q)(p− q)

2q − p− 1
∗
g(p, q) > 0.

From 1., 2. and 3. we can see that if p ∈ [−1
2
,−1

3
), q ∈ (p+1

2
,−p), then f ∗(p, q) <

0, i. e. L′2 < 0. Moreover, f ∗(p, ·) has a unique zero—denote it by q∗(p)—for all
p ∈ (−1,−1

2
), and

• if p+1
2
< q < q∗(p), then L′2(m) < 0, so A holds,

• if q∗(p) < q < −p, then L′2(m) > 0, so C holds with m2 > m,

• and if q = q∗(p), then L′2(m) = 0, so either B holds or C with m2 = m.
Nevertheless, we prove that only B can hold for q = q∗(p): So suppose
that C holds for some p = p0 ∈ (−1,−1

2
) and q = q∗(p0), consequently,

L′2;p0,q∗(p0),a(m̃) > 0 for some m̃ ∈ (0,M). From the definition of R2 and the

implicit function theorem it follows that R2;p0,·,a(m̃) is continuous, which
together with (I.11), (I.8) and Theorem 2.6 guarantees the continuity of
L′2;p0,·,a(m̃). Thus, L′2;p0,q∗(p0)−ε,a(m̃) > 0 if ε > 0 is small enough, giving
a contradiction.
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At this moment, assertions (i)–(iii) have been proved. Since f ∗ is continuous due
to Theorem 2.6, from the implicit function theorem we have the continuity of q∗ as
well. So there only remains to find its limit at −1

2
. Recall that limq→1/2 f

∗(−1
2
, q) =

0, and choose arbitrary ε ∈ (0, 1
2
). From the increase of f ∗(−1

2
, ·) we have f ∗(−1

2
, 1
2
−

ε) < 0, therefore f ∗(p, 1
2
− ε) < 0 for all p ∈ (−1

2
− δ,−1

2
) and some suitable

δ ∈ (0, 1
2
), and the increase of f ∗(p, ·) yields that 1

2
− ε < q∗(p) < −p for p ∈

(−1
2
− δ,−1

2
). So we conclude that limp→−1/2 q

∗(p) = 1
2
.

7.8 Lemma
There exists

lim
p→−1

q∗(p) =: q∗(−1) ∈ (0, 1),

and it is the only solution of the equation

ϕ∗(q) := I−1(ψ
∗(q))−

√
1− q2

2q
ψ∗(q) = 0

in (0, 1), where

ψ∗(q) = e
q+1

2q(1−q) .

Proof: Recall the definitions of f ∗ and
∗
g from Lemma 7.7. An easy calculation

and Theorem 2.6 yield that limp→−1
∗
g(p, q) = ψ∗(q) and limp→−1 f

∗(p, q) = ϕ∗(q)
for all q ∈ (0, 1). In the sequel we examine the behaviour of ϕ∗.

Since limq→0 ψ
∗(q) =∞ and I−1(y) = o(y) for y →∞ (see Lemma 2.5),

ϕ∗(q) = − 1√
2q

(
1 + o(1)

)
ψ∗(q) −→ −∞, q −→ 0.

Set r := 1 − q, and consider r → 0+. Using Lemma 2.5 with n = 4 and the
formulae

1√
lnψ∗(q)

=
√
r

(
1− r

4
− 5

32
r2 − 13

128
r3 +O

(
r4
))
,

1

lnψ∗(q)
= r

(
1− r

2
− r2

4
+O

(
r3
))
,

1

ln2 ψ∗(q)
= r2

(
1− r +O

(
r2
))
,

1

ln3 ψ∗(q)
= r3

(
1 +O(r)

)
,

we obtain that

I−1(ψ
∗(q)) =

√
r

(
1 +

r

4
+

7

32
r2 +

89

128
r3 +O

(
r4
))
ψ∗(q).

On the other hand,√
1− q2

2q
=
√
r
(

1− r

2

)1/2
(1− r)−1/2 =

√
r

(
1 +

r

4
+

7

32
r2 +

25

128
r3 +O

(
r4
))
.
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Thus,

ϕ∗(q) =
r7/2

2
ψ∗(1− r)

(
1 +O(r)

)
=
r7/2

2
e

1
r
+ 1

2

(
1 +O(r)

)
−→ ∞.

It is not hard to derive that

(ψ∗)′(q) =
q2 + 2q − 1

2q2(1− q)2
ψ∗(q)

and

(ϕ∗)′(q) =

(
1√

lnψ∗(q)
−

√
1− q2

2q

)
(ψ∗)′(q) +

√
2q

1− q2
q2 + 1

4q2
ψ∗(q)

=
1− q
2q2

√
1− q2

2q
ψ∗(q) > 0.

So we conclude that ϕ∗ has a unique zero q0 ∈ (0, 1). Since ϕ∗ increases, and
limp→−1 f

∗(p, q) = ϕ∗(q), we have that for arbitrary ε ∈ (0,min{q0, 1− q0}) there
exists such δ > 0 that

∀p ∈ (−1,−1 + δ) : f ∗(p, q0 − ε) < 0 < f ∗(p, q0 + ε).

Consequently,
∀p ∈ (−1,−1 + δ) : q0 − ε < q∗(p) < q0 + ε

due to the increase of f ∗(p, ·) (see step 3. of the proof of Lemma 7.7) and therefore,
limp→−1 q

∗(p) = q0.

Numerical calculations indicate that q∗ is probably decreasing, concave, its
graph touches the graph of q = −p in −1

2
, and q∗(−1) ≈ 0.730.

We append Figure 5 with all the possible graphs of L1 and L2 and the corres-
ponding sets of (p, q), based on the lemmata of this section. (Let us notice that the
graph of q∗ in it is the output of the numerical solution of (I.33).) These results
are sufficient to determine the number of the symmetric solutions of (1) in case V
depending on p, q, a, l (see Lemma 1.8) except for p < −1

2
, q∗(p) < q < −p

because it is required to investigate, for which p, q is L2(0) > L2(m2). In view of
Lemmata 7.6 (ii) and 7.7 (ii), it can be expected that this domain is divided by
a continuous curve into three sets where L2(0) = L2(m2) for (p, q) lying on the
curve, L2(0) < L2(m2) above it, and L2(0) > L2(m2) under it. This hypothesis
is also consistent with numerical calculations and may be an object of further
research.

So let us state the main result of this section.

7.9 Theorem
Suppose (I.26).

(a) If q < p, then {
|S(l)| : l > 0

}
=
{

0, 1, 2
}
.
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(b) If q = p, then {
|S(l)| : l > 0

}
=
{

0, 1
}
.

(c) If p ≥ 1 and q > p, then

|S(l)| = 1 for l > 0.

(d) If 0 ≤ p < 1 or p ≥ −1
2
, q ≤ −p or p < −1

2
, q ≤ q∗(p), then{

|S(l)| : l > 0
}

=
{

0, 1
}
.

(e) If p < 0, q > −p or p < −1
2
, q = −p, then{

|S(l)| : l > 0
}

=
{

0, 1, 2
}
.

(f) If p < −1
2

and q∗(p) < q < −p, then{
|S(l)| : l > 0

}
=
{

0, 1, 2, 3
}
.

The exact dependence of |S(l)| on l as well as the monotonicity properties of L1

and L2 are indicated in Figure 5. (Recall Lemma 1.8.)
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Figure 5: The relation between m = u(0) and l for u ∈ S(l) in case V (p > −1,
q > p+1

2
, a > 0) according to Lemmata 1.8, 7.3, 7.4, 7.6, 7.7 and 7.8. See also

Theorem 7.9.
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8 Case V (p > −1, q > p+1
2

), non-symmetric

solutions

Assume (I.26) and l > 0. Then, following from Lemmata 1.5 (iv) and 1.8, (1)
can possess positive non-symmetric solutions, and their number is determined by
the properties of L1 + L2. We already know from Lemmata 7.3 and 7.4 that

lim
m→0

(L1 + L2)(m) =

{
∞ if p ≥ 1,

L2(0) if p ∈ (−1, 1),

lim
m→M

(L1 + L2)(m) = 2L(M).

(I.36)

In this section the question of the monotonicity of L1 + L2 will be examined.
It was shown in [5, Theorems 34], that if (I.26) holds, then

1 < p ≤ 4 or p > 4, q ≥ p− 1− 1

p− 2
(I.37)

is a sufficient condition for the decrease of L1+L2. However, we prove in Lemma 8.2
that (L1 +L2)

′ < 0 for all p ≥ 1, without assuming (I.37). On the other hand, the
case of p < 1 is much more complicated, and we have succeeded only in describing
the behaviour of L1 + L2 near 0 and M (see Lemmata 8.6, 8.9, 8.10 and 8.11),
except two special cases dealt with in Lemma 8.5.

The first lemma is essential for the proof of Lemma 8.2.

8.1 Lemma
If (I.26) holds, then R1R2 < R2(M).

Proof: Choose p > −1, q > p+1
2

, a > 0, m ∈ (0,M), and set α := R2(m)/R(M).
Evidently, α > 1 (see (I.7)). Our aim is to prove that

R1(m) <
R(M)

α
. (I.38)

Since F(m, ·) is decreasing on (0, R(M)], (I.38) is equivalent to

F
(
m,R1(m)

)
> F

(
m,

R(M)

α

)
,

which can be rewritten in the form

F
(
m,αR(M)

)
−F

(
m,

R(M)

α

)
> 0,

using the definition of R1(m) and R2(m). One can derive that

F
(
m,αR(M)

)
−F

(
m,

R(M)

α

)
= Rp+1(M)︸ ︷︷ ︸

>0

(
Fα(2q)− Fα(p+ 1)

)
,

where

Fα(x) :=
αx − α−x

x
, x > 0, (I.39)
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therefore, the verification of the increase of Fα on (0,∞) will make the proof
complete. Defining

G(z) :=
(
z2 + 1

)
ln z − z2 + 1, z > 1,

we have that

F ′α(x) =
G(αx)

x2αx
.

Thus, it suffices to prove that G(z) > 0 for z > 1. And it holds indeed because
G(1) = 0, G′(1) = 0 and

G′′(z) = 2 ln z +
z2 − 1

z2
> 0, z > 1.

8.2 Lemma
If (I.26) holds with p ≥ 1, then (L1 + L2)

′ < 0.

Proof: Let p ≥ 1, q > p+1
2

, a > 0 and m ∈ (0,M).

1. For arbitrary y > 1 we have

Ip(y) >

∫ y

1

√
p+ 1

V p+1 − 1

(
V

y

)p
dV =

2

yp

√
yp+1 − 1

p+ 1
.

Consequently,

Li(m) >

√
2√

aRp
i (m)

√
Rp+1
i (m)−mp+1

p+ 1
=
Rq−p
i (m)

a
, i = 1, 2.

(Recall that F(m,Ri(m)) = 0.) Using Lemma 1.9 and the last inequality,
we obtain that

(L1 + L2)
′(m) ≤ Rq−p(M)

2am

(
F

(
R1(m)

R(M)

)
+ F

(
R2(m)

R(M)

))
,

where

F (x) := Fp,q(x) := (1− p)xq−p +
(2q − p− 1)xq−p

1− x2q−p−1
, x ∈ (0, 1) ∪ (1,∞).

Thus,

F

(
R1(m)

R(M)

)
+ F

(
R2(m)

R(M)

)
< 0 (I.40)

is a sufficient condition for (L1 + L2)
′(m) < 0.

2. Let us prove that F is increasing on (0, 1) for all p ≥ 1, q > p+1
2

.
For this purpose, it is useful to introduce parameters

α := p− 1, β := 2(p− q).



8. Case V (p > −1, q > p+1
2

), non-symmetric solutions 43

Thus, we consider α ≥ 0, β < α. One can derive that

F (x) = −αx−β/2 +
(α− β)x−β/2

1− xα−β
,

F ′(x) =
x−β/2−1

2(1− xα−β)2︸ ︷︷ ︸
>0

g
(
xα−β

)
,

where
g(z) := gα,β(z) := αβz2 +

(
2α2 − 5αβ + β2

)
z + β2.

So it suffices to prove that g > 0 on (0, 1).
If β ≤ 0, then the statement follows from the facts that g(0) = β2 ≥ 0,

g(1) = 2(α − β)2 > 0, and g is concave. Therefore, assume β > 0. In that
case, g is strictly convex, attaining its minimum at

−2α2 + 5αβ − β2

2αβ
=: z0;α,β =: z0.

If z0 ≤ 0, then g(z) > g(0) > 0 for z ∈ (0, 1). If z0 > 0, then

g(z0) =

(
α− β)2(−4α2 + 12αβ − β2

)
4αβ

= (α− β)2
(
z0 +

1

2
+

β

4α

)
> 0,

yielding again that g > 0 on (0, 1).
So F is indeed increasing on (0, 1).

3. Lemmata 8.1 and 1.5 (iv) imply that

0 <
R1(m)

R(M)
<
R(M)

R2(m)
< 1.

Thus, due to 2.,

F

(
R(M)

R2(m)

)
+ F

(
R2(m)

R(M)

)
≤ 0

is a sufficient condition for (I.40). And since the range of R2/R(M) is a sub-
set of (1,∞) (actually, it equals to (1, R2(0)/R(M)), see Lemma 7.1), the
verification of

∀p ≥ 1, q >
p+ 1

2
, x > 1: F

(
1

x

)
+ F (x) ≤ 0 (I.41)

will finish the proof.
Let us reformulate (I.41) by means of α and β, and let us multiply the

resulting inequality by xβ/2(1− xα−β), to obtain the equivalent assertion

∀α ≥ 0, β < α, x > 1: uα,β(x) := βxα + αxα−β − αxβ − β ≥ 0.

Trivially, u0,β ≡ 0, so we will consider only α > 0. Since uα,β(1) = 0, it
suffices to prove that uα,β is non-decreasing on [1,∞). However,

u′α,β(x) = αxβ−1︸ ︷︷ ︸
>0

(
βxα−β + (α− β)xα−2β − β︸ ︷︷ ︸

=:vα,β(x)

)
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with vα,β(1) = α− β > 0, so it suffices to verity the non-decrease of vα,β on
[1,∞). And that is guaranteed by the equality

v′α,β(x) = (α− β)xα−2β−1︸ ︷︷ ︸
>0

(
βxβ + α− 2β︸ ︷︷ ︸

=:wα,β(x)

)
,

wα,β(1) = α− β > 0 and the non-decrease of wα,β.

8.3 Remark
The proof of Lemma 8.2 was motivated by [6, Remark 5.3], where a sufficient con-
dition for (L1+L2)

′ < 0 (L1 and L2 being the time maps associated with (II.1), see
Definition 9.3), looking similar to (I.40), had been derived. That condition is based
on a different integral estimate, and will be verified in the proof of Lemma 9.8.

Lemma 8.2—together with (I.36) and Lemma 1.8—leads to this result:

8.4 Theorem
If (I.26) holds with p ≥ 1, then

|N (l)| =

{
2 if l > L(M),

0 if l ≤ L(M).

(See Lemma 1.5 and Definition 1.7 concerning L(M).)

The rest of this section will be devoted to p < 1.

8.5 Lemma

(i) If p = 0, q = 1, a > 0, then

L1 + L2 ≡ 2 on (0,M) =
(

0,
a

2

)
.

(ii) If p = −1
2
, q = 1

2
, a > 0, then

L1 + L2 ≡
16a

3
on (0,M) =

(
0, a2

)
.

Proof: In the case of q = p + 1 > 0, (I.5) is quadratic in xq, so one can solve it
explicitely, obtaining

R1,2(m) =

(
a

q

) 1
q
(

1∓
√

1− 2q

a
mq

) 1
q

, m ∈ (0,M) =

(
0,

(
a

2q

) 1
q

)
. (I.42)

(i) If p = 0 and q = 1, then by virtue of (I.17) and (I.42), we obtain

L1,2(m) =

√
2− 2a

m
∓ 2

√
1− 2m

a
= 1∓

√
1− 2m

a
, m ∈ (0,M).
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(ii) Similarly,

L1,2(m) =
4a

3

(
1∓

√
1−
√
m

a

)(
1∓

√
1−
√
m

a
+

√
m

a

)

=
8a

3
∓ 4a

3

√
1−
√
m

a

(
2 +

√
m

a

)
for p = −1

2
, q = 1

2
due to (I.18) and (I.42).

Recall that
lim
m→0

(L1 + L2)(m) = L2(0)

for p < 1 according to Lemmata 7.3 and 7.4.

8.6 Lemma
Assume (I.26) with p < 1. Then

(i) if p > 0 or p = 0, q > 1 or q < −p or p > −1
2
, q = −p, then L1+L2 < L2(0)

in some neighbourhood of 0,

(ii) and if p = 0, q < 1 or p < 0, q > −p or p < −1
2
, q = −p, then L1 + L2 >

L2(0) in some neighbourhood of 0.

(See Figure 6 showing these two sets in the (p, q)-plane.)

Figure 6: The behaviour of L1 + L2 near 0 in case V for p < 1 according to
Lema 8.6: if (p, q) belongs to the blue set, then L1 + L2 < L2(0) near 0, and
if (p, q) belongs to the brown set, then L1 + L2 > L2(0) near 0. (Recall that
limm→0(L1 + L2)(m) = L2(0), see (I.36).)

Proof: It is clear from Lemmata 7.3 and 7.5 that L1 + L2 > L2(0) near 0 if
either p < 0, q > −p or p < −1

2
, q = −p. In order to verify the statement of the

lemma for the remaining pairs (p, q), we will find the second term of the asymptotic
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expansion of (L1 + L2)(m) for m → 0, and determine its sign, using (I.28) and
several equalities from the proof of Lemma 7.5. All the asymptotic expansions will
concern m→ 0.

• If p ∈ (0, 1), then mq−p = o(m(1−p)/2), so by means of step 1. of the proof
of Lemma 7.5 we have

(L1 + L2)(m) = L2(0) +

√
p+ 1

2a
Bpm

1−p
2 + o

(
m

1−p
2

)
, (I.43)

while Bp < 0 (see Lemma 2.4).

• If p = 0, then according to step 1. of the proof of Lemma 7.5,

(L1 + L2)(m) = L2(0)− 2q

2q − 1

(
1

2a

) q
2q−1

m+ o(m)

for q > 1, and

(L1 + L2)(m) = L2(0) +
1

a
mq + o(mq)

for q < 1.

• Now consider q < −p (and consequently, p < −1
3
). Using (I.30) and realising

that mq−p = o(mp+1), we obtain

(L1 + L2)(m) = L2(0) + Cp,q,a︸ ︷︷ ︸
<0

mp+1 + o
(
mp+1

)
.

• Finally, if −q = p ∈ (−1
2
,−1

3
), then the equality mq−p = o(m(1−p)/2) and

(I.31) yield the asymptotic expansion of the form as in (I.43) with Bp < 0
due to Lemma 2.4.

To determine the behaviour of L1 + L2 near M is much more difficult. For
this purpose, the second term of the corresponding asymptotic expansion will be
investigated, the finding of which requires the following lemma:

8.7 Lemma
If (I.26) holds, then

R1,2(m)

R(M)
= 1∓

√
M −m√
qM

− p+ 2q − 2

6qM
(M −m) + o(M −m), m→M−.

Proof: Assume (I.26). From Lemma 7.1 we already know the first term of the
asymptotic expansion of R1,2(m)/R(M) for m → M−. The next two terms will
be found by means of the method of undetermined coefficients from the proof of
Lemma 5.1. However, let us first notice that (I.5), as an equation in m, has the
explicit solution

m = x

(
1− p+ 1

2a
x2q−p−1

) 1
p+1

=: rp,q,a(x) =: r(x), x ∈ (0, R2(0)),
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which determines the inverse functions of R1 and R2, and will be an important
tool of this proof.

All the asymptotic expansions appearing below will concern m → M− or
z → 0.

1. We search for such d1, d2 > 0 and c1 < 0, c2 > 0 that

Ri(m)

R(M)
− 1 ∼ ci(M −m)di

for i = 1, 2. (Recall that according to Lemma 7.1, Ri/R(M) is increasing
for i = 1 and decreasing for i = 2, which explains the choice of the sign of
ci.) Using the substitution

Ri(m)

R(M)
− 1 =: z, (I.44)

one obtains

Ai := lim
m→M−

Ri(m)
R(M)

− 1

(M −m)di
= lim

z→0∓

z(
M − r

(
R(M)(1 + z)

))di ,
where z → 0∓ means z → 0− for i = 1 and z → 0+ for i = 2. This limit
(which should be finite and non-negative, determining the value of ci) will
be calculated using the asymptotic expansion of the denominator of the last
fraction. Therefore, it is convenient to derive the equality

M − r
(
R(M)(1 + z)

)
= M −M(1 + z)

(
2q

2q − p− 1
− p+ 1

2q − p− 1
(1 + z)2q−p−1

) 1
p+1

= M

[
1− (1 + z)

(
1− p+ 1

2q − p− 1

(
(1 + z)2q−p−1 − 1

)) 1
p+1

︸ ︷︷ ︸
=:h(z)

]
.

Approximating (1 + z)2q−p−1 with its 2nd order Maclaurin polynomial, one
obtains

h(z) = qz2 + o(z2),

which results in
Ai = lim

z→0∓

z

(qM)di |z|2di
.

Consequently, di = 1
2

and ci = Ai = ∓1/
√
qM .

2. Now we seek ci 6= 0 and di >
1
2

fulfilling

Ri(m)

R(M)
− 1±

√
M −m√
qM

∼ ci(M −m)di

for i = 1, 2. So we have to calculate the corresponding limit

Bi := lim
m→M−

Ri(m)
R(M)

− 1±
√
M−m√
qM

(M −m)di
= lim

z→0∓

z ±
√

h(z)
q

(qM)di |z|2di
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((I.44) was used again), which requires the knowledge of one more term of
the asymptotic expansion of h(z). Therefore, we derive that

h(z) = 1− (1 + z)

(
1− z + (1− q)z2 − pq + 2q2 − 5q + 3

3
z3 + o

(
z3
))

= qz2
(

1 +
p+ 2q − 2

3
z + o(z)

)
,

which yields

Bi = lim
z→0∓

−p+2q−2
6

z2 + o
(
z2
)

(qM)di |z|2di
,

meaning that di = 1 and ci = −p+2q−2
6qM

.

The next step is to calculate the expansion of L1 + L2.

8.8 Lemma
If (I.26) holds, then

(L1 + L2)(m)

= 2L(M) +

(√
2(q−p+2)

3
√
q

(
R(M)

M

) 1−p
2

+(p−1)Ip

(
R(M)

M

))
M−m√
2aMp+1

+ o(M−m)

for m→M−. Recall that

R(M)

M
=

(
2q

2q − p− 1

) 1
p+1

.

Proof: Assume (I.26). Unless otherwise stated, all the asymptotic expansions
within this proof will concern x := M−m

m
→ 0+. So we have

Li(m) =
M

1−p
2

√
2a

(
1 +

p− 1

2
x+ o(x)

)
Ip

(
Ri(m)

M(1− x)

)
(I.45)

for i = 1, 2. By means of Lemma 8.7 and

Ip(y) = Ip(y0) +
√

2q − p− 1(y − y0)−
(2q − p− 1)3/2

4
yp0(y − y0)2 + o

(
(y − y0)2

)
,

which holds for y → y0 := R(M)
M

(and follows from the definition of the Taylor
polynomial), we obtain

Ip

(
Ri(m)

M(1− x)

)
= Ip

(
y0

(
1∓
√
x
√
q

+
4q − p+ 2

6q
x+ o(x)

))
= Ip(y0)∓

√
2q − p− 1

q
y0
√
x+

√
2q − p− 1(q − p+ 2)

6q
y0x+ o(x).

It can be inserted in (I.45), resulting in

Li(m) = L(M)∓
√
x√

aRp−1(M)

+

(√
2(q − p+ 2)

3
√
q

y
1−p
2

0 + (p− 1)Ip(y0)

)
x

2
√

2aMp−1
+ o(x),
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which confirms the conclusion of the lemma.

8.9 Lemma
Assume (I.26) with p < 1. There exist continuously differentiable functions q̂ :
(−1, 1) → R and q : (−1,−1

7
) → R such that q̂ > 1 on (−1, 0), q̂(p) > p+1

2
for

p ∈ [0, 1), p+1
2
< q(p) < p+

√
2p(p− 1) for p ∈ (−1,−1

7
), and the following holds:

(i) If q > q̂(p) or p < −1
7
, q < q(p), then L1 +L2 > 2L(M) in some neighbour-

hood of M .

(ii) If p ≥ −1
7
, q < q̂(p) or p < −1

7
, q(p) < q < q̂(p), then L1 + L2 < 2L(M) in

some neighbourhood of M .

In addition, for all p ∈ [−1
7
, 1), q = q̂(p) is given as the only solution of

√
2(q − p+ 2)

3
√
q

g
1−p
2 (p, q) + (p− 1)Ip

(
g(p, q)

)
=: f(p, q) = 0 (I.46)

in (p+1
2
,∞), where

g(p, q) =

(
2q

2q − p− 1

) 1
p+1

.

Similarly, for all p ∈ (−1,−1
7
), q = q(p) and q = q̂(p) are the only solutions of

(I.46) in [p+
√

2p(p− 1),∞) and (p+1
2
, p+

√
2p(p− 1)] respectively.

(See Figure 7 showing the graphs of q̂ and q, as obtained by numerical solution
of (I.46).)

Proof: It is clear from Lemma 8.8 that L1 + L2 > 2L(M) near M if f(p, q) > 0,
while L1 + L2 < 2L(M) near M if f(p, q) < 0. Obviously,

lim
q→∞

f(p, q) =∞, p ∈ (−1, 1). (I.47)

In the sequel we

1. find limq→ p+1
2
f(p, q),

2. examine the monotonicity of f(p, ·)
3. and prove that f(p, 1) < 0 for all p ∈ (−1, 0),

which will make us able to describe the sets of (p, q) where f is positive, zero or
negative.

1. Let p ∈ (−1, 1). Since limq→ p+1
2
g(p, q) = ∞, Lemma 2.4 can be used. We

need only the first term of the asymptotic expansion of Ip(y) for y →∞ to
calculate

lim
q→ p+1

2

f(p, q)

g
1−p
2 (p, q)

=
−7p− 1

3
√
p+ 1

,

thus limq→ p+1
2
f(p, q) is equal to ∞ for p < −1

7
, and −∞ for p > −1

7
.
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Figure 7: The behaviour of L1 + L2 near M in case V for p < 1 according to
Lema 8.9: if (p, q) belongs to the blue set, then L1 + L2 > 2L(M) near M , and
if (p, q) belongs to the brown set, then L1 + L2 < 2L(M) near M . (Recall that
limm→M(L1 + L2)(m) = 2L(M), see (I.36).)

Now assume that p = −1
7
, and set r := 2q− p− 1. Approximating Ip(y)

with its two-term asymptotic expansion for y →∞, we obtain that

f

(
−1

7
, q

)
=

(
7r + 36

3
√

7(7r + 6)
− 2
√

6√
7︸ ︷︷ ︸

=O(r)

)
g4/7

(
−1

7
, q

)
︸ ︷︷ ︸

=O
(

1

r2/3

)
−8
√

6

7
√

7
B−1/7 + o(1)

−→ −8
√

6

7
√

7
B−1/7 < 0

for r → 0+.
To sum up,

lim
q→ p+1

2

f(p, q)

{
> 0, if p ∈

(
−1,−1

7

)
,

< 0, if p ∈
[
−1

7
, 1
)
.

2. Let p ∈ (−1, 1) again. One can calculate that

∂f

∂q
(p, q) =

q+p−2

3q
√

2q

1√
gp+1(p, q)

g(p, q) +
(1−p)(q−p+2)

√
2q−p−1

6q

∂g

∂q
(p, q)

+ (p−1)

√
p+1

gp+1(p, q)−1

∂g

∂q
(p, q)

=

√
2q−p−1

6q2

(
(p+q−2)g(p, q) + q(p−1)(p+5q−2)

∂g

∂q
(p, q)

)



8. Case V (p > −1, q > p+1
2

), non-symmetric solutions 51

and
∂g

∂q
(p, q) = − g(p, q)

q(2q − p− 1)
,

consequently,

∂f

∂q
(p, q) =

(
q2 − 2pq − p2 + 2p︸ ︷︷ ︸

=:ξ(p,q)

) g(p, q)

3q2
√

2q − p− 1︸ ︷︷ ︸
>0

.

It is easy to see that

ξ(p, q) = 0 ⇐⇒ p ≤ 0 and q = p±
√

2p(p− 1),

while p −
√

2p(p− 1) < p+1
2

for all p ≤ 1, and p +
√

2p(p− 1) > p+1
2

only
if p < −1

7
.

So we conclude that

• if p ∈ [−1
7
, 1), then f(p, ·) increases on (p+1

2
,∞),

• if p ∈ (−1,−1
7
), then f(p, ·) decreases on (p+1

2
, p +

√
2p(p− 1)] and

increases on [p+
√

2p(p− 1),∞).

3. In this step we prove that f(p, 1) < 0 for all p ∈ (−1, 0), or equivalently,

Ip

((
2

1− p

) 1
p+1

)
>

√
2(3− p)

3(1− p)

(
2

1− p

) 1−p
2(p+1)

, p ∈ (−1, 0). (I.48)

Our method is to gradually derive simpler and simpler sufficient conditions
of (I.48), the last of which will be proved directly.

(a) Since p 7→ Ip(y) decreases on R for all y > 1 according to The-
orem 2.6, a sufficient condition for (I.48) can be obtained replacing
Ip on its left-hand side with I0 (see also (I.17)). After squaring, this
new inequality reads(

2

1− p

) 1
p+1

− 1 >
1

18

(
2

1− p
+ 1

)2(
2

1− p

) 1−p
p+1

, p ∈ (−1, 0).

Denoting 2
1−p =: x, it simplifies to√

x · x
1

x−1 − 1 >
(x+ 1)2x

1
x−1

18
, x ∈ (1, 2).

It is convenient to introduce the notation ω(x) := x1/(x−1), by means
of which the last inequality transforms to

− x2 − 7x+ 1

9
ω(x)− (x+ 1)4

324
ω2(x) > 1, x ∈ (1, 2). (I.49)

(b) Let us prove that

x(4− x)

8
ω(x) > 1, x ∈ (1, 2). (I.50)
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Equivalently, it can be written as

ζ(x) := x lnx+ (x− 1)
(
ln(4− x)− ln 8

)
, x ∈ (1, 2).

We have

ζ ′′(x) =
2x2 − 15x+ 16

x(x− 4)2
,

and one can see that ζ ′′ is positive on [1, x0) and negative on (x0, 2],
while x0 = (15 −

√
97)/4. Consequently, ζ ′ > ζ ′(1) = ln 3e

8
> 0

on (1, x0], and since ζ(1) = 0, the positivity of ζ on (1, x0] follows.
Therefore, the concavity of ζ on [x0, 2] with ζ(2) = 0 ensures its
positivity on [x0, 2), and (I.50) is verified.

Replacing the right-hand side of (I.49) with the left-hand side
of (I.50), we obtain a sufficient condition for (I.49), which can be
simplified to

ω(x) <
9
(
x2 + 20x− 8

)
2(x+ 1)4

, x ∈ (1, 2). (I.51)

(c) Our next auxiliary inequality is

6

x+ 1
<

9
(
x2 + 20x− 8

)
2(x+ 1)4

, x ∈ (1, 2),

which is equivalent to

P (x) := 4x3 + 9x2 − 48x+ 28 < 0, x ∈ (1, 2),

and which can be proved realising that P (1) = −7 < 0, P (2) = 0
and P ′′ > 0 on (1, 2). It provides a sufficient condition for (I.51) in
the form of

ω(x) <
6

x+ 1
, x ∈ (1, 2),

or equivalently,

η(x) := ln x+ (x− 1)
(
ln(x+ 1)− ln 6

)
< 0, x ∈ (1, 2),

which is a true inequality, since η(1) = η(2) = 0 and

η′′(x) =
(x− 1)

(
x2 + 3x+ 1

)
x2(x+ 1)2

> 0, x ∈ (1, 2).

Define

q1(p) :=

 p+
√

2p(p− 1) if p ∈
(
−1,−1

7

)
,

p+ 1

2
if p ∈

[
−1

7
, 1
)
.

As a consequence of 1., 2. and 3., limq→q1(p) f(p, q) < 0 for all p ∈ (−1, 1). Taking
(I.47) and the increase of f(p, ·) on (q1(p),∞) into account as well, we obtain that

∀p ∈ (−1, 1) : ∃!q̂(p) ∈
(
q1(p),∞

)
: f

(
p, q̂(p)

)
= 0.
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Clearly, if p ∈ (−1, 1), q > q̂(p), then f(p, q) > 0 and consequently, L1 + L2 >
2L(M) near M . On the other hand, if p ∈ (−1, 1), q ∈ [q1(p), q̂(p)), then f(p, q) <
0, and L1 + L2 < 2L(M) near M . Furthermore, q̂ > 1 on (−1, 0) due to 3., while
the continuous differentiability of q̂ follows from the implicit function theorem and
the continuous differentiability of f (see Theorem 2.7).

Similarly, since f(p, q1(p)) < 0 for p ∈ (−1,−1
7
), 1. and 2. imply that

∀p ∈
(
−1,−1

7

)
: ∃!q(p) ∈

(
p+1
2
, q1(p)

)
: f

(
p, q(p)

)
= 0.

Again, f(p, q) is positive for p ∈ (−1,−1
7
), q ∈ (p+1

2
, q(p)), and negative for p ∈

(−1,−1
7
), q ∈ (q(p), q1(p)], making clear the behaviour of L1 +L2 near M for these

values of p and q, and obviously, q is continuously differentiable.

The next lemma describes the basic properties of q̂.

8.10 Lemma
There exists

lim
p→−1

q̂(p) =: q̂(−1) ∈ (1,∞),

and it is the only solution of the equation

ϕ(q) :=

√
2(q + 3)

3
√
q

e
1
2q − 2I−1

(
e

1
2q

)
= 0 (I.52)

in [1,∞). Furthermore, q̂ > 1 on (−1, 0), q̂(−1
2
) = 3

2
, q̂(0) = 1, q̂ < 1 on (0, 1),

and limp→1 q̂(p) = 1.

Proof: It is a part of Lemma 8.9 that q̂ > 1 on (−1, 0). We also know from it
that L1 + L2 6= 2L(M) near M for p = 0, q ∈ (0,∞) r {q̂(0)}, which, in view of
Lemma 8.5 (i), yields q̂(0) = 1. It remains to

1. prove the existence and properties of limp→−1 q̂(p),

2. figure out q̂(−1
2
)

3. and prove that q̂ < 1 on (0, 1).

We will obtain limp→1 q̂(p) as a direct consequence of 3. and q̂(p) > p+1
2

.

1. Theorem 2.6 and some elementary calculations yield that limp→−1 f(p, q) =
ϕ(q) for any q > 0 (see Lemma 8.9 for the definition of f).

Clearly, limq→∞ ϕ(q) =∞. Since I−1(e
1/2q) = O(

√
q)e1/2q for q → 0 due

to Lemma 2.5,

ϕ(q) =

√
2
√
q

e
1
2q
(
1 +O(q)

)
−→ ∞, q −→ 0.

It is not hard to derive that

ϕ′(q) =
(q − 1)(q + 3)

3q2
√

2q
e

1
2q , q > 0,
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which implies that ϕ is decreasing on (0, 1] and increasing on [1,∞). Fur-
thermore,

ϕ(1) =
4

3

√
2e− 2I−1(

√
e) <

4

3

√
2e− 2I0(

√
e) = 4

(√
2e

3
−
√√

e− 1

)
< 0

(see Theorem 2.6 and (I.17)).
So one can see that ϕ|(1,∞) has a unique zero, which will be denoted by

q0. Since ϕ = limp→−1 f(p, ·), and it increases on (1,∞), we have that for
arbitrary ε ∈ (0, q0 − 1) there exists δ > 0 such that

∀p ∈ (−1,−1 + δ) : f(p, q0 − ε) < 0 < f(p, q0 + ε)

and therefore,

∀p ∈ (−1,−1 + δ) : q0 − ε < q̂(p) < q0 + ε,

following from the increase of f(p, ·) on (1,∞) (see step 2. of the proof of
Lemma 8.9). Consequently, limp→−1 q̂(p) = q0.

2. One can calculate that

f

(
−1

2
, q

)
=

4
√

2q(2q + 5)

3(4q − 1)3/2
− 3

2
I−1/2

((
4q

4q − 1

)2
)

=
2
√

2
(
4q2 − 8q + 3

)
3(4q − 1)3/2

for q > 1
4
, which vanishes only for q = 1

2
and q = 3

2
, meaning that q̂(−1

2
) = 3

2
.

3. Now we prove that f(p, 1) > 0 for all p ∈ (0, 1), guaranteeing that q̂ < 1 on
(0, 1). It is equivalent to

Ip

((
2

1− p

) 1
p+1

)
<

√
2(3− p)

3(1− p)

(
2

1− p

) 1−p
2(p+1)

, p ∈ (0, 1), (I.53)

which will be gradually simplified, similarly to step 3. of the proof of
Lemma 8.9.

(a) The first sufficient condition for (I.53) is

− x2 − 7x+ 1

9
ω(x)− (x+ 1)4

324
ω2(x) < 1, x > 2 (I.54)

(again, ω(x) = x1/(x−1)), which can be derived in a way completely
analogous to the corresponding part of the proof of Lemma 8.9.

(b) The opposite inequality of (I.50) does not hold for all x > 2. Instead,

ω(x)

2
< 1, x > 2 (I.55)

will be used, which is equivalent to

κ(x) := (x− 1) ln 2− lnx > 0, x > 2,
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and the validity of which follows from the facts that κ(2) = 0 and

κ′(x) = ln 2− 1

x
> ln 2− 1

2
> 0, x > 2.

Due to (I.55), 1 can be replaced with ω(x)/2 on the right-hand side
of (I.54), yielding a sufficient condition for (I.54), which can be re-
written as

ω(x) > −
18
(
2x2 − 14x+ 11

)
(x+ 1)4

, x > 2.

(c) The final simplification will be done by virtue of the inequality

6

x+ 1
> −

18
(
2x2 − 14x+ 11

)
(x+ 1)4

, x > 2,

equivalent to

Q(x) := x3 + 9x2 − 39x+ 34 > 0, x > 2,

which holds since Q(2) = 0 and Q′(x) > 9 > 0 for x > 2. So now the
only assertion to prove is

ω(x) >
6

x+ 1
, x > 2.

And to do so, we just have to recall part (c) of step 3. of the proof of
Lemma 8.9, and to realise that η(x) > 0 for x > 2 because η′(2) =
5
6
− ln 2 > 0 and η′′ > 0 on (2,∞).

According to numerical calculations, q̂(−1) ≈ 2.151, q̂ seems to be convex,
having min q̂ ≈ 0.822 ≈ q̂(0.495), and its graph seems to touch the graph of
q = p+1

2
at 1.

Recall that the line q = −p forms the border between those sets of (p, q) where
L1 + L2 < L2(0) and L1 + L2 > L2(0) near 0 (see Lemma 8.6). According to
Lemma 8.9, the graph of q plays a similar role in the behaviour of L1 + L2 near
M . Therefore, if we are interested in the behaviour of L1 + L2 on (0,M), we have
to know the mutual position of these to curves.

8.11 Lemma
There exists

lim
p→−1

q(p) =: q(−1) ∈ (0, 1),

and it is the only solution of the equation (I.52) in (0, 1]. Furthermore, q(p) < −p
for p ∈ (−1,−1

2
), q(−1

2
) = 1

2
, q(p) > −p for p ∈ (−1

2
,−1

7
) and limp→−1/7 q(p) = 3

7
.

Proof: The existence and properties of limp→−1 q(p) can be validated the same
way as it is done in step 1. of the proof of Lemma 8.10 for limp→−1 q̂(p). And
it is clear from step 2. of the same proof and from the definition of q (or from
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Lemma 8.5 (ii)) that q(−1
2
) = 1

2
. Further, since p+1

2
< q(p) < p +

√
2p(p− 1) for

p ∈ (−1,−1
7
) (see Lemma 8.9), the value of limp→−1/7 q(p) is evident.

It remains to determine the sign of q(p)+p for p ∈ (−1,−1
3
). (For p ∈ [−1

3
,−1

7
)

we obviously have −p ≤ p+1
2
< q(p).) Let

Γ (p) := g(p,−p) =

(
2p

3p+ 1

) 1
p+1

,

Φ(p) :=
f(p,−p)

(p− 1)
√
p+ 1

=
Ip(Γ (p))√
p+ 1

− 2
√

2

3
√
−p(p+ 1)

Γ
1−p
2 (p),

p ∈
(
−1,−1

3

)
.

We prove soon that

1. Φ decreases on [−3
7
,−1

3
),

2. Φ < 0 on (−1
2
,−3

7
]

3. and Φ > 0 on (−1,−1
2
).

It will mean that f(p,−p) is positive for p ∈ (−1
2
,−1

3
) and negative for p ∈

(−1,−1
2
). Since for all p ∈ (−1,−1

3
): −p ∈ (p+1

2
, p+

√
2p(p− 1)), f(p, ·) decreases

on (p+1
2
, p+

√
2p(p− 1)) (see step 2. of the proof of Lemma 8.9) and f(p, q(p)) = 0,

the assertion of the lemma regarding the relationship between q(p) and −p will
follow.

1. Let p ∈ (−1,−1
3
). We have

Γ ′(p) =

(
1

p(3p+ 1)
− 1

p+ 1
ln

2p

3p+ 1

)
Γ (p)

p+ 1

and (
Γ

1−p
2 (p)

)′
=

(√
3p+ 1

2p
Γ (p)

)′
=

(
1− p

2p(3p+ 1)
− 1

p+ 1
ln

2p

3p+ 1

)√
3p+ 1

2p

Γ (p)

p+ 1
.

Thanks to Theorem 2.7, Φ is differentiable, and

Φ′(p) = Jp(Γ (p))︸ ︷︷ ︸
<0

−
(

2p+ 1

3p+ 1
+

3p+ 2

3(p+ 1)
ln

2p

3p+ 1︸ ︷︷ ︸
=:H(p)

)√
−3p− 1

p+ 1

Γ (p)

p(p+ 1)︸ ︷︷ ︸
<0

.

Numerical calculations indicate that Φ is decreasing. If we could prove it,
the proof would be complete (since we know that Φ(−1

2
) = 0). The non-

positivity of H is a sufficient condition for it.
Instead of H, we will investigate h, defined as

h(p) :=
3(p+ 1)

3p+ 2
H(p)

=
3(p+ 1)(2p+ 1)

(3p+ 1)(3p+ 2)
+ ln

2p

3p+ 1
,

p ∈
(
−1,−1

3

)
r
{

2
3

}
,
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because it has a simpler derivative:

h′(p) =
15p2 + 15p+ 4

p(3p+ 1)2(3p+ 2)2
< 0.

Since limp→−1 h(p) = 0, h < 0 on (−1,−2
3
). One can also derive that

limp→−2/3+ h(p) = ∞ and limp→−1/3− h(p) = −∞. Consequently, h > 0
on (−2

3
, p0) and h < 0 on (p0,−1

3
) for some p0 ∈ (−2

3
,−1

3
). It means that

the sufficient condition for the decrease of Φ is met only for p ∈ (p0,−1
3
).

Since h(−3
7
) = ln 3 − 6

5
< 0, we have p0 < −3

7
. (According to numerical

calculations, p0 ≈ −0.434.)

2. The proof of Φ < 0 on (−1
2
,−3

7
] is based on the method of gradual simpli-

fication from step 3. of the proof of Lemma 8.9.

(a) Let

Φ̃(p) :=
I−1/2(Γ (p))√

p+ 1
− 2

√
2

3
√
−p(p+ 1)

Γ
1−p
2 (p), p ∈

(
−1,−1

3

)
.

Due to Theorem 2.6, Φ̃(p) < 0 is a sufficient condition for Φ(p) < 0
for p ∈ (−1

2
,−3

7
]. (Naturally, the same holds even for p ∈ (−1

2
,−1

3
),

but numerical calculations suggest that Φ̃ < 0 on (−1
2
, p1) and Φ̃ > 0

on (p1,−1
3
) with p1 ≈ −0.338. This explains why we have executed

step 1.) Using (I.18), the condition we want to verify can be rewritten
as((

2p

3p+ 1

) 1
2(p+1)

− 1

)((
2p

3p+ 1

) 1
2(p+1)

+ 2

)2

< −1

p

(
2p

3p+ 1

) 1−p
p+1

,

p ∈
(
−1

2
,−3

7

]
,

or equivalently as(
x

3x−2
4(x−1) − 1

)(
x

3x−2
4(x−1) + 2

)2
<

3x− 2

x2
x

3x−2
x−1 , x ∈ (2, 3],

where x := 2p
3p+1

. After introducing

τ(x) := x
3x−2
4(x−1) , x > 1,

we can rearrange it into the form

3τ 2(x) + τ 3(x) +
2− 3x

x2
τ 4(x) < 4, x ∈ (2, 3]. (I.56)

(b) Now the inequality

2τ 3(x)

x2
< 4, x ∈ (2, 3] (I.57)

will be used. Its validity follows from its equivalent form

ζ(x) := (x+ 2) lnx− (x− 1)4 ln 2 < 0, x ∈ (2, 3],
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after realising that ζ(2) = 0, ζ(3) = ln 243
256

< 0 and ζ ′′(x) = x−2
x2

> 0
for x ∈ (2, 3). So the right-hand side of (I.56) can be replaced by
the left-hand side of (I.57), yielding a sufficient condition for (I.56),
which can be simplified to

x2 − 2

x2
τ(x) +

2− 3x

x2
τ 2(x) < −3, x ∈ (2, 3]. (I.58)

(c) Let us now prove that

− 2x+ 5

3x
τ(x) < −3, x ∈ (2, 3]. (I.59)

The given inequality can be rearranged into

η(x) := (2− x) lnx+ 4(x− 1)
(
ln(2x+ 5)− ln 9

)
> 0, x ∈ (2, 3].

One can derive that

η′′(x) =
P (x)

x2(2x+ 5)2

with
P (x) = 12x3 + 68x2 − 65x− 50.

Apparently, P (x) > 75 > 0 for x ∈ (2, 3) and consequently, η is
strictly convex on (2, 3]. And since η(2) = 0 and η′(2) = 8

9
− ln 2 > 0,

we have that η > 0 on (2, 3].
Thanks to (I.59), a sufficient condition for (I.58) follows, namely

τ(x) >
5x2 + 5x− 6

3(3x− 2)
, x ∈ (2, 3].

(d) It is easy to see that

3x+ 4

5
>

5x2 + 5x− 6

3(3x− 2)
, x ∈ (2, 3]

because it is equivalent to

Q(x) := 2x2 − 7x+ 6 > 0, x ∈ (2, 3],

while 3
2

and 2 are the roots of Q. So proving

τ(x) >
3x+ 4

5
, x ∈ (2, 3], (I.60)

will finish step 2. Let us express (I.60) in the form

κ(x) := (3x− 2) lnx+ 4(1−x)
(
ln(3x+ 4)− ln 5

)
> 0, x ∈ (2, 3].

We have

κ′′(x) = − S(x)

x2(3x+ 4)2
,

where
S(x) = 9x3 + 42x2 − 96x− 32.

Since S(2) = 16 > 0 and S ′(x) > 180 > 0 for x > 2, κ is strictly
concave on (2, 3], which together with κ(2) = 0 and κ(3) = ln 3758

138
>

0 yields that κ > 0 indeed on (2, 3].
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3. Parts (a), (b) and (c) of step 2. are applicable for the proof of the positivity
of Φ on (−1,−1

2
) with minor changes.

(a) It sufficies to prove that Φ̃ > 0 on (−1,−1
2
), which is equivalent to

3τ 2(x) + τ 3(x) +
2− 3x

x2
τ 4(x) > 4, x ∈ (1, 2). (I.61)

(b) Since ζ(1) = ζ(2) = 0 and ζ ′′(x) < 0 for x ∈ (1, 2), ζ > 0 on (1, 2),
yielding a sufficient condition for (I.61) in the form

x2 − 2

x2
τ(x) +

2− 3x

x2
τ 2(x) > −3, x ∈ (1, 2). (I.62)

(c) We have P (1) = −35 < 0, P (2) = 188 > 0 and P ′(x) > 107 > 0
for x > 1. Consequently, P has a unique root x0 in (1, 2), and η is
strictly concave on (1, x0] and strictly convex on [x0, 2). However,
η(1) = η(2) = 0, and η′(1) = 1 + 4 ln 4

9
< 0, which ensure that η < 0

on (1, 2), and

τ(x) <
5x2 + 5x− 6

3(3x− 2)
, x ∈ (1, 2)

is a sufficient condition for (I.62).

(d) As we have seen, Q(3
2
) = 0 and therefore, we cannot proceed as in

part (d) of step 2. Instead, let us prove that

8x+ 4

x+ 8
<

5x2 + 5x− 6

3(3x− 2)
, x ∈ (1, 2).

The desired inequality is equivalent to

T (x) := 5x3 − 27x2 + 46x− 24 > 0, x ∈ (1, 2).

Let us notice that T ′′ < 0 on (1, 9
5
) and T ′′ > 0 on (9

5
, 2). And since

T (1) = T (2) = 0 and T ′(2) = −2 < 0, the positivity of T on (1, 2)
follows.

Consequently, it sufficies to prove that

τ(x) <
8x+ 4

x+ 8
, x ∈ (1, 2).

Let us reformulate it as

µ(x) := 4(x− 1)
(
ln 4 + ln(2x+ 1)− ln(x+ 8)

)
− (3x− 2) lnx > 0,

x ∈ (1, 2).

After differentiating we obtain that

µ′′(x) = − U(x)

x2(x+ 8)2(2x+ 1)2
,

where

U(x) = 12x5 + 212x4 − 161x3 − 522x2 + 736x+ 128.

We have that U(1) = 405 > 0, U ′(1) = 117 > 0, U ′′(1) = 774 > 0
and U ′′′(x) > 4842 > 0 for x > 1, meaning that µ is strictly concave
on (1, 2). The last fact we have to realise is that µ(1) = µ(2) = 0.
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Numerical calculations indicate that q(−1) ≈ 0.624, it has a unique stationary
point (≈ −0.185, while q(−0.185) ≈ 0.421) as well as a unique inflection point
(≈ −0.400), and its graph touches the graph of q = p+1

2
at −1

7
.

For p < 1 we have succeeded in describing the behaviour of L1 + L2 only near
0 and M , except p = 0, q = 1 and p = −1

2
, q = 1

2
, for which L1 + L2 is constant,

and except p ∈ (−1, 0) ∪ (0, 1), q = q̂(p) and p ∈ (−1,−1
2
) ∪ (−1

2
,−1

7
), q = q(p),

for which we have no information at all. However, using numerical calculations
one can observe that L1 +L2 has probably at most one relative extremum for any
p ∈ (−1, 1), q > p+1

2
, (p, q) /∈ {(0, 1), (−1

2
, 1
2
)}. If it is true, the behaviour of L1+L2

on (0,M) is clear for all p ∈ (−1, 1), q /∈ {q̂(p), q(p)}, and due to the continuous
dependence of L1;p,q,a(m) and L2;p,q,a(m) on q, the proof of which is evident, even
for q = q̂(p) and q = q(p).

The results of this section concerning the properties of L1 +L2 are summarised
in Figure 8, which shows the graphs of L1 + L2 and the corresponding sets of
(p, q). Let us notice that the graphs of q̂ and q in it are the output of the numerical
solution of (I.46).
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Figure 8: The behaviour of L1 + L2 in case V (p > −1, q > p+1
2

, a > 0) according
to (I.36) and Lemmata 8.2, 8.5, 8.6, 8.9, 8.10 and 8.11.
The dashed graphs mean that for those values of p and q the behaviour of L1 +L2

has been examined only near 0 and M , and the graph has been plotted assuming
that L1 +L2 has at most one stationary point. (This assumption is consistent with
numerical calculations.)
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Chapter II

Some related results

9 Sign-changing non-antisymmetric solutions

This section will start by recalling the shooting method from [6]. Lemmata 9.1,
9.2, 9.5 and 9.6 will be stated under weaker assumptions on q than the corres-
ponding assertions cited from [6], but we do not provide the proofs because they
are unchanged.

Let p ≥ 1, q ∈ R, a, l > 0. If u is a sign-changing solution of (1) and x0 is its
zero, then u(·+ x0) solves 

u′′ = a|u|p−1u,
u(0) = 0,

u′(0) = θ

(II.1)

for some θ ∈ R. Since u 7→ a|u|p−1u is locally Lipschitz continuous on R, (II.1)
has a unique maximal solution, which is obviously odd. It will be denoted by uθ,p,a
and its domain by (−Λθ,p,a, Λθ,p,a). Clearly, u0,p,a ≡ 0 on R and thus, x0 ∈ (−l, l)
and θ 6= 0. One can also see that u is strictly convex on the intervals where it
has positive values, and strictly concave on the intervals where it has negative
values. As a consequence, u′θ,p,a > 0 if θ > 0, and u′θ,p,a < 0 if θ < 0. In addition,
u−θ,p,a = −uθ,p,a, therefore we will restrict our further considerations to θ > 0.

Let us also introduce the notation N±(l) = N±(l; p, q, a) for the set of all
sign-changing non-antisymmetric (i. e. not odd) solutions of (1). Obviously, N±(l)
consists of all such functions ±uθ,p,a(· − (l1 − l2)/2)|[−l,l] that θ > 0, l1 + l2 = 2l,
l1 6= l2 and 0 < li < Λθ,p,a, u

′
θ,p,a(li) = uqθ,p,a(li) for i = 1, 2.

9.1 Lemma (for q > 1 see [6, pp. 114–116])
Let p ≥ 1, q ∈ R, a > 0, and set b := 2a

p+1
. Then the following statements are

equivalent for arbitrary θ, l > 0:

(i) l < Λθ,p,a and u′θ,p,a(l) = uqθ,p,a(l),

(ii) the equation

0 = F(θ, x) := Fp,q,a(θ, x) := x2q − bxp+1 − θ2

with the unknown x > 0 has some solution R, and

l = θ−
p−1
p+1 Ip,b

(
θ−

2
p+1R

)
,
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where

Ip,b(y) :=

∫ y

0

ds√
bsp+1 + 1

, y ≥ 0.

Clearly, F(θ, ·) has different behaviour for q ∈ (−∞, 0), {0}, (0, p+1
2

), {p+1
2
},

(p+1
2
,∞). In the rest of this section, we will deal only with the third case.

9.2 Lemma (for q > 1 see [6, p. 115])
Let p ≥ 1, 0 < q < p+1

2
, a, θ > 0, and let us introduce

Θ := Θp,q,a :=

√
p+ 1− 2q

p+ 1

(q
a

) q
p+1−2q

.

If θ > Θ, then F(θ, ·) has no zero. If θ = Θ, then the only zero of F(θ, ·) is(q
a

) 1
p+1−2q

=: Rp,q,a(Θ) =: R(Θ).

If θ < Θ, then F(θ, ·) has two zeros, which will be denoted by Ri;p,q,a(θ) =: Ri(θ),
i = 1, 2, being

R1(θ) < R(Θ) < R2(θ).

9.3 Definiton
Let p ≥ 1, 0 < q < p+1

2
, a > 0, and put

Li(θ) := Li;p,q,a(θ) := θ−
p−1
p+1 Ip,b

(
θ−

2
p+1Rp,q,a(θ)

)
for i = 1, 2 and θ ∈ (0, Θ). We introduce Lp,q,a(Θ) =: L(Θ) analogously. Functions
L, L1 and L2 will be called time maps (associated with (II.1)).

Using Lemmata 9.1 and 9.2, we can describe N±(l) by means of the time maps:

9.4 Lemma
For all p ≥ 1, q ∈ (0, p+1

2
) and a, l > 0:

N±(l) =

{
±uθ,p,a

(
· ± L2(θ)− L1(θ)

2

)∣∣∣∣
[−l,l]

: L1(θ) + L2(θ) = 2l

}
,

where the two ± symbols on the right-hand side are independent (i. e. there are four
sign-changing non-antisymmetric solutions corresponding to any θ > 0 satisfying
L1(θ) + L2(θ) = 2l).

We need to know the limits of L1 + L2 at 0 and Θ, and whether L1 + L2 is
monotone. Therefore, we now cite the following two lemmata and afterwards state
the new results.

9.5 Lemma (for q > 1 see [6, Lemma 5.2])
If p ≥ 1, 0 < q < p+1

2
and a > 0, then

lim
θ→Θ

Li(θ) = L(Θ), i = 1, 2,

lim
θ→0

L2(θ) =∞.
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Let p ≥ 1, 1 < q < p+1
2

and a > 0. According to [6, Theorem 1.3 (iii)], if

(p− q)(2q + 1− p)(p+ 1) ≥ 2q(p− 1)

or equivalently,

q >
p(p− 1)

p+ 1
, (II.2)

then (L1 + L2)
′ < 0. However, we prove this property in Lemma 9.8 without

assuming (II.2), including also some q ≤ 1.

9.6 Lemma (for q > 1 see [6, proof of Lemma 5.1])
If p ≥ 1, 0 < q < p+1

2
, a > 0, i ∈ {1, 2}, then Li is differentiable on (0, Θ), fulfilling

L
′
i(θ) = − p− 1

(p+ 1)θ
Li(θ) +

p+ 1− 2q

(p+ 1)qθ

R
1−q
i (θ)

1− a
q
R
p+1−2q
i (θ)

.

9.7 Lemma
If p ≥ 1, 0 < q < p+1

2
and a > 0, then R1R2 < R

2
(Θ).

Proof: It is much the same as the proof of Lemma 8.1. So let p ≥ 1, 0 < q < p+1
2

,

a > 0, θ ∈ (0, Θ), and set α := R2(θ)/R(Θ) > 1. Using the increase of F(θ, ·)
on (0, R(Θ)) and the definition of R1(θ) and R2(θ), one can see that it suffices to
prove that

0 > F
(
θ, αR(Θ)

)
−F

(
θ,
R(Θ)

α

)
= 2qR

2q
(Θ)
(
Fα(2q)− Fα(p+ 1)

)
(see (I.39) for the definition of Fα), which is a true inequality due to the increase
of Fα.

9.8 Lemma
If a > 0 and either p = 1, q ∈ (0, 1) or p > 1, q ∈ [1

2
, p+1

2
), then (L1 + L2)

′ < 0.

Proof: Consider p ≥ 1, 0 < q < p+1
2

, a > 0, θ ∈ (0, Θ), and put b := 2a
p+1

. We will
proceed similarly to the proof of Lemma 8.2.

1. We start with the estimate suggested in [6, Remark 5.3]:

Ip,b(y) >
y√

byp+1 − 1
, y > 0,

which results in
Li(θ) > R

1−q
i (θ), i = 1, 2.

Applying this inequality to the formula included in Lemma 9.6, one can
derive a sufficient condition for (L1 + L2)

′(θ) < 0 in the form of

F

(
R1(θ)

R(Θ)

)
+ F

(
R2(θ)

R(Θ)

)
< 0, (II.3)
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where

F (x) := F p,q(x) := (1− p)qx1−q +
(p+ 1− 2q)x1−q

1− xp+1−2q , x ∈ (0, 1)∪ (1,∞).

2. Now we prove the increase of F on (0, 1). Setting

α := p− 1 ≥ 0, β := 2(q − 1) ∈ (−2, α),

we obtain that

F (x) = −α
(
β

2
+ 1

)
x−β/2 +

(α− β)x−β/2

1− xα−β
= F (x)− αβ

2
x−β/2.

Since F increases on (0, 1) due to step 2. of the proof of Lemma 8.2, F
increases on (0, 1) as well.

3. Using the same ideas as in step 3. of the proof of Lemma 8.2, we can see
that it suffices to verify the inequality

uα,β(x) := β(α + 2)xα + α(β + 2)xα−β − α(β + 2)xβ − β(α + 2) ≥ 0

for all x > 1 and α, β fulfilling either α = 0, β ∈ (−2, 0) or α > 0, β ∈
[−1, α). The first case is clear. In the second one we have that uα,β(1) = 0
and

u′α,β(x) = αxβ−1︸ ︷︷ ︸
>0

(
β(α + 2)xα−β + (α− β)(β + 2)xα−2β − β(β + 2)︸ ︷︷ ︸

=:vα,β(x)

)
,

so the verification ot the non-negativity of vα,β on (1,∞) will finish the
proof. And since vα,β(1) = 2(α− β)(β + 1) ≥ 0 and

v′α,β(x) = (α− β)xα−2β−1︸ ︷︷ ︸
>0

(
β(α + 2)xβ + (β + 2)(α− 2β)︸ ︷︷ ︸

=:wα,β(x)

)
,

we just need to observe that wα,β ≥ 0 on (1,∞) because wα,β(1) = 2(α −
β)(β + 1) ≥ 0 and wα,β is non-decreasing.

9.9 Remark
The proof of Lemma 9.8 does not work for p > 1, q ∈ (0, 1

2
), a > 0, i. e. for α > 0,

β ∈ (−2,−1), because in that case we have u′α,β(1) = αvα,β(1) < 0, implying
that uα,β < 0 in the right neighbourhood of 1. In addition, numerical calculations
suggest that if p > 1 is big enough and q ∈ (0, 1

2
) is small enough, then L1 + L2

has a stationary point where a minimum is attained.

Joining the results of Lemmata 9.4, 9.5 and 9.8, we immediately obtain the
following assertion:

9.10 Theorem
If a, l > 0 and either p = 1, q ∈ (0, 1) or p > 1, q ∈ [1

2
, p+1

2
), then∣∣N±(l)

∣∣ =

{
4 if l > L(Θ),

0 if l ≤ L(Θ).

(See Lemma 9.2 and Definition 9.3 concerning L(Θ).)
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10 Explicit solution of the Cauchy problem for

u′′ = au−1/2 with a > 0

The subject of this section is the initial value problem
u′′ = au−1/2,

u(0) = α,

u′(0) = β,

(II.4)

which can be solved explicitely for any a, α > 0 and β ∈ R.

10.1 Theorem
Let a, α > 0, β ∈ R, and set γ := β2 − 4a

√
α. Problem (II.4) possesses a unique

maximal solution, which will be denoted by u, and which is given by the following
formulae:

(i) If γ < 0, then

u(x) =
( γ

4a

)2
Ǐ

(
6a2

|γ|3/2
|x− x0|

)
, x ∈ R,

where

Ǐ(w) =

((
3

√
w +
√
w2 + 1 +

3

√
w −
√
w2 + 1

)2

+ 1

)2

, w ≥ 0

and

x0 = −β(6a
√
α− β2)

6a2
. (II.5)

Furthermore, sgnx0 = − sgn β, the graph of u is symmetric with respect to
x = x0, and minu = u(x0) = ( γ

4a
)2.

(ii) If γ = 0, then setting

d :=
2α3/4

3
√
a
> 0,

we have

u(x) = α
(

sgn β · x
d

+ 1
)4/3

, x ∈ D(u),

where

• if β > 0, then D(u) = (−d,∞), u′ > 0, limx→−d u(x) = 0 and
limx→−d u

′(x) = 0,

• and if β < 0, then D(u) = (−∞, d), u′ < 0, limx→d u(x) = 0 and
limx→d u

′(x) = 0.

(iii) If γ > 0, then setting

d :=
γ3/2 + |β|(6a

√
α− β2)

6a2
> 0,
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we have

u(x) =
( γ

4a

)2
J̌

(
6a2

γ3/2
(
sgn β · x+ d

)
− 1
)
, x ∈ D(u),

where

J̌(w) =


((

3

√
w +
√
w2 − 1 +

3

√
w −
√
w2 − 1

)2

+ 1

)2

if w ≥ 1,(
4 cos2

arccosw

3
− 1
)2

if w ∈ [−1, 1],

and

• if β > 0, then D(u) = (−d,∞), u′ > 0, limx→−d u(x) = 0 and
limx→−d u

′(x) =
√
γ,

• and if β < 0, then D(u) = (−∞, d), u′ < 0, limx→d u(x) = 0 and
limx→d u

′(x) = −√γ.

Proof: Choose a, α > 0 and β ∈ R. Since u 7→ au−1/2 is locally Lipschitz continu-
ous on (0,∞), (II.4) has a unique maximal solution denoted by u, and its domain
D(u) is an open interval. We will proceed as follows:

1. If u has a stationary point, we will express u by means of um,−1/2,a for some
m > 0 using the formulae from Theorem 1.1 and (I.18).

2. If u is strictly monotone, we will derive formulae for (II.4) analogous (and
in analogous way) to that for (I.1).

Step 1. will lead to assertion (i), while step 2. to assertions (ii) and (iii).

1. Suppose that x0 ∈ R is a stationary point of u. (We will see soon for which
values of a, α, β this occurs.) Set m := u(x0) > 0 and v := um,−1/2,a.
Then clearly, sgnx0 = − sgn β, u(x) = v(x − x0) for x ∈ R, α = v(−x0),
β = v′(−x0), the graph of u is symmetric with respect to x = x0, and
minu = m.

Our goal is to ascertain under which conditions on a, α and β, u possesses
a stationary point, to express x0 and m by means of a, α and β if that
condition is met, and to derive an explicit formula for v.

Inserting p = −1
2

and x = x0 in (I.4), one obtains

|β| = 2

√
a(
√
α−
√
m),

which is equivalent to √
m = − γ

4a
.

So we have to require γ < 0, and afterwards we have

m =
( γ

4a

)2
. (II.6)

Similarly, (I.2) yields

− sgn β · x0 = |x0| =
m3/4

√
2a
I−1/2

( α
m

)
, (II.7)
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from which, by means of (I.18), (II.5) follows.
As we have just seen, γ < 0 is a necessary condition for the existence of

a stationary point of u. However, it is a sufficient condition as well: If we
have γ < 0 and define m and x0 as in (II.6) and (II.7), then comparing (II.7)
with (I.2) for p = −1

2
and x = −x0, and inserting p = −1

2
and x = −x0 in

(I.4), we can see that um,−1/2,a(· − x0) solves (II.4) and consequently, it is
identical with u, which therefore indeed has a stationary point.

Since I−1/2 is a bijection of [1,∞) onto [0,∞) (see (I.3)), one can rewrite
(I.2) as

u(x) = v(x− x0) =
( γ

4a

)2
I−1−1/2

(
8
√

2a2

|γ|3/2
|x− x0|

)
, x ∈ R,

so it sufficies to prove that

I−1−1/2(z) = Ǐ

(
3z

4
√

2

)
, z ≥ 0. (II.8)

By means of (I.18), I−1/2 can be expressed as

I−1/2(y) =
2
√

2

3
Ĩ
(√

y − 1
)
, y ≥ 1,

Ĩ(Y ) =
√
Y (Y + 3), Y ≥ 0.

(Compare with (I.14).) Using Cardano’s formula, we obtain that

I−1−1/2(z) =

(
Ĩ−1
(

3z

2
√

2

)
+ 1

)2

, z ≥ 0,

Ĩ−1(Z) =

 3

√√√√Z

2
+

√(
Z

2

)2

+ 1 +
3

√√√√Z

2
−

√(
Z

2

)2

+ 1


2

, Z ≥ 0,

so (II.8) follows, and the proof of (i) is complete.

2. Now let γ ≥ 0. (Consequently, u is monotone.) Since u fulfils the equation
in (II.4), we have

0 = u′′(y)u′(y)− au−1/2(y)u′(y) =

(
(u′(y))2

2
− 2a

√
u(y)︸ ︷︷ ︸

=:χ(y)

)′
, y ∈ D(u)

(D(u) will be specified later). Apparently, χ is a constant function with the
function value χ(0) = γ

2
. Thus, it is easy to see that

(u′(y))2 = 4a
√
u(y) + γ, y ∈ D(u). (II.9)

The monotonicity of u ensures that sgnu′(y) = sgn β for any y ∈ D(u).
Therefore,

u′(y)√
4a
√
u(y) + γ

= sgn β, y ∈ D(u).
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Now choose x ∈ D(u), and integrate the last equality on [0, x] with respect
to y, using the substitution u(y) =: v:

sgn β · x =

∫ u(x)

α

dv√
4a
√
v + γ

. (II.10)

(a) If γ = 0 (case (ii)), then the integral in (II.10) can be easily calcu-
lated, yielding

sgn β · x =
2

3
√
a
u3/4(x)− d, x ∈ D(u).

Necessarily, sgn β · x > −d. One can also see that u is indeed given
as in the lemma, and sgn β · x > −d is a sufficient condition for
x ∈ D(u). The limits of u(x) and u′(x) for x→ − sgn β · d are clear
as well (recall (II.9)).

(b) Now suppose γ > 0, which corresponds to case (iii). Using the sub-
stitution

4a
√
v

γ
+ 1 =: V

in (II.10), we obtain that

sgn β · x =
γ3/2

12a2

(
J̃

(
4a
√
u(x)

γ
+ 1

)
− J̃

(
β2

γ

))
, x ∈ D(u),

where

J̃(Y ) =
3

2

∫ Y

0

V − 1√
V

dV =
√
Y (Y − 3), Y ≥ 1.

Consequently,

sgn β · x =
γ3/2

12a2

(
J̃

(
4a
√
u(x)

γ
+ 1

)
+ 2

)
− d, x ∈ D(u),

and since J̃ is a bijection of (1,∞) onto (−2,∞), the necessity of
sgn β · x > −d and the validity of

u(x) =
( γ

4a

)2(
J̃−1
(

12a2

γ3/2
(
sgn β · x+ d

)
− 2

)
− 1

)2

, x ∈ D(u)

follow. On the other hand, sgn β ·x > −d is obviously also a sufficient
condition for x ∈ D(u), and the limits of u and u′ at − sgn β · d are
clear as well (see (II.9)).

It remains to find the inverse of J̃ . Apparently, J̃(Y ) = Z is
equivalent to (√

Y
)3 − 3

√
Y − Z = 0.
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Treated as a cubic equation in
√
Y , it has a unique real root

√
Y =

3

√√√√Z

2
+

√(
Z

2

)2

− 1 +
3

√√√√Z

2
−

√(
Z

2

)2

− 1
(
> 0
)

for Z > 2, and a unique positive real root

√
Y = 2 cos

arccos Z
2

3

for Z ∈ [−2, 2]. Consequently,

J̃−1(Z) =

√
J̌

(
Z

2

)
+ 1, Z ≥ −2,

which completes the proof of (iii).
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Afterword

In this thesis we got familiar with the shooting method, which made it possible
to simplify the question of the solvability of (1) to the question of the properties
of the time maps, which are real functions of one real variable. Examining their
properties, we were able to determine the number of positive symmetric solutions
of (1) for p > −1, q ≥ 0 and p = −1, q = 0 (see Theorems 3.1, 4.4, 5.6, 6.1 and
7.9), the number of its positive non-symmetric solutions for p ≥ 1, q > p+1

2
(see

Theorem 7.9) with some partial results for p ∈ (−1, 1), q > p+1
2

(see Lemmata 8.6
and 8.9), and the number of its sign-changing non-antisymmetric solutions for
p = 1, q ∈ (0, 1) and p > 1, q ∈ [1

2
, p+1

2
) (see Theorem 9.10), while the number of

its sign-changing antisymmetric solutions for p ≥ 1, q > 1 is known from [6]. Let
us also mention Theorem 10.1, which gives an explicit formula for the solution of
the Cauchy problem for u′′ = au−1/2 assuming a > 0.

The predominant majority of the results mentioned above are new results
achieved by the author. Theorems 8.4 and 9.10 provide the answers for two long-
standing open questions arising in [5] and [6], while the other statements deal with
values of parameters not considered before. The contents of Sections 1–7 with the
exception of Theorem 2.7 were published in [14], while the results of Section 8 until
Theorem 8.4 together with Section 9 have been submitted for publication.

The given topic has not been exhausted by this thesis at all. There remains to
verify analytically the numerically predicted properties of q∗ (see the paragraph be-
low the proof of Lemma 7.8), q̂ (see the paragraph below the proof of Lemma 8.10)
and q (see the paragraph below the proof of Lemma 8.11), as well as to determine
the sign of L2(0)−L2(m2) in case V for p < −1

2
, q ∈ (q∗(p),−p) in dependence on

p, q (see the second paragraph below the proof of Lemma 7.8), and to investigate
the so far unknown properties of L1 + L2 in case V for p < 1 (see the second
paragraph below the proof of Lemma 8.11). And naturally, a further goal can be
to determine the number of positive solutions of (1) in cases VI–XIII, the number
of its sign-changing antisymmetric solutions for p ≥ 1, q ≥ 1, and the number of
its sign-changing non-antisymmetric solutions for p > 0, q ∈ (0, 1

2
). Moreover, one

could also study the sign-changing solutions of (1) for p ∈ (0, 1), q ∈ R.
Throughout this whole thesis, we could get by only using the knowledge of

real analysis (except for the use of Picard’s existence theorem), but in spite of
this, this topic cannot be called too simple or uninteresting. On the contrary, the
author consideres it especially nice and hopes that the reader has acquired a similar
impression.
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Resumé

V predloženej dizertačnej práci sme skúmali riešitel’nost’ okrajovej úlohy{
u′′(x) = a|u(x)|p−1u(x), x ∈ (−l, l),
u′(±l) = ±|u(±l)|q−1u(±l),

kde a, l > 0.
Najväššia čast’ práce bola venovaná štúdiu existencie a počtu jej kladných

riešeńı, čiže kladných riešeńı úlohy{
u′′(x) = aup(x), x ∈ (−l, l),
u′(±l) = ±uq(±l),

kde možno uvažovat’ l’ubovol’né p, q ∈ R. Daná úloha bola prvýkrát systematicky
študovaná v článku [5], avšak iba pre p, q > 1. Naš́ım ciel’om bolo rozš́ırit’ jeho
výsledky pre čo najväčšiu množinu parametrov p, q.

Nástrojom k tomu – ako aj nástrojom citovaného článku – bola metóda strel’by,
ktorú možno zhrnút’ nasledovne: Zrejme každé kladné riešenie spomenutej okra-
jovej úlohy pre zadané l > 0 sa dá źıskat’ z riešeńı tej istej diferenciálnej rovnice
uvažovanej spolu so začiatočnými podmienkami u(0) = m a u′(0) = 0 pre vhodné
m > 0. Táto začiatočná úloha má jediné riešenie pre l’ubovol’né m > 0. Vzt’ah
medzi m a l je daný istými funkciami nazývanými zobrazenia dostrelu, pre ktoré
možno odvodit’ aj vzorec. Ten ukazuje nutnost’ štúdia kladných symetrických (t. j.
párnych) a kladných nesymetrických riešeńı osobitne. Navyše treba rozĺı̌sit’ trinást’

pŕıpadov – č́ıslovaných I až XIII – ohl’adom hodnôt parametrov p a q, pričom
kladné nesymetrické riešenia existujú iba v pŕıpapdoch V–VII.

V tejto práci sa nám podarilo určit’ počet kladných symetrických riešeńı v pr-
vých piatich pŕıpadoch, spolu zahŕňajúcich p > −1, q ≥ 0 a p = −1, q = 0, pričom
sme si mohli všimnút’, že vlastnosti zobrazeńı dostrelu sú omnoho rozmaniteǰsie a
t’ažšie vyšetritel’né mimo množiny p, q > 1. Otázka počtu kladných nesymetrických
riešeńı pre p, q > 1 bola v [5] zodpovedaná iba čiastočne, my sme však na ňu našli
úplnú odpoved’ a źıskali aj čiastočné výsledky pre tú čast’ pŕıpadu V, ktorá nebola
súčast’ou [5].

Tiež sme sa zaoberali riešeniami uvažovanej okrajovej úlohy meniacimi zna-
mienko, ktoré boli prvýkrát systematicky študované v [6] pre p ≥ 1, q > 1. Pritom
sme použili metódu strel’by s tou zmenou, že začiatočné podmienky boli u(0) = 0
a u′(0) = θ pre vhodné θ ∈ R. Počet antisymetrických (t. j. nepárnych) riešeńı
meniacich znamienko bol v [6] určený pre všetky p ≥ 1, q > 1, avšak počet
neantisymetrických riešeńı meniacich znamienko iba pre istú čast’ uvažovaných
hodnôt parametrov. My sme vyšetrili aj zvyšnú čast’ spolu s niektorými doteraz
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neuvažovanými hodnotami parametrov, konkrétne s p = 1, q ∈ (0, 1) a p > 1,
q ∈ [1

2
, 1].

Na tomto mieste ešte spomenieme vedl’aǰśı výsledok práce v podobe expli-
citného vzorca pre riešenie Cauchyho úlohy pre u′′ = au−1/2, kde a > 0.

Vd’aka metóde strel’by sme mohli previest’ otázku riešitel’nosti študovanej okra-
jovej úlohy na otázku priebehu zobrazeńı dostrelu, čiže reálnych funkcíı jednej
reálnej premennej, a teda sme d’alej už vystačili s prostriedkami reálnej analýzy.
Vyšetrit’ ich priebeh však nebolo až také l’ahké, lebo sú dané vzorcom obsahujúcim
nevlastný parametrický integrál, ktorý sa dá vypoč́ıtat’ iba pre niektoré špeciálne
hodnoty parametra p, kým jeho horná hranica je daná implicitne.
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List of symbols

Here the reader can find all the symbols used at least twice in this thesis except
their occurrences in proofs. References for their definitions are provided as well.
Some symbols (namely, L(0), m and m0) have been introduced repeatedly for
different values of their parameters, but all their definitions correspond with each
other.

Positive solutions of (1):

a Lemma 4.5

bk(p) Lemma 2.4

Bp Lemma 2.4

F(m,x) = Fp,q,a(m,x) Lemma 1.4

Ip(y) Theorem 1.1

Jp(y) Theorem 2.7

K(m) = Kp,q,a(m) Definition 1.10

K1(m) = K1;p,q,a(m) Definition 1.10

K2(m) = K2;p,q,a(m) Definition 1.10

L(m) = Lp,q,a(m) Definition 1.7

L(0) = Lp,q,a(0) Lemma 4.2 (case II)

Lemma 5.3 (case III)

L1(m) = L1;p,q,a(m) Definition 1.7

L2(m) = L2;p,q,a(m) Definition 1.7

L2(0) = L2;p,q,a(0) Lemma 7.4 (case V)

Λm,p,a Theorem 1.1

m = mp,q,a Lemma 5.5 (case III)

Definition 7.2 (case V)

m0 = m0;p,q,a Lemma 5.5 (case III)

Lemma 7.3 (case V)

Lemma 7.6 (case V)

m1 = m1;p,q,a Lemma 7.7 (case V)

m2 = m2;p,q,a Lemma 7.7 (case V)

M = Mp,q,a Lemma 1.5

N (l) = N (l; p, q, a) Definition 1.2

p Lemma 4.5 (case II)
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ps Definition 2.2

q∗(p) Lemma 7.7 (case V)

q∗(−1) Lemma 7.8 (case V)

q̂(p) Lemma 8.9 (case V)

q̂(−1) Lemma 8.10 (case V)

q(p) Lemma 8.9 (case V)

rq,a Section 6 (case IV)

R(m) = Rp,q,a(m) Lemma 1.5

R1(m) = R1;p,q,a(m) Lemma 1.5

R2(m) = R2;p,q,a(m) Lemma 1.5

R2(0) = R2;p,q,a(0) Lemma 7.1 (case V)

S(l) = S(l; p, q, a) Definition 1.2

um,p,a Theorem 1.1

Sign-changing solutions of (1):

F(θ, x) = Fp,q,a(θ, x) Lemma 9.1

Ip,b(y) Lemma 9.1

L(Θ) = Lp,q,a(Θ) Definition 9.3

L1(θ) = L1;p,q,a(θ) Definition 9.3

L2(θ) = L2;p,q,a(θ) Definition 9.3

Λθ,p,a beginning of Section 9

N±(l) = N±(l; p, q, a) beginning of Section 9

R(Θ) = Rp,q,a(Θ) Lemma 9.2

R1(θ) = R1;p,q,a(θ) Lemma 9.2

R2(θ) = R2;p,q,a(θ) Lemma 9.2

Θ = Θp,q,a Lemma 9.2

uθ,p,a beginning of Section 9
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