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Spurt phenomenon

Section 1.

Introduction

A surprising feature of the flow of polymers is associated with a sudden increase in the
volumetric flow rate when the pressure gradient is gradually increased beyond a critical
value. This striking phenomenon, called ”spurt”, was apparently first observed by Vino-
gradov et al. [48] in rheological experiments involving the flow through thin capillaries of
highly elastic and very viscous non-Newtonian fluids like some synthesized polybutadienes
and polyisoprenes. The interested reader is referred to [48, Table 1] for more detailed
information about microstructure characteristics of samples. The spurt phenomenon is a
kind of a flow instability in pressure driven shear flows of viscoelastic fluids.

Much effort is being spent to explain spurt and related phenomena mathematically.
Several authors have considered mathematical models based on differential constitutive
equations due to Johnson, Sagelman and Oldroyd exhibiting local extrema of the steady
shear stress as a function of steady strain rate (see [25], [26], [27], [29], [30], [37] and
[36] ). These papers show that the spurt phenomenon is dynamic, and hence cannot be
explained in a satisfactory manner by only studying the steady state equations. Dynamical
theory can explain phenomena observed in experiments and in numerical simulations, and
it can also predict phenomena like latency, shape memory and hysteresis which should be
observable in future experiments.

In Part I we modify the models of [25], [37] by adding a diffusion term to the con-
stitutive equation. The resulting system of equations (in dimensionless units) governing
planar shear flow has the form

αvt = vxx + σx + f

σt = −σ + g(vx) + ν2σxx

(1.1)

Results of Part I are contained in the joint paper with P.Brunovský [13]
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where v(t, x) is the velocity of the planar flow, σ(t, x) is the polymer contribution to the
shear stress, g : R → R is a given smooth function, and f > 0 is the pressure gradient
driving the flow.

Unlike the models investigated in [37], [25], and in the other models in [29], [30],
[36], system (1.1) contains the spatial diffusion term ν2σxx. Spatial diffusion is usually
neglected in non-Newtonian models because of the spatial homogeneity of the structure.
In the model of [18] (also see [6]), Brownian motion prevents polymer molecules (treated
as dumb-bells) from being completely independent of each other giving rise to a diffusion
term in constitutive equations. Typical values of ν2 will be described in Section 6. The
structure of steady states of (1.1) is determined by treating ν2 > 0 as a small parameter,
and by applying the singular perturbation theory of [28]. This theory enables us to select
steady states that appear to be appropriate for capturing the spurt phenomenon.

System (1.1) with ν2 = 0 exhibits the same behavior in steady shear as the more
realistic models studied in [29], [30] and [36], where the differential constitutive equations
also involve normal stresses (in particular, the first normal stress difference) giving rise
to a governing system of three quasilinear parabolic-hyperbolic PDE’s in place of the two
in (1.1). The dimensionless parameter α representing the ratio of Reynolds number to
Deborah number is very small. The analytical study in [37], [30] and [36] is based on
treating the respective governing equations as singular perturbation problems with α as a
singular parameter. Their approach is to determine the complete dynamics when α = 0 and
then to show that the dynamics of the full system is similar for α > 0 sufficiently small. By
contrast, our quasilinear system (1.1) with ν2 > 0 is parabolic, and the theory of parabolic
systems can be exploited to determine the global dynamics for α > 0 sufficiently small.
In particular, the existence of a global compact attractor and an inertial manifold can be
established. It should be noted that the feature of mathematical models studied in [37],
[30], [36] that makes their qualitative analysis (asymptotic behavior as t → ∞, stability
properties, etc.) particularly difficult is that the governing equations posses uncountable
many isolated steady states. From this fact one can deduce that these governing equations
can admit neither a compact global attractor nor a finite dimensional inertial manifold.

Part I is organized as follows. In Section 2, we use general ideas from [25] to derive a
non-Newtonian model of shearing motions incorporating spatial diffusion. Basic properties
of the model ( existence and long-time behavior of solutions, qualitative properties of
steady states) are established in Section 3. It is shown that in case of a generic g, the
asymptotic behavior of solutions is very simple - each solution tends to some steady state
and the number of steady states is finite. We also prove exponential stability of two
particular steady states playing a crucial role in the explanation of spurt. In Sections
4 and 5, spurt and hysteresis phenomena in our mathematical model are established.
The phenomenon of spurt is associated with extinction of a stable steady state when the
pressure gradient increases beyond a critical (bifurcation) value. The results of numerical
simulations for small values of α, ν > 0 are presented in Section 6. We have performed
numerical simulations of spurt and hysteresis phenomena for the sample PI-3 (see [48]).
Numerical results match the data observed experimentally by Vinogradov et al.
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Section 2.

A Non-Newtonian model
of shearing motions including diffusion

In this section, we derive a mathematical model for shearing motion of a fluid leading
to a system of governing equations including a diffusion term in the constitutive equation.

We consider the planar shear flow of a viscoelastic fluid in an infinite narrow strip:
x ∈ [−h, h] and y ∈ (−∞,∞), with the flow directed along the y-axis. We suppose the
fluid to be non-Newtonian, incompressible and the motion to take place under isothermal
conditions. We restrict ourselves to motions which are symmetric with respect to the
centerline. Under our assumptions the flow variables will depend only the transversal
variable x. Hence, the velocity vector ~v has the form ~v = (0, v(t, x)) with v(t, x) = v(t,−x).
It is easy to verify that the mass balance is then automatically satisfied. The equation
governing the motion of the fluid is the balance of linear momentum

%

(
∂~v

∂t
+ (~v,∇)~v

)
= ∇~S (2.1)

where % is the constant fluid density and ~S is the total stress which can be decomposed as

~S = p. ~Id+ ε. ~D + ~Σ. (2.2)

Here p is the isotropic pressure of the form p = p0(t, x) + f.y where f is the pressure
gradient driving the flow, ε is the Newtonian viscosity and ~D is the stretching tensor (or
rate of deformation), i.e. ~D =

(∇~v + (∇~v)>) /2. According to [25, Section 2] the extra

stress ~Σ =
(
σxx , σxy

σyx , σyy

)
satisfies

σxy = σyx = S0
∞
s=0 [Λt(s)]

σxx − σyy = S1
∞
s=0 [Λt(s)]

σxx + σyy = 0
(2.3)

where S0,S1 are generally nonlinear operators acting on the relative shearing history
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Λt(s) = −
∫ t

t−s

vx(τ, x) dτ. (2.4)

Since we assume the flow to be planar, equation (2.1) reduces to

%vt = εvxx + σx + f (2.5)

where σ := σxy.
We specify the operator S0 in such a way that it takes into account long-range molec-

ular forces. According to [18], the latter provide the constitutive equations by a diffusion
term ν2σxx

‡. The first normal stress difference determined by the operator S1 plays no
role in our model.

Let A denote the self-adjoint closure in L2(0, h) of the operator defined on C2
B(0, h) by

Au = −uxx for any u ∈ C2
B(0, h) := {u ∈ C2(0, h); u(0) = ux(h) = 0}, its domain D(A) is

the Sobolev space W 2,2
B (0, h) = {u ∈W 2,2(0, h); u(0) = ux(h) = 0}. Let λ, ν > 0 be fixed.

Then the operator − (λ+ ν2A
)

generates an analytic semigroup exp
(− (λ+ ν2A

)
t
)
,

t ≥ 0; (see [23, Chapter 1]) †.

Assume that g : R → R is a bounded Lipschitz continuous function. As usual, we
identify g with the Nemitsky operator g : W1,2(0, h) → L2(0, h) defined by g(u)(x) =
g(u(x)) for a.e. x ∈ [0, h]. Due to the assumptions on g the nonlinear operator g is well
defined and Lipchitz continuous.

Let f̃ ∈ L2(0, h) be defined as

f̃ : x 7→ f.x, for any x ∈ [0, h] (2.6)

We define

S0 (Λt) =
∫ ∞

0

exp
(− (λ+ ν2A

)
s
)
.

[
g

(
− d

ds
Λt(s)

)
+ λ.f̃

]
ds− f̃

for any v ∈ C (R : W1,2(0, h)
)
, and t ≥ 0 (2.7)

where Λt(s) is defined by (2.4), i.e. Λt(s) = − ∫ t

t−s
vx(τ, x) dτ .

Clearly,

S0 (Λt) =
∫ ∞

0

exp
(− (λ+ ν2A

)
s
) [
g (vx(t− s, .)) + λf̃

]
ds− f̃ (2.8)

‡ According to the Noll concept of a simple material viscoelastic fluids having spatially
nonlocal constitutive equations are sometimes referred to as non-simple fluids

† Some of the properties of sectorial operators and analytic semigroups will be recalled
in Section 9.
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In case ν = 0, the definition of the functional S0 coincides with that of [25], formula
(5). However, since the operator λ + ν2A, ν > 0, is a diffusion operator generating an
analytic semigroup, the operator exp (−(λ + ν2A)s), s > 0, smoothes out solutions, i.e.
exp (−(λ+ ν2A)s)w ∈ D(A) for any w ∈ L2(0, h) and s > 0 (see [23, Chapter 1]).

Differentiating (2.8) with respect to t and substituting u := σ + f̃ = S0 (Λt) + f̃ , we
obtain the following constitutive equation of rate type

ut +
(
λ+ ν2A

)
u = g(vx) + λf̃ (2.9a)

with boundary conditions
u(t, 0) = ux(t, h) = 0, (2.9b)

or equivalently,
σt + λσ − ν2σxx = g(vx) (2.10a)

with boundary conditions

σ(t, 0) = 0, σx(t, h) = −f, (2.10b)

respectively.†

We note that σx(t, h) = −f implies vxx(t, h) = 0 which is the boundary condition
appearing in the theory of multipolar fluids (see, [5, Section 3]). The boundary condition
u(t, 0) = 0 (σ(t, 0) = 0) implies that the function u(t, .) (σ(t, .)) can be extended as an
odd function to the interval [−h, h] for all t. It insures the symmetry of the flow about the
centerline.

Summarizing, our model leads to the initial-boundary value problem

%vt = εvxx + σx + f

σt = ν2σxx + g(vx)− λσ

v(0, x) = v0(x); σ(0, x) = σ0(x) for a.e. x ∈ [0, h]
vx(t, 0) = v(t, h) = 0; σ(t, 0) = 0; σx(t, h) = −f for t ≥ 0.

(2.11)

To facilitate the discussion, we scale the space variable x by h, time t by λ−1, v by hλ, σ
by ελ, f by ελ/h, ν2 by h2λ and replace g(ξ) by 1

ελ2 g(λξ). The resulting system is

αvt = vxx + σx + f

σt = ν2σxx + g(vx)− σ

for (t, x) ∈ [0,∞]× [0, 1]

(2.12)

† Note that the boundary condition σx(., h) = −f has no physical justification based
on the theory of Johnson-Sagelman-Oldroyd fluids. Nevertheless, the boundary conditions
for the extra stress σ can be justified in a satisfactory manner by means of the kinetic
theory of fluids (see [6], [18])
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with boundary conditions
vx(t, 0) =v(t, 1) = 0;

σ(t, 0) = 0; σx(t, 1) = −f (2.13)

and initial data

v(0, x) = v0(x); σ(0, x) = σ0(x) for a.e. x ∈ [0, 1] (2.14)

There are two dimensionless parameters α = %h2λ
ε and ν > 0. According to [18]

and [48], the typical values of α and ν are

α = O(10−9) and ν2 = O(10−4).

Hence, we may treat α and ν as small parameters.
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Section 3.

Existence of solutions,
asymptotic behavior,

steady state solutions and their stability

In this section, we study the problem of existence of solutions, their long time behavior,
as well as some qualitative properties of steady states of the system (2.12). Using the
abstract theory developed in [23] we establish local and global solvability. For g real
analytic we furthermore prove that the asymptotic behavior of the solutions is simple -
each trajectory approaches some steady state and the number of steady state solutions
is finite. To single out the appropriate stationary solutions, we apply the results of the
theory of singularly perturbed boundary value problems of [28].

3.1. Existence of solutions

In terms of the variables v and u the initial boundary value problem (2.12) takes the
form

αvt = vxx + ux

ut = ν2uxx − u+ g(vx) + fx
(3.1.1)

vx(t, 0) = v(t, 1) = 0; u(t, 0) = ux(t, 1) = 0 for t ≥ 0

v(0, x) = v0(x); u(0, x) = u0(x) for x ∈ [0, 1].

To facilitate the discussion, let

S = vx + u = vx + σ + f̃ . (3.1.2)

Obviously,
αSt = Sxx + αut. (3.1.3)
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Fig. 1

In terms of S and u, the system (3.1.1) takes the form

αSt = Sxx + αν2uxx + α(g(S − u) + fx− u)

ut = ν2uxx − u+ g(S − u) + fx
(3.1.4)

with boundary conditions

u(t, 0) = ux(t, 1) = 0; S(t, 0) = Sx(t, 1) = 0

and initial data

S(0, x) = S0(x) = v0x(x) + u0(x); u(0, x) = u0(x) for x ∈ [0, 1] (3.1.5)

Throughout Part I we will assume that α and ν are small parameters. The pressure
gradient f is assumed to be positive. Denote

h(u) := u+ g(u)

The function h is assumed to be C2 with a single loop as shown in Fig.1.
More precisely, we make the following hypotheses:

(W )



(i) g : R→ R is an odd C2 function with bounded derivatives up to
the second order satisfying g(u)u > 0 for any u ∈ R, u 6= 0;

(ii) there exist constants 0 < c1 < c2 such that
h′(u) = 1 + g′(u) > 0 on [0, c1)
h′(u) = 1 + g′(u) < 0 on (c1, c2)
h′(u) = 1 + g′(u) > 0 on (c2,∞)
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Under assumptions (W), there exists a γ0 > 0 such that∫ max h−1(γ0)

min h−1(γ0)

(h(u)− γ0) du = 0.

The last integral condition is commonly known as Maxwell’s equal area rule (the area
A equals B). In Fig.1 the line u = γ0 is called Maxwell’s line. We also note that the
function h(u) = u+ g(u) satisfying (W) is sometimes called van der Walls type curve.

In what follows, we let X denote the real Hilbert space L2(0, 1) with norm ‖.‖ and the
inner product (., .). Recall that the operator A defined in the previous section is sectorial
and positive in X with domain D(A) = {w ∈ W 2,2(0, 1); w(0) = wx(1) = 0}. Hence,
fractional powers of A can be defined. Let Xγ, γ ≥ 0, be the Hilbert space consisting of
the domain D(Aγ) endowed with graph norm ‖w‖γ = ‖Aγw‖ for any w ∈ Xγ = D(Aγ).
The operator A has a compact resolvent A−1 : X → X .

(3.1.6)

Now one can treat the governing equations (3.1.4)-(3.1.5) as an abstract differential
equation in the Hilbert space

X = X ×X. (3.1.7)

To do so, we let Φ = [S, u]. The system (3.1.4) then becomes

d

dt
Φ + LΦ = F (Φ); Φ(0) = Φ0 = [S0, u0] (3.1.8)

where the linear operator L is defined by

L [S, u] :=
[
A(

1
α
S + ν2u), ν2Au

]
=
((

1
αA ν2A
0 ν2A

)[
S
u

])>
(3.1.9)

on its domain D(L) = D(A)×D(A). The nonlinearity F is given by

F ([S, u]) = [g(S − u)− u+ fx, g(S − u)− u+ fx] . (3.1.10)

It is routine to verify that L : D(L) ⊂ X → X is a sectorial operator generating an
analytic semigroup exp (−Lt), t ≥ 0. Since A−1 is compact it is easy to show that L has
a compact resolvent L−1 : X → X . The fractional power L1/2 is then easily computed as

L1/2 =

(
1√
α
A1/2

√
αν2

1+ν
√

α
A1/2

0 νA1/2

)

and D(L1/2) = D(A1/2)×D(A1/2). Hence there is an equivalent norm in X 1/2 such that

X 1/2 ∼= X1/2 ×X1/2 (3.1.11)
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and it can easily be verified that

X1/2 = {w ∈W 1,2(0, 1); w(0) = 0}. (3.1.12)

Since we have assumed that the first and second derivative of g are bounded, the nonlin-
earity F is a C1 bounded mapping from X 1/2 into X .

Now we can apply the general theory of abstract parabolic equations [23]. According
to [23, Theorems 3.3.3, 3.3.4, 3.4.1, 3.5.2], for any initial condition Φ0 ∈ X 1/2 the abstract
equation (3.1.8) has a unique solution Φ(t) defined on [0,∞) by the property

Φ ∈ Cloc([0,∞),X 1/2) ∩ C1
loc((0,∞),X 1/2)

Φ(t) ∈ D(L) for t > 0 and Φ(0) = Φ0.

Hence, (3.1.8) defines a C1 semidynamical system (T (t), t ≥ 0) in X 1/2 defined by

T (t)Φ0 = Φ(t,Φ0) for any t ≥ 0

where Φ(t,Φ0) is the solution of (3.1.8) with Φ(0) = Φ0 ∈ X 1/2.

3.2. Asymptotic behavior of solutions

We now turn our attention to the asymptotic behavior of solutions of (3.1.8). First,
we will study the set of steady states, i.e. stationary solutions of (3.1.8) which we denote
by E . Clearly,

E =
{
[0, ū] ; ū ∈ D(A) is a solution of ν2Aū = −ū+ g(−ū) + fx

}
. (3.2.1)

In fact, [0, ū] ∈ E iff

ū ∈ C4(0, 1), ν2ūxx = ū+ g(ū)− fx ū(0) = ūx(1) = 0. (3.2.2)

Here we have used the assumption that g is an odd C2 function.
The system (3.1.8) admits a global Lyapunov function V : X 1/2 → R defined by

V ([S, u]) =
1
2

{
1
α
‖S‖21/2 + ν2‖S − u‖21/2 + ‖S − u‖2 + J(S − u)

}
where

J(w) = 2
∫ 1

0

∫ w(x)

0

(g(s) + fx) ds dx. (3.2.3)
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Indeed, a simple calculation shows that for any solution [S(t), u(t)] the following formula
holds

d

dt
V ([S(t), u(t)]) +

1
α
‖S(t)‖21/2 +

1 + αν2

α2
‖S(t)‖21 = 0 for any t > 0. (3.2.4)

Due to the assumption g(u)u ≥ 0 for any u ∈ R it follows that the functional V is
bounded from below. From (3.2.2), (3.2.4) it follows that the real valued function t 7→
V ([S(t), u(t)]) , t ≥ 0 is strictly decreasing unless [S(t), u(t)] ≡ [0, ū] ∈ E is a steady state
solution of (3.1.8). Then a standard invariancy argument (see, e.g. [49, Theorem 4.1])
enables us to conclude that the omega-limit set

Ω(Φ0) := {Φ ∈ X 1/2, there exists tn →∞ such that T (tn)Φ0 → Φ}
satisfies

Ω(Φ0) ⊆ E , (3.2.5)

for any Φ0 ∈ X 1/2. Since the operator L has a compact resolvent L−1, it follows from [23,
Theorems 3.3.6 and 4.3.3] and (3.2.5) that

lim
t→∞dist(T (t)Φ0, E) = 0, (3.2.6)

where dist(Φ, E) = inf (‖Φ−Ψ‖X1/2 , Ψ ∈ E). In the following simple proposition, we
obtain bounds on steady states, and we show for g real analytic that the number of possible
steady states is finite.

Proposition 3.2.1. Let u0 ≥ c2 be such that h(u0) ≥ f . Then, 0 ≤ u(x) ≤ u0, for any
solution u(x) of (3.2.2). Moreover, there exists a constant M = M(g, f) > 0 such that

ν sup
x∈[0,1]

|ux(x)|+ sup
x∈[0,1]

|u(x)| ≤M

If g is real analytic then the number of solutions of (3.2.2) is finite.

Proof. Let u be an arbitrary solution of (3.2.2). Since h(u) := u+g(u) is nondecreasing
on [u0,∞) and h(u0) ≥ f it follows that u(x) ≥ u0 implies ν2uxx(x) = h(u(x)) − fx ≥
h(u0) − fx ≥ f(1 − x). Thus the function u(x) is strictly convex whenever u(x) ≥ u0.
Since u(0) = 0, if u(x0) > u0 for some x0 ∈ (0, 1] then there exists x1 ∈ (0, 1) such
that u(x1) = u0, u(x) > u0 and ux(x) > 0 on (x1, 1). This means that u cannot satisfy
ux(1) = 0. Hence u(x) ≤ u0 for every x ∈ [0, 1] and ν > 0. The inequality 0 ≤ u(x)
can be obtained in a similar way. The estimate for νux(x) follows from the well known
interpolation inequality

1
2
ν sup

x∈[0,1]

|ux(x)| ≤ sup
x∈[0,1]

|u(x)|+ ν2 sup
x∈[0,1]

|uxx(x)| for any u ∈ C2([0, 1]) and ν > 0.

Now we assume that g is real analytic. We fix an ν > 0 and define the map µ 7→ φ(µ)
as φ(µ) = uµ

x(1) where uµ(x) is the solution of the initial-value problem ν2uxx = u+g(u)−
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fx, uµ(0) = 0, uµ
x(0) = µ. Since g is Lipschitz continuous and analytic the function φ(µ)

is well defined and analytic on R. Furthermore, φ(µ) = 0 if and only if uµ(x) is a solution
of the BVP (3.2.2). Suppose to the contrary the existence of infinitely many solutions of
BVP (3.2.2). Then the set {µ ∈ [−M/ν,M/ν]; φ(µ) = 0} must have an accumulation
point. Because of analyticity of φ we have φ ≡ 0 on R. Hence, there is a solution uµ(x) of
BVP (3.2.2) for µ > M/ν which is inconsistent with uµ

x(0) = µ. ♦
The omega-limit set Ω(Φ0) is non-empty and connected ([23, Theorem 4.3.3]). Thus,

by (3.2.5), Ω(Φ0) is a singleton whenever E is finite. We have thus established the following

Theorem 3.2.2. Assume the hypotheses (W). Then, for any initial condition Φ0 ∈ X 1/2,
the evolution problem (3.1.8) has the unique solution Φ = Φ(t,Φ0), t ≥ 0, its omega-limit
set Ω(Φ0) being contained in the set of steady state solutions E . If, in addition, g is real
analytic then each trajectory tends to a single steady state.

3.3. Steady state solutions

We now examine steady state solutions of (3.1.8). Recall that
[
S̄, ū

]
is a steady state

if and only if S̄ ≡ 0 and ū ∈ C4(0, 1) is a solution of the BVP

ν2uxx = u+ g(u)− fx

u(0) = ux(1) = 0. (3.3.1)

The steady state velocity profile v̄ is then calculated as v̄(x) =
∫ 1

x
ū(ξ) dξ. Since ν is

assumed to be small, the problem (3.3.1) can be viewed as a singular perturbation of the
reduced problem

0 = u+ g(u)− fx. (3.3.2)

From now on, we assume
f ∈ [fmin, fmax],

where 0 < fmin < γm and γM < fmax < ∞. From Fig.1 it is clear that the problem
(3.3.2) has a unique C1 solution u = φ1(x), x ∈ [0, 1], whenever f ∈ [fmin, γm). When
f ∈ (γM , fmax] there exist C1 functions φi(x) defined on two overlapping intervals Ii
contained in [0, 1], where 0 ∈ I1, 1 ∈ I2, i = 1, 2, and such that h(φi(x))−fx = 0, x ∈ Ii,
and φ2(x) > φ1(x) on I1 ∩ I2. Hence there also exist discontinuous solutions of (3.3.2).
Indeed, any function u = u(x) where u = φ1(x), on [0, 1]\I2, u(x) ∈ {φ1(x), φ2(x)} on
I1∩I2 and u = φ2(x), on [0, 1]\I1 is the solution of (3.3.2); the number of discontinuities of u
is unlimited. Inevitably, each solution of (3.3.2) is discontinuous whenever f ∈ (γM , fmax].
In case f ∈ (γ0, fmax] and ν small we expect the existence of a solution of (3.3.1) having
an abrupt transition at some interior point x0 ∈ (0, 1). When φ1 is defined on the whole
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interval [0, 1] we also expect that (3.3.1) has a solution which is close to φ1 on [0, 1] for ν
small.

To make the above discussion precise, we employ general results of singularly per-
turbed equations due to Lin [28]. To this end, let us consider (3.3.1) as the equivalent
2× 2 system

νux = w

νwx = u+ g(u)− fx

u(0) = w(1) = 0 (3.3.3)

In case f ∈ [fmin, γM ) the piecewise continuous function

Ū (1)
ν =

 (0, 0), x ∈ [0, ν1/2)
(φ1(x), 0), x ∈ [ν1/2, 1− ν1/2)

(φ1(1), 0), x ∈ [1− ν1/2, 1]
(3.3.4)

is a formal approximation of the system (3.3.3) in the sense of [28, Theorem 2.1]. When
f ∈ (γ0, fmax], (γ0 is determined by Maxwell’s equal area rule) there is another formal
approximation of (3.3.3) given by

Ū (2)
ν =


(0, 0), x ∈ [0, ν1/2)
(φ1(x), 0), x ∈ [ν1/2, x0 − ν1/2]
(z
(

x−x0
ν

)
, z′
(

x−x0
ν

)
), x ∈ (x0 − ν1/2, x0 + ν1/2)

(φ2(x), 0), x ∈ [x0 + ν1/2, 1− ν1/2)
(φ2(1), 0), x ∈ [1− ν1/2, 1]

(3.3.5)

Here x0 ∈ (0, 1) is determined by fx0 = γ0 and z = z(τ) is the heteroclinic solution
of the second order autonomous ODE

z” = z + g(z)− γ0 (3.3.6)

such that limτ→−∞ z(τ) = φ1(x0), limτ→∞ z(τ) = φ2(x0), z > 0 and z′ > 0. The
existence of such a solution follows (by phase-plane analysis) from the fact that (due to
the hypothesis (W)) φ1(x0) and φ2(x0) lie on the same level curve of an integral for
the system (3.3.3). We note that φ1(x0) = minh−1(γ0), φ2(x0) = maxh−1(γ0) for any
f ∈ [γ0, fmax] and hence the solution z does not depend on f .

It is now easy to verify that the formal approximations Ū (1)
ν and Ū

(2)
ν satisfy the

hypotheses (H1)-(H3) of [28]. We omit this detail. Then the main result of [28] adapted
to the BVP (3.3.1) reads

Theorem 3.3.1 ([28, Theorem 2.2]). Let Ūν be a formal approximation of (3.3.1) given
by (3.3.4) or (3.3.5). Then there exists ν0 > 0 and δ0 > 0 such that for 0 < ν ≤ ν0 there
exists a unique true solution u = uν(x) of (3.3.1) with r := supx∈[0,1] |Uν(x)− Ū(x)| ≤ δ0,

where Uν(x) = (u(x), νux(x)). The remainder r is of order O(ν1/2) when ν → 0+.

Remark 3.3.2. Theorem 2.2 of [28], however, does not specify the explicit dependence of
the remainder r on the coefficients of the equation (3.3.1). The decay of the remainder r
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Fig. 2

the parameter f . Nevertheless, for any fixed η > 0 small enough, using the implicit function
theorem and following the lines of the proofs of [28, Theorem 2.2, 4.3 and 4.4], one can
show that the remainder r = r(ν, f) for the formal approximation Ū

(1)
ν (Ū (2)

ν ) is O(ν1/2)
uniformly with respect to f ∈ [fmin, γM − η] and f ∈ [γ0 + η, fmax], respectively, when
ν → 0+.

For f ∈ [fmin, γM ), Theorem 3.3.1 asserts the existence of a true solution u
(1)
ν of

(3.3.1) approximating the given formal approximation Ū (1)
ν . We have

u(1)
ν (x)−→unifφ1(x) and v(1)

ν (x) −→unif

∫ 1

x

φ1(ξ) dξ for any x ∈ [0, 1] as ν → 0+. (3.3.7)

Again, by Theorem 3.3.1, for any f ∈ (γ0, fmax], there exists a solution u(2)
ν of (3.3.1)

such that
lim

ν→0+
u(2)

ν (x) = φ1(x) for any x ∈ [0, x0)

lim
ν→0+

u(2)
ν (x) = φ2(x) for any x ∈ (x0, 1] (3.3.8)

Hence, for small ν > 0 the solution u(2)
ν has a graph as in Fig.2.

By the Lebesgue dominated convergence theorem we have the uniform convergence

v(2)
ν −→unif v

(2)
0 ≡

{ ∫ 1

x
φ2(ξ) dξ x ∈ [x0, 1]∫ x0

x
φ1(ξ) dξ +

∫ 1

x0
φ2(ξ) dξ x ∈ [0, x0]
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when ν → 0+. Hence, the family
(
v
(2)
ν

)
ν>0

converges uniformly to the velocity profile v(2)
0

with a kink located at x0 as shown in Fig.3.

Fig. 3

It is now clear that given a pressure gradient f ∈ (γ0, γM), for any ν sufficiently
small there exist at least two solutions u(1)

ν , u
(2)
ν of (3.3.1) satisfying (3.3.7) and (3.3.8),

respectively.

Integrating the velocity v̄ with respect to x, yields the steady state flow rate per
cross-section

Q = 2
∫ 1

0

v̄(x) dx. (3.3.9)

Denote Q(i)
ν the volumetric flow rate corresponding to the velocity v

(i)
ν given by (3.3.7)

and (3.3.8), respectively. Clearly, for any η > 0 there is d = d(g, η) > 0 such that

Q(2)
ν −Q(1)

ν ≥ d for any f ∈ [γ0 + η, γM) and ν > 0 sufficiently small. (3.3.10)

We conclude this section by discussing the stability of steady states. We first show
that linearized stability of a solution ū of (3.3.1) extends to that of the steady state solution
[0, ū] of (3.1.8).

Lemma 3.3.3. Let 0 < α < 1/ supu∈R |g′(u)|. A steady state solution [0, ū] of (3.1.8) is
exponentially asymptotically stable with respect to small perturbations of initial data in the
phase space X 1/2 = X1/2×X1/2, provided that the principal eigenvalue µ0 of the linearized
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Sturm-Liouville problem B1[u] = ν2uxx − u − g′(−ū(x))u = µu, u(0) = ux(1) = 0 is
negative.

Proof. Let [0, ū] be an arbitrary steady state solution of (3.1.8). The linearization
of (3.1.8) at [0, ū] has the form

d

dt
[S, u] = B [S, u]

where the linear operator B is given by

B [S, u] =
[

1
α
Sxx + ν2uxx − u+ g′(−ū(x))(S − u), ν2uxx − u+ g′(−ū(x))(S − u)

]
,

(3.3.11)
its domain being

D(B) =
{
[S, u] , S, u ∈W 2,2(0, 1); S(0) = Sx(1) = u(0) = ux(1) = 0

} ⊂ (L2(0, 1))2

Denote B1 the Sturm-Liouville operator

B1[u] = ν2uxx − u− g′(−ū(x))u (3.3.12)

on its domain D(B1) = {w ∈W 2,2(0, 1); w(0) = wx(1) = 0} ⊂ L2(0, 1). †

Assume that the principal eigenvalue µ0 of the linear problem B1[u] = µu, u ∈ D(B1)
is negative. Since B1 is a self-adjoint Sturm-Liouville operator we have

(B1[u], u)
‖u‖2 ≤ µ0 < 0, (3.3.13)

for any u ∈ D(B1), u 6= 0. Moreover, B1 is invertible and B−1
1 : L2 → L2 is compact.

Hence, the operator B is also invertible and

B−1 [φ, ψ] =
[
αA−1(ψ − φ), B−1

1

(
ψ − αg′(−ū(.))A−1(ψ − φ)

)]
where the linear operator A was defined in Section 2. Since, by (3.1.6), A−1 : L2 → L2

is compact B−1 : X → X is compact as well. Therefore the spectrum σ(B) consists of
eigenvalues.

We will show that Reλ < 0 for any λ ∈ σ(B) = σP (B). Suppose to the contrary that
there exists an eigenvalue λ ∈ σ(B) such that Reλ ≥ 0. Let [S, u] denote the eigenvector
of the linear problem

B [S, u] = λ [S, u] . (3.3.14)

Subtracting the equations for S and u we obtain 1
αSxx = λ(S − u). Thus,

Sx(x) = −αλ
∫ 1

x

(S − u)(ξ) dξ. (3.3.15)

† When dealing with spectrum we operate with the canonical complexification of the
real Hilbert space L2(0, 1)
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Taking the inner product of (3.3.15) with − ∫ 1

x
(S − u)(ξ) dξ we obtain

−‖S − u‖2 − (u, S − u) = αλ‖
∫ 1

x

(S − u)(ξ) dξ‖2.

Since Reλ ≥ 0 we have ‖S − u‖2 ≤ −Re(u, S − u) ≤ ‖u‖‖S − u‖ and hence,

‖S − u‖ ≤ ‖u‖. (3.3.16)

From (3.3.15) we have S(x) = −αλ ∫ x

0

∫ 1

r
(S − u)(ξ) dξ dr. Thus S = αλJ(S − u) where

J : L2 → L2 is a linear bounded operator with ‖J‖ ≤ 1. Therefore, u satisfies the equation

B1[u] + αλg′(−ū(.))J(S − u) = λu. (3.3.17)

Take the inner product of (3.3.17) with u to obtain

(B1[u], u) = λ
(‖u‖2 − α (g′(−ū(.))J(S − u), u)

)
.

Since B1 is self-adjoint we have Im
(
λ− αλ (g′(−ū(.))J(S − u), u) /‖u‖2) = 0 and

µ0 ≥ (B1[u], u)
‖u‖2 = λ

(
1− α

(g′(−ū(.))J(S − u), u)
‖u‖2

)
.

According to (3.3.16) we have

α

∣∣∣∣ (g′(−ū(.))J(S − u), u)
‖u‖2

∣∣∣∣ ≤ α sup
s∈R

|g′(s)| ‖J(S − u)‖‖u‖
‖u‖2 ≤ α sup

s∈R
|g′(s)| < 1,

because ‖J‖ ≤ 1. Therefore,

µ0 ≥ λ

(
1− α

(g′(−ū(.))J(S − u), u)
‖u‖2

)
≥ 0,

a contradiction. Hence, Reλ < 0 for any λ ∈ σ(B). By [23, Theorem 5.1.1], the steady
state solution [0, ū] of (3.1.8) is exponentially asymptotically stable with respect to small
perturbations of initial data in the phase space X 1/2 = X1/2 ×X1/2.

♦

Using Lemma 3.3.3 we are able to prove the theorem below establishing stability of
the solutions

[
0, u(i)

ν

]
, i = 1, 2 as well as their uniqueness for certain parameter values.
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Theorem 3.3.4. Assume that 0 < α < 1/ supu∈R |g′(u)| and g satisfies the hypotheses
(W).
a) If f ∈ [fmin, γM ) and ν > 0 is sufficiently small then the principal eigenvalue µ0 of the

linearized Sturm-Liouville problem B1[u] = µu at u
(1)
ν is negative. Consequently, the

steady state solution
[
0, u(1)

ν

]
of (3.1.8) is exponentially asymptotically stable with

respect to small perturbations of initial data in the phase space X 1/2 = X1/2 ×X1/2

b) If f ∈ (γ0, fmax] and ν > 0 is sufficiently small then the principal eigenvalue µ0 of the

linearized Sturm-Liouville problem B1[u] = µu at u
(2)
ν is negative. Consequently, the

steady state solution
[
0, u(2)

ν

]
of (3.1.8) is exponentially asymptotically stable with

respect to small perturbations of initial data in the phase space X 1/2 = X1/2 ×X1/2

c) there exists a unique steady state solution of (3.1.8) whenever f ∈ [fmin, γm) or
f ∈ (γM , fmax] and ν > 0 sufficiently small.

Proof. a) For any u ∈ D(B1), u 6= 0 we have

(B1[u], u)
‖u‖2 =

1
‖u‖2

(
−ν2

∫ 1

0

u2
x(x) dx−

∫ 1

0

h′(u(1)
ν (x))u2(x) dx

)
≤

≤ − 1
‖u‖2

∫ 1

0

h′(u(1)
ν (x))u2(x) dx (3.3.18)

We have h′(φ1(x)) > 0 for x ∈ [0, 1]. Therefore

h′(u(1)
ν (x)) > 0

for any x ∈ [0, 1] and ν small. Hence the principal eigenvalue µ0 of B1 satisfies

µ0 = sup
u∈D(B1),u 6=0

(B1[u], u)
‖u‖2 < 0. (3.3.19)

b) Let us now consider the solution u(2)
ν of (3.3.1) having an abrupt transition at the

point x0 = γ0/f ∈ (0, 1).

First we prove that u(2)
ν is increasing on [0, 1). The curve h(u) − fx = 0 splits the

first quadrant into two parts (Fig.A-1).
The function u(2)

ν is convex or concave at x depending on whether the point (x, u(2)
ν (x))

belongs to the left hand or to the right hand component labeled by +, -, respectively.
According to Theorem 3.3.1 we have

sup{|u(2)
ν (x)− φ1(x)|, x ∈ [0, x0 − ν1/2]} = O(ν1/2)

sup{|u(2)
ν (x)− φ2(x)|, x ∈ [x0 + ν1/2, 1]} = O(ν1/2)
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Fig. a1
as ν → 0+. Since u(2)

ν is a solution of (3.3.1) and 0 ≤ u
(2)
ν (by Proposition 3.2.1) we have

d
dxu

(2)
ν (0) > 0. Indeed, d

dxu
(2)
ν (0) ≤ 0 would imply

d3

dx3
u(2)

ν (0) =
1
ν2

(
h′(u(2)

ν (0))
d

dx
u(2)

ν (0)− f

)
< 0.

Since u(2)
ν (0) = d2

dx2u
(2)
ν (0) = 0, we have u(2)

ν (x) < 0 for some x > 0, a contradiction.
By an obvious indirect argument, one can show that d

dxu
(2)
ν (x) cannot become negative

in [0, x0 − ν1/2] ∪ [x0 + ν1/2, 1]. To prove that d
dx
u

(2)
ν is positive in (x0 − ν1/2, x0 + ν1/2)

suppose the contrary. Since u(2)
ν convex in + and concave in - this is possible only if there

exists an x̄ ∈ (x0 − ν1/2, x0 + ν1/2) such that d
dx
u

(2)
ν (x̄) < 0 and u(2)

ν (x̄) = φ3(x̄), φ3 being
the middle branch solution of h(u)− fx = 0 as shown in Fig.A-2.

Let us introduce the ”fast-time” variable τ = (x−x0)/ν for x ∈ (x0− ν1/2, x0 + ν1/2)
and put u(τ) = u

(2)
ν (x0 + ντ). Then d

dτ
u(τ) = ν d

dx
u

(2)
ν (x0 + ντ). According to Theorem

3.3.1 we have

sup
τ∈(−ν−1/2,ν−1/2)

| d
dτ

(u(τ)− z(τ)) | = O(ν1/2) as ν → 0+,

z being the heteroclinic solution of the problem (3.3.3). Since x̄ − x0 = O(ν1/2) we have
|φ3(x̄)−φ3(x0)| = O(ν1/2) as ν → 0+. Therefore d

dxu
(2)
ν (x̄) = ν d

dτ u((x̄−x0)/ν) must have
the same sign as d

dτ
z((x̄− x0)/ν) for any ν small. Hence d

dx
u

(2)
ν (x̄) > 0, a contradiction.

Knowing that for any f ∈ (γ0, fmax] u(2)
ν is increasing in [0, 1) for ν small we return to

the linearized eigenvalue problem B1[u] = µu where B1[u] = ν2uxx−h′(u(2)
ν (x))u, u(0) =

ux(1) = 0. First we prove the following useful lemma.
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Fig. a2

Lemma 3.3.5. Assume f ∈ [fmin, fmax]. Let ū be any nondecreasing solution of (3.3.1)
such that |h(ū(1))− f | < (1− a)f and h′(ū(x)) ≥ 0 on [a, 1] for some a ∈ (0, 1). Then the
principal eigenvalue µ0 of the linear operator B1[w] = ν2wxx − h′(ū(x))w, w ∈ D(B1), is
negative.

Proof. Denote φ(x) = d
dx ū(x). Then φ satisfies

ν2φxx − h′(ū(x))φ = −f ; φx(0) = φ(1) = 0 (3.3.20)

and φ > 0 on [0, 1). Let w be a solution of

B1[w] = ν2wxx − h′(ū(x))w = µ0w; w(0) = wx(1) = 0 (3.3.21)

corresponding to the principal eigenvalue µ0 of B1. Since (3.3.21) is a Sturm-Liouville
problem there exists w satisfying (3.3.21) such that w > 0 on (0, 1) and

∫ 1

0
w(x) dx = 1. If

we multiply (3.3.21) by φ and integrate over [0, 1] we obtain

µ0

∫ 1

0

w(x)φ(x) dx = ν2(wxφ− wφx)|10 − f

∫ 1

0

w(x) dx ≤

(because wx(0)φ(0) ≥ 0)

≤ −w(1)(h(ū(1)− f)− f ≤ w(1)|h(ū(1))− f | − f. (3.3.22)

Now suppose to the contrary that µ0 ≥ 0. Since w > 0 on (0, 1), wx(1) = 0 we have
ν2wxx = h′(ū(x))w + µ0w ≥ 0 on [a, 1]. Hence w(x) ≥ w(1) on [a, 1] and, consequently,

1 =
∫ 1

0

w(x) dx ≥
∫ 1

a

w(x) dx ≥ (1− a)w(1).
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From (3.3.22) we obtain

µ0

∫ 1

0

w(x)φ(x) dx < 0.

Since w ≥ 0, φ ≥ 0, we have µ0 < 0, a contradiction.

♦

Now it is easy to complete the proof of part b) of Theorem 3.3.4. We fix an a >

x0. Then, by Theorem 3.3.1, sup{|u(2)
ν (x) − φ2(x)|, x ∈ [a, 1]} = O(ν1/2) as ν → 0+.

Therefore, |h(u(2)
ν (1))−f | < (1−a)f and h′(u(2)

ν (x)) > 0 on [a, 1] for any ν > 0 sufficiently
small. Lemma 3.3.5 completes the proof.

Note that for certain singularly perturbed problems an asymptotic estimate of the
form µ0(ν) = O(ν) as ν → 0+ is proved in [2].

c) Our next goal is to prove uniqueness of solutions of (3.3.1) for f ∈ [fmin, γm) ∪
(γM , fmax] and ν small. Let us consider the case f ∈ (γM , fmax]. First, we show linearized
stability of an arbitrary nondecreasing solution ū of (3.3.1). By Lemma 3.3.5 it is sufficient
to prove that |h(ū(1)) − f | < (1 − a)f and h′(ū(x)) ≥ 0 on [a, 1] for some a ∈ (0, 1). To
this end, we recall first that according to Proposition 3.2.1 there exists a M > 0 such that

ν sup
x∈[0,1]

|ūx(x)|+ sup
x∈[0,1]

|ū(x)| ≤M (3.3.23)

for any solution ū of (3.3.1) and ν > 0.
Let ū be a nondecreasing solution of (3.3.1). Let 1 > ã > γM/f . Then for any

x ∈ [ã, 1] we have fx > γM , so ū is concave on [ã, 1]. Thus, by (3.3.23)

0 ≤ ūx(x) ≤
∫ x

ã

ūx(ξ) dξ.
1

x− ã
≤ 4M

1− ã
(3.3.24)

for any x ∈ [a, 1] where a = (ã + 1)/2. Therefore, there exists an constant M1 > 0 such
that

0 ≤ fx− h(ū(x)) ≤ fξ − h(ū(ξ)) +M1(ξ − x) (3.3.25)

for any ξ, x ∈ [a, 1], x ≤ ξ. Thus, by (3.3.24),(3.3.25)

0 ≤ ν1/2 (fx− h(ū(x))) ≤
∫ x+ν1/2

x

(fξ − h(ū(ξ)) +M1(ξ − x)) dξ =

= −ν2

∫ x+ν1/2

x

ūxx(ξ) dξ +
M1ν

2
≤
(

2M +
M1

2

)
ν =: M2ν.

Hence |fx− h(ū(x))| ≤ M2ν
1/2 for any x ∈ [a, 1], ν > 0 and any nondecreasing solution

ū of (3.3.1).
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For ν ≤ ((fa− γM )/M2)
2 we have

h(ū(x)) ≥ fx− |fx− h(ū(x))| ≥ fa− |fa− γM | = γM for any x ∈ [a, 1].

Since h(u) ≤ γM for u ≤ c2 (see Fig.1), we have ū(x) ≥ c2 on [a, 1], hence h′(ū(x)) ≥ 0
for x ∈ [a, 1]. By Lemma 3.3.5, the principal eigenvalue µ0 of the problem B1[w] =
ν2wxx − h′(ū(x))w = µw, w ∈ D(B1), is negative.

Now, consider the parabolic equation

uτ = ν2uxx − h(u) + fx

u(τ, 0) = ux(τ, 1) = 0; τ ≥ 0, u(0, x) = u0(x), x ∈ [0, 1]

This equation generates a gradient-like semidynamical system S(τ), τ ≥ 0, in the Hilbert
space X1/2 = {u ∈ W 1,2(0, 1), u(0) = 0} defined by S(τ)u0 = u(τ, .), where u(0, .) = u0(.)
(see [23, Chapter 4]). The set K = {u ∈ X1/2, ux(x) ≥ 0, a.e. on [0, 1]} is a closed convex
cone in X1/2. Moreover, K is invariant under S, i.e.

u(τ, .) ∈ K whenever u(0, .) ∈ K for any τ ≥ 0

Indeed, the function w(τ, x) =
{ −ux(τ, x), x ∈ [0, 1], τ ≥ 0
−ux(τ,−x), x ∈ [−1, 0], τ ≥ 0 is the solution of the

scalar parabolic equation
wτ = ν2wxx − h′(u(x))w − f

w(τ,−1) = w(τ, 1) = 0.

Therefore w(τ, x) ≤ 0 whenever w(0, x) ≤ 0 by the Maximum Principle (see [41]). Hence
S is a semidynamical system on the complete metric space K with the topology induced
by X1/2.

To complete the proof we argue similarly as in [2,Theorem 4]. Since K is invariant, it
is the union of (disjoint) attraction domains of the nondecreasing stationary solutions of
(3.3.24). Because those solutions are asymptotically stable, these attraction domains are
open in K. Since the set K is connected, it cannot be a union of two non-empty disjoint
open sets, hence u(2)

ν is the unique stationary solution in K.
Now, let ū be arbitrary solution of (3.3.1) (not necessarily nondecreasing). By Propo-

sition 3.2.1, ū is bounded and ū ≥ 0 . Then there exist ū−, ū+ ∈ K ∩ D(A) such that
ū−(x) ≤ ū(x) ≤ ū+(x), x ∈ [0, 1]. With regard to the Maximum Principle ([41, Chapter
3, Theorem 3]) we obtain S(τ)ū−(x) ≤ ū(x) ≤ S(τ)ū+(x) for any τ ≥ 0 and x ∈ [0, 1].
Since S(τ)ū± ∈ K, for any τ ≥ 0, we have S(τ)ū± → u

(2)
ν as τ →∞. Thus, ū = u

(2)
ν .

Hence, the solution u(2)
ν is unique, provided ν is small and f ∈ (γM , fmax]. The proof

of uniqueness of solutions of (3.3.1) for f ∈ [fmin, γm) is similar. It completes the proof of
Theorem 3.3.4.

♦
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Section 4.

Spurt

Having developed the mathematical background we are in a position to explain the
occurrence of spurt for a fluid governed by the system of equations (3.1.8).

Suppose that we are loading the pressure gradient quasi-statically from fmin to fmax

allowing the system to settle down to its equilibrium state at each step.

Fig. 4
Since v

(1)
ν = v

(1)
ν (f) depends continuously on f , the volumetric flow rate Q

(1)
ν =

Q
(1)
ν (f) of the steady state velocity v(1)

ν = v
(1)
ν (f) for f < γM forms a continuous curve. At

each step of the ”loading-stabilization” procedure, the volumetric flow rate corresponding
to the velocity v(T ) is close to Q(1)

ν = Q
(1)
ν (f) when T is large enough.

The situation changes dramatically when the pressure gradient f passes γM . For
f > γM the solution has no other possibility than to settle down to the unique steady
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state solution
[
0, u(2)

ν (., f)
]

of system (3.1.8) which is globally asymptotically stable by
Theorem 3.3.4. Hence, by (3.3.10), this small change of the pressure gradient causes a
jump of size d > 0 in the volumetric flow rate as shown in Fig.4. This jump is equal to the
area between the two equilibrium solutions v(1)

ν and v(2)
ν .

For f varying in the interval (γM , fmax], the ”loading-stabilization” can be repeated.
The corresponding volumetric flow rates are close to the continuous curve f 7→ Q

(2)
ν (f) of

the steady state volumetric flow rates in Fig.5.

Fig. 5
Let us note that earlier models that did not include the diffusion terms in their con-

stitutive relations also captured the spurt phenomenon [29], [30], [36]. For f > γM the
principal difference between our explanation of spurt and that of papers mentioned is: the
change in volumetric flow rate as f passes through the critical value γM on loading, is
much more drastic in our model than the earlier ones; here the ”kink” develops at the
point 0 < γ0/γM < 1 very suddenly, and then moves slowly with a definite speed towards
the centerline. In [29], [30], the kink develops at the wall; for f > γM , the layer position
is x∗ = γM/f . The phenomenon of latency that occurs on loading described in [29], [30]
is not discussed here.
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Section 5.

Hysteresis

We now consider the loading - unloading cyclic process. The behavior of the volumetric
flow rate during the loading period has been described in the previous section. Recall that
the volumetric flow rate increased rapidly when the pressure gradient passed the value γM .
Now let us unload the pressure gradient starting from f = fmax. By convention, as long as
f stays larger than γ0, the solution still settles down on

[
v
(2)
ν (., f), u(2)

ν (., f)
]
. On the other

hand, for any f < γm there exists the unique solution
[
v
(1)
ν (., f), u(1)

ν (., f)
]
. Therefore the

solution
[
v
(2)
ν (., f), u(2)

ν (., f)
]

ceases to exist at some critical value near γ0. The figure
below shows two branches of the bifurcation diagram corresponding to the stable steady
states

[
v
(i)
ν (., f), u(i)

ν (., f)
]
, i = 1, 2.

Fig. 6
By (3.3.10), Q(2)

ν (f) − Q
(1)
ν (f) ≥ d(η) > 0 for any f ∈ [γ0 + η, γM) where η > 0 is

fixed. Hence there is a hysteresis loop as shown in Fig.7.
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Fig. 7
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Section 6.

Numerical simulations

In this section we present some numerical results exhibiting spurt and hysteresis.
Recall that our model leads to the system of governing equations

%vt = εvxx + σx + f

σt = ν2σxx + g(vx)− λσ

for (t, x) ∈ [0,∞]× [0, rcap]

(6.1)

with boundary conditions

vx(t, 0) =v(t, rcap) = 0;
σ(t, 0) = 0; σx(t, rcap) = −f

and initial data

v(0, x) = v0(x); σ(0, x) = σ0(x) for a.e. x ∈ [0, rcap] (6.2)

We will consider an analytic function g of a particular form

g(u) = µ
u

1 + 1−a2

λ2 u2
(6.3)

where µ > 0 is the elastic modulus, a is the dimensionless slip parameter and λ is the
relaxation time of the polymer. The particular choice of the function g is taken from [30,
Section 3].
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Fig. 8a Fig. 8b

First, we determine the magnitude of the coefficient ν > 0 in (6.1). Following [18]

ν2 ≈ k.θ

2ξ
(6.4)

where θ is the absolute temperature, k is the Boltzman constant, ξ is the hydrodynamic
resistance of one dumbbell bead (assumed to be constant). If we take typical values of
θ ≈ 102K, ξ ≈ 10−9kg.s−1 and recall that k ≈ 10−23J.K−1 we obtain ν2 ≈ 10−12m2.s−1.
In our numerical simulations we have chosen the fixed value

ν2 = 4.10−12m2.s−1 (6.5)

We next turn to the Vinogradov et al. rheological data. In all experiments, the radius
of the capillary was

rcap = 0, 48.10−3m.

The elastic modulus µ and the density % have been taken constant for all samples and
equal to

µ = 6.104Pa ; % = 103kg.m−3, (6.6)

respectively.
Numerical experiments were performed for the polyisoprene PI-3 which was the first

sample for which spurt was observed ([48, Fig.3b]). According to [48] and [27, p.323] we
have

λ = 0, 1s−1, ε = 0, 01484.
µ

λ
= 8, 9.103Pa.s−1 and a = 0, 98 (6.7)

We see that the constants α =
%r2

capλ

ε = 2, 58.10−9 and ν2

r2
capλ = 10−4 introduced in Section

2 can be treated as small parameters. It is easy to verify that the real analytic function

h(u) = λu+
µ

ε
.

u

1 + 1−a2

ε2λ2 u2
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is of van der Walls type (see the hypothesis (W)).

Fig. 9

Fig. 10
As our first numerical experiment, we simulated spurt. In S.I. units, we choose

fmin = 9, 3.107 kg.m−2.s−2, fmax = 51, 2.107 kg.m−2.s−2, ∆f = 1, 8.107 kg.m−2.s−2.

The startup initial condition (for f = fmin) was chosen (v0, u0) = (0, 0). At each loading
step, the solutions were followed for a sufficiently long time Tmax = 10 s to allow them
to settle down. Since α > 0 was very small, we could use the Crank-Nicholson implicit



6. Numerical simulations 30

time-space discretization scheme. The spatial mesh contained a total of 200 nodes.† The
time step was chosen as ∆t = 0.0005 s.

Fig.8 shows the results obtained (8a) and compares them with Vinogradov et al’s
experimental data (8b, the flow curve for PI-3 is labeled by 3). Following [48] c-g-s units
are employed and axes are in the logarithmic scale. The nominal shear stress τ is defined
by τ = rcapf (see (48) [27]). Since we have considered a planar flow instead of a capillary
flow the corresponding definition of a volumetric flow rate is

Q =
3
r2cap

∫ rcap

0

v(x) dx

(see (47) [27]).
Finally, we have performed numerical simulations of a loading-unloading cycle. The

hysteresis loop under the cyclic load is displayed in Fig.9. Fig.10 shows the steady, kinked
velocity profile for the spurt value of the nominal shear stress τ = 1.61.106 dyne.cm−2

(log τ = 6.21).

† The spatial mesh should contain 200-500 nodes in order to compare the distance
between grids with a typical lenght of a polymer molecule (≈ 10−7 m) [35]
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Section 6.

Discussion

We have proposed a modification of the mathematical model of shearing motions lead-
ing to a system of governing equations including a diffusion term ν2σxx in the constitutive
equation. In addition, we have described the asymptotic behavior of solutions which is
simple in typical situations - each solution tends to some steady state and the number of
steady states is finite.

The diffusion term makes the system of governing equations parabolic. As a conse-
quence of the resulting parabolic smoothing effect the system will admit a finite dimensional
invariant manifold as well as a compact global attractor. The existence of invariant man-
ifolds and their singular limit dynamics for α → 0+ will be discussed in Part II of this
thesis.



Singular limit dynamics of invariant manifolds

Section 8.

Foreword

In this part we will treat the qualitative properties of semiflows generated by the
following system of abstract evolution equations

u′ +Aαu = g(u, w)
αw′ +Bαw = f(u)

(8.1)α

where α ∈ (0, α1], {Aα}α≥0 and {Bα}α≥0 are continuously depending families of sectorial
operators in the Banach spaces X and Y , respectively, g : Xγ × Y β → X ; f : Xγ → Y
are nonlinear C1 functions for some γ, β ∈ [0, 1). Hereafter Xγ and Y β will denote the
fractional power spaces with respect to the sectorial operators A0 and B0, respectively (cf.
[23, Chapter 1]).

The goal of this part is to establish the existence of a finite dimensional invariant C1

manifold Mα for the semiflow Sα(t), t ≥ 0, generated by system (8.1)α. We furthermore
prove that both Mα and the vector field on Mα converge in the C1 topology towards the
ones corresponding to α = 0 (Theorem 10.2.7). By combining this result with the well-
known theory of Morse-Smale vector fields (cf. [39]) one can prove topological equivalence
of vector fields on Mα and M0 whenever the vector field on M0 is Morse-Smale.

The techniques used in the proof of Theorem 10.2.7 are similar, in spirit, to those
developed by Mora and Solà-Morales [34]. The construction of an invariant manifold
for (8.1) is based on the well-known method of integral equations due to Lyapunov and
Perron. In this method the substantial role is played by the choice of functional spaces we
will operate with. For the proof of the existence of Mα, we notice that the usual choice
would be the Banach space consisting of all continuous functions on (−∞, 0] with values in
Xγ × Y β equipped with some exponentially weighted sup or integral norm. Then one can
look for Mα as the union of all solutions of (8.1) belonging to this functional space. We

Results of Part II are contained in the paper [45]
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refer to [15], [31], [33], [34] for details. However, it turns out that such a setting does not
capture the singular limit behavior of the derivative of the vector field on Mα as α→ 0+.
In order to overcome this difficulty, by contrast to the approach of [34], we will operate with
Banach spaces consisting of all Hölder continuous functions which grow exponentially at
−∞. In the proof of Theorem 10.2.7 an important tool is a slightly modified version of the
two parameter contraction theorem due to Mora and Solà-Morales covering differentiability
and continuity of a family of nonlinear contractive mappings operating between a pair of
Banach spaces.

Part II is organized as follows. Section 9 is devoted to preliminaries. Perturbations
of sectorial operators are investigated in Section 9.1. The existence of solutions of (8.1) is
established in Section 9.2. In Section 9.3 we introduce functional spaces we will work with.
The core of Part II is contained in Section 10. First, we prove the existence of a family
of invariant manifolds {Mα, }α≥0 for system (8.1). The singular limit dynamics of Mα,
α → 0+, is investigated in Section 10.2. The main results are summarized in Theorem
10.2.7. Section 11 is focused on some applications of Theorem 10.2.7. In Section 11.1
we treat the non-Newtonian model of shearing motions of a fluid introduced in Section
2. The aim is twofold: 1) using the fairly standard method of à priori estimates we show
the existence of a compact global attractor Aα for (3.1.1)α; 2) with regard to the Morse-
Smale structure of the limiting equation (3.1.1)0 we establish topological equivalence of
the semiflow on the attractor of (3.1.1)α, α > 0 small and that of (3.3.1)0. Finally, Section
11.2 illustrates an application of obtained results to some abstract second order evolution
equations arising in the mathematical theory of elastic systems with strong dissipation.
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Section 9.

Preliminaries

9.1. Properties of a family of sectorial operators

The goal of this section is to establish perturbation results for a family of closed
densely defined operators. First, we recall the definition of a sectorial operator. Let X be
a Banach space, L : D(L) ⊂ X → X be a closed densely defined operator. The operator L
is called sectorial if for some M ≥ 1, a ∈ R and φ ∈ (0, π/2) the sector

Sa,φ := {λ ∈ C; φ ≤ arg | λ− a |≤ π;λ 6= a}

is contained in the resolvent set %(L) and

‖(λ− L)−1‖ ≤M/ | λ− a |, for any λ ∈ Sa,φ (9.1.1)

(cf. [23, Def. 1.3.1]). It is well known (see, [23, Th. 1.3.4]) that if L is sectorial then the
operator −L generates an analytic semigroup exp (−Lt), t ≥ 0, and

exp (−Lt) =
1

2πi

∫
Γ

eλt(λ+ L)−1 dλ t > 0 (9.1.2)

where Γ is a contour in %(−L) such that arg λ→ ±θ as | λ |→ ∞ for some θ ∈ (π/2, π).

Consider a family {Lα} of closed densely defined operators in a Banach space X
satisfying the following hypothesis
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(H1)



1) D(L0) = D(Lα)

2) 0 ∈ %(Lα) and L0L
−1
α → I as α→ 0+ in L(X ,X )

3) L−1
0 L−1

α = L−1
α L−1

0

4) Re σ(L0) > ω > 0 (i.e. Re λ > ω > 0 for any λ ∈ σ(L0)) and
L0 is a sectorial operator in X its sector being Sa,φ and
‖(λ− L0)−1‖ ≤M/ | λ− a |, for any λ ∈ Sa,φ

for any α ∈ [0, α0].

Lemma 9.1.1. Assume that the hypothesis (H1) is satisfied. Then

a) (λ− L0)−1 commutes with (µ− Lα)−1

for any α ∈ [0, α0], λ ∈ %(L0) and µ ∈ %(Lα)

There exists 0 < α1 ≤ α0 such that
b) LαL

−1
0 ∈ L(X ,X ) for any α ∈ [0, α1] and LαL

−1
0 → I as α→ 0+

c) for any α ∈ [0, α1], the operator Lα is sectorial in X with the sector Sa,φ and
‖(λ− Lα)−1‖ ≤ 2M/ | λ− a |, for any λ ∈ Sa,φ

Proof. The part a) is obvious because L−1
α commutes with L−1

0 . b) Take α1 >

0 such that ‖I − L0L
−1
α ‖ < 1 for any α ∈ [0, α1]. Then LαL

−1
0 =

(
L0L

−1
α

)−1 =∑∞
n=0

(
I − L0L

−1
α

)n. Thus, ‖LαL
−1
0 ‖ ≤ 1/

(
1− ‖I − L0L

−1
α ‖) and ‖LαL

−1
0 − I‖ ≤ ‖I −

L0L
−1
α ‖/ (1− ‖I − L0L

−1
α ‖)

c) Similarly as in the proof of [23, Th. 1.3.2], for any λ ∈ Sa,φ we obtain

‖(λ− Lα)−1‖ = ‖(λ− L0)−1
[
I +

(
LαL

−1
0 − I

) (
I − λ(λ− L0)−1

)]−1 ‖ ≤

≤ M

| λ− a |
(
1− ‖LαL

−1
0 − I‖

(
1 + |λ|M

|λ−a|
)) ≤ 2M

| λ− a |

for any α ∈ [0, α1] provided α1 is small enough.

♦

Let L be a closed densely defined operator in a Banach space X . Suppose that
σ(L) = σ1 ∪ σ2 where σ1, σ2 are disjoint spectral sets and σ1 is bounded in C. Recall that
the projector P : X → X associated with the operator L and the spectral set σ1 is defined
by

P :=
1

2πi

∫
Γ1

(λ− L)−1 dλ (9.1.3)
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where Γ1 is a closed Jordan curve such that σ1 ⊂ int < Γ1 > and σ2 ⊂ ext < Γ1 >. Denote

Q := I − P, X1 := PX and X2 := QX

Besides (H1) we also make the following hypothesis

(H2)


1) L−1

0 is a compact linear operator on X

2) there are 0 < λ− < λ+ <∞ such that σ(L0) = σ0
1 ∪ σ0

2 where
σ0

1 = {λ ∈ σ(L0); Re λ < λ−} and σ0
2 = {λ ∈ σ(L0); Re λ > λ+}

Notice that the condition (H2)1 implies that σ0
1 is finite and dimX1,0 < ∞ where

X1,0 := P0X , P0 is the projector in X associated with L0 and σ0
1 .

Concerning continuity properties of projectors and spectral sets we have

Lemma 9.1.2. Assume that the hypotheses (H1) and (H2) are satisfied. Then there is
α1 > 0 sufficiently small and such that for any α ∈ [0, α1]
a) σ(Lα) = σα

1 ∪ σα
2 where

σα
1 = {λ ∈ σ(Lα); Re λ < λ−} and σα

2 = {λ ∈ σ(Lα); Re λ > λ+}
b) Pα → P0 in L(X ,X ) as α→ 0+ where Pα is the projector associated with Lα and σα

1 .
Furthermore, P0Pα = PαP0.

c) Pα |X1,0 : X1,0 → X1,α is a linear isomorphism where X1,α := PαX . Moreover,
dimX1,0 = dimX1,α <∞

Proof. Since the spectrum σ(L0) is contained in the angle {λ ∈ C; arg | λ −
a |≤ φ} and L−1

α L−1
0 = L−1

0 L−1
α the proof of the part a) follows from the inequality

dist H

(
σ(L−1

α ), σ(L−1
0 )
) ≤ ‖L−1

α − L−1
0 ‖ → 0 as α → 0+ (cf. [46, Ex.3, p.287]). Here

dist H denotes the Haussdorff set distance in the complex plane. The proof of the part b)
follows from Lemma 9.1.1 a), (9.1.3) and the fact that

‖(λ− Lα)−1 − (λ− L0)−1‖ = ‖(LαL
−1
0 − I)L0(λ− L0)−1(λ− Lα)−1‖ ≤

≤ ‖LαL
−1
0 − I‖‖L0(λ− L0)−1‖‖(λ− Lα)−1‖ → 0 as α→ 0+

uniformly with respect to λ ∈ Γ1 where Γ1 is a closed Jordan curve such that σα
1 ⊂ int <

Γ1 > and σα
2 ⊂ ext < Γ1 > for any α ∈ [0, α1].

c) Since L−1
0 is compact we have that σ0

1 is finite and dimX1,0 < ∞. It is obvious
that

Pα |X1,0 : X1,0 → X1,α and P0 |X1,α
: X1,α → X1,0

are one-to-one linear operators, provided that ‖Pα−P0‖ < 1. Hence Pα |X1,0 : X1,0 → X1,α

is a linear isomorphism and dimX1,0 = dimX1,α <∞ for any α ∈ [0, α1] where α1 is small
enough. ♦
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Remark. For any α ≥ 0 small enough, we denote

P (−1)
α :=

(
Pα |X1,0

)−1 : X1,α → X1,0 (9.1.4)

the inverse operator of Pα |X1,0 : X1,0 → X1,α. Since Pα → P0 as α → 0+ the linear
operator P (−1)

α Pα converges to P0 in the space L(X ,X ).

If L0 is a sectorial operator in X with Re σ(L0) > ω > 0 then the fractional powers
Lγ

0 , γ ∈ R, can be defined (see, [23, Def. 1.4.7]). Under the hypothesis (H1) we have shown
that −Lα generates an analytic semigroup exp (−Lαt), t ≥ 0. In the following lemma we
give some estimates on the growth of exp (−Lαt).

Lemma 9.1.3. Assume that the hypothesis (H1) is satisfied. Then there is a C > 0 such
that for any α ∈ [0, α1] and γ ≥ 0, the following estimates hold

a) ‖exp (−Lαt)‖ ≤ Ce−ωt; t ≥ 0

b) ‖Lγ
0 (exp (−Lαt)− exp (−L0t)) ‖ ≤ C‖L0L

−1
α − I‖t−γe−ωt; t > 0

c) ‖Lγ
0exp (−Lαt)‖ ≤ Ct−γe−ωt; t > 0

Proof. Using the translation Lα − ωI it is sufficient to prove Lemma with ω = 0.
The proof of a) immediately follows from Lemma 9.1.1 and [23, Th. 1.3.4].

To show b), we make use of the integral representation of exp (−Lαt). We obtain, for
t > 0

Lγ
0 (exp (−Lαt)− exp (−L0t)) =

1
2πi

∫
Γ

eλtLγ
0(λ+ L0)−1(L0L

−1
α − I)Lα(λ+ Lα)−1 dλ =

=
1

2πi

∫
Γ

eµLγ
0(µ/t+ L0)−1(L0L

−1
α − I)Lα(µ/t+ Lα)−1 dµ

t
.

Since Re σ(Lα) > ω > 0 one can choose a contour Γ with the property: Re λ < 0 for
any λ ∈ Γ. By [23, Th. 1.4.4], there is a M ′ > 0 such that ‖Lγ

0(λ+ L0)−1‖ ≤M ′ | λ |γ−1

for any λ ∈ Γ. Furthermore, ‖Lα(λ + Lα)−1‖ ≤ 1+ | λ | 2M
|λ| = 1 + 2M for any λ ∈ Γ

Hence,
‖Lγ

0 (exp (−Lαt)− exp (−L0t)) ‖ ≤ C‖L0L
−1
α − I‖t−γ ; t > 0

Because of the well known estimate ‖Lγ
0exp (−L0t)‖ ≤ Ct−γ , t > 0 ([23, Th. 1.4.3]),

it is clear that c) follows from b).
♦

Assume that a family {Lα, α ∈ [0, α1]} satisfies (H1) and (H2). For any α ∈ [0, α1],
we denote Qα := I − Pα and let

L1,α := PαLα = LαPα; L2,α := QαLα = LαQα X1,α := PαX ; X2,α := QαX (9.1.5)

Then L1,α is a bounded linear operator, Re σ(L1,α) < λ− in X , and L2,α is a sectorial
operator in X , Re σ(L2,α) > λ+,. Moreover, ‖Lγ

1,0‖ ≤ Cλγ
−, γ ∈ [0, 1). Applying Lemma

9.1.3 to the operators λ− − L1,α and L2,α − λ+, respectively, one obtains
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Lemma 9.1.4. Assume that the hypotheses (H1) and (H2) are satisfied. Then there is a
C > 0 such that, for any α ∈ [0, α1] and γ ≥ 0 the following estimates are true

a) ‖Lγ
0exp (−L1,αt)Pα‖ ≤ Cλγ

−e
−λ−t; t ≤ 0

b) ‖Lγ
0 (exp (−L1,αt)Pα − exp (−L1,0t)P0) ‖ ≤ Cλγ

−‖L0L
−1
α − I‖e−λ−t; t ≤ 0

c) ‖Lγ
0exp (−Lαt)Qα‖ ≤ Ct−γe−λ+t; t > 0

d) ‖Lγ
0 (exp (−Lαt)Qα − exp (−L0t)Q0) ‖ ≤ Ct−γ‖L0L

−1
α − I‖e−λ+t; t > 0

In what follows, by C we will always denote the positive constant existence of which
is ensured by Lemmas 9.1.3 and 9.1.4.

We finish this section by a useful lemma referring to Hölder continuity of the expo-
nential mapping t 7→ exp (−Lt).
Lemma 9.1.5. Assume that the hypotheses (H1) and (H2) are satisfied. Suppose that
µ ∈ (λ−, λ+). Then, for any γ ∈ [0, 1), % ∈ (0, 1 − γ) and α ∈ [0, α1] the following
estimates are true

a) ‖Lγ
0 [exp ((µ− L1,α)r)− exp ((µ− L1,α)(r − h))]Pαx‖ ≤

≤ Chλ1+γ
− e(µ−λ−)r‖(µ− Lα)L−1

0 ‖‖x‖
for any h > 0, r ≤ 0 and x ∈ X

b) ‖Lγ
0 [exp (−(Lα − µ)(r + h))− exp (−(Lα − µ)r)]Qαx‖ ≤

≤ C2h(1−γ+%)/2r−(1+γ+%)/2e−(λ+−µ)r 2
1−γ+%‖(µ− Lα)L−1

0 ‖‖x‖
for any h > 0, r ≥ 0 and x ∈ X

Proof. a) Clearly, for any r ≤ 0 and h > 0

I1 := Lγ
0 [exp ((µ− L1,α)r)− exp ((µ− L1,α)(r − h))]Pαx =

= (µ− L1,α)L−1
0

∫ r

r−h

L1+γ
0 exp ((µ− L1,α)ξ) dξPαx

By Lemma 9.1.4 a),

‖I1‖ ≤ ‖(µ− Lα)L−1
0 ‖ Cλ1+γ

−

∫ r

r−h

e(µ−λ−)ξ dξ‖x‖ ≤ h Cλ1+γ
− e(µ−λ−)r‖(µ− Lα)L−1

0 ‖‖x‖

To show b) we will argue similarly as above. We have, for any r ≥ 0 and h > 0

I2 := Lγ
0 [exp (−(Lα − µ)(r + h))− exp (−(Lα − µ)r)]Qαx =

= (µ− Lα)L−1
0

∫ h

0

L
(1+γ−%)/2
0 exp (−(Lα − µ)ξ)Qα dξ L

(1+γ+%)/2
0 exp (−(Lα − µ)r)Qαx
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Hence,

‖I2‖ ≤ ‖(µ− Lα)L−1
0 ‖ C

∫ h

0

ξ−(1+γ−%)/2e−(λ+−µ)ξdξ Cr−(1+γ+%)/2e−(λ+−µ)r‖x‖ ≤

≤ C2h(1−γ+%)/2r−(1+γ+%)/2e−(λ+−µ)r 2
1− γ + %

‖(µ− Lα)L−1
0 ‖ ‖x‖

for any r ≥ 0, h > 0 and x ∈ X .
♦

9.2. Existence of solutions of the system of abstract equations

In this section, the aim is to show local and global solvability of a family of abstract
equations

u′ +Aαu = g(u, w)
αw′ +Bαw = f(u)

α ∈ (0, α1] (9.2.1)α

and
u′ + A0u = g(u,B−1

0 f(u)) (9.2.1)0

where the families {Aα, α ∈ [0, α1]} and {Bα, α ∈ [0, α1]}, α1 > 0, small enough, fulfill the
hypotheses (H1)-(H2) and (H1) on the Banach spaces X and Y , respectively.

Denote
Xγ := [D(Aγ

0)]; Y β := [D(Bβ
0 )]; γ, β ≥ 0 (9.2.2)

the fractional power spaces Aγ
0 and Bβ

0 , respectively, with graph norms, i.e. ‖u‖γ := ‖Aγ
0u‖

and ‖w‖β := ‖Bβ
0w‖.

By a globally defined solution of (9.2.1)α with initial data (u0, w0) ∈ Xγ × Y β we
understand a function

t 7→ (u(t), w(t)) ∈ C([0, T ];Xγ × Y β) ∩ C1((0, T );X × Y ) for any T > 0 (9.2.3)α

such that (u(0), w(0)) = (u0, w0); (u(t), w(t)) ∈ D(A) × D(B) for t > 0 and (u(.), w(.))
satisfies (9.2.1)α for any t > 0.

By a globally defined solution of (9.2.1)0 with initial data u0 ∈ Xγ we understand a
function

t 7→ u(t) ∈ C([0, T ];Xγ) ∩ C1((0, T );X) for any T > 0 (9.2.3)0

such that u(0) = u0; u(t) ∈ D(A) for t > 0 and u(.) satisfies (9.2.1)0 for any t > 0.
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As usual, for Banach spaces E1, E2 and η ∈ (0, 1] we denote C1
bdd(E1, E2) the Banach

space consisting of the mappings F : E1 → E2 which are Fréchet differentiable and such
that F and DF are bounded and uniformly continuous, the norm being given by ‖F‖1 :=
sup | F | +sup | DF |. C1+η

bdd (E1, E2) will denote the Banach space consisting of the
mappings F ∈ C1

bdd(E1, E2) such that DF is η- Hölder continuous, the norm being given
by ‖F‖1,η := ‖F‖1 + sup x6=y

x,y∈E1

‖DF (x)−DF (y)‖
‖x−y‖η .

Concerning functions g and f we will assume

(H3)
{

g ∈ C1
bdd(X

γ × Y β ;X), f ∈ C1+η
bdd (Xγ;Y ξ)

for some γ, β ∈ [0, 1), β > ξ > β − 1 and η ∈ (0, 1].

First, we will consider the case α > 0. According to Lemmas 9.1.1 and 9.1.3 the
operator Aα (Bα) is sectorial in X (Y ). In Lemma 9.1.4 we have shown the estimates

‖Aγ
0exp (−Aαt)x‖ ≤ Ct−γe−ωt‖x‖

‖Bβ
0 exp (−Bαt)y‖ ≤ Ct−(β−ξ)e−ωt‖Bξ

0y‖
x ∈ X, y ∈ Y ξ, t > 0 (9.2.4)

With help of these inequalities one can easily adapt the proofs of [23, Theorems 3.3.3 and
3.3.4 ] to establish local and global existence of solutions of (9.2.1)α, α ∈ (0, α1], for initial
data belonging to the phase-space Xγ × Y β . Local and global existence of solutions of
(9.2.1)0 with initial data from Xγ follows from [23, Theorems. 3.3.3 and 3.3.4].

This way we have shown that system (9.2.1)α, α ∈ (0, α1], generates a semiflow
Sα(t), t ≥ 0, on Xγ × Y β defined by Sα(t)(u(0), w(0)) := (u(t), w(t)). Similarly, system
(9.2.1)0 generates a semiflow S̃0(t), t ≥ 0, on Xγ.

9.3. Banach spaces with exponentially weighted norms

Let X be a Banach space and µ ∈ R. Following the notation of [15] and [34] we denote

C−µ (X ) :=
{
u : (−∞, 0] → X , u is continuous and sup

t≤0
eµt‖u(t)‖X <∞

}
and

‖u‖C−µ (X ) := sup
t≤0

eµt‖u(t)‖X (9.3.1)

The linear space C−µ (X ) endowed with the norm ‖.‖C−µ (X ) is a Banach space. If µ ≤ ν

then embedding C−µ (X ) ↪→ C−ν (X ) is continuous with an embedding constant equal to 1.
Let X, Y be Banach spaces and F : X → Y be a bounded and Lipschitz continuous

mapping. Denote
F̃ : C−µ (X) → C−µ (Y ) (9.3.2)
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a mapping defined as F̃ (u)(t) := F (u(t)) for any t ≤ 0. By [34, Lemma 5.1], for every
µ ≥ 0, the mapping F̃ is bounded and Lipschitzian with sup | F̃ |≤ sup | F | and
Lip | F̃ |≤ Lip | F |. If F : X → Y is Fréchet differentiable then F̃ : C−µ (X) → C−µ (Y )
need not be necessarily differentiable. Nevertheless, the following result holds

Lemma 9.3.1. [47] If F : X → Y is Fréchet differentiable with DF : X → L(X, Y )
bounded and uniformly continuous, then, for every ν > µ, ν > 0, the mapping F̃ :
C−µ (X) → C−ν (Y ) is Fréchet differentiable, its derivative being given by DF̃ (u)h =
DF (u(.))h(.) and DF̃ : C−µ (X) → L(C−µ (X), C−ν (Y )) is bounded and uniformly con-
tinuous.

We now recall a notion of uniform equicontinuity of a subset of C−µ (X) (see, [34]). By
definition, a subset F ⊂ C−µ (X) is called C−µ - uniformly equicontinuous if and only if the
set of functions {fµ, f ∈ F}, where fµ(t) := eµtf(t) is equicontinuous, i.e. for every ε > 0
there is a δ > 0 such that

sup
f∈F

sup
t,s≤0
|t−s|<δ

‖eµtf(t)− eµsf(s)‖ < ε (9.3.3)

For any % ∈ (0, 1], a ∈ (0, 1] and µ ≥ 0 we furthermore denote

C−µ,%,a(X ) :=
{
u ∈ C−µ (X ); [u]µ,%,a <∞

}
(9.3.4)

where

[u]µ,%,a := sup
t≤0

h∈(0,a]

‖eµtu(t)− eµ(t−h)u(t− h)‖
h%

(9.3.5)

and let
‖u‖C−µ,%,a(X ) := ‖u‖C−µ (X ) + [u]µ,%,a for any u ∈ C−µ,%,a(X ) (9.3.6)

The space C−µ,%,a(X ) endowed with the norm ‖.‖C−µ,%,a
is a Banach space continuously

embedded into C−µ (X ) with an embedding constant equal to 1. Furthermore, the space
C−µ,%,a(X ) is continuously embedded into C−ν,%,a(X ) for any 0 ≤ µ ≤ ν and % ∈ (0, 1].
Indeed, for any u ∈ C−µ,%,a(X ), t ≤ 0 and h ∈ (0, a], we have

‖eνtu(t)− eν(t−h)u(t− h)‖ ≤ ‖
(
e(ν−µ)t − e(ν−µ)(t−h)

)
eµtu(t)‖+

+‖e(ν−µ)(t−h)
(
eµtu(t)− eµ(t−h)u(t− h)

)
‖ ≤ ‖u‖C−µ (X )(ν − µ)h+ [u]µ,%,ah

%

Thus u ∈ C−ν,%,a(X ) and the embedding C−µ,%,a(X ) ↪→ C−ν,%,a(X ) is continuous, its embed-
ding constant being less or equal to max{1, (ν − µ)a1−%}.

For any K > 0, the set

FC :=
{
u ∈ C−µ,%,a(X ); ‖u‖C−µ,%,a

≤ K
}

(9.3.7)
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is a C−µ - uniformly equicontinuous and bounded subset of C−µ (X ).

Since C−µ,%,a(X ) is continuously embedded into C−µ (X ) we obtain the following conse-
quence of Lemma 9.3.1

Lemma 9.3.2. Let F : X → Y be as in Lemma 9.3.1. Suppose that ν > µ, ν > 0 and % ∈
(0, 1]. Then the mapping F̃ : C−µ,%,a(X) → C−ν (Y ) is Fréchet differentiable, its derivative

DF̃ : C−µ,%,a(X) → L(C−µ,%,a(X), C−ν (Y )) being bounded and uniformly continuous.
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Section 10.

Invariant manifolds

10.1. Construction of a family of invariant manifolds

In this section, we establish the existence of a one-parameter family of invariant man-
ifolds for semiflows generated by abstract singularly perturbed equations (9.2.1)α, α ≥ 0
small enough.

First, we will deal with solutions of

αw′ +Bαw = f (10.1.1)α

existing on R and satisfying a growth condition of an exponential type when t→ −∞. We
will also consider the ”limiting equation”

B0w = f (10.1.1)0

Henceforth, we will assume that a family {Bα, α ∈ [0, α1]} satisfies the hypothesis
(H1). From Lemma 9.1.1 we know that Bα is sectorial and Re σ(Bα) > ω > 0 for any
α ∈ [0, α1], α1 small. Moreover, we choose α1 > 0 such that

ω > να1 > 0 (10.1.2)

where ν > 0 is given. Now, it is routine to verify that (10.1.1)α, α ∈ (0, α1] has a unique
solution w ∈ C−ν (Y β), β ∈ [0, 1), for any f ∈ C−ν (Y ξ), ξ > β − 1. This solution is given
by
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w(t) :=
1
α

∫ t

−∞
exp (−Bα(t− s)/α) f(s) ds =: Cαf(t); t ≤ 0 (10.1.3)

The unique solution of (10.1.1)0 is determined by

w := B−1
0 f =: C0f (10.1.4)

Concerning the boundedness and limiting behavior of the linear operators

Cα : C−ν (Y ξ) → C−ν (Y β); α ∈ [0, α1] (10.1.5)

we claim

Lemma 10.1.1. Assume that the family {Bα;α ∈ [0, α1]} fulfills the hypothesis (H1). Let
β ∈ [0, 1), β > ξ > β − 1 and 0 < να1 < ω.Then

a) there is a C > 0 such that

‖Cα‖L(C−ν (Y ξ),C−ν (Y β)) ≤ CΓ(1− β + ξ)(ω − να1)β−ξ−1 for any α ∈ [0, α1]

where Γ is the Gamma function

Γ(θ) :=
∫ ∞

0

rθ−1e−r dr for θ > 0 (10.1.6)

b) Cαf → C0f as α→ 0+ uniformly with respect to f ∈ F where F is a C−ν - uniformly
equicontinuous and bounded subset of C−ν (Y ξ).

c) Cα → C0 as α→ 0+ in the norm topology of the space L(C−ν,%,a(Y ξ), C−ν (Y β))
for any % ∈ (0, 1], a ∈ (0, 1].

Proof. Denote w := Cαf for f ∈ C−ν (Y ξ). With regard to Lemma 9.1.3 we obtain,
for any t ≤ 0 and α ∈ (0, α1],

eνt‖w(t)‖β ≤ 1
α

∫ t

−∞
‖Bβ−ξ

0 exp (−(Bα − να)(t− s)/α) ‖eνs‖Bξ
0f(s)‖ ds ≤

≤ C

α

∫ t

−∞
((t− s)/α)−(β−ξ)e−(ω−να)(t−s)/α ds‖f‖C−ν (Y ξ) ≤

≤ CΓ(1− β + ξ)(ω − να1)β−ξ−1‖f‖C−ν (Y ξ)

For α = 0 we have

eνt‖w(t)‖β ≤ ‖Bβ−ξ−1
0 ‖‖f‖C−ν (Y ξ) ≤ Cωβ−ξ−1‖f‖C−ν (Y ξ).



10.1 Construction of a family of invariant manifolds 45

b) Because Re σ(B0) > ω > 0, we have the following integral representation of B−1
0

B−1
0 =

1
α

∫ t

−∞
exp (−B0(t− s)/α) ds for any t ≤ 0, α > 0, (10.1.7)

Let t ≤ 0 and f ∈ F be arbitrary. Using Lemma 9.1.3 we obtain

eνt‖Cαf(t)− C0f(t)‖β ≤

≤ eνt

α

∫ t

−∞
‖Bβ−ξ

0

(
exp (−Bα(t− s)/α)Bξ

0f(s)− exp (−B0(t− s)/α)Bξ
0f(t)

)
‖ ds ≤

≤ 1
α

∫ t

−∞
‖Bβ−ξ

0 exp (−Bα(t− s)/α)Bξ
0(f(s)− f(t))eνt‖ ds+

+
1
α

∫ t

−∞
‖Bβ−ξ

0 (exp (−Bα(t− s)/α)− exp (−B0(t− s)/α)) ‖ ds‖f‖C−ν (Y ξ) ≤

≤ C

α

∫ t

−∞
((t− s)/α)−(β−ξ)e−ω(t−s)/αeνt‖f(s)− f(t)‖ξ ds+

+
C

α
‖B0B

−1
α − I‖

∫ t

−∞
((t− s)/α)−(β−ξ)e−ω(t−s)/α ds‖f‖C−ν (Y ξ) =: I1 + I2

As it is usual in integral with singular kernels (see, e.g. [34]) we decompose the first integral
into two parts I1 =

∫ t−τ

−∞ +
∫ t

t−τ
=: I1,1+I1,2 where τ > 0 will be determined later. Clearly,

eνt‖f(s)− f(t)‖ξ ≤ 2eν(t−s)‖f‖C−ν (Y ξ), for any −∞ < s ≤ t ≤ 0.

Then

I1,1 :=
C

α

∫ t−τ

−∞
((t− s)/α)−(β−ξ)e−ω(t−s)/αeνt‖f(s)− f(t)‖ξ ds ≤

≤ 2Cτ−(β−ξ)αβ−ξ

ω − να1
‖f‖C−ν (Y ξ)

On the other hand, for any s ∈ [t− τ, t], we have

eνt‖f(s)− f(t)‖ξ ≤ ‖eνsf(s)− eνtf(t)‖ξ + (eν(t−s) − 1)‖f‖C−ν (Y ξ) ≤

≤ eν(t−s)
(

osc(fν , τ) + (1− e−ντ )‖f‖C−ν (Y ξ)

)
where osc(fν , τ) := sup

t,s≤0
|t−s|<τ

‖eνtf(t)− eνsf(s)‖ξ. Hence,

I1,2 :=
C

α

∫ t

t−τ

((t− s)/α)−(β−ξ)e−ω(t−s)/αeνt‖f(s)− f(t)‖ ds ≤
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≤ CΓ(1− β + ξ)(ω − να1)β−ξ−1
(

osc(fν , τ) + (1− e−ντ )‖f‖C−ν (Y ξ)

)
Finally, we have

I2 ≤ CΓ(1− β + ξ)ωβ−ξ−1‖B0B
−1
α − I‖‖f‖C−ν (Y ξ).

Since the set F ⊂ C−ν (Y ξ) is assumed to be C−ν - uniformly equicontinuous and bounded
we have

osc(fν , τ) + (1− e−ντ )‖f‖C−ν (Y ξ) → 0+ as τ → 0+

uniformly with respect to f ∈ F . Now, it is easy to see that Cαf → C0f in C−ν (Y β) when
α→ 0+ uniformly for f ∈ F .

Finally, by (9.3.7), the set F1 :=
{
φ ∈ C−ν,%,a(Y ξ); ‖φ‖C−ν,%,a

≤ 1
}

is a C−ν - uniformly

equicontinuous and bounded subset of C−ν (Y ξ). Hence, by b), Cα → C0 as α→ 0+ in the
topology of the space L(C−ν,%,a(Y ξ), C−ν (Y β)).

♦

We now turn our attention to the construction of an invariant manifold Mα for a
semiflow generated by the system

u′ +Aαu = g(u, w)
αw′ +Bαw = f(u)

(10.1.8)

where α ∈ [0, α1]. From now on we will assume that the hypothesis

(H)


1) the family {Aα, α ∈ [0, α1]} satisfies (H1)-(H2) on a Banach space X

2) the family {Bα, α ∈ [0, α1]} satisfies (H1) on a Banach space Y

3) the functions g and f satisfy (H3) for some γ, β ∈ [0, 1) and β > ξ > β − 1

holds.

The idea of the construction of an invariant manifoldMα for (10.1.8) is fairly standard
and is based on the well-known method of integral equations due to Lyapunov and Perron.
According to this method, Mα contains all solutions (u(.), w(.)) ∈ Xγ × Y β of (10.1.8)
existing on R and satisfying an exponential growth condition of the form

‖u(t)‖γ + ‖w(t)‖β = O(e−µt) as t→ −∞ (10.1.9)

where µ > 0 is fixed. In our case, we will take the advantage of the particular form of
(10.1.8). With regard to Lemma 10.1.1, for a given u ∈ C−µ (Xγ) we have f̃(u) ∈ C−µ (Y ξ)
(f̃ defined in (9.3.2)) and hence w := Cαf̃(u) is the unique solution of (10.1.1)α belonging
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to C−µ (Y β). Roughly speaking, the w - variable of the semiflow Sα on an invariant manifold
Mα (if it exists) is governed by the u - variable. More precisely, as usual (see, e.g. [15],
[33], [22]), we will construct Mα as the union of curves (u, Cαf̃(u)) where u ∈ C−µ (Xγ)
are fixed points of the mapping

Tα(x, .) : C−µ (Xγ) → C−µ (Xγ) (10.1.10)

α ∈ [0, α1], x ∈ X1,0 := P0X and, for any u ∈ C−µ (Xγ)

Tα(x, u) := Kαx+ Tα(Gα(u)) (10.1.11)

The linear operators Kα : X1,0 → C−µ (Xγ); Tα : C−µ (X) → C−µ (Xγ) are given by

Kαx := exp (−A1,αt)Pαx; for any x ∈ X1,0, (10.1.12)

Tα(g)(t) :=
∫ t

0

exp (−A1,α(t− s))Pαg(s) ds+

+
∫ t

−∞
exp (−Aα(t− s))Qαg(s) ds for any g ∈ C−µ (X) (10.1.13)

and the nonlinearity Gα : C−µ (Xγ) → C−µ (X) is given by

Gα(u)(t) := g(u(t), Cαf̃(u)(t)); for any u ∈ C−µ (Xγ) (10.1.14)

By means of the Banach fixed point theorem, we will show that the operator Tα(x, .)
has a fixed point Yα(x) ∈ C−µ (Xγ) . To do this, we first establish estimates of norms of Tα

and Kα and the Lipschitz constant of Gα.

Lemma 10.1.2. Assume that µ ∈ (λ−, λ+). Then, for any α ∈ [0, α1]

a) Kα ∈ L(X1,0, C
−
µ (Xγ)); ‖Kα‖L(X1,0,C−µ (Xγ)) ≤ Cλγ

−

‖Kα −K0‖L(X1,0,C−µ (Xγ )) ≤ Cλγ
−‖A0A

−1
α − I‖

b) Tα ∈ L(C−µ (X), C−µ (Xγ)); ‖Tα‖L(C−µ (X),C−µ (Xγ )) ≤ CK(λ−, λ+, µ, γ)

‖Tα − T0‖L(C−µ (X),C−µ (Xγ )) ≤ C‖A0A
−1
α − I‖K(λ−, λ+, µ, γ)

where

K(λ−, λ+, µ, γ) :=
λγ
−

µ− λ−
+

2− γ

1− γ
(λ+ − µ)γ−1 (10.1.15)

In addition, if % ∈ (0, 1−γ) then there is a constant a = a(λ−, λ+, µ, γ, %, C) > 0 such
that

c) Kα ∈ L(X1,0, C
−
µ,%,a(Xγ)); ‖Kα‖L(X1,0,C−µ,%,a(Xγ )) ≤ 2Cλγ

−
Tα ∈ L(C−µ (X), C−µ,%,a(X

γ)); ‖Tα‖L(C−µ (X),C−µ,%,a(Xγ)) ≤ 2CK(λ−, λ+, µ, γ)
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d) Kα → K0 and Tα → T0 as α→ 0+ in L(X1,0, C
−
µ,%,a(Xγ)) and L(C−µ (X), C−µ,%,a(X

γ)),
respectively.

Proof. Using the estimates from Lemma 9.1.4 the proof of a) is obvious. Again, with
help of Lemma 9.1.4, the proof of b) is an immediate adaptation of that of [15, Lemma
10.1].

In order to prove c), we make use of Lemma 9.1.5. Applying Lemma 9.1.5, part a),
we obtain

[Kαx]µ,%,a ≤ a1−%Cλ1+γ
− ‖(µ−Aα)A−1

0 ‖‖x‖ for any x ∈ X1,0

Further, by definition (10.1.13),

PαTα(g)(t) =
∫ t

0

exp (−A1,α(t− s))Pαg(s) ds

QαTα(g)(t) =
∫ t

−∞
exp (−Aα(t− s))Qαg(s) ds

for any g ∈ C−µ (X). Hence

I1 := PαTα(g)(t)eµt − PαTα(g)(t− h)eµ(t−h) =

=
∫ t

0

[exp ((µ−A1,α)(t− s))− exp ((µ− A1,α)(t− h− s))]Pαe
µsg(s) ds+

+
∫ t

t−h

exp ((µ−A1,α)(t− h− s))Pαe
µsg(s) ds

By taking norms and using Lemmas 9.1.4 and 9.1.5 a), we obtain

‖Aγ
0I1‖ ≤

{
h C‖(µ− Aα)A−1

0 ‖λ1+γ
−

∫ t

0

e(µ−λ−)(t−s)ds+

+Cλγ
−

∫ t

t−h

e(µ−λ−)(t−h−s)ds
}‖g‖C−µ (X) ≤ h Cλγ

−

{
1 +

‖(µ− Aα)A−1
0 ‖λ−

µ− λ−

}
‖g‖C−µ (X)

Thus

[PαTα(g)]µ,%,a ≤ a1−%Cλγ
−

{
1 +

‖(µ− Aα)A−1
0 ‖λ−

µ− λ−

}
‖g‖C−µ (X)

Acting similarly as above, we deduce that

I2 := QαTα(g)(t)eµt −QαTα(g)(t− h)eµ(t−h) =

=
∫ t−h

−∞
[exp (−(Aα − µ)(t− s))− exp (−(Aα − µ)(t− h− s))]Qαe

µsg(s) ds+
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+
∫ t

t−h

exp (−(Aα − µ)(t− s))Qαe
µsg(s) ds

Again, by Lemmas 9.1.4 and 9.1.5 b),

‖Aγ
0I2‖ ≤

{2C2h(1−γ+%)/2‖(µ− Aα)A−1
0 ‖

1− γ + %

∫ t−h

−∞
(t− h− s)−(1+γ+%)/2e−(λ+−µ)(t−h−s)ds+

+C
∫ t

t−h

(t− s)−γe−(λ+−µ)(t−s)ds
}‖g‖C−µ (X) ≤

h%

{
2a(1−γ−%)/2C2‖(µ−Aα)A−1

0 ‖
(1− γ + %)(λ+ − µ)(1−γ−%)/2

Γ ((1− γ − %)/2) +
Ca1−γ−%

1− γ

}
‖g‖C−µ (X)

This way we have shown that there exists a constant k = k(λ−, λ+, µ, γ, %, C) > 0
such that

[Kαx]µ,%,a ≤ a1−%k‖x‖ and [Tαg]µ,%,a ≤ a(1−γ−%)/2k‖g‖C−µ (X) for any 0 < a ≤ 1

Hence, by taking a = a(λ−, λ+, µ, γ, %, C) > 0 sufficiently small and using the statements
a) and b) it follows that

‖Kα‖L(X1,0,C−µ,%,a(Xγ)) ≤ 2Cλγ
− and ‖Tα‖L(C−µ (X),C−µ,%,a(Xγ )) ≤ 2CK(λ−, λ+, µ, γ)

Finally, we will prove that

[Kαx−K0x]µ,%,a → 0 and [Tαg − T0g]µ,%,a → 0 as α→ 0+

uniformly with respect to ‖x‖ ≤ 1 and ‖g‖C−µ (X) ≤ 1, respectively.
Denote

Uα(t) := exp ((µ− A1,α)t)Pα − exp ((µ− A1,0)t)P0

Vα(t) := exp (−(Aα − µ)t)Qα − exp (−(A0 − µ)t)Q0

We have the following integral representation of Uα(t)

for any r ≤ 0, h > 0, Uα(r)− Uα(r − h) =
∫ r

r−h

d

dξ
Uα(ξ) dξ =

=
∫ r

r−h

[(µ− A1,α)exp ((µ− A1,α)ξ)Pα − (µ−A1,0)exp ((µ− A1,0)ξ)P0] dξ =

= (A1,0 − A1,α)
∫ r

r−h

exp ((µ− A1,α)ξ)Pα dξ + (µ−A1,0)
∫ r

r−h

Uα(ξ) dξ

Using the above expression and Lemma 9.1.4 one can proceed similarly as in the proof of
Lemma 9.1.5 a). One obtains

‖Aγ
0 (Uα(r)− Uα(r − h)) x‖ ≤ C1he

(µ−λ−)r‖I −AαA
−1
0 ‖‖x‖; r ≤ 0, h > 0
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where C1 > 0 is a constant. Analogously, one also deduces that for any r ≥ 0, h > 0

‖Aγ
0 (Vα(r + h)− Vα(r))x‖ ≤ C1h

(1−γ+%)/2r−(1+γ+%)/2e−(λ+−µ)r‖I −AαA
−1
0 ‖‖x‖

With help of these estimates, the statement d) can be readily proved by repeating the lines
of the proof of c) but now operating with Uα(t) and Vα(t) instead of exp ((µ− A1,α)t)Pα

and exp (−(Aα − µ)t)Qα, respectively.
♦

Since g : Xγ ×Y β → X and f : Y β → Y ξ are bounded and Lipschitzian we have that

Gα : C−µ (Xγ) → C−µ (X)

is bounded uniformly with respect to α ∈ [0, α1] (10.1.16)

and, moreover,

‖Gα(u1)− Gα(u2)‖C−µ (X) ≤ Lip(g) (1 + ‖Cα‖ Lip(f)) ‖u1 − u2‖C−µ (Xγ )

Hence, by Lemma 10.1.1, we obtain

Lip(Gα) ≤ Lip(g)
(
1 + CΓ(1− β + ξ)(ω − µα1)β−ξ−1 Lip(f)

)
(10.1.17)

With this we have establish the following

Lemma 10.1.3. Let µ ∈ (λ−, λ+). Assume that the hypothesis (H) holds. Then the
operator Tα(x, .) : C−µ (Xγ) → C−µ (Xγ) is a uniform contraction with respect to α ∈ [0, α1]
and x ∈ X1,0, provided that the following inequality is satisfied

θ := CK(λ−, λ+, µ, γ) Lip(g)
(
1 + CΓ(1− β + ξ)(ω − µα1)β−ξ−1 Lip(f)

)
< 1 (10.1.18)

According to the previous lemma, if (10.1.18) is satisfied then, by the Banach fixed
point theorem, there is a family Yα(x), α ∈ [0, α1], x ∈ X1,0, of fixed points of Tα(x, .).
Because

‖Tα(x1, u)− Tα(x2, u)‖ = ‖Kα(x1 − x2)‖ ≤ Cλγ
−‖x1 − x2‖

we furthermore have

‖Yα(x1)− Yα(x2)‖ ≤ Cλγ
−(1− θ)−1‖x1 − x2‖ (10.1.19)

i.e Yα(.) are Lipschitz continuous uniformly with respect to α ∈ [0, α1].

Now, we can define a set Mα as follows

Mα :=
{(
Yα(x)(0), Cαf̃(Yα(x))(0)

)
; x ∈ X1,0

}
, α ∈ (0, α1] (10.1.20)
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In order to show invariancy of Mα under the semiflow Sα(t), t ≥ 0, generated by
(10.1.8) it suffices to prove that

Mα =
{
(u(τ), w(τ)) ∈ Xγ × Y β, τ ∈ R, (u, w) ∈ C−µ (Xγ)× C−µ (Y β) solves (10.1.8)

}
(10.1.21)

Indeed, let us consider an arbitrary solution (u(.), w(.)), belonging to the right hand side
of (10.1.21). Take a τ ∈ R and put ū(t) := u(t + τ), w̄(t) := w(t + τ). Then (ū, w̄) is a
solution of (10.1.8) as well and (ū(.), w̄(.)) ∈ C−µ (Xγ) × C−µ (Y β). By Lemma 10.1.1, we
have w̄ = Cαf̃(ū) and ū is therefore a solution of

ū′(t) + Aαū(t) = g(ū(t), Cαf̃(ū)(t)) = Gα(ū)(t)

According to [15, Lemma 4.2] ū is a solution of

ū(t) = exp (−A1,αt)Pαū(0) + Tα(Gα(ū))(t), t ≤ 0

By Lemma 9.1.2 and 9.1.4 , Pα |X1,0 : X1,0 → X1,α is a linear isomorphism. Therefore
there exists x ∈ X1,0 such that Pαx = Pαū(0). Thus, ū solves the operator equation
Tα(x, ū) = ū. By uniqueness of a fixed point of Tα(x, .) we have ū = Yα(x) and hence

(u(τ), w(τ)) = (ū(0), w̄(0)) =
(
Yα(x)(0), Cαf̃(Yα(x))(0)

)
∈Mα

On the other hand, take an arbitrary x ∈ X1,0. Then
(
Yα(x)(.), Cαf̃(Yα(x))(.)

)
∈

C−µ (Xγ) × C−µ (Y β) is a solution of (10.1.8) which can be extended to a solution exist-

ing globally on R. Hence
(
Yα(x)(0), Cαf̃(Yα(x))(0)

)
belongs to the right hand side of

(10.1.21). This way we have shown (10.1.21).

For α = 0, we put
M̃0 := {Y0(x)(0); x ∈ X1,0} (10.1.22)

With regard to [15, Th. 4.4], M̃0 ⊂ Xγ is an invariant manifold for the semiflow S̃0

generated by (9.2.1)0. This manifold can be naturally embedded into a manifold M0 ⊂
Xγ × Y β defined as

M0 :=
{(
u,B−1

0 f(u)
)
; u ∈ M̃0

}
(10.1.23)

We note that the manifolds Mα, α ∈ [0, α1], are Lipschitz continuous submanifolds of
Xγ × Y β (see (10.1.19) ) and dimMα = dimX1,0 <∞ for any α ∈ [0, α1].

Denote
Φα := Yα(x)(0) and Ψα := Cαf̃(Yα(x))(0)

for any α ∈ [0, α1] (10.1.24)

The mapping X1,0 3 x 7→ (Φα(x),Ψα(x)) ∈ Xγ ×Y β is Lipschitz continuous, its Lipschitz
constant being independent of α ∈ [0, α1].
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In terms of Φα and Ψα, the manifold Mα is given by

Mα = {(Φα(x),Ψα(x)), x ∈ X1,0} α ∈ [0, α1] (10.1.25)

and the semiflow Sα (S̃α) on Mα (M̃0) is determined by solutions of its inertial form. By
definition (see [22, Chapter 2.1]), an inertial form for (10.1.8) is an ordinary differential
equation in a finite dimensional space X1,0 given by

p′ + P (−1)
α A1,αPαp = P (−1)

α Pαg(Φα(p),Ψα(p)) (10.1.26)α

where the linear operator P (−1)
α was defined in (9.1.4). Indeed, any solution (u, w) of

(10.1.8), α ∈ [0, α1], belonging to Mα can be written as

(u(t), w(t)) = (Φα(p(t)),Ψα(p(t)))

where p(.) is a solution of (10.1.26) and vice versa.

By definition, a compact subset A of a Banach space X is called a compact global
attractor for a semiflow S(t), t ≥ 0 on X , if it is invariant under S(t) and

lim
t→∞dist (S(t)B,A) = 0 for any bounded subset B ⊂ X (10.1.29)

where dist (B,A) := supb∈B infa∈A ‖b− a‖.
Remark 10.1.4. Suppose that system (10.1.8)α admits a compact global attractor Aα.
Since Aα consists of all globally defined trajectories which are bounded in Xγ × Y β we
have Aα ⊂Mα.

Remark 10.1.5. Assume that θ � 1 is sufficiently small. Then, following the lines of
the proof of [15, Th. 5.1], one can also prove exponential attractivity of Mα. It means
that, for any (u, w) ∈ Xγ × Y β, there is a unique (u∗, w∗) ∈Mα such that ‖Sα(t)(u, w)−
Sα(t)(u∗, w∗)‖ = O(e−µt) as t → ∞. Hence, Mα is an inertial manifold for the semiflow
Sα in the sense of [22].

10.2. The singular limit dynamics of invariant manifolds

In this section, our objective is to study singular limit dynamics of invariant manifolds
Mα when α→ 0+. The main purpose is to show

(Φα,Ψα) → (Φ0,Ψ0) as α→ 0+ (10.2.1)
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in the topology of the space C1
bdd(B,X

γ ×Y β) where B is an arbitrary bounded and open
subset of X1,0.

The proof uses abstract results due to Mora and Solà-Morales regarding the limiting
behavior of fixed points of a two-parameter family of nonlinear mappings. With regard
to Lemma 9.3.1, we note that the mapping Tα(x, .) : C−µ (Xγ) → C−µ (Xγ) need not be
generally C1 differentiable. One can, however, expect that Tα is a C1 mapping when
considering Tα(x, .) as a mapping from C−µ (Xγ) into C−ν (Xγ) for some ν > µ. Therefore,
we need a version of a contraction theorem covering the case in which differentiability
involves a pair of Banach spaces.

First, we recall the assumptions of [34, Th. 5.1]. Let X , U be Banach spaces, α1 > 0.
Let Tα, α ∈ [0, α1] be a family of mappings from X × U into U such that

(T )



1) there is θ̄ < 1 such that ‖Tα(x, u1)− Tα(x, u2)‖U ≤ θ̄‖u1 − u2‖U

for any x ∈ X , u1, u2 ∈ U and α ∈ [0, α1].

2) there is a Q <∞ such that ‖Tα(x1, u)− Tα(x2, u)‖U ≤ Q‖x1 − x2‖X
for any x1, x2 ∈ X , u ∈ U and α ∈ [0, α1].

3) for any B ⊂ X bounded and open
supx∈B ‖Tα(x, Y0(x))− T0(x, Y0(x))‖U → 0 as α→ 0+

where Yα(x), x ∈ X , α ∈ [0, α1] is the unique fixed point of Tα(x, Y ) = Y

Remark 10.2.1. Note that, by the Banach fixed point theorem, (T )1 and (T )2 ensure the
existence of a family of fixed points Yα(x) of Tα(x, .) such that the mapping x 7→ Yα(x) is
Lipschitzian, its Lipschitz constant being Q(1− θ̄)−1. Furthermore, (T )3 implies Yα(x) →
Y0(x) as α → 0+ uniformly with respect to x ∈ B, B is an arbitrary bounded and open
subset of X .

We assume that the space U is continuously embedded into a Banach space Ū through
a linear embedding operator J . We also denote T̄α := JTα and Ȳα := JYα.

We are now in a position to state a slightly modified version of [34, Th. 5.1]

Theorem 10.2.2. ([34, Th. 5.1]) Besides the hypothesis (T) we also assume that the
mappings T̄α : X × U → Ū , α ∈ [0, α1] satisfy the following conditions:

1) for any α ∈ [0, α1], T̄α is Fréchet differentiable with DT̄α : X × U → L(X × U, Ū)
bounded and uniformly continuous and there exist mappings

duTα : X × U → L(U,U); d̄uTα : X × U → L(Ū , Ū); dxTα : X × U → L(X , U)

such that

DuT̄α(x, u) = JduTα(x, u) = d̄uTα(x, u)J
DxT̄α(x, u) = JdxTα(x, u)
‖duTα(x, u)‖L(U,U) ≤ θ̄



10.2 The singular limit dynamics of invariant manifolds 54

‖d̄uTα(x, u)‖L(Ū,Ū) ≤ θ̄

‖dxTα(x, u)‖L(X ,U) ≤ Q

2) for any B bounded and open subset of X ,

DT̄α(x, u) → DT̄0(x, u) as α→ 0+

uniformly with respect to (x, u) ∈ B ×FB where

FB := {Yα(x) ∈ U ; x ∈ B, α ∈ [0, α1]} (10.2.2)

Then the mappings Ȳα : X → Ū have the following properties

a) for any α ∈ [0, α1]; Ȳα : X → Ū is Fréchet differentiable, with DȲα : X → L(X , Ū)
bounded and uniformly continuous

b) for any B bounded and open subset of X ,

DȲα(x) → DȲ0(x) as α→ 0+

uniformly with respect to x ∈ B.

Proof. The only difference between the assumptions of the above theorem and those
made in [34, Th. 5.1] resides in the part 2). Hence, the proof of the part 1) remains the
same as that of [34, Th. 5.1, part K1) ].

Recall that in [34, Th 5.1] they required a uniform convergence of DT̄α → DT̄0 instead
of 2). Nevertheless, they have shown the estimate

‖DȲα(x)−DȲ0(x)‖L(Ū,Ū) ≤
1

1− θ̄

{ Q

1− θ̄
‖DuT̄α(x, Yα(x))−DuT̄0(x, Y0(x))‖L(Ū,Ū)+

+‖DxT̄α(x, Yα(x))−DxT̄0(x, Y0(x))‖L(X ,Ū)

}
Furthermore,

‖DiT̄α(x, Yα(x))−DiT̄0(x, Y0(x))‖ ≤
≤ ‖DiT̄α(x, Yα(x))−DiT̄0(x, Yα(x))‖+ ωi (‖Yα(x)− Y0(x)‖)

where i stands either for u or x and ωi denotes the modulus of continuity of DiT̄0. Hence
the assumption 2) is sufficient for the proof of the local uniform convergence DȲα → DȲ0

as stated in b).
♦

Henceforth, we will assume that

% ∈ (0, 1− γ), and λ− < µ < (1 + η)µ ≤ κ < µ̄ < λ+ (10.2.3)
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In order to apply Theorem 10.2.2 to fixed points Yα(x) of the nonlinear operator
Tα(x, .) defined in (10.1.11) we choose the following Banach spaces

U := C−µ,%,a(Xγ) and Ū := C−µ̄,%,a(Xγ), (10.2.4)

and denote
J : C−µ,%,a(Xγ) → C−µ̄,%,a(Xγ) (10.2.5)

a linear embedding operator. A constant 0 < a � 1 will be determined later. Before
proving that the family of mappings Tα, α ∈ [0, α1], fulfills the assumptions of Theorem
10.2.2 we need several auxiliary lemmas each of which is under the hypothesis (H) and
(10.2.3). First, we introduce a notation.

In the following, with regard to Lemma 10.1.2, c), d), the mappings Kα and Tα will
be considered as bounded linear operators acting on

Kα : X1,0 → U Tα : C−µ (X) → U

We also denote
K̄α : X1,0 → Ū T̄α : C−µ̄ (X) → Ū (10.2.6)

the bounded linear operators analogous to Kα and Tα, respectively, but operating on
exponentially weighted spaces with an weight eµ̄t. We remind that the boundedness of
Kα, Tα, K̄α, T̄α follows from Lemma 10.2.1, parts c) and d). Because Rank Tα ⊆ U (see
Lemma 10.1.2), we obtain

Yα(x) = Tα(x, Yα(x)) ∈ U for any x ∈ X1,0 and α ∈ [0, α1] (10.2.7)

Moreover, we have

Lemma 10.2.3. Let B a bounded subset of X1,0. Then the set

FB := {Yα(x) ∈ U ; x ∈ B, α ∈ [0, α1]} (10.2.8)

is a bounded subset of U . At the same time, FB is a C−µ - uniformly equicontinuous and
bounded subset of C−µ (Xγ).

Proof. Since Yα(x) = Tα(x, Yα(x)) = Kαx+ Tα(Gα(Yα(x))) and Gα is bounded the
proof follows from Lemma 10.1.2 c) and (9.3.7).

♦

Because of the assumption f ∈ C1+η
bdd (Xγ, Y ξ) we have that

f̃ : C−µ (Xγ) → C−µ (Y ξ); f̃(u)(t) := f(u(t))
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is bounded and Lipschitz continuous. Recall that the space U is continuously embedded
into C−µ (Xγ). Hence the mapping

Hα : U → C−µ (Y β); Hα(u) := Cαf̃(u) (10.2.9)

is bounded and Lipschitz continuous. We also denote C̄α the linear operator defined in
(10.1.5) and operating from C−κ (Y ξ) → C−κ (Y β). Let

H̄α := J ′Hα : U → C−κ (Y β) (10.2.10)

Here
J ′ : C−µ (Y β) → C−κ (Y β) (10.2.11)

is a linear embedding operator.

Lemma 10.2.4.

a) H̄α ∈ C1
bdd(U , C−κ (Y β))

b) there is an operator dHα : U → L(U , C−µ (Y β))
such that DH̄α = J ′dHα

Proof. From Lemma 9.3.2 we have f̃ ∈ C1
bdd(U , C−κ (Y ξ)) and, by Lemma 10.1.1,

C̄α ∈ L(C−κ (Y ξ), C−κ (Y β)). Hence H̄α ∈ C1
bdd(U , C−κ (Y β)) and DH̄α = C̄αDf̃ .

b) Since Df : Xγ → L(Xγ, Y ξ) is bounded we obtain that the operator

df : U → L(U , C−µ (Y ξ)), df(u) := Df(u(.)) (10.2.12)

is well defined and bounded. By Lemmas 9.3.1 and 9.3.2, the derivative Df̃ is given by
Df̃ = J ′df . Denote

dHα := Cαdf (10.2.14)

Then DH̄α = C̄αDf̃ = J ′Cαdf = J ′dHα
†.

♦

Lemma 10.2.5. Let F be a bounded subset of U . Then

Hα(u) → H0(u) as α→ 0+ in C−µ (Y β) and

DH̄α(u) → DH̄0(u) as α→ 0+ in L(U , C−κ (Y β)) uniformly with respect to u ∈ F .

Proof. a) Because both f and Df are assumed to be bounded, one can show that
the set

F0 := {f̃(u); u ∈ F}
† Here we have used the operator identity C̄αJ

′ = J ′Cα which follows from the
uniqueness of solutions of (10.1.1)α in the space C−κ (Y β)
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is a C−µ - uniformly equicontinuous and bounded subset of C−µ (Y ξ). By Lemma 10.1.1, we
obtain

Hα(u) = Cαf̃(u) → C0f̃(u) = H0(u) as α→ 0+

in the space C−µ (Y β) uniformly for u ∈ F .
b) From (10.2.3) we have (κ − µ)/η ≥ µ. Since we have assumed that the mapping

Xγ 3 u 7→ Df(u) ∈ L(Xγ, Y ξ) is η-Hölder continuous one easily verifies that the set

F1 := {df(u); u ∈ F}

is a C−κ−µ-uniformly equicontinuous and bounded subset of C−κ−µ(L(Xγ, Y ξ)). Then, by
[34, Lemma 5.4, d)] and (9.3.7), the set

F2 := {df(u)h; ‖h‖C−µ,%,a
≤ 1, u ∈ F}

is a C−κ -uniformly equicontinuous and bounded subset of C−κ (Y ξ). Again, by Lemma
10.1.1, b), we obtain

DH̄α(u)h = C̄αdf(u)h→ C̄0df(u)h = DH̄0(u)h as α→ 0+

uniformly for ‖h‖C−µ,%,a
≤ 1 and u ∈ F .

♦
It follows from Lemma 9.3.1 and (H3) that

g̃ ∈ C1
bdd(C

−
i (Xγ)× C−i (Y β), C−µ̄ (X)) (10.2.15)

where i stands either for µ or κ. Define the operators

dug : C−µ (Xγ)× C−µ (Y β) → L(C−µ (Xγ), C−µ (X))

and
dwg : C−µ (Xγ)× C−µ (Y β) → L(C−µ (Y β), C−µ (X))

as follows

dug(u, w) := Dug(u(.), w(.)) and dwg(u, w) := Dwg(u(.), w(.)) (10.2.16)

As Dg is bounded, the mappings dug and dwg are bounded as well. Further, the derivative
Dg̃ when restricted to C−µ (Xγ)× C−µ (Y β) can be expressed as

Dug̃ = J ′′dug Dw g̃ = J ′′dwg (10.2.17)

where J ′′ : C−µ (X) → C−µ̄ (X) is a linear embedding operator.

Lemma 10.2.6. Let F be a bounded subset of U . Then

a) Ḡα ∈ C1
bdd(U , C−µ̄ (X)) where Ḡα := J ′′Gα
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b) there is a mapping dGα : U → L(U , C−µ (X)) such that DḠα = J ′′dGα

c) Gα(u) → G0(u) in C−µ (X) and DḠα(u) → DḠ0(u) as α→ 0+ in L(U , C−µ̄ (X))
uniformly with respect to u ∈ F .

Proof. The proof of the statement a) follows from Lemma 10.2.4 and (10.2.15). Let
us define dGα as follows

dGα := dug + dwg dHα (10.2.18)

By Lemmas 9.3.1, 10.2.4 and (10.2.17),

DḠα = Dug̃ +Dw g̃DH̄α = J ′′dug + J ′′dwg dHα = J ′′dGα

Since Gα(u) = g(u(.), Cαf̃(u)(.)) = g(u(.), Hα(u)(.)), the first part of the statement
c) follows from Lemma 10.2.5. As Dg̃w is bounded, the second part is a consequence of
Lemmas 9.3.1, 9.3.2 and 10.2.5.

♦

We are now in a position to apply Theorem 10.2.2 to the family of nonlinear operators
{Tα}, introduced in Section 10.1.

Since the mapping Gα : U → C−µ (X) is Lipschitz continuous, its Lipschitz constant
being estimated by the right hand side of (10.1.17), using Lemma 10.1.2, c), d)†, we obtain
that the family Tα(x, .) satisfies the hypotheses T1 and T2 in the Banach space U with
constants

θ̄ := 2θ Q̄ := 2Cλγ
− (10.2.19)

where the constant θ > 0 was introduced in (10.1.18). Furthermore, according to Lemmas
10.1.2 and 10.2.6, the assumption T3 is also fulfilled. Let us define the operators

duTα : X1,0 × U → L(U ,U)
dxTα : X1,0 × U → L(X1,0,U)
d̄uTα : X1,0 × U → L(Ū , Ū)

(10.2.20)

as follows

duTα(x, u) := TαdGα(u); dxTα(x, u) := Kα; d̄uTα(x, u) := T̄αd̄Gα(u) (10.2.21)

where d̄Gα is defined in the same way as the operator dGα but operating from U to
L(Ū , C−µ̄ (X)). Denote

T̄α := JTα : X1,0 × U → Ū and Ȳα := JYα (10.2.22)

† In order to ensure the assumptions of Lemma 10.1.2 we now choose a suficiently
small constant a > 0 appearing in the definition of the spaces U , Ũ .
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By Lemma 10.2.6, T̄α ∈ C1
bdd(X1,0 × U , Ū). Moreover, from Lemmas 10.1.2 and 10.2.3 we

obtain DT̄α(x, u) → DT̄0(x, u) as α → 0+ uniformly with respect to (x, u) ∈ X1,0 × FB

for every B bounded and open subset of X1,0.
Hence we have shown that the family Tα(x, .) and the mappings duTα, dxTα, d̄uTα

satisfy the assumptions of Theorem 10.2.2, provided that the constant θ̄ > 0 defined by
(10.2.19) is less than 1. In the case θ̄ < 1, by Theorem 10.2.2 we obtain

Ȳα → Ȳ0 as α→ 0+ in C1
bdd(B,C−µ̄,%,a(Xγ)) (10.2.23)

for any B ⊂ X1,0 bounded and open.
Recall that

(Φα(x),Ψα(x)) := (Ȳα(x)(0), H̃α(Ȳα(x))(0))

where H̃α is now considered as a C1 mapping from C−µ̄,%,a(Xγ) into C−ν (Y β) for some
ν > µ̄. In view of Lemma 10.2.5, statement (10.2.23) readily implies a C1 - local uniform
convergence of (Φα,Ψα) towards (Φ0,Ψ0) as stated in (10.2.1).

In accordance to Lemma 10.1.3, we remind that the assumption θ < 1 (θ defined
by (10.1.18) ) is sufficient for the existence of a family of Lipschitz continuous invariant
manifolds Mα for semiflows Sα, α ∈ [0, α1]. On the other hand, the assumption θ̄ = 2θ < 1
guarantees a ”C1- closeness” of Mα and M0 which can be precisely expressed by (10.2.1).
Clearly, one way how to ensure the condition θ̄ < 1 is to require smallness of the constant
K > 0.

Having developed the previous background we can state the main result of this part

Theorem 10.2.7. Assume that the hypothesis (H) holds. Then there are constants τ > 0
and α1 > 0 such that, if K(λ−, λ+, µ, γ) < τ then, for every α ∈ (0, α1],

a) there exists an invariant manifold Mα (M̃0) for the semiflow Sα (S̃0) generated by
system (9.2.1)α. Moreover, dimMα = dimM̃0 < ∞ and Mα (M̃0) is the graph of
a C1 continuous mapping X1,0 3 x 7→ (Φα(x),Ψα(x)) ∈ Xγ × Y β (X1,0 3 x 7→
Φα(x) ∈ Xγ)

b) for any bounded and open subset B ⊂ X1,0

(Φα,Ψα) → (Φ0,Ψ0) as α→ 0+ in C1
bdd(B,X

γ × Y β)

Remark 10.2.8. In addition to the hypothesis (H) we also assume that A0 is a self-adjoint
operator with eigenvalues

0 < λ1 ≤ ... ≤ λn < λn+1 ≤ ... λn →∞ as n→∞

As it is usual in such a case, we will let λ− := λn, λ+ := λn+1 and µ := (λ++λ−)/2. With
this setting it should be obvious that the condition ”K is small” reduces to the requirement



10.2 The singular limit dynamics of invariant manifolds 60

”λγ
n(λn+1 − λn)−1 is small enough”. In case when λm ≈ m2, m ∈ N , the assumptions of

Theorem 10.2.7 are satisfied, whenever γ ∈ [0, 1/2) and n is large enough.

We end this section with a couple of remarks. First, we recall a notion of structural
stability of a vector fields due to Andronov and Pontryagin. Let M be a C1 compact
manifold. Two vector fields G1, G2 onM are said to be topological equivalent if there exists
a homeomorphism φ : M→M which takes orbits of G1 to orbits of G2 preserving their
orientation. A C1 vector field G on M is said structurally stable if there is a neighborhood
O(G) of G with respect to the C1 topology such that each G̃ ∈ O(G) is topological
equivalent to G (see, [21], [32]).

Having recalled these broadly known definitions and using the form of induced ordi-
nary differential equation (10.1.26)α we can state the following consequence of Theorem
7.2.7 and Remark 10.1.4

Corollary 10.2.9. Besides the hypotheses of Theorem 10.2.7 we also assume that sys-
tems (9.2.1)α, α ∈ [0, α1], admit a family of compact global attractors Aα ⊂ Mα, α ∈
[0, α1] †, and, moreover, the set

B := {u ∈ X ; (u, w) ∈ Aα, for some w ∈ Y, α ∈ [0, α1]}

is a bounded subset of X .

If system (9.2.1)0 is structurally stable then, for any α > 0 small enough, the flow Sα

on Aα is topological equivalent to that on A0.

† We identify the attractor Ã0 ⊂ Xγ with its natural extension

A0 := {(u,B−1
0 f(u)), u ∈ Ã0} ⊂ Xγ × Y β.
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Section 11.

Applications

The purpose of this section is twofold. First, we will study the singular limit dynamics
of local invariant manifolds and compact attractors for the model of shearing motions of
a non-Newtonian fluid. Section 11.2 is devoted to some second order abstract evolution
equations arising in the mathematical theory of elastic systems.

11.1 The limiting behavior of invariant manifolds and global attractors
for a model of shearing motions with ratio of Reynolds

number to Deborah number very small

As our first application of results of Section 10, we will consider the non-Newtonian
model of shearing motions including diffusion which was introduced in Section 2. Recall
that the system of governing equations has the form

ut = ν2uxx − u+ g(vx) + fx

αvt = vxx + ux

(11.1.1)

with boundary conditions

vx(t, 0) = v(t, 1) = 0; u(t, 0) = ux(t, 1) = 0 for t ≥ 0 (11.1.2)

and initial data
v(0, x) = v0(x); u(0, x) = u0(x) for x ∈ [0, 1]. (11.1.3)

Throughout this section, we let X = Y denote the real Hilbert space L2(0, 1) with
norm ‖.‖ and its usual inner product (., .). In accordance to the notation of Sections
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2 and 3 we will let A denote the self-adjoint positive operator in X with the domain
D(A) = {u ∈ W 2,2(0, 1); u(0) = ux(1) = 0} and Au := −ν2uxx for any u ∈ D(A)
†. We also denote B the self-adjoint positive operator in Y its domain being D(B) =
{w ∈ W 2,2(0, 1); wx(0) = w(1) = 0} and Bw := −wxx for any w ∈ D(B). One checks
immediately that the linear operators A and B have the spectrum σ(A) = ν2σ(B) and
σ(B) = {λn, λn = (n − 1/2)2π2, n ∈ N}. Eigenvectors of A and B are proportional to
sin
√
λnx and cos

√
λnx, respectively. Knowing these spectral properties and using Fourier

series with respect to eigenvectors sin
√
λnx and cos

√
λnx, n ∈ N (cf. [23, Chapter 1])

one can prove that the linear operator

f : Xγ → Y γ−1/2; f(u) := ux

is well defined and bounded for a γ > 1/4. Moreover, ‖f(u)‖Y γ−1/2 = ‖u‖Xγ . Here, we
have adopted the convention according to which we identify the space Y −κ with the dual
space (Y κ)∗. Let g ∈ C1

bdd(R). Then the mapping

g : Xγ × Y β → X ; g(u, v)(x) := g(vx(x)) + fx− u(x), x ∈ [0, 1]

is well defined and Lipschitz continuous for any g ∈ C1
bdd(R) and β ≥ 0. In terms of

A,B, f, g system (11.1.1)-(11.1.3) can be rewritten abstractly as

ut +Au = g(u, v)
αvt +Bv = f(u)

α ≥ 0 (11.1.4)α

with initial data u(0) = u0, v(0) = v0. Henceforth, we will assume

g ∈ C1
bdd(R), γ ∈ (

1
4
,
1
2
), β ∈ (

3
4
,
1
2

+ γ) (11.1.5)

According to Section 9.2, system (11.1.4)α, α > 0, generates a semiflow Sα(t), t ≥ 0,
on Xγ × Y β and system (11.1.4)0 generates a semiflow S̃0(t), t ≥ 0 on Xγ . Taking
into account the particular form of g, system (11.1.4)0 becomes a scalar reaction-diffusion
parabolic equation

ut − ν2uxx + u+ g(u)− fx = 0 (11.1.6)

with boundary conditions u(t, 0) = ux(t, 1) = 0 and initial data belonging to the phase
space Xγ .

In what follows, we will prove that the semiflow Sα, (S̃0) has a compact global attrac-
tor Aα, (Ã0). In many situations, the bounded dissipativity and compactness of a semiflow
ensure the existence of a compact global attractor. In order to establish boundedness and
compactness of semiflows Sα, α > 0, (S̃0) we will make use of the standard method of à
priori estimates.

† In contrast to Section 3 where the singular limit ν → 0+ has been investigated we
will henceforth assume the constant ν > 0 to be fixed
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Absorbing sets

For every function g satisfying (11.1.5) there is a M > 0 such that

‖g(vx(x)) + fx‖L2(0,1) ≤M for any v ∈ Y β

Throughout this section, we will let M > 0 denote a constant always assumed to
be independent on initial conditions of (11.1.4) and α ∈ [0, 1/2]. Since u′ + u + Au =
g(vx(x)) + fx we have

u(t) = e−texp (−At)u0 +
∫ t

0

e−(t−s)exp (−A(t− s))[g(vx(s, x)) + fx] ds

By Lemma 9.1.3, for each δ ∈ [0, 1− γ), we obtain

‖u(t)‖γ+δ ≤ Ct−δe−ωt‖u0‖γ + CM

∫ t

0

(t− s)−(γ+δ)e−ω(t−s) ds ≤

≤M(1 + t−δe−ωt‖u0‖γ) for any t > 0 (11.1.7)

where 0 < ω < λ1 = π2/4 is fixed. Notice that (11.1.7) also holds for the case α = 0.
Furthermore, for α > 0, we have

v(t) = exp (−Bt/α)v0 +
1
α

∫ t

0

exp (−B(t− s)/α) f(u(s)) ds

Thus, for each δ ∈ [0, γ − β + 1/2) and α ∈ (0, 1/2], we obtain

‖v(t)‖β+δ ≤

≤ Cαδt−δe−ωt/α‖v0‖β +
1
α

∫ t

0

‖Bβ+δ−γ+1/2exp (−B(t− s)α)Bγ−1/2 f(u(s))‖ ds ≤

≤ Cαδt−δe−ωt/α‖v0‖β +
CM

α

∫ t

0

((t− s)/α)−(β+δ−γ+1/2)e−ω(t−s)/α(1 + e−ωs‖u0‖γ) ds

for any t > 0. Here we have used inequality (11.1.7) with δ = 0, i.e.

‖Bγ−1/2 f (u(s))‖ = ‖u(s)‖γ ≤M(1 + e−ωs‖u0‖γ) s ≥ 0

Thus, for each δ ∈ [0, γ − β + 1/2), α ∈ (0, 1/2] and t > 0 we have

‖v(t)‖β+δ ≤M(1 + e−ωt‖u0‖γ + t−δe−ωt/α‖v0‖β) (11.1.8)

The estimates (11.1.7) and (11.1.8) with a fixed 0 ≤ δ < min{1 − γ, γ − β + 1/2} enable
us to conclude that there exists a bounded set

B ⊂ Xγ × Y β (B̃ ⊂ Xγ) (11.1.9)
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which dissipates every bounded set J ⊂ Xγ × Y β (J ⊂ Xγ), i.e.

Sα(t)J ⊂ B, α ∈ (0, 1/2], (S̃0(t)J ⊂ B̃) for any t ≥ T (α,J ) > 0 (11.1.10)

Since A−1 and B−1 are compact linear operators on X = Y = L2(0, 1) we know that
the embeddings Xγ+δ ↪→ Xγ, Y β+δ ↪→ Y β are compact for any δ > 0 (cf. [23, Chapter
1]). Therefore Sα(t0) (S̃0(t0)) is a compact mapping on Xγ × Y β (Xγ) whenever t0 > 0.
Hence, by [3, Theorem 1.2], there exists a compact global attractor

Aα ⊂ Xγ × Y β, (Ã0 ⊂ Xγ) (11.1.11)

for the semiflow Sα, α ∈ (0, 1/2], (S̃0).

Local invariant manifolds

We now turn our attention to the problem of the existence of a family of invariant
manifolds for the semiflows Sα (S̃0). First, we emphasize that the functions g and f are
unbounded. Therefore we cannot apply Theorem 10.2.7 to system (11.1.4). As it is usual,
the idea how to overcome this difficulty is to modify the equations of (11.1.4) far from the
vicinity of the absorbing set B and then apply Theorem 10.2.7 to the modified system.
The modification of (11.1.5) will enable us to deal with a global invariant manifold for the
semiflow generated by a new system instead of a local one for the original semiflow. To do
so, let θ denote a smooth cut-off function with the following properties

θ ∈ C∞(R+); θ(ξ) = 1 for ξ ∈ [0, 1]; θ(ξ) = 0 for ξ ≥ 2; | θ′ |≤ 2

and define, for each R > 0 , the modified functions

gR(u, v) := θ(‖u‖2γ/R2)g (u, v); fR(u) := θ(‖u‖2γ/R2)f (u) (11.1.12)

Since we have assumed g ∈ C1
bdd(R) and the function u 7→ ‖u‖2γ is C2 continuously dif-

ferentiable the modified functions gR and fR satisfy the hypothesis (H3) from Section 9.2.
Let R > 0 be fixed and such that

(u, v) ∈ B (u ∈ B̃) implies ‖u‖γ < R (11.1.13)

In order to deal with local invariant manifolds for (11.1.4), we will consider a modified
system instead of (11.1.4)

ut + Au = gR(u, v)
αvt +Bv = fR(u)

α ≥ 0 (11.1.14)α

According to Theorem 10.2.7 and Remark 10.2.8 we have ensured the existence and con-
vergence properties of a family of finite dimensional invariant manifolds MR

α (MR
0 )

for semiflows generated by (11.1.14). Because the vector field of system (11.1.4) and
that of (11.1.14) coincide inside the cylinder {(u, v) ∈ Xγ × Y β ; ‖u‖γ < R}, the sets
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Mα := MR
α ∩ B, α ∈ (0, 1/2] (M̃0 := M̃R

0 ∩ B̃) are local invariant manifolds for the
original semiflows generated by (11.1.4). Moreover, by Remark 10.1.4, Aα ⊂ Mα and
Ã0 ⊂ M̃0.

The Morse-Smale property

The well-known result due to Palis and Smale [39] says that Morse-Smale vector fields
on compact smooth manifolds are structurally stable. We recall that a C1 vector field G
(a semiflow S generated by G) is called Morse-Smale if

i) G has only finite numbers of steady states and periodic orbits all hyperbolic
ii) the set of non-wandering points coincides with the set of steady states and periodic

orbits
iii) Wu(p) ∩>W s(q) for any critical elements p, q (steady states or periodic orbits) †

(cf. [21]). In our case, the limiting equation (11.1.6) is a scalar reaction-diffusion parabolic
equation in the one space dimension. For such parabolic equations it is known (cf. [1],
[24]) that the stable and unstable manifolds of steady states intersect transversally.

Let us assume that each steady state ū of (11.1.6) is hyperbolic. Since the steady state
equation for (11.1.6) is a Sturm-Liouville problem the last assumption is equivalent to the
claim that the spectrum of the linear operator B1[u] ≡ ν2uxx − u − g′(ū(x))u, u(0) =
ux(1) = 0, does not contain zero as an eigenvalue for any steady state solution ū. As the
set {u ∈ C1

bdd(0, 1); u(0) = 0} is continuously embedded into Xγ , for any 0 ≤ γ ≤ 1/2, by
Proposition 3.2.1, we know that the set E of steady states if bounded and hence finite. In
such a case the asymptotic behavior of S̃0 is simple - each trajectory tends to some steady
state. Indeed, one easily derives

1
2
d

dt

{
‖u(t)‖2 + ‖u(t)‖21/2 +G(u(t))

}
+ ‖ut(t)‖2 = 0 for any t > 0

where u(.) is a solution of (11.1.6) and G(u(t, .)) := 2
∫ 1

0

∫ u(t,x)

0
(g(ξ)−fξ) dξ dx. Since g is

assumed to be bounded the functional in brackets is bounded from below and nonincreasing
along non-constant trajectories {u(t), t ≥ 0, u(0) ∈ X1/2}. On the other hand, for any
solution u(.) with u(0) ∈ Xγ we have u(t0) ∈ X1 ⊂ X1/2, for t0 > 0. With this we
can argue similarly as in (3.2.6) and Theorem 3.2.2. Hence any solution u(.) of (11.1.6)
converges in Xγ to some steady state. For any semiflow with such a gradient structure
we have that the set of non-wandering points coincides with the set of steady states.
Summarizing the above facts we obtain

Theorem 11.1.1. For any α > 0 (α = 0) there exists a local invariant manifoldMα (M̃0)
and a compact global attractor Aα ⊂Mα (Ã0 ⊂ M̃0)) for the semiflow Sα (S̃0) generated

† The symbolWu(p)∩>W s(q) denotes the transversal intersection of the stable manifold
W s(q) of q and the unstable manifold Wu(p) of p. We refer to [21] or [32] for definition of
the set of non-wandering points
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by system (11.1.1). If, in addition, each steady state of (11.1.6) is hyperbolic then the
semiflow S̃0 on Ã0 is topological equivalent to that on Aα, for α > 0 small.

Remark 11.1.2. Let us recall that the qualitative properties of the semiflow on the at-
tractor of a scalar reaction diffusion equation are very well understood. For instance, in [9]
Brunovský proved that the attractor of some scalar RDE is a smooth graph. Moreover, in
[10] Brunovský and Fiedler completely characterized connections between any two steady
states of some RDE. Theorem 11.1.1 tells us that topological properties of the attractor
of (11.1.6) extend to the attractor of full system (11.1.1) whenever all steady states are
hyperbolic and α > 0 is sufficiently small. An information regarding topological equiva-
lence of attractors Aα and Ã0 enables us to investigate the asymptotic behavior of reduced
problem (11.1.6) instead that of the full system of governing equations (11.1.1) for α > 0
small enough. Notice that all numerical simulations of Section 6 were also performed for
the parameter value α = 0. The obtained results matched those for α ≈ 10−9.

Remark 11.1.3. Besides functions of Van der Walls type satisfying (W) one can also treat
more complicated functions g ∈ C2(R) having arbitrarily many loops. As an example of
such a constitutive dependence between steady shear stress and steady strain rate, one can
consider the Spriggs model of shearing motions with infinitely many constitutive equations
with different relaxation times. The interesting reader is referred to the textbook by Chang
Dae Han [12, p.41]. If the function g has more than one loop then following the approach
of Section 3.3 one can establish the existence of another steady states of (3.3.1) having
more then one abrupt transitions. In such a case, the attractor Ã0 will contain more than
three steady states.

Finally, we will discuss generic hyperbolicity of steady states.

Remark 11.1.4. In the following we will denote C1(R) the linear topological space con-
sisting of all continuously differentiable functions on R endowed either by strong norm or
the weak C1 topology (see [32]). We also denote Y := {g ∈ C1(R), g(0) = 0} the subspace
of C1(R) equipped with the induced topology of C1(R). We will show that there is an
open dense subset G of the set

M := {g ∈ Y ; g′(0) > 0, ug(u) > 0 for u 6= 0}

such that all solutions of the problem (3.3.1) are hyperbolic provided that g ∈ G. For
the proof of the above statement we make use of an infinite dimensional version of the
transversality theorem due to Quinn and Uhlenbeck (cf. [42, Theorème 1.1]).

Let f > 0 be fixed. Assume that g : R → R is a continuous function such that
ug(u) > 0 for u 6= 0 and g′(0) > 0. Let ū be an arbitrary solution of (3.3.1). By taking the
inner product (., .) in L2(0, 1) of (3.3.1) with ū and using the sign property of g we obtain
−ν2

∫ 1

0
(ū′)2 ≥ −(fx, ū). Hence |ū(x)| ≤ ν−2f for any x ∈ [0, 1]. Since ū is a solution of

(3.3.1) satisfying the boundary conditions ū(0) = ūx(1) = 0 and g(u) < 0 for u < 0 an
obvious concavity argument (see Proposition 3.2.1) enables us to conclude that 0 < ū(x)
for any x ∈ (0, 1].



11.1 The limiting behavior of invariant manifolds ... 67

Denote Z the Banach space C1
bdd(0, ν

−2f). First, we will show that there is a dense
subsetO of the Banach space Z such that any problem (3.3.1) with g(u) := uexp (%(u)), u ∈
[0, ν−2f ], for some % ∈ O has all solutions hyperbolic.

Indeed, for any % ∈ Z we define the C1 mapping F : X × Z → X by

F (u, %) := u+ A−1[u(1 + exp (%(u)) )− fx]

Since the operator A−1 : X → X is compact we obtain that F is a Fredholm mapping in
u of index zero. Furthermore, using the a priori estimate of solutions of (3.3.1) one can
easily verify that the set of u ∈ X such that F (u, %) = 0 with % belonging to a compact
subset of Z is relatively compact in X . Hence the mapping F is proper in the sense of
[42, (1.3)]. Moreover, if 0 is a regular value of F (henceforth we will write F ∩> {0} ) then,
by [42, Theorème 1.1], the set O := {% ∈ Z;F (., %) ∩> {0} } is a dense open subset of Z.
It means, however, that all solutions of (3.3.1) with g(u) := uexp (%(u)) are hyperbolic
whenever % ∈ O.

It remains to prove that F ∩> {0} which means that the total differential

X × Z 3 (u, %) 7→ DF (ū, %̄)(u, %) := DuF (ū, %̄)u+D%F (ū, %̄)% ∈ X (11.1.15)

is onto at every point (ū, %̄) ∈ F−1(0). Let (ū, %̄) ∈ F−1(0). Then ū is a solution of
(3.3.1) with ḡ(u) := uexp (%̄(u)). Denote B the linearization of (3.3.1) at ū, i.e. Bu ≡
ν2uxx − u− ḡ′(ū(.))u, u(0) = ux(1) = 0 where D(B) = D(A) = {u ∈ W 2,2(0, 1); u(0) =
ux(1) = 0} ⊂ X . The surjectivity of the linear operator defined by (11.1.15) is equivalent
to that of the linear operator

D(B)× Z 3 (u, %) 7→ Bu− ū(.)exp (%̄(ū(.)))%(ū(.)) ∈ X (11.1.16)

In case 0 6∈ σ(B) the equation

Bu− ū(.)exp (%̄(ū(.)))%(ū(.)) = w (11.1.17)

has a solution (u, %) ≡ (B−1w, 0) for any w ∈ X . On the other hand, if 0 ∈ σ(B) then
equation (11.1.17) has a solution iff the element w+ū(.)exp (%̄(ū(.)))%(ū(.)) is orthogonal to
Ker(B) for some % ∈ Z. Since B is a Sturm-Liouville operator we have Ker(B) = span{u0}
for some u0 6≡ 0. Now suppose to the contrary that

(w + ū(.)exp (%̄(ū(.)))%(ū(.)), u0) 6= 0 for any % ∈ Z

Then
∫ 1

0
%(ū(x))ũ0(x) dx = 0 for any % ∈ Z where ũ0(x) := ū(x)exp (%̄(ū(x)))u0(x). With

regard to the assumption f > 0 and g′(0) > 0 we obtain ū′(0) > 0. Hence there are
a, b > 0 such that ū−1([0, b]) = [0, a] and, moreover, ū is one-to-one on [0, a]. Since the
set C1

bdd(0, ν
−2f) is dense in L2(0, ν−2f) we obtain

∫ a

0
%(ū(x))ũ0(x) dx = 0 for any % ∈ Z.

According to the Stone-Weierstrass theorem the set {φ ∈ L2(0, a), φ(.) = %(ū(.)), % ∈ Z}
is dense in L2(0, a). Therefore ũ0 ≡ 0 on [0, a]. But this yields u0 ≡ 0 on [0, a]. Hence
u0 ≡ 0 on the whole interval [0, 1], a contradiction. This way we have shown that the
linear operator defined in (11.1.16) is onto. Hence F ∩> {0}.
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The above result provides a ”density argument” in the proof. Indeed, let us denote

G := {g ∈M such that all solutions of (3.3.1) with g are hyperbolic }

Take an arbitrary ḡ ∈ M. Obviously, in any neighborhood of ḡ we can find a g̃ ∈ M
such that there exists g̃′′(0) 6= ±∞. Moreover, we have 0 < ū(x) ≤ ν−2f, x ∈ (0, 1], for
any solution ū of (3.3.1) with g ∈ M. Hence all consideration concerning either density
or openness of G in M do not depend on whether we operate with strong norm or the
weak C1 topology on R. Furthermore, it should be obvious that in the proof of density of
G in M it suffices to find a g ∈ C1

bdd(0, ν
−2f), arbitrarily close to g̃ in C1

bdd(0, ν
−2f) and

such that all solutions of the problem (3.3.1) with g are hyperbolic. To do so, let us define
%̃ := log(g̃(u)/u) ∈ C1

bdd(0, ν
−2f). Then there is a % ∈ C1

bdd(0, ν
−2f) sufficiently close to %̃

with the property that all solutions of (3.3.1) with g(u) := uexp (%(u)) are hyperbolic. It
completes the proof of density of G in M.

As it usual in similar circumstances, the proof of openess of G in M is easier than
that of density and, for instance, one can argue in the same way as in [40, Section 4]. We
omit this detail of the proof.

11.2 Second order evolution equations arising in some
elastic systems with structural damping

Finally, we will study second order abstract evolution equations of the form

αu′′ + Aκu′ +Au = f(u)

u(0) = u0, u
′(0) = v0 (11.2.1)α

where A (the elastic operator) is a self-adjoint positive operator in a real Hilbert space
X , κ ∈ [1/2, 1), α ≥ 0 and f : X % → X is a nonlinear function for some % ∈ [κ, 1). The
operator Aκ may represent dissipation in elastic systems (cf. [13]).

In recent years, many authors have studied problems having the general form (11.2.1)
(see, e.g. Chen, Triggiani [13], [14] and other references therein). As a motivation for
studying systems like (11.2.1) one can consider some specific beam equations with damping,
e.g.

utt − β∆ut + ∆2u = m(
∫

Ω

| ∇u |2)∆u

u = ∆u = 0 on ∂Ω, u(0, x) = u0(x), βut(0, x) = v0(x), x ∈ Ω (11.2.2)

where Ω ⊂ RN is a smoothly bounded domain, β > 0 is a damping coefficient, m : R+ →
R is a nondecreasing differentiable function measuring nonlocal character of structural
damping of a beam or string (see, for instance, Biler [7], [8], Ševčovič [43]). If we let
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X := L2(Ω), Au := ∆2u, D(A) = {W 4,2(Ω), u = ∆u = 0 on ∂Ω} then problem (11.2.2)
can be rewritten abstractly as problem (11.2.1) with % = κ = 1/2. After a suitable rescaling
time (τ := t/β) one obtains α = 1/β2 and the singular limit α → 0+ corresponds to the
situation when β tends to infinity (see [44]).

Another class of beam equations with damping has been extensively investigated, for
instance, by Ball [4], Čuešov [16], Feireisl [19], Fitzgibbon [20], Ševčovič [44]. Notice that
some wave equations with damping can be also rewritten as (11.2.1) (Webb [49]). However,
in these problems we have either κ = 1 ([4], [20], [44], [49]) or κ = 0 ([34], [16], [19]). Let us
emphasize that the method explained below covers neither the case κ = 1 nor κ ∈ [0, 1/2).

Throughout this section we will assume the following hypothesis

(E)



A : DX (A) ⊆ X → X is a self-adjoint positive unbounded operator in
a real Hilbert space X . The resolvent A−1 is a compact operator on X

κ ∈ [1/2, 1), α ≥ 0

f ∈ C1+η
bdd (X %,X ) for some % ∈ [κ, 1) and η ∈ (0, 1].

We recall that an operator A satisfying (E) has the spectrum consisting of eigenvalues

σ(A) = {λn; n ∈ N} 0 < λ1 ≤ λ2 ≤ ... ; λn →∞ as n→∞
We denote φn the eigenvector of A corresponding to λn, n ∈ N . According to [23, Chapter
1] A is a sectorial operator in X and the fractional powers of A and X can be characterized
as

X ξ = DX (Aξ) = {u ∈ X ;
∞∑

n=1

λ2ξ
n (u, φn)2 <∞}; ‖u‖2ξ = ‖Aξu‖2 =

∞∑
n=1

λ2ξ
n (u, φn)2

(11.2.3)
Knowing the above spectral decompositions, one can readily show that, for any r, s ≥

0, the operator Ar is a self-adjoint positive operator in the Hilbert space X := X s, its
domain being DX(Ar) := DX (Ar+s). The fractional power space Xγ, γ ∈ [0, 1], subject
to the sectorial operator Ar consists of the domain DX (As+γr) and norm on Xγ is given
by ‖u‖Xγ = ‖As+γru‖X for any u ∈ Xγ. Moreover, σ(Ar) = {λr

n;n ∈ N}.
(11.2.4)

Now we return to system (11.2.1). We will make use a change of variables in such a
way that the resulting system fits into the abstract setting investigated in Section 10. To
do so, we let X, Y denote real Hilbert spaces

X := [DX (A(1−ω)κ)]X = X (1−ω)κ, Y := X (11.2.5)

where
ω ∈ (0, (1− %)/κ) (11.2.6)
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is fixed. Let linear operators Aα, Bα, α ∈ [0, α0], in X and Y , respectively, be defined as
follows

Aα :=
Aκ

2α

(
1− (1− 4αA1−2κ

)1/2
)
, Bα :=

1
2

(
1 +

(
1− 4αA1−2κ

)1/2
)
Aκ

for α ∈ (0, α0], α0 > 0 small, and

A0 := A1−κ, B0 := Aκ (11.2.7)

their domains being

DX(Aα) := DX(A1−κ), DY (Bα) := DY (Aκ) for any α ∈ [0, α0] (11.2.8)

Since A0 and B0 are self-adjoint positive operators in X and Y , respectively, with
regard to [23, Chapter 1], we have that they are sectorial ones. Notice that Aα, α ∈ (0, α0],
is well defined. Indeed, using (11.2.3) we obtain

A2κ−1

2α

(
1− (1− 4αA1−2κ

)1/2
)
∈ L(X,X),

for α ∈ (0, α0], and hence

Aα =
A2κ−1

2α

(
1− (1− 4αA1−2κ

)1/2
)
A1−κ

Furthermore,

A−1
α =

Aκ−1

2

(
1 +

(
1− 4αA1−2κ

)1/2
)

Therefore, A0A
−1
α → I in L(X,X). Similarly, BαB

−1
0 → I in L(Y, Y ). Hence the families

of operators {Aα, α ∈ [0, α0]} and {Bα, α ∈ [0, α0]} fulfill the hypotheses (H1)-(H2) and
(H1) on Hilbert spaces X and Y , respectively.

In terms of Aα and Bα, system (11.2.1) can be rewritten as a system of two abstract
equations

u′ + Aαu = w

αw′ +Bαw = f(u)
u(0) = u0; w(0) = w0

α ∈ [0, α1] (11.2.9)α

in the space X × Y . Let us take

γ :=
%− (1− ω)κ

1− κ
and β := 1− ω

Then γ, β ∈ (0, 1) and the functions

g : Xγ × Y β → X ; g(u, w) := w

f : Xγ → Y
(11.2.10)
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satisfy the hypothesis (H3) from Section 9 (here Xγ , Y β denote the fractional power spaces
with respect to sectorial operators A0 = A1−κ, B0 = Aκ, respectively). Indeed, taking
into account (11.2.4), we obtain

Xγ = DX (A(1−ω)κ+γ(1−κ)) = DX (A%) = X %

Y β = DX (Aβκ) = DX (A(1−ω)κ) = X.

Hence, g ∈ L(Xγ × Y β , X) and f ∈ C1+η
bdd (Xγ , Y )

Having developed this background we can apply Theorem 10.2.7 to semiflows gen-
erated by systems (11.2.9)α, α ∈ [0, α0], in the phase space Xγ × Y β . With regard to
Remark 10.2.8 and (11.2.4), the assumptions of Theorem 10.2.7 are fulfilled whenever
infn∈N λ

(1−κ)γ
n /(λ1−κ

n+1−λ1−κ
n ) = 0. Because (1−κ)γ = %−κ+ωκ =: δ and ω ∈ (0, (1−%)/κ),

the last condition becomes

inf
n∈N

λδ
n

λ1−κ
n+1 − λ1−κ

n

= 0 for some δ ∈ (%− κ, 1− κ) (11.2.11)

Theorem 11.2.1. Assume that the hypothesis (E) and (11.2.11) are satisfied. Let γ :=
δ/(1− κ) and β := (δ − %)/κ. Then the conclusions of Theorem 10.2.7 hold for semiflows
generated by systems (11.2.9)α, α ∈ [0, α0], α0 > 0 small enough, in the phase space
Xγ × Y β .

Remark 11.2.2. Let us consider system (11.2.2). It is known ([43]) that there exists a
compact global attractor for a semiflow generated by (11.2.2). Then, analogously as in
Section 11.1, one can modify the function f(u) := m(‖∇u‖2)∆u far from a neighborhood
of an attractor. Hence the assumption f ∈ C1+η

bdd (X%, Y ) is not restrictive when we deal
with local invariant manifolds instead of global ones. By classical spectral results (see, e.g.
Courant, Hilbert [17]), it follows that λn ≈ n4/N2

, where λn, n ∈ N are eigenvalues of the
self-adjoint operator A := ∆2 subject to ”hinged ends” boundary conditions u = ∆u = 0
on ∂Ω. In system (11.2.2) we have κ = % = 1/2. Hence the condition (11.2.11) is satisfied
whenever N = 1 and δ ∈ (0, 1/4).

Remark 11.2.3. Theorem 11.2.1 remains true for the case when the fractional power
operator Aκ is replaced by a general self-adjoint linear operator B which commutes with
A and is comparable with Aκ (cf. [14]), i.e. there are constants a, b > 0 such that

a(Aκu, u) ≤ (Bu, u) ≤ b(Aκu, u) for any u ∈ D(Aκ) = D(B)
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