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Abstract

In short rate interest rate models, the behaviour of thetshte is given by a stochastic dif-
ferential equation (in one-factor models) or a system oftststic differential equations (in
multi-factor models). Interest rates with different métas are determined by bond prices,
which are solutions of the parabolic partial differentiglation. We consider the generalized
Cox-Ingersoll-Ross model, where the short rate is a sum ofBessel square root processes,
which evolve independently. The bond price is a function aturity and the level of each of
the components of the short rate. We do not observe all vakssssary to obtain a bond price.
Therefore, we propose the averaging of the bond prices. Waaer the limiting distribution
of the short rate components, conditioned to have the sural ¢éguhe observable short rate
level. In this way, we obtain the averaged bond prices, wiighbend only on maturity and
short rate. We prove that there is no one-factor model yiglttie same bond prices as are the
averaged values described above.

1. GENERALIZED COX-INGERSOLL-ROSS MODEL OF INTEREST RATES

Term structure models describe the dependance betweeimiaéot maturity of a discount bond
and its present price which implies the interest rate. @uowotus short rate models are formulated
in terms of a stochastic differential equation, or a sysstéithem, for the instanteneous interest
rater (short rate). The bond prices, and hence the term structiird® itnerest rates, are then
obtain by solving the partial differential equation.

In one-factor models, the process describing the shortisatgven by

dr = a(t,r)dt + B(t,r)dw, 1)

wherea(t, r) and3(t, r) are non-stochastic functions. df(t,r) = (0 — r), k > 0, the process
has the property of mean-reversion to the léveh popular class of models is obtained by taking
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o(t,r) = or?. Itincludes Vasicek model with = 0 (Vasicek (1977)), Cox-Ingersoll-Ross (CIR
hereafter) model with = 1 (Cox et al. (1985)); an important article on comparison efttodels
with different~ is Chan et al. (1992).

If the short rate evolves according to 1, then the discountbweith maturity T has the price
P(t,r) which depends on the timeand the current level of the short rate It is given by the
following partial differential equation:

oP OP 1 ,0%P B
_EJF(Q_,\g)EJﬁﬁW—TP = 0, te(0,7) (2)
P(T,r) = 1, 3)

(4)

where\ = \(¢,r) is the market price of risk. The interest rates are then nbthfrom the bond
prices byR(t,r) = — 227 (See Kwok (1998).)

For the specific choices of the market price of risk in Vasiae# CIR models, it is known that
the bond price can be written in the closed formA(f, ») = \\/r in CIR model then the price of

bond with time to maturity- = 7" — ¢ has the form
P(r,7) = A(1)e B,
The functionsA(7) and B(7) satisfy the following system of ordinary differential edjoas
A(t) = KOA(T)B(7)
B(r) = —(k+A0)B— %&B(ﬂ? +1 (5)

with initial conditionsA(0) = 1, B(0) = 0. It can be solved analytically.

There are several possibilities of generalizing one-faotodels, which lead to multifactor
models. They include making a parameter of 1-factor moaelrststic (e.g. stochastic volatility
models Anderson and Lund (1996), Fong and Vasicek (199dd)ing another relevant quantity
(consol rate in Brennan and Schwartz (1982), Europearesitesite in Corzo and Schwartz (2000),
Santamaria and Biscarri (2005)), composition of short fisdey more components (generalized
CIR model in Cox et al. (1985), consol rate and the spreaddmtthe short rate and consol rate
in Schaefer and Schwartz (1984), Christiansen (2002)).

In generalized CIR model, the short ratés the sum of two independent Bessel square root
processes:

o= 1+, (6)
d'f’l = H1(91 —rl)dt+01\/ﬁdw1,
d?“g = /12(02 — Tg)dt + Ugﬁdwg,

where the Wiener processes andw, are independent. If the market prices of risk corresponding
tor; andr, are taken to be,,,/r; and,,/72, then the bond pric&(r, r;, ;) has the form

(7, m1,7m2) = A(T)e™ P! (T =Ba(rre (7)

Y

where A(1) = A;(7)Ay(7) and Ay (1), As(7), Bi(7), Ba(7) are the solutions of the systems of
ordinary differential equations 5 arising in 1-factor mhaeth the appropriate index.
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Figure 1. Examples of term structures correspondeningfterdnt pairs ofr; andr, such that
r1 + ro = 0.04. The averaged term structure is in bold.

2. AVERAGING IN TWO-FACTOR MODELS

Since the components of the short rateandr, are not observable and the observable variable is
only their sumr, the interesting questions are the properties of the awvegay the bond prices
conditioned to the given sum of andr,. This is motived by papers Fouque et al. (2003) about
averaging in stochastic volatility models of stock pricad &otton et al. (2004) about averaging in
stochastic volatility models of ond prices (where the urmobable random quantity is the volatil-
ity), which are used in the series expansion of the prices.alymptotic distribution of the hidden
process is used. It can be justified if the processes havedweéring for a sufficiently long time.

In the same way, we consider the limit distributions in gaheed CIR model. Itis well known
that the limit distribution of a Bessel square root process gamma distribution. Hence the limit
distribution of each of; (i = 1, 2) in (7) are given by

b;
() — a; —a;r; bif 1
fi(rs) —F(bi) e T

whereq; = 2%, b; = 2% for r; > 0 and zero otherwise, and the limit densityrofconditioned to

K3

St
ry+7ro=r1IS

Si(ri) f2(r — 1) Si(ry) fa(r = 1)
T 77" = 7 = , 8
T = b —ods M) ®
where we denoted the numerator of the fractiombyr) to simplify the notation of the following

computations. The bond price (7) can be written in terms,af, »; and the averaged value is
computed as

P(r,r)= / (T, ry,r — 1) f(ry, r)dr. 9)
0
In the same way, the averaged term structure is given by
T 1 _
Plr,r) = / {_ (T LT =T | i (10)
0 T

In Fig. 1 we give an example. It shows the term structuresiogtbby the generalized CIR
model and the averaged term structure computed in the wayied above.
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3. THE MAIN RESULT

In this paper, we study the following problem: We ask, whethere are such functionsandg
that the bond prices are same as the averaged prices froocba2-€R model. We restrict ourselves
to certain processes. Drift and volatility of the processyall as the market price of risk are time-
independent. For zero level of short rate, we require thatWity to be zero,. This consition is
needed to ensure the nonnegativity of short rate. We alsorasthat the volatility parametess
are different for the two processes forming the short ratefiactor CIR model.

Theorem 3.1 Suppose that
1. functionsy, 3, A depend only om (and not onr),
2. functionsy, 3, A are continuous in- = 0,
3. 5(0) =0,
4. o1 # 0.
Then
1. P(r,r) — A(r) asr — 0,

2. &(rr) — A(r) asr — 0,

3. 2(r,1) = —A(r) (25 Bi(7) + 525 Ba(r) ) asr — 0,

4. %275(7, r) is bounded on the neighbourhoodrof= 0.
Now, we state some properties of the Kummer cofluent hypengétc functions, £ in the

following lemma, which will be used in the subsequent probthe theorem 3.1. They can be
found in Abramovitz and Stegun (1972).

Lemma 3.2 1. The following equality holds:

" b . JOI(1+c¢
/0e 2" Hr — x)°dr = rP* %1Fl(b,l+b+c,—ar)

2. The series expansion of (a, b, z) is:

ala + 1)22 +

a
Filab =142
hilab,z) =14 324 07
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Proof of the theorem 3.1: Firstly, we write the term\V/(r) appearing in the densitf(ry, )

and the density itself in the form which will be useful later.

M(r) = /Orfl(ﬁ)fQ("’—Tl)dﬁ:

b1 _bo
Ay Qg —agr, .bi+ba—1

= ——=—e @2 Fi(by, by + by, — (a1 — ao)r).
T(by + b) 1F1(by, by 2, —(ay 2)T)

Substituting into the density yields

f(ry,r) fi(ry) fo(r — 1) =

1 T(by +by) 1

M(r)

— [e—(al—ag)rlrll)l—l(r o rl)b2—1:| ]

1Fy(by, by + by, —(ay — a)r) T(by)T(by) rbrtba—1

Now, we proceed to prove the assertions of the theorem:

1. Substituting (11) into the expression for the averagedllmice gives

P(r,r) = /OTW(T,rl,r—rl)f(rl,'r)drl:

1F1(b1, 01+ ba, =((B1 — Bs) + (a1 — a2)r))

— Ae—BT
1F1(b1, b1 + b, —(a1 — ag)r)

(11)

(12)

Since both denominator and numerator of the fraction in (h2lverge to unity as — 0,

we have
lim P(r,r) = A(T).

r—0

2. We compute the derivative &f with respect tar:

oP " om
8—7— = ; E(T,r1,7ﬂ_rl)f(r17r)drlz
A ) . ) fr (T, — 1) f(r, r)dr
_p — — Bor | — (By — By)*®
(T,’f’) (A 27’) ( 1 2) fOT’W(T’,,,l’T_rl)f(rh’r’)d'f’l

(13)

The numerator of the fraction in (13) is positive for all> 0 and can be bounded from
above byr for w(r,r,r — 1) f(r1,)dr;. Hence the fraction is positive and bounded from
above byr, which implies that it converges to zeroas— 0. Since we already know that

P(r,r) — A(r) for r — 0, we obtain from (13) that

lim a—P(T, r) = A(r).

r— OT

3. In the computation of the derivati\%

oP "0 0
W:/o a—:(T,?“l,’f’—’f’l)f(’f’l,T)+W(T,T1,T—T1)a—i(T1,T)dT1

(14)
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there are two derivatives which need to be compu%;dand %. Now, we evaluate these
expressions. Firstly,

E(T,Tl,r—rl) = —By(T)m(T, 71,7 — 71). (15)
Secondly,
of Silr) fs(r —m) — A(r) fo(r =)
or ") = M(r) 2y M)
folr—=r)  fy fi(s)fo(r — s)ds
= ) - rr 16
T 5 =) ™ T AG) = 5)ds (19
Noting that
f3(z) 1
=—as+ (by —1)—
fg(l‘) ag ( 2 ).’L’
and using itin (16) gives
af 1 fO o s fg r — s)ds
8—(7’17 r) = f(ri,r)(bs — 1) [T T f1 f2 F s | (17)
Substituting (15) and (17) into (14) yields after the reagement
or 0 rlﬂ'(T ri,r — 1) f(ry,r)dr
or =P =B+ (b= 1) ( fo 7,11, —11) f(r1,7)dr;
b T;%lfl(ﬁ)ﬁ(?”—ﬁ)dﬁ . (18)
Jo fi(ri) fa(r = ri)dr
Let us denote
. for ﬁﬂ'(T, ri, 7 —ry) f(ry,r)dr X, J’OT ﬁfl(rl)]%(r — Tl)dﬁ.
for m(T,r1, 7 — 1) f(ry,r)dr ’ for fi(r1) fa(r —r1)dr
In this notation,
oP
87’ = P(T 7") [ BQ + (bg — 1) (Xl — XQ)] (19)
We write each of the expression§ and X, in terms of functions F7:
X lbl‘i‘bQ_llFl(blabl"‘lb_17_((BI_BQ)+(QI_Q2>T)) (20)
' rooby—1 1By (b1, by + bo, —((By — Bs) + (a — ag)r))
and in a similar way
X2:lleer_11F1(bl’bl+62_1’_(a1_GZ)T). (21)

T bg-l 1F1(bl,bl+b2,—(a1 —CLQ)T’)
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ne oP 101 +b—1 |G G
2 1 3
X, — X _ 2 _ AT M3

! 2 or r b2—1 |:G2 G4:|7

where we denoted

G = 1Fi(bi,bi + by — 1, =((B1 — Ba) + (a1 — az))r),

Gy = 1Fi(b1, b1 + by, —((B1 — Ba) + (a1 — a2))r),

Gs = 1Fi(b1,by +by—1,—(a; —ag)r),

Gy = 1Fi(b1,b1 + by, —(a1 — ag)r). (22)

Because&7,G, — 1 asr — 0, we need to computé, G, — G>G3 to be able to compute the

limit of (18) Since

b
G1 = 1- m((Bl - BQ) + (CL1 - a2))r + O(T)’
b
Gy = 1-4 ; b (Bi = Ba) & (@1 — ag))r +o(r),
b
Gg = 1- m(al — ag)T’ + O(T),
b
G = 1= ol —a)r +o(r), (23)
we have
GiGy— GGy = 1 (—— D +o(r) (24)
1G4 2z = by + by — 1 by + by )
Hence

Ny, - k11 [(BI_BQ)(_ b b )+0(T)}:

bg—l G2G4 bl+b2—1 b1+bg r
and b1 +b 1 b b
. + 02 — 1 1
Xy =X == =5~ (B 2)( bl+bg—1+bl+bg)

Finally, we can compute the limit of (18)

. OP :
lim ——(r,r) = Hm P(7,r) [=B + (b — 1) (X1 = Xp)] =

_ A[—Bg+(b1+bg—1)(Bl_B2>( i’ : )}:

- +

by +by—1 by +by

by b

= —A By + Byl .
{b1+bQ Y b by 2}

4. We show that there is a finite limit c%%:'(r, r) asr — 0, from which the boundedness

follows.



8 B. Stehlikova

From (18) we have

0*P  OP O[—Bs+ (by — 1) (X7 — X3)]
— = —|[-B -1 (X;— X P
57 = o [=Ba + (b2 — 1) (X1 — Xp)] + o
From the definition ofX; and X, and already computed limits it follows, that it suffices to
show the existence of the finite limit gt (1 F(r)) for r — 0+, where

Gi(r)  Gs(r)
GQ(T) G4(T)'

F(r)= (25)

Assuming F(r) has the series expansidi(r) = > . ar"., the conditionay = 0 is
sufficient for boundedness of the teefh (1F(r)) in the neighbourhood of = 0, which
holds for (25).

Theorem 3.3 Under the hypotheses of the theorem 3.1, there is no onerfiaterest rate model,
for which the averaged bond prices satisfy the PDE up to thenaryr = 0.

Proof: By limit » — 0 in the PDE (2) we obtain, using the results from the previbestem,
that for all+ > 0.

—A(7) 4+ a(r = 0)(—A(1)) (b1 Zji n By(1) + , lji 3 32(7)) —0
From this we calculate the value of the functierior » = 0:
O‘(’"IO):_j(T)bBT L _ A bitbs
(7) ) . Palelr) A(T) by By (7) + by By (7)
It follows that '
AT bt . o6

A(T) by B1(T) + by Ba(7)

wherek(; is a constant (independentof.

Now we recall that the the functiod(r) from the 2-factor CIR model can be writen as
A(1) = Ay(7)A2(7), whereA, (7) and Ay (7) are functions appearing in the original CIR model,
correspondening to each of the equations-faandr,. Hence they satisfy

Az(T) = k0, Ai(T)Bi(1) (i =1,2)
and so we get

A(T) | AP A7) + A Aa(r)  Avlr) ) L )
Ar) Ay (1) As(T) T A(r) | A(r) 101 B1(T) + K262 Ba(T).

So the expression in (26) is

A(T) bl + b2 bl + b2

T R B VR WO
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Sinceb, + by Is constant, the important part is the following fractiomigh has to be equal to some

constantk:
/@19181 (T) + /@2(9232(7')

=K.
blBl(T) -+ bQBQ(T)

It implies that
k101 B1(T) + Kol Ba (1) = K (b1 B1(T) + baBa(7))

and so
(1{101 — Kbl)Bl(T) = (Kbg — 1{202)32(7’)

for eachr > 0. Itis possible in two ways:
1. k101 — Kby = 0, Kby — k205 = 0,
2. By(7) = ¢By(1), wherec is a constant.
Now we look at each of these possibilities:
1. The same constakf appears in both equalities. From the first one (kg — [(2191 = 0),

we getK = =% and by substituting the value 6f = 221, we obtaink = 7. In the
1

same way, from the second equality (i/€b; — k2605 = 0), we obtainK = “—25 But by the
hypothesisg? # o2, which is a contradiction.

2. We recall the equation fds;, from CIR model:
_Bi(7) = (k1 + Mo1) Bu(7) + %afBl(rV Y 27)
From the similar equation faB,(7)
~Bo(r) = (k2 + o) Ba(7) + 53 Balr) — 1, 28)
together withB, (1) = ¢B» (1), we obtain another expression fBj:
_By(r) —c {(@ + Ao0ra) Ba(r) + %JQBQ(T)Q . (29)
The right-hand sides of (27) and (29) have to be equal:

1 1
¢ [ (kg + Aa02)Ba(T) + 50232(7')2 — 1} = (k1 + M\o1)Bi(1) + 50%31(7)2 -1

for all 7 > 0. By continuity, the equality holds also in the limit= 0+. From this, we get
¢ = 1 and hence the function3, (7) and By(7) coincide. We denote this function liy().
By subtracting equations (27) and (28) we obtain:

[—(Iil + )\10’1) + (/ig + /\10‘1)] B(T) + |:—%O'% + %0’%] BQ(T) =0

and, dividing byB(7) (which is nonzero)
1
[— (k1 + A\1o1) + (K2 + Mo1)] — 5 [05 — cr%] B(t)=0.

Sinceo; # oy, itimplies thatB(7) is a constant function, which is a contradiction.
Since both possibilities lead to a contradiction, the theors proved.
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4. CONCLUSION

We considered the 2-factor Cox-Ingersoll-Ross model eirgdt rates and the averaged bond prices
with respect to the asymptotic distribution of the procedseming the short rate, conditioned on
the observable short rate level. Such averaged values acgdns of the maturity and the short
rate. Solutions of one factor models are the fuctions of #mesvariables. Hence we studied the
question, whether there is a one factor model yielding tineesond prices as those obtained by
averaging in the 2-factor Cox-Ingersoll-Ross model. Wevpdathat the answer is negative. In the
future, we plan to study this question also for another tactdr models.
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