
Journal of ELECTRICAL ENGINEERING, VOL. 57, NO. 7/s, 2006, 65{67FAST MEAN REVERTING VOLATILITY INFONG{VASICEK MODEL OF INTEREST RATESBe�ata Stehl��kov�a �In Fong-Vasicek model of interest rates, the instantaneous interest rate (short rate) follows a mean reverting processand its volatility follows a Bessel square root process. We consider di�erent time scales for the volatility and the short rateprocesses and we are interested in properties of the term structures, which correspond to fast mean reverting volatility. Themain result of this paper is the proof of the monotone decrease of the di�erence between interest rates with the same valueof short rate and volatility, as the speed of volatility evolution increases.K e y w o r d s: interest rates, Fong-Vasicek model, fast mean reverting volatility2000 Mathematics Subject Classi�cation: 91B281 INTRODUCTIONTerm structure of interest rates is the dependence be-tween the interest rates and the time to maturity. Shortrate models are formulated in terms of a stochastic dif-ferential equation (or a system of them) for the instanta-neous interest rate (short rate). Other interest rates aredetermined by bond prices, which are solutions of thepartial di�erential equation. This equation is derived byconstructing a non-stochastic portfolio and using the no-arbitrage principle (c.f. [3]). In [3], a review of short termmodels can be also found.In this paper we deal with the Fong-Vasicek model ofinterest rates [2]. It is a two-factor model, in which thevolatility itself is stochastic, too. We study the volatility,which evolves in a di�erent time scale than the short rate.In particular, we are interested in fast mean revertingvolatility. This is motivated by paper [1], where the seriesexpansion of the bond price with respect to the parameterdescribing the time scale of volatility is derived. Thisexpansion is used to study the asymptotics.We are interested in fast mean reverting volatility too.However, we do not want to restrict ourselves only to theasymptotics, we are interested in the behaviour for thehigh (but �nite) speed as well. We consider two interestrates with di�erent times to maturities, corresponding tothe same value of the short rate and volatility. We provethat under some conditions the di�erence between theseinterest rates is a decreasing function of the volatilityspeed.

2 FONG{VASICEK MODELOF INTEREST RATESIn Fong-Vasicek model, the short rate follows the fol-lowing system of stochastic di�erential equations:dr = �1(�1 � r)dt+pydw1 ;dy = ~�2(�2 � y)dt+ ~vpydw2 ; (1)where � 2 (�1; 1) is the correlation between the incre-ments of the Wiener processes w1 and w2 .If the market prices of risk of the short rate and ofthe volatility are �1py and �2py respectively (for someconstants �1 and �2 ), the price of bond with time tomaturity � has the form (see [2])P (�; r; y) = A(�)e�B(�)r�C(�)y: (2)Hence the interest rates are given byR(�; r; y) = � logP (�; r; y)� =� logA(�)� + B(�)� r + C(�)� y : (3)There are several numerically e�cient ways of computingthe functions A(�), B(�) and C(�) appearing in (2) and(3), see [2], [4], [5].In what follows, we assume that the condition on �1holds: �1 � � 12�1 : (4)In [5] we derived some properties under this condition,which will be used in this paper. We also use the following� Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynsk�adolina, 842 48 Bratislava, Slovakia. E-mail: stehlikova@pc2.iam.fmph.uniba.skResearch supported by VEGA Grant 1/3767/06 and Comenius University Grant UK/396/2006ISSN 1335-3632 c 2006 FEI STU
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Fig. 1. The e�ect of increasing speed of the volatility evolution on term structures (time to maturity on the horizontal axis, interest rateon the vertical axis). The term structures in each �gure correspond to di�erent values of volatility.characterization of the functions A;B;C : they satisfy thesystem of ordinary di�erential equations_A = �A(�1�1B + ~�2�2C) ;_B = ��1B + 1 ;_C = ��1B � ~�2C � �2 ; (5)with initial conditions A(0) = 1, B(0) = 0, C(0) = 0and they can be written in the following form:B = �1� e��1��=�1 ;_C = �h�1B + B22 + �~�2 + �2~v + ~v�B�C + ~v22 C2i;A = exp���1� + �1B � ~�2�2 Z �0 C(s)ds� : (6)
3 FAST MEAN REVERTING VOLATILITYIf the volatility evolves in a time scale with the unit" > 0, then the equation for y in (1) becomesdy = ~�2" (�2 � y)dt+ ~vp"pydw2:The fast mean reverting volatility corresponds to smallvalues of " and the limit "! 0. If we de�ne �2 = ~�2=" ,v = ~v=p" , we obtain the stochastic di�erential equationdy = �2(�2 � y)dt+ vpydw2 ;where the ratio �2=v2 is constant. Hence we can �x theratio �2=v2 = k (7)and consider the fast mean reversion as large values of v(and the corresponding values of �2 ) and limit v !1 .4 THE MAIN RESULTFirstly, we present a numerical example. In Fig. 1,there are terms structures for the same values of parame-ters �1 , �1 , �2 and k , the same values of short rate and

volatility, but the increasing speed of volatility evolution.We notice that the di�erences between the interest ratesdecrease with increasing speed of volatility. In the rest ofthis paper, we prove this observation analytically.Before the proof itself, we recall from [5] certain prop-erties which hold if the condition (4) is satis�ed: C(�) ispositive for � > 0 andC(0) = 0 ; _C(0) = 0 ; �C(0) = ��1 : (8)Let us now de�ne D(�; v) = @C@v (�; v) :We show that there exists v0 such that D(�; v) < 0 forall � > 0, whenever v > v0 . The proof consists of twosteps. Firstly, we show that if D = 0 for some su�cientlylarge v and some � > 0, then _D < 0. Secondly, takinga large �xed v , we show that the function D is negativeon some neighbourhood of � = 0. In the whole proof, weassume that the function C is su�ciently smooth.Suppose that D = 0 for some v > 0 and � > 0.Di�erentiating the equation for C in (6), we obtain theequality for this point (�; v):_D = �[(2k v + �2 + �B)C + v C2] : (9)The function B is bounded and k is a positive constant,hence there is v0 such that for v > v0 the followinginequality holds for all � > 0:2k v + �2 + �B > 0 : (10)Since C > 0, if D = 0 for some v > v0 and � > 0, from(8) and (9) we obtain _D < 0.Di�erentiating the equation for C we obtainD(0; v) = 0 ; _D(0; v) = 0 ; �D(0; v) = 0 ;. . .D (0; v) = �(2k v + �2 + �B(0; v)) �C(0; v) :From (9) it follows that 2k v + �2 + �B(0; v) > 0 forv > v0 ; from (7) and (4) it follows that �C(0; v) < 0.Hence for v > v0D(0; v) = 0 ; _D(0; v) = 0 ; �D(0; v) = 0 ; . . .D (0; v) < 0 :



Journal of ELECTRICAL ENGINEERING VOL. 57, NO. 7/s, 2006 67This implies that D(�; v) < 0 for � from an interval ofthe form (0; ~�). This completes the proof.Let us now consider � > 0. We have shown thatC(�; v) i s decreasing in v for v > v0 . Furthermore, thefunction C is positive for � > 0. Hence, there exists thelimit of C(�; v) as v approaches in�nity. De�neL(�) = limv!1C(�; v)for � > 0; it is clear that L(�) � 0. We show that the casewhen L(�� ) > 0 for some �� > 0 leads to an unrealisticbehaviour of the term structures (interest rates convergeto in�nity). Hence, we will further study only the casewhen L(�) = 0 for all � .Suppose that L(�� ) > 0 for some �� > 0. Firstly, weshow that L(�) > 0 on an interval (�� � h; ��) for someh > 0. Evaluating the derivative _C in � = �� gives_C = ��(�1B +B2=2) + v (�2 + �B)C + v2(k + C=2)C�;which approaches in�nity as v ! 1 . Hence for v > ~vthe derivative _C(�� ; v) is negative. It follows that for �from an interval of the form (�� � h; ��) the inequalityC(�; v) > C(�� ; v) holds. Taking limit for v ! 1 weobtain L(�) > L(��), so L is positive also for � 2 (�� �h; �� ). We proceed to the computation of the limit ofinterest rates as v ! 1 . Using (3) and (6) , we writethe interest rate R(�; r; y; v) asR = �1(1� B� ) + �2k� v2 Z �0 C(s; v)ds+ B� r + C� y :We show that the integral R �0 C(s; v)ds has a positivelimit for v ! 1 , if � is suitably chosen. It implies thatfor these maturities also the interest rates R(�; r; y; v)converge to in�nity. We obtain this assertion from thefollowing computation:limv!1 Z �0 C(s; v)ds = Z �0 limv!1C(s; v)ds = Z �0 L(s) : (11)Choosing � such that the interval (�� � h; �� ), in whichL is positive, is contained in the interval (0; �), yields toa positive value of the integral R �0 L(s)ds . To justify the�rst equality in (10), it su�ces to show thatlimn!1 Z �0 C(s; vn)ds = Z �0 limn!1C(s; vn)dsfor all sequences v1 < v2 < : : : . This equality holdsbecause with the possible exception of some �rst terms,

the sequence fC(s; vn)gn�1 is decreasing and convergentfor all s 2 (0; �), which allows us to apply Lebesgue'smonotone convergence theorem.We now analyze the second case left, when L(�) = 0for all � > 0. Let us consider two values of the volatilityy , without loss of generality we can assume that y1 <y2 . Then R(�; r; y1; v) < R(�; r; y2; v) and the di�erencebetween the two interest rates isR(�; r; y2; v)�R(�; r; y1; v) = C(�; v)y2 � y1� :As a function of the variable v , the term (y2 � y1)=�is a positive constant, and C(�; v) is a decreasing func-tion for large values of v . Hence also the di�erence be-tween the interest rates decreases with increasing valueof the parameter v . Recalling that the limit for v ! 1is L(�), which equals zero, we conclude that the di�er-ences between the interest rates converge to zero and thisconvergence is monotone for large values of v .5 CONCLUSIONSWe investigated fast mean reverting volatility in Fong-Vasicek model of interest rates. We proved that underspeci�ed conditions the di�erence between the interestrates corresponding to the same value of short rate andvolatility is a decreasing function of the speed in whichthe volatility evolves.References[1] COTTON, P.|FOUQUE, J.-P.|PAPANICOLAOU, G.|SIR-CAR, K. R. : Stochastic Volatility Corrections for Interest RateDerivatives, Mathematical Finance (2004), 173{200.[2] FONG, H. G.|VASICEK, O. A. : Fixed-Income Volatility Man-agement, Journal of Portfolio Management (1991), 41{42.[3] KWOK, Y. K. : Mathematical Models of Financial Derivatives,Springer Verlag, New York, Heidelberg, Berlin, 1998.[4] SELBY, M.|STRICKLAND, C. : Computing the Fong andVasicek Pure Discount Bond Price Formula, Journal of FixedIncome (1995), 78{84.[5] STEHL�IKOV�A, B.|�SEV�COVI�C, D. : On a Volatility Averag-ing in a Two-Factor Interest Rate Model, Proceedings of Algo-ritmy (2005), 325{333. Received 31 May 2006Be�ata Stehl��kov�a (RNDr) is a PhD student of appliedmathematics at the Faculty of Mathematics, Physics and In-formatics, Comenius University, Bratislava. Her supervisor isAssociate Professor Daniel �Sev�covi�c.


