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FAST MEAN REVERTING VOLATILITY IN
FONG—-VASICEK MODEL OF INTEREST RATES

Beata Stehlikova

In Fong-Vasicek model of interest rates, the instantaneous interest rate (short rate) follows a mean reverting process
and its volatility follows a Bessel square root process. We consider different time scales for the volatility and the short rate
processes and we are interested in properties of the term structures, which correspond to fast mean reverting volatility. The
main result of this paper is the proof of the monotone decrease of the difference between interest rates with the same value
of short rate and volatility, as the speed of volatility evolution increases.
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1 INTRODUCTION

Term structure of interest rates is the dependence be-
tween the interest rates and the time to maturity. Short
rate models are formulated in terms of a stochastic dif-
ferential equation (or a system of them) for the instanta-
neous interest rate (short rate). Other interest rates are
determined by bond prices, which are solutions of the
partial differential equation. This equation is derived by
constructing a non-stochastic portfolio and using the no-
arbitrage principle (c.f. [3]). In [3], a review of short term
models can be also found.

In this paper we deal with the Fong-Vasicek model of
interest rates [2]. It is a two-factor model, in which the
volatility itself is stochastic, too. We study the volatility,
which evolves in a different time scale than the short rate.
In particular, we are interested in fast mean reverting
volatility. This is motivated by paper [1], where the series
expansion of the bond price with respect to the parameter
describing the time scale of volatility is derived. This
expansion is used to study the asymptotics.

We are interested in fast mean reverting volatility too.
However, we do not want to restrict ourselves only to the
asymptotics, we are interested in the behaviour for the
high (but finite) speed as well. We consider two interest
rates with different times to maturities, corresponding to
the same value of the short rate and volatility. We prove
that under some conditions the difference between these
interest rates is a decreasing function of the volatility
speed.

2 FONG-VASICEK MODEL
OF INTEREST RATES

In Fong-Vasicek model, the short rate follows the fol-
lowing system of stochastic differential equations:

dr = k(61 — r)dt + Jydw, ,

dy = K2(02 — y)dt + 0/ydws , )
where p € (—1,1) is the correlation between the incre-
ments of the Wiener processes w; and ws.

If the market prices of risk of the short rate and of
the volatility are A;,/y and A»,/y respectively (for some
constants A; and As), the price of bond with time to
maturity 7 has the form (see [2])

P(r,1,y) = A(r)e” B0, (2)
Hence the interest rates are given by

log P(1,7,y)

R(r,ry) =

B log A(T) . B(T)T+ C(T)’U' (3)

T T T

There are several numerically efficient ways of computing
the functions A(7), B(r) and C(r) appearing in (2) and
(3), see [2], [4], [5]-

In what follows, we assume that the condition on A

holds:
1

A< ——. 4
e (@
In [5] we derived some properties under this condition,
which will be used in this paper. We also use the following
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Fig. 1. The effect of increasing speed of the volatility evolution on term structures (time to maturity on the horizontal axis, interest rate
on the vertical axis). The term structures in each figure correspond to different values of volatility.

characterization of the functions A, B, C': they satisfy the
system of ordinary differential equations

A = —A(k10, B + 726,0)
B=—-kB+1, (5)
C=-MB=#0C—X\,

with initial conditions A(0) = 1, B(0) = 0, C(0) = 0
and they can be written in the following form:

B=(1-¢e"7)/k,

) 2 D

B i o 2
C = 7[)\13 + - + (14,2 + Xad +1)pB)C’ + 502}, (6)

A= exp(ff)lT +0,B — finbs / C’(S)ds) .
J0

3 FAST MEAN REVERTING VOLATILITY

If the volatility evolves in a time scale with the unit
g > 0, then the equation for y in (1) becomes

dy = %(92 —y)dt + %ﬂde.

NG

The fast mean reverting volatility corresponds to small
values of £ and the limit € — 0. If we define ks = Ky /¢,
v = 0U/+/€, we obtain the stochastic differential equation

dy = k2(02 — y)dt + vy/ydws ,

where the ratio ko/v? is constant. Hence we can fix the
ratio
Ko [v? =k (7)

and consider the fast mean reversion as large values of v
(and the corresponding values of ) and limit v — oc.

4 THE MAIN RESULT

Firstly, we present a numerical example. In Fig. 1,
there are terms structures for the same values of parame-
ters k1, 01, #2 and k, the same values of short rate and

volatility, but the increasing speed of volatility evolution.
We notice that the differences between the interest rates
decrease with increasing speed of volatility. In the rest of
this paper, we prove this observation analytically.

Before the proof itself, we recall from [5] certain prop-
erties which hold if the condition (4) is satisfied: C'(7) is
positive for 7 > 0 and

C0)=0, C0)=0, C0)=—\. (8)
Let us now define
Dr.) = 2 (7 0)
ov

We show that there exists vy such that D(r,v) < 0 for
all 7 > 0, whenever v > vg. The proof consists of two
steps. Firstly, we show that if D = 0 for some sufficiently
large v and some 7 > 0, then D < 0. Secondly, taking
a large fixed v, we show that the function D is negative
on some neighbourhood of 7 = 0. In the whole proof, we
assume that the function C' is sufficiently smooth.

Suppose that D = 0 for some v > 0 and 7 > 0.
Differentiating the equation for C' in (6), we obtain the
equality for this point (7,v):

D=—[2kv + X +pB)C+vC?%. (9)

The function B is bounded and k is a positive constant,
hence there is vy such that for v > vy the following
inequality holds for all 7 > 0:

2kv+ X2+ pB>0. (10)

Since C' > 0, if D =0 for some v > vy and 7 > 0, from
(8) and (9) we obtain D < 0.
Differentiating the equation for C' we obtain

D(0,v) =0, D(0,v) =0, D(0,v)=0,

D(0,v) = =(2k v + Xy + pB(0,0))C(0,v).

From (9) it follows that 2kv + Ay + pB(0,v) > 0 for

v > vp; from (7) and (4) it follows that C(0,v) < 0.
Hence for v > vy

D(0,v) =0, D(0,0)=0, D(0,v) =0, D(0,v) <0.
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This implies that D(7,v) < 0 for 7 from an interval of
the form (0,7). This completes the proof.

Let us now consider 7 > 0. We have shown that
C(r,v) is decreasing in v for v > vo. Furthermore, the
function C is positive for 7 > 0. Hence, there exists the
limit of C'(7,v) as v approaches infinity. Define

L(r) = vll)nolo C(r,v)
for 7 > 0; it is clear that L(7) > 0. We show that the case
when L(7) > 0 for some 7 > 0 leads to an unrealistic
behaviour of the term structures (interest rates converge
to infinity). Hence, we will further study only the case
when L(7) =0 for all 7.

Suppose that L(7) > 0 for some 7 > 0. Firstly, we
show that L(7) > 0 on an interval (7 — h,7) for some
h > 0. Evaluating the derivative Cint=r gives
C=—[(MB+B?/2)+v (A + pB)C +v*(k + C/2)C],
which approaches infinity as v — oco. Hence for v > ©
the derivative C(7,v) is negative. It follows that for 7
from an interval of the form (7 — h,7) the inequality
C(r,v) > C(7,v) holds. Taking limit for v — oo we
obtain L(r) > L(7), so L is positive also for 7 € (7 —
h,T). We proceed to the computation of the limit of
interest rates as v — oo. Using (3) and (6) , we write
the interest rate R(7,r,y,v) as

B : 5 [T B
R:91(1——)+92—kv2/ C(S=v)ds+—r+gy.
T 0 T T

T

We show that the integral [ C(s,v)ds has a positive
limit for v — oo, if 7 is suitably chosen. It implies that
for these maturities also the interest rates R(r,r,y,v)
converge to infinity. We obtain this assertion from the
following computation:

lim C’(s,v)ds:/ lim C’(s,v)ds:/L(s). (11)
vV—>00 0 0 v—>00 0

Choosing 7 such that the interval (7 — h,7), in which
L is positive, is contained in the interval (0,7), yields to
a positive value of the integral fOT L(s)ds. To justify the
first equality in (10), it suffices to show that

lim C(s,vn)ds :/ lim C(s,v,)ds
n—oo Jq .

0 n—oo

for all sequences v; < wy < .... This equality holds
because with the possible exception of some first terms,
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the sequence {C(s,v,)}n>1 is decreasing and convergent
for all s € (0,7), which allows us to apply Lebesgue’s
monotone convergence theorem.

We now analyze the second case left, when L(r) =0
for all 7 > 0. Let us consider two values of the volatility
y, without loss of generality we can assume that y; <
y2. Then R(r,r,y1,v) < R(7,7,y2,v) and the difference
between the two interest rates is

R(1,7,y2,v) — R(7,7r,y1,0) = C(T,v)u .

T

As a function of the variable v, the term (yo — y1)/7
is a positive constant, and C(7,v) is a decreasing func-
tion for large values of v. Hence also the difference be-
tween the interest rates decreases with increasing value
of the parameter v. Recalling that the limit for v — oo
is L(7), which equals zero, we conclude that the differ-
ences between the interest rates converge to zero and this
convergence is monotone for large values of v.

5 CONCLUSIONS

We investigated fast mean reverting volatility in Fong-
Vasicek model of interest rates. We proved that under
specified conditions the difference between the interest
rates corresponding to the same value of short rate and
volatility is a decreasing function of the speed in which
the volatility evolves.
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