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MODELING VOLATILITY CLUSTERS WITH APPLICATION
TO TWO-FACTOR INTEREST RATE MODELS

Beata Stehlikova

This paper is motived by the study of two-factor interest rate model for valuing term structures. The instantaneous
interest rate (short rate) follows a stochastic differential equation, in which the volatility itself is a solution of another
stochastic differential equation. We are interested in properties of a volatility corresponding to a prescribed asymptotic
form of the distribution. Moreover, we construct a drift function such that the long-time behavior of the distribution of the
stochastic volatility has two humps corresponding to two clusters of volatility. The constructed asymptotic distribution is a
convex combination of distributions corresponding to two mean-reversion processes with different mean levels. Such a model
can explain volatility clustering observed in real interest rate data.
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1 INTRODUCTION

The instantaneous interest rate (short rate) is funda-
mental for pricing of derivatives traded in the market.
Therefore, a lot of work has been done in modeling inter-
est rates.

It is an accepted and documented fact that the volatil-
ity of the short rate is not constant. There are many mod-
els which assuming the level-effect, i.e. higher volatility
for higher interest rates. A comprehensive comparison of:
a class of such models can be found in [5].

This is not the only source of changes in the volatility.
It is possible to observe the periods with stable high
interest rates and periods with unstable low interest rates
(see [4]). One possible way to model such a behaviour is
to use GARCH models (see for example [6]). However,
the interest rate level does not affect the volatility.

It is convenient to consider models including a stochas-
tic volatility depending also on the interest rate level. In
continuous setting, they are often generalizations of level-
models by considering the volatility to follow a stochas-
tic differential equation. They are therefore referred to
as two-factor interest rate models. Examples of this type
are models by Fong and Vasicek [7], Anderson and Lund
[2], Brenner [4] is an example of a discrete model. Many
comparisons of such models have been done (see for exam-
ple [3]). In [9], the method for computing average values
and confidence intervals for bond prices and interest rates
in the presence of unobservable stochastic volatility was
proposed. It was applied to Fong-Vasicek model.

The main goal of this paper is to propose and analyze a
stochastic differential equation for interest rate volatility,
which can be used in continuous two-factor models of the

type
dr = k. (0, — r)dt + /yrdw; , (1)
dy = a(y)dt + v\/ydws . (2)

We are looking for a process capable of describing the
volatility clustering. In this case, the long-term distribu-
tion of volatility has two humps. We describe one class
of such distributions, for which we are able to derive the
corresponding stochastic differential equation.

Simulation of such a process is shown in Fig. 1.
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Fig. 1. Simulation of the process and the histogram of its values.
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consider a process with the volatility b(y) = v,/y. We
restrict ourselves to limiting densities only for this case.
Suppose that the process has a limiting density g(y).
From (3) it follows that g(y) satisfies a stationary Fokker-
Planck equation
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and the normalization condition
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The general solution of (6) is
A real interest rate data example illustrating the
change in volatility is shown in Fig. 2. It shows weekly o Y 2a(s)
observations of 3-month US Treasury Bills rates in years gly) = QBXP( / Fs_ds) (7)
Co

1972-1974. It can be seen that the volatility is higher in
the second half of this time period irrespective of higher
level of interest rate.

It was documented in [10] and [11] that one-factor
models are not sufficient, to capture the behaviour of the.
short rate in western economies as well as in central Eu-
ropean economies. See Fig. 3 from [11] which shows daily
data of BRIBOR in years 2001-2003. Tt suggests that
there are periods with low and periods with high volatil-
ity.

2 DISTRIBUTION OF VOLATILITY

Let the process y(t) satisfy the stochastic differential
equation
dy = a(t,y)dt + b(t, y)dw

subject to the initial condition y(0) = yo. According to
[8], the density function f(¢,y) of y(t) is a solution to
the Fokker-Planck equation

3f  daf)
ot Ay

subject to the initial condition f(0,y) = do(y —ye) where
do is the Dirac function. The density f(t,y) can be ex-
pressed in the closed form only in few cases. But if we
assume that the process evolves a long enough time, we
may approximate its distribution by a limiting distribu-
tion. If the limit lim .. f(t,7) exists and it is a density
function, we will call it a limiting distribution of the pro-
cess y(t) and denote g(y) = lims 00 f(t,9).

Let the process y(t) be non-negative, so it can model
a volatility of the interest rate. In what follows, we will

82

ay?

Lt

2

):0,t>0 (3)

where ¢g € (0, 00) is arbitrary and c is a positive constant.
It is chosen in such a way that the normalization condition
(5) is satisfied.

3 MEAN-REVERTING VOLATILITY

In the case a(y) = k(8 —y), the process y(t) satisfying
(2) is called Bessel square root process. Then a solution
of (6), satisfying the normalization condition (5), is given
by

aaﬁ

T(ab)”

afl—1_—oay

9(y) = (8)
where a = %—'5 It is a density function of the Gamma
distribution with parameters (o, af). The restrictions im-
posed on the behavior of the limiting density in the neigh-
borhood of zero (i.e. g(0+) = 0, g’ is bounded) are sat-
isfied for af > 2.

4 VOLATILITY CLUSTERING

Now we consider two Bessel processes with drifts
a1(y) = k(01 —y) and as(y) = k(62 —y) where 6; < 65,
and the same volatility b(y) = v,/y. Denote @ = 2§ and
suppose that af) > 2, afly, > 2. If we denote g; and
g2 the limiting distributions of these two processes then

their convex combination

9(y) = kg1 (w) + (1 - K)g2(v), k€ (0,1), (9)
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Fig. 4. Example of the convex combination of two Gamma distri-
butions.
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Fig. 5. A weight function w(y).
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Fig. 6. Behaviour of the drift function a(y) with parameters
k=04, 8, =01, 8 =03, v=0.1 (above),
k=01, 6, =01, 02 =0.3, v=0.1 (below).

is a distribution with two humps which can be used in
order to model the volatility clustering. Example of such
a distribution is shown in Fig. 4.

In the following part, we find a process having a lim-
iting distribution of the form (9). It will have the same
volatility b(y) as the two compounded processes. From

(4) it follows that a(y) = ﬁy)% (ngg_gm) . Using a sim-

ilar relationship between a;(y) and g;(y) and between

k
i) +

as(y). Hence the drift a{y) can be written as

as(y) and ga(y), we can write a(y) =

(1—Fk)g2(y)
a(y)

the weighted average of a;(y) and aq(y):

a(y) = w(y)ai (y) + (1 — w(y))az(y)

with a weight function w(y) € (0,1) given by w(y) =
ko (y) (see Fig. b).

9(y)

Its asymptotic behaviour is: w(y) — 1 for y — 04,
wly) — 0 for y — oo. It implies the asymptotic be-
haviour of the drift a(y):

a(y) ~ ay(y) for y — 04, aly) ~ az(y) for y — oc.

The expected behaviour of a(y) is in Fig. 6. above.
There are exactly three points where a(y) = 0. If we
consider only the deterministic part of the process, the
ordinary differential equation dy = a(y)dt has two stable
stationary solutions and one unstable between them. The
stable stationary solutions cause two humps in the lim-
iting density after adding the stochastic part. However,
on the graph bellow we see that it is not always the case
for a particular choice of parameters. In what follows, we
show that if the value of a is large enough (with fixed
k, 61 and f5) then the behaviour of a(y) is the one in
Fig. 6 above.

To simplify the expressions we denote

1-k F(Qel) a(fz—01)
_ = ailBs =0,

c . I‘(aé‘g)a . g=a(fy —6) (10)
Then the weight w(y) can be written as ﬁ%ﬁt—q— From the
expression for the drift we have

£
V) = Ty grlGr - +at-y). ()

It follows that a(y) > 0 for 0 <y < #; and a(y) <0 for
y = 6. Hence all points for which a(y) = 0 are between
f; and 65.

From (11) we also see that a(y) = 0, iff f(y) = 0
where f(y) = (61 —y)+ecy?(6:—y) . For this function there
are at most three points y in (6,,62) where f(y) = 0.
If there are k points, by Rolle’s theorem there are & — 1
points where f'(y) =0 and k—2 points where f’(y) =0
and all these points are also in (64, 02). By computing the
second derivative of f, we get that it equals zero only for
y=0and y = gﬁﬂg, so there is at most one point in
(61,02) where f"(y) =0. Hence k < 3.

The equation f(y) =0 on (#1,62) can be equivalently
written as fi(y) = fa(y) where

y—0
AW =af, fa) =,
2 =Y
Since f1(61) > f2(61) and fi(6s) is finite, whereas fa(y)
approaches infinity for y — 8;—, it suffices to find y; <
ya such that

filyr) < falya), filyz) > falya) . (12)
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Then we will have shown the existence of at least three
points, for which fi(y) = fa(y). As we already know, the
existence of more then three such points is not possible.
To show the existence of such points y;, y2, we will
compute the limit of fi(y) as a approaches infinity. By
substituting the expressions for ¢ and ¢, we obtain

1= ¥l
fl(y) = TF(aE);)(

Recall that the Stirling formula holds for = > 0 (see [1]):

et (13)

[(z + 1) = V2rz™tie ot

for some & = £(z) € (0,1). Using it for z = af; — 1 and
x = afy — 1 (by assumptions on the parameters, they
are both greater than or equal to 1), we write (13) as the
product of p; and p; where

(14)

1—ksab —1 —%(1—5%,—1)“5‘6m51(a)
fiili= k (0192—1) (1__1_)6152 eﬁ?a—;ﬁgz(ﬂ)’
092

e (661 log &1+65 log §3¢2-+62_5-1) a

b=

Factor p; converges to a positive number I—E—k(ﬁl)

o

for & — oco. From the sign of the exponent of e in
p2 it follows that ps converges to zero on some right
neighborhood of #; and it converges to infinity on some
left neighborhood of #,. Hence also fi(y) has the same
limit and we are able to choose y; < y2 from (6,6,)

such that fi(1n) — 0 and fo(ys) — oo for @ — co.:

There exists og such that for a > ag we have fi(y1) <
f2(y1) and fi(y2) > fa(y2), so the conditions in (12) are
satisfied. Hence for o > g there are exactly three points
where a(y) = 0.

5 CONCLUSION

We described a class of distributions which can be
used to describe the volatility clustering. For distribu-
tions from this class we derived a process with this lim-
iting distribution and discussed the properties of its drift
function. The future work will be the study of bond prices
and term structures in interest rate models with this kind
of stochastic volatility.
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