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ON A VOLATILITY AVERAGING IN A TWO-FACTOR INTEREST
RATE MODEL ∗

BEÁTA STEHLÍKOVÁ AND DANIEL ŠEVČOVIČ †

Abstract. In this paper we deal with the Fong-Vaš́ıček two-factor interest rate model for valuing
term structures. The volatility of the short rate process is assumed to be stochastic and it satisfies a
stochastic differential equation of the mean reversion type. The equation for the zero coupon bond
price is a linear parabolic equation in two space dimensions. These spatial dimensions correspond to
the short rate and volatility. It is shown that this equation possesses an explicit solution giving rise
to study further properties of the two-factor model analytically. Knowing the density distribution of
the stochastic volatility we are yet able to perform averaging of the bond price and the term structure
with respect to stochastic volatility. Unlike the short rate known from the market date on daily basis
the volatility of the short rate process is unknown and can be hardly estimated from historical data.
Therefore such a volatility averaging is of special importance when applying two-factor interest rate
models to market data analysis.
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1. Introduction. Term structure models describe a functional dependence be-
tween the time to maturity of a discount bond and its present price. The time struc-
ture of bond prices (or yields) is a function of time to maturity, state variables like
e.g. instantaneous interest rate as well as several model parameters. Continuous
interest rate models are formulated in terms of stochastic differential equations for
the instantaneous interest rate (or short rate) as well as equations for other relevant
quantities like e.g. volatility of the short rate process. In one-factor models there is
a single stochastic differential equation for the short rate. The volatility of the short
rate process is given in a deterministic way. It is assumed to be constant (the Vaš́ıček
model) or it is a function of the short rate itself (the Cox, Ingersoll, and Ross model).
Beside these two simple models there is a wide range of other models including, in par-
ticular, Brennan–Schwartz model, Hull–White model, Ho–Lee model, Merton model
and many other models. Based on this assumption made on the form of the short
rate process one-can derive a linear scalar parabolic equation for the bond price as
function of the current short rate and time to maturity. The reader is reffered to the
book by Kwok [7] for detailed discussion on applications and properties of one-factor
interest rate models.

Unlike one-factor interest rate model in which the volatility of the process is
assumed to be deterministic it is reasonable to conjecture that the market changes
the volatility of the underlying process for the short rate. In two-factor continuous
interest rate models we allow other quantities including, in particular, volatility to
have a stochastic behavior driven by another stochastic differential equation. In this
paper we focus our attention to the so-called Fong-Vaš́ıček two-factor model [5] in
which the volatility of the short rate process satisfies a stochastic differential equation
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of the mean reversion type. As a consequence of the multidimensional Itô’s lemma (see
[7]) the corresponding equation for the bond price is now a linear parabolic equation
in two space dimensions. These spatial dimensions correspond to the short rate and
volatility.

The main goal of this paper is to investigate a special case of two-factor interest
rate models referred to as the Fong-Vaš́ıček model [5]. In this model we will prove
that the governing PDE possesses a separable solution (see Section 4) giving rise to
study further properties of the two-factor model analytically. We also analyze the
stochastic process driving the volatility. It is well known that its density distribution
is a solution to the Fokker-Planck partial differential equation and can be expressed
analytically in the case the volatility undergoes the Bessel square root process of a
mean reversion type. Knowing the density distribution of the stochastic volatility we
are yet able to construct an algorithm for volatility averaging of the bond price and the
term structure. Unlike the short rate which is known from the market data on daily
basis the volatility of the short rate process is unknown and can be hardly estimated
from historical data. Therefore such a volatility averaging is of special importance for
practitioners. The algorithm of volatility averaging and its numerical implementation
is the main result of this paper.

The paper is organized as follows. In the next section we recall a general form of
a two-factor interest rate model with stochastic volatity. Both stochastic equations
for the short rate as well as for the volatility are Orstein-Uhlenbeck processes often
referred to as mean reverting processes in the financial literature. A parabolic partial
differential equation for the bond price is also recalled in this section. In section 3
we analyze stochastic differential equation driving the volatility of the short rate. We
investigate the density distribution of stochastic volatility. Section 4 is devoted to
description and numerical realization of the algorithm for averaging of the bond price
and the term structures with respect to the stochastic volatility.

2. The two factor model with a stochastic volatility. Any continuous in-
terest rate model is derived from a basic assumption made on the form of a stochastic
process driving the instantaneous interest rate rt, t ∈ [0, T ]. We will assume that
the instantaneous interest rate (short rate) r and its volatility y satisfy the following
system of stochastic differential equations of the Orstein-Uhlenbeck type:

dr = κ1(θ1 − r)dt +
√
yrγdw1(2.1)

dy = κ2(θ2 − y)dt+ vyδdw2(2.2)

where θ1 > 0 is a given constant characterizing the long term average interest rate,
θ2 > 0 is the long term average volatility, γ, δ ≥ 0 are model parameters, v > 0 is the
constant volatility of the volatility, i.e. the volatility of the stochastic process for the
short rate volatility, κ1, κ2 > 0 are rates of reversion for the short rate and volatility,
resp., w1, w2 are two Wiener processes (c.f. [7]) with correlation ρ ∈ [−1, 1], i.e. ρdt =
E(dw1(t)dw2(t)). In this model the short rate rt mean reverts toward an unconditional
mean θ1, whereas the volatility mean reverts toward θ2 value. In Fig. 2.1 we present
a result of a numerical simulation of a process {r(t), y(t)), t ∈ [0, T ]} satisfying (2.1)-
(2.2) with parameters κ1 = κ2 = 1, θ1 = 0.06, θ2 = 0.3, v = 1, γ = 0, δ = 0.5, T = 10.
We chose the correlation ρ = 0.5.

It is worthwhile noting that y(t) → σ2 := θ2 as t → ∞ in the case v = 0. The
equation for the short rate then reduces to dr = κ1(θ1 − r)dt + σrγdw1 which a
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Fig. 2.1. Simulation of a solution (r, y) to the system of stochastic differential equations (2.1)-
(2.2). The long term means θ1 and θ2 are depicted by a vertical blue line.

stochastic equation driving the short rate in the Vaš́ıček model (γ = 0) or CIR model
(γ = 1/2) or generalized CIR model (γ = 3/2).

Let us denote by t and T the present time and maturity, resp. If we denote by τ
the time to maturity T , i.e. τ = T − t, then it is well known (see [7]) that the bond
price P = P (τ, r, y) is a classical solution of the partial differential equation

−∂P
∂τ

+ (κ1(θ1 − r)− λ̃1
√
yrγ)

∂P

∂r
+ (κ2(θ2 − y)− λ̃2vy

δ)
∂P

∂y
+

1

2
(
√
yrγ)2 ∂

2P

∂r2
+

1

2
(vyδ)2 ∂

2P

∂y2
+ (
√
yrγ)(vyδ)ρ

∂2P

∂r∂y
− rP = 0(2.3)

with the initial condition P (0, r, y) = 1 and such that the above equation is satisfied
up to the boundary of the 2D spatial domain {(r, y), 0 ≤ r, 0 ≤ y}. Here λ̃1 and
λ̃2 stand for the so-called market price of risk and are, in general, assumed to be
functions depending on r and y only (c.f. [5, 7]).

The term structure R (or yield) is a functional dependence of time to maturity
τ and the current value of the short rate r. In a two-factor model it also depends on
the stochastic volatility y, i.e. R = R(τ, r, y). It is related to the bond price P as:
P = e−Rτ . It means

R(τ, r, y) = − logP (τ, r, y)

τ
.(2.4)

3. Volatility averaging of bond prices and term structures. A solution
P (τ, r, y) of the partial differential equation (2.3) gives us the bond prices for given
values of the short rate r and the variable y. Unlike the short rate r the volatility y
is not an observable variable in the real market. It suggests investigation of P (τ, r, y)
for the given τ and r as function of the random variable y.

In what follows we will assume that the value of the short rate r at the time τ
to maturity is known from the market data. The hidden parameter in the model is
the volatility y which is supposed to be driven by the stochastic differential equation
(2.2). In order to find the distribution of P (τ, r, y), one has to know distribution of y

We remind ourselves (c.f. Goodman et al. [2]) that if the process y(t) satisfies a
stochastic differential equation

dy(t) = a(t, y(t))dt+ b(t, y(t))dw,

then, with regard to the Feynman-Katz formula, the conditional density f(t, y|y(0) =
y0) of the random variable y(t) satisfying an initial condition y(0) = y0 is a solution
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Fig. 3.1. A limiting density distribution g of the y variable.

to the Fokker-Planck partial differential equation

−∂f
∂t
− ∂(af)

∂y
+

∂2

∂y2

(
b2f

2

)
= 0, τ > 0 ,(3.1)

with the initial condition f(0, y) = δ0(y − y0) where δ0 is the Dirac function.
In general, the density function f(τ, y) is not known in a closed form for arbitrary

δ > 0. However, if we consider a special case in which the variable y follows the
so-called Bessel square root process dy = κ2(θ2 − y)dt + vy

1
2 dw2 i.e. the parameter

δ = 1
2 , then the density of y(t) subject to the initial condition y(0) = y0 can be

expressed by an explicit formula (see [7])

f(t, y|y(0) = y0) =

{
0 for y ≤ 0,

c0e
−p−q

(
q
p

)α−1
2

Iα−1(2
√
pq) for y > 0,

(3.2)

where

c0 =
2κ2

v2 (1− e−κ2t)
, p = c0y0e

−κ2τ , q = c0y, α =
2κ2θ2

v2
,

and Im is the modified Bessel function of the first kind of the order m (see [1]). Taking
into account properties of the modified Bessel function we are yet able to compute
the limiting distribution g, i.e. the limit g(y) of the density function f(t, y|y(0) = y0)
for t→∞. In the case of δ = 1

2 we can compute the limit

g(y) := lim
t→∞

f (t, y|y(0) = y0) =

{
0 for y ≤ 0,

1
Γ(α)λ

αe−λyyα−1 for y > 0,
(3.3)

which is a density of the Gamma distribution Γ(λ, α) (see Fig. 3.1) with parameters

λ =
2κ2

v2
, α =

2κ2θ2

v2
.(3.4)

Assuming that the process (2.1)-(2.2) runs for a long enough time, we may ap-
proximate the distribution of y(t) for large t with a limiting distribution g found
above. The averaged price of a bond and the averaged term structure with respect to
the volatility are then given by

〈P (τ, r, y)〉y =

∫ ∞

0

P (τ, r, y)g(y)dy, 〈R(τ, r, y)〉y =

∫ ∞

0

R(τ, r, y)g(y)dy .
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4. Algorithm for volatility averaging in the Fong-Vaš́ıček model. In this
section we discuss the main result of this paper - the method of volatility averaging for
a special class of two-factor models which is referred to as the Fong-Vaš́ıček model [5].
Our algorithm consists in finding a solution P to the governing PDE (2.3). Knowing
the density distribution of the stochastic volatility we are then able to compute the
bond price averaged with respect to stochastic volatility. In a general case of model
parameters we have to solve the governing equation (2.3) numerically. However, in
the special case in which the short rate r and its volatility y evolves according to the
following system of stochastic differential equations:

dr = κ1(θ1 − r)dt+
√
ydw1 ,(4.1)

dy = κ2(θ2 − y)dt+ v
√
ydw2

we are able to simplify the computation significantly as equation (2.3) can be separated
and subsequently it can be reduced to a system of ODEs which can be easily solved
by the Runge-Kutta method. Notice that the above system of stochastic differential
equations corresponds to the choice of γ = 0 and δ = 1

2 in (2.1)-(2.2) and it is called
the Fong-Vaš́ıček model in the literature. It can be viewed as a natural extension of
the Vaš́ıček model ([10]), a one-factor model given by the first of the above equations
with a constant y. In the Fong-Vaš́ıček model the market prices λ̃i, i = 1, 2 of risk
appearing in (2.3) are defined as

λ̃1 = λ1
√
y, λ̃2 = λ2

√
y .

For a fixed y, the term λ̃1 corresponds to the market price of risk in the Vaš́ıček
model.

In what follows we will look for a solution of (2.3) in the form

P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y .(4.2)

Inserting the above ansatz into (2.3) and by collecting the terms multiplying r and y
variables one sees that the bond price P is a solution to the parabolic PDE (2.3) iff
the functions A = A(τ), B = B(τ), C = C(τ), τ ∈ (0, T ], satisfy the following system
of ordinary differential equations:

Ȧ = −A (κ1θ1B + κ2θ2C) ,

Ḃ = −κ1B + 1 ,(4.3)

Ċ = −λ1B − κ2C − λ2vC −
B2

2
− v2C2

2
− vρBC

with initial conditions A(0) = 1, B(0) = 0, C(0) = 0. Integrating the equation for B
yields

B(τ) =
(
1− e−κ1τ

)
/κ1

and hence C satisfies the differential equation

Ċ(τ) + λ1B(τ) +
B(τ)2

2
+ (κ2 + λ2v + vρB(τ))C(τ) +

v2

2
C(τ)2 = 0 .

The above ODE can be solved numerically by means of the Runge-Kutta method. In
our numerical simulations we used the Runge-Kutta method of the 4th order with
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adaptive step size. Notice that the coefficient B has exactly the same form as the one
in the one-factor Vaš́ıček model (see [7]). Finally, by integrating the equation for A,
we obtain

A(τ) = exp

(
−θ1τ + θ1B(τ)− κ2θ2

∫ τ

0

C(s)ds

)
.

In what follows we will make a structural assumption on the model parameters guar-
anteeing feasibility of the bond price P given by (4.2). By a feasible solution we mean
a function P such that 0 < P (τ, r, y) < 1 for τ ∈ (0, T ] (the bond price is less than
its value in the maturity), the function r 7→ P (τ, r, y) is decreasing (larger short rates
mean lower present bond prices), the function y 7→ P (τ, r, y) is decreasing (higher
volatility of the short rate means lower bond prices). In order to ensure these prop-
erties it suffices to prove 0 < A(τ) < 1, B(τ) > 0 and C(τ) > 0 for τ ∈ (0, T ]. In the
following we will show that under the assumption

λ1 ≤ −
1

2κ1
(4.4)

we have C(τ) > 0 for τ ∈ (0, T ]. Indeed, since C(0) = 0 and B(0) = 0 it follows
from the differential equation for C that Ċ(0) = 0 and so C̈(0) = −λ1 > 0. Hence
C(τ) > 0 in some neighborhood of τ = 0. Now it suffices to show that Ċ(τ) > 0
whenever C(τ) = 0. This is true because for C(τ) = 0 the derivative Ċ(τ) is equal to

Ċ(τ) = −1− e−κ2τ

2κ2
1

(
2λ1κ1 + 1− e−κ1τ

)
> −1− e−κ2τ

2κ2
1

(2λ1κ1 + 1) ≥ 0 .

Because C is continuous it must be bounded from above on any compact interval
[0, T ]. Furthermore A(τ) never attains zero value as the integral

∫ τ
0 C(s)ds is always

finite for τ ∈ [0, T ]. As B(τ) < τ for any τ > 0 we have

0 < A(τ) < exp (−θ1(τ −B(τ))) < 1 ,

and, as B(τ)→ 1/κ1 as t→∞ we have A(τ) → 0 for τ →∞. In Fig. 4.1 we present
behavior of a solution A,B,C to (4.3). In the left column we show their behavior
for parameter values satisfying the structural condition (4.4). The corresponding
solution P is feasible. On the other hand, the right column contains plots of a solution
A,B,C to (4.3) in the case the condition (4.4) is violated. Negative values of C imply
unfeasibility of the solution P . Fig. 4.2 depicts a 3D plot of a feasible solution P for
one instant of time to maturity τ .

In the remaining part of this section we will find averaged values of the bond
price 〈P (τ, r, y)〉y and the term structure 〈R(τ, r, y)〉y with respect to the stochastic
volatility y by assuming the limiting distribution g of y. These averaged values will
be given in terms of A(τ), B(τ), C(τ). Moreover, we will prove that their variance of
P (τ, r, y) and R(τ, r, y) for fixed r converges to zero for τ →∞.

We already know that the asymptotic distribution of y is the Gamma distribution
Γ(λ, α) with parameters λ = 2κ2

v2 , α = 2κ2θ2

v2 . Then the average value of P (τ, r, y) with
respect to the asymptotic distribution g of y is given by the integral 〈P (τ, r, y)〉y =∫∞

0
P (τ, r, y)g(y)dy . Substituting (4.2), (3.3) and evaluating the integral gives

〈P (τ, r, y)〉y = A(τ)e−B(τ)r

(
1 +

C(τ)

λ

)−α
.
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Fig. 4.1. Graphs of the functions A,B,C for two different sets of parameters; λ1 = −2, κ1 = 0.5
(left column) and λ1 = −0.1, κ1 = 0.2 (right column). In both cases we chose λ2 = −3, κ2 = 0.2, θ1 =
0.04, θ2 = 0.2, v = 0.1, ρ = 0.5.

The average of P 2 can be computed as
〈
P 2(τ, r, y)

〉
y

= A2(τ)e−2B(τ)r
(

1 + 2C(τ)
λ

)−α

and hence the variance of P (τ, r, y) can be expressed as:

V ary(P (τ, r, y)) = A2(τ)e−2B(τ)r

((
1 +

2C(τ)

λ

)−α
−
(

1 +
C(τ)

λ

)−2α
)

By the mean value theorem the difference of negative α powers in the above expression

is equal to − α
λ2C(τ)2ξ−α−1 for some ξ from the interval

(
1 + 2C(τ)

λ ,
(

1 + C(τ)
λ

)2
)

.

Hence ξ > 1 and therefore

V ary(P (τ, r, y)) < A2(τ)e−2B(τ)r θ2v
2

2κ2
C2(τ) .

Since C(τ) is bounded and A(τ) → 0 and B(τ) → 1
κ1

for τ →∞ so we conclude that

V ary(P (τ, r, y))→ 0 for τ →∞ .

The function y 7→ P (τ, r, y) is strictly convex because ∂2
yP (τ, r, y) = C(τ)2P (τ, r, y) >

0. Hence, by Jensen’s inequality, we have

〈P (τ, r, y)〉y =

∫ ∞

0

P (τ, r, y)g(y)dy > P (τ, r,

∫ ∞

0

yg(y)dy) = P (τ, r, θ2) ,
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Fig. 4.2. A solution P = P (τ, r, y) to the PDE for the bond price.

i.e. the averaged bond price 〈P (τ, r, y)〉y is always greater than the bond price
P (τ, r, θ2) corresponding to the mean value θ2 = 〈y〉 of the stochastic volatility y.
Notice that P = e−Rτ and P = Ae−Br−Cy. Thus

R(τ, r, y) = − logP (τ, r, y)

τ
= − logA(τ)

τ
+
B(τ)

τ
r +

C(τ)

τ
y .

It means that R is linear in the y variable. Since the expected value of y is θ2 and its
variance V ar(y) = α

λ2 we obtain

〈R(τ, r, y)〉y = R(τ, r, 〈y〉) = R(τ, r, θ2)

and

V ary(R(τ, r, y)) =

(
C(τ)

τ

)2

V ar(y) =
v2θ2

2κ2

C2(τ)

τ2
.

As C(τ) is bounded and 1
τ2 → 0 for τ →∞ we obtain

V ary(R(τ, r, y))→ 0 for τ →∞ .

In Fig. 4.4 we show the dependence of variances V ary(P (τ, r, y)) and V ary(R(τ, r, y))
as a functions of time τ to maturity for a fixed short rate value r = 0.04. Both of them
have unique local maximum. Interestingly enough, the position of the maximum of
the variance for P is large than the one for variance of R.
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Formula, Journal of Fixed Income, 5 (1995), pp. 78–84.
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